12. Credit BG. Typical view down one of the underground ...
12. Credit BG. Typical view down one of the underground tunnels connecting the Control and Recording Center with all the JPL Edwards Facility test stands. In addition to personnel traffic, the tunnel system carried electrical power cables, instrumentation and control circuits, and high pressure helium and nitrogen lines. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
7. This photographic copy of an engineering drawing displays the ...
7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
10. Credit BG. Interior of control and observation room at ...
10. Credit BG. Interior of control and observation room at Control and Recording Center Building 4221/E-22. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
11. Credit BG. Interior of control and observation room at ...
11. Credit BG. Interior of control and observation room at Control and Recording Center, showing detail of switchboard and closed circuit television monitors. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
1. Photographic copy of fire alarm plan for Control and ...
1. Photographic copy of fire alarm plan for Control and Recording Center Building 4221/E-22, showing layout of rooms. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Edwards Test Station, Fire Alarm Plan, Bldg. E-22,' drawing no. EFA/11-1, December 15, 1961. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This image depicts the southwest and southeast facades ...
Credit PSR. This image depicts the southwest and southeast facades as seen when looking north. The concrete block lean-to in the foreground is the facility control room. Between this room and the X-ray room is a four foot thick concrete wall (which can be seen as a "step" between the lowest and highest roof planes) intended as X-ray shielding for operators. The X-ray chamber faces away from the JPL Edwards Facility toward a fenced desert area - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA
13. Photographic copy of site plan displaying Test Stand 'C' ...
13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
2. Credit PSR. The Administration/Shops Building appears here as the ...
2. Credit PSR. The Administration/Shops Building appears here as the camera looks east (84°). To the right in the view is the Guard House (Building 4279/E-80) which controls entry to the JPL facility. At left is a warehouse (Building 4287/E88). Overhead utility lines supply alternating current to the facility. - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
4. Credit BG. View looking northwest at Control and Recording ...
4. Credit BG. View looking northwest at Control and Recording Center 4221/E-22, as seen from Test Stand 'C' tower. The Test Stand 'C' workshop 4213/E-14 appears at lower left of the image. To the south of 4221/E-22 lies Blower House No. 2, Building 4226/E-27, used for ventilating the tunnel system which connected 4221/E-22 to all test stands. At the southeast corner of 4221/E-22 is the Booster Pumping Station, Building 4227/E-28. To the northwest of 4221/E-22 is a Water Storage Tank, Building 4289/E-90 which supplies the water and firefighting systems at the JPL Edwards facility. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
9. Credit WCT. Photographic copy of photograph, interior view of ...
9. Credit WCT. Photographic copy of photograph, interior view of control room under construction in Control and Recording Center Building 4221/E-22. Stairway to tunnel system is in left background. (JPL negative no. 384-1927, 26 May 1959) - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This interior view of the building equipment room ...
Credit PSR. This interior view of the building equipment room displays heat exchangers and fan units with insulated piping for hot and cold water at left. Environmental controls and fire fighting system controls appear at right - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. Interior view shows the building equipment room as ...
Credit PSR. Interior view shows the building equipment room as seen looking south southwest (206°) from the doorway. The control console contains switches for chiller pumps, fans, heaters, temperature controls, and alarms - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA
4. Credit WCT. Original 2'" x 21" color negative is ...
4. Credit WCT. Original 2-'" x 2-1" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the control room in use, with JPL employees Ron Wright, Harold Anderson, and John Morrow presiding. (JPL negative no. JPL-10288A, 27 January 1989.) - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Photographic copy of photograph, aerial view looking north at Jet ...
Photographic copy of photograph, aerial view looking north at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of 'D' stand construction and installation of underground tunnel system. Test stands 'A,' 'B,' 'C,' and 'D' are in view; the Control and Recording Center (Building 4221/E-22) is still under construction. (JPL negative no. 384-1917-A, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
This photocopy of an engineering drawing shows the floor plan ...
This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA
This photographic copy of an engineering drawing shows floor plans, ...
This photographic copy of an engineering drawing shows floor plans, sections and elevations of Building E-86, with details typical of the steel frame and "Transite" building construction at JPL Edwards Facility. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office: "Casting & Curing, Building E-86, Floor Plan, Elevations & Section," drawing no. E86/6, 25 February 1977. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA
1. West elevations of barrier (Building 4216/E17) and Monitor Building ...
1. West elevations of barrier (Building 4216/E-17) and Monitor Building (4203/E-4). Barrier is built of wood infilled with earth, intended to protect Monitor Building from flying debris should anything at Test Stand 'A' explode. Building 4203/E-4 is built of reinforced concrete; equipment on top of it is cooling tower for refrigeration equipment in Test Stand 'A' machinery room. Electrical utility poles are typical at the facility, and carry 4,800 volts 3-phase alternating current. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Control Center, Edwards Air Force Base, Boron, Kern County, CA
View east northeast at Test Stand 'A' complex from road, ...
View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
2. Credit WCT. Original 21/4"x22/4" color negative is housed in ...
2. Credit WCT. Original 2-1/4"x2-2/4" color negative is housed in the JPL Archives, Pasadena, California. This view depicts the interior of Test Stand "G" with its "Vibration System consisting of a MB-C210E Electrodynamic Exciter having a maximum sinusoidal force output of 28,000 lbs. and a noload-peak acceleration sine wave of 80 gs." (Quotation based on JPL photo caption in notebook The Jet Propulsion Laboratory Edwards Facility, Jet Propulsion Laboratory, California Institute of Technology, no date; "80 gs" means 80 times the force of gravity.) This machine could be controlled to deliver a wide variety of perturbations (JPL negative no. 344-3802B, 27 February 1981). - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...
This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
6. Credit WCT. Original 21" x 2Y" color negative is ...
6. Credit WCT. Original 2-1" x 2-Y" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow weigh out small amounts of an undetermined substance according to a solid propellant formula (JPL negative no. JPL-10277AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Battle Management/Command and Control, and Communications (BM/C3), Environmental Assessment
1987-08-01
Highway 94 outside the base (39). This addition can be mitigated through the use of van pools and other conservation measures. 3-4 Water Quality All...Facility Description Miller, Jim MS Earth Resources Reviewer Milliken, Larry BS Earth Resources Project Description Morelan, Edward A. MS Earth...1987. Telephone conversation with Edward A. Morelan. 11. Dennary, Andy, Civil Engineering Department, Peterson Air Force Base, Colorado. 21 May 1987
Credit BG. Northeast and northwest facades of Building 4496 (Security ...
Credit BG. Northeast and northwest facades of Building 4496 (Security Facility) as seen when looking south (178°) from entrance to secured area. The Control Tower (Building 4500) appears in background. The Security Facility is part of the secured Building 4505 complex - Edwards Air Force Base, North Base, Security Facility, Northeast of A Street, Boron, Kern County, CA
Western Aeronautical Test Range
NASA Technical Reports Server (NTRS)
Sakahara, Robert D.
2008-01-01
NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.
Credit PSR. This view looks northeast (54°) at the open ...
Credit PSR. This view looks northeast (54°) at the open burn unit as it is seen on approach from Circle Drive. The metal shed in front of the earth mound personnel shield contained controls for a stove that was formerly used to burn scrap propellants in the adjacent pit (see HAER photo CA163-V-1). Regulations changed to permit open pit burning of such materials - Jet Propulsion Laboratory Edwards Facility, Incinerator, Edwards Air Force Base, Boron, Kern County, CA
9. Photographic copy of engineering drawing showing the mechanical layout ...
9. Photographic copy of engineering drawing showing the mechanical layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Control Elevations & Schematics,' sheet M-5 (JPL sheet number E18/44-0), 1 September 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Photographic copy of photograph, aerial view looking down at Jet ...
Photographic copy of photograph, aerial view looking down at Jet Propulsion Laboratory, Edwards Test Station complex in 1961, with north toward the top of the view. Dd test station has been added to Test Stand 'D,' liquid nitrogen storage facility E-63 has been built, as well as several adjuncts to Test Stand 'C' behind earth barriers, such as oxidizer facility at 4263/E-64 and hydrogen tank at 4264/E-65. (JPL negative no. 384-3003-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
4. This photographic copy of an engineering drawing shows the ...
4. This photographic copy of an engineering drawing shows the plan and details for Test Stand "G" and the placement of the vibrator. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: "Vibration Test Facility-Bldg E-72, Floor & Roof Plans, Sections, Details & Door Schedule," drawing no. E72/2-5, 21 May 1964. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
This group view shows propellant preparation buidling 4241/E42, 4242/E43, and ...
This group view shows propellant preparation buidling 4241/E-42, 4242/E-43, and northwest (314 degrees). Note warning lights at the extreme left of the view, and the use of lightning rods on structures. Building 4241/E-42 housed solid rocket motors after they were cast and awaiting curing. Building 4241/E-42 was the Preparation Control center which housed remote controls for operations in the other two buildings. Building 4243/E-44 housed a remotely controlled mandrel puller for pulling mandrels (casting cores) from cured grain, and a vertical lathe for trimming grain to shape and size. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Louisiana Governor John Bel Edwards Visits NASA’s Rocket Factory
2017-11-01
NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.
Strategic Defense Initiative Demonstration/Validation Program: Environmental Assessments Summary
1987-08-01
TECHNOLOGY TESTS BY FACILITY TECHNOLOGY FACILITY BSTS SSTS GSTS SBI ERIS BM/C 3 Alabama Advanced Research Center A,S,C * California Edwards Air Force Base...Alabama - Advanced Research Center o California - Edwards Air Force Base o Florida - Eglin Air Force Base Kennedy Space Center o Maryland - Harry Diamond...BSTS SSTS GSTS SBI ERIS BM/C 3 Alabama Advanced Research Center A,S,C * California Edwards Air Force Base C Vandenberg Air Force Base/ F (1) F (2) F( 2
2017-11-01
NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.
3. Credit JPL. Photographic copy of photograph, view south into ...
3. Credit JPL. Photographic copy of photograph, view south into oxidizer tank enclosure and controls on the north side of Test Stand 'C' shortly after the stand's construction in 1957 (oxidizer contents not determined). To the extreme left appear fittings for mounting an engine for tests. Note the robust stainless steel flanges and fittings necessary to contain highly pressurized corrosive chemicals. (JPL negative no. 384-1608-C, 29 August 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Louisiana Governor John Bel Edwards Visits NASA’s Rocket Factory
2017-11-01
Louisiana Gov. John Bel Edwards visited NASA’s Michoud Assembly Facility in New Orleans and spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. NASA is building its new deep space rocket, the Space Launch System, and the Orion spacecraft at Michoud.
