NASA Astrophysics Data System (ADS)
Allen, J. S.
2009-12-01
NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. The loan program also includes Meteorite Disks containing six meteorites that will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks through Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program is set up to bridge to new education programs that will carry NASA exploration to more people. Getting Space Rocks out to the public and connecting the public to the current space exploration missions is the focus the NASA disk loan program.
NASA Lunar and Meteorite Sample Disk Program
NASA Technical Reports Server (NTRS)
Foxworth, Suzanne
2017-01-01
The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.
NASA Technical Reports Server (NTRS)
Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.
2010-01-01
NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. Each Meteorite Disk contains two ordinary chondrites, one carbonaceous chondrite, one iron, one stony iron, and one achondrite. These samples will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks and the accompanying education materials through the Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program will take NASA exploration to more people. Getting Space Rocks out to the public and inspiring the public about new space exploration is the focus of the NASA disk loan program.
Education Statistics on Disk. [CD-ROM.
ERIC Educational Resources Information Center
National Center for Education Statistics (ED), Washington, DC.
This CD-ROM disk contains a computer program developed by the Office of Educational Research and Improvement to provide convenient access to the wealth of education statistics published by the National Center for Education Statistics (NCES). The program contains over 1,800 tables, charts, and text files from the following NCES publications,…
Handbook for Local Coordinators: Value-Added, Compact Disk, Union Catalog Test Phase.
ERIC Educational Resources Information Center
Townley, Charles
In 1988, the Associated College Libraries of Central Pennsylvania received a grant to create a value-added, compact disk, union catalog from the U.S. Department of Education's College Library Technology and Cooperative Grants Program, Title II of the Higher Education Act. Designed to contain, in time, 2,000,830 records from 17 member library…
Code of Federal Regulations, 2010 CFR
2010-01-01
... or disk), among others. A component shall honor a requester's specified preference of form or format... institution of professional education, or an institution of vocational education, that operates a program of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... (e.g., magnetic tape or disk), among others. The requester's specified preference of form or format... institution of vocational education, that operates a program or programs of scholarly research. (i) The term...
Lunar and Meteorite Sample Disk for Educators
NASA Technical Reports Server (NTRS)
Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.
2015-01-01
NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.
ERIC Educational Resources Information Center
Weiskopf, Joyce Lowry
This guide accompanies a compact disk that provides a comprehensive collection of information resources. The compact disk is organized according to energy sources and cross-referenced to issues that must be considered when making decisions about energy. This booklet, designed around questions common to high school students, illustrates how the…
Sparking young minds with Moon rocks and meteorites
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Lindstrom, Marilyn M.
1993-01-01
What could be more exciting than seeing pieces of other worlds? The Apollo program left a legacy of astounding accomplishments and precious samples. Part of the thrill of those lunar missions is brought to schools by the lunar sample educational disks, which contain artifacts of six piloted trips to the Moon. Johnson Space Center (JSC) is preparing 100 new educational disks containing pieces of meteorites collected in Antarctica. These represent chunks of several different asteroids, that were collected in one of the most remote, forbidding environments on Earth. These pieces of the Moon and asteroids represent the products of basic planetary processes (solar nebular processes, initial differentiation, volcanism, and impact), and, in turn, these processes are controlled by basic physical and chemical processes (energy, energy transfer, melting, buoyancy, etc.). Thus, the lunar and meteorite sample disks have enormous educational potential. New educational materials are being developed to accompany the disks. Present materials are not as effective as they could be, especially in relating samples to processes and to other types of data such as spectral studies and photogeology. Furthermore, the materials are out of date. New background materials will be produced for teachers, assembling slide sets with extensive captions, and devising numerous hands-on classroom activities to do while the disks are at a school and before and after they arrive. The classroom activities will be developed by teams of experienced teachers working with lunar and meteorite experts.
Floppy disk utility user's guide
NASA Technical Reports Server (NTRS)
Akers, J. W.
1981-01-01
The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).
Floppy disk utility user's guide
NASA Technical Reports Server (NTRS)
Akers, J. W.
1980-01-01
A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.
In the School Game, Your Options Abound.
ERIC Educational Resources Information Center
Trotter, Andrew
1991-01-01
Describes various electronic technologies available for classroom use, including videocassette news reports, educational computer games based on knowledge of geographical and historical trivia, and other software programs developed expressly for schools. Nintendo Company is being watched for optical disk developments, and "virtual…
The Educator's Guide to HyperCard and HyperTalk. A Longwood Professional Book.
ERIC Educational Resources Information Center
Culp, George H.; Watkins, G. Morgan
This book and three accompanying floppy disks introduce HyperCard 2.1 for the Macintosh microcomputer and its programming component, HyperTalk, to educators. The first four chapters introduce the basics of HyperCard, including its structure, which is based on a hierarchy of units; the use of tools and graphics; and ways of linking information…
NASA Astrophysics Data System (ADS)
Jones, Charles R.
Although a number of studies have been performed regarding the use of interactive multimedia disks in education, none were found which investigated their effect on either retention or recruitment for universities. The purpose of this case study was to gather information regarding student and teacher perceptions on the use of interactive multimedia disks and their effect on retention and recruitment. The primary source of data for this case study was student and teacher interviews. A purposive sample of students taking courses using the interactive multimedia disks in course at the Oregon Institute of Technology and at two Oregon high schools was chosen for the case study. Major findings of the case study were as follows: (1) Students interviewed in this case study perceived the interactive multimedia disk-based instructional method to be equally as effective as the lecture method. (2) Time flexibility in class scheduling was slightly more beneficial to female students than male students and the lack of instructor-led classroom interaction was more of a problem for female students than male students. (3) There was no difference in the perceptions of the college students and the high school students regarding the benefits and drawbacks of the interactive multimedia disk-based classes. (4) The flexible class scheduling made possible through the use of interactive multimedia disks influences some Oregon Institute of Technology students to stay and complete their degree programs. (5) There is some potential for interactive multimedia disk-based courses to be a recruiting tool. However, there is no evidence that it has been a successful recruiting tool for the Oregon Institute of Technology yet.
Formatting scripts with computers and Extended BASIC.
Menning, C B
1984-02-01
A computer program, written in the language of Extended BASIC, is presented which enables scripts, for educational media, to be quickly written in a nearly unformatted style. From the resulting script file, stored on magnetic tape or disk, the computer program formats the script into either a storyboard , a presentation, or a narrator 's script. Script headings and page and paragraph numbers are automatic features in the word processing. Suggestions are given for making personal modifications to the computer program.
An overview of the education and training component of RICIS
NASA Technical Reports Server (NTRS)
Freedman, Glenn B.
1987-01-01
Research in education and training according to RICIS (Research Institute for Computing and Information Systems) program focuses on means to disseminate knowledge, skills, and technological advances rapidly, accurately, and effectively. A range of areas for study include: artificial intelligence, hypermedia and full-text retrieval strategies, use of mass storage and retrieval options such as CD-ROM and laser disks, and interactive video and interactive media presentations.
NASA Technical Reports Server (NTRS)
Gabb, Tim; Gayda, John; Telesman, Jack
2001-01-01
The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.
NASA Astrophysics Data System (ADS)
Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.
2010-12-01
This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the researchers involved in this complex solar system.
Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth
2002-01-01
The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.
Detailed Microstructural Characterization of the Disk Alloy ME3
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.
2004-01-01
The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.
Evaluation of powder metallurgy superalloy disk materials
NASA Technical Reports Server (NTRS)
Evans, D. J.
1975-01-01
A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.
Structural Optimization Methodology for Rotating Disks of Aircraft Engines
NASA Technical Reports Server (NTRS)
Armand, Sasan C.
1995-01-01
In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.
NASA Technical Reports Server (NTRS)
Kim, Y. W.; Metzger, D. E.
1992-01-01
The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.
Spin Testing of Superalloy Disks With Dual Grain Structure
NASA Technical Reports Server (NTRS)
Hefferman, Tab M.
2006-01-01
This 24-month program was a joint effort between Allison Advanced Development Company (AADC), General Electric Aircraft (GEAE), and NASA Glenn Research Center (GRC). AADC led the disk and spin hardware design and analysis utilizing existing Rolls-Royce turbine disk forging tooling. Testing focused on spin testing four disks: two supplied by GEAE and two by AADC. The two AADC disks were made of Alloy 10, and each was subjected to a different heat treat process: one producing dual microstructure with coarse grain size at the rim and fine grain size at the bore and the other produced single fine grain structure throughout. The purpose of the spin tests was to provide data for evaluation of the impact of dual grain structure on disk overspeed integrity (yielding) and rotor burst criteria. The program culminated with analysis and correlation of the data to current rotor overspeed criteria and advanced criteria required for dual structure disks.
Masers in Disks due to Gravitational Instabilities
NASA Astrophysics Data System (ADS)
Mejia, A. C.; Durisen, R. H.; Pickett, B. K.; Hartquist, T. W.
2001-12-01
Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large circumstellar disks, at radii of 100's to 1000's of AU from the central mass. This is particularly true for methanol (CH3OH), where linear distributions of masers are found with disk-like kinematics. In 3D hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on. This work was supported by NASA Origins Program Grant NAGW5-4342, by the Alexander von Humboldt Foundation, and by NASA Planetary Geology and Geophysics Program Grant NAG5-10262.
OBR-1-1/Fizika-LT(Letaushaya Tarelka/Flying Disk) experiment
2009-04-24
ISS019-E-010226 (24 April 2009) --- Cosmonaut Gennady Padalka, Expedition 19/20 commander, holds the OBR-1-1/?Fizika-LT? (Letaushaya Tarelka/Flying Disk) educational experiment, also called ?UFO?, in the Zvezda Service Module of the International Space Station. The OBR-1-1 is part of the OBRAZOVANIE (Education) suite of three educational demonstrations of physics in microgravity.
Pfaller, M A; Hazen, K C; Messer, S A; Boyken, L; Tendolkar, S; Hollis, R J; Diekema, D J
2004-08-01
The accuracy of antifungal susceptibility tests is important for accurate resistance surveillance and for the clinical management of patients with serious infections. Our main objective was to compare the results of fluconazole disk diffusion testing of Candida spp. performed by ARTEMIS participating centers with disk diffusion and MIC results obtained by the central reference laboratory. A total of 2,949 isolates of Candida spp. were tested by NCCLS disk diffusion and reference broth microdilution methods in the central reference laboratory. These results were compared to the results of disk diffusion testing performed in the 54 participating centers. All tests were performed and interpreted following NCCLS recommendations. Overall categorical agreement between participant disk diffusion test results and reference laboratory MIC results was 87.4%, with 0.2% very major errors (VME) and 3.3% major errors (ME). The categorical agreement between the disk diffusion test results obtained in the reference laboratory with the MIC test results was similar: 92.8%. Likewise, good agreement was observed between participant disk diffusion test results and reference laboratory disk diffusion test results: 90.4%, 0.4% VME, and 3.4% ME. The disk diffusion test was especially reliable in detecting those isolates of Candida spp. that were characterized as resistant by reference MIC testing. External quality assurance data obtained by surveillance programs such as the ARTEMIS Global Antifungal Surveillance Program ensure the generation of useful surveillance data and result in the continued improvement of antifungal susceptibility testing practices.
OBR-1-1/Fizika-LT(Letaushaya Tarelka/Flying Disk) experiment
2009-04-24
ISS019-E-010230 (24 April 2009) --- Cosmonaut Gennady Padalka, Expedition 19/20 commander, is pictured near the OBR-1-1/?Fizika-LT? (Letaushaya Tarelka/Flying Disk) educational experiment, also called ?UFO?, floating freely in the Zvezda Service Module of the International Space Station. The OBR-1-1 is part of the OBRAZOVANIE (Education) suite of three educational demonstrations of physics in microgravity.
OBR-1-1/Fizika-LT(Letaushaya Tarelka/Flying Disk) experiment
2009-04-24
ISS019-E-010081 (24 April 2009) --- Cosmonaut Gennady Padalka, Expedition 19/20 commander, is pictured near the OBR-1-1/?Fizika-LT? (Letaushaya Tarelka/Flying Disk) educational experiment, also called ?UFO?, floating freely in the Zvezda Service Module of the International Space Station. The OBR-1-1 is part of the OBRAZOVANIE (Education) suite of three educational demonstrations of physics in microgravity.
BridgeUP: STEM. Creating Opportunities for Women through Tiered Mentorship
NASA Astrophysics Data System (ADS)
Secunda, Amy; Cornelis, Juliette; Ferreira, Denelis; Gomez, Anay; Khan, Ariba; Li, Anna; Soo, Audrey; Mac Low, Mordecai
2018-01-01
BridgeUP: STEM is an ambitious, and exciting initiative responding to the extensive gender and opportunity gaps that exist in the STEM pipeline for women, girls, and under-resourced youth. BridgeUP: STEM has developed a distinct identity in the landscape of computer science education by embedding programming in the context of scientific research. One of the ways in which this is accomplished is through a tiered mentorship program. Five Helen Fellows are chosen from a pool of female, postbaccalaureate applicants to be mentored by researchers at the American Museum of Natural History in a computational research project. The Helen Fellows then act as mentors to six high school women (Brown Scholars), guiding them through a computational project aligned with their own research. This year, three of the Helen Fellows, and by extension, eighteen Brown Scholars, are performing computational astrophysics research. This poster presents one example of a tiered mentorship working on modeling the migration of stellar mass black holes (BH) in active galactic nucleus (AGN) disks. Making an analogy from the well-studied migration and formation of planets in protoplanetary disks to the newer field of migration and formation of binary BH in AGN disks, the Helen Fellow is working with her mentors to make the necessary adaptations of an N-body code incorporating migration torques from the protoplanetary disk case to the AGN disk case to model how binary BH form. This is in order to better understand and make predictions for gravitational wave observations from the Laser Interferometer Gravitational-Wave Observatory (LIGO). The Brown Scholars then implement the Helen Fellow’s code for a variety of different distributions of initial stellar mass BH populations that they generate using python, and produce visualizations of the output to be used in a published paper. Over the course of the project, students will develop a basic understanding of the physics related to their project and develop their practical computational skills.
Microgravity computing codes. User's guide
NASA Astrophysics Data System (ADS)
1982-01-01
Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.
1987-12-01
Application Programs Intelligent Disk Database Controller Manangement System Operating System Host .1’ I% Figure 2. Intelligent Disk Controller Application...8217. /- - • Database Control -% Manangement System Disk Data Controller Application Programs Operating Host I"" Figure 5. Processor-Per- Head data. Therefore, the...However. these ad- ditional properties have been proven in classical set and relation theory [75]. These additional properties are described here
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed
NASA Technical Reports Server (NTRS)
Gayda, John
2002-01-01
Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the photomicrographs. The fine grain size in the bore can be contrasted with the coarse grain size in the rim. Testing (at NASA Glenn) of coupons machined from these disks showed that the DMHT approach did indeed produce a high-strength, fatigue resistant bore and a creep-resistant rim. This combination of properties was previously unobtainable using conventional heat treatments, which produced disks with a uniform grain size. Future plans are in place to spin test a DMHT disk under the Ultra Safe Propulsion Project to assess the viability of this technology at the component level. This testing will include measurements of disk growth at a high temperature as well as the determination of burst speed at an intermediate temperature.
Advanced Forensic Format: an Open Extensible Format for Disk Imaging
NASA Astrophysics Data System (ADS)
Garfinkel, Simson; Malan, David; Dubec, Karl-Alexander; Stevens, Christopher; Pham, Cecile
This paper describes the Advanced Forensic Format (AFF), which is designed as an alternative to current proprietary disk image formats. AFF offers two significant benefits. First, it is more flexible because it allows extensive metadata to be stored with images. Second, AFF images consume less disk space than images in other formats (e.g., EnCase images). This paper also describes the Advanced Disk Imager, a new program for acquiring disk images that compares favorably with existing alternatives.
Educational Videodisc in Canada. New Technologies in Canadian Education Series. Paper 13.
ERIC Educational Resources Information Center
Tobin, Judith
This paper describes the development and current state of videodisk technology in Canada. The first section focuses on the technology itself, i.e., the disks, disk players, and the possibilities they offer for interaction between learner and machine. The current costs of the technology and the probable effect of these costs on the market are also…
Software for Viewing Landsat Mosaic Images
NASA Technical Reports Server (NTRS)
Watts, Zack; Farve, Catharine L.; Harvey, Craig
2003-01-01
A Windows-based computer program has been written to enable novice users (especially educators and students) to view images of large areas of the Earth (e.g., the continental United States) generated from image data acquired in the Landsat observations performed circa the year 1990. The large-area images are constructed as mosaics from the original Landsat images, which were acquired in several wavelength bands and each of which spans an area (in effect, one tile of a mosaic) of .5 in latitude by .6 in longitude. Whereas the original Landsat data are registered on a universal transverse Mercator (UTM) grid, the program converts the UTM coordinates of a mouse pointer in the image to latitude and longitude, which are continuously updated and displayed as the pointer is moved. The mosaic image currently on display can be exported as a Windows bitmap file. Other images (e.g., of state boundaries or interstate highways) can be overlaid on Landsat mosaics. The program interacts with the user via standard toolbar, keyboard, and mouse user interfaces. The program is supplied on a compact disk along with tutorial and educational information.
The Geometry of Resonant Signatures in Debris Disks with Planets
NASA Astrophysics Data System (ADS)
Kuchner, M. J.; Holman, M. J.
2002-09-01
Using simple geometrical arguments, we paint an overview of the variety of resonant structures a single planet with moderate eccentricity (e < 0.6) can create in a dynamically cold, optically thin dust disk. This overview may serve as a key for interpreting images of perturbed debris disks and inferring the dynamical properties of the planets responsible for the perturbations. We compare the resonant structures found in the solar system with observations of planetary systems around Vega and other stars and we offer a new model for the asymmetries in the Epsilon Eridani disk. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) through the Michelson Fellowship program funded by NASA as an element of the Planet Finder Program.
Rush, Perry O; Boone, William R
2009-01-01
This article provides information regarding the introduction of virtual education into classroom instruction, wherein a method of classroom instruction was developed with the use of a computer, digital camera, and various software programs. This approach simplified testing procedures, thus reducing institutional costs substantially by easing the demand for manpower, and seemed to improve average grade performance. Organized files with hundreds of digital pictures have created a range of instructor resources. Much of the new course materials were organized onto compact disks to complement course notes. Customizing presentations with digital technology holds potential benefits for students, instructors and the institution.
NIRCam Coronagraphic Observations of Disks and Planetary Systems
NASA Astrophysics Data System (ADS)
Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team
2017-06-01
The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.
Procedures for shape optimization of gas turbine disks
NASA Technical Reports Server (NTRS)
Cheu, Tsu-Chien
1989-01-01
Two procedures, the feasible direction method and sequential linear programming, for shape optimization of gas turbine disks are presented. The objective of these procedures is to obtain optimal designs of turbine disks with geometric and stress constraints. The coordinates of the selected points on the disk contours are used as the design variables. Structural weight, stress and their derivatives with respect to the design variables are calculated by an efficient finite element method for design senitivity analysis. Numerical examples of the optimal designs of a disk subjected to thermo-mechanical loadings are presented to illustrate and compare the effectiveness of these two procedures.
NSSDC activities with 12-inch optical disk drives
NASA Technical Reports Server (NTRS)
Lowrey, Barbara E.; Lopez-Swafford, Brian
1986-01-01
The development status of optical-disk data transfer and storage technology at the National Space Science Data Center (NSSDC) is surveyed. The aim of the R&D program is to facilitate the exchange of large volumes of data. Current efforts focus on a 12-inch 1-Gbyte write-once/read-many disk and a disk drive which interfaces with VAX/VMS computer systems. The history of disk development at NSSDC is traced; the results of integration and performance tests are summarized; the operating principles of the 12-inch system are explained and illustrated with diagrams; and the need for greater standardization is indicated.
Design and implementation of reliability evaluation of SAS hard disk based on RAID card
NASA Astrophysics Data System (ADS)
Ren, Shaohua; Han, Sen
2015-10-01
Because of the huge advantage of RAID technology in storage, it has been widely used. However, the question associated with this technology is that the hard disk based on the RAID card can not be queried by Operating System. Therefore how to read the self-information and log data of hard disk has been a problem, while this data is necessary for reliability test of hard disk. In traditional way, this information can be read just suitable for SATA hard disk, but not for SAS hard disk. In this paper, we provide a method by using LSI RAID card's Application Program Interface, communicating with RAID card and analyzing the feedback data to solve the problem. Then we will get the necessary information to assess the SAS hard disk.
Software Engineering Principles 3-14 August 1981,
1981-08-01
small disk used (but rot that of the extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the...extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the disk was 1/10000 for access); and...programed and tested - must be correct and fast D. Choice of right synchronization operations: Design problem 1. Several mentioned in literature 9-22
Heating, Cooling, and Gravitational Instabilities in Protostellar and Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Pickett, B. K.; Mejia, A. C.; Durisen, R. H.
2001-12-01
We present three-dimensional hydrodynamic simulations of protostellar disk models, in order to explore how the interplay between heating and cooling regulates significant gravitational instabilities. Artificial viscosity is used to treat irreversible heating, such as would occur in shocks; volumetric cooling at several different rates is also applied throughout a broad radial region of the disk. We study the evolution of a disk that is already unstable (due to the low value of the Toomre Q parameter), and a marginally unstable disk that is cooled towards instability. The evolutions have implications for the transport of mass and angular momentum in protostellar disks, the effects of gravitational instabilities on the vertical structure of the disks, and the formation of stellar and substellar companions on dynamic time scales due to disk instabilties. This work is supported by grants from the NASA Planetary Geology and Geophysics and Origins of Solar Systems Programs.
NASA Technical Reports Server (NTRS)
Saltsman, James F.
1992-01-01
This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.
Herschel evidence for disk flattening or gas depletion in transitional disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keane, J. T.; Pascucci, I.; Espaillat, C.
Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions ofmore » the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... example, magnetic tape or disk), among others. TVA shall honor a requester's specified preference of form... education, or an institution of professional education, or an institution of vocational education, that...
Cyclic Spin Testing of Superalloy Disks With a Dual Grain Microstructure
NASA Technical Reports Server (NTRS)
Gayda, John; Kantzos, Pete
2005-01-01
An aggressive cyclic spin test program was run to verify the reliability of superalloy disks with a dual grain structure, fine grain bore and coarse grain rim, utilizing a disk design with web holes bisecting the grain size transition zone. Results of these tests were compared with conventional disks with uniform grain structures. Analysis of the test results indicated the cyclic performance of disks with a dual grain structure could be estimated to a level of accuracy which does not appear to prohibit the use of this technology in advanced gas turbine engines, although further refinement of lifing methodology is clearly warranted.
Three Trailblazing Technologies for Schools.
ERIC Educational Resources Information Center
McGinty, Tony
1987-01-01
Provides an overview of the capabilities and potential educational applications of CD-ROM (compact disk read-only memory), artificial intelligence, and speech technology. Highlights include reference materials on CD-ROM; current developments in CD-I (compact disk interactive); synthesized and digital speech for microcomputers, including specific…
ERIC Educational Resources Information Center
ManTech Advanced Technology Systems, Fairfax, VA.
This report contains the results of a study sponsored by the National Library Service for the Blind and Physically Handicapped to investigate the implications of converting its audio magazine program from flexible disk to audiocassette. Specific issues to be considered included whether or not such a conversion would represent: (1) a financial…
Cryogenic Yb: YAG Thin-Disk Laser
2016-09-09
AFRL-RD-PS- TP-2016-0004 AFRL-RD-PS- TP-2016-0004 CRYOGENIC Yb: YAG THINN-DISK LASER N . Vretenar, et al. 19 August 2011 Technical Paper...Cryogenic Yb: YAG Thin-Disk Laser 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) * N . Vretenar, R. Carson, ***T. Lucas, T. Newell, W.P. Latham...Thin-Disk Laser N . Vretenar,1 T. Carson,2 T. Lucas,3T. Newell,2 W. P. Latham,2 and P. Peterson,3 H. Bostanci,4 J. J. Lindauer4, B. A. Saarloos,4
OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements
NASA Astrophysics Data System (ADS)
Pascucci, I.
2010-07-01
Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1989-01-01
Rotor dynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that is may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbo-pumps. Finite element analyses have been performed for a simplified free-free flexible disk rotor model and the modes and frequencies compared to those of a rigid disk model. The simple model was then extended to a more sophisticated HPTOP rotor model and similar results were observed. Equations were developed that are suitable for modifying the current rotordynamical analysis program to account for disk flexibility. Some conclusions are drawn from the results of this work as to the importance of disk flexibility on the HPTOP rotordynamics and some recommendations are given for follow-up research in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.
We present the first images of four debris disks observed in scattered light around the young (4–250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Telescope NICMOS coronagraph data with modern post-processing techniques as part of the Archival Legacy Investigation of Circumstellar Environments program. All four disks appear faint and compact compared with other debris disks resolved in scattered light. The disks around TWA 25, HD 35650, and HD 377 appear very inclined, while TWA 7's disk is viewed nearly face-on. The surface brightness of HD 35650's diskmore » is strongly asymmetric. These new detections raise the number of disks resolved in scattered light around M and late-K stars from one (the AU Mic system) to four. This new sample of resolved disks enables comparative studies of heretofore scarce debris disks around low-mass stars relative to solar-type stars.« less
Lunar Rocks: Available for Year of the Solar System Events
NASA Astrophysics Data System (ADS)
Allen, J. S.
2010-12-01
NASA is actively exploring the moon with our Lunar Reconnaissance Orbiter, the Grail Discovery Mission will launch next year, and each year there is an International Observe the Moon Night providing many events and lunar science focus opportunities to share rocks from the moon with students and the public. In our laboratories, we have Apollo rocks and soil from six different places on the moon, and their continued study provides incredibly valuable ground truth to complement space exploration missions. Extensive information and actual lunar samples are available for public display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. The lunar rocks and soils continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting Apollo samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples are available for short-term loan from JSC Curation. The thin sections may be use requested for college and university courses where petrographic microscopes are available for viewing. Requestors should contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov NASA also loans sets of Moon rocks for use in classrooms, libraries, museums, and planetariums through the Lunar Sample Education Program. Lunar samples (three soils and three rocks) are encapsulated in a six-inch diameter clear plastic disk. A CD with PowerPoint presentations, analogue samples from Earth, a classroom activity guide, and additional printed material accompany the disks. Educators may qualify for the use of these disks by attending a content and security certification workshop sponsored by NASA's Aerospace Education Services Program (AESP). Contact Ms. Margaret Maher, AESP Director. Email address: mjm67@psu.edu NASA makes these precious samples available for the public and encourages the use of lunar rocks to highlight Year of the Solar System events. Surely these interesting specimens of another world will enhance the experience of all YSS participants so please take advantage of these lunar samples and borrow them for events and classes.
NASA Technical Reports Server (NTRS)
Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall; Weinberger, Alycia; Wisniewski, John P.;
2014-01-01
Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Glenn; Hinz, Phillip M.; Grady, Carol A.
Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearestmore » systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own solar system.« less
NASA Astrophysics Data System (ADS)
Allen, C.
2010-12-01
During the Year of the Solar System spacecraft will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories. Extensive information about these unique materials, as well as actual lunar samples and meteorites, is available for display and education. The Johnson Space Center (JSC) curates NASA's extraterrestrial samples to support research, education, and public outreach. At the current time JSC curates five types of extraterrestrial samples: Moon rocks and soils collected by the Apollo astronauts Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) “Cosmic dust” (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet and interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. He will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples and sets of twelve thin sections of meteorites are available for short-term loan from JSC Curation. The thin sections are designed for use in college and university courses where petrographic microscopes are available for viewing. Requestors should contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov NASA also loans sets of Moon rocks and meteorites for use in classrooms, libraries, museums and planetariums. Lunar samples (three soils and three rocks) are encapsulated in a six-inch diameter clear plastic disk. Disks containing six different samples of meteorites are also available. A CD with PowerPoint presentations, a classroom activity guide, and additional printed material accompany the disks. Educators may qualify for the use of these disks by attending a security certification workshop sponsored by NASA's Aerospace Education Services Program (AESP). Contact Ms. Margaret Maher, AESP Director. Email address: mjm67@psu.edu Please take advantage of the wealth of data and the samples that we have from an exciting variety of solar system bodies.
Educational use of World Wide Web pages on CD-ROM.
Engel, Thomas P; Smith, Michael
2002-01-01
The World Wide Web is increasingly important for medical education. Internet served pages may also be used on a local hard disk or CD-ROM without a network or server. This allows authors to reuse existing content and provide access to users without a network connection. CD-ROM offers several advantages over network delivery of Web pages for several applications. However, creating Web pages for CD-ROM requires careful planning. Issues include file names, relative links, directory names, default pages, server created content, image maps, other file types and embedded programming. With care, it is possible to create server based pages that can be copied directly to CD-ROM. In addition, Web pages on CD-ROM may reference Internet served pages to provide the best features of both methods.
Imaging the Disk and Jet of the Classical T Tauri Star AA Tau
NASA Astrophysics Data System (ADS)
Cox, Andrew; Grady, C.; Hammel, H. B.; Hornbeck, J.; Russell, R. W.; Sitko, M. L.; Woodgate, B. E.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS corona graphic observations, compare these data with optical photometry in the literature and find that unlike other classical T Tauri stars observed on the same HST program, the disk is most robustly detected at optical minimum light. We measure the outer disk radius, major axis position angle, and disk inclination, and find that the inner disk, as reported in the literature, is both mis-inclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis and which is poorly collimated near the star. The measured outer disk inclination, 71±1 degrees, is out of the inclination band suggested for stars with UX Orionis-like variability where no grain growth has occurred in the disk. The faintness of the disk, the small disk size, and visibility of the star and despite the high inclination, all indicate that the disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.
On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies
NASA Astrophysics Data System (ADS)
Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.
2018-06-01
H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.
Automating Disk Forensic Processing with SleuthKit, XML and Python
2009-05-01
1 Automating Disk Forensic Processing with SleuthKit, XML and Python Simson L. Garfinkel Abstract We have developed a program called fiwalk which...files themselves. We show how it is relatively simple to create automated disk forensic applications using a Python module we have written that reads...software that the portable device may contain. Keywords: Computer Forensics; XML; Sleuth Kit; Python I. INTRODUCTION In recent years we have found many
Microstructure Modeling of 3rd Generation Disk Alloy
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2008-01-01
The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.
First Detection of Near-infrared Line Emission from Organics in Young Circumstellar Disks
NASA Astrophysics Data System (ADS)
Mandell, Avi M.; Bast, Jeanette; van Dishoeck, Ewine F.; Blake, Geoffrey A.; Salyk, Colette; Mumma, Michael J.; Villanueva, Geronimo
2012-03-01
We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of ~500 at 3 μm, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20°, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU). Based partially on observations collected at the European Southern Observatory Very Large Telescope under program ID 179.C-0151, program ID 283.C-5016, and program ID 082.C-0432 (P.I.: Pontopiddan).
Code of Federal Regulations, 2010 CFR
2010-07-01
....g., magnetic tape or disk), among others. The Agency shall honor a requester's specified preference... education, an institution of professional education, or an institution of vocational education, that...
Exploring the Moon: A teacher's guide with activities for Earth and space sciences
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Martel, Linda M. V.; Bays, Brooks G., Jr.
1994-01-01
This guide contains educational materials designed for use in upper elementary through high schools with the Lunar Sample Disk. A set of thirty-six 35-mm slides complements the activities in this guidebook. The book contains: (1) information on the Lunar Sample Disk; (2) a curriculum content matrix; (3) a teacher's guide; (4) moon ABC's fact sheet; (5) rock ABC's fact sheet; (6) progress in Lunar Science chart; (7) seventeen activities; (8) a resource section for each unit; (9) a glossary; and (10) a list of NASA educational resources.
Maintenance of Microcomputers. Manual and Apple II Session, IBM Session.
ERIC Educational Resources Information Center
Coffey, Michael A.; And Others
This guide describes maintenance procedures for IBM and Apple personal computers, provides information on detecting and diagnosing problems, and details diagnostic programs. Included are discussions of printers, terminals, disks, disk drives, keyboards, hardware, and software. The text is supplemented by various diagrams. (EW)
China’s Aerospace Industry: Technology, Funding and Modernization
1992-01-01
7 was to use a General Electric F404 engine (from the F-20 Tigershark) along with other foreign engines as candidates but that program was again...firms like General Electric and Pratt & Whitney. As the Chinese engine industry gets more behind, more foreign engines are chosen, and the factories have... Electric since 1984.81 Liming Engine Plant makes compressor disks and turbine disks for GE and turbine disks for Pratt & Whitney while the Chengdu Engine
Outward Migration of Giant Planets in Orbital Resonance
NASA Astrophysics Data System (ADS)
D'Angelo, G.; Marzari, F.
2013-05-01
A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.
High-resolution 25 μm Imaging of the Disks around Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Fujiyoshi, T.; Sakon, I.; Fujiwara, H.; Kamizuka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.; Onaka, T.
2015-05-01
We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks. Based on data collected at the Subaru Telescope, via the time exchange program between Subaru and the Gemini Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan.
Imaging the Disk and Jet of the Classical T Tauri Star AA Tau
NASA Technical Reports Server (NTRS)
Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.
IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustlymore » detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.« less
A Comparison Study and Software Implementation of NORDA Ocean Models.
1980-10-08
L01?C07 ’EEEEElshhhh A COMPARISON STUDY AND SOFTWARE IMPLEMENTATION OF NORDA OCEAN MODELS J&IEA m/ MST* f-....~ cre mx IRSD~I?( J 300 Unicorn Park...34- NOO-79- 741 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA 6 WORK UNIT NUMBERSJAYC0, 300 Unicorn Park Drive...before another execution of the energetics program, move them back to disk. Note that the outputs of the preprocessor reside on disk, they should not be
Everything You Always Wanted to Know about Computers but Were Afraid to Ask.
ERIC Educational Resources Information Center
DiSpezio, Michael A.
1989-01-01
An overview of the basics of computers is presented. Definitions and discussions of processing, programs, memory, DOS, anatomy and design, central processing unit (CPU), disk drives, floppy disks, and peripherals are included. This article was designed to help teachers to understand basic computer terminology. (CW)
NASA Technical Reports Server (NTRS)
Ray, R. B.
1994-01-01
OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.
An Overview of U.S. Trends in Educational Software Design.
ERIC Educational Resources Information Center
Colvin, Linda B.
1989-01-01
Describes trends in educational software design in the United States for elementary and secondary education. Highlights include user-friendly software; learner control; interfacing the computer with other media, including television, telecommunications networks, and optical disk technology; microworlds; graphics; word processing; database…
Permanent-File-Validation Utility Computer Program
NASA Technical Reports Server (NTRS)
Derry, Stephen D.
1988-01-01
Errors in files detected and corrected during operation. Permanent File Validation (PFVAL) utility computer program provides CDC CYBER NOS sites with mechanism to verify integrity of permanent file base. Locates and identifies permanent file errors in Mass Storage Table (MST) and Track Reservation Table (TRT), in permanent file catalog entries (PFC's) in permit sectors, and in disk sector linkage. All detected errors written to listing file and system and job day files. Program operates by reading system tables , catalog track, permit sectors, and disk linkage bytes to vaidate expected and actual file linkages. Used extensively to identify and locate errors in permanent files and enable online correction, reducing computer-system downtime.
Engine structures analysis software: Component Specific Modeling (COSMO)
NASA Astrophysics Data System (ADS)
McKnight, R. L.; Maffeo, R. J.; Schwartz, S.
1994-08-01
A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.
Engine Structures Analysis Software: Component Specific Modeling (COSMO)
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.
1994-01-01
A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.
An Evaluation of Alternative Delivery Modes for Information Services.
ERIC Educational Resources Information Center
Short, Craig; Christal, Melodie E.
The use of the floppy disk as an alternative mode for delivering Information Services reports was evaluated for fiscal year 1985 by the National Center for Higher Education Management Systems (NCHEMS). A 5.25 inch, 8/9 sector, 40 track ASCII floppy disk used under PC-DOS on the IBM PC and IBM PC compatible hardware was tested. Tabular data but not…
NASA Astrophysics Data System (ADS)
Klement, R.; Carciofi, A. C.; Rivinius, Th.; Panoglou, D.; Vieira, R. G.; Bjorkman, J. E.; Štefl, S.; Tycner, C.; Faes, D. M.; Korčáková, D.; Müller, A.; Zavala, R. T.; Curé, M.
2015-12-01
Context. The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. Aims: The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. Methods: We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Results: A parametric VDD model with radial density exponent of n = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, n = 3.0, density falloff. Theoretical consequences of this finding are discussed and the outcomes are compared with the predictions of a fully self-consistent VDD model. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35+10-5 stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W ≳ 0.98, i.e., very close to critical. Based partly on observations from Ondřejov 2-m telescope, Czech Republic; partly on observations collected at the European Southern Observatory, Chile (Prop. No. 093.D-0571); as well as archival data from programs 072.D-0315, 082.D-0189, 084.C-0848, 085.C-0911, and 092.D-0311; partly on observations from APEX collected via CONICYT program C-092.F-9708A-2013, and partly on observations from CARMA collected via program c1100-2013a.Appendix A is available in electronic form at http://www.aanda.org
An Optical Disk-Based Information Retrieval System.
ERIC Educational Resources Information Center
Bender, Avi
1988-01-01
Discusses a pilot project by the Nuclear Regulatory Commission to apply optical disk technology to the storage and retrieval of documents related to its high level waste management program. Components and features of the microcomputer-based system which provides full-text and image access to documents are described. A sample search is included.…
ERIC Educational Resources Information Center
Lewis, Peter H.
1991-01-01
Educators must understand the new educational technologies, select the best ones for classroom use, and find innovative and equitable ways to pay for them. The heart of education's technological transformation is the computer; fiber networks, television optical disks, multimedia, satellites, electronic mail, and virtual reality are also important…
The NSO FTS database program and archive (FTSDBM)
NASA Technical Reports Server (NTRS)
Lytle, D. M.
1992-01-01
Data from the NSO Fourier transform spectrometer is being re-archived from half inch tape onto write-once compact disk. In the process, information about each spectrum and a low resolution copy of each spectrum is being saved into an on-line database. FTSDBM is a simple database management program in the NSO external package for IRAF. A command language allows the FTSDBM user to add entries to the database, delete entries, select subsets from the database based on keyword values including ranges of values, create new database files based on these subsets, make keyword lists, examine low resolution spectra graphically, and make disk number/file number lists. Once the archive is complete, FTSDBM will allow the database to be efficiently searched for data of interest to the user and the compact disk format will allow random access to that data.
Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II
NASA Astrophysics Data System (ADS)
Garufi, A.; Meeus, G.; Benisty, M.; Quanz, S. P.; Banzatti, A.; Kama, M.; Canovas, H.; Eiroa, C.; Schmid, H. M.; Stolker, T.; Pohl, A.; Rigliaco, E.; Ménard, F.; Meyer, M. R.; van Boekel, R.; Dominik, C.
2017-07-01
Context. High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Aims: Disk evolution can be constrained from the comparison of disks with different properties. A first attempt at disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Methods: Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in polarimetric differential imaging, which is the most efficient technique for imaging the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Results: Three Group II disks are detected. The brightness distribution in the disk of HD 163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (<100 AU) disk is detected around HD 142666 and AK Sco. A taxonomic analysis of 17 Herbig Ae/Be sources reveals that the difference between Group I and Group II is due to the presence or absence of a large disk cavity (≳5 AU). There is no evidence supporting the evolution from Group I to Group II. Conclusions: Group II disks are not evolved versions of the Group I disks. Within the Group II disks, very different geometries exist (both self-shadowed and compact). HD 163296 could be the primordial version of a typical Group I disk. Other Group II disks, like AK Sco and HD 142666, could be smaller counterparts of Group I unable to open cavities as large as those of Group I. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 095.C-0658(A).
Simulation of Planetary Formation using Python
NASA Astrophysics Data System (ADS)
Bufkin, James; Bixler, David
2015-03-01
A program to simulate planetary formation was developed in the Python programming language. The program consists of randomly placed and massed bodies surrounding a central massive object in order to approximate a protoplanetary disk. The orbits of these bodies are time-stepped, with accelerations, velocities and new positions calculated in each step. Bodies are allowed to merge if their disks intersect. Numerous parameters (orbital distance, masses, number of particles, etc.) were varied in order to optimize the program. The program uses an iterative difference equation approach to solve the equations of motion using a kinematic model. Conservation of energy and angular momentum are not specifically forced, but conservation of momentum is forced during the merging of bodies. The initial program was created in Visual Python (VPython) but the current intention is to allow for higher particle count and faster processing by utilizing PyOpenCl and PyOpenGl. Current results and progress will be reported.
NASA Technical Reports Server (NTRS)
Chen, J. C.
1995-01-01
A disk-on-rod inside a corrugated horn is one of the horn configurations for dual-frequency or wide-band operation. A mode-matching analysis method is described. A disk-on-rod inside a corrugated horn is represented as a series of coaxial waveguide sections and circular waveguide sections connected to each other. Three kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and circular-to-circular. A computer program was developed to calculate the scattering matrix and the radiation pattern of a disk-on-rod inside a corrugated horn. The software as verified by experiment, and good agreement between calculation and measurement was obtained. The disk-on-rod inside a corrugated horn design gives an option to the Deep Space Network dual-frequency operation system, which currently is a two-horn/one-dichroic plate system.
Subaru SEEDS Survey of Exoplanets and Disks
NASA Astrophysics Data System (ADS)
McElwain, Michael W.; SEEDS Collaboration
2012-01-01
The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already uncovered exciting new results for the protoplanetary disk AB Aur, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru Telescope.
Subaru SEEDS Survey of Exoplanets and Disks
NASA Technical Reports Server (NTRS)
McElwain, Michael W.
2012-01-01
The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already produced exciting new results for the protoplanetary disk AB Aur, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru Telescope
Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE
NASA Astrophysics Data System (ADS)
Ginski, C.; Stolker, T.; Pinilla, P.; Dominik, C.; Boccaletti, A.; de Boer, J.; Benisty, M.; Biller, B.; Feldt, M.; Garufi, A.; Keller, C. U.; Kenworthy, M.; Maire, A. L.; Ménard, F.; Mesa, D.; Milli, J.; Min, M.; Pinte, C.; Quanz, S. P.; van Boekel, R.; Bonnefoy, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Girard, J. H. V.; Keppler, M.; Kopytova, T.; Lagrange, A.-M.; Langlois, M.; Rouan, D.; Vigan, A.
2016-11-01
Aims: We studied the well-known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk which may be indicative of disk evolutionary processes such as planet formation. Methods: We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. Results: We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation 270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (≤1 MJup) nascent planets are a possible explanation. Based on data collected at the European Southern Observatory, Chile (ESO Programs 096.C-0248, 096.C-0241, 077.C-0106).
Workshop on Physics of Accretion Disks Around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Liang, E (Editor); Stepinski, T. F. (Editor)
1995-01-01
The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.
NASA Astrophysics Data System (ADS)
Lord, Jesse W.; Boley, A. C.; Durisen, R. H.
2006-12-01
We present a comparison between two three-dimensional radiative hydrodynamics simulations of a gravitationally unstable 0.07 Msun protoplanetary disk around a 0.5 Msun star. The first simulation is the radiatively cooled disk described in Boley et al. (2006, ApJ, 651). This simulation employed an algorithm that uses 3D flux-limited diffusion wherever the vertical Rosseland optical depth is greater than 2/3, which defines the optically thick region. The optically thin atmosphere of the disk, which cools according to its emissivity, is coupled to the optically thick region through an Eddington-like boundary condition. The second simulation employed an algorithm that uses a combination of solving the radiative transfer equation along rays in the z direction and flux limited diffusion in the r and phi directions on a cylindrical grid. We compare the following characteristics of the disk simulations: the mass transport and torques induced by gravitational instabilities, the effective temperature profiles of the disks, the gravitational and Reynolds stresses measured in the disk and those expected in an alpha-disk, and the amplitudes of the Fourier modes. This work has been supported by the National Science Foundation through grant AST-0452975 (astronomy REU program to Indiana University).
New instruments for soil physics class: Improving the laboratory and field seminars
NASA Astrophysics Data System (ADS)
Klipa, Vladimir; Jankovec, Jakub; Snehota, Michal
2014-05-01
Teaching soil science and soil physics is an important part of the curriculum of many programs with focus on technical and natural sciences. Courses of soil science and namely soil physics have a long tradition at the faculty of Civil Engineering of the Czech Technical University in Prague. Students receive the theoretical foundations about soil classification, soil physics, soil chemistry and soil hydraulic characteristics in the course. In practical seminars students perform measurements of physical, hydraulic and chemical characteristics of soils, thus a comprehensive survey of soil is done in the given site. So far, students had the opportunity to use old, manually operated instrumentation. The project aims to improve the attractiveness of soil physics course and to extend the practical skills of students by introducing new tasks and by involving modern automated equipment. New instruments were purchased with the support of the Ministry of Education, Youth and Sports of the Czech Republic under the project FRVS No. 1162/2013 G1. Specifically, two tensiometers T8 with multi-functional handheld read-out unit (UMS, GmbH) and manual Mini Disk Infiltrometer (Decagon Devices, Inc.) were purchased and incorporated into the course. In addition, newly designed MultiDisk the automated mini disk Infiltrometer (CTU in Prague) and combined temperature and soil moisture TDT sensor TMS 2 (TOMST®, s.r.o.), were made freely available for soil physics classes and included into the courses. Online tutorials and instructional videos were developed. Detailed multimedia teaching materials were introduced so that students are able to work more independently. Students will practice operating the digital tensiometer T8 with integrated temperature sensor and manual Mini Disk Infiltrometer (diameter disk: 4.4 cm, suction range: 0.5 to 7.0 cm of suction) and MultiDisk the automated mini disk Infiltrometer (see Klipa et al., EGU2014-7230) and combined temperature and soil moisture TDT sensor TMS2. The tutorials cover the measurements process from installation to the data processing. The introduction of new instruments into to the courses is not only attractive for students but also useful in terms of gaining practical experience and new skills with advanced measurement devices for PhD students who participate on class teaching. Students will be able to use newly gain skills as well as the equipment for their projects and theses. This work has been supported by student grant FRVS number: 1162/2013 G1.
Searching for Prebiotically Important Molecules in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Gibb, Erika L.; Brown, L. R.; Sudholt, E.
2012-05-01
Understanding how prebiotic molecules form and are distributed around young stars is an important step in determining how and where life can form in planetary systems. In general, protoplanetary disks consist of a cold, dense midplane where, beyond the frost line, water and organic molecules will condense onto dust grains as icy coatings. The surface of the disk is exposed to stellar and interstellar radiation, giving rise to a photon-dominated region characterized by ionization and dissociation products. Between these two layers is a warm molecular layer where a rich molecular chemistry is predicted to occur. The warm molecular layer is somewhat protected from ionizing radiation by the dust and polycyclic aromatic hydrocarbons (PAHs) in the surface region. We present a high-resolution (λ / Δλ 25,000), near-infrared spectroscopic survey of the L-band toward T Tauri star GV Tau N. The data were acquired with the NIRSPEC instrument on the Keck II telescope, located on Mauna Kea, HI. We detected strong HCN absorption lines that we interpret to be located in the warm molecular layer of a nearly edge-on protoplanetary disk. We discuss significant differences in spectra acquired in 2006 and 2010 and implications for the material in the disk of GV Tau N, including rotational temperatures, abundances, and inferred location. This work was supported by the NSF Stellar Astronomy Program (Grant #0908230) and the NASA Exobiology program (NNX11AG44G).
The Effect of Stabilization Treatments on Disk Alloy CH98
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy P.; Ellis, David L.
2003-01-01
Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickelbase superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatments are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 or 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments can also decrease creep capability. In this study, a systematic variation of stabilization temperature and time was investigated to determine its effect on 1300 F tensile and, more importantly, creep behavior. Dwell crack growth rates were also measured for selected stabilization conditions. As these advanced disk alloys may be given a supersolvus solution or a subsolvus solution heat treatment for a given application, it was decided that both options would be studied.
Search For Debris Disks Around A Few Radio Pulsars
NASA Astrophysics Data System (ADS)
Wang, Zhongxiang; Kaplan, David; Kaspi, Victoria
2007-05-01
We propose to observe 7 radio pulsars with Spitzer/IRAC at 4.5 and 8.0 microns, in an effort to probe the general existence of debris disks around isolated neutron stars. Such disks, probably formed from fallback or pushback material left over from supernova explosions, has been suggested to be associated with various phenomena seen in radio pulsars. Recently, new evidence for such a disk around an isolated young neutron star was found in Spitzer observations of an X-ray pulsar. If they exist, the disks could be illuminated by energy output from central pulsars and thus be generally detectable in the infrared by IRAC. We have selected 40 relatively young, energetic pulsars from the most recent pulsar catalogue as the preliminary targets for our ground-based near-IR imaging survey. Based on the results from the survey observations, 7 pulsars are further selected because of their relatively sparse field and estimated low extinction. Combined with our near-IR images, Spitzer/IRAC observations will allow us to unambiguously identify disks if they are detected at the source positions. This Spitzer observation program we propose here probably represents the best test we can do on the general existence of disks around radio pulsars.
Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey
NASA Technical Reports Server (NTRS)
Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.;
2014-01-01
Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk where only half of the disk is seen in scattered light at H. We will discuss our survey results in terms of spiral arm theory, dust trapping vortices, and systematic differences in the relative scale height of these disks compared to those around Solar-mass stars. For the disks with spiral arms we discuss the planet-hosting potential, and limits on where giant planets can be located. We also discuss the implications for imaging with extreme adaptive optics instruments. Grady is supported under NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. JPW is supported NSF AST 100314. 0) in marked contrast to protoplanetary disks, transitional disks exhibit wide range of structural features1) arm visibility correlated with relative scale height in disk2) asymmetric and possibly variable shadowing of outer portions some transitional disks3) confirm pre-transitional disk nature of Oph IRS 48, MWC 758, HD 169142, etc.
Observational studies of the clearing phase in proto-planetary disk systems
NASA Technical Reports Server (NTRS)
Grady, Carol A.
1994-01-01
A summary of the work completed during the first year of a 5 year program to observationally study the clearing phase of proto-planetary disks is presented. Analysis of archival and current IUE data, together with supporting optical observations has resulted in the identification of 6 new proto-planetary disk systems associated with Herbig Ae/Be stars, the evolutionary precursors of the beta Pictoris system. These systems exhibit large amplitude light and optical color variations which enable us to identify additional systems which are viewed through their circumstellar disks including a number of classical T Tauri stars. On-going IUE observations of Herbig Ae/Be and T Tauri stars with this orientation have enabled us to detect bipolar emission plausibly associated with disk winds. Preliminary circumstellar extinction studies were completed for one star, UX Ori. Intercomparison of the available sample of edge-on systems, with stars ranging from 1-6 solar masses, suggests that the signatures of accreting gas, disk winds, and bipolar flows and the prominence of a dust-scattered light contribution to the integrated light of the system decreases with decreasing IR excess.
NASA Technical Reports Server (NTRS)
Butner, Harold M.
1999-01-01
Our understanding about the inter-relationship between the collapsing cloud envelope and the disk has been greatly altered. While the dominant star formation models invoke free fall collapse and r(sup -1.5) density profile, other star formation models are possible. These models invoke either different cloud starting conditions or the mediating effects of magnetic fields to alter the cloud geometry during collapse. To test these models, it is necessary to understand the envelope's physical structure. The discovery of disks, based on millimeter observations around young stellar objects, however makes a simple interpretation of the emission complicated. Depending on the wavelength, the disk or the envelope could dominate emission from a star. In addition, the discovery of planets around other stars has made understanding the disks in their own right quite important. Many star formation models predict disks should form naturally as the star is forming. In many cases, the information we derive about disk properties depends implicitly on the assumed envelope properties. How to understand the two components and their interaction with each other is a key problem of current star formation.
Transport coefficients and mechanical response in hard-disk colloidal suspensions
NASA Astrophysics Data System (ADS)
Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang
2016-11-01
We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).
Studies of Circumstellar Disk Evolution
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2004-01-01
Spitzer Space Telescope infrared data for our program on disk evolution has been taken (the main IRAC - 3-8 micron exposures; the 24 and 70 micron MIPS data are to come later). We now have deep maps in the four IRAC bands of the 3-Myr-old cluster Trumpler 37, and the 10-Myr-old cluster NGC 7160. Analysis of these data has now begun. We will be combining these data with our ground-based photometric and spectroscopic data to obtain a complete picture of disk frequency as a function of mass through this important age range, which spans the likely epoch of (giant) planet formation in most systems. Analysis of the SIRTF data, and follow-on ground-based spectroscopy on the converted MMT telescope using the wide-field, fiber-fed, multiobject spectrographs, Hectospec and Hectochelle, will be the major activity during the next year.Work was also performed on the following: protoplanetary disk mass accretion rates in very low-mass stars; the inner edge of T Tauri disks; accretion in intermediate-mass T Tauri stars (IMPS); and the near-infrared spectra of the rapidly-accreting protostellar disks FU Ori and V1057 Cyg.
Status of emerging standards for removable computer storage media and related contributions of NIST
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1992-01-01
Standards for removable computer storage media are needed so that users may reliably interchange data both within and among various computer installations. Furthermore, media interchange standards support competition in industry and prevent sole-source lock-in. NIST participates in magnetic tape and optical disk standards development through Technical Committees X3B5, Digital Magnetic Tapes, X3B11, Optical Digital Data Disk, and the Joint Technical Commission on Data Permanence. NIST also participates in other relevant national and international standards committees for removable computer storage media. Industry standards for digital magnetic tapes require the use of Standard Reference Materials (SRM's) developed and maintained by NIST. In addition, NIST has been studying care and handling procedures required for digital magnetic tapes. NIST has developed a methodology for determining the life expectancy of optical disks. NIST is developing care and handling procedures for optical digital data disks and is involved in a program to investigate error reporting capabilities of optical disk drives. This presentation reflects the status of emerging magnetic tape and optical disk standards, as well as NIST's contributions in support of these standards.
Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae
2007-12-01
star EU Andromedae K. Ohnaka1 and D. A. Boboltz2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: kohnaka...Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR
Exploring Structures and Variability in the Pre-transitional Disk in HD 169142
NASA Astrophysics Data System (ADS)
Wagner, Kevin Robert; Sitko, Michael L.; Grady, Carol A.; Whitney, Barbara; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Schneider, Glenn; Momose, Muntake; Muto, Takayuki; Inoue, Akio K.; Lauroesch, James Thomas; Hornbeck, Jeremy; Brown, Alexander; Fukagawa, Misato; Currie, Thayne M.; Wisniewski, John P.; Woodgate, Bruce E.
2015-01-01
We present a theoretical modelling analysis of of the structures in the pre-transisitonal disk in HD 169142 using 3D Monte-Carlo radiative transfer simulation. The multi-epoch broadband spectral energy distribution (SED) exhibits clear evidence of changes to the inner (sub-AU) regions of the disk over a maximum timescale of 10 years with the additional constraint that the shadowing of the outer (>25 AU) disk is non-time-dependent. We find that changes to the inner dust rim (0.2 AU) cannot account for this behavior. Instead, we find that if the inner disk posses an optically thin body of small grains then changes to the outer edge of these structures may successfully reproduce the two states in the SED (analogous to what may be occurring due to accretion onto the central star or dynamical clearing by planets). Furthermore, we explore the density distributions of the outer disk structures as they are constrained by the SED and imaged surface brightness profiles, with the conclusion that a mid-plane density power law profile of r^{-2} and r^{-1} for the 35-70 AU and 70-250 AU regions, respectively, may reproduce the observations to the limit of our available complexity of structures within our modelling software. Finally, we find that a 0.3x density scaling of the 35-70 AU region reproduces the second gap imaged in the near-infrared and at 7 mm, strengthening the link to this structure being cleared by one or more planetary mass bodies.This work was supported by NASA ADAP grant NNX09AC73G, Hubble Space Telescope grant HST-GO-13032, the IR&D program at The Aerospace Corporation, and the University of Cincinnati Honors Program.
Pain Management: A Practical Approach to Nursing Education.
ERIC Educational Resources Information Center
Wacker, Margaret S.; Pawasauskas, Joyce
2002-01-01
Nine brief onsite educational sessions of 10-20 minutes each trained nurses in pain management techniques. Participants recognized the value of brief presentations, but wanted more time to learn the material. The content was made available on disk for further study. (SK)
Protoplanetary Formation and the FU Orionis Outburst
NASA Technical Reports Server (NTRS)
Bodenheimer, P. H.
1996-01-01
The following three publications which reference the above grant from the NASA Origins of Solar Systems program are attached and form the final technical report for this project. The research involved comparisons of the spectral energy distributions of FU Orionis objects with theoretical models and associated studies of the structure of the outbursting accretion disks, as well as related studies on the effects of magnetic fields in disks, which will lead in the future to models of FU Orionis outbursts which include the effects of magnetic fields. The project was renewed under a new grant NAGW-4456, entitled 'Effects of FU Orionis Outbursts on Protoplanetary Disks'. Work now being prepared for publication deals more specifically with the issue of the effects of the outbursts on protoplanetary formation. Models of the spectral energy distribution of FU Orionis stars. A simple model of a buoyant magnetic dynamo in accretion disks and a numerical study of magnetic buoyancy in an accretion disk have been submitted.
Recording and reading of information on optical disks
NASA Astrophysics Data System (ADS)
Bouwhuis, G.; Braat, J. J. M.
In the storage of information, related to video programs, in a spiral track on a disk, difficulties arise because the bandwidth for video is much greater than for audio signals. An attractive solution was found in optical storage. The optical noncontact method is free of wear, and allows for fast random access. Initial problems regarding a suitable light source could be overcome with the aid of appropriate laser devices. The basic concepts of optical storage on disks are treated insofar as they are relevant for the optical arrangement. A general description is provided of a video, a digital audio, and a data storage system. Scanning spot microscopy for recording and reading of optical disks is discussed, giving attention to recording of the signal, the readout of optical disks, the readout of digitally encoded signals, and cross talk. Tracking systems are also considered, taking into account the generation of error signals for radial tracking and the generation of focus error signals.
Numerical evaluation of single central jet for turbine disk cooling
NASA Astrophysics Data System (ADS)
Subbaraman, M. R.; Hadid, A. H.; McConnaughey, P. K.
The cooling arrangement of the Space Shuttle Main Engine High Pressure Oxidizer Turbopump (HPOTP) incorporates two jet rings, each of which produces 19 high-velocity coolant jets. At some operating conditions, the frequency of excitation associated with the 19 jets coincides with the natural frequency of the turbine blades, contributing to fatigue cracking of blade shanks. In this paper, an alternate turbine disk cooling arrangement, applicable to disk faces of zero hub radius, is evaluated, which consists of a single coolant jet impinging at the center of the turbine disk. Results of the CFD analysis show that replacing the jet ring with a single central coolant jet in the HPOTP leads to an acceptable thermal environment at the disk rim. Based on the predictions of flow and temperature fields for operating conditions, the single central jet cooling system was recommended for implementation into the development program of the Technology Test Bed Engine at NASA Marshall Space Flight Center.
Hydraulic/Shock-Jumps In Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Boley, A. C.; Durisen, R. H.
2005-12-01
Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic-jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hydraulic/shock-jump hybrids (hs-jumps) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that hs-jumps produce and discuss possible consequences of hs-jumps for disk mixing, turbulence, and evolution of solids. A. C. B. was supported in part by an Indiana Space Grant Consortium fellowship and a NASA Graduate Student Research Program fellowship; R. H. D. was supported in part by NASA grants NAGS-11964 and NNG05GN11G.
NASA Astrophysics Data System (ADS)
Lewis, Josiah; Brittain, S. D.
2010-01-01
CO emission is a useful probe of the warm gas distribution in the planet forming regions of disks around Herbig Ae/Be stars. We model UV fluoresced and thermally excited CO in the circumstellar disks of several HAeBes. We find indications of dust settling in the upper atmospheres of HD 141569 and HD 7048 and a correlation between PAH luminosity and gas heating in these two systems. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.
The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focusmore » our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease with the luminosity, which may be suggestive of the disk's stirring level increasing toward earlier-type stars. The dust opacity index β ranges between zero and two, and the size distribution index q varies between three and five for all the disks in the sample.« less
Creating Slide Show Book Reports.
ERIC Educational Resources Information Center
Taylor, Harriet G.; Stuhlmann, Janice M.
1995-01-01
Describes the use of "Kid Pix 2" software by fourth grade students to develop slide-show book reports. Highlights include collaboration with education majors from Louisiana State University, changes in attitudes of the education major students and elementary students, and problems with navigation and disk space. (LRW)
A 12.1-W SESAM mode-locked Yb:YAG thin disk laser
NASA Astrophysics Data System (ADS)
Yingnan, Peng; Zhaohua, Wang; Dehua, Li; Jiangfeng, Zhu; Zhiyi, Wei
2016-05-01
Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017).
Evaluation of materials and design modifications for aircraft brakes
NASA Technical Reports Server (NTRS)
Ho, T. L.; Kennedy, F. E.; Peterson, M. B.
1975-01-01
A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.
NASA Astrophysics Data System (ADS)
Quanz, Sascha P.; Avenhaus, Henning; Buenzli, Esther; Garufi, Antonio; Schmid, Hans Martin; Wolf, Sebastian
2013-03-01
We present H-band Very Large Telescope/NACO polarized light images of the Herbig Ae/Be star HD 169142 probing its protoplanetary disk as close as ~0.''1 to the star. Our images trace the face-on disk out to ~1.''7 (~250 AU) and reveal distinct substructures for the first time: (1) the inner disk (lsim20 AU) appears to be depleted in scattering dust grains; (2) an unresolved disk rim is imaged at ~25 AU; (3) an annular gap extends from ~40 to 70 AU; (4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting, but yet to be proven, one. Outside of ~85 AU the surface brightness drops off roughly vpropr -3.3, but describing the disk regions between 85-120 AU and 120-250 AU separately with power laws vpropr -2.6 and vpropr -3.9 provides a better fit hinting toward another discontinuity in the disk surface. The flux ratio between the disk-integrated polarized light and the central star is ~4.1 × 10-3. Finally, combining our results with those from the literature, ~40% of the scattered light in the H band appears to be polarized. Our results emphasize that HD 169142 is an interesting system for future planet formation or disk evolution studies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 089.C-0611(A).
The History of the M31 Disk from Resolved Stellar Populations as Seen by PHAT
NASA Astrophysics Data System (ADS)
Lewis, A. R.; Dalcanton, J. J.; Dolphin, A. E.; Weisz, D. R.; Williams, B. F.; PHAT Collaboration
2014-03-01
The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that is mapping the resolved stellar populations of ˜1/3 of M31 from the UV through the near-IR. These data provide color and luminosity information for more than 150 million stars in the M31 disk. We use stellar evolution models to fit the luminous main sequence to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 50-100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. We use the gridded SFHs to create movies of star formation activity to study the evolution of individual star-forming events across the disk. Outside of the star-forming regions, we use our resolved stellar photometry to derive the full SFHs of larger regions. These allow us to probe spatial and temporal trends in age and metallicity across a large radial baseline, providing constraints on the global formation and evolution of the disk over a Hubble time. M31 is the only large disk galaxy that is close enough to obtain the photometry necessary for this type of spatially-resolved SFH mapping.
ERIC Educational Resources Information Center
Stone, Antonia
1982-01-01
Provides general information on currently available microcomputers, computer programs (software), hardware requirements, software sources, costs, computer games, and programing. Includes a list of popular microcomputers, providing price category, model, list price, software (cassette, tape, disk), monitor specifications, amount of random access…
NASA Astrophysics Data System (ADS)
1997-01-01
Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan (Principal Investigator)
1996-01-01
We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.
Improving Visual Survey Capabilities for Marine Mammal Studies
2015-09-30
pedastals, and wooden disks were shipped to Mount Desert Rock Island off the Maine coast for installation on the upper floor of the lighthouse there...ESTCP) and Navy Living Marine Resources (LMR) Program. This project will demonstrate and evaluate real-time passive acoustic detection...Four custom wooden disks were fabricated by the WHOI carpenter shop to provide a shelf for observers to rest their arms. Two sets of binoculars
The New Age of Telecommunication: Setting the Context for Education.
ERIC Educational Resources Information Center
Wedemeyer, Dan J.
1986-01-01
This overview provides a technological context for the telecommunications age by describing existing and emerging systems--telephone, broadcasting, cable television, fiber optic, satellite, optical disk, and computer technology--and services available via these systems. It is suggested that educators need to become technologically literate and…
NASA Astrophysics Data System (ADS)
Follette, Katherine Brutlag
What processes are responsible for the dispersal of protoplanetary disks? In this dissertation, beginning with a brief Introduction to planet detection, disk dispersal and high-contrast imaging in Chapter 1, I will describe how ground-based adaptive optics (AO) imaging can help to inform these processes. Chapter 2 presents Polarized Differential Imaging (PDI) of the transitional disk SR21 at H-band taken as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS). These observations were the first to show that transition disk cavities can appear markedly different at different wavelengths. The observation that the sub-mm cavity is absent in NIR scattered light is consistent with grain filtration at a planet-induced gap edge. Chapter 3 presents SEEDS data of the transition disk Oph IRS 48. This highly asymmetrical disk is also most consistent with a planet-induced clearing mechanism. In particular, the images reveal both the disk cavity and a spiral arm/divot that had not been imaged previously. This study demonstrates the power of multiwavelength PDI imaging to verify disk structure and to probe azimuthal variation in grain properties. Chapter 4 presents Magellan visible light adaptive optics imaging of the silhouette disk Orion 218-354. In addition to its technical merits, these observations reveal the surprising fact that this very young disk is optically thin at H-alpha. The simplest explanation for this observation is that significant grain growth has occurred in this disk, which may be responsible for the pre-transitional nature of its SED. Chapter 5 presents brief descriptions of several other works-in-progress that build on my previous work. These include the MagAO Giant Accreting Protoplanet Survey (GAPlanetS), which will probe the inner regions of transition disks at unprecedented resolution in search of young planets in the process of formation. Chapters 6-8 represent my educational research in quantitative literacy, beginning with an introduction to the literature and study motivation in Chapter 6. Chapter 7 describes the development and validation of the Quantitative Reasoning for College Science (QuaRCS) Assessment instrument. Chapter 8 briefly describes the next steps for Phase II of the QuaRCS study.
NASA Astrophysics Data System (ADS)
Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn
2013-07-01
We present a 0.5-2.2 μm scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances >40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at ~80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady α-disk with an ad hoc gap structure. The thermal properties of the disk are self-consistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 M ⊕. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 10167, 8624, 7226, and 7233.
Disk Detective Follow-Up Program
NASA Astrophysics Data System (ADS)
Kuchner, Marc
As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.
The FUSE Survey of Algol-Type Interacting Binary Systems
NASA Astrophysics Data System (ADS)
Peters, Geraldine J.; Andersson, B.; Ake, T. B.; Sankrit, R.
2006-12-01
A survey of Algol binaries at random phases is currently being carried through with the FUSE spacecraft as part of the FUSE survey and supplemental program. A similar program was undertaken in FUSE Cycle 3. Both programs have produced multiple observations of 12 Algol systems with periods ranging from 1.2 37 d and include direct-impact and disk systems. We report on the status of the program. The absence of O VI absorption in the systems observed to date allows us to place an upper limit on the column density and temperature of the High Temperature Accretion Region, HTAR ( 100,000 K) confirmed in some Algols from earlier IUE data. The HTAR plasma component appears to be distinct from an O VI-emitting polar plasma discovered in FUSE totality observations of RY Per, V356 Sgr, and TT Hya. New observations of the direct-impact system U Cep have provided more information on the geometry and mass flow (including a splash plasma) in the vicinity of a hot spot at phase 0.90 that was discovered earlier. The extent of disk asymmetries in the long period ( 33 d) systems SX Cas and RX Cas is discussed. Models for direct-impact and the disk systems will be presented. The authors appreciate support from NASA grants NAG5-12253, NNG04GL17G, and NAS5-32985.
Studying Notable Debris Disks In L-band with the Vortex Coronagraph
NASA Astrophysics Data System (ADS)
Patel, Rahul; Beichman, Charles; Choquet, Elodie; Mawet, Dimitri; Meshkat, Tiffany; ygouf, marie
2018-01-01
Resolved images of circumstellar disks are integral to our understanding of planetary systems, as the micron sized dust grains that comprise the disk are born from the collisional grinding of planetesimals by larger planets in the system. Resolved images are essential to determining grain properties that might otherwise be degenerate from analyzing the star’s spectral energy distribution. Though the majority of scattered light images of disks are obtained at optical and near-IR wavelengths, only a few have been imaged in the thermal IR at L-band. Probing the spatial features of disks at L-band opens up the possibility of constraining additional grain properties, such as water/ice features.Here, we present the results of our effort to image the disks of a few notable systems at L-band using the NIRC2 imager at Keck, in conjunction with the newly commissioned vector vortex coronagraph. The vortex, along with the QACITS fine guiding program installed at Keck, enables us to probe the small ~lambda/D angular separations of these systems, and reach contrasts of 1/100,000. We will discuss the systems that have been imaged, and lessons learned while imaging in L-band. Our analysis of these disks reveal features previously unseen, and will lay the foundation for followup studies by missions such as JWST at similar wavelengths from space.
The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98
NASA Technical Reports Server (NTRS)
Gayda, John
2003-01-01
Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.
Medical education as a science: the quality of evidence for computer-assisted instruction.
Letterie, Gerard S
2003-03-01
A marked increase in the number of computer programs for computer-assisted instruction in the medical sciences has occurred over the past 10 years. The quality of both the programs and the literature that describe these programs has varied considerably. The purposes of this study were to evaluate the published literature that described computer-assisted instruction in medical education and to assess the quality of evidence for its implementation, with particular emphasis on obstetrics and gynecology. Reports published between 1988 and 2000 on computer-assisted instruction in medical education were identified through a search of MEDLINE and Educational Resource Identification Center and a review of the bibliographies of the articles that were identified. Studies were selected if they included a description of computer-assisted instruction in medical education, regardless of the type of computer program. Data were extracted with a content analysis of 210 reports. The reports were categorized according to study design (comparative, prospective, descriptive, review, or editorial), type of computer-assisted instruction, medical specialty, and measures of effectiveness. Computer-assisted instruction programs included online technologies, CD-ROMs, video laser disks, multimedia work stations, virtual reality, and simulation testing. Studies were identified in all medical specialties, with a preponderance in internal medicine, general surgery, radiology, obstetrics and gynecology, pediatrics, and pathology. Ninety-six percent of the articles described a favorable impact of computer-assisted instruction in medical education, regardless of the quality of the evidence. Of the 210 reports that were identified, 60% were noncomparative, descriptive reports of new techniques in computer-assisted instruction, and 15% and 14% were reviews and editorials, respectively, of existing technology. Eleven percent of studies were comparative and included some form of assessment of the effectiveness of the computer program. These assessments included pre- and posttesting and questionnaires to score program quality, perceptions of the medical students and/or residents regarding the program, and impact on learning. In one half of these comparative studies, computer-assisted instruction was compared with traditional modes of teaching, such as text and lectures. Six studies compared performance before and after the computer-assisted instruction. Improvements were shown in 5 of the studies. In the remainder of the studies, computer-assisted instruction appeared to result in similar test performance. Despite study design or outcome, most articles described enthusiastic endorsement of the programs by the participants, including medical students, residents, and practicing physicians. Only 1 study included cost analysis. Thirteen of the articles were in obstetrics and gynecology. Computer-assisted instruction has assumed to have an increasing role in medical education. In spite of enthusiastic endorsement and continued improvements in software, few studies of good design clearly demonstrate improvement in medical education over traditional modalities. There are no comparative studies in obstetrics and gynecology that demonstrate a clear-cut advantage. Future studies of computer-assisted instruction that include comparisons and cost assessments to gauge their effectiveness over traditional methods may better define their precise role.
Logged On for Learning. An "Education Week" Special Report.
ERIC Educational Resources Information Center
West, Peter
1995-01-01
This document and accompanying disk contain all of the articles from an "Education Week" special report examining the complex phenomenon commonly known as the "information highway" and how it affects the nation's schools. The articles, all by Peter West, include: (1) "Logged On for Learning," an overview of the…
1989-06-01
the Chemistry Department, and the WHOI Education Office for providing financial support and a nice place to work. Parts of this research was funded by...and erosion studies is unknown. c 1.5 OBJECTIVES The objectives of this research are 1) to quantify the diffusive mobility of helium isotopes in...specifically tailored for the diffusion experiments. Data is recorded on a hard disk and on paper , and is automatically backed up to floppy disks
A Test Suite for 3D Radiative Hydrodynamics Simulations of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, R. H.; Nordlund, A.; Lord, J.
2006-12-01
Radiative hydrodynamics simulations of protoplanetary disks with different treatments for radiative cooling demonstrate disparate evolutions (see Durisen et al. 2006, PPV chapter). Some of these differences include the effects of convection and metallicity on disk cooling and the susceptibility of the disk to fragmentation. Because a principal reason for these differences may be the treatment of radiative cooling, the accuracy of cooling algorithms must be evaluated. In this paper we describe a radiative transport test suite, and we challenge all researchers who use radiative hydrodynamics to study protoplanetary disk evolution to evaluate their algorithms with these tests. The test suite can be used to demonstrate an algorithm's accuracy in transporting the correct flux through an atmosphere and in reaching the correct temperature structure, to test the algorithm's dependence on resolution, and to determine whether the algorithm permits of inhibits convection when expected. In addition, we use this test suite to demonstrate the accuracy of a newly developed radiative cooling algorithm that combines vertical rays with flux-limited diffusion. This research was supported in part by a Graduate Student Researchers Program fellowship.
Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments
NASA Technical Reports Server (NTRS)
Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.
1994-01-01
We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.
Time Variability of the Dust Sublimation Zones in Pre-Main Sequence Disk Systems
NASA Technical Reports Server (NTRS)
Sitko, Michael L.; Carpenter, W. J.; Grady, C. A.; Russel, R. W.; Lynch, D. K.; Rudy, R. J.; Mazuk, S. M.; Venturini, C. C.; Kimes, R. L.; Beerman, L. C.;
2007-01-01
The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.
Debris Disk Dust Characterization through Spectral Types: Deep Visible-Light Imaging of Nine Systems
NASA Astrophysics Data System (ADS)
Choquet, Elodie
2017-08-01
We propose STIS coronagraphy of 9 debris disks recently seen in the near-infrared from our re-analysis of archival NICMOS data. STIS coronagraphy will provide complementary visible-light images that will let us characterize the disk colors needed to place constraints on dust grain sizes, albedos, and anisotropy of scattering of these disks. With 3 times finer angular resolution and much better sensitivity, our STIS images will dramatically surpass the NICMOS discovery images, and will more clearly reveal disk local structures, cleared inner regions, and test for large-scale asymmetries in the dust distributions possibly triggered by associated planets in these systems. The exquisite sensitivity to visible-light scattering by submicron particles uniquely offered by STIS coronagraphy will let us detect and spatially characterize the diffuse halo of dust blown out of the systems by the host star radiative pressure. Our sample includes disks around 3 low-mass stars, 3 solar-type stars, and 3 massive A stars; together with our STIS+NICMOS imaging of 6 additional disks around F and G stars, our sample covers the full range of spectral types and will let us perform a comparative study of dust distribution properties as a function of stellar mass and luminosity. Our sample makes up more than 1/3 of all debris disks imaged in scattered light to date, and will offer the first homogeneous characterization of the visible-light to near-IR properties of debris disk systems over a large range of spectral types. Our program will let us analyze how the dynamical balance is affected by initial conditions and star properties, and how it may be perturbed by gas drag or planet perturbations.
Vibration-Based Data Used to Detect Cracks in Rotating Disks
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Baaklini, George Y.
2004-01-01
Rotor health monitoring and online damage detection are increasingly gaining the interest of aircraft engine manufacturers. This is primarily due to the fact that there is a necessity for improved safety during operation as well as a need for lower maintenance costs. Applied techniques for the damage detection and health monitoring of rotors are essential for engine safety, reliability, and life prediction. Recently, the United States set the ambitious goal of reducing the fatal accident rate for commercial aviation by 80 percent within 10 years. In turn, NASA, in collaboration with the Federal Aviation Administration, other Federal agencies, universities, and the airline and aircraft industries, responded by developing the Aviation Safety Program. This program provides research and technology products needed to help the aerospace industry achieve their aviation safety goal. The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center is currently developing propulsion-system-specific technologies to detect damage prior to catastrophe under the propulsion health management task. Currently, the NDE group is assessing the feasibility of utilizing real-time vibration data to detect cracks in turbine disks. The data are obtained from radial blade-tip clearance and shaft-clearance measurements made using capacitive or eddy-current probes. The concept is based on the fact that disk cracks distort the strain field within the component. This, in turn, causes a small deformation in the disk's geometry as well as a possible change in the system's center of mass. The geometric change and the center of mass shift can be indirectly characterized by monitoring the amplitude and phase of the first harmonic (i.e., the 1 component) of the vibration data. Spin pit experiments and full-scale engine tests have been conducted while monitoring for crack growth with this detection methodology. Even so, published data are extremely limited, and the basic foundation of the methodology has not been fully studied. The NDE group is working on developing this foundation on the basis of theoretical modeling as well as experimental data by using the newly constructed subscale spin system shown in the preceding photograph. This, in turn, involved designing an optimal sub-scale disk that was meant to represent a full-scale turbine disk; conducting finite element analyses of undamaged and damaged disks to define the disk's deformation and the resulting shift in center of mass; and creating a rotordynamic model of the complete disk and shaft assembly to confirm operation beyond the first critical concerning the subscale experimental setup. The finite element analysis data, defining the center of mass shift due to disk damage, are shown. As an example, the change in the center of mass for a disk spinning at 8000 rpm with a 0.963-in. notch was 1.3 x 10(exp -4) in. The actual vibration response of an undamaged disk as well as the theoretical response of a cracked disk is shown. Experiments with cracked disks are continuing, and new approaches for analyzing the captured vibration data are being developed to better detect damage in a rotor. In addition, the subscale spin system is being used to test the durability and sensitivity of new NDE sensors that focus on detecting localized damage. This is designed to supplement the global response of the crack-detection methodology described here.
Log Analysis Using Splunk Hadoop Connect
2017-06-01
running a logging service puts a performance tax on the system and may cause the degradation of performance. More thorough 8 logging will cause a...several nodes. For example, a disk failure would affect all the tasks running on a particular node and generate an alert message not only for the disk...the commands that were executed from the " Run " command. The keylogger installation did not create any registry keys for the program itself. However
NASA Astrophysics Data System (ADS)
Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina
2018-03-01
High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.
Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure
NASA Astrophysics Data System (ADS)
Varga, J.; Gabányi, K. É.; Ábrahám, P.; Chen, L.; Kóspál, Á.; Menu, J.; Ratzka, Th.; van Boekel, R.; Dullemond, C. P.; Henning, Th.; Jaffe, W.; Juhász, A.; Moór, A.; Mosoni, L.; Sipos, N.
2017-08-01
Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μm silicate feature from emission to absorption temporarily. Aims: We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods: Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results: The inner disk (r < 1-3 au) spectra exhibit a 10 μm absorption feature related to amorphous silicate grains. The outer disk (r > 1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions: For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk. Based on observations made with the ESO Very Large Telescope Interferometer at Paranal Observatory (Chile) under the programs 088.C-1007 (PI: L. Mosoni), 090.C-0040 (PI: Th. Ratzka), and 092.C-0086 (PI: Th. Ratzka).