Credit PSR. This view shows the south and east facades ...
Credit PSR. This view shows the south and east facades of this concrete block facility as seen when looking northwest (320°). Note the outdoor emergency shower; the roof has lightning rods installed at corners - Jet Propulsion Laboratory Edwards Facility, Oxidizer Weigh & Storage Building, Edwards Air Force Base, Boron, Kern County, CA
Hazardous Waste Cleanup: General Electric - Fort Edward in Fort Edward, New York
This 32-acre General Electric (GE) facility is located approximately 800 feet east of the Hudson River between the Villages of Fort Edward to the south and Hudson Falls to the north. A 200-foot-wide parcel west of the main portion of the site, between Alle
Photographic copy of photograph, view looking northeast of JPL Edwards ...
Photographic copy of photograph, view looking northeast of JPL Edwards Test Station as it looked in 1945. To the immediate right of the Test Stand 'A' tower stands a concrete monitor building or blockhouse (now Building 4203/E-4) for observation and control of tests. Other frame buildings housed workshop and administrative functions. Long structure behind automobiles was designated 4207/E-8 and was used for instrument repair and storage, a cafeteria, machine and welding shops. To the immediate south of 4207/E-8 were 4200/E-1 (used as an office and photographic laboratory) and 4205/E-6 (guardhouse, with fire extinguisher mounted on it). To the northeast of 4205/E-6 was 4204/E-5 (a propellant storage dock, with shed roof). Buildings 4200/E-1, 4205/E-6 and 4207/E-8 were demolished in 1983. Note the absence of trees. (JPL negative no. 383-1297, July 1946) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Louisiana Governor John Bel Edwards Tours NASA Michoud Assembly Facility
2017-11-01
This B-roll video shows Louisiana Gov. John Bel Edwards when visited NASA’s Michoud Assembly Facility in New Orleans on Nov. 1, 2017. He spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. He toured Michoud with Todd May, the director of NASA’s Marshall Space Flight Center, which manages Michoud. NASA is building its new deep space rocket, the Space Launch System (SLS), and the Orion spacecraft at Michoud. New Orleans Mayor Mitch Landrieu and Michoud Director Keith Hefner, along with members of the Louisiana Economic Development accompanied the Edwards and May on the tour. They saw the Vertical Assemby Center where large structures of the SLS core stage are welded.
8. Credit JPL. Photographic copy of photograph, view west down ...
8. Credit JPL. Photographic copy of photograph, view west down from Test Stand 'A' tower across newly installed tunnel tube to corner of Building 4201/E-2, Test Stand 'A' Workshop (demolished in 1985). Note the wooden retaining structure erected in the foreground to retain earth once the tunnel trench is backfilled (this retaining wall remained in 1994). Note also the propellant control piping on the Test Stand 'A' platform in the immediate foreground. (JPL negative no. 384-1547-C, 6 February 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This view shows the southeast and northeast facades ...
Credit PSR. This view shows the southeast and northeast facades of building as seen when looking west (264°). The open double doors reveal the curing room, which was kept at ambient temperatures. A maximum of 10,000 pounds (4,545 Kg) of class 1.1 propellants were permitted in this room, along with a maximum of 4 people. A separate room at the west end of the building housed temperature control equipment. Note the lightning rods on roof corners - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA
1. Photographic copy of original engineering drawing for Test Stand ...
1. Photographic copy of original engineering drawing for Test Stand 'C.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'New Test Stand Plan -- Edwards Test Station' drawing no. E18/2-3, 18 January 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
3. Credit PSR. This view looks south southwest (206°) at ...
3. Credit PSR. This view looks south southwest (206°) at the north and east elevations. The large wing dominating this view contains a machine shop and other facilities used to build or maintain test equipment. A small gasoline facility for automobiles was formerly located near the east end of the building; it was removed in 1995. - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
02-NIF Dedication: Edward Moses
Edward Moses
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.
2. Credit JPL. Photographic copy of photograph, looking northeast at ...
2. Credit JPL. Photographic copy of photograph, looking northeast at unfinished original Test Stand 'C' construction. A portion of the corrugated steel tunnel tube connecting Test Stand 'C' to the first phase of JPL tunnel system construction is visible in the foreground. The steel frame used to support propellant tanks and engine equipment has been erected. The open trap door leads to a chamber inside the Test Stand 'C' base where gaseous nitrogen is distributed via manifolds to Test Stand 'C' control valves. (JPL negative no. 384-1568-A, 19 March 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. The southeast and northeast facades appear as seen ...
Credit BG. The southeast and northeast facades appear as seen when looking due west (270°). Doors to the mixer room are open; the smaller closed doors lead to a building equipment room containing heating and refrigeration units for temperature control of the mixer and its contents. The mixer room doors and sidewalls are filled with foam and constructed to blow out in case of an explosion in the mixer. Note the lightning rods and two exterior emergency showers. The two tanks at the eastern corner of the building are unidentified - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This photograph displays the south and east facades ...
Credit PSR. This photograph displays the south and east facades of the storage facility as seen when looking to the west northwest (288°). The concrete pit in the foreground is a catch basin designed to hold run-off from spilled oxidizers or clean-up operations, thus preventing them from contaminating the soil - Jet Propulsion Laboratory Edwards Facility, Solid Oxidizer Storage, Edwards Air Force Base, Boron, Kern County, CA
F-15 HiDEC taxi on ramp at sunrise
1991-09-23
NASA's highly modified F-15A (Serial #71-0287) used for digital electronic flight and engine control systems research, at sunrise on the ramp at the Dryden Flight Research Facility, Edwards, California. The F-15 was called the HIDEC (Highly Integrated Digital Electronic Control) flight facility. Research programs flown on the testbed vehicle have demonstrated improved rates of climb, fuel savings, and engine thrust by optimizing systems performance. The aircraft also tested and evaluated a computerized self-repairing flight control system for the Air Force that detects damaged or failed flight control surfaces. The system then reconfigures undamaged control surfaces so the mission can continue or the aircraft is landed safely.
1. Photographic copy of engineering drawing showing structure of Test ...
1. Photographic copy of engineering drawing showing structure of Test Stand 'B' (4215/E-16), also known as the 'Short Snorter.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Structural Addition - Bldg. E-12, Edwards Test Station,' drawing no. E12/1-1, 8 August 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
1. Credit PSR. This view displays the north and west ...
1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California
2004-10-04
The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training.
Credit PSR. This view shows the west and north facades ...
Credit PSR. This view shows the west and north facades of the storage facility as seen when approaching from Circle Drive, looking east (92°). The metal shed at right was the original structure; the second shed is a later addition. All structures are metal frame covered with metal cladding, grounding them electrically and rendering them fireproof. The entire facility was rated for a maximum of 100,000 pounds (45,450 Kg) of class 1.3 materials, and four personnel - Jet Propulsion Laboratory Edwards Facility, Solid Oxidizer Storage, Edwards Air Force Base, Boron, Kern County, CA
2. Credit BG. The northwest and southwest sides of the ...
2. Credit BG. The northwest and southwest sides of the building appear as seen when looking northeast (38°). (Photo taken from location near Building 4275/E-76, Standby Generator.) Note the extent of the barricades. On the corner of the roof at the extreme right of this view appears a small funnel; according to JPL personnel, this device collected rainwater and conducted it through a pipe which appears at the corner of the building below. The water was used to flush any wastes from the nearby drainage trenches in the exterior concrete pads. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Engineering Effects of Advanced Composite Materials on Avionics.
1981-07-01
facilities. 77 zz~J 319 Electromagnetic-Interference Control EDWARD F. VANCE, SENIOR MEMBER, IEEE Abstract-Tbe use of shield topology concepts to design ...34 and "inside" are interchanged in Fig. 8 and A typical interference- control design for controlling both "Zone 1" and "Zone 2" are interchanged in Fig...P1 ’"EMP engineering and design principles." Bell Telephone Lab A systematic approach to interference control has as its NJ. 1975. foundation
Photographic copy of photograph, aerial view looking south at Jet ...
Photographic copy of photograph, aerial view looking south at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of Test Stand 'D' construction and installation of underground tunnel system. Test Stand 'D' is in the foreground, Test Stand 'A' complex in the background. Roads are as yet unpaved. (JPL negative no. 384-1917-B, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
1. Credit BG. The southwest and southeast sides of Weigh ...
1. Credit BG. The southwest and southeast sides of Weigh & Control appear as the camera looks due north (0°). Barricades on the northwest and northeast sides protect this structure from effects of any explosions at the Mixer Building (4233/E34), Oxidizer Grinder Building (4235/E-36) or other nearby propellant processing structures. The proliferation of doors is because many of the rooms have no interior interconnection--a safeguard to contain and prevent the internal spread of fires or explosions. Signs are posted on the doors describing maximum allowable propellant weights and number of personnel in rooms. A safety shower is featured on the southern exterior corner of the building. Apparatus on the roof consists of air conditioning ducts and fume vents. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
NASA Technical Reports Server (NTRS)
Cousineau, R. D.; Crook, R., Jr.; Leeds, D. J.
1985-01-01
This report discusses a geological and seismological investigation of the NASA Ames-Dryden Flight Research Facility site at Edwards, California. Results are presented as seismic design criteria, with design values of the pertinent ground motion parameters, probability of recurrence, and recommended analogous time-history accelerograms with their corresponding spectra. The recommendations apply specifically to the Dryden site and should not be extrapolated to other sites with varying foundation and geologic conditions or different seismic environments.
Photographic copy of site plan for proposed Test Stand "D" ...
Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
4. Credit BG. View looking northeast at west facade of ...
4. Credit BG. View looking northeast at west facade of Test Stand 'E' 4259/E-60, solid rocket motor test facility. Wooden barricades to north and south of 4259/E-60 protect personnel and other facilities from flying debris in case of inadvertent explosions. Test Stand 'E' is accessed from the tunnel system by the inclined tube shown at the center of the image adjacent to a ladder. Racks running to the north (having the appearance of a low fence) carry electrical cables to Test Stand 'G' (Building 4271/E-72). - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
7. Credit BG. View looking west into small solid rocket ...
7. Credit BG. View looking west into small solid rocket motor testing bay of Test Stand 'E' (Building 4259/E-60). Motors are mounted on steel table and fired horizontally toward the east. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
Detail of north side of Test Stand 'A' base, showing ...
Detail of north side of Test Stand 'A' base, showing tanks for distilled water (left), fuel (center), and gaseous nitrogen (right). Other tanks present for tests were removed before this image was taken. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This view shows the north and west facades ...
Credit PSR. This view shows the north and west facades of the building as seen when looking east southeast (1100). This structure was used to test regenerative fuel cells in 1995 - Jet Propulsion Laboratory Edwards Facility, Weigh & Test Preparation Building, Edwards Air Force Base, Boron, Kern County, CA
Looking northeast from Test Stand 'A' superstructure towards Test Stand ...
Looking northeast from Test Stand 'A' superstructure towards Test Stand 'D' tower (4223/E-24, left background), Test Stand 'C' tower (4217/E-18, center), and Test Stand 'B' (4215/E-16, right foreground). - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
STS-29 Landing Approach at Edwards
1989-03-18
The STS-29 Space Shuttle Discovery mission approaches for a landing at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli.
Photographic copy of plan of new Dy horizontal station and ...
Photographic copy of plan of new Dy horizontal station and accumulator additions to Test Stand "D," also showing existing Dd test station. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: "Jet Propulsion Laboratory-Edwards Test Station, Motive Steam Supply & Ejector Pumping System: Plan - Test Stand "D," sheet M-3 (JPL sheet number E24/33), 21 December 1976 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Photographic copy of photograph, view of rail launcher used for ...
Photographic copy of photograph, view of rail launcher used for 'Baby Corporal E' missiles on 6 and 7 May 1946 at JPL-Muroc Army Air Base (later Edwards Air Force Base) (This launcher was also used for 'Baby WAC' missiles at Goldstone, Fort Irwin, California in 1945). Photocopy of 35mm photograph made in December 1994, looking west with Test Stand 'A' immediately behind the rail launcher. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California
2004-10-04
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.
Photographic copy of photograph, aerial view looking north and showing ...
Photographic copy of photograph, aerial view looking north and showing Test Stand 'A' (at bottom), Test Stand 'B' (upper right), and a portion of Test Stand 'C' (top of view). Compare HAER CA-163-1 and 2 and note addition of liquid nitrogen storage tank (Building 4262/E-63) to west of Test Stand 'C' as well as various ancillary facilities located behind earth barriers near Test Stand 'C.' (JPL negative no. 384-3006-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
6. Credit WCT. Photographic copy of photograph, Advanced Solid Rocket ...
6. Credit WCT. Photographic copy of photograph, Advanced Solid Rocket Motor (ASRM) test in progress at Test Stand 'E.' It was a JPL/Marshall Space Flight Center project. (JPL negative no. 344-4816 19 February 1982) - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 2'" x 2'" color negative is housed ...
Credit WCT. Original 2-'" x 2-'" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows small autoclave demonstrated by JPL staff member Milton Clay (JPL negative no. JPL-10286AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA
The Small Rural Schools of Prince Edward Island.
ERIC Educational Resources Information Center
Edmonds, E. L.
In 1973, there were 56 one- and two-room elementary schools in Prince Edward Island (Canada). As part of a descriptive survey of these schools, now closed by consolidation, researchers visited each school in 1973 and recorded details of the buildings, facilities, and school organizations. Teachers from 47 schools and their 737 students in grades…
2. Credit GE. Photographic copy of photograph, refractory brick lining ...
2. Credit GE. Photographic copy of photograph, refractory brick lining being laid in Test Stand 'A' flame pit to protect concrete from heat of rocket engine flames. (JPL negative no. 383-764, 8 March 1945) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul
2005-01-01
Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.
3. Credit BG. The interior of the control room appears ...
3. Credit BG. The interior of the control room appears in this view, looking north (0°). The control console in the room center permitted remote control of various propellant grinders and mixers in surrounding buildings. Television monitors (absent from their mounts in this view) permitted direct viewing of operating machinery. From foreground to background: Panel (1) contains OGAR warning light switches for Curing Buildings E-39, E-40, E-41 and E-86; (O=off, G=green safe, A=amber caution, R=red danger) Panel (2) E-85 Oxidizer Dryer Building console: OGAR switch Panel (3) E-84 Oxidizer Grinder Building console: controls for vibrator, feed, and hammer; Panel (4) E-36 Oxidizer Grinder Building console: controls for vibrator, feed, hammer, attritor, and SWECO ("SWECO" undefined) Panels (5) & (6) blank Panel (7) E-38 Mixer & Casting Building console: vacuum pump, blender, heating and cooling controls Panel (8) E-37 Mixer & Casting Building console: motor controls for 1 pint, 1 gallon, 5 gallon and 30 gallon mixers; vacuum pump, deluge (fire suppression), pot up/down, vibrator, feed, and SWECO. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
5. Credit BG. This interior view shows the weigh room, ...
5. Credit BG. This interior view shows the weigh room, looking west (240°): Electric lighting and scale read-outs (boxes with circular windows on the wall) are fitted with explosion-proof enclosures; these enclosures prevent malfunctioning electrical parts from sparking and starting fires or explosions. One marble table and scale have been removed at the extreme left of the view. Two remaining scales handle small and large quantities of propellants and additives. Marble tables do not absorb chemicals or conduct electricity; their mass also prevents vibration from upsetting the scales. The floor has an electrically conductive coating to dissipate static electric charges, thus preventing sparks which might ignite propellants. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. View looks west southwest (238°) at the north ...
Credit PSR. View looks west southwest (238°) at the north and east elevations of the liner lab. Solid rocket motor casings receive specially formulated rubber insulating liners that protect the casings from the heat generated by burning solid motors - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view west into Dd ...
Credit WCT. Photographic copy of photograph, view west into Dd or Dy ejector, showing steam nozzles which drive the ejector to evacuate the test cell to which it is connected. (JPL negative no. 344-2516-B, 29 August 1977) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1. Photographic copy of engineering drawing showing elevations and sections ...
1. Photographic copy of engineering drawing showing elevations and sections of Test Stand 'E' (Building 4259/E-60). California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Solid Propellant Test Stand E-60 - Elevations & Sections,' sheet E60/10, no date. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
4. Credit WCT. Photographic copy of photograph, test Stand 'B' ...
4. Credit WCT. Photographic copy of photograph, test Stand 'B' set up for shock tube and research on ship-to-ship fueling problems for the U.S. Coast Guard. (JPL negative no. 344-3743-A, October or November 1980) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, oxidizer and fuel tank ...
Credit WCT. Photographic copy of photograph, oxidizer and fuel tank assembly for engine tests being raised by crane for permanent installation in Test Stand "D" tower. Each tank held 170 gallons of propellants. (JPL negative 384-2029-B, 7 August 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This view shows the east and north facades ...
Credit PSR. This view shows the east and north facades of the storage facility as seen when looking south southwest. This fireproof all-metal structure was rated for a maximum of 50,000 pounds (22,730 Kg) of class 1.4 materials and four personnel. The concrete catch basin at left was designed to retain any spilled chemicals, preventing them from contaminating the soil. Spills were collected from the building and apron via a concrete lined gutter - Jet Propulsion Laboratory Edwards Facility, Solid Fuel Storage Building, Edwards Air Force Base, Boron, Kern County, CA
Western aeronautical test range real-time graphics software package MAGIC
NASA Technical Reports Server (NTRS)
Malone, Jacqueline C.; Moore, Archie L.
1988-01-01
The master graphics interactive console (MAGIC) software package used on the Western Aeronautical Test Range (WATR) of the NASA Ames Research Center is described. MAGIC is a resident real-time research tool available to flight researchers-scientists in the NASA mission control centers of the WATR at the Dryden Flight Research Facility at Edwards, California. The hardware configuration and capabilities of the real-time software package are also discussed.
Credit WCT. Photographic copy of photograph, view north across "neutralization ...
Credit WCT. Photographic copy of photograph, view north across "neutralization pond" at Test Stand "D," showing complete Dd station with new Y-Stage and Z-Stage steam-driven ejectors, and "Hyprox" steam generator which powered ejectors. (JPL negative no. 384-3356-B, 20 November 1962) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2. Photographic copy of engineering drawing showing mechanical systems in ...
2. Photographic copy of engineering drawing showing mechanical systems in plan and sections of Test Stand 'E,' including tunnel entrance. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Bldg. E-60 Mechanical, Solid Propellant Test Stand,' sheet E60/13-4, June 20, 1961. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
2. View looking southeast at north and west facades of ...
2. View looking southeast at north and west facades of Test Stand 'D' workshop 4222/E-23, with Test Stand 'D' tower in background and tunnel access shed to the right. Equipment on 4222/E-23 roof is for air conditioning. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
1. View looking northeast at the west and south facades ...
1. View looking northeast at the west and south facades of Test Stand 'D' workshop 4222/E-23. Test Stand 'D' tower nitrogen tanks, television camera platform and access stairs are at right of image. Ductwork atop roof is for air conditioning system. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 4" x 5" black and white negative ...
Credit WCT. Original 4" x 5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows the original furnace for burning scrap propellant, the surrounding incinerator pit, and the earth mound personnel shield (JPL negative no. 381-2737, 11 February 1963) - Jet Propulsion Laboratory Edwards Facility, Incinerator, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. View looking west down into Test Stand "D" ...
Credit BG. View looking west down into Test Stand "D" vertical vacuum cell with top removed. Access to cell is normally through large round port seen in view. Piping and cradling toward bottom of cell was last used in tests of Viking space probe engines - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. View looks west (286°) at the east facade. ...
Credit BG. View looks west (286°) at the east facade. This structure stands between two blast barricades, which protect surrounding structures from damage in case an explosion were to occur while propellants were being mixed in the 150 gallon Baker-Perkins mixer - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
5. Credit BG. View looking northwest at eastern facade of ...
5. Credit BG. View looking northwest at eastern facade of Test Stand 'E' (Building 4259/E-60), solid rocket motor test facility. Central bay (high concrete walls) was used for testing large solid motors in a vertical position. A second smaller bay to the north fired smaller motors horizontally. Just south of the large bay is an equipment room with access to the tunnel system; entrance is by small single door on east side. The large double doors lead to a third bay used for X-raying solid rocket motors before testing. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This view of the interior of the weighing ...