The low-mass star and disk populations in NGC 6611
NASA Astrophysics Data System (ADS)
Oliveira, Joana
2005-07-01
The aim of our observational program is to find empirical answers to two major questions. Do regions of high-mass star formation also produce lots of solar- and low-mass stars, i.e. is the low-mass IMF unaffected by high-mass siblings? Can low-mass stars in hostile environments retain circumstellar disks? We present results of our survey of NGC 6611, a massive cluster with an age of approximately 2 Myr which is currently ionizing the Eagle nebula. This cluster contains a dozen O-stars that emit 10 times more ionizing radiation than the Trapezium, providing a challenging environment for their lower-mass siblings. Our dataset consists of wide field optical and near infrared imaging, intermediate resolution spectroscopy (ESO-VLT) and deep L-band photometry. We have photometrically selected solar- and low-mass stars, placed them on the HR diagram and determined the IMF over an area sufficient to deal with mass segregation. We show that the IMF in NGC6611 is similar to that of the Orion Nebula Cluster down to 0.5Msun. Using K-L indices we search for colour excesses that betray the presence of circumstellar material and study what fraction of solar-mass stars still possess disks as a function of age and proximity to the massive stars. By comparing the disk frequency in NGC6611 with similarly aged but quieter regions, we find no evidence that the harsher environment of NGC6611 significantly hastens disk dissipation. Apparently the massive stars in NGC6611 have no global effect on the probability of low-mass star formation or disk retention. We have an approved HST program that will allows us to investigate the very low-mass and brown dwarf populations in NGC6611. And we complement our IR imaging with Spitzer/ORAC data, extending the area of our ground-based survey.
NASA Technical Reports Server (NTRS)
Fanselow, J. L.; Vavrus, J. L.
1984-01-01
ARCH, file archival system for DEC VAX, provides for easy offline storage and retrieval of arbitrary files on DEC VAX system. System designed to eliminate situations that tie up disk space and lead to confusion when different programers develop different versions of same programs and associated files.
Calculating Flow Through A Helicopter Rotor
NASA Technical Reports Server (NTRS)
Kunz, Donald L.; Hodges, Dewey H.
1991-01-01
New method for calculating flow of air through and around helicopter rotor incorporated into General Rotorcraft Aeromechanical Stability Program (GRASP) (computer program for aeroelastic analysis). Flow about helicopter rotor represented by axisymmetric flow field in cylindrical region with actuator disk as source of flow.
NASA Astrophysics Data System (ADS)
McIntosh, Daniel H.; CANDELS Collaboration
2017-01-01
The premiere HST/WFC3 Treasury program CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) has produced detailed visual classifications for statistically useful samples of bright (H>24.5mag) galaxies during and after z~2, the epoch of peak galaxy development. By averaging multiple classifications per galaxy that encompass spheroid-only, bulge-dominated, disk-dominated, disk-only, and irregular/peculiar appearances at visible rest-frame wavelengths, we find that 90% of massive (>1e10 Msun) galaxies at 0.6
Uncovering the Detailed Structure and Dynamics of Andromeda's Complex Stellar Disk
NASA Astrophysics Data System (ADS)
Dorman, Claire; Guhathakurta, Puragra; Seth, Anil; Dalcanton, Julianne; Widrow, Larry; Splash Team, Phat Team
2015-01-01
Lambda cold dark matter (LCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion ~150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LCDM cosmological predictions.This research was funded by grants from the NSF and NASA/STScI.
Structure and dynamics of Andromeda's stellar disk
NASA Astrophysics Data System (ADS)
Dorman, Claire Elise
2015-10-01
Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LambdaCDM cosmological predictions.
New disk discovered with VLT/SPHERE around the M star GSC 07396-00759
NASA Astrophysics Data System (ADS)
Sissa, E.; Olofsson, J.; Vigan, A.; Augereau, J. C.; D'Orazi, V.; Desidera, S.; Gratton, R.; Langlois, M.; Rigliaco, E.; Boccaletti, A.; Kral, Q.; Lazzoni, C.; Mesa, D.; Messina, S.; Sezestre, E.; Thébault, P.; Zurlo, A.; Bhowmik, T.; Bonnefoy, M.; Chauvin, G.; Feldt, M.; Hagelberg, J.; Lagrange, A.-M.; Janson, M.; Maire, A.-L.; Ménard, F.; Schlieder, J.; Schmidt, T.; Szulágyi, J.; Stadler, E.; Maurel, D.; Delboulbé, A.; Feautrier, P.; Ramos, J.; Rigal, F.
2018-05-01
Debris disks are usually detected through the infrared excess over the photospheric level of their host star. The most favorable stars for disk detection are those with spectral types between A and K, while the statistics for debris disks detected around low-mass M-type stars is very low, either because they are rare or because they are more difficult to detect. Terrestrial planets, on the other hand, may be common around M-type stars. Here, we report on the discovery of an extended (likely) debris disk around the M-dwarf GSC 07396-00759. The star is a wide companion of the close accreting binary V4046 Sgr. The system probably is a member of the β Pictoris Moving Group. We resolve the disk in scattered light, exploiting high-contrast, high-resolution imagery with the two near-infrared subsystems of the VLT/SPHERE instrument, operating in the Y J bands and the H2H3 doublet. The disk is clearly detected up to 1.5'' ( 110 au) from the star and appears as a ring, with an inclination i 83°, and a peak density position at 70 au. The spatial extension of the disk suggests that the dust dynamics is affected by a strong stellar wind, showing similarities with the AU Mic system that has also been resolved with SPHERE. The images show faint asymmetric structures at the widest separation in the northwest side. We also set an upper limit for the presence of giant planets to 2 MJ. Finally, we note that the 2 resolved disks around M-type stars of 30 such stars observed with SPHERE are viewed close to edge-on, suggesting that a significant population of debris disks around M dwarfs could remain undetected because of an unfavorable orientation. Based on data collected at the European Southern Observatory, Chile (ESO Program 198.C-0298).
319 Current Videos and Software for K-12 Law-Related Education.
ERIC Educational Resources Information Center
American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.
This publication assembles into one volume a comprehensive listing of more than 300 electronic media sources on the subject of law-related education (including the Bill of Rights, Constitution, the Courts, Congress, etc.) for grades kindergarten through 12. Items include laser disks, computer software, videotapes, and CD-ROMs (compact…
Mobile Learning on the Basis of the Cloud Services
ERIC Educational Resources Information Center
Makarchuk, Tatyana
2017-01-01
Spreading of interactive applications for mobile devices became one of the trends of IT development in 2015-2017. In higher education mobile applications are being used to advance the productivity of professors and students, which raises the overall quality of education. In the article SkyDrive, GoogleDisk mobile applications' features for group…
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1997-01-01
This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.
... classroom, laboratory, and clinical experience. The education provides students with an in-depth understanding of the structure ... people with muscle and bone problems, such as neck pain, low back pain, osteoarthritis, and spinal disk conditions. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Min; Kim, Jinyoung Serena; Apai, Dániel
We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M {sub ⊙}, which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of themore » sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.« less
Rotation-Infall Motion around the Protostar IRAS 16293-2422 Traced by Water Maser Emission
NASA Astrophysics Data System (ADS)
Imai, Hiroshi; Iwata, Takahiro; Miyoshi, Makoto
1999-08-01
We made VLBI observations of the water maser emission associated with a protostar, IRAS 16293-2422, using the Kashima-Nobeyama Interferometer (KNIFE) and the Japanese domestic VLBI network (J-Net).\\footnote[2]. These distributions of water maser features showed the blue-shifted and red-shifted components separated in the north-south direction among three epochs spanning three years. The direction of the separation was perpendicular to the molecular outflow and parallel to the elongation of the molecular disk. These steady distributions were successfully modeled by a rotating-infalling disk with an outer radius of 100 AU around a central object with a mass of 0.3 MO . The local specific angular momentum of the disk was calculated to be 0.2-1.0times 10-3 km s-1 pc at a radius of 20-100 AU. This value is roughly equal to that of the disk of IRAS 00338+6312 in L1287 and those of the molecular disks around the protostars in the Taurus molecular cloud. The relatively large disk radius of about 100 AU traced by water maser emission suggests that impinging clumps onto the disk should be hotter than 200 K to excite the water maser emission. Mizusawa, Nobeyama, and Kagoshima stations are operated by staff members of National Astronomical Observatory of the Ministry of Education, Science, Sports and Culture. Kashima station is operated by staff members of Communications Research Laboratory of the Ministry of Posts and Telecomunications. The recent status of J-Net is seen in the WWW home page: http://www.nro.nao.ac.jp/\\ \\ miyaji/Jnet.
Ghosh, Subrata; Louis, Edouard; Beaugerie, Laurent; Bossuyt, Peter; Bouguen, Guillaume; Bourreille, Arnaud; Ferrante, Marc; Franchimont, Denis; Frost, Karen; Hebuterne, Xavier; Marshall, John K; OʼShea, Ciara; Rosenfeld, Greg; Williams, Chadwick; Peyrin-Biroulet, Laurent
2017-03-01
The Inflammatory bowel disease (IBD) Disability Index is a validated tool that evaluates functional status; however, it is used mainly in the clinical trial setting. We describe the use of an iterative Delphi consensus process to develop the IBD Disk-a shortened, self-administered adaption of the validated IBD Disability Index-to give immediate visual representation of patient-reported IBD-related disability. In the preparatory phase, the IBD CONNECT group (30 health care professionals) ranked IBD Disability Index items in the perceived order of importance. The Steering Committee then selected 10 items from the IBD Disability Index to take forward for inclusion in the IBD Disk. In the consensus phase, the items were refined and agreed by the IBD Disk Working Group (14 gastroenterologists) using an online iterative Delphi consensus process. Members could also suggest new element(s) or recommend changes to included elements. The final items for the IBD Disk were agreed in February 2016. After 4 rounds of voting, the following 10 items were agreed for inclusion in the IBD Disk: abdominal pain, body image, education and work, emotions, energy, interpersonal interactions, joint pain, regulating defecation, sexual functions, and sleep. All elements, except sexual functions, were included in the validated IBD Disability Index. The IBD Disk has the potential to be a valuable tool for use at a clinical visit. It can facilitate assessment of inflammatory bowel disease-related disability relevant to both patients and physicians, discussion on specific disability-related issues, and tracking changes in disease burden over time.
How are quasars fueled? Simulating interstellar gas in tidally disturbed galaxies
NASA Technical Reports Server (NTRS)
Byrd, Gene G.
1986-01-01
Whether gravitational tides from companions trigger global instabilities in spiral galaxy disks and thus rapid flows of gas into the nucleus to fuel activity is investigated. An n-body computer program is used to simulate the disk of the spiral galaxy within a much more stable, high-velocity dispersion spherical halo. Under sufficient perturbation, the disk undergoes violent distortions due to the disturber and its self-gravitation. The tidal action of companions was simulated and the tidal strengths at which the instabilities appear to match those of the observed companions of Seyferts and quasars was shown. With the additional modifications planned, the gas flow will be more realistically simulated to compare with observations (e.g., colors, velocity fields) of active galaxies.
Signposts of Planets Observed by SEEDS
NASA Technical Reports Server (NTRS)
McElwain, Michael
2011-01-01
The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already produced exciting new results for the protoplanetary disk AB AUf, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru
McNeil's Last Gasp: A Brief Post-Outburst Wind from V1647 Ori
NASA Astrophysics Data System (ADS)
Brittain, Sean D.; Simon, T.; Rettig, T. W.; Balsara, D.; Tilley, D.; Gibb, E.; Hinkle, K.; Troutman, M.
2007-05-01
We present new observations of the fundamental ro-vibrational CO spectra from V1647 Ori, the star whose recent outburst illuminated McNeil's Nebula. The spectra were acquired shortly after the luminosity of the source returned to its pre-outburst level (February 2006) and roughly one year later (December 2006 & February 2007). The CO lines evolved from centrally peaked emission lines during the outburst to P Cygni lines immediately following the outburst and back again to centrally peaked emission lines. We use a standard disk-magnetosphere interaction model to interpret the observations. The model predicts a decreasing truncation radius of the disk with increasing accretion rate. When the truncation radius of the disk moves radially inward or outward in response to changes in the accretion rate, the magnetic field must reorganize, leading to an enhanced reconnection rate. Such activity is expected to launch outflows, which have been observed at the onset and completion of the outburst of the system. We show that these trends are consistent with the fact that V1647 Ori produced a fast and hotter Hα outflow at the onset of the outburst whereas a slower, cooler CO outflow manifested itself as the system approached quiescence. This remarkable phenomenon provides further insight to how the disk and a stressed magnetosphere can generate disk driven winds. S.D.B. performed this work in part with support from the Michelson Fellowship Program. The data presented herein were obtained [in part] at the W.M. Keck Observatory and Gemini South Telescope. The Phoenix spectra were obtained as part of program GS-2006A-DD-1 and GS-2006B-DD-1.
Herschel Studies of the Evolution and Environs of Young Stars in the DIGIT, WISH, and FOOSH Programs
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OT Key Project Team; WISH GT Key Project Team; FOOSH OT1 Team
2012-01-01
The Herschel Space Observatory has enabled us to probe the physical conditions of outer disks, envelopes, and outflows of young stellar objects, including embedded objects, Herbig Ae/Be disks, and T Tauri disks. We will report on results from three projects, DIGIT, WISH, and FOOSH. The DIGIT (Dust, Ice, and Gas in Time) program (PI: Neal Evans) utilizes the full spectral range of the PACS instrument to explore simultaneously the solid and gas-phase chemistry around sources in all of these stages. WISH (Water in Star Forming Regions with Herschel, PI Ewine van Dishoeck) focuses on observations of key lines with HIFI and line scans of selected spectral regions with PACS. FOOSH (FU Orionis Objects Surveyed with Herschel, PI Joel Green) studies FU Orionis objects with full range PACS and SPIRE scans. DIGIT includes examples of low luminosity protostars, while FOOSH studies the high luminosity objects during outburst states. Rotational ladders of highly excited CO and OH emission are detected in both disks and protostars. The highly excited lines are more commonly seen in the embedded phases, where there appear to be two temperature components. Intriguingly, water is frequently detected in spectra of embedded sources, but not in the disk spectra. In addition to gas features, we explore the extent of the newly detected 69 um forsterite dust feature in both T Tauri and Herbig Ae/Be stars. When analyzed along with the Spitzer-detected dust features, these provide constraints on a population of colder crystalline material. We will present some models of individual sources, as well as some broad statistics of the emission from these stages of star and planet formation.
NASA Technical Reports Server (NTRS)
1977-01-01
A program was developed in which asteroids and two planets, namely, Saturn and Uranus, were investigated. This included: (1) asteroid spectrophotometry; (2) the nature of the Trojan asteroids; (3) an investigation to determine asteroid masses; (4) the photometry, structure, and dynamics of the rings surrounding the planet Saturn; and (5) aerosol distribution in the atmosphere of Uranus. Plans were finalized to obtain observations of the nucleus of the dying comet P/Arend-Rigaux. Further work was accomplished in asteroid data reduction. Data were entered into the TRIAD data file and a program generated classifications for over 560 different asteroids. A photoelectric area scanner was used to obtain UBV scans of the disk of the planet Saturn on several winter and spring nights in 1977. Intensity profiles show pronounced limb brightening in U, moderate limb brightening in B, and limb darkening in V. Narrow band photoelectric area-scanning photometry of the Uranus disk is also reported. Results are given.
ERIC Educational Resources Information Center
Tucker, Sheila, Ed.
The following 13 papers on business and marketing education are included in this document: "Internet Marketing" (Herb Brown, Jerry Kandies); "Disk This . . . Paper Flow on the Go!" (Mary Evans, Wilbur Whitley); "Production and Evaluation of On-Line Tutorials" (Margie Gallagher, Evelyn Farrior, Jane Geissler);…
2016-03-01
science IT information technology JBOD just a bunch of disks JDBC java database connectivity xviii JPME Joint Professional Military Education JSO...Joint Service Officer JVM java virtual machine MPP massively parallel processing MPTE Manpower, Personnel, Training, and Education NAVMAC Navy...27 external database, whether it is MySQL , Oracle, DB2, or SQL Server (Teller, 2015). Connectors optimize the data transfer by obtaining metadata
Vibrations of Bladed Disk Assemblies
1991-03-29
34, Contract Report to Gas Trubines, General Motors Corp., Indianapolis (31 pages). 3 Afolabi, D., 1982, "Some Vibration Characteristics of an Aeroengine ...10. SOUACIOFPUNOiNG NO. Bolling Air Force Base PROGRAM 0mo.0aC-r TASK "o mW Washington, D.C. 20332-6448 1 LFAANT NO. No. N. O Vibrations of Bladed Disk...identfy by loC* n u r) 011LO . 0.ou* sum G. Blade vibrations , singularity theory, singular perturbation analysis, mode localization iS. AST.OACT
Search for Protoplanetary and Debris Disks Around Millisecond Pulsars
1995-10-06
Protoplanetary and Debris Disks Around Millisecond Pulsars 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...1 9 9 6 A p J . . . 4 6 0 . . 9 0 2 F Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
HECWRC, Flood Flow Frequency Analysis Computer Program 723-X6-L7550
1989-02-14
AGENCY NAME AND ADDRESS, ORDER NO., ETC. (1 NTS sells, leave blank) 11. PRICE INFORMA-ION Price includes documentation: Price code: DO1 $50.00 12 ...required is 256 K. Math coprocessor (8087/80287/80387) is highly recommended but not required. 16. DATA FILE TECHNICAL DESCRIPTION The software is...disk drive (360 KB or 1.2 MB). A 10 MB or larger hard disk is recommended. Math coprocessor (8087/80287/80387) is highly recommended but not renuired
Annual AFOSR Chemistry Program Review (19th)
1974-01-01
Chem., 42, 161 (1973). "A Rotating Ring Disk Electrode Study of the Adsorption of Lead on Gold in 0.5M Potassium Chloride," V. A. Vicente and S...Gold," D. F. Untereker and S. Bruckenstein, in preparation. "A Rotating Ring-Disk Study of the Adsorption of Thallium on Gold in 0.5H Potassium ... polyacrylic acid, and polydiallyl- phthalate. This paper will only cite the work on the photolysis of polydiallylphthalate. (PDAP). 70 The goal of this
The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Stallone, M. J.
1984-01-01
This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.
A composite-flywheel burst-containment study
NASA Astrophysics Data System (ADS)
Sapowith, A. D.; Handy, W. E.
1982-01-01
A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali
2014-01-01
The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the particles to become shifted. For both experiments, reference and test images are acquired before and after the induced shifts, respectively, and then processed using PIV software. The controlled manual translation of the disk resulted in detection of the particle displacements accurate to 1.75% of full scale and the thermal expansion experiment resulted in successful detection of the disk's thermal growth as compared to the calculated thermal expansion results. After validation of the technique through the induced shift experiments, the technique is implemented in the Rotordynamics Lab for preliminary assessment in a simulated engine environment. The discussion of the findings and plans for future work to improve upon the results are addressed in the paper.
VizieR Online Data Catalog: FARGO_THORIN 1.0 hydrodynamic code (Chrenko+, 2017)
NASA Astrophysics Data System (ADS)
Chrenko, O.; Broz, M.; Lambrechts, M.
2017-07-01
This archive contains the source files, documentation and example simulation setups of the FARGO_THORIN 1.0 hydrodynamic code. The program was introduced, described and used for simulations in the paper. It is built on top of the FARGO code (Masset, 2000A&AS..141..165M, Baruteau & Masset, 2008ApJ...672.1054B) and it is also interfaced with the REBOUND integrator package (Rein & Liu, 2012A&A...537A.128R). THORIN stands for Two-fluid HydrOdynamics, the Rebound integrator Interface and Non-isothermal gas physics. The program is designed for self-consistent investigations of protoplanetary systems consisting of a gas disk, a disk of small solid particles (pebbles) and embedded protoplanets. Code features: I) Non-isothermal gas disk with implicit numerical solution of the energy equation. The implemented energy source terms are: Compressional heating, viscous heating, stellar irradiation, vertical escape of radiation, radiative diffusion in the midplane and radiative feedback to accretion heating of protoplanets. II) Planets evolved in 3D, with close encounters allowed. The orbits are integrated using the IAS15 integrator (Rein & Spiegel, 2015MNRAS.446.1424R). The code detects the collisions among planets and resolve them as mergers. III) Refined treatment of the planet-disk gravitational interaction. The code uses a vertical averaging of the gravitational potential, as outlined in Muller & Kley (2012A&A...539A..18M). IV) Pebble disk represented by an Eulerian, presureless and inviscid fluid. The pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive effects. We also implemented the drag back-reaction term into the Navier-Stokes equation for the gas. Archive summary: ------------------------------------------------------------------------- directory/file Explanation ------------------------------------------------------------------------- /in_relax Contains setup of the first example simulation /in_wplanet Contains setup of the second example simulation /srcmain Contains the source files of FARGOTHORIN /src_reb Contains the source files of the REBOUND integrator package to be linked with THORIN GUNGPL3 GNU General Public License, version 3 LICENSE License agreement README Simple user's guide UserGuide.pdf Extended user's guide refman.pdf Programer's guide ----------------------------------------------------------------------------- (1 data file).
How To Use the SilverPlatter Software To Search the ERIC CD ROM.
ERIC Educational Resources Information Center
Merrill, Paul F.
This manual provides detailed instructions for using SilverPlatter software to search the ERIC CD ROM (Compact Disk Read Only Memory), a large bibliographic database relating to education which contains reference information on numerous journal articles from over 750 journals cited in the "Current Index to Journals in Education" (CIJE),…
NASA Astrophysics Data System (ADS)
Garufi, A.; Quanz, S. P.; Schmid, H. M.; Avenhaus, H.; Buenzli, E.; Wolf, S.
2014-08-01
Context. The morphological evolution of dusty disks around young (a few Myr old) stars is pivotal for a better understanding of planet formation. Since both dust grains and the global disk geometry evolve on short timescales, high-resolution imaging of a sample of objects may provide important indications about this evolution. Aims: We enlarge the sample of protoplanetary disks imaged in polarized light with high-resolution imaging (≲0.2″) by observing the Herbig Ae/Be stars HD 163296, HD 141569A, and HD 150193A. We combine our data with previous datasets to understand the larger context of their morphology. Methods: Polarimetric differential imaging is an attractive technique with which to image at near-IR wavelengths a significant fraction of the light scattered by the circumstellar material. The unpolarized stellar light is canceled out by combining two simultaneous orthogonal polarization states. This allowed us to achieve an inner working angle and an angular resolution as low as ~0.1″. Results: We report a weak detection of the disk around HD 163296 in the H and KS bands. The disk is resolved as a broken ring structure with a significant surface brightness drop inward of 0.6″. No sign of extended polarized emission is detected from the disk around HD 141569A and HD 150193A. Conclusions: We propose that the absence of scattered light in the inner 0.6″ around HD 163296 and the non-detection of the disk around HD 150193A may be due to similar geometric factors. Since these disks are known to be flat or only moderately flared, self-shadowing by the disk inner wall is the favored explanation. We show that the polarized brightness of a number of disks is indeed related to their flaring angle. Other scenarios (such as dust grain growth or interaction with icy molecules) are also discussed. On the other hand, the non-detection of HD 141569A is consistent with previous datasets that revealed a huge cavity in the dusty disk. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 089.C-0611(A).
Physics-Based Spectra of Accretion Disks around Black Holes
NASA Technical Reports Server (NTRS)
Krolik, Julian H.
2005-01-01
The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important continuum opacity sources, including Compton scattering and bound-free opacity from abundant metal species. The principal new result is that bound-free opacity is very significant in altering the continuum spectral shape, resulting for example in quite different "color correction factors" compared to those predicted previously. In addition, the models predict a relationship between luminosity and inner disk temperature that is, for the first time, in accord with that observed. The primary purpose of the grant was to incorporate more realistic accretion disk physics, learned largely from simulations, into such spectral models. The Davis et al. paper includes consideration of a vertical dissipation profile computed from radiation magneto-hydrodynamic simulations of MRI turbulence by N. J. Turner (2004). So long as the disk is effectively thick, such dissipation profiles do not affect the predicted spectrum significantly. (More work needs to be done on these simulations, however.) A potentially more serious issue is that MRI turbulence produces substantial inhomogeneities, as do photon bubble instabilities. These inhomogeneities can affect the spectra by enhancing the effects of absorption opacity over scattering opacity. We have done some preliminary Monte Carlo calculations to explore these effects.
Multiwavelength interferometric observations and modeling of circumstellar disks
NASA Astrophysics Data System (ADS)
Schegerer, A. A.; Ratzka, T.; Schuller, P. A.; Wolf, S.; Mosoni, L.; Leinert, Ch.
2013-07-01
Aims: We investigate the structure of the innermost region of three circumstellar disks around pre-main sequence stars HD 142666, AS 205 N, and AS 205 S. We determine the inner radii of the dust disks and, in particular, search for transition objects where dust has been depleted and inner disk gaps have formed at radii of a few tenths of AU up to several AU. Methods: We performed interferometric observations with IOTA, AMBER, and MIDI in the infrared wavelength ranges 1.6-2.5 μm and 8-13 μm with projected baseline lengths between 25 m and 102 m. The data analysis was based on radiative transfer simulations in 3D models of young stellar objects (YSOs) to reproduce the spectral energy distribution and the interferometric visibilities simultaneously. Accretion effects and disk gaps could be considered in the modeling approach. Results from previous studies restricted the parameter space. Results: The objects of this study were spatially resolved in the infrared wavelength range using the interferometers. Based on these observations, a disk gap could be found for the source HD 142666 that classifies it as transition object. There is a disk hole up to a radius of Rin = 0.30 AU and a (dust-free) ring between 0.35 AU and 0.80 AU in the disk of HD 142666. The classification of AS 205 as a system of classical T Tauri stars could be confirmed using the canonical model approach, i.e., there are no hints of disk gaps in our observations. Based on observations made with telescopes of the European Organisation for Astronomical Research in the southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 073.A-9014, 075.C-0014, 075.C-0064, 075.C-0253, 077.C-0750, 079.C-0101, and 079.C-0595.Appendix A is available in electronic form at http://www.aanda.org
Modifications to the accuracy assessment analysis routine MLTCRP to produce an output file
NASA Technical Reports Server (NTRS)
Carnes, J. G.
1978-01-01
Modifications are described that were made to the analysis program MLTCRP in the accuracy assessment software system to produce a disk output file. The output files produced by this modified program are used to aggregate data for regions greater than a single segment.
48 CFR 1552.215-72 - Instructions for the Preparation of Proposals.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of the information, to expedite review of the proposal, submit an IBM-compatible software or storage... offeror used another spreadsheet program, indicate the software program used to create this information... submission of a compatible software or device will expedite review, failure to submit a disk will not affect...
48 CFR 1552.215-72 - Instructions for the Preparation of Proposals.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of the information, to expedite review of the proposal, submit an IBM-compatible software or storage... offeror used another spreadsheet program, indicate the software program used to create this information... submission of a compatible software or device will expedite review, failure to submit a disk will not affect...
NASA Technical Reports Server (NTRS)
Obrien, S. O. (Principal Investigator)
1980-01-01
The program, LACREG, extracted all pixels that are contained in a specific IJ grid section. The pixels, along with a header record are stored in a disk file defined by the user. The program will extract up to 99 IJ grid sections.
UNDELETE; a program to recover deleted RSX-11 disk files; program logic manual
Baker, L.M.
1986-01-01
This report presents a list of selected publications pertaining to the water resources in Virginia. The report includes a source-agency listing by publication type, which is arranged in alphabetical order by author. Information concerning the availability of the publications also is provided. (USGS)
ERIC Educational Resources Information Center
Fisher, Patience; And Others
This guide was prepared to help teachers of the Lincoln Public School's introductory computer programming course in BASIC to make the necessary adjustments for changes made in the course since the purchase of microcomputers and such peripheral devices as television monitors and disk drives, and the addition of graphics. Intended to teach a…
GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
NASA Astrophysics Data System (ADS)
Dent, W. R. F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; Brittain, S.; Carmona, A.; Ciardi, D.; Danchi, W.; Donaldson, J.; Duchene, G.; Eiroa, C.; Fedele, D.; Grady, C.; de Gregorio-Molsalvo, I.; Howard, C.; Huélamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mathews, G.; Meeus, G.; Mendigutía, I.; Montesinos, B.; Morales-Calderon, M.; Mora, A.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Pinte, C.; Podio, L.; Ramsay, S. K.; Riaz, B.; Riviere-Marichalar, P.; Roberge, A.; Sandell, G.; Solano, E.; Tilling, I.; Torrelles, J. M.; Vandenbusche, B.; Vicente, S.; White, G. J.; Woitke, P.
2013-05-01
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ~250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ~10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ~10-5 Msolar. Normalising to a distance of 140 pc, 84% of objects with dust masses >=10-5 Msolar can be detected in this line in the present survey; 32% of those of mass 10-6-10-5 Msolar, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were ~50%. For each association in the 5-20 Myr age range, ~2 stars remain detectable in [OI]63 μm, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that ~18% of stars retain a gas-rich disk of total mass ~1 MJupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 μm, [CII]157 μm and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soummer, Rémi; Perrin, Marshall D.; Pueyo, Laurent
We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using the HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loève Image Projection algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments (LAPLACE) Legacy program). Three of themore » disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young Sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2-8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/Space Telescope Imaging Spectrograph coronagraph, at near-infrared wavelengths with the Gemini Planet Imager and Very Large Telescope/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.« less
High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; OConnor, Kenneth
2001-01-01
The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.
NASA Astrophysics Data System (ADS)
Kastner, Joel H.; Qi, C.; Dickson-Vandervelde, Annie; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Sacco, Germano; Rapson, Valerie; Principe, David
2018-01-01
We present a suite of ALMA interferometric molecular line and continuum images of the gas-rich circumbinary disk orbiting the nearby, young, short-period, solar-mass binary system V4046 Sgr (D ~ 73 pc; age ~20 Myr). These Cycle 2 and 3 ALMA observations of V4046 Sgr were undertaken in the 1.1 to 1.4 mm wavelength range (ALMA Band 6) with antenna configurations involving maximum baselines of several hundred meters, yielding subarcsecond-resolution images in more than a dozen molecular species and isotopologues. Collectively, these ALMA images serve to elucidate, on linear size scales of ~30-40 AU, the chemical structure of an evolved, circumbinary, protoplanetary disk.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT.
Probabilistic Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Strack, William C.; Nagpal, Vinod K.
2010-01-01
PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.
The PHAT and SPLASH Surveys: Rigorous Structural Decomposition of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Dorman, Claire; Guhathakurta, P.; Widrow, L.; Foreman-Mackey, D.; Seth, A.; Dalcanton, J.; Gilbert, K.; Lang, D.; Williams, B. F.; SPLASH Team; PHAT Team
2013-01-01
Traditional surface brightness profile (SBP) based structural decompositions of late-type galaxies into Sersic bulge, exponential disk, and power-law halo are often degenerate in the best-fit profiles. The Andromeda galaxy (M31) is the only large spiral close enough that the relative contributions of the subcomponents can be further constrained via their distinct signatures in resolved stellar population surveys. We make use of two such surveys. The SPLASH program has used the Keck/DEIMOS multiobject spectrograph to measure radial velocities of over 10,000 individual red giant branch stars in the inner 20kpc of M31. The PHAT survey, an ongoing Hubble Space Telescope Multicycle Treasury program, has so far obtained six-filter photometry of over 90 million stars in the same region. We use an MCMC algorithm to simultaneously fit a simple bulge/disk/halo structural model to the SBP, the disk fraction as measured from kinematics, and the PHAT luminosity function. We find that the additional constraints favor a larger bulge than expected from a pure SBP fit. Comparison to galaxy formation models will constrain the formation histories of large spiral galaxies such as the Milky Way and Andromeda.
DOE Fire Protection Handbook, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directedmore » to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.« less
Spectral Photometric Properties of the Moon
NASA Technical Reports Server (NTRS)
Dominque, D.; Vilas, F.
2005-01-01
We modeled the solar phase curves of the moon at a series of wavelengths using the full disk telescopic observations [1]. We endeavored to keep the database self-contained, that is, to use the values derived for the solar magnitude and phase curves of the disk-integrated [1]. These observations were made in a suite of 10 narrowband filters between 0.315 microns and 1.06 microns, and in the broad band Johnson UBV filters, as part of a larger program to obtain photoelectric photometry of the larger planets. Two aspects of the lunar observations are unique. First, the observations cover phase angles from 6deg through 120deg. More importantly, the observers used a special 20-mm diameter f/15 fused quartz lens constructed solely for this purpose. The lens reduced the whole lunar image in the focal plane to a size comparable to the planets observed as part of the same program. This image was fed directly into the photometer. Thus, these observations constitute the only existing set of phase curves of the entire lunar disk over a range of wavelengths. Table 1 lists the values of the Hapke model parameters which fit the data. Figure 1 is an example of the model fits to the data.
Dikir Farmasi: folk songs for health education
Bahri, Salmah; Lee, Kah Seng; Adenan, Mohammad Aswady; Murugiah, Muthu Kumar; Khan, Tahir Mehmood; Neoh, Chin Fen; Long, Chiau Ming
2016-01-01
Abstract In an effort to enhance public awareness, we develop Dikir Farmasi as an innovative approach to deliver health information. Dikir Farmasi combines the elements of dikir barat (a type of traditional folk song rhythm) and traditional sketches which are popular in the state of Kelantan, Malaysia. These sketches and dikir barat rhythmic songs, with lyrics touch on issues such as drug abuse and regulation are presented in an entertaining and humorous way. Health promotion messages are disseminated using Dikir Farmasi in the form of compact disks, video compact disks, stage performance, exhibition, social media, printed media (signboard, brochure and flyer). PMID:27695527
Is Mc Leod's Patent Pending Naturoptic Method for Restoring Healthy Vision Easy and Verifiable?
NASA Astrophysics Data System (ADS)
Niemi, Paul; McLeod, David; McLeod, Roger
2006-10-01
RDM asserts that he and people he has trained can assign visual tasks from standard vision assessment charts, or better replacements, proceeding through incremental changes and such rapid improvements that healthy vision can be restored. Mc Leod predicts that in visual tasks with pupil diameter changes, wavelengths change proportionally. A longer, quasimonochromatic wavelength interval is coincident with foveal cones, and rods. A shorter, partially overlapping interval separately aligns with extrafoveal cones. Wavelengths follow the Airy disk radius formula. Niemi can evaluate if it is true that visual health merely requires triggering and facilitating the demands of possibly overridden feedback signals. The method and process are designed so that potential Naturopathic and other select graduate students should be able to self-fund their higher- level educations from preferential franchising arrangements of earnings while they are in certain programs.
NASA Technical Reports Server (NTRS)
Hedgley, David R., Jr.
2000-01-01
A user's guide for the computer program SKETCH is presented on this disk. SKETCH solves a popular problem in computer graphics-the removal of hidden lines from images of solid objects. Examples and illustrations are included in the guide. Also included is the SKETCH program, so a user can incorporate the information into a particular software system.
NASA Astrophysics Data System (ADS)
Pohl, A.; Sissa, E.; Langlois, M.; Müller, A.; Ginski, C.; van Holstein, R. G.; Vigan, A.; Mesa, D.; Maire, A.-L.; Henning, Th.; Gratton, R.; Olofsson, J.; van Boekel, R.; Benisty, M.; Biller, B.; Boccaletti, A.; Chauvin, G.; Daemgen, S.; de Boer, J.; Desidera, S.; Dominik, C.; Garufi, A.; Janson, M.; Kral, Q.; Ménard, F.; Pinte, C.; Stolker, T.; Szulágyi, J.; Zurlo, A.; Bonnefoy, M.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Lagrange, A.-M.; Perrot, C.; Wildi, F.
2017-09-01
Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation. Aims: We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates. Methods: We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 μm) and ZIMPOL (0.5-0.9 μm), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 μm). Results: The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the Uφ images, with a Uφ/Qφ peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.̋28 ( 30 au) in size, which is larger than previously thought. We derive a disk inclination of 69 deg and PA of 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5'' from the central star. It is, however, found not to be co-moving. Conclusions: We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than 8.5 Mjup between 0.̋1 and 0.̋3. The detection limit decreases to 2 Mjup for 0.̋3 to 4.0''. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory in Chile, under program IDs 095.C-0298(B), 096.C-0248(B) and 096.C-0248(C).
NASA Astrophysics Data System (ADS)
Holman, Megan; Tubbs, Drake; Keller, L. D.
2018-01-01
Using spectra models with known parameters and comparing them to spectra gathered from real systems is often the only ways to find out what is going on in those real systems. This project uses the modeling programs of RADMC-3D to generate model spectra for systems containing protoplanetary disks. The parameters can be changed to simulate protoplanetary disks in different stages of planet formation, with different sized gaps in different areas of the disks, as well as protoplanetary disks that contain different types of dust. We are working on producing a grid of models that all have different variations in the parameters in order to generate a miniature database to use for comparisons to gathered spectra. The spectra produced from these simulations will be compared to spectra that have been gathered from systems in the Small Magellanic cloud in order to find out the contents and stage of development of that system. This allows us to see if and how planets are forming in the Small Magellanic cloud, a region which has much less metallicity than our own galaxy. The data we gather from comparisons between the model spectra and the spectra of systems in the Small Magellanic Cloud can then be applied to how planets may have formed in the early universe.
NASA Technical Reports Server (NTRS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; VanCleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.
2004-01-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
NASA Astrophysics Data System (ADS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; Van Cleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.; Saumon, D.; Leggett, S.; Chen, C.; Kemper, F.; Hartmann, L.; Marley, M.; Cushing, M.; Mainzer, A. K.; Kirkpatrick, D.; Jura, M.; Houck, J. R.
2004-05-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14, 2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and of debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
Low temperature Grüneisen parameter of cubic ionic crystals
NASA Astrophysics Data System (ADS)
Batana, Alicia; Monard, María C.; Rosario Soriano, María
1987-02-01
Title of program: CAROLINA Catalogue number: AATG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (see application form in this issue) Computer: IBM/370, Model 158; Installation: Centro de Tecnología y Ciencia de Sistemas, Universidad de Buenos Aires Operating system: VM/370 Programming language used: FORTRAN High speed storage required: 3 kwords No. of bits in a word: 32 Peripherals used: disk IBM 3340/70 MB No. of lines in combined program and test deck: 447
OT2_dardila_2: PACS Photometry of Transiting-Planet Systems with Warm Debris Disks
NASA Astrophysics Data System (ADS)
Ardila, D.
2011-09-01
Dust in debris disks is produced by colliding or evaporating planetesimals, the remnant of the planet formation process. Warm dust disks, known by their emission at =<24 mic, are rare (4% of FGK main-sequence stars), and specially interesting because they trace material in the region likely to host terrestrial planets, where the dust has very short dynamical lifetimes. Dust in this region comes from very recent asteroidal collisions, migrating Kuiper Belt planetesimals, or migrating dust. NASA's Kepler mission has just released a list of 1235 candidate transiting planets, and in parallel, the Wide-Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky mapping in the 3.4, 4.6, 12, and 22 micron bands. By cross-identifying the WISE sources with Kepler candidates as well as with other transiting planetary systems we have identified 21 transiting planet hosts with previously unknown warm debris disks. We propose Herschel/PACS 100 and 160 micron photometry of this sample, to determine whether the warm dust in these systems represents stochastic outbursts of local dust production, or simply the Wien side of emission from a cold outer dust belt. These data will allow us to put constraints in the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. This program represents a unique opportunity to exploit the synergy between three great space facilities: Herschel, Kepler, and WISE. The transiting planet sample hosts will remain among the most studied group of stars for the years to come, and our knowledge of their planetary architecture will remain incomplete if we do not understand the characteristics of their debris disks.
VLA Imaging of Protoplanetary Environments
NASA Technical Reports Server (NTRS)
Wilner, David J.
2004-01-01
We summarize the major accomplishments of our program to use high angular resolution observations at millimeter wavelengths to probe the structure of protoplanetary disks in nearby regions of star formation. The primary facilities used in this work were the Very Large Array (VLA) of the National Radio Astronomy Observatories (NRAO) located in New Mexico, and the recently upgraded Australia Telescope Compact Array (ATCA), located in Australia (to access sources in the far southern sky). We used these facilities to image thermal emission from dust particles in disks at long millimeter wavelengths, where the emission is optically thin and probes the full disk volume, including the inner regions of planet formation that remain opaque at shorter wavelengths. The best resolution obtained with the VLA is comparable to the size scales of the orbits of giant planets in our Solar System (< 10 AU).