Credit PSR. This view of the interior of the weighing facility looks through the open double doors on the south side. A Toledo scale, rated at 3,000 pounds (1,363 Kg), is installed in the center of the floor; the smaller scale in the corner is rated for 200 pounds (91 Kg). The wall-mounted recording device records quantities weighed and serves as a record displaying that substances were in fact weighed. Note the explosion-proof fluorescent lighting above, and the 0.5 ton hoist - Jet Propulsion Laboratory Edwards Facility, Oxidizer Weigh & Storage Building, Edwards Air Force Base, Boron, Kern County, CA
APOLLO CREW (NAA) - ASTRONAUT EDWARD H. WHITE - TRAINING
1966-06-24
The members of the prime crew of the first manned Apollo space flight Apollo/Saturn 204 (AS-204) inspect spacecraft equipment during a tour of North American Aviation's (NAA) Downey facility. In the foreground, left to right, are astronauts Roger B. Chaffee, Virgil I. Grissom, and Edward H. White, II. NAA engineers and technicians are in the background. NORTH AMERICAN AVIATION, INC., DOWNEY, CA B&W
1. Credit PSR. This view captures the main entrance to ...
1. Credit PSR. This view captures the main entrance to the Administration/Shops Building, constructed in 1963, looking north northeast (30°). The plaque at the base of the flagpole commemorates the first firing of a liquid-fueled rocket engine at Test Stand "A" in 1945. - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
7. Credit USAF, ca. 1952. Original housed in the Photograph ...
7. Credit USAF, ca. 1952. Original housed in the Photograph Files, AFFTC/HO, Edwards AFB, California. Oblique aerial view of North Base AFFTC (Air Force Flight Test Center) looking west northwest. The flight line at the edge of Rogers Dry Lake appears in the foreground, served by the facility's four hangars. Temporary structures beyond the hangars were demolished later in the 1950s. The fence that formerly surrounded the swimming pool in earlier photos has been taken down. In the distance lies the Jet Propulsion Laboratory Edwards Test Station, in its pre-1953 configuration. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view east showing the ...
Credit WCT. Photographic copy of photograph, view east showing the Y-stage ejector nozzle as the Y-stage ejector is being installed in the Dd ejector train in 1962. In the distance can be seen the western end of the Z-stage ejector. (JPL negative no. 384-3345-A, 8 November 1962) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
6. Credit GE. Photographic copy of photograph, view looking east ...
6. Credit GE. Photographic copy of photograph, view looking east at Test Stand 'A' during test firing of a liquid-fueled Corporal engine. Structure in immediate left foreground of view appears to be a propellant tank enclosure (JPL negative no. 383-1225, July 1945); compare HAER CA-163-A-7 for enclosure. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This view depicts the southwest and southeast facades ...
Credit PSR. This view depicts the southwest and southeast facades as seen when looking west southwest (260°). The building consists of a small lean-to control room and a two-story space containing a large casting pit. The pit, which can be seen through the open doors, was never used due to changes in JPL's mission. This steel frame structure is clad in "Transite" board (a fire resistant pressed asbestos composite material) and interior lighting consists of individual explosion proof lamps mounted around the walls. The building was rated for 10,000 pounds (4,545 Kg) of class 2 materials and four personnel. It was licensed 5 June 1989 for ammonium perchlorate (NH4C10,), ammonium nitrate (NH4NO3), and sodium nitrate (NaNO3) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 21/4"x21/4" color negative is housed in the ...
Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff member Leonard "Dutch" Sebring loads propellant grain into tube for a BATES (Ballistic And Test Evaluation System) test (JPL negative no. JPL-10279BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Weigh & Test Preparation Building, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view looking northwest at ...
Credit WCT. Photographic copy of photograph, view looking northwest at complete Test Stand "D" installation as of January 1962. Note closed-circuit television camera at extreme left, along with MMH (fuel) storage tank. Hatch of Dd test cell is open; nearby stand MMH run tanks for Dd station. (JPL negative no. 384-2591-A, 25 January 1961) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2. Credit BG. View down dust ditch at northeast side ...
2. Credit BG. View down dust ditch at northeast side of A Street, looking north northwest in "the loop". Note culverts used to give vehicular and pedestrian access to buildings northeast of A Street, some foundations of which may be seen at right of view. Structures in background belong to Jet Propulsion Laboratory Edwards Facility. - Edwards Air Force Base, North Base, Dust Ditch System, Traversing North Base, Boron, Kern County, CA
Credit WCT. Original 4"x5" black and white negative is housed ...
Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows the underfloor ductwork of Building E-46 during construction. The ductwork conducts hot or cold air to maintain required temperatures in the curing chamber (JPL negative no. 381-2569, 12 December 1962) - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. West elevation of Test Stand "D" tower, with ...
Credit BG. West elevation of Test Stand "D" tower, with workshop on left, and tunnel entrance at right. Tower is accessed by exterior steel stairway; the vertical vacuum cell (Dv Cell) is obscured behind large square sunscreen. Below the sunscreen can be seen the end of the horizontal vacuum duct leading from the vacuum cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
This overview displays the concentration of JPL solid propellant production ...
This overview displays the concentration of JPL solid propellant production buildings as seen looking directly north (6 degrees) from the roof of the Administration Building (4231-E-32). The structures closest to the camera contain the equipment for weighing, grinding, mixing, and casting solid propellant grain for motors. Structures in the distance generally house curing or inspection activities. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. This view is an enlargement of an original ...
Credit WCT. This view is an enlargement of an original 2-A" x 2-Y4" color negative housed in the JPL Photography Laboratory, Pasadena, California. The doors of the conditioning chamber have been opened to reveal the arrangement of wrapped motors ready for treatment (JPL negative no. JPL-10281BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2014-11-26
shallow bedrock or several hundred feet of ancient sand, silt and clay lakebed deposits. Soil refers to the uppermost layers of surficial geologic...Some soils have a silt or clay component especially around the lakebeds where clay predominates. All soils at Edwards AFB have low organic carbon...Not Completed Completed 3-Jun-11 Initial survey completed. Confirmatory survey required. FY14 14 (A4) Sanitary Latrine (1965
Credit WCT. Original 4"x5" black and white negative is housed ...
Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows Building E-39 under construction. E-39 is an example of the typical reinforced concrete block construction of the E-30s and E-40s structures (JPL negative no. 381-2586, 13 December 1962) - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 4" x 5" black and white print ...
Credit WCT. Original 4" x 5" black and white print housed in the JPL Archives, Pasadena, California. This view displays the west elevation of the mixer building and barricades. The slide from the second floor balcony (missing in 1995) provided rapid emergency evacuation for personnel in case of fire or other imminent danger. JPL negative 384-10506, 7 July 1964 - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view looking east at ...
Credit WCT. Photographic copy of photograph, view looking east at Test Stand "D" during erection of the test stand tower. Note wire lath nailed over gypsum board on Building 4222/E-23 at far left in preparation for stucco covering (temporary construction). Stucco would not require painting in desert. (JPL negative no. 384-1865-A, 13 April 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Moses
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.
CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE Edwards Air Force ...
CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE - Edwards Air Force Base, X-15 Engine Test Complex, Firing Control Building, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Credit BG. View shows the north and west facades of ...
Credit BG. View shows the north and west facades of the building as seen when looking east southeast (124°). Igniters for solid rocket motors were built and tested here. This building was rated for a maximum of 20 pounds (9.1 Kg) of class 1.1 materials and four personnel. Note the lightning rods on roof corners and the exterior electrical system - Jet Propulsion Laboratory Edwards Facility, Igniter Laboratory, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. The north and west sides of this structure ...
Credit BG. The north and west sides of this structure appear as seen when looking east (88°). Building E-67, the tunnel entrance, gives personnel access to the tunnel system. The Assembly Building served as a shop for test crews; it contained a small lathe and other tools for making specialized parts. No explosives were allowed in this structure. Air conditioning ducts are on the roof - Jet Propulsion Laboratory Edwards Facility, Assembly Building, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 21/4"x21/4" color negative is housed in the ...
Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This interior view of the Xray chamber shows operator Leonard "Dutch" Sebring positioning the 1 million electron volt X-ray machine to make an image of a Syncom 2 motor (JPL negative no. JPL-10285BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 21" x 2A" color negative is housed ...
Credit WCT. Original 2-1" x 2-A" color negative is housed in the JPL Photography Laboratory, Pasadena, California. The mixing pot of the 150-gallon (Size 16-PVM) Baker-Perkins vertical mixer appears in its lowered position, exposing the mixer paddles. JPL employees Harold "Andy" Anderson and Ron Wright in protective clothing demonstrate how to scrape mixed propellant from mixer blades (JPL negative JPL10284BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view east southeast across ...
Credit WCT. Photographic copy of photograph, view east southeast across Dd station ejectors showing detail of "Hyprox" steam generator. Note that steam generator is placed above Z-stage ejector; an insulated pipe running between the Dd train rails supplies steam to the Y-Stage ejector. Note emergency eyewash stand at extreme right of view. (JPL negative no. 384-3376, 3 December 1962) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
4. Credit GE. Photographic copy of photograph, looking northeast into ...
4. Credit GE. Photographic copy of photograph, looking northeast into 'A' stand flame trench as seen from the southeast corner of 'A' stand foundation. The concrete construction at the bottom of the trench is a water pond with sump for cooling rocket engine plumes before they blow into the desert to the east. (JPL negative no. 383-940-B, 29 August 1945) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
PORTRAIT - PRIME AND BACKUP CREWS - ASTRONAUT EDWARD H. WHITE II
1966-04-01
S66-30236 (1 April 1966) --- The National Aeronautics and Space Administration (NASA) has named these astronauts as the prime crew of the first manned Apollo Space Flight. Left to right, are Edward H. White II, command module pilot; Virgil I. Grissom, mission commander; and Roger B. Chaffee, lunar module pilot. Editor's Note: Astronauts Grissom, White and Chaffee lost their lives in a Jan. 27, 1967 fire in the Apollo Command Module (CM) during testing at the launch facility.
3. Credit WCT. Original 4"x5" black and white negative is ...
3. Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view of the vibrator shows a large mounted ATS (Advanced Technology Satellite) motor. Accelerometer instrumentation has been added. JPL caption reads "C-210E Vibration Exciter ATS Accelerometer Installation on Q4TX AXIS" (JPL negative no. 384-5848B, 31 March 1966). - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 21/4"x21/4" color negative is housed in the ...
Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. At one time, Building 4285/E-86 accommodated tensile testing of propellant samples. This view shows a tensile strength tester set up for propellant tests, under the supervision of JPL staff member Milton Clay (JPL negative no. JPL-10291AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. View looks north northeast (20°) at the concrete ...
Credit PSR. View looks north northeast (20°) at the concrete pad which forms the top of the sump pump facility. In the background stand Building 4303 (Air Compressor Building), Building 4307 (Supply and Equipment Warehouse) at left, Building 4305 (Unicon Portable Hangar) at center, and Building 4306 (Boiler House) at right. Sign marking Building 4302 was made from a disused road sign from somewhere on Edwards AFB - Edwards Air Force Base, North Base, Sump Pump, East of Second Street, Boron, Kern County, CA
10. Photographic copy of engineering drawing showing the plumbing layout ...
10. Photographic copy of engineering drawing showing the plumbing layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Flow Diagram,' sheet M-2 (JPL sheet number E18/41-0), September 1, 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This photograph looks south southwest (200°) into the ...
Credit PSR. This photograph looks south southwest (200°) into the burn pit. Scrap propellant was stored elsewhere until enough had accumulated to require a burn. The open burn unit is rated for 200 pounds (91 Kg) of class 1.1 propellants, or 1,000 pounds (454 Kg) of class 1.3 propellants. A maximum of 4 personnel were permitted on the grounds during a burn - Jet Propulsion Laboratory Edwards Facility, Incinerator, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. This interior view shows the vacuum tumble dryer. ...
Credit PSR. This interior view shows the vacuum tumble dryer. The tumble dryer is lined with a water jacket to maintain temperature during the drying of ammonium perchlorate ("AP"); water enters and exits the dryer jacket through the pipe fittings along the horizontal center line of the dryer. The wall at the right is constructed to blow out in the event of an explosion - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Building, Edwards Air Force Base, Boron, Kern County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
...) Real Property for the Development of a Permanent Supportive Housing Facility in Tuscaloosa, AL AGENCY..., maintain and operate the EUL development as an affordable permanent housing facility; provide preference... independence and self- sufficiency. FOR FURTHER INFORMATION CONTACT: Edward Bradley, Office of Asset Enterprise...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Moses
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.
Credit WCT. Original 2Y4" x 2Y4" color negative is housed ...
Credit WCT. Original 2-Y4" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow cast grain from the 1-gallon BakerPerkins model 4-PU mixer. A 1-pint Baker-Perkins model 2-PX mixer stands to the left in this view (JPL negative no. JPL-10295BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA
9. Credit JPL. Photographic copy of drawing, engineering drawing showing ...
9. Credit JPL. Photographic copy of drawing, engineering drawing showing structure of Test Stand 'A' (Building 4202/E-3) and its relationship to the Monitor Building or blockhouse (Building 4203/E-4) when a reinforced concrete machinery room was added to the west side of Test Stand 'A' in 1955. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Electrical Layout - Muroc, Test Stand & Refrigeration Equipment Room,' drawing no. E3/7-0, April 6, 1955. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. Photograph displays the west and south elevations as ...
Credit PSR. Photograph displays the west and south elevations as seen when looking east northeast (56°). The small doors at the left lead to the building equipment room which houses heating and cooling equipment (part of which is visible outdoors along adjacent exterior wall). High double doors lead to the dryer room; a 1-ton hoist is used to move heavy containers and dryer trays within the building. Note the lightning rods on roof corners - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Building, Edwards Air Force Base, Boron, Kern County, CA
DETAIL, CONTROL BOOTH, RP1 TANK FARM Edwards Air Force ...
DETAIL, CONTROL BOOTH, RP1 TANK FARM - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
STS-58 Landing at Edwards with Drag Chute
1993-11-01
A drag chute slows the space shuttle Columbia as it rolls to a perfect landing concluding NASA's longest mission at that time, STS-58, at the Ames-Dryden Flight Research Facility (later redesignated the Dryden Flight Research Center), Edwards, California, with a 8:06 a.m. (PST) touchdown 1 November 1993 on Edward's concrete runway 22. The planned 14 day mission, which began with a launch from Kennedy Space Center, Florida, at 7:53 a.m. (PDT), October 18, was the second spacelab flight dedicated to life sciences research. Seven Columbia crewmembers performed a series of experiments to gain more knowledge on how the human body adapts to the weightless environment of space. Crewmembers on this flight included: John Blaha, commander; Rick Searfoss, pilot; payload commander Rhea Seddon; mission specialists Bill MacArthur, David Wolf, and Shannon Lucid; and payload specialist Martin Fettman.
X-43A Undergoing Controlled Radio Frequency Testing in the Benefield Anechoic Facility at Edwards Ai
NASA Technical Reports Server (NTRS)
2000-01-01
The X-43A Hypersonic Experimental (Hyper-X) Vehicle hangs suspended in the cavernous Benefield Aenechoic Facility at Edwards Air Force Base during radio frequency tests in January 2000. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.
F-18 simulation with Simulation Group Lead Martha Evans at the controls
NASA Technical Reports Server (NTRS)
1993-01-01
Simulation Group Leader Martha Evans is seen here at the controls of the F-18 aircraft simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.
75 FR 29657 - Establishment of Class E Airspace; Marianna, AR
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
...) at Marianna/Lee County Airport--Steve Edwards Field, Marianna, AR. The FAA is taking this action to... controlled airspace at Marianna/Lee County Airport--Steve Edwards Field (75 FR 12161) Docket No. FAA-2009... from 700 feet above the surface to accommodate SIAPs at Marianna/Lee County Airport-- Steve Edwards...
12-NIF Dedication: Concluding remarks and video
Edward Moses
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from the south with tower ejector system in operation during a 1972 engine test. Note steam evolving from Z-stage ejectors atop the interstage condenser in the tower. Note also the "Hyprox" steam generator straddling the Dd ejector train to the right. The new Dy horizontal train has not been erected as of this date. In the distance is Test Stand "E." (JPL negative no. 384-9766-AC, 28 November 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1. Credit WCT. Original 2 1/4" x 2 1/4" color ...
1. Credit WCT. Original 2- 1/4" x 2- 1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. Photo shows John Morrow in charge of milling operations on coupons ("dogbones") of propellant on an Index milling machine. Coupons were milled to precise dimensions for tensile tests. Note that two sprinkler heads have been placed in very close proximity to the milling table for fire suppression purposes (JPL negative no. JPL-10283AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Preparation Building, Edwards Air Force Base, Boron, Kern County, CA
5. Photographic copy of engineering drawing showing plans, elevation and ...
5. Photographic copy of engineering drawing showing plans, elevation and section of Deluge Water System, including reservior (4316), Pump House (4317), and water tower. Job No. Muroc A(5-ll), Military Construction, San Bernardino-Mojave Area, San Bernardino, California: Muroc Bombing Range, Muroc Lake, California.; Additional Facilities for Materiel Center Flight Test Base, Water Supply System, Plans and Sections, Sheet 5 of 10, May 1943. Records on file at AFFTC/CE-CECC-B (Design/Construction Flight/RPMC), Edwards AFB, California. - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
Marine and Fisheries Training in P.E.I.
ERIC Educational Resources Information Center
Schurman, Donald
1974-01-01
The Prince Edward Island Marine and Fisheries Training Centre in Summerside is the culmination of a project begun in 1970 by the Provincial Government. The facility, its history, and the major courses being taught there are described. (AG)
5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1A, DIRECTORATE OF ...
5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3097.58." Two men working in the control room. Photo no. "3097 58; G-AFFTC 15 JAN 58, T.S. 1-A Control". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Credit PSR. This view shows southeast and southwest facades as ...
Credit PSR. This view shows southeast and southwest facades as seen when looking east northeast (70°). This steel frame building is clad in "Transite" board (fire- resistant, pressed asbestos composition board). This structure was built as a back-up to Building 4237/E-38, but no equipment was ever installed. It was equipped instead to conduct tensile tests on propellant samples. In 1984, it was converted into a back-up structure supporting Building 4283/E-84, Propellant Processing Building. Small amounts of HMX propellants were processed and dried here - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Blender Building, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, in 1963 a "Y" ...
Credit WCT. Photographic copy of photograph, in 1963 a "Y" branch connector was introduced at the Dd test station in order to add a second test cell (named Dy) to the Dd train of coolers and ejectors. This view shows the diffuser used to connect the Dy test chamber with the "Y" branch. This Dy chamber was the second one installed at this station; it was later moved and incorporated into a larger horizontal test station retaining the Dy designation. (JPL negative no. 384-11176-B, 17 May 1976) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
View looking west at Test Stand 'A' complex in morning ...
View looking west at Test Stand 'A' complex in morning sun. View shows Monitor Building 4203/E-4 at left, barrier (Building 4216/E-17) to right of 4203/E-4, and Test Stand 'A' tower. Attached structure to lower left of tower is Test Stand 'A' machine room which contained refrigeration equipment. Building in right background with Test Stand 'A' tower shadow on it is Assembly Building 4288/E-89, built in 1984. Row of ground-mounted brackets in foreground was used to carry electrical cable and/or fuel lines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, interior view of Dd ...
Credit WCT. Photographic copy of photograph, interior view of Dd test cell with VO (Viking Orbiter)-75 spacecraft engine mounted for testing. (Viking was a Mars orbiter and lander mission.) The end of the engine nozzle is inserted into a diffuser in order to conduct exhaust gases out of the chamber. All piping and tubing is stainless steel. Note ports in background through which instrumentation wiring passes. Nozzles at top of view are part of an internal fire suppression (or "Firex") system. (JPL negative no. 384-9428, 24 April 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. The interior of the grinder room appears as ...
Credit PSR. The interior of the grinder room appears as seen looking southeast (148°), showing the remaining grinder equipment in the building. Note the blow-out wall in the background, and the water sprinkler head positioned over the hopper. The hopper top is connected to the dust receiver in the adjacent room. The blow-out wall is constructed to relieve pressure easily should an explosion occur, thus minimizing damage to the rest of the building structure. The floor has a conductive coating which dissipates static electrical charges that might otherwise cause fires - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. View shows north and west sides of structure ...
Credit BG. View shows north and west sides of structure as seen when looking east southeast (124°). The thick walls of this building are solid concrete, and the rooms are isolated from each other. The magazine is rated for a maximum of 100 pounds (45.4 Kg) of class 1.1 materials, and two personnel. Handles, attached to walls next to door handles, are static electric discharge points for personnel to touch before entering magazine doors. Note the lightning rods on roof corners and the exterior electrical system for interior lighting - Jet Propulsion Laboratory Edwards Facility, Igniter Magazine, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. Southeast and northeast facades of concrete block structure ...
Credit BG. Southeast and northeast facades of concrete block structure built in the late 1960s. It is now used to store miscellaneous equipment - Edwards Air Force Base, North Base, Liquid Oxygen Storage Facility, Second Street, Boron, Kern County, CA
Western Aeronautical Test Range
NASA Technical Reports Server (NTRS)
Sakahara, Robert D.