SKARPS: The Search for Kuiper Belts around Radial-Velocity Planet Stars
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Marshall, Jonathan; Stapelfeldt, Karl; Su, Kate; Wyatt, Mark
2011-01-01
The Search for Kuiper belts Around Radial-velocity Planet Stars - SKARPS -is a Herschel survey of solar-type stars known to have orbiting planets. When complete, the 100-star SKARPS sample will be large enough for a meaningful statistical comparison against stars not known to have planets. (This control sample has already been observed by Herschel's DUst around NEarby Stars - DUNES - key program). Initial results include previously known disks that are resolved for the first time and newly discovered disks that are fainter and colder than those typically detected by Spitzer. So far, with only half of the sample in hand, there is no measured correlation between inner RV planets and cold outer debris. While this is consistent with the results from Spitzer, it is in contrast with the relationship suggested by the prominent debris disks in imaged-planet systems.
Measuring the Accelerations of Water Megamasers in Active Galaxy J0437+2456
NASA Astrophysics Data System (ADS)
Turner, Jeremy; Jeremy Turner
2018-01-01
The Megamaser Cosmology Project is measuring the Hubble constant using observations of 22 GHz water megamasers in the accretion disks of active galaxies within the Hubble flow. This approach uses the dynamics of the megamaser disks to determine their physical sizes and thereby find the angular-diameter distances to galaxies without relying on the cosmic distance ladder. We present Green Bank Telescope observations and analysis of the maser disk in the galaxy J0437+2456, which encircles a 2.9×106 M⊙ supermassive black hole. With spectral monitoring observations spanning over four years, we measure the centripetal acceleration of each individual maser component by tracking its velocity drift over time. These accelerations will be used in later work to model the maser disk and determine the distance to the galaxy. Our acceleration measurements use an iterative least squares fitting technique. For the systemic maser features, we find a mean acceleration of 1.87 ± 0.47 km/s/yr. This project was completed as part of the NSF REU program at NRAO.
OT1_mputman_1: ASCII: All Sky observations of Galactic CII
NASA Astrophysics Data System (ADS)
Putman, M.
2010-07-01
The Milky Way and other galaxies require a significant source of ongoing star formation fuel to explain their star formation histories. A new ubiquitous population of discrete, cold clouds have recently been discovered at the disk-halo interface of our Galaxy that could potentially provide this source of fuel. We propose to observe a small sample of these disk-halo clouds with HIFI to determine if the level of [CII] emission detected suggests they represent the cooling of warm clouds at the interface between the star forming disk and halo. These cooling clouds are predicted by simulations of warm clouds moving into the disk-halo interface region. We target 5 clouds in this proposal for which we have high resolution HI maps and can observe the densest core of the cloud. The results of our observations will also be used to interpret the surprisingly high detections of [CII] for low HI column density clouds in the Galactic Plane by the GOT C+ Key Program by extending the clouds probed to high latitude environments.
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Naifeh, Karen; Thrasher, Chet
1988-01-01
This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes.
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Woike, Mark; Abdul-Aziz, Ali
2013-01-01
The Aeronautical Sciences Project under NASAs Fundamental Aeronautics Program is extremely interested in the development of fault detection technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Centers High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied background consisting of a high-contrast random speckle pattern and imaging the background under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.8-m in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will appear shifted. The resulting background displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential backgrounds, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the backgrounds; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross- correlation algorithms in order to determine the background displacements. The effectiveness of each background at resolving the known shift is evaluated and discussed in order to choose to the most suitable background to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.
On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, R. H.
2011-01-01
We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity, while the latter are allowed to respond to gas drag forces. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1km-size particles, which explores the low-drag regime.We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of M⊕ of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. ACB's support was provided in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. RHD was supported by NASA Origins of Solar Systems grant NNX08AK36G.
Resolving the inner disk of UX Orionis
NASA Astrophysics Data System (ADS)
Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.
2016-05-01
Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.
Venus transit 2004: An international education program
NASA Astrophysics Data System (ADS)
Mayo, L.; Odenwald, S.
2003-04-01
December 6th, 1882 was the last transit of the planet Venus across the disk of the sun. It was heralded as an event of immense interest and importance to the astronomical community as well as the public at large. There have been only six such occurrences since Galileo first trained his telescope on the heavens in 1609 and on Venus in 1610 where he concluded that Venus had phases like the moon and appeared to get larger and smaller over time. Many historians consider this the final nail in the coffin of the Ptolemaic, Earth centered solar system. In addition, each transit has provided unique opportunities for discovery such as measurement and refinement of the detection of Venus' atmosphere, calculation of longitudes, and calculation of the astronomical unit (and therefore the scale of the solar system). The NASA Sun Earth Connection Education Forum (SECEF) in partnership with the Solar System Exploration (SSE) and Structure and Evolution of the Universe (SEU) Forums, AAS Division for Planetary Sciences (DPS), and a number of NASA space missions and science centers are developing plans for an international education program centered around the June 8, 2004 Venus transit. The transit will be visible in its entirety from Europe and partially from the East Coast of the United States. We will use a series of robotic observatories including the Telescopes In Education (TIE) network distributed in latitude to provide observations of the transit that will allow middle and high school students to calculate the A.U. through application of parallax. We will compare the terrestrial planets in terms of the evolutionary processes that define their magnetic fields, their widely differing interactions with the solar wind, and the implications this has for life on Earth and elsewhere in the universe. We will also use Venus transit as a probe of episodes in American history (e.g. 1769: revolutionary era, 1882: post civil war era, and 2004: modern era). Museums and planetariums in the US and Europe will offer real time viewing of the transit and conduct educational programs through professional development seminars, public lectures, and planetarium shows. We are interested in soliciting advice from the research community to coordinate professional research interests with this program.
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Witkowski, Allen
2015-01-01
During the first Supersonic Flight Dynamics Test (SFDT-1) for NASA's Low Density Supersonic Decelerator (LDSD) Program, the Parachute Decelerator System (PDS) was successfully tested. The main parachute in the PDS was a 30.5-meter supersonic Disksail parachute. The term Disksail is derived from the canopy's constructional geometry, as it combined the aspects of a ringsail and a flat circular round (disk) canopy. The crown area of the canopy contained the disk feature, as a large flat circular disk that extended from the canopy's vent down to the upper gap. From this upper gap to the skirt-band the canopy was constructed with characteristics of sails seen in a ringsail. There was a second lower gap present in this sail region. The canopy maintained a nearly 10x forebody diameter trailing distance with 1.7 Do suspension line lengths. During the test, the parachute was deployed at the targeted Mach and dynamic pressure. Although the supersonic Disksail parachute experienced an anomaly during the inflation process, the system was tested successfully in the environment it was designed to operate within. The nature of the failure seen originated in the disk portion of the canopy. High-speed and high-resolution imagery of the anomaly was captured and has been used to aid in the forensics of the failure cause. In addition to the imagery, an inertial measurement unit (IMU) recorded test vehicle dynamics and loadcells captured the bridle termination forces. In reviewing the imagery and load data a number of hypothesizes have been generated in an attempt to explain the cause of the anomaly.
Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243
NASA Astrophysics Data System (ADS)
Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.
2012-12-01
Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and interferometric data are necessary to determine a possible binary nature of the star. Based on observations taken with: 1) Telescopes at Paranal ESO Observatory under the program 085.D-0454 and 385.D-0513A; 2) Gemini South/Phoenix instrument, science program GS-2010A-Q-41; 3) J. Sahade Telescope at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.
NASA Astrophysics Data System (ADS)
Hillen, M.; de Vries, B. L.; Menu, J.; Van Winckel, H.; Min, M.; Mulders, G. D.
2015-06-01
Context. Many post-asymptotic giant branch (post-AGB) stars in binary systems have an infrared (IR) excess arising from a dusty circumbinary disk. The disk formation, current structure, and further evolution are, however, poorly understood. Aims: We aim to constrain the structure of the circumstellar material around the post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial distribution of the amorphous and of the crystalline dust. Methods: We present very high-quality mid-IR interferometric data that were obtained with the MIDI/VLTI instrument. We analyze the MIDI visibilities and differential phases in combination with the full spectral energy distribution, using the MCMax radiative transfer code, to find a good structure model of AC Her's circumbinary disk. We include a grain size distribution and midplane settling of dust self-consistently in our models. The spatial distribution of crystalline forsterite in the disk is investigated with the mid-IR features, the 69 μm band and the 11.3 μm signatures in the interferometric data. Results: All the data are well fitted by our best model. The inclination and position angle of the disk are precisely determined at i = 50 ± 8° and PA = 305 ± 10°. We firmly establish that the inner disk radius is about an order of magnitude larger than the dust sublimation radius. The best-fit dust grain size distribution shows that significant grain growth has occurred, with a significant amount of mm-sized grains now being settled to the midplane of the disk. A large total dust mass ≥10-3 M⊙ is needed to fit the mm fluxes. By assuming αturb = 0.01, a good fit is obtained with a small grain size power law index of 3.25, combined with a small gas/dust ratio ≤10. The resulting gas mass is compatible with recent estimates employing direct gas diagnostics. The spatial distribution of the forsterite is different from the amorphous dust, as more warm forsterite is needed in the surface layers of the inner disk. Conclusions: The disk in the AC Her system is in a very evolved state, as shown by its small gas/dust ratio and large inner hole. Mid-IR interferometry offers unique constraints, complementary to mid-IR features, for studying the mineralogy in disks. A better uv coverage is needed to constrain in detail the distribution of the crystalline forsterite in the disk of AC Her, but we find strong similarities with the protoplanetary disk HD 100546. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 075.D-0605.
Using an Interactive Computer Program to Communicate With the Wilderness Visitor
David W. Harmon
1992-01-01
The Bureau of Land Management, Oregon State Office, identified a need for a tool to communicate with wilderness visitors, managers, and decisionmakers regarding wilderness values and existing resource information in 87 wilderness study areas. An interactive computer program was developed using a portable Macintosh computer, a touch screen monitor, and laser disk player...
Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES
NASA Astrophysics Data System (ADS)
Ertel, S.; Marshall, J. P.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Eiroa, C.; Mora, A.; del Burgo, C.; Montesinos, B.; Bryden, G.; Danchi, W.; Kirchschlager, F.; Liseau, R.; Maldonado, J.; Pilbratt, G. L.; Schüppler, Ch.; Thébault, Ph.; White, G. J.; Wolf, S.
2014-01-01
Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims: Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods: We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results: A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions: The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Sculpting the disk around T Chamaeleontis: an interferometric view
NASA Astrophysics Data System (ADS)
Olofsson, J.; Benisty, M.; Le Bouquin, J.-B.; Berger, J.-P.; Lacour, S.; Ménard, F.; Henning, Th.; Crida, A.; Burtscher, L.; Meeus, G.; Ratzka, T.; Pinte, C.; Augereau, J.-C.; Malbet, F.; Lazareff, B.; Traub, W.
2013-04-01
Context. Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the circumstellar matter and consequently the spectral energy distribution. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-infrared. Aims: We analyze a full set of data involving new near-infrared data obtained with the 4-telescope combiner (VLTI/PIONIER), new mid-infrared interferometric VLTI/MIDI data, literature photometric and archival data from VLT/NaCo/SAM to constrain the structure of the transition disk around T Cha. Methods: After a preliminary analysis with a simple geometric model, we used the MCFOST radiative transfer code to simultaneously model the SED and the interferometric observables from raytraced images in the H-, L'-, and N-bands. Results: We find that the dust responsible for the strong emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU), with a significant height (H/r ~ 0.2) to increase the geometric surface illuminated by the central star. We find that the outer disk starts at about 12 AU and is partially resolved by the PIONIER, SAM, and MIDI instruments. We discuss the possibility of a self-shadowed inner disk, which can extend to distances of several AU. Finally, we show that the SAM closure phases, interpreted as the signature of a candidate companion, may actually trace the asymmetry generated by forward scattering by dust grains in the upper layers of the outer disk. These observations help constrain the inclination and position angle of the disk to about + 58° and - 70°, respectively. Conclusions: The circumstellar environment of T Cha appears to be best described by two disks spatially separated by a large gap. The presence of matter (dust or gas) inside the gap is, however, difficult to assess with present-day observations. Our model suggests the outer disk contaminates the interferometric signature of any potential companion that could be responsible for the gap opening, and such a companion still has to be unambiguously detected. We stress the difficulty to observe point sources in bright massive disks, and the consequent need to account for disk asymmetries (e.g. anisotropic scattering) in model-dependent search for companions. Based on PIONIER observations collected at the VLTI (European Southern Observatory, Paranal, Chile) with programs 087.C-0702(B), 087.C-0709(A), 089.C-0537(A), 083.C-0883(C & D), and 083.C-0295(A & B).
NASA Astrophysics Data System (ADS)
de Boer, J.; Salter, G.; Benisty, M.; Vigan, A.; Boccaletti, A.; Pinilla, P.; Ginski, C.; Juhasz, A.; Maire, A.-L.; Messina, S.; Desidera, S.; Cheetham, A.; Girard, J. H.; Wahhaj, Z.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Buenzli, E.; Chauvin, G.; Dominik, C.; Feldt, M.; Gratton, R.; Hagelberg, J.; Isella, A.; Janson, M.; Keller, C. U.; Lagrange, A.-M.; Lannier, J.; Menard, F.; Mesa, D.; Mouillet, D.; Mugrauer, M.; Peretti, S.; Perrot, C.; Sissa, E.; Snik, F.; Vogt, N.; Zurlo, A.; SPHERE Consortium
2016-11-01
Context. The effects of a planet sculpting the disk from which it formed are most likely to be found in disks that are in transition between being classical protoplanetary and debris disks. Recent direct imaging of transition disks has revealed structures such as dust rings, gaps, and spiral arms, but an unambiguous link between these structures and sculpting planets is yet to be found. Aims: We aim to find signs of ongoing planet-disk interaction and study the distribution of small grains at the surface of the transition disk around RX J1615.3-3255 (RX J1615). Methods: We observed RX J1615 with VLT/SPHERE. From these observations, we obtained polarimetric imaging with ZIMPOL (R'-band) and IRDIS (J), and IRDIS (H2H3) dual-band imaging with simultaneous spatially resolved spectra with the IFS (YJ). Results: We image the disk for the first time in scattered light and detect two arcs, two rings, a gap and an inner disk with marginal evidence for an inner cavity. The shapes of the arcs suggest that they are probably segments of full rings. Ellipse fitting for the two rings and inner disk yield a disk inclination I = 47 ± 2° and find semi-major axes of 1.50 ± 0.01'' (278 au), 1.06 ± 0.01'' (196 au) and 0.30 ± 0.01'' (56 au), respectively. We determine the scattering surface height above the midplane, based on the projected ring center offsets. Nine point sources are detected between 2.1'' and 8.0'' separation and considered as companion candidates. With NACO data we recover four of the nine point sources, which we determine to be not co-moving, and therefore unbound to the system. Conclusions: We present the first detection of the transition disk of RX J1615 in scattered light. The height of the rings indicate limited flaring of the disk surface, which enables partial self-shadowing in the disk. The outermost arc either traces the bottom of the disk or it is another ring with semi-major axis ≳ 2.35'' (435 au). We explore both scenarios, extrapolating the complete shape of the feature, which will allow us to distinguish between the two in future observations. The most attractive scenario, where the arc traces the bottom of the outer ring, requires the disk to be truncated at r ≈ 360 au. If the closest companion candidate is indeed orbiting the disk at 540 au, then it would be the most likely cause for such truncation. This companion candidate, as well as the remaining four, all require follow up observations to determine if they are bound to the system. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 095.C-0298(A), 095.C-0298(B), and 095.C-0693(A) during guaranteed and open time observations of the SPHERE consortium, and on NACO observations: program IDs: 085.C-0012(A), 087.C-0111(A), and 089.C-0133(A). The reduced images as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A114
Screwworm Eradication Data System (SEDS) operational manual, part 3
NASA Technical Reports Server (NTRS)
1976-01-01
All phases of SEDS operation as well as utility routines, error messages, and system disk maintenance procedures are described. Display layouts and examples of runs are included as additional explanation to SEDS program procedures.
Aeroelastic and dynamic finite element analyses of a bladder shrouded disk
NASA Technical Reports Server (NTRS)
Smith, G. C. C.; Elchuri, V.
1980-01-01
The delivery and demonstration of a computer program for the analysis of aeroelastic and dynamic properties is reported. Approaches to flutter and forced vibration of mistuned discs, and transient aerothermoelasticity are described.
NASA Astrophysics Data System (ADS)
Chen, L.; Kóspál, Á.; Ábrahám, P.; Kreplin, A.; Matter, A.; Weigelt, G.
2018-01-01
Context. An essential step to understanding protoplanetary evolution is the study of disks that contain gaps or inner holes. The pre-transitional disk around the Herbig star HD 169142 exhibits multi-gap disk structure, differentiated gas and dust distribution, planet candidates, and near-infrared fading in the past decades, which make it a valuable target for a case study of disk evolution. Aims: Using near-infrared interferometric observations with VLTI/PIONIER, we aim to study the dust properties in the inner sub-au region of the disk in the years 2011-2013, when the object is already in its near-infrared faint state. Methods: We first performed simple geometric modeling to characterize the size and shape of the NIR-emitting region. We then performed Monte-Carlo radiative transfer simulations on grids of models and compared the model predictions with the interferometric and photometric observations. Results: We find that the observations are consistent with optically thin gray dust lying at Rin 0.07 au, passively heated to T 1500 K. Models with sub-micron optically thin dust are excluded because such dust will be heated to much higher temperatures at similar distance. The observations can also be reproduced with a model consisting of optically thick dust at Rin 0.06 au, but this model is plausible only if refractory dust species enduring 2400 K exist in the inner disk. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 190.C-963 and 087.C-0709.
Application of superalloy powder metallurgy for aircraft engines
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.; Miner, R. V., Jr.
1980-01-01
In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.
Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-04-01
We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.
10 micron Spectroscopy with OSCIR: Silicate Minerology and The Origins of Disks & Protoplanetesimals
NASA Astrophysics Data System (ADS)
Woodward, Chick; Wooden, Diane; Harker, David; Rodgers, Bernadette; Butner, Harold
1999-02-01
The analysis of the silicate mineralogy of pre-main sequence Herbig Ae/Be (HeAeBe) stars to main sequence (beta)-Pic systems, probes the chemical and physical conditions in these potentially planet-forming environments, the condensation of dust from the gas-disk, and the aggregation and accretion of these solids into planetesimals and comets. We propose to obtain 10 micron OSCIR spectra of a selected list of HeAeBe and (beta)-Pic like systems. Use of our ground-based data, combined with the ISO SWS database, and our extensive analytical modeling efforts will permit us to develop a fundamental understanding of connections between silicate mineralogy and the origins and evolution of disks and protoplanetesimals. This program will provide a framework to extend our understanding of planetary formation processes and the mineralogy of dust in differing circumstellar environs and comets to be studied with the NASA STARDUST and SIRTF missions.
$ANBA; a rapid, combined data acquisition and correction program for the SEMQ electron microprobe
McGee, James J.
1983-01-01
$ANBA is a program developed for rapid data acquisition and correction on an automated SEMQ electron microprobe. The program provides increased analytical speed and reduced disk read/write operations compared with the manufacturer's software, resulting in a doubling of analytical throughput. In addition, the program provides enhanced analytical features such as averaging, rapid and compact data storage, and on-line plotting. The program is described with design philosophy, flow charts, variable names, a complete program listing, and system requirements. A complete operating example and notes to assist in running the program are included.
Using Purpose-Built Functions and Block Hashes to Enable Small Block and Sub-file Forensics
2010-01-01
JPEGs. We tested precarve using the nps-2009-canon2-gen6 (Garfinkel et al., 2009) disk image. The disk image was created with a 32 MB SD card and a...analysis of n-grams in the fragment. Fig. 1 e Usage of a 160 GB iPod reported by iTunes 8.2.1 (6) (top), as reported by the file system (bottom center), and...as computing with random sampling (bottom right). Note that iTunes usage actually in GiB, even though the program displays the “GB” label. Fig. 2 e
A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS
NASA Astrophysics Data System (ADS)
Lokken, Martine Elena; McPartland, Conor; Sanders, David B.
2018-01-01
Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi < 18.5) galaxies detected in all three surveys. Comparison of galaxy parameters derived from SDSS and PS1 images with those measured from HSC-SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.
High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST
NASA Astrophysics Data System (ADS)
Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.
2017-11-01
JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.
Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.
2012-01-01
The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.
Temporomandibular joint formation requires two distinct hedgehog-dependent steps.
Purcell, Patricia; Joo, Brian W; Hu, Jimmy K; Tran, Pamela V; Calicchio, Monica L; O'Connell, Daniel J; Maas, Richard L; Tabin, Clifford J
2009-10-27
We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk-condyle separation and provide a molecular framework for future studies of the TMJ.
Reprocessing of Archival Direct Imaging Data of Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Safsten, Emily; Stephens, Denise C.
2017-01-01
Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. They are the higher mass analogs of the better-known T Tauri stars. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales, particularly around massive stars. So far, only one planet, HD 100546b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars.Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the central star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We present here current work with the PSF subtraction program PynPoint, which employs a method of principal component analysis, to reprocess archival images of HAeBe stars to increase the likelihood of detecting a planet in their disks.
Shadows and spirals in the protoplanetary disk HD 100453
NASA Astrophysics Data System (ADS)
Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.
2017-01-01
Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and of the spirals, is still unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit. Observations over a few years will allow us to measure the spiral pattern speed, and determine if the shadows are fixed or moving, which may constrain their origin. Based on observations performed with VLT/SPHERE under program ID 096.C-0248(B).
VMOMS — A computer code for finding moment solutions to the Grad-Shafranov equation
NASA Astrophysics Data System (ADS)
Lao, L. L.; Wieland, R. M.; Houlberg, W. A.; Hirshman, S. P.
1982-08-01
Title of program: VMOMS Catalogue number: ABSH Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (See application form in this issue) Computer: PDP-10/KL10; Installation: ORNL Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA Operating system: TOPS 10 Programming language used: FORTRAN High speed storage required: 9000 words No. of bits in a word: 36 Overlay structure: none Peripherals used: line printer, disk drive No. of cards in combined program and test deck: 2839 Card punching code: ASCII
GASPS--A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
NASA Technical Reports Server (NTRS)
Dent, W.R.F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.;
2013-01-01
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted approx. 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 micron the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 micron, [CII] at 157 µm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 micron. Additionally, GASPS included continuum photometry at 70, 100 and 160 micron, around the peak of the dust emission. The targets were SED Class II– III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarize some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 micron was the brightest line seen in almost all objects, by a factor of 10. Overall [OI] 63 micron detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 µm detection of approx.10(exp -5) Solar M.. Normalizing to a distance of 140 pc, 84% of objects with dust masses =10 (exp -5) Solar M can be detected in this line in the present survey; 32% of those of mass 10(exp -6) – 10 (exp -5) Solar M, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centered on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3–4 Myr age range were approx. 50%. For each association in the 5–20 Myr age range, approx. 2 stars remain detectable in [OI] 63 micron, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that approx. 18% of stars retain a gas-rich disk of total mass approx. Jupiter- M for 1–4 Myr, 1–7% keep such disks for 5–10 Myr, but none are detected beyond 10–20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 micron, [CII]157 micron and CO J = 18- 17, with detection rates of 20–40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
ERIC Educational Resources Information Center
Ullmer, Eldon J.
Developed as a service to the health sciences community, this monograph is intended as an introduction to interactive videodisk technology. It describes both videodisk and compact disk technologies and different videodisk player formats, and discusses some of the major factors that educators considering videodisk adoption should consider. The…
Lock It Up! Computer Security.
ERIC Educational Resources Information Center
Wodarz, Nan
1997-01-01
The data contained on desktop computer systems and networks pose security issues for virtually every district. Sensitive information can be protected by educating users, altering the physical layout, using password protection, designating access levels, backing up data, reformatting floppy disks, using antivirus software, and installing encryption…
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Woike, Mark R.
2013-01-01
The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.
NASA Astrophysics Data System (ADS)
Thi, W.-F.; Pinte, C.; Pantin, E.; Augereau, J. C.; Meeus, G.; Ménard, F.; Martin-Zaïdi, C.; Woitke, P.; Riviere-Marichalar, P.; Kamp, I.; Carmona, A.; Sandell, G.; Eiroa, C.; Dent, W.; Montesinos, B.; Aresu, G.; Meijerink, R.; Spaans, M.; White, G.; Ardila, D.; Lebreton, J.; Mendigutía, I.; Brittain, S.
2014-01-01
Context. The gas- and dust dissipation processes in disks around young stars remain uncertain despite numerous studies. At the distance of ~99-116 pc, HD 141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. Atomic and molecular gases have been found in the structured 5-Myr old HD 141569A disk, making HD 141569A the perfect object within which to directly study the gaseous atomic and molecular component. Aims: We wish to constrain the gas and dust mass in the disk around HD 141569A. Methods: We observed the fine-structure lines of O i at 63 and 145 μm and the C ii line at 157 μm with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large program GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 μm, and 12CO fundamental ro-vibrational and pure rotational J = 3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. Results: The models suggest that the oxygen lines are emitted from the inner disk around HD 141569A, whereas the [C ii] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of ~2.1 × 10-7M⊙ and from grains with a radius of up to 1 cm of 4.9 × 10-6M⊙. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2 × 10-11 and 1.4 × 10-10M⊙ assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3 × 10-7) by two to three orders of magnitude. The disk around HD 141569A is less massive in gas (2.5 to 4.9 × 10-4M⊙ or 67 to 164 M⊕) and has a flat opening angle (<10%). Conclusions: We constrained simultaneously the silicate dust grain, PAH, and gas mass in a ~5-Myr old Herbig Ae disk. The disk-averaged gas-to-dust-mass is most likely around 100, which is the assumed value at the disk formation despite the uncertainties due to disagreements between the different gas tracers. If the disk was originally massive, the gas and the dust would have dissipated at the same rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 079.C-0602(A).Appendix A is available in electronic form at http://www.aanda.orgHerschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.
Hubble Space Telescope observations of Orion Nebula, Helix Nebula, and NGC 6822
NASA Technical Reports Server (NTRS)
Spitzer, Lyman; Fitzpatrick, Ed
1999-01-01
This grant covered the major part of the work of the Principal Investigator and his collaborators as a Guaranteed Time Observer on the Hubble Space Telescope. The work done naturally divided itself into two portions the first being study of nebular objects and the second investigation of the interstellar medium between stars. The latter investigation was pursued through a contract with Princeton University, with Professor Lyman Spitzer as the supervising astronomer, assisted by Dr. Ed Fitzpatrick. Following the abrupt death of Professor Spitzer, his responsibilities were shifted to Dr. Fitzpatrick. When Dr. Fitzpatrick relocated to Villanova University the concluding work on that portion of this grant was concluded under a direct service arrangement. This program has been highly successful and the resulting publications in scientific journals are listed below. To the scientist, this is the bottom line, so that I shall simply try to describe the general nature of what was accomplished. There were three nebular programs conducted, one on the Orion Nebula, the second on the Helix Nebula, and the third on NGC 6822. The largest program was that on the Orion Nebula. This involved both HST observations and supporting groundbased observations obtained with a variety of instruments, including the Coude Feed Telescope at the Kitt Peak National observatory in Arizona, the Cerro Tololo observatory in Chile, and the Keck Observatory on Mauna Kea, Hawaii. Moreover, considerable theoretical modeling was done and all of the data analysis was performed at the Rice University in Houston, except for the PI's period of sabbatical leave (6-96 through 7-97) when he was based at the Max Planck Institute for Astronomy in Heidelberg, Germany. The Orion Nebula program was the most productive part, resulting in numerous papers, but more important in the discovery of a new class of objects, for which we coined the name "proplyds". The proplyds are protoplanetary disks surrounding very young stars still in the process of creation. The Orion Nebula is the residual material from a burst of star formation that occurred about 300,000 years ago. Each of these new stars has a surrounding disk of protoplanetary material. The same physics that renders the Nebula so highly visible means that the proto-planetary disks are also quite visible. With the wisdom of hindsight, we now see that this was to be expected and that we should have been searching specifically for this type of object. The discovery of these objects and their subsequent detailed investigation has lead to an accurate assessment of the frequency of protoplanetary disks in young stars and determination of the likelihood of survival of these disks into an era where planets actually form.
Exploring Properties of HI Clouds in Dwarf Irregular Galaxies
NASA Astrophysics Data System (ADS)
Berger, Clara; Hunter, Deidre Ann
2018-01-01
Dwarf Irregular galaxies form stars and maintain exponential stellar disks at extremely low gas densities. One proposed method of maintaining such regular outer disks is scattering stars off of HI clouds. In order to understand the processes present in dwarf irregular stellar disks, we present a survey of atomic hydrogen clouds in and around a subset of representative galaxies from the LITTLE THINGS survey. We apply a cloud identification program to the 21 cm HI line emission cubes and extract masses, radii, surface densities, and distances from the center of the galaxy in the plane of the galaxy of each cloud. Our data show a wide range of clouds characterized by low surface densities but varied in mass and size. The number of clouds found and the mass of the most massive cloud show no correlation to integrated star forming rates or luminosity in these galaxies. However, they will be used as input for models of stars scattering off of HI clouds to better understand the regular stellar disks in dwarf Irregular galaxies.We acknowledge support from the National Science Foundation grant AST-1461200 to Northern Arizona University for Research Experiences for Undergraduates summer internships.
High-Speed Recording of Test Data on Hard Disks
NASA Technical Reports Server (NTRS)
Lagarde, Paul M., Jr.; Newnan, Bruce
2003-01-01
Disk Recording System (DRS) is a systems-integration computer program for a direct-to-disk (DTD) high-speed data acquisition system (HDAS) that records rocket-engine test data. The HDAS consists partly of equipment originally designed for recording the data on tapes. The tape recorders were replaced with hard-disk drives, necessitating the development of DRS to provide an operating environment that ties two computers, a set of five DTD recorders, and signal-processing circuits from the original tape-recording version of the HDAS into one working system. DRS includes three subsystems: (1) one that generates a graphical user interface (GUI), on one of the computers, that serves as a main control panel; (2) one that generates a GUI, on the other computer, that serves as a remote control panel; and (3) a data-processing subsystem that performs tasks on the DTD recorders according to instructions sent from the main control panel. The software affords capabilities for dynamic configuration to record single or multiple channels from a remote source, remote starting and stopping of the recorders, indexing to prevent overwriting of data, and production of filtered frequency data from an original time-series data file.
12 CFR 1102.301 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Definitions. 1102.301 Section 1102.301 Banks... Office, Procedures, Public Information § 1102.301 Definitions. For purposes of this subpart: (a) ASC... disk). (f) Educational institution means a preschool, a public or private elementary or secondary...
TIMESERIESSTREAMING.VI: LabVIEW program for reliable data streaming of large analog time series
NASA Astrophysics Data System (ADS)
Czerwinski, Fabian; Oddershede, Lene B.
2011-02-01
With modern data acquisition devices that work fast and very precise, scientists often face the task of dealing with huge amounts of data. These need to be rapidly processed and stored onto a hard disk. We present a LabVIEW program which reliably streams analog time series of MHz sampling. Its run time has virtually no limitation. We explicitly show how to use the program to extract time series from two experiments: For a photodiode detection system that tracks the position of an optically trapped particle and for a measurement of ionic current through a glass capillary. The program is easy to use and versatile as the input can be any type of analog signal. Also, the data streaming software is simple, highly reliable, and can be easily customized to include, e.g., real-time power spectral analysis and Allan variance noise quantification. Program summaryProgram title: TimeSeriesStreaming.VI Catalogue identifier: AEHT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 No. of bytes in distributed program, including test data, etc.: 63 259 Distribution format: tar.gz Programming language: LabVIEW ( http://www.ni.com/labview/) Computer: Any machine running LabVIEW 8.6 or higher Operating system: Windows XP and Windows 7 RAM: 60-360 Mbyte Classification: 3 Nature of problem: For numerous scientific and engineering applications, it is highly desirable to have an efficient, reliable, and flexible program to perform data streaming of time series sampled with high frequencies and possibly for long time intervals. This type of data acquisition often produces very large amounts of data not easily streamed onto a computer hard disk using standard methods. Solution method: This LabVIEW program is developed to directly stream any kind of time series onto a hard disk. Due to optimized timing and usage of computational resources, such as multicores and protocols for memory usage, this program provides extremely reliable data acquisition. In particular, the program is optimized to deal with large amounts of data, e.g., taken with high sampling frequencies and over long time intervals. The program can be easily customized for time series analyses. Restrictions: Only tested in Windows-operating LabVIEW environments, must use TDMS format, acquisition cards must be LabVIEW compatible, driver DAQmx installed. Running time: As desirable: microseconds to hours
Multichannel Networked Phasemeter Readout and Analysis
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
Netmeter software reads a data stream from up to 250 networked phasemeters, synchronizes the data, saves the reduced data to disk (after applying a low-pass filter), and provides a Web server interface for remote control. Unlike older phasemeter software that requires a special, real-time operating system, this program can run on any general-purpose computer. It needs about five percent of the CPU (central processing unit) to process 20 channels because it adds built-in data logging and network-based GUIs (graphical user interfaces) that are implemented in Scalable Vector Graphics (SVG). Netmeter runs on Linux and Windows. It displays the instantaneous displacements measured by several phasemeters at a user-selectable rate, up to 1 kHz. The program monitors the measure and reference channel frequencies. For ease of use, levels of status in Netmeter are color coded: green for normal operation, yellow for network errors, and red for optical misalignment problems. Netmeter includes user-selectable filters up to 4 k samples, and user-selectable averaging windows (after filtering). Before filtering, the program saves raw data to disk using a burst-write technique.
Computer Bytes, Viruses and Vaccines.
ERIC Educational Resources Information Center
Palmore, Teddy B.
1989-01-01
Presents a history of computer viruses, explains various types of viruses and how they affect software or computer operating systems, and describes examples of specific viruses. Available vaccines are explained, and precautions for protecting programs and disks are given. (nine references) (LRW)
Observational Studies of Protoplanetary Disks at Mid-Infrared Wavelengths
NASA Astrophysics Data System (ADS)
Li, Dan; Telesco, Charles; Wright, Christopher; Packham, Christopher; Marinas, Naibi
2013-07-01
We have used mid-infrared cameras on 8-to-10 m class telescopes to study the properties of young circumstellar disks. During the initial phases of this program we examined a large sample of mid-IR images of standard stars delivered by T-ReCS at Gemini South to evaluate its on-sky performance as characterized by, for example the angular resolution, the PSF shape, and the PSF temporal stability, properties that are most relevant to our high-angular resolution study of disks. With this information we developed an Interactive Data Language (IDL) package of routines optimized for reducing the data and correcting for image defects commonly seen in ground-based mid-IR data. We obtained, reduced, and analyzed mid-IR images and spectra of several Herbig Ae/Be disks (including HD 259431, MWC 1080, VV Ser) and the debris disk (β Pic), and derived their physical properties by means of radiative transfer modeling or spectroscopic decomposition and analyses. These results are highlighted here. During this study, we also helped commission CanariCam, a new mid-IR facility instrument built by the University of Florida for the 10.4 m Gran Telescopio Canarias (GTC) on La Palma, Canary Islands, Spain. CanariCam is an imager with spectroscopic, polarimetric, and coronagraphic capabilities, with the dual-beam polarimetry being a unique mode introduced with CanariCam for the first time to a 10 m telescope at mid-IR wavelengths. It is well known that measurements of polarization, originating from aligned dust grains in the disks and their environments, have the potential to shed light on the morphologies of the magnetic fields in these regions, information that is critical to understanding how stars and planets form. We have obtained polarimetric data of several Herbig Ae/Be disks and YSOs, and the data reduction and analyses are in process. We present preliminary results here. This poster is based upon work supported by the NSF under grant AST-0903672 and AST-0908624 awarded to C.M.T.
Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass
NASA Astrophysics Data System (ADS)
Thi, W.-F.; Mathews, G.; Ménard, F.; Woitke, P.; Meeus, G.; Riviere-Marichalar, P.; Pinte, C.; Howard, C. D.; Roberge, A.; Sandell, G.; Pascucci, I.; Riaz, B.; Grady, C. A.; Dent, W. R. F.; Kamp, I.; Duchêne, G.; Augereau, J.-C.; Pantin, E.; Vandenbussche, B.; Tilling, I.; Williams, J. P.; Eiroa, C.; Barrado, D.; Alacid, J. M.; Andrews, S.; Ardila, D. R.; Aresu, G.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Fedele, D.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mendigutía, I.; Montesinos, B.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Rice, K.; Solano, E.; Walker, H.; White, G. J.; Wright, G.
2010-07-01
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [O i] and [C ii] as part of the open-time large program GASPS. We complement this with continuum data and ground-based 12 CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [O i] line at 63 μm. The other lines that were observed, [O i] at 145 μm and [C ii] at 157 μm, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [ 12CO] /[ 13CO] = 69 suggests a dust mass for grains with radius <1 mm of ~1.9 × 10-4 M⊙ (total solid mass of 3 × 10-3 M⊙) and a gas mass of (0.5-5) × 10-3 M⊙. The gas-to-dust mass may be lower than the standard interstellar value of 100. Herschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.Appendix is only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.
2017-03-01
We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color-magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.
NASA Astrophysics Data System (ADS)
Kreplin, A.; Kraus, S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Driebe, T.
2012-01-01
Aims: We study the AU-scale circumstellar environment of the unclassified B[e] star V921 Sco in the near-infrared. For interpreting the observations, we employ temperature-gradient disk models. Methods: Using the near-infrared beam combiner instrument AMBER, we recorded spectrally dispersed (spectral resolution R = 35) interferograms in the H and K bands. To obtain an improved calibration of the visibilities, we developed a method that is able to equalize the histograms of the optical path difference of target and calibrator. We fit temperature-gradient disk models to the visibilities and spectral energy distribution (SED) to analyze the circumstellar dust geometry. Results: We derived a geometric ring-fit radius of 2.10 ± 0.16 mas in the K band. If we adopt the distance of 1150 ± 150 pc reported elsewhere, we obtain a ring-fit radius of 2.4 AU, which is slightly smaller than the 3.5 AU dust sublimation radius predicted by the size-luminosity relation. The fitted H-band radius of 1.61 ± 0.23 mas (1.85 AU) is found to be more compact than the K-band radius. The best-fit temperature-gradient disk model has an inner disk radius of ~1.45 AU, an inner-edge disk temperature T0 = 1533 K, and a temperature-gradient exponent q = 0.46 suggesting a flared disk geometry. Conclusions: The distance and luminosity of V921 Sco are not well known. If we assume a distance of 1150 ± 150 pc, we derive a ring-fit radius of ~2.4 AU, which is approximately consistent with the computed temperature-gradient disk model with inner and outer ring radii of 1.45 and 8.5 AU, respectively. If the inner radius of V921 Sco is more compact than the sublimation radius, this compact observed size can be explained by emitting material (e.g., a gaseous disk) inside the dust sublimation radius, as suggested for several other B[e] stars. Based on observations made with ESO telescopes at Paranal Observatory under program ID (MPG-VISA GTO): 079.C-0212(A).
Variable rotational line broadening in the Be star Achernar
NASA Astrophysics Data System (ADS)
Rivinius, Th.; Baade, D.; Townsend, R. H. D.; Carciofi, A. C.; Štefl, S.
2013-11-01
Aims: The main theoretical problem for the formation of a Keplerian disk around Be stars is how angular momentum is supplied from the star to the disk, even more so since Be stars probably rotate somewhat subcritically. For instance, nonradial pulsation may transport angular momentum to the stellar surface until (part of) this excess supports the disk-formation/replenishment. The nearby Be star Achernar is presently building a new disk and offers an excellent opportunity to observe this process from relatively close-up. Methods: Spectra from various sources and epochs are scrutinized to identify the salient stellar parameters characterizing the disk life cycle as defined by Hα emission. The variable strength of the non-radial pulsation is confirmed, but does not affect the other results. Results: For the first time it is demonstrated that the photospheric line width does vary in a Be star, by as much as Δv sini ≲ 35 km s-1. However, unlike assumptions in which a photospheric spin-up accumulates during the diskless phase and then is released into the disk as it is fed, the apparent photospheric spin-up is positively correlated with the appearance of Hα line emission. The photospheric line widths and circumstellar emission increase together, and the apparent stellar rotation declines to the value at quiescence after the Hα line emission becomes undetectable. Based on observations collected at the European Southern Observatory at La Silla and Paranal, Chile, Prog. IDs: 62.H-0319, 64.H-0548, 072.C-0513, 073.C-0784, 074.C-0012, 073.D-0547, 076.C-0431, 077.D-0390, 077.D-0605, and the technical program IDs 60.A-9120 and 60.A-9036.Appendices are available in electronic form at http://www.aanda.org
Oxygen abundance distributions in six late-type galaxies based on SALT spectra of H II regions
NASA Astrophysics Data System (ADS)
Zinchenko, I. A.; Kniazev, A. Y.; Grebel, E. K.; Pilyugin, L. S.