2008-01-01
This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
...The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) announces its intent to prepare an Environmental Impact Statement (EIS) for the proposed 2015-2025 Facilities Master Plan for HHS/CDC's Edward R. Roybal Campus located at 1600 Clifton Road NE., in Atlanta, Georgia. This announcement follows the requirements of the National Environmental Policy Act of 1969 (NEPA) as implemented by the Council on Environmental Quality (CEQ) Regulations (40 CFR Part 1500-1508); and, the Department of Health and Human Services (HHS) General Administration Manual Part 30 Environmental Procedures, dated February 25, 2000.
Second of three panoramic views of North Base as seen ...
Second of three panoramic views of North Base as seen from top of Building 4500, Control Tower. View looks west (268°) at North Base complex. In foreground is taxiway, with Building 4456 (Fire House No. 4) at right. Building 4452 (Utility Vault) appears in extreme left foreground, with Building 4412 (Liquid Oxygen Repair Facility) and Building 4410 (Liquid Oxygen Storage) in extreme left background. In view over Building 4456 is the "loop" bound by Third, Fourth, A, and B Streets. Concrete slabs are all that remain of military housing constructed in the 1940s. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. Edwards ...
7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. Edwards ...
1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
Unveiling of sign for Walter C. Williams Research Aircraft Integration Facility
NASA Technical Reports Server (NTRS)
1995-01-01
In a brief ceremony following a memorial service for the late Walter C. Williams on November 17, 1995, the Integrated Test Facility (ITF) at the NASA Dryden Flight Research Center at Edwards, California, was formally renamed the Walter C. Williams Research Aircraft Integration Facility. Shown is the family of Walt Williams: Helen, his widow, sons Charles and Howard, daughter Elizabeth Williams Powell, their spouses and children unveiling the new sign redesignating the Facility. The test facility provides state-of-the-art capabilities for thorough ground testing of advanced research aircraft. It allows researchers and technicians to integrate and test aircraft systems before each research flight, which greatly enhances the safety of each mission. In September 1946 Williams became engineer-in-charge of a team of five engineers who arrived at Muroc Army Air Base (now Edwards AFB) from the National Advisory Committee for Aeronautics's Langley Memorial Aeronautical Laboratory, Hampton, Virginia (now NASA's Langley Research Center), to prepare for supersonic research flights in a joint NACA-Army Air Forces program involving the rocket-powered X-1. This established the first permanent NACA presence at the Mojave Desert site although initially the five engineers and others who followed them were on temporary assignment. Over time, Walt continued to be in charge during the many name changes for the NACA-NASA organization, with Williams ending his stay as Chief of the NASA Flight Research Center in September 1959 (today NASA's Dryden Flight Research Center).
4. INSTRUMENT ROOM,INTERIOR, MAIN SPACE. Looking northeast. Edwards Air ...
4. INSTRUMENT ROOM,INTERIOR, MAIN SPACE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401
Joint EPA and Los Angeles Regional Water Quality Control Board NPDES Permit and Waiver from Secondary Treatment for the West Basin Municipal Water District Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401
Department of Chemistry and Biochemistry - University of Maryland,
Access Analytical Facilities? New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Collaborative Research New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Molecule Shows Author's profile esj-lab New Labs Catalyze Chemistry Learning The Edward St. John Learning and Teaching
Credit BG. Looking northwest at the Dd stand complex. To ...
Credit BG. Looking northwest at the Dd stand complex. To the left is the Test Stand "D" tower with steam-driven ejectors and interstage condenser visible along with steam lines. The steam accumulator appears in the left foreground (sphere); steam lines emerging from the top conduct steam to the Dv, Dd, and Dy stand ejectors. The T-shaped vertical pipes atop the accumulator are burst-disk type safety valves. The ejector ends of the Dd and Dy trains are visible to the right. Tracks permitted each train to expand and contract with temperature or equipment changes - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. View west of Test Stand "D" complex, with ...
Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view looking south down ...
Credit WCT. Photographic copy of photograph, view looking south down easternmost tunnel axis during second phase of JPL tunnel construction in 1959. Reinforced concrete formwork for Test Stand "D" foundation appears in left foreground. Formwork for Building 4222/E-23 (Test Stand "D" Workshop) is in place in right foreground with disturbed earth for western leg of tunnel system evident in background. Test Stand "C" is in center background, where first phase of tunnel construction ended. Test Stand "A" appears as tower in right background. (JPL negative no. 384-1838-C, 9 March 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 214" x 21/4" color negative is housed ...
Credit WCT. Original 2-14" x 2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This image depicts the tray dryer for "AP" (ammonium perchlorate, an oxidizer). The dryer was heated by a water jacket; insulated pipes appear at left in the view. In the extreme left foreground appears a marble table similar to the tables used for scales in the weighing room of Building E-35. Note the use of gloves, fireresistant coveralls and breathing apparatus by the JPL employee in view (JPL negative no. JPL-10283BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Blender Building, Edwards Air Force Base, Boron, Kern County, CA
Environmental Assessment of Lead at Camp Edwards, Massachusetts, Small Arms Ranges
2007-08-01
phosphates in soils as a method to immobilize lead. Environmental Science and Technology. 28(4):646–654. Rühling, A., and G. Tyler. 1973. Heavy metal ...control of heavy metals in a sandy soil . Environmental Science and Technology. 36(22):4804– 4810. Xia, K., W. Bleam, and P. A. Helmke. 1997. Studies...Military Training Sources of Lead and Soil Distribution at Camp Edwards ..............38 3.3 Projects Specific to Camp Edwards Small Arms Ranges
Credit PSR. View looks northeast (40°) across Imhoff Tank (Building ...
Credit PSR. View looks northeast (40°) across Imhoff Tank (Building 4331) Imhoff Tank. This World War II wooden structure served as a sewage treatment facility for North Base - Edwards Air Force Base, North Base, Imhoff Tank, Southwest of E Street, Boron, Kern County, CA
practices promoting a safe and supportive working environment. His research interests include environmental, safety, and health (ESH) and facility issues, he is responsible for implementing safe work plan; working directly with awardees by performing on-site validations to collect and analyze enzyme
1976-11-01
Box 209, St. Louis, Missouri 63166. UNITED STATES ARMY AVIATION ENGINEERING FLIGHT ACTIVITY EDWARDS AIR FORCE BASE, CALIFORNIA 93523 81 9 18 0 8,L...ELEMENT. PROJECT. TASKAR EA A WORK UNIT "UMBERS US ARMY AVIATION ENGINEERING FLIGHT ACTIV IU EDWARDS AIR FORCE BASE. CALIFORNIA 93523 68-T-UA022-0-68-EC...It. CONTROLLI~NG OFFICE NAME AND ADDRESS 12. REPORT DATE US ARMY AVIATION ENGINEERING FLIGHT ACTIVITY NOVEMBER 1976 EDWARDS AIR FORCE BASE
Airworthiness and Flight Characteristics Evaluation, UH-60A (Black Hawk) Helicopter
1981-09-01
ACTIVITY EDWARDS AIR FORCE BASE, CALIFORNIA 93523 8..30 83 09 0 1 n 04 DISCLoAIMER NOTICE The findings of this report are not to be constrned as an...EDWARDS AIR FORCE BASE, CALIFORNJA 68-0-BH031.-01-68 II. CONTROLLING OFFICE NAME AND ADORESS 1I. REPORT OATS US ARMY AVN RESEARCH & DEVELOPMENT COMMAND...34| conipliance with the applicable paragraphs of the Prime Item Development Specification The UH-60A was tested at Edwards Air Force Base. California
Skylab 3 crew during training in Orbital Workshop trainer
1973-06-19
S73-28412 (February 1973) --- The three members of the prime crew of the third of three scheduled manned Skylab missions (Skylab 4) go through Skylab preflight training in the Mission Training and Simulation Facility at the Johnson Space Center. Astronaut Gerald P. Carr (on right), Skylab 4 commander, is seated at a simulator which represents the control and display console of the Apollo Telescope Mount which is located in the space station's Multiple Docking Adapter. Seated on the left is scientist-astronaut Edward G. Gibson, Skylab 4 science pilot. In the left background is astronaut William R. Pogue, Skylab 4 pilot. (Unmanned Skylab 1 will carry the Skylab space station payload into Earth orbit). Photo credit: NASA
1993-05-18
A NASA F/A-18, specially modified to test the newest and most advanced system technologies, on its first research flight on May 21, 1993, at NASA's Dryden Flight Research Facility, Edwards, California. Flown by Dryden in a multi-year, joint NASA/DOD/industry program, the F/A-18 former Navy fighter was modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. The primary goal of the SRA program was to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.
1. Credit WCT. Original 2 1/4" x 2 1/4" color ...
1. Credit WCT. Original 2- 1/4" x 2- 1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the remote charge trimmer, a vertical lathe for turning propellant castings ("grain") in the front room of this structure. Ron Wright is shown in charge of the procedure; the hoist operator is unidentified. Grain for a BATES (Ballistic And Test Evaluation System) motor is being lowered into the lathe with a hoist and specially designed BATES fitting. The spout and waste barrel, in the foreground, collects waste trimmings for disposal (JPL negative no. JPL10286BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Preparation Building, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. Test Stand "D" tower as seen looking northeast ...
Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit PSR. The flammable waste materials shed appears as seen ...
Credit PSR. The flammable waste materials shed appears as seen when looking south (186°) from South Liquid Loop Road. Note the catch basin for retaining accidentally spilled substances. Wastes are stored in drums and other safety containers until disposal by burning at the Incinerator (4249/E-50) or by other means. Note the nearby sign warning of corrosive, flammable materials, and calling attention to a fire extinguisher; a telephone is provided to call for assistance in the event of an emergency. This structure is isolated to prevent the spread of fire, and it is lightly built so damage from a fire will be inexpensive to repair - Jet Propulsion Laboratory Edwards Facility, Waste Flammable Storage Building, Edwards Air Force Base, Boron, Kern County, CA
2001-05-23
KENNEDY SPACE CENTER, FLA. -- Banks of lights dry tiles on orbiter Atlantis in the Orbiter Processing Facility. Significant rainstorms during the orbiter’s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused the moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing
2001-05-23
KENNEDY SPACE CENTER, FLA. -- Banks of lights dry tiles on orbiter Atlantis in the Orbiter Processing Facility. Significant rainstorms during the orbiter’s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused the moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
...) Real Property for the Development of a Permanent Supportive Housing Facility in Lyons, NJ AGENCY..., develop, construct, manage, maintain and operate the EUL development. As consideration for the lease, the...-term self-sufficiency. FOR FURTHER INFORMATION CONTACT: Edward Bradley, Office of Asset Enterprise...