2015-10-01
Spectra of 34 H ii regions in the late-type galaxies NGC 1087, NGC 2967, NGC 3023, NGC 4030, NGC 4123, and NGC 4517A were observed with the South African Large Telescope (SALT). In all 34 H ii regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H ii regions in which we detected auroral lines, we measured oxygen abundances with the classic Te method. We also estimated the abundances in our H ii regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data, we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in the disk of the galaxy. Based on observations made with the Southern African Large Telescope, programs 2012-1-RSA_OTH-001, 2012-2-RSA_OTH-003 and 2013-1-RSA_OTH-005.
NASA Astrophysics Data System (ADS)
Hillen, M.; Menu, J.; Van Winckel, H.; Min, M.; Gielen, C.; Wevers, T.; Mulders, G. D.; Regibo, S.; Verhoelst, T.
2014-08-01
Context. The presence of stable disks around post-asymptotic giant branch (post-AGB) binaries is a widespread phenomenon. Also, the presence of (molecular) outflows is now commonly inferred in these systems. Aims: In the first paper of this series, a surprisingly large fraction of optical light was found to be resolved in the 89 Her post-AGB binary system. The data showed that this flux arises from close to the central binary. Scattering off the inner rim of the circumbinary disk, or scattering in a dusty outflow were suggested as two possible origins. With detailed dust radiative transfer models of the circumbinary disk, we aim to discriminate between the two proposed configurations. Methods: By including Herschel/SPIRE photometry, we extend the spectral energy distribution (SED) such that it now fully covers UV to sub-mm wavelengths. The MCMax Monte Carlo radiative transfer code is used to create a large grid of disk models. Our models include a self-consistent treatment of dust settling as well as of scattering. A Si-rich composition with two additional opacity sources, metallic Fe or amorphous C, are tested. The SED is fit together with archival mid-IR (MIDI) visibilities, and the optical and near-IR visibilities of Paper I. In this way we constrain the structure of the disk, with a focus on its inner rim. Results: The near-IR visibility data require a smooth inner rim, here obtained with a double power-law parameterization of the radial surface density distribution. A model can be found that fits all of the IR photometric and interferometric data well, with either of the two continuum opacity sources. Our best-fit passive models are characterized by a significant amount of ~mm-sized grains, which are settled to the midplane of the disk. Not a single disk model fits our data at optical wavelengths because of the opposing constraints imposed by the optical and near-IR interferometric data. Conclusions: A geometry in which a passive, dusty, and puffed-up circumbinary disk is present, can reproduce all of the IR, but not the optical observations of 89 Her. Another dusty component (an outflow or halo) therefore needs to be added to the system. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 077.D-0071.
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
Industrial-Strength Streaming Video.
ERIC Educational Resources Information Center
Avgerakis, George; Waring, Becky
1997-01-01
Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…
Library Instruction and Online Database Searching.
ERIC Educational Resources Information Center
Mercado, Heidi
1999-01-01
Reviews changes in online database searching in academic libraries. Topics include librarians conducting all searches; the advent of end-user searching and the need for user instruction; compact disk technology; online public catalogs; the Internet; full text databases; electronic information literacy; user education and the remote library user;…
CD-ROMs Proliferate--Part 2: Business/Science/Government CD-ROM Disks.
ERIC Educational Resources Information Center
Desmarais, Norman
1989-01-01
This second of a two-part article on CD-ROM products highlights applications relating to business, medicine, law, government, education, science, geography, linguistics, aviation, florists, and newsreel summaries. The names and addresses of 45 vendors connected with the optical publishing industry are listed. (LRW)
A Peculiar Class of Debris Disks from Herschel/DUNES: A Steep Fall Off in the Far Infrared
NASA Technical Reports Server (NTRS)
Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J. C.; Krivov, A. V.; Lohne, T.; Absil, O.; Ardila, D.; Arevalo, M.;
2012-01-01
Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims. We present photometric data of debris disks around HIP 103389 (HD199260), HIP 100350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open TIme Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 30 sigma sensitivity of a few mJy at l00 micron and 160 micron. In addition, we obtained Herschel/PACS photometric data at 70 micron for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated therma1 annealing as well as a classical grid search method. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths >= 70 micron. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal. emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented.
Tracing the potential planet-forming regions around seven pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Schegerer, A. A.; Wolf, S.; Hummel, C. A.; Quanz, S. P.; Richichi, A.
2009-07-01
Aims: We investigate the nature of the innermost regions with radii of several AUs of seven circumstellar disks around pre-main-sequence stars, T Tauri stars in particular. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects (YSOs). When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10 μm feature should additionally be investigated. Methods: We performed interferometric observations in N band (8-13 μm) with the Mid-Infrared Interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) using baseline lengths of between 54 m and 127 m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the spectral energy distribution (SED), N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Results: Spatially resolved mid-infrared (MIR) emission was detected in all objects. For four objects (DR Tau, RU Lup, S CrA N, and S CrA S), the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active disk-model. For the more evolved objects of our sample, HD 72106 and HBC 639, a purely passive disk-model provides the closest fit. The visibilities inferred for the source RU Lup allow the presence of an inner disk gap. For the YSO GW Ori, one of two visibility measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10 μm silicate emission feature. In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack of small silicates in the inner versus the outer regions of these disks. We conclude from this observational result that more evolved dust grains can be found in the more central disk regions. Based on observations made with Telescopes of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 074.C-0342(A), 075.C-0064(A,B), 075.C-0413(A,B), and 076.C-0356(A). Appendix A is only available in electronic form at http://www.aanda.org
RALPH: An online computer program for acquisition and reduction of pulse height data
NASA Technical Reports Server (NTRS)
Davies, R. C.; Clark, R. S.; Keith, J. E.
1973-01-01
A background/foreground data acquisition and analysis system incorporating a high level control language was developed for acquiring both singles and dual parameter coincidence data from scintillation detectors at the Radiation Counting Laboratory at the NASA Manned Spacecraft Center in Houston, Texas. The system supports acquisition of gamma ray spectra in a 256 x 256 coincidence matrix (utilizing disk storage) and simultaneous operation of any of several background support and data analysis functions. In addition to special instruments and interfaces, the hardware consists of a PDP-9 with 24K core memory, 256K words of disk storage, and Dectape and Magtape bulk storage.
The B and Be Star Population of NGC 3766
NASA Astrophysics Data System (ADS)
McSwain, M. V.
2006-12-01
I present results from a spectroscopic monitoring program of B and Be stars in the open cluster NGC 3766. From a 4-year time baseline of photometric and spectroscopic data, I have identified 9 Be stars in the cluster that have undergone disk outbursts or whose disks have disappeared. Using Kurucz ATLAS9 model spectra to measure temperatures, gravities, rotational velocities, and abundances among the cluster members, I present preliminary results of the stellar and cluster properties that may affect the long term variability of Be stars. M.V.M. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.
NASA Astrophysics Data System (ADS)
Holland, S. Douglas
1992-09-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
The Anomalous Accretion Disk of the Cataclysmic Variable RW Sextantis
NASA Astrophysics Data System (ADS)
Linnell, Albert P.; Godon, P.; Hubeny, I.; Sion, E. M.; Szkody, P.
2011-01-01
The standard model for stable Cataclysmic Variable (CV) accretion disks (Frank, King and Raine 1992) derives an explicit analytic expression for the disk effective temperature as function of radial distance from the white dwarf (WD). That model specifies that the effective temperature, Teff(R), varies with R as ()0.25, where () represents a combination of parameters including R, the mass transfer rate M(dot), and other parameters. It is well known that fits of standard model synthetic spectra to observed CV spectra find almost no instances of agreement. We have derived a generalized expression for the radial temperature gradient, which preserves the total disk luminosity as function of M(dot) but permits a different exponent from the theoretical value of 0.25, and have applied it to RW Sex (Linnell et al.,2010,ApJ, 719,271). We find an excellent fit to observed FUSE and IUE spectra for an exponent of 0.125, curiously close to 1/2 the theoretical value. Our annulus synthetic spectra, combined to represent the accretion disk, were produced with program TLUSTY, were non-LTE and included H, He, C, Mg, Al, Si, and Fe as explicit ions. We illustrate our results with a plot showing the failure to fit RW Sex for a range of M(dot) values, our model fit to the observations, and a chi2 plot showing the selection of the exponent 0.125 as the best fit for the M(dot) range shown. (For the final model parameters see the paper cited.)
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor)
1992-01-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
Short-period cataclysmic variables at Observatorio Astronomico Nacional IA UNAM.
NASA Astrophysics Data System (ADS)
Zharikov, S.
2014-03-01
We present results of time-resolved spectroscopy and photometry of faint (∼17-19 mag) Cataclysmic Variable stars with periods around the minimum orbital period (∼80 min). In this work we concentrated to our results of study of CVs systems which have evolved beyond the period minimum (so-called bounce-back systems). Using various instruments attached to 2.1m, 1.5m and 0.84m telescopes of OAN SPM of IA UNAM we explored conditions and structure of accretion disks in those short-period Cataclysmic Variables. We showed that the accretion disk in a system with an extremely low mass ratio (≤0.05) grows in the size reaching 2:1 resonance radius and is relatively cool. The disk in such systems also becomes largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence. Thanks to support of our programs by the Time Allocation Commission of OAN SPM, the perfect astroclimate in the observatory, and the phase-locked method of spectroscopic observations, the significant progress in the study of bounce-back systems using a small size telescope was reached.
Geometry program for aerodynamic lifting surface theory
NASA Technical Reports Server (NTRS)
Medan, R. T.
1973-01-01
A computer program that provides the geometry and boundary conditions appropriate for an analysis of a lifting, thin wing with control surfaces in linearized, subsonic, steady flow is presented. The kernel function method lifting surface theory is applied. The data which is generated by the program is stored on disk files or tapes for later use by programs which calculate an influence matrix, plot the wing planform, and evaluate the loads on the wing. In addition to processing data for subsequent use in a lifting surface analysis, the program is useful for computing area and mean geometric chords of the wing and control surfaces.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
...: Fulbright English Teaching Assistantship (ETA) Program Survey. OMB Control Number: None. Type of Request... methods: Email: [email protected] . Mail (paper, disk, or CD-ROM submissions): ECA/P/V, SA-5, C2 Floor...
Logic Design of a Shared Disk System in a Multi-Micro Computer Environment.
1983-06-01
overall system, is given. An exnaustive description of eacn device can De found in tne cited references. A. INTEL 80S5 Tne INTEL Be86 is a nign...eitner could De accomplished, it was necessary to understand ootn tne existing system arcnitecture ani software. Tne last cnapter addressed tnat...to De adapted: tne loader program and tne Doot ROP program. Tne loader program is a simplified version of CP/M-Bö and contains cniy encu^n file
Young stars in ɛ Chamaleontis and their disks: disk evolution in sparse associations
NASA Astrophysics Data System (ADS)
Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W. A.; Sicilia-Aguilar, A.
2013-01-01
Context. The nearby young stellar association ɛ Cha has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. Aims: We wish to complement existing optical and near-infrared data of the ɛ Cha association, which provide the stellar properties of its members, with mid-infrared data that probe the presence, geometry, and mineralogical composition of protoplanetary disks around individual stars. Methods: We combine the available literature data with our Spitzer/IRS spectroscopy and VLT/VISIR imaging data. We use proper motions to refine the membership of ɛ Cha. Masses and ages of individual stars are estimated by fitting model atmospheres to the optical and near-infrared photometry, followed by placement in the Hertzsprung-Russell diagram. The Spitzer/IRS spectra are analyzed using the two-layer temperature distribution spectral decomposition method. Results: Two stars previously identified as members, CXOU J120152.8 and 2MASS J12074597, have proper motions that are very different from those of the other stars. But other observations suggest that the two stars are still young and thus might still be related to ɛ Cha. HD 104237C is the lowest mass member of ɛ Cha with an estimated mass of ~13-15 Jupiter masses. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions, pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination, where the central star is effectively screened by the cold outer parts of a flared disk, but the 10 μm radiation of the warm inner disk can still reach us. We find that the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C2H2 rovibrational band around 13.7 μm on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all ɛ Cha members with 10 μm features detected in their IRS spectra. We combine the dust properties derived in the ɛ Cha sample with those found using identical or similar methods in the MBM 12, Coronet, η Cha associations, and in the cores-to-disks legacy program. We find that disks around low-mass young stars show a negative radial gradient in the mass-averaged grain size and mass fraction of crystalline silicates. A positive correlation exists between the mass-averaged grain sizes of amorphous silicates and the accretion rates if the latter is above ~10-9 M⊙ yr-1, possibly indicating that those disks are sufficiently turbulent to prevent grains of several microns in size to sink into the disk interior. Based on observations performed at ESO's La Silla-Paranal observatory under programme 076.C-0470.
Spectroscopic and Photometric Properties of Carbon Stars in the Disk of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Toloba, E.; Guha, S.; Rushing, C.; Dorman, C.; PHAT Collaboration; SPLASH Collaboration
2013-01-01
We explore the spectroscopic properties of a couple hundred carbon stars discovered in the disk of the Andromeda galaxy (M31) in the course of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. The spectra were obtained using the DEIMOS spectrograph on the Keck II 10-meter telescope. About 5000 stars were targeted for spectroscopy during observing runs in 2010 and 2011 using DEIMOS's 1200 lines/mm grating with a spectral resolving power of R ~ 5000 to 6000 and spectral coverage from 6500-9000 Angstrom. In September 2012, another 5000 stars were observed this time with the 600 lines/mm grating and R ~ 2500 and spectral coverage from 4500-9000 Angstrom. For both types of spectroscopic observations, targets were selected from the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle treasury program with the Hubble Space Telescope. Six-filter photometry in the ultraviolet (F275W, F336W), optical (F439W, F814W), and near infrared (F110W, F160W) is available for most targets. These carbon star samples are used to constrain the intermediage-age population in M31's disk. They are also compared to spectra of previously known carbon samples in the dwarf elliptical satellites of M31, NGC 147, NGC 185, and NGC 205. The authors thank the National Science Foundation, NASA/STScI, and UCSC's Summer Internship Program for support.
Get Ready for Generation Next.
ERIC Educational Resources Information Center
Wellner, Alison
1999-01-01
"Generation Next" are the 68 million people born between 1977 and 1994. They are the first generation that has grown up with such technologies as computers, the Internet, compact disks, and microwaves and they have more education than previous generations. They will have an effect on trainers and training methods in the workplace. (JOW)
Multimedia in Education: Summary Chapter.
ERIC Educational Resources Information Center
Hooper, Kristina
1986-01-01
This summary of issues addressed at the conference identifies 10 important themes: (1) the nature of interactivity, and whether linear presentations are obsolete; (2) what can be done with all the imagery made possible with videodisks and the sounds enabled by compact disks, and whether any of this is really new; (3) whether emotional…
Meeting Challenges of the '90s.
ERIC Educational Resources Information Center
Smith, Jamie
1993-01-01
Describes three new technological devices and possible educational applications: (1) Canon's Xapshot Camera that records photographs as digitized information on disk to be viewed on television, videotapes, or computers; (2) Kodak's Photo CD Player, that stores photographs to be viewed on a CD player; and (3) Apple's Pen-Based Pocket Computer. (LRW)
ERIC Educational Resources Information Center
Bliss, Angela; Bell, Elizabeth; Spence, Lundie
2013-01-01
Oranges, flying disks, pool noodles, and polyvinyl chloride (PVC) pipe may seem like items discarded after a Rube Goldberg experiment, but in fact, these objects were used in teaching science, technology, engineering, and math (STEM). This article describes a project in which The Center of Ocean Sciences Education Excellence SouthEast (COSEE SE)…
Using E-Mail in Computer Assisted Freshman Composition and Rhetoric.
ERIC Educational Resources Information Center
Dowden, Rebecca; Humphries, Sharon
1997-01-01
Describes teaching freshman composition and rhetoric via e-mail as a distance education course at Tomball Community College (Texas). Discusses student and instructor responsibilities, e-mail procedures, problems encountered (lack of time, and managing disk and mailbox space), and benefits (reduced paper use, typed corrections, accurate records,…
Setting the Stage for the Interactive Classroom of the 1980s.
ERIC Educational Resources Information Center
Hiraki, Joan; Garcia, Oscar N.
1981-01-01
Under a National Science Foundation CAUSE grant, the Department of Computer Science and Engineering at the University of South Florida, Tampa, is developing an interactive microcomputer/minicomputer/video disk learning system for engineering and science students. Journal availability: Educational Computer, P.O. Box 535, Cupertino, CA 95015.…
Modeling Planet-Building Stellar Disks with Radiative Transfer Code
NASA Astrophysics Data System (ADS)
Swearingen, Jeremy R.; Sitko, Michael L.; Whitney, Barbara; Grady, Carol A.; Wagner, Kevin Robert; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Hammel, Heidi B.; Lisse, Casey M.; Cure, Michel; Kraus, Stefan; Fukagawa, Misato; Calvet, Nuria; Espaillat, Catherine; Monnier, John D.; Millan-Gabet, Rafael; Wilner, David J.
2015-01-01
Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.
The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables
NASA Technical Reports Server (NTRS)
Begelman, Mitchell
2002-01-01
This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.
COATING ALTERNATIVES GUIDE (CAGE) USER'S GUIDE
The guide provides instructions for using the Coating Alternatives GuidE (CAGE) software program, version 1.0. It assumes that the user is familiar with the fundamentals of operating an IBM-compatible personal computer (PC) under the Microsoft disk operating system (MS-DOS). CAGE...
ERIC Educational Resources Information Center
Lent, John
1984-01-01
This article describes a computer network system that connects several microcomputers to a single disk drive and one copy of software. Many schools are switching to networks as a cheaper and more efficient means of computer instruction. Teachers may be faced with copywriting problems when reproducing programs. (DF)
The Detection of Nonplanar Surfaces in Visual Space.
1984-03-01
involve quasi -dotted stimuli. For example, applications may be found in fields such as air traffic control ; geophysical surveys (e.g., to distinguish a...line microcomputers. The control program was initially loaded by the experimenter from the computer’s disk O memory into its randomly addressable... experimenter and the computer carried out certain initialization segments of the control program. Next, the observer signed on at the computer terminal with a
1987-12-01
Metabolism (VMAX) Using Quantitative Structure- Activity Relationships (QSAR) 17 Directed Motion Doppler Shift Effects on Mitric Oxide (0,0) Gamma Band...chemiluminescence values were observed at characteristic times after adding glucose to the disks. We also produced virus-sized nanoparticles (Glucose...These nanoparticles were able to penetrate a .2 um filter,and they retained their enzymatic activity for weeks. They produced 20-fold greater
VizieR Online Data Catalog: Spitzer solar-type stars list (Meyer+, 2006)
NASA Astrophysics Data System (ADS)
Meyer, M. R.; Hillenbrand, L. A.; Backman, D.; Beckwith, S.; Bouwman, J.; Brooke, T.; Carpenter, J.; Cohen, M.; Cortes, S.; Crockett, N.; Gorti, U.; Henning, T.; Hines, D.; Hollenbach, D.; Kim, J. S.; Lunine, J.; Malhotra, R.; Mamajek, E.; Metchev, S.; Moro-Martin, A.; Morris, P.; Najita, J.; Padgett, D.; Pascucci, I.; Rodmann, J.; Schlingman, W.; Silverstone, M.; Soderblom, D.; Stauffer, J.; Stobie, E.; Strom, S.; Watson, D.; Weidenschilling, S.; Wolf, S.; Young, E.
2008-01-01
We provide an overview of the Spitzer Legacy Program, Formation and Evolution of Planetary Systems, that was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of 328 stars ranging in age from 3Myr to 3Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the timescales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide an astronomical context for understanding whether our solar system and its habitable planets a common or a rare circumstance. Additional information about the FEPS project can be found on the team Web site. (4 data files).
The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer
NASA Astrophysics Data System (ADS)
Meyer, Michael R.; Hillenbrand, Lynne A.; Backman, Dana; Beckwith, Steve; Bouwman, Jeroen; Brooke, Tim; Carpenter, John; Cohen, Martin; Cortes, Stephanie; Crockett, Nathan; Gorti, Uma; Henning, Thomas; Hines, Dean; Hollenbach, David; Kim, Jinyoung Serena; Lunine, Jonathan; Malhotra, Renu; Mamajek, Eric; Metchev, Stanimir; Moro-Martin, Amaya; Morris, Pat; Najita, Joan; Padgett, Deborah; Pascucci, Ilaria; Rodmann, Jens; Schlingman, Wayne; Silverstone, Murray; Soderblom, David; Stauffer, John; Stobie, Elizabeth; Strom, Steve; Watson, Dan; Weidenschilling, Stuart; Wolf, Sebastian; Young, Erick
2006-12-01
We provide an overview of the Spitzer Legacy Program, Formation and Evolution of Planetary Systems, that was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of ~328 stars ranging in age from ~3 Myr to ~3 Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the timescales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide an astronomical context for understanding whether our solar system-and its habitable planet-is a common or a rare circumstance. Additional information about the FEPS project can be found on the team Web site.
NASA Astrophysics Data System (ADS)
Currie, Thayne
2015-06-01
We propose a unique, first-of-its-kind combined near-IR high-contrast imaging and optical interferometry study of 20 young, debris disk-bearing stars with SCExAO + HiCIAO/VAMPIRES. Our sample includes the benchmark imaged exoplanets HR 8799 bcde; luminous, resolvable debris disks; stars with asteroid belts that have yet to be resolved in scattered light; poorly-studied stars whose disks may be resolvable; and stars with compelling planet candidates requiring rapid follow-up. From proven VAMPIRES performance, SCExAO near-IR advances and HiCIAO software and hardware upgrades from our team, our data will 1) resolve known debris belts and possible hitherto unseen asteroid belts and 2) yield significantly deeper contrasts at small (r = 0.1"-0.5") separations than typical HiCIAO data (e.g. 10^{-5} at 0.4"). With the likely-operational Pyramid WFS, we will achieve extreme contrasts (< 10^{-6} at r > 0.25") and planet detection capabilities rivaling/exceeding those from GPI and SPHERE. Our program is guaranteed to result in many publications reporting new insights on known exoplanets and disks, may yield the first optical/IR images of exo-asteroid belts/other exoplanets, and could firmly establish Subaru/SCExAO as the premier extreme-AO exoplanet imaging facility.
High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry
NASA Astrophysics Data System (ADS)
Schneider, G.; Hines, D. C.
2007-06-01
HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.
Lazennec, Jean-Yves; Aaron, Alain; Ricart, Olivier; Rakover, Jean Patrick
2016-01-01
The viscoelastic cervical disk prosthesis ESP is an innovative one-piece deformable but cohesive interbody spacer. It is an evolution of the LP ESP lumbar disk implanted since 2006. CP ESP provides six full degrees of freedom about the three axes including shock absorbtion. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. The concept of the ESP prosthesis is fundamentally different from that of the devices currently used in the cervical spine. The originality of the concept of the ESP® prosthesis led to innovative and intense testing to validate the adhesion of the viscoelastic component of the disk on the titanium endplates and to assess the mechanical properties of the PCU cushion. The preliminary clinical and radiological results with 2-year follow-up are encouraging for pain, function and kinematic behavior (range of motion and evolution of the mean centers of rotation). In this series, we did not observe device-related specific complications, misalignment, instability or ossifications. Additional studies and longer patient follow-up are needed to assess long-term reliability of this innovative implant.
NASA Technical Reports Server (NTRS)
Fabbiano, G.
1998-01-01
We present optical and archival X-ray data on the disturbed morphology radio elliptical NGC 1316 (Fornax A) that displays numerous low surface brightness shells, loops and tails. An extended (81x27 min or 9x3 kpc) emission line region (EELR) at a projected distance of 35 kpc from the nucleus has been discovered in a approximately 9Ox35 kpc, approximately 3.Ox1O(solar luminosity(B)) tidal tail. The position and extreme size of the EELR suggest it is related to the merger process. We suggest that the ionization mechanism of the EELR is shock excitation, and the gas is remnant from the merger progenitor. X-ray emission is detected near two tidal tails. Hot, approximately 5 x 10(exp 6)K gas is probably the predominant gas component in the tidal tail ISM. However based on the current tidal tail (cold + warm + hot) gas mass, a large fraction of the tidal tail progenitor gas may already reside in the nucleus of NGC 1316. The numerous and varied tidal tail system suggests that a disk-disk or disk-E merger could have taken place greater than or equal to 1 Gyr ago, whilst a low mass, gas rich galaxy started to merge approximately 0.5 Gyr ago.
Development of materials and process technology for dual alloy disks
NASA Technical Reports Server (NTRS)
Marder, J. M.; Kortovich, C. S.
1981-01-01
Techniques for the preparation of dual alloy disks were developed and evaluated. Four material combinations were evaluated in the form of HIP consolidated and heat treated cylindrical and plate shapes in terms of elevated temperature tensile, stress rupture and low cycle fatigue properties. The process evaluation indicated that the pe-HIP AF-115 rim/loose powder Rene 95 hub combination offered the best overall range of mechanical properties for dual disk applications. The feasibility of this dual alloy concept for the production of more complex components was demonstrated by the scale up fabrication of a prototype CFM-56 disk made from this AF-115/Rene 95 combination. The hub alloy ultimate tensile strength was approximately 92 percent of the program goal of 1520 MPa (220 ksi) at 480 C (900 F) and the rim alloy stress rupture goal of 300 hours at 675 C (1250 F)/925 MPa (134 ksi) was exceeded by 200 hours. The low cycle fatigue properties were equivalent to those exhibited by HIP and heat treated alloys. There was an absence of rupture notch sensitivity in both alloys. The joint tensile properties were approximately 85 percent of the weaker of the two materials (Rene 95) and the stress rupture properties were equivalent to those of the weaker of the two materials (Rene 95).
Design of Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries
NASA Astrophysics Data System (ADS)
Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Young, R.; Plewa, T.
2010-05-01
In many Cataclysmic Binary systems, mass transfer via Roche lobe overflow onto an accretion disk occurs. This produces a hot spot from the heating created by the supersonic impact of the infalling flow with the rotating accretion disk, which can produce a radiative reverse shock in the infalling flow. This collision region has many ambiguities as a radiation hydrodynamic system. Depending upon conditions, it has been argued (Armitgae & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. Laboratory experiments have yet to produce colliding flows that create a radiative reverse shock or to produce obliquely incident colliding flows, both of which are aspects of these Binary systems. We have undertaken the design of such an experiment, aimed at the Omega-60 laser facility. The design elements include the production of postshock flows within a dense material layer or ejecta flows by release of material from a shocked layer. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. In this poster we will discuss the astrophysical context, the experimental design work we have done, and the challenges of implementing and diagnosing an actual experiment. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.
Enlist micros: Training science teachers to use microcomputers
NASA Astrophysics Data System (ADS)
Baird, William E.; Ellis, James D.; Kuerbis, Paul J.
A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to develop, evaluate, and disseminate a complete model of teacher enhancement for educational computing in the sciences. In that project, we use the ENLIST Micros curriculum as the first step in a training process. The project includes seminars that introduce additional skills: It contains provisions for sharing among participants, monitors use of computers in participants' classrooms, provides structured coaching of participants' use of computers in their classrooms, and offers planned observations of peers using computers in their science teaching.
NASA Astrophysics Data System (ADS)
Landini, F.; Mazzoli, A.; Venet, M.; Vivès, S.; Romoli, M.; Lamy, P.; Massone, G.
2017-11-01
The "Association de Satellites Pour l'Imagerie et l'Interferometrie de la Couronne Solaire", ASPIICS, selected by ESA for the PROBA-3 mission, heralds the next generation of coronagraph for solar research, exploiting formation flying to gain access to the inner corona under eclipse-like conditions for long periods of time. A detailed description of the ASPIICS instrument and of its scientific objectives can be found in [1]. ASPIICS is distributed on the two PROBA 3 spacecrafts (S/C) separated by 150 m. The coronagraph optical assembly is hosted by the "coronagraph S/C" protected from direct solar disk light by the occulting disk on the "occulter S/C". The most critical issue in the design of a solar coronagraph is the reduction of the stray light due to the diffraction and scattering of the solar disk light by the occulter, the aperture and the optics. In the present article, we deal with two of these issues: - The analysis of the stray light inside the telescope. - The optimization of the external occulter edge, in order to eliminate the Poisson spot behind the occulter and to lower the stray light level going through the entrance pupil of the telescope. This work was performed in the framework of the ESA STARTIGER program which took place at the Laboratoire d'Astrophysique de Marseille (LAM) during a 6-month period from September 2009 to March 2010. In general, it is a very complicated task to combine the above two stray light issues together in the simulation and design phase as it requires to consider the propagation inside the telescope of the light diffracted by the external occulter. Actually, the present literature only reports diffraction calculations performed for simple occulting systems (i.e., two disks and serrated disk). A more pragmatic approach, also driven by the tight schedule of the STARTIGER program, is to separate the two contributions, and perform two different stray light analyses. This paper is dedicated to the description of both analyses: in particular, the first part is dedicated to the evaluation of the stray light inside the telescope, assuming a simple disk as occulter, and a preliminary baffle design is presented; the second part describes the investigation on the geometry of the external occulter, with a detailed description of the laboratory setup that has been designed and implemented to compare together several types of occulting systems.
The Future is Hera: Analyzing Astronomical Data Over the Internet
NASA Astrophysics Data System (ADS)
Valencic, Lynne A.; Snowden, S.; Chai, P.; Shafer, R.
2009-01-01
Hera is the new data processing facility provided by the HEASARC at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the preinstalled software packages, local disk space, and computing resources needed to do general processing of FITS format data files residing on the user's local computer, and to do advanced research using the publicly available data from High Energy Astrophysics missions. Qualified students, educators, and researchers may freely use the Hera services over the internet for research and educational purposes.
Solar cycle dependence of the sun's radius at lambda = 525.0 nm
NASA Technical Reports Server (NTRS)
Ulrich, Roger K.; Bertello, L.
1995-01-01
The Mount Wilson (California) synoptic program of solar magnetic observations scans the solar disk between 1 and 20 times per day. As part of this program, the radius is determined as an average distance between the image center and the point where the intensity in the FeI line at lambda = 525.0 nm drops to 25 percent of its value at the disk's center. The data base of information was analyzed and corrected for effects such as scattered light and atmospheric reflection. The solar variability and the measurement techniques are described. The observation data sets, the corrections made to the data, and the observed variations, are discussed. It is stated that similar spectral lines at lambda = 525.0 nm, which are common in the solar spectrum, probably exhibit similar radius changes. All portions of the sun are weighted equally so that it is concluded that, within spectral lines, the radiating area of the sun is increased at the solar maximum.
FORTRAN Based Linear Programming for Microcomputers.
1982-12-01
OB.JECTIVE FUNCTION I C COEFFICIENTS AND MAXINIZATIONiIINIZATION CHOICE OF THE I c CURRENT NOBEL . USED IN CORRECTION OF MOST RECENi NOEL INPUT I C OP...WRITE (1, 200) 200 FeRNAT/5WINyALID ENTRY, PLEASE REENTER’) 60 TO 150 ENDIF C NOBEL WRTTEN TO DISK WAItE (3) PN, NXNN,NN,K1 , NE-C, N6C,NLC DO 250 121,10...CHAR4I2) WRITE’A,’Ql1’/,1X,’’INSCRE DISK( LPI1 5I AVAIL43LE.’’,7(/)’f PAUSE C NME OF NOBEL LAST SAVED WRITTEN TO TR.ANSFER FILE OFEN(3,FILEx’LPIsLPDATA
A multi-wavelength database of water vapor in planet-forming regions
NASA Astrophysics Data System (ADS)
Pontoppidan, Klaus
The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial abundance of water vapor in the emitting surfaces of disks. Despite high water abundances inside ~1 AU, there is evidence that the disk surfaces are strongly depleted in water both from the gas and ice phases, by as much as 6 orders of magnitude, beyond 1-2 AU. This may be due to the settling of icy grains as part of the formation of icy planetesimals (Meijerink et al. 2009; Bergin et al. 2010). We wish to quantify the depletion factor and establish whether this is a common property of all protoplanetary disks. 2) We will pursue critical new datasets using upcoming observational facilities, including spectrally resolved rotational water lines in the mid-infrared. VLT-VISIR, with which we have successfully detected water lines at high resolution, is undergoing a significant hardware upgrade with a planned commissioning around January 2012. The upgrade includes a much larger and more sensitive detector based on technology developed for JWST-MIRI, which is expected to increase its efficiency by 1-2 orders of magnitude. On a longer time scale, SOFIA-EXES, JWST-NIRSpec and MIRI will become essential instruments for moving this field forward. Pontoppidan is a JWST-NIRSpec instrument scientist at STScI. 3) We will search for variability of water lines on time scales of months and compare them to variation already seen in CO gas to investigate its origin. One intriguing possibility is dynamical interaction with protoplanets. The proposed research is highly relevant for the Origins of Solar Systems program as described in the solicitation document. It falls into the categories dealing with "Observations related to understanding the formation and evolution of planetary systems" and "Studies of chemical processes related to the formation of planetary systems."
A multi-wavelength database of water vapor in planet-forming regions
NASA Astrophysics Data System (ADS)
Pontoppidan, Klaus
The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) Â We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial abundance of water vapor in the emitting surfaces of disks. Despite high water abundances inside ~1 AU, there is evidence that the disk surfaces are strongly depleted in water both from the gas and ice phases, by as much as 6 orders of magnitude, beyond 1-2 AU. This may be due to the settling of icy grains as part of the formation of icy planetesimals (Meijerink et al. 2009; Bergin et al. 2010). We wish to quantify the depletion factor and establish whether this is a common property of all protoplanetary disks. 2) Â We will pursue critical new datasets using upcoming observational facilities, including spectrally resolved rotational water lines in the mid-infrared. VLT-VISIR, with which we have successfully detected water lines at high resolution, is undergoing a significant hardware upgrade with a planned commissioning around January 2012. The upgrade includes a much larger and more sensitive detector based on technology developed for JWST-MIRI, which is expected to increase its efficiency by 1-2 orders of magnitude. On a longer time scale, SOFIA-EXES, JWST-NIRSpec and MIRI will become essential instruments for moving this field forward. Pontoppidan is a JWST-NIRSpec instrument scientist at STScI. 3) Â We will search for variability of water lines on time scales of months and compare them to variation already seen in CO gas to investigate its origin. One intriguing possibility is dynamical interaction with protoplanets. The proposed research is highly relevant for the Origins of Solar Systems program as described in the solicitation document. It falls into the categories dealing with "Observations related to understanding the formation and evolution of planetary systems" and "Studies of chemical processes related to the formation of planetary systems."
Rings of Molecular Line Emission in the Disk Orbiting the Young, Close Binary V4046 Sgr
NASA Astrophysics Data System (ADS)
Dickson-Vandervelde, Dorothy; Kastner, Joel H.; Qi, C.; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Rapson, Valerie; Sacco, Germano; Principe, David
2018-01-01
We present analysis of a suite of subarcsecond ALMA Band 6 (1.1 - 1.4 mm) molecular line images of the circumbinary, protoplanetary disk orbiting V4046 Sgr. The ~20 Myr-old V4046 Sgr system, which lies a mere ~73 pc from Earth, consists of a close (separation ~10 Rsun) pair of roughly solar-mass stars that are orbited by a gas-rich crcumbinary disk extending to ~350 AU in radius. The ALMA images reveal that the molecules CO and HCN and their isotopologues display centrally peaked surface brightness morphologies, whereas the cyanide group molecules (HC3N, CH3CN), deuterated molecules (DCN, DCO+), hydrocarbons (as traced by C2H), and potential CO ice line tracers (N2H+, and H2CO) appear as a sequence of sharp and diffuse rings of increasing radii. The characteristic sizes of these molecular emission rings, which range from ~25 to >100 AU in radius, are evident in radial emission-line surface brightness profiles extracted from the deprojected disk images. We find that emission from 13CO emission transitions from optically thin to thick within ~50 AU, whereas C18O emission remains optically thin within this radius. We summarize the insight into the physical and chemical processes within this evolved protoplanetary disk that can be obtained from comparisons of the various emission-line morphologies with each other and with that of the continuum (large-grain) emission on size scales of tens of AU.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT
Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT
NASA Astrophysics Data System (ADS)
Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme
2014-01-01
Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
A peculiar class of debris disks from Herschel/DUNES. A steep fall off in the far infrared
NASA Astrophysics Data System (ADS)
Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Absil, O.; Ardila, D.; Arévalo, M.; Bayo, A.; Bryden, G.; del Burgo, C.; Greaves, J.; Kennedy, G.; Lebreton, J.; Liseau, R.; Maldonado, J.; Montesinos, B.; Mora, A.; Pilbratt, G. L.; Sanz-Forcada, J.; Stapelfeldt, K.; White, G. J.
2012-05-01
Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims: We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD 206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel open time key program DUNES (DUst around NEarby Stars). Methods: We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3σ sensitivity of a few mJy at 100 μm and 160 μm. In addition, we obtained Herschel/PACS photometric data at 70 μm for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated thermal annealing as well as a classical grid search method. Results: The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths ≥70 μm. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions: A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Digitized Photography: What You Can Do with It.
ERIC Educational Resources Information Center
Kriss, Jack
1997-01-01
Discusses benefits of digital cameras which allow users to take a picture, store it on a digital disk, and manipulate/export these photos to a print document, Web page, or multimedia presentation. Details features of digital cameras and discusses educational uses. A sidebar presents prices and other information for 12 digital cameras. (AEF)
The State of the Art in Information Handling. Operation PEP/Executive Information Systems.
ERIC Educational Resources Information Center
Summers, J. K.; Sullivan, J. E.
This document explains recent developments in computer science and information systems of interest to the educational manager. A brief history of computers is included, together with an examination of modern computers' capabilities. Various features of card, tape, and disk information storage systems are presented. The importance of time-sharing…
Editing of EIA coded, numerically controlled, machine tool tapes
NASA Technical Reports Server (NTRS)
Weiner, J. M.
1975-01-01
Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.
NASA Technical Reports Server (NTRS)
Richard, M.; Harrison, B. A.
1979-01-01
The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.
Lunar and Meteorite Thin Sections for Undergraduate and Graduate Studies
NASA Astrophysics Data System (ADS)
Allen, J.; Allen, C.
2012-12-01
The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Studies of rock and soil samples from the Moon and meteorites continue to yield useful information about the early history of the Moon, the Earth, and the inner solar system. Petrographic Thin Section Packages containing polished thin sections of samples from either the Lunar or Meteorite collections have been prepared. Each set of twelve sections of Apollo lunar samples or twelve sections of meteorites is available for loan from JSC. The thin sections sets are designed for use in domestic college and university courses in petrology. The loan period is very strict and limited to two weeks. Contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov Each set of slides is accompanied by teaching materials and a sample disk of representative lunar or meteorite samples. It is important to note that the samples in these sets are not exactly the same as the ones listed here. This list represents one set of samples. A key education resource available on the Curation website is Antarctic Meteorite Teaching Collection: Educational Meteorite Thin Sections, originally compiled by Bevan French, Glenn McPherson, and Roy Clarke and revised by Kevin Righter in 2010. Curation Websites College and university staff and students are encouraged to access the Lunar Petrographic Thin Section Set Publication and the Meteorite Petrographic Thin Section Package Resource which feature many thin section images and detailed descriptions of the samples, research results. http://curator.jsc.nasa.gov/Education/index.cfm Request research samples: http://curator.jsc.nasa.gov/ JSC-CURATION-EDUCATION-DISKS@mail.nasa.govLunar Thin Sections; Meteorite Thin Sections;
Noncontact thermophysical property measurement by levitation of a thin liquid disk.
Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh
2006-09-01
The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical approach is used to solve these steady-state governing equations in the cylindrical coordinate system. The calculations yield the temperature distribution and the thermally driven flow field. These results have been used to formulate a model that, in conjunction with experiments, has enabled the development of a method for the noncontact thermophysical property measurement of liquids.