2000-05-19
JSC2000-04867 (19 May 2000) --- Equipped with a shuttle extravehicular mobility unit (EMU) space suit, astronaut Daniel C. Burbank is about to participate in an underwater spacewalk rehearsal in the Hydrolab facility at the Gagarin Cosmonaut Training Center in Star City, Russia. Burbank, STS-106 mission specialist, was joined by astronaut Edward T. Lu (out of frame), for the simulation.
2000-05-19
JSC2000-04866 (19 May 2000) --- Equipped with a shuttle extravehicular mobility unit (EMU) space suit, astronaut Daniel C. Burbank prepares to participate in an underwater spacewalk rehearsal in the Hydrolab facility at the Gagarin Cosmonaut Training Center in Star City, Russia. Burbank, STS-106 mission specialist, was joined by astronaut Edward T. Lu (out of frame), for the simulation.
ISSION CONTROL CENTER (MCC) - GEMINI-TITAN (GT)-IV - MSC
1965-06-03
S65-30411 (9 June 1965) --- The families of Gemini 4 astronauts James A. McDivitt and Edward H. White II visited the Mission Control Center in Houston. In the foreground, left to right, are Mrs. Patricia McDivitt, daughter Bonnie White, Mrs. Patricia White, flight director Christopher C. Kraft Jr., and Edward White III. Each of the family members talked with the astronauts as they passed over the United States. Photo credit: NASA
Geohydrologic Framework of the Edwards and Trinity Aquifers, South-Central Texas
Blome, Charles D.; Faith, Jason R.; Ozuna, George B.
2007-01-01
This five-year USGS project, funded by the National Cooperative Geologic Mapping Program, is using multidisciplinary approaches to reveal the surface and subsurface geologic architecture of two important Texas aquifers: (1) the Edwards aquifer that extends from south of Austin to west of San Antonio and (2) the southern part of the Trinity aquifer in the Texas Hill Country west and south of Austin. The project's principal areas of research include: Geologic Mapping, Geophysical Surveys, Geochronology, Three-dimensional Modeling, and Noble Gas Geochemistry. The Edwards aquifer is one of the most productive carbonate aquifers in the United States. It also has been designated a sole source aquifer by the U.S. Environmental Protection Agency and is the primary source of water for San Antonio, America's eighth largest city. The Trinity aquifer forms the catchment area for the Edwards aquifer and it intercepts some surface flow above the Edwards recharge zone. The Trinity may also contribute to the Edwards water budget by subsurface flow across formation boundaries at considerable depths. Dissolution, karst development, and faulting and fracturing in both aquifers directly control aquifer geometry by compartmentalizing the aquifer and creating unique ground-water flow paths.
Photographic coverage of STS-111 Landing
2002-06-19
JSC2002-E-26015 (19 June 2002) --- The Space Shuttle Endeavour is shown on the big screen in this overall view of the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). The shuttle landed at Edwards Air Force Base, California at 10:58 a.m. (PDT) on June 19, 2002. The landing site was switched to Edwards after three days of wave offs at Kennedy Space Center, Florida, due to unacceptable weather conditions.
4. "TEST CONDUCTORS PANEL AT TEST STAND 1A, DIRECTORATE OF ...
4. "TEST CONDUCTORS PANEL AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3098.58." A photograph of the control room, with seven men watching monitors and instrument panels. Photo no. "3098 58; G-AFFTC 15 JAN 58; Test Conductors Panel T.S. 1-A". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
...) Real Property for the Development of a Transitional Housing Facility on a 1-Acre Parcel at the George E... lessee will finance, design, develop, construct, manage, maintain and operate the EUL development. As... attaining long-term self-sufficiency. FOR FURTHER INFORMATION CONTACT: Edward Bradley, Office of Asset...
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
2000-01-01
Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.
2000-05-19
JSC2000-04864 (19 May 2000) --- Equipped with a shuttle extravehicular mobility unit (EMU) space suit, astronaut Edward T. Lu is about to lowered into the water prior to a spacewalk rehearsal in the Hydrolab facility at the Gagarin Cosmonaut Training Center in Star City, Russia. Lu, STS-106 mission specialist, was joined by astronaut Daniel C. Burbank (out of frame), for the simulation.
SKYLAB (SL)-3 CREW - TRAINING - ORBITAL WORKSHOP (OWS) TRAINER - JSC
1973-06-19
S73-28411 (February 1973) --- The three members of the prime crew of the third of three scheduled manned Skylab missions (Skylab 4) go through Skylab preflight training in the Mission Training and Simulation Facility at the Johnson Space Center. Astronaut Gerald P. Carr (on right), Skylab 4 commander, is seated at a simulator which represents the control and display console of the Apollo Telescope Mount which is located in the space station's Multiple Docking Adapter. Seated on the left is scientist-astronaut Edward G. Gibson, Skylab 4 science pilot. In the left background is astronaut William R. Pogue, Skylab 4 pilot. (Unmanned Skylab 1 will carry the Skylab space station payload into Earth orbit). Photo credit: NASA
Credit WCT. Photographic copy of photograph, view looking northeast down ...
Credit WCT. Photographic copy of photograph, view looking northeast down onto new Dd test station from Test Stand "D" tower. Hatch of Dd test cell is open, and a test engine sits on a dolly nearby awaiting mounting. Note the water-cooled diffuser on the east end of the test chamber; this was soon replaced with a new diffuser and a steam-driven ejector for simulated high-altitude tests. A closed circuit television camera is mounted on the west end of the test cell. At the lower left of the view are fuel and oxidizer run tanks which supply propellants for test runs. (JPL negative no. 384-2650-A, 8 February 1961) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Original 2¾" x 2Y4" color negative is housed ...
Credit WCT. Original 2-¾" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows JPL staff member John Morrow loading the grinder hopper. The hopper has a 10 mesh screen to filter out particles too large for the mill. Oxidizer is passed steadily to the hammers by a stainless steel feed screw. Oxidizer may be passed through the mill several times depending on the fineness required by a given propellant formula; the maximum charge is 130 pounds (59.0 Kg). The drum below the mill has an electrically conductive plastic liner which receives the ground oxidizer (JPL negative no. JPL10279AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA
2. Credit BG. Looking west at east facade of Steam ...
2. Credit BG. Looking west at east facade of Steam Generator Plant, Building 4280/E-81; steam generators have been removed as part of dismantling program for Test Stand 'D.' Metal cylindrical objects to left of door were roof vents. The steam-driven ejector system for Dv Cell is clearly visible on the east side of Test Stand 'D' tower. The X-stage ejector is vertically installed at the bottom left of the tower, Y-stage is horizontally positioned close to the tower top, and the Z- and Z-1 stages are attached to the top of the interstage condenser. Light-colored piping is thermally insulated steam line. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA
High Frequency Radar Astronomy With HAARP
2003-01-01
High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska, has increased in total...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with
Credit BG. View looks southwest (236°) across concrete foundations towards ...
Credit BG. View looks southwest (236°) across concrete foundations towards Building 4402 (Hangar No. 2). Building 4412 (Liquid Oxygen Repair Facility) and Building 4444 (Communications Building) appear in center background. Trees in view are locusts (Robinia pseudoacacia L.) - Edwards Air Force Base, North Base, Old Firehouse T-41, South end of A Street, Boron, Kern County, CA
LANDING - STS-28/51J - DRYDEN FLIGHT RESEARCH FACILITY (DFRF), CA
1985-10-08
S85-41802 (7 Sept 1985) --- Wheels of the Space Shuttle Atlantis touch down on the dry lakebed at Edwards Air Force Base to mark successful completion of the STS 51-J mission. Crewmembers onboard for the flight were Astronauts Karol J. Bobko, Ronald J. Grabe, David C. Hilmers, and Robert L. Stewart; and USAF Maj. William A. Pailes.
Navy Satellite Communications in the Hellenic Environment
1988-06-01
spherical pressurized balloon with an envelope of plastic mylar and aluminum. Its communication capabilities were for a voice baseband bandwidth of 200...N-1780-ARPA, November 1981. 24. Betrosian, Edward Electromagnetic Properties and Communication caracteristics of PACSAT, Rand Corp (R-2920-ARPA...Survivable Command and Control, RAND Note N-1780-ARPA, November 1981. 4. Betrosian, Edward Electromagnetic Properties and Communication caracteristics of
2013-05-15
EDWARDS, Calif. – ED13-0142-08: The flatbed truck and trailer that transported Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article pauses behind Hangar 4802 on the aircraft ramp at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif., upon arrival at the center. The vehicle was shrouded in protective plastic wrap with its wings and tail structure removed for its four-day overland transport from Sierra Nevada's facility in Louisville, Colo., to NASA Dryden. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida
2013-05-15
EDWARDS, Calif. – ED13-0142-11: The truck and trailer that transported the Dream Chaser engineering test article from Sierra Nevada Corporation, or SNC, Space Systems facility in Louisville, Colo., arrives on the aircraft ramp at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif., early in the morning. Based on NASA's HL-20 lifting body design, the Dream Chaser will begin its approach-and-landing flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. John F. Kerry, D-Mass., greets Kennedy Space Center employees during a tour of the Orbiter Processing Facility (OPF). The orbiter Discovery is being prepared for flight in the OPF on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.
1988-01-01
Many parameter identification techniques have been used at the NASA Ames Research Center, Dryden Research Facility at Edwards Air Force Base to determine the aeroelastic stability of new and modified research vehicles in flight. This paper presents a summary of each technique used with emphasis on fast Fourier transform methods. Experiences gained from application of these techniques to various flight test programs are discussed. Also presented are data-smoothing techniques used for test data distorted by noise. Data are presented for various aircraft to demonstrate the accuracy of each parameter identification technique discussed.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. John F. Kerry, D-Mass., greets Kennedy Space Center employees during a tour of the Orbiter Processing Facility (OPF). The orbiter Discovery is being prepared for flight in the OPF on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
Western Aeronautical Test Range (WATR) mission control Blue room
1994-12-05
Mission control Blue Room, seen here, in building 4800 at NASA's Dryden Flight Research Center, is part of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.
Western Aeronautical Test Range (WATR) mission control Gold room
NASA Technical Reports Server (NTRS)
1990-01-01
Mission control Gold room is seen here, located at the Dryden Flight Research Center of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.