COATING ALTERNATIVES GUIDE (CAGE) USER'S GUIDE (EPA/600/R-01/030)
The guide provides instructions for using the Coating Alternatives GuidE (CAGE) software program, version 1.0. It assumes that the user is familiar with the fundamentals of operating an IBM-compatible personal computer (PC) under the Microsoft disk operating system (MS-DOS). CAGE...
The Classroom Manager. Hands-on Multimedia.
ERIC Educational Resources Information Center
Kaplan, Nancy; And Others
1992-01-01
Four teachers discuss how they help students create hands-on, multimedia reports and presentations. Ideas include using hypertext programs on classroom computers to make computerized notecards of data on study topics, using CD-ROM disks for research, creating storyboards of videotaped reports, and setting up schedules for videotaping. (SM)
Teaching Teachers to Search Electronically.
ERIC Educational Resources Information Center
Smith, Nancy H. G.
1992-01-01
Describes an inservice teacher training program developed to teach secondary school teachers how to search CD-ROMs, laser disks, and automated catalogs. Training sessions held during faculty meetings are described, computer activities are explained, a sample worksheet for searching an electronic encyclopedia is included, and sources for CD-ROMs…
How to Program the Principal's Office for the Computer Age.
ERIC Educational Resources Information Center
Frankel, Steven
1983-01-01
Explains why principals' offices need computers and discusses the characteristics of inexpensive personal business computers, including their operating systems, disk drives, memory, and compactness. Reviews software available for word processing, accounting, database management, and communications, and compares the Kaypro II, Morrow, and Osborne I…
NASA Technical Reports Server (NTRS)
Obrien, S. O. (Principal Investigator)
1980-01-01
The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.
Parallel noise barrier prediction procedure : report 2 user's manual revision 1
DOT National Transportation Integrated Search
1987-11-01
This report defines the parameters which are used to input the data required to run Program Barrier and BarrierX on a microcomputer such as an IBM PC or compatible. Directions for setting up and operating a working disk are presented. Examples of inp...
NASA Technical Reports Server (NTRS)
Nakajima, Tadashi; Golimowski, David A.
1995-01-01
We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner star/disk system. These three-reflection nebulae may trace the surfaces of pseudodisks from which matter accretes onto the stars or the inner circumstellar disks. 19 stellar objects brighter than I = 19 were detected around 9 program stars. Using a color-magnitude diagram, we have identified three new PMS candidates aroun Z CMa and one previously known PMS candidate, GG Tau/c.
NASA Astrophysics Data System (ADS)
Vinogradov, Y.; Baryshnikov, A.
2003-04-01
Since September 2001 3 infrasound membrane type sensors "K-304 AM" have been installed on the territory seismic array "Apatity" near the lake Imandra. A seismic array comprising 11 short-period sensors (type "Geotech S-500"), disposed on small and large circle (0.4 and 1 km diameter). Infrasound sensors located on small circle near the seismograths. All data are digitized at the array site and transmitted in real time to a processing center in Apatity to the Kola Regional Seismological Centre (KRSC). Common complex we are called - Seismic &Infrasound Integrated Array (SISIA) "Apatity". To support temporary storage the transmitting data in a disk loop and access to the data "NEWNORAC" program was created. This program replaced "NORAC" system developed by Norwegian Institute NORSAR, which was in use in KRSC before. A program package EL (event locator) for display and processing of the data has been modified. Now it includes the following : - quick access to the data stored in the disk loop (last two weeks); - data convertation from disk loop format to CSS 3.0 format; - data filtering using bandpass, highpass, lowpass, adaptive or rejector filters; - calculation of spectra and sonograms (spectral diagrams); - seismic events location with plotting on a map; - calculation of backazimuth and apparent velocity of acoustic wave by similar parts of wave recordings; - loading and processing CSS 3.0 seismic and acoustic data from KRSC archive. To store the acoustic data permanently the program BARCSS was made. It rewrites the data from the disk loop to KRSC archive in CSS 3.0 format. For comparison of acoustic noise level with wind we use data from meteorological station in Kandalaksha city, sampling rate is 3 hours. During the period from October 2001 to October 2002 more than 745 seismic events, which basically connected with mine technical activity of the large mining enterprises at the Kola Peninsula, were registered. The most part of events, caused by ground explosions, was registered by infrasound part of SISIA "Apatity". Their sources were at distances from 38 to 220 km. The result of observations during the first 1 year enabled us to estimate frequency range and main directions of arrivals of acoustic waves and noise level in the place of observations. In accordance with the results and relief a 4-rays wind-noise-reducing pipe array would be install at all 3 sensors at May 2003, for improvement the delectability during windy conditions. A schemes of the SISIA "Apatity", data transmitting and processing and samples of detected signals are shown in the presentation.
NASA Astrophysics Data System (ADS)
Stauffer, John; Morales-Calderon, Maria; Rebull, Luisa; Affer, Laura; Alencar, Sylvia; Allen, Lori; Barrado, David; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; D'Alessio, Paola; Espaillat, Catherine; Favata, Fabio; Flaccomio, Ettore; Forbrich, Jan; Furesz, Gabor; Hartman, Lee; Herbst, William; Hillenbrand, Lynne; Holtzman, Jon; Hora, Joe; Marchis, Franck; McCaughrean, Mark; Micela, Giusi; Mundt, Reinhard; Plavchan, Peter; Turner, Neal; Skrutzkie, Mike; Smith, Howard; Song, Inseok; Szentgyorgi, Andy; Terebey, Susan; Vrba, Fred; Wasserman, Lawrence; Watson, Alan; Whitney, Barbara; Winston, Elaine; Wood, Kenny
2011-05-01
We propose a simultaneous, continuous 30 day observation of the star forming region NGC2264 with Spitzer and CoRoT. NGC2264 is the only nearby, rich star-forming region which can be observed with CoRoT; it is by definition then the only nearby, rich star-forming region where a simultaneous Spitzer/CoRoT campaign is possible. Fortunately, the visibility windows for the two spacecraft overlap, allowing this program to be done in the Nov. 25, 2011 to Jan. 4, 2012 time period. For 10 days, we propose to map the majority of the cluster (a 35'x35' region) to a depth of 48 seconds per point, with each epoch taking 1.7 hours, allowing of order 12 epochs per day. For the other 20 days, we propose to obtaining staring-mode data for two positions in the cluster having a high density of cluster members. We also plan to propose for a variety of other ground and space-based data, most of which would also be simultaneous with the Spitzer and CoRoT observing. These data will allow us to address many astrophysical questions related to the structure and evolution of the disks of young stars and the interaction of those disks with the forming star. The data may also help inform models of planet formation since planets form and migrate through the pre-main sequence disks during the 0.5-5 Myr age range of stars in NGC2264. The data we collect will also provide an archive of the variability properties of young stars that is unmatched in its accuracy, sensitivity, cadence and duration and which therefore could inspire investigation of phenomena which we cannot now imagine. The CoRoT observations have been approved, contingent on approval of a simultaneous Spitzer observing program (this proposal).
The Structure of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1997-01-01
We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our conclusions should be more reliably extended to AGN as a class.
Inspection of imprint lithography patterns for semiconductor and patterned media
NASA Astrophysics Data System (ADS)
Resnick, Douglas J.; Haase, Gaddi; Singh, Lovejeet; Curran, David; Schmid, Gerard M.; Luo, Kang; Brooks, Cindy; Selinidis, Kosta; Fretwell, John; Sreenivasan, S. V.
2010-03-01
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This work summarizes the results of defect inspections of semiconductor masks, wafers and hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical and e-beam based automated inspection tools. For the semiconductor market, a test mask was designed which included dense features (with half pitches ranging between 32 nm and 48 nm) containing an extensive array of programmed defects. For this work, both e-beam inspection and optical inspection were used to detect both random defects and the programmed defects. Analytical SEMs were then used to review the defects detected by the inspection. Defect trends over the course of many wafers were observed with another test mask using a KLA-T 2132 optical inspection tool. The primary source of defects over 2000 imprints were particle related. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity, scattered light, phase shift, etc. Defects that have been identified in this manner are further characterized according to the morphology
Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael
Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html
A companion candidate in the gap of the T Chamaeleontis transitional disk
NASA Astrophysics Data System (ADS)
Huélamo, N.; Lacour, S.; Tuthill, P.; Ireland, M.; Kraus, A.; Chauvin, G.
2011-04-01
Context. T Cha is a young star surrounded by a cold disk. The presence of a gap within its disk, inferred from fitting to the spectral energy distribution, has suggested on-going planetary formation. Aims: The aim of this work is to look for very low-mass companions within the disk gap of T Cha. Methods: We observed T Cha in L' and Ks with NAOS-CONICA, the adaptive optics system at the VLT, using sparse aperture masking. Results: We detected a source in the L' data at a separation of 62 ± 7 mas, position angle of ~78 ± 1 degrees, and a contrast of ΔL' = 5.1 ± 0.2 mag. The object is not detected in the Ks band data, which show a 3-σ contrast limit of 5.2 mag at the position of the detected L' source. For a distance of 108 pc, the detected companion candidate is located at 6.7 AU from the primary, well within the disk gap. If T Cha and the companion candidate are bound, the comparison of the L' and Ks photometry with evolutionary tracks shows that the photometry is inconsistent with any unextincted photosphere at the age and distance of T Cha. The detected object shows a very red Ks - L' color, for which a possible explanation would be a significant amount of dust around it. This would imply that the companion candidate is young, which would strengthen the case for a physical companion, and moreover that the object would be in the substellar regime, according to the Ks upper limit. Another exciting possibility would be that this companion is a recently formed planet within the disk. Additional observations are mandatory to confirm that the object is bound and to properly characterize it. Based on observations obtained at the European Southern Observatory using the Very Large Telescope in Cerro Paranal, Chile, under program 84.C-0755(A).
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OTKP Team
2010-01-01
The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.
Liners and Low Luminosity AGN in the ROSAT Database
NASA Technical Reports Server (NTRS)
Elvis, Martin; West, Donald K. (Technical Monitor)
2003-01-01
This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.
System and Method for High-Speed Data Recording
NASA Technical Reports Server (NTRS)
Taveniku, Mikael B. (Inventor)
2017-01-01
A system and method for high speed data recording includes a control computer and a disk pack unit. The disk pack is provided within a shell that provides handling and protection for the disk packs. The disk pack unit provides cooling of the disks and connection for power and disk signaling. A standard connection is provided between the control computer and the disk pack unit. The disk pack units are self sufficient and able to connect to any computer. Multiple disk packs are connected simultaneously to the system, so that one disk pack can be active while one or more disk packs are inactive. To control for power surges, the power to each disk pack is controlled programmatically for the group of disks in a disk pack.
My Favorite Things Electronically Speaking, 1997 Edition.
ERIC Educational Resources Information Center
Glantz, Shelley
1997-01-01
Responding to an informal survey, 96 media specialists named favorite software, CD-ROMs, and online sites. This article lists automation packages, electronic encyclopedias, CD-ROMs, electronic magazine indexes, CD-ROM and online database services, electronic sources of current events, laser disks for grades 6-12, word processing programs for…
Code of Federal Regulations, 2014 CFR
2014-10-01
... of paper, microform, audiovisual materials, or electronic records (i.e., magnetic tape or disk) among... costs do not include overhead expenses such as the costs of space and heating or lighting of the... that operates a program of scholarly research. To be in this category, a requester must show that the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... of paper, microform, audiovisual materials, or electronic records (i.e., magnetic tape or disk) among... costs do not include overhead expenses such as the costs of space and heating or lighting of the... that operates a program of scholarly research. To be in this category, a requester must show that the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... of paper, microform, audiovisual materials, or electronic records (i.e., magnetic tape or disk) among... costs do not include overhead expenses such as the costs of space and heating or lighting of the... that operates a program of scholarly research. To be in this category, a requester must show that the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... of paper, microform, audiovisual materials, or electronic records (i.e., magnetic tape or disk) among... costs do not include overhead expenses such as the costs of space and heating or lighting of the... that operates a program of scholarly research. To be in this category, a requester must show that the...
Reinventing Schools: The Technology Is Now!
ERIC Educational Resources Information Center
Ellmore, Douglas A., Sr.; Olson, Steve E.; Smith, Phillip M.
1995-01-01
Today's children have grown up immersed in a world of computers and other information technologies. They play video games; they listen to music on digital compact disks; they help their families program the computerized controls of videocassette players. With all of the exciting innovations in computer technology, children have the opportunity to…
1960-01-01
Originally investigated in the 1960's by Marshall Space Flight Center plarners as part of the Nuclear Energy for Rocket Vehicle Applications (NERVA) program, nuclear-thermal rocket propulsion has been more recently considered in spacecraft designs for interplanetary human exploration. This artist's concept illustrates a nuclear-thermal rocket with an aerobrake disk as it orbits Mars.
1991-03-01
29 3.3.2 Manual Frequency List Measurement ................... 29 3.3.3 Manual 200-kHz Spectrum Measurement ................ 30 1 on/ lity Codes...39 4.2.1 Frequency List Measurements ......................... 39 4.2.2 Calibration Measurements...Manual Frequency List Measurements .................. 43 4.3 D isk Files ............................................... 43 4.3.1 Program Disk
DR Tauri: Temporal variability of the brightness distribution in the potential planet-forming region
NASA Astrophysics Data System (ADS)
Brunngräber, R.; Wolf, S.; Ratzka, Th.; Ober, F.
2016-01-01
Aims: We investigate the variability of the brightness distribution and the changing density structure of the protoplanetary disk around DR Tau, a classical T Tauri star. DR Tau is known for its peculiar variations from the ultraviolet (UV) to the mid-infrared (MIR). Our goal is to constrain the temporal variation of the disk structure based on photometric and MIR interferometric data. Methods: We observed DR Tau with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) at three epochs separated by about nine years, two months, respectively. We fit the spectral energy distribution and the MIR visibilities with radiative transfer simulations. Results: We are able to reproduce the spectral energy distribution as well as the MIR visibility for one of the three epochs (third epoch) with a basic disk model. We were able to reproduce the very different visibility curve obtained nine years earlier with a very similar baseline (first epoch), using the same disk model with a smaller scale height. The same density distribution also reproduces the observation made with a higher spatial resolution in the second epoch, I.e. only two months before the third epoch. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under the programs 074.C-0342(A) and 092.C-0726(A,B).
Temporomandibular joint formation requires two distinct hedgehog-dependent steps
Purcell, Patricia; Joo, Brian W.; Hu, Jimmy K.; Tran, Pamela V.; Calicchio, Monica L.; O'Connell, Daniel J.; Maas, Richard L.; Tabin, Clifford J.
2009-01-01
We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk–condyle separation and provide a molecular framework for future studies of the TMJ. PMID:19815519
Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee
2002-01-01
An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.
Optical Monitoring of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.
2018-06-01
Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vican, Laura; Zuckerman, B.; Schneider, Adam
We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 μ m. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared (IR) emission previously measured with the InfraRed Astronomical Satellite ( IRAS ) or Spitzer and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources and possess IR emission most likely due to a circumstellar debris disk. We analyzed the propertiesmore » of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady-state collisional cascade. The dust belts at four stars are likely stirred by an unseen planet and merit further investigation.« less
77 FR 76518 - Summary of Commission Practice Relating to Administrative Protective Orders
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
.... APO breach inquiries are considered on a case-by-case basis. As part of the effort to educate...-called hard disk computer media is to be avoided, because mere erasure of data from such media may not...; (2) Referral to the United States Attorney; (3) In the case of an attorney, accountant, or other...
CD-ROM Technology: A Manual for Librarians and Educators.
ERIC Educational Resources Information Center
Mambretti, Catherine
The maturity of CD-ROM technology now shows a dramatic change in the way librarians and teachers do their jobs. Among their biggest challenges are deciding on equipment requirements and managing the disk collection. This manual is a step-by-step guide to making the most of CD-ROM technology in schools and libraries--from the acquisition of…
User's Guide for Computer Program that Routes Signal Traces
NASA Technical Reports Server (NTRS)
Hedgley, David R., Jr.
2000-01-01
This disk contains both a FORTRAN computer program and the corresponding user's guide that facilitates both its incorporation into your system and its utility. The computer program represents an efficient algorithm that routes signal traces on layers of a printed circuit with both through-pins and surface mounts. The computer program included is an implementation of the ideas presented in the theoretical paper titled "A Formal Algorithm for Routing Signal Traces on a Printed Circuit Board", NASA TP-3639 published in 1996. The computer program in the "connects" file can be read with a FORTRAN compiler and readily integrated into software unique to each particular environment where it might be used.
NASA Technical Reports Server (NTRS)
1973-01-01
The development of and operational programs for effective use in design are presented for liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. A review of the total design problem is presented, and design elements are identified which are involved in successful design. Current technology pertaining to these elements is also described. Design criteria are presented which state what rule or standard must be imposed on each essential design element to assure successful design. These criteria serve as a checklist of rules for a project manager to use in guiding a design or in assessing its adequacy. Recommended practices are included which state how to satisfy each of the criteria.
The Application of Probabilistic Methods to the Mistuning Problem
NASA Technical Reports Server (NTRS)
Griffin, J. H.; Rossi, M. R.; Feiner, D. M.
2004-01-01
FMM is a reduced order model for efficiently calculating the forced response of a mistuned bladed disk. FMM ID is a companion program which determines the mistuning in a particular rotor. Together, these methods provide a way to acquire data on the mistuning in a population of bladed disks, and then simulate the forced response of the fleet. This process is tested experimentally, and the simulated results are compared with laboratory measurements of a fleet of test rotors. The method is shown to work quite well. It is found that accuracy of the results depends on two factors: the quality of the statistical model used to characterize mistuning, and how sensitive the system is to errors in the statistical modeling.
Accretion dynamics in pre-main sequence binaries
NASA Astrophysics Data System (ADS)
Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.
Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.
Set processing in a network environment. [data bases and magnetic disks and tapes
NASA Technical Reports Server (NTRS)
Hardgrave, W. T.
1975-01-01
A combination of a local network, a mass storage system, and an autonomous set processor serving as a data/storage management machine is described. Its characteristics include: content-accessible data bases usable from all connected devices; efficient storage/access of large data bases; simple and direct programming with data manipulation and storage management handled by the set processor; simple data base design and entry from source representation to set processor representation with no predefinition necessary; capability available for user sort/order specification; significant reduction in tape/disk pack storage and mounts; flexible environment that allows upgrading hardware/software configuration without causing major interruptions in service; minimal traffic on data communications network; and improved central memory usage on large processors.
A multi-wavelength interferometric study of the massive young stellar object IRAS 13481-6124
NASA Astrophysics Data System (ADS)
Boley, Paul A.; Kraus, Stefan; de Wit, Willem-Jan; Linz, Hendrik; van Boekel, Roy; Henning, Thomas; Lacour, Sylvestre; Monnier, John D.; Stecklum, Bringfried; Tuthill, Peter G.
2016-02-01
We present new mid-infrared interferometric observations of the massive young stellar object IRAS 13481-6124, using VLTI/MIDI for spectrally-resolved, long-baseline measurements (projected baselines up to ~120 m) and GSO/T-ReCS for aperture-masking interferometry in five narrow-band filters (projected baselines of ~1.8-6.4 m) in the wavelength range of 7.5-13μm. We combine these measurements with previously-published interferometric observations in the K and N bands in order to assemble the largest collection of infrared interferometric observations for a massive YSO to date. Using a combination of geometric and radiative-transfer models, we confirm the detection at mid-infrared wavelengths of the disk previously inferred from near-infrared observations. We show that the outflow cavity is also detected at both near- and mid-infrared wavelengths, and in fact dominates the mid-infrared emission in terms of total flux. For the disk, we derive the inner radius (~1.8 mas or ~6.5 AU at 3.6 kpc), temperature at the inner rim (~1760 K), inclination (~48°) and position angle (~107°). We determine that the mass of the disk cannot be constrained without high-resolution observations in the (sub-)millimeter regime or observations of the disk kinematics, and could be anywhere from ~10-3 to 20M⊙. Finally, we discuss the prospects of interpreting the spectral energy distributions of deeply-embedded massive YSOs, and warn against attempting to infer disk properties from the spectral energy distribution. Based in part on observations with the Very Large Telescope Interferometer of the European Southern Observatory, under program IDs 384.C-0625, 086.C-0543, 091.C-0357.
BSR: B-spline atomic R-matrix codes
NASA Astrophysics Data System (ADS)
Zatsarinny, Oleg
2006-02-01
BSR is a general program to calculate atomic continuum processes using the B-spline R-matrix method, including electron-atom and electron-ion scattering, and radiative processes such as bound-bound transitions, photoionization and polarizabilities. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme by including terms of the Breit-Pauli Hamiltonian. New version program summaryTitle of program: BSR Catalogue identifier: ADWY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers on which the program has been tested: Microway Beowulf cluster; Compaq Beowulf cluster; DEC Alpha workstation; DELL PC Operating systems under which the new version has been tested: UNIX, Windows XP Programming language used: FORTRAN 95 Memory required to execute with typical data: Typically 256-512 Mwords. Since all the principal dimensions are allocatable, the available memory defines the maximum complexity of the problem No. of bits in a word: 8 No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of lines in distributed program, including test data, etc.: 69 943 No. of bytes in distributed program, including test data, etc.: 746 450 Peripherals used: scratch disk store; permanent disk store Distribution format: tar.gz Nature of physical problem: This program uses the R-matrix method to calculate electron-atom and electron-ion collision processes, with options to calculate radiative data, photoionization, etc. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme, with options to include Breit-Pauli terms in the Hamiltonian. Method of solution: The R-matrix method is used [P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: An R-Matrix Approach, IOP Publishing, Bristol, 1993; P.G. Burke, W.D. Robb, Adv. At. Mol. Phys. 11 (1975) 143; K.A. Berrington, W.B. Eissner, P.H. Norrington, Comput. Phys. Comm. 92 (1995) 290].
Tutorial: Performance and reliability in redundant disk arrays
NASA Technical Reports Server (NTRS)
Gibson, Garth A.
1993-01-01
A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.
Hera: High Energy Astronomical Data Analysis via the Internet
NASA Astrophysics Data System (ADS)
Valencic, Lynne A.; Chai, P.; Pence, W.; Snowden, S.
2011-09-01
The HEASARC at NASA Goddard Space Flight Center has developed Hera, a data processing facility for analyzing high energy astronomical data over the internet. Hera provides all the software packages, disk space, and computing resources needed to do general processing of and advanced research on publicly available data from High Energy Astrophysics missions. The data and data products are kept on a server at GSFC and can be downloaded to a user's local machine. This service is provided for free to students, educators, and researchers for educational and research purposes.
The Future is Hera! Analyzing Astronomical Over the Internet
NASA Technical Reports Server (NTRS)
Valencic, L. A.; Chai, P.; Pence, W.; Shafer, R.; Snowden, S.
2008-01-01
Hera is the data processing facility provided by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the pre-installed software packages, local disk space, and computing resources need to do general processing of FITS format data files residing on the users local computer, and to do research using the publicly available data from the High ENergy Astrophysics Division. Qualified students, educators and researchers may freely use the Hera services over the internet of research and educational purposes.
Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"
NASA Astrophysics Data System (ADS)
2005-05-01
New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star. "Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program." About half of the young suns in Orion show evidence for disks, likely sites for current planet formation, including four lying at the center of proplyds (proto-planetary disks) imaged by Hubble Space Telescope. X-ray flares bombard these planet-forming disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields should create turbulence in the disk. handra X-ray Image of Orion Nebula, Full-Field Chandra X-ray Image of Orion Nebula, Full-Field The numerous results from the Chandra Orion Ultradeep Project will appear in a dedicated issue of The Astrophysical Journal Supplement in October, 2005. The team contains 37 scientists from institutions across the world including the US, Italy, France, Germany, Taiwan, Japan and the Netherlands. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
Carmona, A.; van den Ancker, M. E.; Henning, Th.; Goto, M.; Fedele, D.; Stecklum, B.
2007-12-01
We report on the first results of a search for molecular hydrogen emission from protoplanetary disks using CRIRES, ESO's new VLT Adaptive Optics high resolution near-infrared spectrograph. We observed the classical T Tauri star LkHα 264 and the debris disk 49 Cet, and searched for υ= 1-0 S(1) H2 emission at 2.1218 μm, υ = 1-0 S(0) H2 emission at 2.2233 μm and υ = 2-1 S(1) H2 emission at 2.2477 μm. The H2 line at 2.1218 μm is detected in LkHα 264 confirming the previous observations by Itoh et al. (2003). In addition, our CRIRES spectra reveal the previously observed but not detected H2 line at 2.2233 μm in LkHα 264. An upper limit of 5.3 × 10-16 erg s-1 cm-2 on the υ = 2-1 S(1) H2 line flux in LkHα 264 is derived. The detected lines coincide with the rest velocity of LkHα 264. They have a FWHM of ~20 km s-1. This is strongly suggestive of a disk origin for the lines. These observations are the first simultaneous detection of υ = 1-0 S(1) and υ = 1-0 S(0) H2 emission from a protoplanetary disk. 49 Cet does not exhibit H2 emission in any of the three observed lines. We derive the mass of optically thin H2 at T˜1500 K in the inner disk of LkHα 264 and derive stringent limits in the case of 49 Cet at the same temperature. There are a few lunar masses of optically thin hot H2 in the inner disk (~0.1 AU) of LkHα 264, and less than a tenth of a lunar mass of hot H2 in the inner disk of 49 Cet. The measured 1-0 S(0)/1-0 S(1) and 2-1 S(1)/1-0 S(1) line ratios in LkHα 264 indicate that the H2 emitting gas is at a temperature lower than 1500 K and that the H2 is most likely thermally excited by UV photons. The υ = 1-0 S(1) H2 line in LkHα 264 is single peaked and spatially unresolved. Modeling of the shape of the line suggests that the disk should be seen close to face-on (i<35°) and that the line is emitted within a few AU of the LkHα 264 disk. A comparative analysis of the physical properties of classical T Tauri stars in which the H2 υ = 1-0 S(1) line has been detected and non-detected indicates that the presence of H2 emission is correlated with the magnitude of the UV excess and the strength of the Hα line. The lack of H2 emission in the NIR spectra of 49 Cet and the absence of Hα emission suggest that the gas in the inner disk of 49 Cet has dissipated. These results combined with previous detections of 12CO emission at sub-mm wavelengths indicate that the disk surrounding 49 Cet should have an inner hole. We favor inner disk dissipation by inside-out photoevaporation, or the presence of an unseen low-mass companion as the most likely explanations for the lack of gas in the inner disk of 49 Cet. Based on observations collected at the European Southern Observatory, Chile (program ID 60.A-9064(A)).
NASA Astrophysics Data System (ADS)
Boccaletti, A.; Sezestre, E.; Lagrange, A.-M.; Thébault, P.; Gratton, R.; Langlois, M.; Thalmann, C.; Janson, M.; Delorme, P.; Augereau, J.-C.; Schneider, G.; Milli, J.; Grady, C.; Debes, J.; Kral, Q.; Olofsson, J.; Carson, J.; Maire, A. L.; Henning, T.; Wisniewski, J.; Schlieder, J.; Dominik, C.; Desidera, S.; Ginski, C.; Hines, D.; Ménard, F.; Mouillet, D.; Pawellek, N.; Vigan, A.; Lagadec, E.; Avenhaus, H.; Beuzit, J.-L.; Biller, B.; Bonavita, M.; Bonnefoy, M.; Brandner, W.; Cantalloube, F.; Chauvin, G.; Cheetham, A.; Cudel, M.; Gry, C.; Daemgen, S.; Feldt, M.; Galicher, R.; Girard, J.; Hagelberg, J.; Janin-Potiron, P.; Kasper, M.; Coroller, H. Le; Mesa, D.; Peretti, S.; Perrot, C.; Samland, M.; Sissa, E.; Wildi, F.; Zurlo, A.; Rochat, S.; Stadler, E.; Gluck, L.; Origné, A.; Llored, M.; Baudoz, P.; Rousset, G.; Martinez, P.; Rigal, F.
2018-06-01
Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims: We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods: AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results: The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s-1); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40'' and 0.55'' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4'' from the star (as of May 2016). Conclusions: Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars. Based on data collected at the European Southern Observatory, Chile under programs 060.A-9249, 095.C-0298, 096.C-0625, 097.C-0865, 097.C-0813, 598.C-0359.A movie associated to Fig. 6 is available at http://https://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noe, E.R.; Romanchick, W.A.; Ainsworth, C.A. III
1975-06-01
This report deals with broad concepts of managing mass screening programs for drugs of abuse; e.g., morphine, barbiturate, amphetamine, cocaine, and methaqualone. The interactions of the screening process and of the rehabilitation program were covered. Psychotherapy and group therapy are both utilized in rehabilitation programs. The semiautomated radioimmunoassay (RIA) screening procedures are both sensitive and specific at nanogram quantities. Future evaluations of a wafer disk transferral system and of a latex test for morphine are presented. The unique quality control system employed by military drug abuse testing laboratories is discussed. (Author) (GRA)
Jensen, Vibeke F; Beck, Sarah; Christensen, Knud A; Arnbjerg, Jens
2008-10-01
To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Longitudinal study. 61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty-seven of the dogs had survived to the time of the present study and were > or = 8 years of age; 24 others had not survived. Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds. Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Disk calcification at 2 years of age was a significant predictor of clinical disk herniation (odds ratio per calcified disk, 1.42; 95% confidence interval, 1.19 to 1.81). Number of calcified disks in the full vertebral column was a better predictor than number of calcified disks between vertebrae T10 and L3. Numbers of calcified disks at > or = 8 years of age and at 2 years of age were significantly correlated. Number of calcified disks at 2 years of age was a good predictor of clinical disk herniation in Dachshunds. Because of the high heritability of disk calcification, it is possible that an effective reduction in occurrence of severe disk herniation in Dachshunds could be obtained by selective breeding against high numbers of calcified disks at 2 years of age.
NASA Astrophysics Data System (ADS)
Canovas, H.; Hardy, A.; Zurlo, A.; Wahhaj, Z.; Schreiber, M. R.; Vigan, A.; Villaver, E.; Olofsson, J.; Meeus, G.; Ménard, F.; Caceres, C.; Cieza, L. A.; Garufi, A.
2017-02-01
Context. The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At 145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and μm-sized dust distributions (outer edges at 79 and at 63 au, respectively). Its 12CO emission shows a 30 au cavity. This radial structure suggests that giant planets are sculpting this disk. Aims: We aim to constrain the masses and locations of plausible giant planets around J1604. Methods: We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH-band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Results: Our observations reach a contrast of ΔK,ΔYH 12 mag from 0".15 to 0".80 ( 22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly ≳0.3 μm-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. Conclusions: This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of ≳2-3 MJup from 22 to 115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of 15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection. Based on observations made with the VLT, program 095.C-0673(A).The reduced images (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A43
NASA Astrophysics Data System (ADS)
Lazareff, B.; Berger, J.-P.; Kluska, J.; Le Bouquin, J.-B.; Benisty, M.; Malbet, F.; Koen, C.; Pinte, C.; Thi, W.-F.; Absil, O.; Baron, F.; Delboulbé, A.; Duvert, G.; Isella, A.; Jocou, L.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J. D.; Moulin, T.; Perraut, K.; Rochat, S.; Soulez, F.; Tallon, M.; Thiébaut, E.; Traub, W.; Zins, G.
2017-03-01
Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims: The aims of this article are to infer the radial and vertical structure of these disks at scales of order 1 au, and the properties of the dust grains. Methods: The program objects (51 in total) were observed with the H-band (1.6 μm) PIONIER/VLTI interferometer. The largest baselines allowed us to resolve (at least partially) structures of a few tenths of an au at typical distances of a few hundred parsecs. Dedicated UBVRIJHK photometric measurements were also obtained. Spectral and 2D geometrical parameters are extracted via fits of a few simple models: ellipsoids and broadened rings with azimuthal modulation. Model bias is mitigated by parallel fits of physical disk models. Sample statistics were evaluated against similar statistics for the physical disk models to infer properties of the sample objects as a group. Results: We find that dust at the inner rim of the disk has a sublimation temperature Tsub ≈ 1800 K. A ring morphology is confirmed for approximately half the resolved objects; these rings are wide δr/r ≥ 0.5. A wide ring favors a rim that, on the star-facing side, looks more like a knife edge than a doughnut. The data are also compatible with the combination of a narrow ring and an inner disk of unspecified nature inside the dust sublimation radius. The disk inner part has a thickness z/r ≈ 0.2, flaring to z/r ≈ 0.5 in the outer part. We confirm the known luminosity-radius relation; a simple physical model is consistent with both the mean luminosity-radius relation and the ring relative width; however, a significant spread around the mean relation is present. In some of the objects we find a halo component, fully resolved at the shortest interferometer spacing, that is related to the HAeBe class. Full Tables B1-B3, as well as results of other parametric fits, are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A85 The calibrated interferometric data can be found as FITS format files at http://oidb.jmmc.fr/collection.html?id=HAeBeLP
Personal Computer and Workstation Operating Systems Tutorial
1994-03-01
to a RAM area where it is executed by the CPU. The program consists of instructions that perform operations on data. The CPU will perform two basic...memory to improve system performance. More often the user will buy a new fixed disk so the computer will hold more programs internally. The trend today...MHZ. Another way to view how fast the information is going into the register is in a time domain rather than a frequency domain knowing that time and
Insignia for the Apollo program
NASA Technical Reports Server (NTRS)
1966-01-01
The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The ARES (Automated Residential Energy Standard) User`s Guide is designed to the user successfully operate the ARES computer program. This guide assumes that the user is familiar with basic PC skills such as using a keyboard and loading a disk drive. The ARES computer program was designed to assist building code officials in creating a residential energy standard based on local climate and costs.
Aerodynamic and torque characteristics of enclosed Co/counter rotating disks
NASA Astrophysics Data System (ADS)
Daniels, W. A.; Johnson, B. V.; Graber, D. J.
1989-06-01
Experiments were conducted to determine the aerodynamic and torque characteristics of adjacent rotating disks enclosed in a shroud, in order to obtain an extended data base for advanced turbine designs such as the counterrotating turbine. Torque measurements were obtained on both disks in the rotating frame of reference for corotating, counterrotating and one-rotating/one-static disk conditions. The disk models used in the experiments included disks with typical smooth turbine geometry, disks with bolts, disks with bolts and partial bolt covers, and flat disks. A windage diaphragm was installed at mid-cavity for some experiments. The experiments were conducted with various amounts of coolant throughflow injected into the disk cavity from the disk hub or from the disk OD with swirl. The experiments were conducted at disk tangential Reynolds number up to 1.6 x 10 to the 7th with air as the working fluid. The results of this investigation indicated that the static shroud contributes a significant amount to the total friction within the disk system; the torque on counterrotating disks is essentially independent of coolant flow total rate, flow direction, and tangential Reynolds number over the range of conditions tested; and a static windage diaphragm reduces disk friction in counterrotating disk systems.
Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.
Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki
2013-01-01
The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves
26 CFR 1.861-18 - Classification of transactions involving computer programs.
Code of Federal Regulations, 2011 CFR
2011-04-01
... on a single disk for a one-time payment with restrictions on transfer and reverse engineering, which... license. The license is stated to be perpetual. Under the license no reverse engineering, decompilation... fee, on a World Wide Web home page on the Internet. P, the Country Z resident, in return for payment...
26 CFR 1.861-18 - Classification of transactions involving computer programs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... on a single disk for a one-time payment with restrictions on transfer and reverse engineering, which... license. The license is stated to be perpetual. Under the license no reverse engineering, decompilation... fee, on a World Wide Web home page on the Internet. P, the Country Z resident, in return for payment...
Helicopter Crewseat Cushion Program
1994-11-01
proportion of Army helicopter pilots suffer back pain caused by flying. Extended missions required during Desert Shield/Desert Storm emphasized this problem...Seat Cushions Lumbar Support Energy Absorbing Foam Lumbar Kyphosis 16. PRICE CODE Back Pain Thigh Support Helicopter Vibration Helicopter Seating _ 17...Bulging disks and stretched ligaments from lumbar kyphosis .................... 3 3 Measurement of anthropometric dimensions
Whenever You Use a Computer You Are Using a Program Called an Operating System.
ERIC Educational Resources Information Center
Cook, Rick
1984-01-01
Examines design, features, and shortcomings of eight disk-based operating systems designed for general use that are popular or most likely to affect the future of microcomputing. Included are the CP/M family, MS-DOS, Apple DOS/ProDOS, Unix, Pick, the p-System, TRSDOS, and Macintosh/Lisa. (MBR)
ERIC Educational Resources Information Center
Computing Teacher, 1985
1985-01-01
Defines computer literacy and describes a computer literacy course which stresses ethics, hardware, and disk operating systems throughout. Core units on keyboarding, word processing, graphics, database management, problem solving, algorithmic thinking, and programing are outlined, together with additional units on spreadsheets, simulations,…
Spectrometer Sensitivity Investigations on the Spectrometric Oil Analysis Program.
1983-04-22
31 H. ACID DISSOLUTION METHOD (ADM) ........... 90 31 I. ANALYSIS OF SAMPLES............................ 31 jJ. PARTICLE TRANSPORT EFFICIENCY OF...THE ROTATING *DISK.................................... 32 I .K. A/E35U-3 ACID DISSOLUTION METHOD.................. 32 L. BURN TIME... ACID DISSOLUTION METHOD ......... ,...,....... 95 3. EFFECT OF BURN TIME ............ 95 4. DIRECT SAMPLE INTRODUCTION .......................... 95
Videodisc Evaluation Report. "The Teddy Bears Disc."
ERIC Educational Resources Information Center
Laurillard, D. M.
This study evaluated the design and effectiveness of an interactive videodisc package which was developed at the Open University for a second level course in metallurgy and materials technology. Based on an existing 25-minute television program from the course, the disk put the problem in the form of a court case assessing the responsibility for…
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed software and hardware documentation for the Cardiopulmonary Data Acquisition System is presented. General wiring and timing diagrams are given including those for the LSI-11 computer control panel and interface cables. Flowcharts and complete listings of system programs are provided along with the format of the floppy disk file.
Biological Investigations of Adaptive Networks: Neuronal Control of Conditioned Responses
1989-07-01
The program also controls A/D sampling of voltage trace from NMR transducer and disk files for NMR, neural spikes, and synchronization. * HSAD . Basic...format which ANALYZE (by John Desmond) can read. e FIG.HIRES Reads C-64 HSAD files and EVENT NMR files and generates oscilloscope-like figures showing
ERIC Educational Resources Information Center
Tsai, Bor-sheng
1991-01-01
Examines the information communication process and proposes a fuzzy commonality model for improving communication systems. Topics discussed include components of an electronic information programing and processing system and the flow of the formation and transfer of information, including DOS (disk operating system) commands, computer programing…
Odell Lake. MicroSIFT Courseware Evaluation.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT (Except for the Evaluation Summary Table): PRODUCER: MECC Publications, 2520 Broadway Drive, St. Paul, MN 55113. LOCAL DISTRIBUTORS: Contact producer for list. EVALUATION COMPLETED: Fall 1981, revised February 1, 1982. VERSION: 4.3. COST: Varied; sold in package of several programs on a disk at $30…
Reflections of Computing Experiences in a Steel Factory in the Early 1960s
NASA Astrophysics Data System (ADS)
Järvinen, Pertti
We can best see many things from a historical perspective. What were the first pioneers doing in the information technology departments of Finnish manufacturing companies? In early 1960s, I had a special chance to work in a steel industry that had long traditions to use rather advanced tools and methods to intensify their productivity. The first computer in our company had such novel properties as movable disk packs making a direct access of stored data possible. In this paper, we describe the following issues and innovations in some depth. These include (a) transitioning from the punched card machines to a new computer era, (b) using advanced programming language to intensify production of new computer software, (c) drawing pictures by using a line printer, (d) supporting steel making with mathematical software, (e) storing executable programs to the disk memory and calling and moving them from there to the core memory for running, and (f) building a simple report generator. I will also pay attention to the breakthrough in those innovations and in this way demonstrate how some computing solutions were growing at that time.
Improved turbine disk design to increase reliability of aircraft jet engines
NASA Technical Reports Server (NTRS)
Alver, A. S.; Wong, J. K.
1975-01-01
An analytical study was conducted on a bore entry cooled turbine disk for the first stage of the JT8D-17 high pressure turbine which had the potential to improve disk life over existing design. The disk analysis included the consideration of transient and steady state temperature, blade loading, creep, low cycle fatigue, fracture mechanics and manufacturing flaws. The improvement in life of the bore entry cooled turbine disk was determined by comparing it with the existing disk made of both conventional and advanced (Astroloy) disk materials. The improvement in crack initiation life of the Astroloy bore entry cooled disk is 87% and 67% over the existing disk made of Waspaloy and Astroloy, respectively. Improvement in crack propagation life is 124% over the Waspaloy and 465% over the Astroloy disks. The available kinetic energies of disk fragments calculated for the three disks indicate a lower fragment energy level for the bore entry cooled turbine disk.
The Singer as Iconoclast: Six Arguments about the Use of Video Disk for Teaching.
ERIC Educational Resources Information Center
Clark, Richard E.
This paper poses and generates the answers to six questions about the use of newer media in education and the areas of disagreement that seem to recur as new media become available for teaching. Cast in the context of videodisks, those questions ask whether: (1) videodisk technology is more effective than traditional media in promoting learning;…
Exploring the Moon: A Teacher's Guide with Activities for Earth and Space Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This educational guide concerns exploring the moon. Activities are divided into three units: Pre-Apollo, Learning from Apollo, and The Future. These correspond, at least roughly, to exercises that can be done before the Lunar Sample Disk (available from NASA) arrives to the school (Pre-Apollo), while it is there (Learning from Apollo), and after…
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya
2003-01-01
Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.
Fractionation and Accretion of Meteorite Parent Bodies
NASA Technical Reports Server (NTRS)
Weidenschilling, Stuart J.
2005-01-01
Senior Scientist Stuart J. Weidenschilling presents his final administrative report for the research program on which he was the Principal Investigator. The research program resulted in the following publications: 1) Particle-gas dynamics and primary accretion. J. N. Cuzzi and S. J . Weidenschilling. To appear in Meteorites and the Early Solar System 11 (D. Lauretta et a]., Eds.), Univ. Arizona Press. 2005; 2) Timescales of the solar protoplanetary disk. S. Russell, L. Hartmann, J . N. Cuzzi, A. Krot, M. Gounelle and S. J. Weidenschilling. To appear in Meteorites and the Early Solar System II (D. Lauretta et al., Eds.), Univ. Arizona Press, 2005; 3) Nebula evolution of thermally processed solids: Reconciling astrophysical models and chondritic meteorites. J. N. Cuzzi, F. J. Ciesla, M. I. Petaev, A. N. Krot, E. R. D. Scott and S . J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et a]., Eds.), ASP Conference Series, 2005; 4) Possible chondrule formation in planetesimal bow shocks: Physical processes in the near vicinity of the planetesimal. L. L. Hood, F. J. Ciesla and S. J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et al., Eds.), ASP Conference Series, 2005; 5) From icy grains to comets. In Comets II (M. Festou et al., Eds.), Univ. Arizona Press, pp. 97- 104, 2005; 6) Evaluating planetesimal bow shocks as sites for chondrule formation. F. J . Ciesla, L. L. Hood and S. J. Weidenschilling. Meteoritics & Planetary Science 39, 1809-1 821, 2004; and 7) Radial drift of particles in the solar nebula: Implications for planetesimal formation. Icarus 165, 438-442, 2003.
NASA Astrophysics Data System (ADS)
D'Angelo, G.
2016-12-01
D'Angelo & Bodenheimer (2013, ApJ, 778, 77) performed global 3D radiation-hydrodynamics disk-planet simulations aimed at studying envelope formation around planetary cores, during the phase of sustained planetesimal accretion. The calculations modeled cores of 5, 10, and 15 Earth masses orbiting a sun-like star in a protoplanetary disk extending from ap/2 to 2ap in radius, ap=5 or 10 AU being the core's orbital radius. The gas equation of state - for a solar mixture of H2, H, He - accounted for translational, rotational, and vibrational states, for molecular dissociation and atomic ionization, and for radiation energy. Dust opacity calculations applied the Mie theory to multiple grain species whose size distributions ranged from 5e-6 to 1 mm. Mesh refinement via grid nesting allowed the planets' envelopes to be resolved at the core-radius length scale. Passive tracers were used to determine the volume of gas bound to a core, defining the envelope, and resulting in planet radii comparable to the Bondi radius. The energy budjet included contributions from the accretion of solids on the cores, whose rates were self-consistently computed with a 1D planet formation code. At this stage of the planet's growth, gravitational energy released in the envelope by solids' accretion far exceeds that released by gas accretion. These models are used to determine the gravitational torques exerted by the disk's gas on the planet and the resulting orbital migration rates. Since the envelope radius is a direct product of the models, they allow for a non-ambiguous assessment of the torques exerted by gas not bound to the planet. Additionally, since planets' envelopes are fully resolved, thermal and dynamical effects on the surrounding disk's gas are accurately taken into account. The computed migration rates are compared to those obtained from existing semi-analytical formulations for planets orbiting in isothermal and adiabatic disks. Because these formulations do not account for thermodynamical interactions between the planet's envelope and the disk's gas, the numerical models are also used to quanitfy the impact of short-scale tidal interactions on the total torque acting on the planet. Computing resources were provided by the NASA High-End Computing Program through the NASA Advanced Supercomputing Division at Ames Research Center.
Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology
NASA Technical Reports Server (NTRS)
Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.
2011-01-01
The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM
NASA Astrophysics Data System (ADS)
Langer, William; Goldsmith, P. F.; Li, D.; Velusamy, T.; Yorke, H. W.
2009-01-01
Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory (HSO) Key Program to study the diffuse interstellar medium by sampling the C+ fine structure line emission at 1.9 THz (158 microns) in the Galactic disk. Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about properties of the diffuse atomic and diffuse molecular gas clouds. The 158-micron CII line is an important tracer of diffuse regions, and C+ is a major ISM coolant, the Galaxy's strongest emission line virtually unobscured by dust, with a total luminosity about a 1000 times that of CO J=1-0. The GOT C+ program will obtain high spectral resolution CII spectra using the Heterodyne Instrument for the Far Infrared (HIFI) receiver. It will employ deep integrations, wide velocity coverage (350 km/s) with 0.22 km/s resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource to determine the properties of the atomic gas, in the (a) overall Galactic disk, (b) central 300pc of the Galactic center, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). These spectra will provide the astronomical community with a rich statistical database of diffuse cloud properties, especially those of the atomic gas, sampled throughout the Galaxy for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale Galactic C+ surveys. This research was conducted at the Jet Propulsion Laboratory and is supported by a NASA grant.
Vakily, Masoomeh; Noroozi, Mahnaz; Yamani, Nikoo
2017-01-01
Training the health personnel about domestic violence would cause them to investigate and evaluate this issue more than before. Considering the new educational approaches for transferring knowledge, the goal of this research was to compare the effect of group-based and compact disk (CD)-based training on midwives' knowledge and attitude toward domestic violence. In this clinical experiment, seventy midwives working at health centers and hospitals of Isfahan were randomly allocated into two classes of group-based and CD-based trainings and were trained in the fields of recognition, prevention, and management of domestic violence. Data were collected by questionnaires which were completed by the midwives for evaluation of their knowledge and attitude. The mean score of midwives' knowledge and attitude toward domestic violence had a meaningful increase after the training (16.1, 46.9) compared to the score of before the training (12.1, 39.1) in both of the classes (group-based training: 17.7, 45.4) (CD-based training: 11.7, 38.6). No meaningful difference was observed between the two groups regarding midwives' attitude toward domestic violence after the intervention; however, regarding their knowledge level, the difference was statistically meaningful ( P = 0.001), and this knowledge increase was more in the CD-based training group. In spite of the effectiveness of both of the training methods in promoting midwives' knowledge and attitude about domestic violence, training with CD was more effective in increasing their knowledge; as a result, considering the benefits of CD-based training such as cost-effectiveness and possibility of use at any time, it is advised to be used in training programs for the health personnel.
Vakily, Masoomeh; Noroozi, Mahnaz; Yamani, Nikoo
2017-01-01
BACKGROUND: Training the health personnel about domestic violence would cause them to investigate and evaluate this issue more than before. Considering the new educational approaches for transferring knowledge, the goal of this research was to compare the effect of group-based and compact disk (CD)-based training on midwives’ knowledge and attitude toward domestic violence. METHODS: In this clinical experiment, seventy midwives working at health centers and hospitals of Isfahan were randomly allocated into two classes of group-based and CD-based trainings and were trained in the fields of recognition, prevention, and management of domestic violence. Data were collected by questionnaires which were completed by the midwives for evaluation of their knowledge and attitude. RESULTS: The mean score of midwives’ knowledge and attitude toward domestic violence had a meaningful increase after the training (16.1, 46.9) compared to the score of before the training (12.1, 39.1) in both of the classes (group-based training: 17.7, 45.4) (CD-based training: 11.7, 38.6). No meaningful difference was observed between the two groups regarding midwives’ attitude toward domestic violence after the intervention; however, regarding their knowledge level, the difference was statistically meaningful (P = 0.001), and this knowledge increase was more in the CD-based training group. CONCLUSIONS: In spite of the effectiveness of both of the training methods in promoting midwives’ knowledge and attitude about domestic violence, training with CD was more effective in increasing their knowledge; as a result, considering the benefits of CD-based training such as cost-effectiveness and possibility of use at any time, it is advised to be used in training programs for the health personnel. PMID:28852660
THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G., E-mail: wf5@rice.edu
2015-07-01
Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binarymore » mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less
The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters
Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.
2015-07-01
Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less
Optimal mistuning for enhanced aeroelastic stability of transonic fans
NASA Technical Reports Server (NTRS)
Hall, K. C.; Crawley, E. F.
1983-01-01
An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom.
Spacecraft optical disk recorder memory buffer control
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
1993-01-01
This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.
NASA Astrophysics Data System (ADS)
Reimer, Ashton S.; Cheviakov, Alexei F.
2013-03-01
A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.
Origins Space Telescope: Planet-forming disks and exoplanets
NASA Astrophysics Data System (ADS)
Pontoppidan, Klaus; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the science case related to planet formation and exoplanets. Leveraging orders of magnitude of improvements in sensitivity, the Origins Telescope will reveal the path of water from the interstellar medium to the inner regions of planet-forming disks, and determine the total masses of disks around stars across the stellar mass range out to distances of 500 pc. It will measure the temperatures and search for basic chemical ingredients for life on rocky planets. Beyond this, the Origins Telescope will open a vast discovery space in the general areas of star formation, protoplanetary and debris disks, and cool exoplanets in habitable zones.
Towards a Global Evolutionary Model of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning
2016-04-01
A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.
User's guide to the NOZL3D and NOZLIC computer programs
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
Complete FORTRAN listings and running instructions are given for a set of computer programs that perform an implicit numerical solution to the unsteady Navier-Stokes equations to predict the flow characteristics and performance of nonaxisymmetric nozzles. The set includes the NOZL3D program, which performs the flow computations; the NOZLIC program, which sets up the flow field initial conditions for general nozzle configurations, and also generates the computational grid for simple two dimensional and axisymmetric configurations; and the RGRIDD program, which generates the computational grid for complicated three dimensional configurations. The programs are designed specifically for the NASA-Langley CYBER 175 computer, and employ auxiliary disk files for primary data storage. Input instructions and computed results are given for four test cases that include two dimensional, three dimensional, and axisymmetric configurations.
NASA Astrophysics Data System (ADS)
Carmona, A.; Thi, W. F.; Kamp, I.; Baruteau, C.; Matter, A.; van den Ancker, M.; Pinte, C.; Kóspál, A.; Audard, M.; Liebhart, A.; Sicilia-Aguilar, A.; Pinilla, P.; Regály, Zs.; Güdel, M.; Henning, Th.; Cieza, L. A.; Baldovin-Saavedra, C.; Meeus, G.; Eiroa, C.
2017-02-01
Context. Quantifying the gas surface density inside the dust cavities and gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the inner disk of HD 139614, an accreting 9 Myr Herbig Ae star with a (pre-)transition disk exhibiting a dust gap from 2.3 ± 0.1 to 5.3 ± 0.3 AU. Methods: We observed HD 139614 with ESO/VLT CRIRES and obtained high-resolution (R 90 000) spectra of CO ro-vibrational emission at 4.7 μm. We derived constraints on the disk's structure by modeling the CO isotopolog line-profiles, the spectroastrometric signal, and the rotational diagrams using grids of flat Keplerian disk models. Results: We detected υ = 1 → 0 12CO, 2→1 12CO, 1→0 13CO, 1→0 C18O, and 1→0 C17O ro-vibrational lines. Lines are consistent with disk emission and thermal excitation. 12CO υ = 1 → 0 lines have an average width of 14 km s-1, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km s-1 narrower than 12CO υ = 1 → 0, and are dominated by emission at R ≥ 6 AU. The 12CO υ = 1 → 0 composite line-profile indicates that if there is a gap devoid of gas it must have a width narrower than 2 AU. We find that a drop in the gas surface density (δgas) at R < 5-6 AU is required to be able to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Models without a gas density drop generate 13CO and C18O emission lines that are too broad and warm. The value of δgas can range from 10-2 to 10-4 depending on the gas-to-dust ratio of the outer disk. We find that the gas surface density profile at 1 < R < 6 AU is flat or increases with radius. We derive a gas column density at 1 < R < 6 AU of NH = 3 × 1019-1021 cm-2 (7 × 10-5-2.4 × 10-3 g cm-2) assuming NCO = 10-4NH. We find a 5σ upper limit on the CO column density NCO at R ≤ 1 AU of 5 × 1015 cm-2 (NH ≤ 5 × 1019 cm-2). Conclusions: The dust gap in the disk of HD 139614 has molecular gas. The distribution and amount of gas at R ≤ 6 AU in HD 139614 is very different from that of a primordial disk. The gas surface density in the disk at R ≤ 1 AU and at 1 < R < 6 AU is significantly lower than the surface density that would be expected from the accretion rate of HD 139614 (10-8 M⊙ yr-1) assuming a standard viscous α-disk model. The gas density drop, the non-negative density gradient in the gas inside 6 AU, and the absence of a wide (>2 AU) gas gap, suggest the presence of an embedded <2 MJ planet at around 4 AU. Based on CRIRES observations collected at the VLTI and VLT (European Southern Observatory, Paranal, Chile) with program 091.C-0671(B).
NASA Astrophysics Data System (ADS)
Montgomery, M. M.
2012-02-01
Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.
Connecting the shadows: probing inner disk geometries using shadows in transitional disks
NASA Astrophysics Data System (ADS)
Min, M.; Stolker, T.; Dominik, C.; Benisty, M.
2017-08-01
Aims: Shadows in transitional disks are generally interpreted as signs of a misaligned inner disk. This disk is usually beyond the reach of current day high contrast imaging facilities. However, the location and morphology of the shadow features allow us to reconstruct the inner disk geometry. Methods: We derive analytic equations of the locations of the shadow features as a function of the orientation of the inner and outer disk and the height of the outer disk wall. In contrast to previous claims in the literature, we show that the position angle of the line connecting the shadows cannot be directly related to the position angle of the inner disk. Results: We show how the analytic framework derived here can be applied to transitional disks with shadow features. We use estimates of the outer disk height to put constraints on the inner disk orientation. In contrast with the results from Long et al. (2017, ApJ, 838, 62), we derive that for the disk surrounding HD 100453 the analytic estimates and interferometric observations result in a consistent picture of the orientation of the inner disk. Conclusions: The elegant consistency in our analytic framework between observation and theory strongly support both the interpretation of the shadow features as coming from a misaligned inner disk as well as the diagnostic value of near infrared interferometry for inner disk geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espaillat, C.; D'Alessio, P.; Hernandez, J.
In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less
Cornelius, Mary L; Lax, Alan R
2005-04-01
This study evaluated the effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the Formosan subterranean termite, Coptotermes formosanus Shiraki. Bioassays were conducted to determine whether Summon disks affected the aggregation and feeding behavior of termites and to determine whether the presence of Summon disks caused increased recruitment of termites to wood blocks. When termites encountered the disk, they immediately clustered on top of the disk. Termites were observed aggregating on top of the disk throughout the experiment. Consumption of Summon disks was significantly greater than consumption of cardboard disks in paired choice tests. The presence of a Summon disk on top of a wood block caused a significant increase in consumption of the wood block. Bioassays also were conducted to determine whether water extracts of Summon disks affected termite behavior. Consumption of filter paper disks treated with a water extract of Summon disks was significantly greater than consumption of control filter paper disks. Termites tunneled through sand treated with a water extract of Summon disks faster than they tunneled through untreated sand. In a field test, the rate of infestation of monitoring stations with a Summon disk was 3 times greater than the rate of infestations of stations without a disk.
Coevolution of Binaries and Circumbinary Gaseous Disks
NASA Astrophysics Data System (ADS)
Fleming, David; Quinn, Thomas R.
2018-04-01
The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.
Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.
NASA Technical Reports Server (NTRS)
Grady, Carol A.
2011-01-01
Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.
Asymmetric and Stochastic Behavior in Magnetic Vortices Studied by Soft X-ray Microscopy
NASA Astrophysics Data System (ADS)
Im, Mi-Young
Asymmetry and stochasticity in spin processes are not only long-standing fundamental issues but also highly relevant to technological applications of nanomagnetic structures to memory and storage nanodevices. Those nontrivial phenomena have been studied by direct imaging of spin structures in magnetic vortices utilizing magnetic transmission soft x-ray microscopy (BL6.1.2 at ALS). Magnetic vortices have attracted enormous scientific interests due to their fascinating spin structures consisting of circularity rotating clockwise (c = + 1) or counter-clockwise (c = -1) and polarity pointing either up (p = + 1) or down (p = -1). We observed a symmetry breaking in the formation process of vortex structures in circular permalloy (Ni80Fe20) disks. The generation rates of two different vortex groups with the signature of cp = + 1 and cp =-1 are completely asymmetric. The asymmetric nature was interpreted to be triggered by ``intrinsic'' Dzyaloshinskii-Moriya interaction (DMI) arising from the spin-orbit coupling due to the lack of inversion symmetry near the disk surface and ``extrinsic'' factors such as roughness and defects. We also investigated the stochastic behavior of vortex creation in the arrays of asymmetric disks. The stochasticity was found to be very sensitive to the geometry of disk arrays, particularly interdisk distance. The experimentally observed phenomenon couldn't be explained by thermal fluctuation effect, which has been considered as a main reason for the stochastic behavior in spin processes. We demonstrated for the first time that the ultrafast dynamics at the early stage of vortex creation, which has a character of classical chaos significantly affects the stochastic nature observed at the steady state in asymmetric disks. This work provided the new perspective of dynamics as a critical factor contributing to the stochasticity in spin processes and also the possibility for the control of the intrinsic stochastic nature by optimizing the design of asymmetric disk arrays. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by Leading Foreign Research Institute Recruitment Program through the NRF.
Nature of the Warm Excess in eps Eri: Asteroid belt or Dragged-in Grains
NASA Astrophysics Data System (ADS)
Su, Kate
2014-10-01
Eps Eri and its debris disk provide a unique opportunity to probe the outer zones of a planetary system, due to its young age (~1 Gyr) and proximity (3.22 pc, the closest prominent debris disk by more than a factor of two). It is the Rosetta Stone for more distant exoplanetary debris systems and thus critical to understanding the mid-term evolution of our Solar System. From resolved images in the far-infrared and submillimeter along with spectra from 10-35 and 55-95 microns, Backman et al. (2009) found that the eps Eri disk has a complex structure, with multiple zones in both warm (asteroid-like) and cold (KBO-like) components. However, Reidemeister et al. (2011), on the contrary, suggested that the system has only one dominant cold belt and the warm excess originates from small grains in the cold disk, which are transported inward by the combination of P-R and stellar wind drags. Although both models fit the disk SED and marginally resolved far-infrared images relatively well, the resultant disk structures in the 15-50 AU range at mid-infrared wavelengths are expected to be very different. We, therefore, propose to obtain a 35 micron image of the eps Eri system using the FORCAST on SOFIA to test the validity of any models for this zone in eps Eri. No other available facilities can obtain such a 35 micron image, which will provide general constraints on the nature of the warm excess and any potential shepherding planets and their orbits in this iconic debris system. This is a re-submission of our approved cycle 2 program (02_0061), which was scheduled to be executed in Oct 2014. Due to the delay and the uncertain length of the SOFIA aircraft maintenance, it is not clear at the time of the cycle 3 deadline whether the approved observations will be executed in cycle 2. If the observations are carried out in cycle 2, we would withdraw the proposal in cycle 3.
TYC 8241 2652 1 and the case of the disappearing disk: No smoking gun yet
NASA Astrophysics Data System (ADS)
Günther, Hans Moritz; Kraus, Stefan; Melis, Carl; Curé, Michel; Harries, Tim; Ireland, Michael; Kanaan, Samer; Poppenhaeger, Katja; Rizzuto, Aaron; Rodriguez, David; Schneider, Christian P.; Sitko, Michael; Weigelt, Gerd; Willson, Matthew; Wolk, Scott
2017-02-01
Context. TYC8241 2652 1 is a young star that showed a strong mid-infrared (mid-IR, 8-25 μm) excess in all observations before 2008, which is consistent with a dusty disk. Between 2008 and 2010 the mid-IR luminosity of this system dropped dramatically by at least a factor of 30 suggesting a loss of dust mass of an order of magnitude or more. Aims: We aim to constrain possible models including the removal of disk material by stellar activity processes, the presence of a binary companion, or other explanations suggested in the literature. Methods: We present new X-ray observations, optical spectroscopy, near-IR interferometry, and mid-IR photometry of this system to constrain its parameters and further explore the cause of the dust mass loss. Results: In X-rays TYC8241 2652 1 has all the properties expected from a young star: Its luminosity is in the saturation regime and the abundance pattern shows enhancement of O/Fe. The photospheric Hα line is filled with a weak emission feature, indicating chromospheric activity that is consistent with the observed level of coronal emission. Interferometry does not detect a companion and sets upper limits on the companion mass of 0.2, 0.35, 0.1, and 0.05 M⊙ at projected physical separations of 0.1-4 AU, 4-5 AU, 5-10 AU, and 10-30 AU, respectively (assuming a distance of 120.9 pc). Our mid-IR measurements, the first of the system since 2012, are consistent with the depleted dust level seen after 2009. Conclusions: The new data confirm that stellar activity is unlikely to destroy the dust in the disk and shows that scenarios, in which either TYC8241 2652 1 heats the disk of a binary companion or a potential companion heats the disk of TYC8241 2652 1, are unlikely. Based on observations made with ESO telescopes at the Paranal Observatory (ESO program IDs 090.C-0697(A), 090.C-0904(A), and 095.C-0438(A)) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.
The influence of disk's flexibility on coupling vibration of shaft disk blades systems
NASA Astrophysics Data System (ADS)
Yang, Chia-Hao; Huang, Shyh-Chin
2007-03-01
The coupling vibrations among shaft-torsion, disk-transverse and blade-bending in a shaft-disk-blades unit are investigated. The equations of motion for the shaft-disk-blades unit are first derived from the energy approach in conjunction with the assumed modes method. The effects of disk flexibility, blade's stagger angle and rotational speed upon the natural frequencies and mode shapes are particularly studied. Previous studies have shown that there were four types of coupling modes, the shaft-blade (SB), the shaft-disk-blades (SDBs), the disk-blades (DB) and the blade-blade (BB) in such a unit. The present research focuses on the influence of disk flexibility on the coupling behavior and discovers that disk's flexibility strongly affects the modes bifurcation and the transition of modes. At slightly flexible disk, the BB modes bifurcate into BB and DB modes. As disk goes further flexible, SB modes shift into SDB modes. If it goes furthermore, additional disk-predominating modes are generated and DB modes appear before the SDB mode. Examination of stagger angle β proves that at two extreme cases; at β=0° the shaft and blades coupled but not the disk, and at β=90° the disk and blades coupled but not the shaft. In between, coupling exists among three components. Increasing β may increase or decrease SB modes, depending on which, the disk or shaft's first mode, is more rigid. The natural frequencies of DB modes usually decrease with the increase of β. Rotation effects show that bifurcation, veering and merging phenomena occur due to disk flexibility. Disk flexibility is also observed to induce more critical speeds in the SDBs systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... electronic file on computer disk. The Department will consider providing the proposed rule in other formats... format, contact the Office of Policy Development and Research at (202) 693-3700 (VOICE) (this is not a... August 30, 2010 order,\\1\\ arguing that the Wage Rule violated the Administrative Procedure Act (APA...
Putting a Medical Library Online: Phase III--Remote Access to CD-ROMs.
ERIC Educational Resources Information Center
Kittle, Paul
1989-01-01
Describes the implementation of a project that provides dial-up access to MEDLINE on remote optical data disk (CD-ROM) using software that enables callers to use programs like Wordstar, Lotus, and dBase. Highlights include networking CD-ROM databases, hardware considerations, advantages and disadvantages of remote access, and future plans. A…
Modifications to the accuracy assessment analysis routine SPATL to produce an output file
NASA Technical Reports Server (NTRS)
Carnes, J. G.
1978-01-01
The SPATL is an analysis program in the Accuracy Assessment Software System which makes comparisons between ground truth information and dot labeling for an individual segment. In order to facilitate the aggregation cf this information, SPATL was modified to produce a disk output file containing the necessary information about each segment.
The Hydrologic Evaluation of Landfill Performance (HELP) computer program is a quasi-two-dimensional hydrologic model of water movement across, into, through and out of landfills. The model accepts weather, soil and design data. Landfill systems including various combinations o...
Fault Tolerant Frequent Pattern Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shohdy, Sameh; Vishnu, Abhinav; Agrawal, Gagan
FP-Growth algorithm is a Frequent Pattern Mining (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing,more » though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.« less
The Circumgalactic Medium of Andromeda
NASA Astrophysics Data System (ADS)
Lehner, Nicolas; Project AMIGA Team
2017-03-01
Our view of galaxies has been transformed in recent years with diffuse halo gas surrounding galaxies that contains at least as many metals and baryons as their disks. While single sight lines through galaxy halos seen in absorption have provided key new constraints, they provide only average properties. Our massive neighbor, the Andromeda (M31) galaxy, provides an unique way to study its circumgalactic medium whereby we can study it using not one or two, but ~36 sightlines thanks to its proximity. With our Large HST program - Project AMIGA (Absorption Maps In the Gas of Andromeda), our goals are to determine the spatial distribution of the halo properties of a L* galaxy using 36 background targets at different radii and azimuths. In this brief paper, I discuss briefly the scientific rationale of Project AMIGA and some early science results. In particular, for the first time we have demonstrated that M31 has a gaseous halo that extends to R vir with as much as metal and baryonic masses than in its disk and has substantial change in its ionization properties with more highly ionized gas found at R ~ R vir than cooler gas found near the disk.
Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles
1993-01-01
The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.
Sgr A* Emission Parametrizations from GRMHD Simulations
NASA Astrophysics Data System (ADS)
Anantua, Richard; Ressler, Sean; Quataert, Eliot
2018-06-01
Galactic Center emission near the vicinity of the central black hole, Sagittarius (Sgr) A*, is modeled using parametrizations involving the electron temperature, which is found from general relativistic magnetohydrodynamic (GRMHD) simulations to be highest in the disk-outflow corona. Jet-motivated prescriptions generalizing equipartition of particle and magnetic energies, e.g., by scaling relativistic electron energy density to powers of the magnetic field strength, are also introduced. GRMHD jet (or outflow)/accretion disk/black hole (JAB) simulation postprocessing codes IBOTHROS and GRMONTY are employed in the calculation of images and spectra. Various parametric models reproduce spectral and morphological features, such as the sub-mm spectral bump in electron temperature models and asymmetric photon rings in equipartition-based models. The Event Horizon Telescope (EHT) will provide unprecedentedly high-resolution 230+ GHz observations of the "shadow" around Sgr A*'s supermassive black hole, which the synthetic models presented here will reverse-engineer. Both electron temperature and equipartition-based models can be constructed to be compatible with EHT size constraints for the emitting region of Sgr A*. This program sets the groundwork for devising a unified emission parametrization flexible enough to model disk, corona and outflow/jet regions with a small set of parameters including electron heating fraction and plasma beta.
Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows
NASA Astrophysics Data System (ADS)
Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton
2018-01-01
The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.
An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos
NASA Astrophysics Data System (ADS)
van Zee, Liese
The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.
Gaps in Protoplanetary Disks as Signatures of Planets. III. Polarization
NASA Astrophysics Data System (ADS)
Jang-Condell, Hannah
2017-01-01
Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected by polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.
The 1984 solar oscillation program of the Mt. Wilson 60-foot tower
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven; Ulrich, Roger K.
1986-01-01
The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.
The 1984 solar oscillation program of the Mount Wilson 60-foot tower
NASA Technical Reports Server (NTRS)
Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.
1985-01-01
The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.
Turbine inter-disk cavity cooling air compressor
Chupp, Raymond E.; Little, David A.
1998-01-01
The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.
Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gibson, Garth Alan
1990-01-01
During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.
Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems
NASA Astrophysics Data System (ADS)
Chandler, C. J.; Shepherd, D. S.
2008-08-01
Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.
A new solid-phase extraction disk based on a sheet of single-walled carbon nanotubes.
Niu, Hong Yun; Cai, Ya Qi; Shi, Ya Li; Wei, Fu Sheng; Liu, Jie Min; Jiang, Gui Bin
2008-11-01
A new kind of solid-phase extraction disk based on a sheet of single-walled carbon nanotubes (SWCNTs) is developed in this study. The properties of such disks are tested, and different disks showed satisfactory reproducibility. One liter of aqueous solution can pass through the disk within 10-100 min while still allowing good recoveries. Two disks (DD-disk) can be stacked to enrich phthalate esters, bisphenol A (BPA), 4-n-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and chlorophenols from various volumes of solution. The results show that SWCNT disks have high extraction ability for all analytes. The SWCNT disk can extract polar chlorophenols more efficiently than a C(18) disk from water solution. Unlike the activated carbon disk, analytes adsorbed by the new disks can be eluted completely with 8-15 mL of methanol or acetonitrile. Finally, the DD-disk system is used to pretreat 1000-mL real-world water samples spiked with BPA, 4-OP and 4-NP. Detection limits of 7, 25, and 38 ng L(-1) for BPA, 4-OP, and 4-NP, respectively, were achieved under optimized conditions. The advantages of this new disk include its strong adsorption ability, its high flow rate and its easy preparation.
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.
2017-05-01
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
Near-infrared structure of fast and slow-rotating disk galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu
We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less
Free-fall dynamics of a pair of rigidly linked disks
NASA Astrophysics Data System (ADS)
Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum
2018-03-01
We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.
Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used inmore » previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.« less
Variation on the similar-size disk tower of hanoi puzzle
NASA Astrophysics Data System (ADS)
Zuchri, S.
2017-02-01
The famous Tower of Hanoi puzzle was invented by Edouard Lucas in 1883. This puzzle proposed three pegs, and the number of disks with different size. The puzzle starts with the disks in a neat stack in ascending order of size on one peg, the smallest at the top. The objective of the puzzle is to move the entire stack to another peg, by following these simple rules: (1) only one disk can be moved at a time; (2) Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack; (2) No disk is placed on the top of a smaller disk and the minimum number of move is the goal of this puzzle. Many variations have been proposed as exercises and challenges. Some have more than three pegs and some with colours. This paper poses a new variation. There are two or more disks with similar size. The goal is to move each stack of the disk from its initial location to its final location. As usual, disk must be moved one at a time and a disk can never sit above a disk of smaller. Let n be a number of disks and there are p similar size disks. The disks are labelled from 1 to n - p + 1 in increasing order of size so the disk with similar size has the same label. If m is the label of the similar disks, so Mp(n; m) is the minimum number moves needed to move all the disks in original peg to destination peg. We have, M2(n; m) = 2n-1 + 2n-m-1 - 1 M3(n; m) = 2n-2 + 2n-m-1 - 1 The number moves needed to move if there are p1 similar size disks m1 and p2 similar size disks m2 is Mp1,p2 (n; m1, m2) = 2n-p1-p2 + 2[(p12-m1 + p22-m2 ) - (2-m1 + 2-m2 + 1] - 1
Turbine inter-disk cavity cooling air compressor
Chupp, R.E.; Little, D.A.
1998-01-06
The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.
Damage Tolerant Design for Cold-Section Turbine Engine Disks
1981-06-01
Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen
Exploring Our Galaxy's Thick Disk
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and chemical properties of these stars differed in the different components.Li and Zhao found that the scale length for the thick disk is roughly the same as that of the thin disk ( 3 kpc), i.e., both disk components extend out to the same radial distance. The scale height found for the thick disk is 1 kpc, compared to the thin disks few hundred parsecs or so.The metallicity of the thick-disk stars is roughly constant with radius; this could be a consequence of radial migration of the stars within the disk, which blurs any metallicity distribution that might have once been there. The metallicity of the stars decreases with distance above or below the galactic midplane, however a result consistent with formation of the thick disk via heating or radial migration of stars formed within the galaxy.Orbital eccentricity distribution for the thick-disk stars. [Li Zhao 2017]Further supporting these formation scenarios, the orbital eccentricities of the stars in the authors thick-disk sample indicate that they were born in the Milky Way, not accreted from disrupted satellites.The authors acknowledge that the findings in this study may still be influenced by selection effects resulting from our viewpoint within our galaxy. Nonetheless, this is interesting new data to add to our understanding of the structure and origins of the Milky Ways disk.CitationChengdong Li and Gang Zhao 2017 ApJ 850 25. doi:10.3847/1538-4357/aa93f4
Attacking the information access problem with expert systems
NASA Technical Reports Server (NTRS)
Ragusa, James M.; Orwig, Gary W.
1991-01-01
The results of applications research directed at finding an improved method of storing and accessing information are presented. Twelve microcomputer-based expert systems shells and five laser-optical formats have been studied, and the general and specific methods of interfacing these technologies are being tested in prototype systems. Shell features and interfacing capabilities are discussed, and results from the study of five laser-optical formats are recounted including the video laser, compact, and WORM disks, and laser cards and film. Interfacing, including laser disk device driver interfacing, is discussed and it is pointed out that in order to control the laser device from within the expert systems application, the expert systems shell must be able to access the device driver software. Potential integrated applications are investigated and an initial list is provided including consumer services, travel, law enforcement, human resources, marketing, and education and training.
A personal computer-based, multitasking data acquisition system
NASA Technical Reports Server (NTRS)
Bailey, Steven A.
1990-01-01
A multitasking, data acquisition system was written to simultaneously collect meteorological radar and telemetry data from two sources. This system is based on the personal computer architecture. Data is collected via two asynchronous serial ports and is deposited to disk. The system is written in both the C programming language and assembler. It consists of three parts: a multitasking kernel for data collection, a shell with pull down windows as user interface, and a graphics processor for editing data and creating coded messages. An explanation of both system principles and program structure is presented.
Godson, Richard H.
1974-01-01
GEOPAC .consists of a series of subroutines to primarily process potential-field geophysical data but other types of data can also be used with the program. The package contains routines to reduce, store, process and display information in two-dimensional or three-dimensional form. Input and output formats are standardized and temporary disk storage permits data sets to be processed by several subroutines in one job step. The subroutines are link-edited in an overlay mode to form one program and they can be executed by submitting a card containing the subroutine name in the input stream.
Product Operations Status Summary Metrics
NASA Technical Reports Server (NTRS)
Takagi, Atsuya; Toole, Nicholas
2010-01-01
The Product Operations Status Summary Metrics (POSSUM) computer program provides a readable view into the state of the Phoenix Operations Product Generation Subsystem (OPGS) data pipeline. POSSUM provides a user interface that can search the data store, collect product metadata, and display the results in an easily-readable layout. It was designed with flexibility in mind for support in future missions. Flexibility over various data store hierarchies is provided through the disk-searching facilities of Marsviewer. This is a proven program that has been in operational use since the first day of the Phoenix mission.
Flares, Magnetic Reconnections and Accretion Disk Viscosity
NASA Astrophysics Data System (ADS)
Welsh, William
2001-07-01
Accretion disks are invoked to explain a host of astrophysical phenomena, from protostellar objects to AGN. And yet the mechanism allowing accretion disks to operate are completely unknown. This proposal seeks to observe the ``smoking gun'' signature of magnetically-driven viscosity in accretion disks. Magnetically-induced viscosity is a plausible and generally accepted hypothesis {for esthetic reasons}, but it is completely untested. Determining the cause of accretion disk viscosity is of major significance to all accretion-disk powered systems {e.g. CVs, X-ray binaries, AGN and protostellar disks}. These data will also firmly establish the importance of magnetic fields in accretion disks. Because of its known flaring properites, we will observe the accretion disk in EM Cyg simulataneously with STIS/FUV and CHANDRA. The simultaneous X-rays are absolutely necessary for the unambiguous detection of accretion disk magnetic reconnection flares.
NASA Astrophysics Data System (ADS)
Krtička, J.; Kurfürst, P.; Krtičková, I.
2015-01-01
Context. Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. Aims: We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. Methods: We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. Results: The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Conclusions: The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.
GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. III. POLARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang-Condell, Hannah
2017-01-20
Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected bymore » polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.« less
NASA Astrophysics Data System (ADS)
Olofsson, J.; Henning, Th.; Nielbock, M.; Augereau, J.-C.; Juhàsz, A.; Oliveira, I.; Absil, O.; Tamanai, A.
2013-03-01
Context. Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-infrared. Around solar-type stars, very few objects (~2% of all debris disks) show emission features in mid-IR spectroscopic observations that are attributed to small, warm silicate dust grains. The origin of this warm dust could be explained either by a recent catastrophic collision between several bodies or by transport from an outer belt similar to the Kuiper belt in the solar system. Aims: We present and analyze new far-IR Herschel/PACS photometric observations, supplemented by new and archival ground-based data in the mid-IR (VLTI/MIDI and VLT/VISIR), for one of these rare systems: the 10-16 Myr old debris disk around HD 113766 A. We improve an existing model to account for these new observations. Methods: We implemented the contribution of an outer planetesimal belt in the Debra code, and successfully used it to model the spectral energy distribution (SED) as well as complementary observations, notably MIDI data. We better constrain the spatial distribution of the dust and its composition. Results: We underline the limitations of SED modeling and the need for spatially resolved observations. We improve existing models and increase our understanding of the disk around HD 113766 A. We find that the system is best described by an inner disk located within the first AU, well constrained by the MIDI data, and an outer disk located between 9-13 AU. In the inner dust belt, our previous finding of Fe-rich crystalline olivine grains still holds. We do not observe time variability of the emission features over at least an eight-year time span in an environment subjected to strong radiation pressure. Conclusions: The time stability of the emission features indicates that μm-sized dust grains are constantly replenished from the same reservoir, with a possible depletion of sub- μm-sized grains. We suggest that the emission features may arise from multi-composition aggregates. We discuss possible scenarios concerning the origin of the warm dust observed around HD 113766 A. The compactness of the innermost regions as probed by the MIDI visibilities and the dust composition suggest that we are witnessing the results of (at least) one collision between partially differentiated bodies, in an environment possibly rendered unstable by terrestrial planetary formation. Based on Herschel observations, OBSIDs: 1342227026, 1342227027, 1342237934, and 1342237935. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Based on VISIR observations collected at the VLT (European Southern Observatory, Paranal, Chile) with program 089.C-0322(A).
The onset of planet formation in brown dwarf disks.
Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P
2005-11-04
The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.
Head-Disk Interface Technology: Challenges and Approaches
NASA Astrophysics Data System (ADS)
Liu, Bo
Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.
On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1993-01-01
A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.
Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1991-01-01
An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.
Investigation of selected disk systems
NASA Technical Reports Server (NTRS)
1976-01-01
The large disk systems offered by IBM, UNIVAC, Digital Equipment Corporation, and Data General were examined. In particular, these disk systems were analyzed in terms of how well available operating systems take advantage of the respective disk controller's transfer rates, and to what degree all available data for optimizing disk usage is effectively employed. In the course of this analysis, generic functions and components of disk systems were defined and the capabilities of the surveyed disk system were investigated.
Design of a steganographic virtual operating system
NASA Astrophysics Data System (ADS)
Ashendorf, Elan; Craver, Scott
2015-03-01
A steganographic file system is a secure file system whose very existence on a disk is concealed. Customarily, these systems hide an encrypted volume within unused disk blocks, slack space, or atop conventional encrypted volumes. These file systems are far from undetectable, however: aside from their ciphertext footprint, they require a software or driver installation whose presence can attract attention and then targeted surveillance. We describe a new steganographic operating environment that requires no visible software installation, launching instead from a concealed bootstrap program that can be extracted and invoked with a chain of common Unix commands. Our system conceals its payload within innocuous files that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a file system, user interface and applications through a web architecture.
DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, D.
2011-06-03
Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating.more » In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on the disk. This construction requires that a positive pressure be applied to the rotary filter tank to prevent the membrane from rising from the disk structure and potentially contacting the filter turbulence promoter. In addition, one accident scenario is a reverse flow through the filtrate line due to mis-alignment of valves resulting in the membrane rising from the disk structure. The structural integrity of the current disk has been investigated, and shown that the disk can withstand a significant reverse pressure in a static condition. However, the disk will likely incur damage if the filter stack is rotated during a reverse pressure. The development of a laminated disk would have several significant benefits for the operation of the rotary filter including the prevention of a compromise in filter disk integrity during a reverse flow accident, increasing operational flexibility, and increasing the self cleaning ability of the filter. A laminated disk would allow the filter rotor operation prior to a positive pressure in the filter tank. This would prevent the initial dead-head of the filter and prevent the resulting initial filter cake buildup. The laminated disk would allow rotor operation with cleaning fluid, eliminating the need for a recirculation pump. Additionally, a laminated disk would allow a reverse flow of fluid through the membrane pores removing trapped particles.« less
Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle
2010-11-01
Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.
The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362
NASA Astrophysics Data System (ADS)
Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.
2009-06-01
Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks may be actively leaving the primordial disk phase. Thus, gas giant planet formation may also occur by ~5 Myr around solar/subsolar-mass stars as well.
THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoadley, K.; France, K.; McJunkin, M.
2015-10-10
Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija
2012-11-10
Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less
TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less
NASA Technical Reports Server (NTRS)
Currie, Thayne; Sicilia-Aguilar, Auora
2011-01-01
We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.
2018-05-01
We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto
2012-04-10
Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transitionmore » disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.« less
NASA Astrophysics Data System (ADS)
Currie, Thayne; Sicilia-Aguilar, Aurora
2011-05-01
We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
NASA Technical Reports Server (NTRS)
Keith, T. G., Jr.; Afjeh, A. A.; Jeng, D. R.; White, J. A.
1985-01-01
A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wind theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wake assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved.
NASA Astrophysics Data System (ADS)
Sommer-Larsen, Jesper
1996-01-01
Evolutionary models for the disks of large disk galaxies, including effects of star formation, non-instantaneous gas recycling from stars, and infall of low-metallicity gas from the halo, have been calculated and compared with data for nearby, generally large disk galaxies on present disk star-formation rates (based on integrated Hα luminosities) as a function of disk gas fractions. The data were extracted from the work by Kennicutt, Tamblyn, & Congdon. The result of the comparison suggests that for disk galaxies the Hubble sequence is a disk age sequence, with early-type disks being the oldest and late types the youngest. Under the assumption of a minimum age of the Galactic disk of 10 Gyr, the mean age of Sa/Sab galaxies, and hence the age of the universe, is found to be at least 17±2 Gyr. It is furthermore found that the disk star-formation timescale is approximately independent of disk-galaxy type. Finally, it is found that the global initial mass function (IMF) in galactic disks is 2-3 times more weighted toward high-mass stars than the Scalo "best-fitting" model for the solar-neighborhood IMF. The more top-heavy model of Kennicutt provides a good fit to observation.
Indirect and Direct Signatures of Young Planets in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Zhu, Zhaohuan; Stone, James M.; Dong, Ruobing; Rafikov, Roman; Bai, Xue-Ning
2015-12-01
Directly finding young planets around protostars is challenging since protostars are highly variable and obscured by dust. However, young planets will interact with protoplanetary disks, inducing disk features such as gaps, spiral arms, and asymmetric features, which are much easier to be detected. Transitional disks, which are protoplanetary disks with gaps and holes, are excellent candidates for finding young planets. Although these disks have been studied extensively in observations (e.g. using Subaru, VLT, ALMA, EVLA), theoretical models still need to be developed to explain observations. We have constructed numerical simulations, including dust particle dynamics and MHD effects, to study planet-disk interaction, with an emphasis on explaining observations. Our simulations have successfully reproduced spiral arms, gaps and asymmetric features observed in transitional disks. Furthermore, by comparing with observations, we have constrained protoplanetary disk properties and pinpoint potential planets in these disks. We will present progress in constructing global simulations to study transitional disks, including using our recently developed Athena++ code with static-mesh-refinement for MHD. Finally we suggest that accreting circumplanetary disks can release an observable amount of energy and could be the key to detect young planets directly. We will discuss how JWST and next generation telescopes can help to find these young planets with circumplanetary disks.
How did the rings of Uranus form?
NASA Astrophysics Data System (ADS)
Griv, E.
2007-08-01
Uranus is encircled by at least ten narrow, dense, and widely separated rings with a typical optical depth ∼ 0.3, the first nine of which (6, 5, 4, ?, ?, ?, , ?, and ? rings as seen going outward from Uranus) were discovered from the ground during observations of the planet's atmosphere in 1977. In this work, a fairly uniform, rapidly and differentially rotating disk of rarely colliding particles (when the frequency of interparticle collisions is much smaller than the local orbital frequency) in a planet- moon system is considered. A moon causes a number of orbital resonant effects in this continuous viscous (through ordinary collisions) disk. In the frame of hydrodynamical theory, the gravitational torques exerted by an exterior moon on particles at an inner Lindblad horizontal resonance and corresponding vertical resonance are estimated. It is shown that the torques are negative at these resonances, so gaps in the disk near each resonance may be created. The latter result can be used to provide a viable clue to solving of the puzzle of narrow, dense, and widely separated rings of Uranus. The model is advocated which suggests that the Uranian ring orbits have a close connection with small moons of the planet interior to the orbit of Miranda, from Cordelia to Mab discovered by VOYAGER 2 imaging observations in 1986. As angular momentum is transferred outward to the moon, material in the close vicinity of the resonances falls to the inner part of the system under study. On the other hand, in a collision disk the angular momentum is steadily concentrated onto a fraction of the mass which is spiraling away. In Uranus' system, this viscous radial spreading of the disk (and associated outward flow of angular momentum) may be terminated by the torque exerted by the moon via the low-order orbital resonance. This work was jointly supported by the Israel Science Foundation, the Binational U.S.-Israel Science Foundation, and the Israeli Ministry of Immigrant Absorption in the framework of the program "KAMEA."
The circumbinary dusty disk around the hydrogen-deficient binary star υ Sagittarii
NASA Astrophysics Data System (ADS)
Netolický, M.; Bonneau, D.; Chesneau, O.; Harmanec, P.; Koubský, P.; Mourard, D.; Stee, P.
2009-06-01
Aims: The aim of this paper is to determine the properties of the dusty environment of the hydrogen-deficient binary system υ Sgr, whose binary properties and other characteristics are poorly known. Methods: We obtained the first mid-IR interferometric observations of υ Sgr using the instrument MIDI of the VLTI used with different pairs of 1.8 m and 8 m telescopes. The calibrated visibilities, the N band spectrum, and the SED were compared with disk models computed with the MC3D code to determine the geometry and chemical composition of the envelope. Results: υ Sgr is unresolved with an 8 m telescope at 8.7 μm. We propose a disk model that agrees with the measured visibilities and the SED, consisting of a geometrically thin disk with an inner radius R_in = 6.0+0.5-1.5 AU and a scale height h100 = 3.5+2.0-1.5 AU. The chemical composition of the dust is approximately 60% of carbon dust and 40% of silicate dust, as a consequence of several episodes of mass transfers, whose chemistry was imprinted in the dust composition. We also constrain the inclination of the disk i = 50°+10°-20° and its orientation position angle PA = 80°+10°-5°. Conclusions: The mid-infrared interferometric observations of the binary star υ Sgr allowed us to constrain the geometry of the circumbinary dusty envelope. By defining the inclination and PA of the system with better accuracy than before, these observations restrict the parameter space for the orbital parameters and thus the nature of the stars orbiting in this system. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under program 079.D-0115. Visibility data are only available in electronic form at the CDS website.
NASA Astrophysics Data System (ADS)
Jönsson, H.; Ryde, N.; Schultheis, M.; Zoccali, M.
2017-02-01
Context. Determining elemental abundances of bulge stars can, via chemical evolution modeling, help to understand the formation and evolution of the bulge. Recently there have been claims both for and against the bulge having a different [α/Fe] versus [Fe/H] trend as compared to the local thick disk. This could possibly indicate a faster, or at least different, formation timescale of the bulge as compared to the local thick disk. Aims: We aim to determine the abundances of oxygen, magnesium, calcium, and titanium in a sample of 46 bulge K giants, 35 of which have been analyzed for oxygen and magnesium in previous works, and compare this sample to homogeneously determined elemental abundances of a local disk sample of 291 K giants. Methods: We used spectral synthesis to determine both the stellar parameters and elemental abundances of the bulge stars analyzed here. We used the exact same method that we used to analyze the comparison sample of 291 local K giants in Paper I of this series. Results: Compared to the previous analysis of the 35 stars in our sample, we find lower [Mg/Fe] for [Fe/H] >-0.5, and therefore contradict the conclusion about a declining [O/Mg] for increasing [Fe/H]. We instead see a constant [O/Mg] over all the observed [Fe/H] in the bulge. Furthermore, we find no evidence for a different behavior of the alpha-iron trends in the bulge as compared to the local thick disk from our two samples. Note to the reader: following the publication of the corrigendum, the subtitle of the article was corrected on April 6, 2017. "O, Mg, Co, and Ti" has been replaced by "O, Mg, Ca, and Ti".Based on observations collected at the European Southern Observatory, Chile (ESO programs 71.B-0617(A), 073.B-0074(A), and 085.B-0552(A)).
Hydrodynamical Modeling of Large Circumstellar Disks
NASA Astrophysics Data System (ADS)
Kurfürst, P.; Krtǐcka, J.
2016-11-01
Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.
The Disk and Jet of the Classical T Tauri Star AA Tau
NASA Technical Reports Server (NTRS)
Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.
NASA Astrophysics Data System (ADS)
Farahinezhad, M.; Khesali, A. R.
2018-05-01
In this paper, the effects of global magnetic field and thermal conduction on the vertical structure of the accretion disks has been investigated. In this study, four types disks were examined: Gas pressure dominated the standard disk, while radiation pressure dominated the standard disk, ADAF disk, slim disk. Moreover, the general shape of the magnetic field, including toroidal and poloidal components, is considered. The magnetohydrodynamic equations were solved in spherical coordinates using self-similar assumptions in the radial direction. Following previous authors, the polar velocity vθ is non-zero and Trφ was considered as a dominant component of the stress tensor. The results show that the disk becomes thicker compared to the non-magnetic fields. It has also been shown that the presence of the thermal conduction in the ADAF model makes the disk thicker; the disk is expanded in the standard model.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows the CFD load to be able to be readily applied, along with analytical and experimental variations in both the temporal and spatial fourier components of the excitation. In addition, this model is a first step in identifying response differences between transient and frequency forced response analysis techniques. The second phase assesses this difference for a much more realistic solid model of a bladed-disk in order to evaluate the effect of the spatial variation in loading on blade dominated modes. Neither research on the accuracy of the frequency response method when used in this context or a comprehensive study of the effect of test-observed variation on blade forced response have been found in the literature, so this research is a new contribution to practical structural dynamic analysis of gas turbines. The primary excitation of the upstream nozzles interacts with the blades on fuel pump of the J2X causes the 5th Nodal diameter modes to be excited, as explained by Tyler and Sofrin1, so a modal analysis was first performed on the beam/plate model and the 5ND bladed-disk mode at 40167 hz was identified and chosen to be the one excited at resonance (see figure 1). The first forced response analysis with this model focuses on identifying differences between frequency and transient response analyses. A hypothesis going into the analysis was that perhaps the frequency response was enforcing a temporal periodicity that did not really exist, and so therefore it would overestimate the response. As high dynamic response was a considerable source of stress in the J2X, examining this concept could potentially be beneficial for the program.
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.
2017-08-10
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less
Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666
NASA Astrophysics Data System (ADS)
Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke
2018-01-01
Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.
2017-08-01
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
Using modern imaging techniques to old HST data: a summary of the ALICE program.
NASA Astrophysics Data System (ADS)
Choquet, Elodie; Soummer, Remi; Perrin, Marshall; Pueyo, Laurent; Hagan, James Brendan; Zimmerman, Neil; Debes, John Henry; Schneider, Glenn; Ren, Bin; Milli, Julien; Wolff, Schuyler; Stark, Chris; Mawet, Dimitri; Golimowski, David A.; Hines, Dean C.; Roberge, Aki; Serabyn, Eugene
2018-01-01
Direct imaging of extrasolar systems is a powerful technique to study the physical properties of exoplanetary systems and understand their formation and evolution mechanisms. The detection and characterization of these objects are challenged by their high contrast with their host star. Several observing strategies and post-processing algorithms have been developed for ground-based high-contrast imaging instruments, enabling the discovery of directly-imaged and spectrally-characterized exoplanets. The Hubble Space Telescope (HST), pioneer in directly imaging extrasolar systems, has yet been often limited to the detection of bright debris disks systems, with sensitivity limited by the difficulty to implement an optimal PSF subtraction stategy, which is readily offered on ground-based telescopes in pupil tracking mode.The Archival Legacy Investigations of Circumstellar Environments (ALICE) program is a consistent re-analysis of the 10 year old coronagraphic archive of HST's NICMOS infrared imager. Using post-processing methods developed for ground-based observations, we used the whole archive to calibrate PSF temporal variations and improve NICMOS's detection limits. We have now delivered ALICE-reprocessed science products for the whole NICMOS archival data back to the community. These science products, as well as the ALICE pipeline, were used to prototype the JWST coronagraphic data and reduction pipeline. The ALICE program has enabled the detection of 10 faint debris disk systems never imaged before in the near-infrared and several substellar companion candidates, which we are all in the process of characterizing through follow-up observations with both ground-based facilities and HST-STIS coronagraphy. In this publication, we provide a summary of the results of the ALICE program, advertise its science products and discuss the prospects of the program.
Storage Media for Microcomputers.
ERIC Educational Resources Information Center
Trautman, Rodes
1983-01-01
Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…
Disks around stars and the growth of planetary systems.
Greaves, Jane S
2005-01-07
Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.
Recent Observational Progress on Accretion Disks Around Compact Objects
NASA Astrophysics Data System (ADS)
Miller, Jon M.
2016-04-01
Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.
The Study of Galactic Disk Kinematics with SCUSS and SDSS Data
NASA Astrophysics Data System (ADS)
Peng, Xiyan; Wu, Zhenyu; Qi, Zhaoxiang; Du, Cuihua; Ma, Jun; Zhou, Xu; Jia, Yunpeng; Wang, Songhu
2018-07-01
We derive chemical and kinematics properties of G and K dwarfs from the SCUSS and SDSS data. We aim to characterize and explore the properties of the Galactic disk in order to understand their origins and evolutions. A kinematics approach is used to separate Galactic stellar populations into the likely thin disk and thick disk sample. Then, we explore rotational velocity gradients with metallicity of the Galactic disks to provide constraints on the various formation models. We identify a negative gradient of the rotational velocity of the thin disk stars with [Fe/H], ‑18.2 ± 2.3 km s‑1 dex‑1. For the thick disk, we identify a positive gradient of the rotational velocity with [Fe/H], 41.7 ± 6.1 km s‑1 dex‑1. The eccentricity does not change with metallicity for the thin disk sample. Thick disk stars exhibit a trend of orbital eccentricity with metallicity (‑0.13 dex‑1). The thin disk shows a negative metallicity gradient with Galactocentric radial distance R, while the thick disk shows a flat radial metallicity gradient. Our results suggest that radial migration may play an important role in the formation and evolution of the thin disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvold, Erika R.; Naoz, Smadar; Vican, Laura
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined tomore » the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.« less
MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry
Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less
Upton, Hubert Allen; Garcia, Pablo
1999-08-24
A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.
Upton, H.A.; Garcia, P.
1999-08-24
A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.
ERIC Educational Resources Information Center
Weaver, Dave
Science interfacing packages (also known as microcomputer-based laboratories or probeware) generally consist of a set of programs on disks, a user's manual, and hardware which includes one or more sensory devices. Together with a microcomputer they combine to make a powerful data acquisition and analysis tool. Packages are available for accurately…
BLISS: A Computer Program for the Protection of Blood Donors
1982-06-28
EXAMPLE 5 LIST OUTPUT -OC: I L. SECU F I T NO.: 111-11-1111 NAME: ALFRED RENTA NO. OF DONATIONS: 4 VDISK; 1 DONATION NO. : 1 DATE: 81-13-81 METHOD OF...DISK # I N-.’ SOCIAL SECURITY NO.: 111-11-1111 NAME: ALFRED RENTA .,, DONATION DATE: 04-23-81 -p SOCIAL SECURITY NO.: 222-22-2222 NAME: MILO BENDER
ERIC Educational Resources Information Center
Spann, Mary Beth
This book contains 18 reproducible Math Storymats which can be a refreshing addition to any early elementary math program. Each storymat is accompanied by two separate read-aloud story selections that guide children in using plastic disk-shaped markers to interact with the mats in specific and open-ended ways. Together the mats and the…
The U.S. Environmental Protection Agency's (EPA) Industrial Toxic 33-50 Program, which is part of the Pollution Prevention Act of 1990, outlines a plan to reduce the use of some commonly used liquid solvents. One of the most widely used solvents for extraction of organic contamin...
CrossTalk. The Journal of Defense Software Engineering. Volume 17, Number 3, March 2004
2004-03-01
grace and a littlemore space to house our growing child . Memory filled, the disk over spilled and the infant was now teen wild. The coffers were plump...and a plethora of spam. Jobs reborn, lots of porn , and a case of identity scam. We were the butt of your jokes,drank all your Cokes, and programmed
The New York City Subways: The First Ten Years. A Library Research Exercise Using a Computer.
ERIC Educational Resources Information Center
Machalow, Robert
This document presents a library research exercise developed at York College which uses the Apple IIe microcomputer and word processing software--the Applewriter--to teach library research skills. Unlike some other library research exercises on disk, this program allows the student to decide on alternative approaches to solving the given problem:…
Validating early stellar encounters as the cause of dynamically hot planetary systems
NASA Astrophysics Data System (ADS)
Kalas, Paul
2017-08-01
One of the key questions concerning exoplanetary systems is why some are dynamically cold, such as TRAPPIST-1, whereas others are dynamically hot, with highly eccentric planets and/or perturbed debris disks. Dynamical theory describes a variety of plausible mechanisms, but few can be empirically tested since the critical dynamical evolution that sets the final planetary architecture is short-lived. One rare system available for testing dynamical upheaval scenarios is the 400 Myr-old Fomalhaut system. In Cycle 22 we coronagraphically studied Fomalhaut C, which is a wide M-dwarf companion to Fomalhaut A, in order to test our prediction that the unresolved, Herschel-detected debris disk around Fomalhaut C may be highly perturbed because of a recent close interaction with Fomalhaut A. Using HST/STIS we discovered a highly asymmetric feature extending northward of Fomalhaut C by 3 that resembles our model of a dynamically hot disk. However, it may be a background galaxy and the definitive test of its physical relationship to Fomalhaut C is to demonstrate common proper motion. Using Keck adaptive optics follow-up observations in J band, we did not detect the feature, and hence follow-up HST observations are the only way to test for common proper motion. Here we request a very small program to revisit Fomalhaut C with STIS in order to validate the initial discovery as a debris disk (1 proper motion between HST epochs). The astrophysical significance is demonstrating that the Fomalhaut system is a valuable case for studying dynamical upheavals via stellar encounters that are inferred to occur in the evolution of many other planetary systems.
Chemical Compositions of Young Stars in the Leading Arm of the Magellanic System
NASA Astrophysics Data System (ADS)
Zhang, L.; Moni Bidin, C.; Casetti-Dinescu, D. I.; Mendez, R. A.; Girard, T. M.; Korchagin, V. I.; Vieira, K.; van Altena, W. F.; Zhao, G.
2017-07-01
Seven element abundances (He, C, N, O, Mg, Si, and S) and kinematics were determined for eight O-/B- type stars, based on high resolution spectra taken with the MIKE instrument on the Magellan 6.5m Clay telescope (program ID: CN2014A-057). The sample is selected from 42 candidates Casetti-Dinescu et al.(2014, ApJL, 784, L37) of membership in the Leading Arm (LA) of the Magellanic System. After investigating the relationship between abundances and kinematics parameters, we found that five stars have kinematics compatible with LA membership, i.e. RV>100kms-1. For the five possible LA member stars, Mg abundance is significantly lower than that of the remaining two that are kinematical members of the Galactic disk, and is more close to the LMC values. Distances to the LA members indicate that they are at the edge of the Galactic disk, while ages are of the order of ˜ 50-70 Myr, lower than the dynamical age of the LA, suggesting a single star-forming episode in the LA. VLSR of the LA members decreases with decreasing Magellanic longitude, confirming the results of previous LA gas studies (McClure-Griffiths et al.2008, ApJ, 673, L143). Our abundance and kinematic results for the LA member stars demonstrate that parts of the LA are hydrodynamically interacting with the gaseous Galactic disk, forming young stars that are chemically distinct from those in the Galactic disk. These results can provide constraints to future models for the Magellanic leading material.
Calcium II K Line as a Measure of Activity: Meshing Sac Peak and Solis Measurements
NASA Astrophysics Data System (ADS)
Urbach, Elana; Earley, J.; Keil, S.
2012-05-01
The Calcium II K line is an important indicator of solar and stellar activity. Disk integrated Ca K measurements have been taken at the Evans Solar Facility at Sacramento Peak Observatory since 1976. This instrument will be shut down by the end of the year, and the observations will be continued by the Solis Integrated Sunlight Spectrometer (ISS), which has been taking measurements since 2006. We attempt to regress the measurements from Sacramento Peak and ISS. In addition, we compare the Ca K measurements with disk averaged line of sight magnetic field measurements, which will help us predict the magnetic field of other stars. We also compare the measurements with Lyman α, allowing us to use Ca K as an extreme ultraviolet (EUV) proxy. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) [or Research Experiences for Teachers (RET)] site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU/RET Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.
A New Way to Generate Collimated Plasma Jets?
NASA Astrophysics Data System (ADS)
Young, Rachel; Kuranz, C. C.; Sweeney, R. M.; Drake, R. P.
2012-05-01
We may have a new way to generate collimated, high-Mach-number plasma jets for laboratory astrophysics experiments. Analytic calculations show that irradiating the rear side of a cone-shaped foil can produce a collimated plasma jet with a Mach number of more than 2. Preliminary numeric simulations confirm this. We intend to test this method with a day of experiments at OMEGA (Laboratory for Laser Energetics, Rochester, New York) in April 2012; results may be available in time for this meeting. If successful, this will be the first step in an experimental campaign to investigate the affects of magnetic fields on mixing plasma jets. We hope to create a swirling disk of magnetized plasma_and possibly witness the turbulent dynamo_by firing roughly half a dozen such jets towards each other. However, for such an experiment to succeed, the disk must rotate more quickly than it expands, requiring the contributing jets to have M > 2. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
The origin of Halley-type comets: probing the inner Oort cloud
NASA Astrophysics Data System (ADS)
Levison, H.; Dones, L.; Duncan, M.
2000-10-01
We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.
Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.
Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L
2012-10-01
The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.
Long-lived Eccentric modes in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Lee, Wing-Kit; Dempsey, Adam M.; Lithwick, Yoram
2018-04-01
A theory is developed to understand global eccentric modes that are slowly precessing in protoplanetary disks. Using the typical self-similar density profiles, we found that these modes are trapped in the disk and are not sensitive to the uncertain boundary condition at the disk edge. This is contrary to common wisdom that the modes can only exist in disks with very sharp outer edge. Because of their discrete spectrum, once excited, a perturbed disk can stay eccentric for a long time until the mode is viscously damped. The physics behind the mode trapping depends ultimately on the relative importance of gas pressure and self-gravity, which is characterized by g = 1/ (Q h), where h is the disk aspect ratio and Q is the Toomre stability parameter. A very low mass disk (g ≪ 1) is pressure-dominated and supports pressure modes, in which the eccentricity is highest at the disk edge. The modes are trapped by a turning point due to the density drop in the outer disk. For a more massive disk with g of order of unity (Q~1/h~10-100), prograde modes are supported. Unlike the pressure modes, these modes are trapped by Q-barriers and result in a bump in the radial eccentricity profile. As the mode trapping is a generic phenomenon for typical disk profiles, the free linear eccentric modes are likely to be present in protoplanetary disks with a wide range of disk mass.
Conservative GRMHD simulations of moderately thin, tilted accretion disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.
2014-12-01
This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for bothmore » prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.« less
NASA Astrophysics Data System (ADS)
Geers, V. C.; van Dishoeck, E. F.; Visser, R.; Pontoppidan, K. M.; Augereau, J.-C.; Habart, E.; Lagrange, A. M.
2007-12-01
Aims:Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. Methods: VLT-VISIR N-band spectra and VLT-ISAAC and VLT-NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 μm PAH features. Spatial-extent profiles of the features and the continuum emission have been derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. Results: The 3.3, 8.6, and 11.2 μm PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1 × 10-15 and 5 × 10-17 W m-2. All 11.2 μm detections from a previous Spitzer survey are confirmed with (tentative) 3.3 μm detections, and both the 8.6 and the 11.2 μm features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34'', consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 μm emission is confined to a small radial extent of 12±3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 μm features are consistent with larger (≥100 carbon atoms) PAHs. Based on observations obtained at the European Southern Observatory, Paranal, Chile, within the observing programs 164.I-0605 (ISAAC May 2002), 074.C-0413 (NACO, March/April 2005), 075.C-0420 (ISAAC August 2005), 077.C-0668 (VISIR/ISAAC April/May 2006). Appendix A is only available in electronic form at http://www.aanda.org
Microbial Characterization Space Solid Wastes Treated with a Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.
2012-01-01
The on going purpose of the project efforts was to characterize and determine the fate of microorganisms in space-generated solid wastes before and after processing by candidate solid waste processing. For FY 11, the candidate technology that was assessed was the Heat Melt Compactor (HMC). The scope included five HMC. product disks produced at ARC from either simulated space-generated trash or from actual space trash, Volume F compartment wet waste, returned on STS 130. This project used conventional microbiological methods to detect and enumerate microorganisms in heat melt compaction (HMC) product disks as well as surface swab samples of the HMC hardware before and after operation. In addition, biological indicators were added to the STS trash prior to compaction in order to determine if these spore-forming bacteria could survive the HMC processing conditions, i.e., high temperature (160 C) over a long duration (3 hrs). To ensure that surface dwelling microbes did not contaminate HMC product disk interiors, the disk surfaces were sanitized with 70% alcohol. Microbiological assays were run before and after sanitization and found that sanitization greatly reduced the number of identified isolates but did not totally eliminate them. To characterize the interior of the disks, ten 1.25 cm diameter core samples were aseptically obtained for each disk. These were run through the microbial characterization analyses. Low counts of bacteria, on the order of 5 to 50 per core, were found, indicating that the HMC operating conditions might not be sufficient for waste sterilization. However, the direct counts were 6 to 8 orders of magnitude greater, indicating that the vast majority of microbes present in the wastes were dead or non-cultivable. An additional indication that the HMC was sterilizing the wastes was the results from the added commercial spore test strips to the wastes prior to HMC operation. Nearly all could be recovered from the HMC disks post-operation and all were showed negative growth when run through the manufacturer's protocol, meaning that the 106 or so spores impregnated into the strips were dead. Control test strips, i.e., not exposed to the HMC conditions were all strongly positive. One area of concern is that the identities of isolates from the cultivable counts included several human pathogens, namely Staphylococcus aureus. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
NASA Astrophysics Data System (ADS)
Menu, J.; van Boekel, R.; Henning, Th.; Leinert, Ch.; Waelkens, C.; Waters, L. B. F. M.
2015-09-01
Context. The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Our understanding of the evolution of these disks is rapidly changing. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. Aims: The different groups of objects can be expected to have different structural signatures in high-angular-resolution data, related to gaps, dust settling, and flaring. We aim to use such data to gain new insight into disk structure and evolution. Methods: Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We modeled the large set of observations with simple geometric models and compared the characteristic sizes among the different objects. A population of radiative-transfer models was synthesized for interpreting the mid-infrared signatures. Results: Objects with similar luminosities show very different disk sizes in the mid-infrared. This may point to an intrinsic diversity or could also hint at different evolutionary stages of the disks. Restricting this to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional (i.e., they have gaps). We find that several group II objects have mid-infrared sizes and colors that overlap with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Conclusions: Flat disks with gaps are most likely descendants of flat disks without gaps. Potentially related to the formation of massive bodies, gaps may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks or some of them may evolve further into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk. Appendices A and B are available in electronic form at http://www.aanda.org
Optical Tip Clearance Measurements as a Tool for Rotating Disk Characterization
García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Durana, Gaizka; Aldabaldetreku, Gotzon
2017-01-01
An experimental investigation on the vibrational behavior of a rotating disk by means of three optical fiber sensors is presented. The disk, which is a scale model of the real disk of an aircraft engine, was assembled in a wind tunnel in order to simulate real operation conditions. The pressure difference between the upstream and downstream sides of the disk causes an airflow that might force the disk to vibrate. To characterize this vibration, a set of parameters was determined by measuring the tip clearance of the disk: the amplitude, the frequency and the number of nodal diameters in the disk. All this information allowed the design of an upgraded prototype of the disk, whose performance was also characterized by the same method. An optical system was employed for the measurements, in combination with a strain gauge mounted on the disk surface, which served to confirm the results obtained. The data of the strain gauge coincided closely with those provided by the optical fiber sensors, thus demonstrating the suitability of this innovative technique to evaluate the vibrational behavior of rotating disks. PMID:28098845
Accretion Disks in Supersoft X-ray Sources
NASA Technical Reports Server (NTRS)
Popham, Robert; DiStefano, Rosanne
1996-01-01
We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.
High power disk lasers: advances and applications
NASA Astrophysics Data System (ADS)
Havrilla, David; Holzer, Marco
2011-02-01
Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.
Gianecini, Ricardo; Oviedo, Claudia; Irazu, Lucia; Rodríguez, Marcelo; Galarza, Patricia
2018-03-29
Gentamicin is a promising antibiotic for the treatment of multidrug-resistant gonorrhea. The aim of this study was to analyze the suitability and reliably of disk diffusion to monitor the susceptibility to gentamicin. We studied 237 Neisseria gonorrhoeae isolates obtained in 2013 and 2015. Reference MICs were correlated with inhibition zone diameters (in millimeters) of gentamicin 10 µg disks manufactured by BBL and Oxoid. The Pearson correlation between disk diffusion and agar dilution was r = -.68 (P < 0.001) for BBL disk and r = -.71 (P < 0.001) for Oxoid disk. No very major or major discrepancies were detected. However, a high percentage of minor discrepancies was observed (44.7%, BBL disk) and (21.9%, Oxoid disk). By adjusting the susceptible breakpoint to S ≥ 17 mm, the minor discrepancies rate was reduced to 19.4% (BBL disk) and 10.1% (Oxoid disk). The disk diffusion may be a screening method in clinical laboratories to detect the gentamicin susceptibility of N. gonorrhoeae. Copyright © 2018 Elsevier Inc. All rights reserved.
Foundations of Black Hole Accretion Disk Theory.
Abramowicz, Marek A; Fragile, P Chris
2013-01-01
This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).
Childhood to adolescence: dust and gas clearing in protoplanetary disks
NASA Astrophysics Data System (ADS)
Brown, Joanna Margaret
Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.
Tracking the Disk Wind Behavior of MAXI J1305-704
NASA Astrophysics Data System (ADS)
Sinclair, Kimberly Poppy; Miller, Jon M.
2017-01-01
There is still much to be understood about black hole accretion disks and their relationship to black hole disk winds. In an attempt to better understand these relationships, we have analyzed the x-ray transient black hole binary MAXI J1305-704 during its outburst in 2012 in order to draw conclusions about the parameters of its disk. The source showed strong absorption signs, as detected by Chandra, on April 21, 2012. From this date on, we analyzed SWIFT observations of the source, using XSPEC from HEASOFT, in order to find strong signals of absorption. By modeling 67 successive observations over the period of 74 days, we were able to closely track the evolution of various disk properties, from inner disk temperature, to power law index, to column density. We could also analyze various parameter relationships in order to determine if there is a statistically significant correlation between any of the properties of a disk. We found that there are strong linear relationships between disk temperature & ionization, photon index & disk temperature, and photon index & ionization. These relationships seem to imply that the corona, in addition to the disk, may be driving the wind properties. Additionally, the counterintuitive relationship between disk temperature and ionization, where disk temperature increases as ionization decreases, seems to imply that there are mechanisms at play in the disk system that are not yet fully understood.
Protostellar Disk Instabilities and the Formation of Substellar Companions
NASA Astrophysics Data System (ADS)
Pickett, Brian K.; Durisen, Richard H.; Cassen, Patrick; Mejia, Annie C.
2000-09-01
Recent numerical simulations of self-gravitating protostellar disks have suggested that gravitational instabilities can lead to the production of substellar companions. In these simulations, the disk is typically assumed to be locally isothermal; i.e., the initial, axisymmetric temperature in the disk remains everywhere unchanged. Such an idealized condition implies extremely efficient cooling for outwardly moving parcels of gas. While we have seen disk disruption in our own locally isothermal simulations of a small, massive protostellar disk, no long-lived companions formed as a result of the instabilities. Instead, thermal and tidal effects and the complex interactions of the disk material prevented permanent condensations from forming, despite the vigorous growth of spiral instabilities. In order to compare our results more directly with those of other authors, we here present three-dimensional evolutions of an older, larger, but less massive protostellar disk. We show that potentially long-lived condensations form only for the extreme of local isothermality, and then only when severe restrictions are placed on the natural tendency of the protostellar disk to expand in response to gravitational instabilities. A more realistic adiabatic evolution leads to vertical and radial expansion of the disk but no clump formation. We conclude that isothermal disk calculations cannot demonstrate companion formation by disk fragmentation but only suggest it at best. It will be necessary in future numerical work on this problem to treat the disk thermodynamics more realistically.
The DiskMass Survey. II. Error Budget
NASA Astrophysics Data System (ADS)
Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas
2010-06-01
We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Sicilia-Aguilar, Aurora
We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less
The Long-Lived Disks in the η Chamaeleontis Cluster
NASA Astrophysics Data System (ADS)
Sicilia-Aguilar, Aurora; Bouwman, Jeroen; Juhász, Attila; Henning, Thomas; Roccatagliata, Veronica; Lawson, Warrick A.; Acke, Bram; Feigelson, Eric D.; Tielens, A. G. G. M.; Decin, Leen; Meeus, Gwendolyn
2009-08-01
We present Infrared Spectrograph spectra and revised Multiband Imaging Photometer photometry for the 18 members of the η Chamaeleontis cluster. Aged 8 Myr, the η Cha cluster is one of the few nearby regions within the 5-10 Myr age range, during which the disk fraction decreases dramatically and giant planet formation must come to an end. For the 15 low-mass members, we measure a disk fraction ~50%, high for their 8 Myr age, and four of the eight disks lack near-IR excesses, consistent with the empirical definition of "transition" disks. Most of the disks are comparable to geometrically flat disks. The comparison with regions of different ages suggests that at least some of the "transition" disks may represent the normal type of disk around low-mass stars. Therefore, their flattened structure and inner holes may be related to other factors (initial masses of the disk and the star, environment, binarity), rather than to pure time evolution. We analyze the silicate dust in the disk atmosphere, finding moderate crystalline fractions (~10%-30%) and typical grain sizes ~1-3 μm, without any characteristic trend in the composition. These results are common to other regions of different ages, suggesting that the initial grain processing occurs very early in the disk lifetime (<1 Myr). Large grain sizes in the disk atmosphere cannot be used as a proxy for age, but are likely related to higher disk turbulence. The dust mineralogy varies between the 8-12 μm and the 20-30 μm features, suggesting high temperature dust processing and little radial mixing. Finally, the analysis of IR and optical data on the B9 star η Cha reveals that it is probably surrounded by a young debris disk with a large inner hole, instead of being a classical Be star.
Multilayer Disk Reduced Interlayer Crosstalk with Wide Disk-Fabrication Margin
NASA Astrophysics Data System (ADS)
Hirotsune, Akemi; Miyauchi, Yasushi; Endo, Nobumasa; Onuma, Tsuyoshi; Anzai, Yumiko; Kurokawa, Takahiro; Ushiyama, Junko; Shintani, Toshimichi; Sugiyama, Toshinori; Miyamoto, Harukazu
2008-07-01
To reduce interlayer crosstalk caused by the ghost spot which appears in a multilayer optical disk with more than three information layers, a multilayer disk structure which reduces interlayer crosstalk with a wide disk-fabrication margin was proposed in which the backward reflectivity of the information layers is sufficiently low. It was confirmed that the interlayer crosstalk caused by the ghost spot was reduced to less than the crosstalk from the adjacent layer by controlling backward reflectivity. The wide disk-fabrication margin of the proposed disk structure was indicated by experimentally confirming that the tolerance of the maximum deviation of the spacer-layer thickness is four times larger than that in the previous multilayer disk.
Reliability model of disk arrays RAID-5 with data striping
NASA Astrophysics Data System (ADS)
Rahman, P. A.; D'K Novikova Freyre Shavier, G.
2018-03-01
Within the scope of the this scientific paper, the simplified reliability model of disk arrays RAID-5 (redundant arrays of inexpensive disks) and an advanced reliability model offered by the authors taking into the consideration nonzero time of the faulty disk replacement and different failure rates of disks in normal state of the disk array and in degraded and rebuild states are discussed. The formula obtained by the authors for calculation of the mean time to data loss (MTTDL) of the RAID-5 disk arrays on basis of the advanced model is also presented. Finally, the technique of estimation of the initial reliability parameters, which are used in the reliability model, and the calculation examples of the mean time to data loss of the RAID-5 disk arrays for the different number of disks are also given.
Vertical Structure of NGC 4631
NASA Astrophysics Data System (ADS)
Ann, Hong Bae; Seo, Mira Seo; Baek, Su-Ja
2011-02-01
We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (˜450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights (z_{thick}/z_{thin}) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.
Stagger angle dependence of inertial and elastic coupling in bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.; Mokadam, D. R.
1984-01-01
Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.
Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure
NASA Technical Reports Server (NTRS)
Gayda, John; Kantzos, Pete
2006-01-01
Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.
Developmental changes in the adhesive disk during Giardia differentiation.
Palm, Daniel; Weiland, Malin; McArthur, Andrew G; Winiecka-Krusnell, Jadwiga; Cipriano, Michael J; Birkeland, Shanda R; Pacocha, Sarah E; Davids, Barbara; Gillin, Frances; Linder, Ewert; Svärd, Staffan
2005-06-01
Giardia lamblia is a protozoan parasite infecting the upper mammalian small intestine. Infection relies upon the ability of the parasite to attach to the intestine via a unique cytoskeletal organelle, the ventral disk. We determined the composition and structure of the disk throughout the life cycle of the parasite and identified a new disk protein, SALP-1. SALP-1 is an immunodominant protein related to striated fiber-assemblin (SFA). The disk is disassembled during encystation and stored as four fragments in the immobile cyst. Serial Analysis of Gene Expression (SAGE) showed that the mRNA levels of the disk proteins decreased in encystation but two-dimensional protein gels showed that the protein levels were more constant. The parasite emerges without a functional disk but the four disk fragments are quickly reassembled into two new disks on the dividing, early excysting form. Thus, disk proteins are stored within the cyst, ready to be used in the rapid steps of excystation.