Aerospace energy systems laboratory: Requirements and design approach
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1988-01-01
The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.
ERIC Educational Resources Information Center
21st Century School Fund, 2006
2006-01-01
The State of Louisiana and the City of New Orleans have a daunting task before them. They must restore community access to public education. It will not be enough to repair and rebuild buildings. The educational programs and staff must also be redeveloped. However, the improvements to public school facilities is a critical first step in…
2000-11-03
The Honorable George P. Schultz during a Visit and tour of Ames Research Center. Shown here from left to right are in the background Bill Berry, Ames Deputy Director, Dr. Tom Edwards, Chief, Aviation Systems Division, Front row, Dr. Sidney Drell, Staford University, former U S Secretary of State George Schultz, Dr Richard Haines, Senior Research Csientist, FFC at the Future Flight Central Simulator facility.
Case-control analysis of paternal age and trisomic anomalies.
De Souza, E; Morris, J K
2010-11-01
To determine whether older paternal age increases the risk of fathering a pregnancy with Patau (trisomy 13), Edwards (trisomy 18), Klinefelter (XXY) or XYY syndrome. Case-control: cases with each of these syndromes were matched to four controls with Down syndrome from within the same congenital anomaly register and with maternal age within 6 months. Data from 22 EUROCAT congenital anomaly registers in 12 European countries. Diagnoses with observed or (for terminations) predicted year of birth from 1980 to 2005, comprising live births, fetal deaths with gestational age ≥ 20 weeks and terminations after prenatal diagnosis of the anomaly. Data include 374 cases of Patau syndrome, 929 of Edwards syndrome, 295 of Klinefelter syndrome, 28 of XYY syndrome and 5627 controls with Down syndrome. Odds ratio (OR) associated with a 10-year increase in paternal age for each anomaly was estimated using conditional logistic regression. Results were adjusted to take account of the estimated association of paternal age with Down syndrome (1.11; 95% CI 1.01 to 1.23). The OR for Patau syndrome was 1.10 (95% CI 0.83 to 1.45); for Edwards syndrome, 1.15 (0.96 to 1.38); for Klinefelter syndrome, 1.35 (1.02 to 1.79); and for XYY syndrome, 1.99 (0.75 to 5.26). There was a statistically significant increase in the odds of Klinefelter syndrome with increasing paternal age. The larger positive associations of Klinefelter and XYY syndromes with paternal age compared with Patau and Edwards syndromes are consistent with the greater percentage of these sex chromosome anomalies being of paternal origin.
Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Altus II descends towards the Navy's Pacific Missile Range Facility, Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.
NASA Technical Reports Server (NTRS)
Vadali, Srinivas R.; Carter, Michael T.
1994-01-01
The Phillips Laboratory at the Edwards Air Force Base has developed the Advanced Space Structures Technology Research Experiment (ASTREX) facility to serve as a testbed for demonstrating the applicability of proven theories to the challenges of spacecraft maneuvers and structural control. This report describes the work performed on the ASTREX test article by Texas A&M University under contract NAS119373 as a part of the Control-Structure Interaction (CSI) Guest Investigator Program. The focus of this work is on maneuvering the ASTREX test article with compressed air thrusters that can be throttled, while attenuating structural excitation. The theoretical foundation for designing the near minimum-time thrust commands is based on the generation of smooth, parameterized optimal open-loop control profiles, and the determination of control laws for final position regulation and tracking using Lyapunov stability theory. Details of the theory, mathematical modeling, model updating, and compensation for the presence of 'real world' effects are described and the experimental results are presented. The results show an excellent match between theory and experiments.
Credit PSR. The northwest and southwest facades appear as seen ...
Credit PSR. The northwest and southwest facades appear as seen when looking northeast (460). Doors have been opened to show the interiors of the oxidizer dust receiver room at left; the building equipment room (air conditioning) is on the right. The dust receiver is a Roto-Clone Type N hydrostatic precipitator, which uses a 5 horsepower vacuum motor. Refrigeration units are mounted on pads immediately to the right of the building in this view. The grinder room is at the far end of the building; access to it is gained via double doors on the left where a hoist beam projects out from the top of the door opening. Building 4284/E85 (Oxidizer Dryer Blender) appears in the left background; 4283/E-84 (Oxidizer Grinder) appears in the right background - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA
1. Credit BG. View looking southeast down onto roof and ...
1. Credit BG. View looking southeast down onto roof and the north and west facades of Steam Generator Plant, Building 4280/E-81. Vents on roof were from gas-fired steam generators. Pipes emerging from north facade are for steam. Elevated narrow tray is for electrical cables. To lower left of image (immediate north of 4280/E-81) is concrete-lined pond originally built to neutralize rocket engine exhaust compounds; it was only used as a cooling pond. To the lower right of this image are concrete pads which held two 7,500 gallon feedwater tanks for the boilers in 4280/E-81; these tanks were transferred to another federal space science organization and removed from the JPL compound in 1994. Beyond 4280/E-81 to the upper left is a reclamation pond. ... - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA
Johnson, Martin H.; Franklin, Sarah B.; Cottingham, Matthew; Hopwood, Nick
2010-01-01
BACKGROUND In 1971, Cambridge physiologist Robert Edwards and Oldham gynaecologist Patrick Steptoe applied to the UK Medical Research Council (MRC) for long-term support for a programme of scientific and clinical ‘Studies on Human Reproduction’. The MRC, then the major British funder of medical research, declined support on ethical grounds and maintained this policy throughout the 1970s. The work continued with private money, leading to the birth of Louise Brown in 1978 and transforming research in obstetrics, gynaecology and human embryology. METHODS The MRC decision has been criticized, but the processes by which it was reached have yet to be explored. Here, we present an archive-based analysis of the MRC decision. RESULTS We find evidence of initial support for Edwards and Steptoe, including from within the MRC, which invited the applicants to join its new directly funded Clinical Research Centre at Northwick Park Hospital. They declined the offer, preferring long-term grant support at the University of Cambridge, and so exposed the project to competitive funding mode. Referees and the Clinical Research Board saw the institutional set-up in Cambridge as problematic with respect to clinical facilities and patient management; gave infertility a low priority compared with population control; assessed interventions as purely experimental rather than potential treatments, and so set the bar for safety high; feared fatal abnormalities and so wanted primate experiments first; and were antagonized by the applicants’ high media profile. The rejection set MRC policy on IVF for 8 years, until, after the birth of just two healthy babies, the Council rapidly converted to enthusiastic support. CONCLUSIONS This analysis enriches our view of a crucial decision, highlights institutional opportunities and constraints and provides insight into the then dominant attitudes of reproductive scientists and clinicians towards human conception research. PMID:20657027
Thomas, Jonathan V.
2014-01-01
The Edwards-Trinity aquifer, a major aquifer in the Pecos County region of western Texas, is a vital groundwater resource for agricultural, industrial, and public supply uses. Resource managers would like to better understand the future availability of water in the Edwards-Trinity aquifer in the Pecos County region and the effects of the possible increase or temporal redistribution of groundwater withdrawals. To that end, the U.S. Geological Survey (USGS), in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1, completed a comprehensive, integrated analysis of available hydrogeologic data to develop a groundwater-flow model of the Edwards-Trinity and related aquifers in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. Following calibration, the model was used to evaluate the sustainability of recent (2008) and projected water-use demands on groundwater resources in the study area.
United States Air Force Graduate Student Research Program. 1989 Program Management Report
1989-12-01
research at Air Force laboratories /centers. Each assignment is in a subject area and at an Air Force facility mutually agreed upon by the...housing difficult to find, c) 10 weeks too short for research period. June 20, 1989 Astronautics Laboratory Edwards Air Force Base, California June 21...1989 HRL: Operations Training Division Williams Air Force Base, Arizona June 22, 1989 Weapons Laboratory Kirtland Air
STS-26 Discovery, OV-103, touches down on dry lakebed runway 17 at EAFB
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on dry lakebed runway 17 at Edwards Air Force Base (EAFB), California. A small cloud of dust forms behind MLG as OV-103 begins to slow down as it passes a series of runway lights. EAFB and Dryden Flight Research Facility (DFRF) buildings and hangars appear in the background.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. John F. Kerry (center), D-Mass., discusses Space Shuttle processing with NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. John F. Kerry (center), D-Mass., discusses Space Shuttle processing with NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
Investigating Vertical Mixing Between Two Carbonate Aquifers Using a Multiport Well, Central Texas
NASA Astrophysics Data System (ADS)
Kromann, J.; Wong, C. I.; Hunt, B.; Smith, B.; Banner, J. L.
2011-12-01
Determining the occurrence and extent of mixing between vertically-adjacent aquifers is critical to dual-aquifer management. This can be challenging due to variable well depths and uncertainty as to hydrostratigraphic sources of groundwater. This study uses a multiport monitor well to investigate the degree of aquifer mixing between the overlying Edwards aquifer and underlying Trinity aquifer in central Texas. The results will inform dual-aquifer management as the Trinity aquifer is being developed as an alternative water source to the Edwards aquifer due to pumping limits and projections of increasing water demand. Water levels from isolated hydrostratigraphic units (n = 19) were measured monthly in the well as climate conditions transitioned from wet to dry (Sept 2010 to May 2011). Groundwater was sampled over a two-week interval in May to June 2011. At the start of the monitoring interval, water levels were high in the Edwards and the uppermost units of the Trinity relative to the rest of the Trinity units. Water levels decreased to lower elevations, from about 635 to 585 ft-msl, under dry conditions. Water levels in the lowermost Trinity declined less, from about 630 to 620 ft-msl, under dry conditions. Two zones separating the Edwards and lowermost Trinity showed almost no head change during this period. The water-level variations between the two aquifers suggest that: i) vertical flow potential from the Edwards to the Trinity occurs during dry conditions, ii) the uppermost stratigraphic units of the Trinity and Edwards are mixing, and iii) portions of the Trinity behave as an aquitard, providing hydrologic separation between the Edwards and lowermost Trinity units. Groundwater samples indicate the presence of three distinct hydrochemical facies: Ca-HCO3 (Edwards), Ca-HCO3-SO4 (lowermost Trinity), and Ca-SO4 (Trinity-Glen Rose Fm), suggesting little vertical flow and mixing. Covariation between groundwater 87Sr/86Sr values and SO4 concentrations from units of the Edwards and lowermost Trinity units can be accounted for by a two-end-member fluid mixing model, which uses a unit from the Edwards and lowermost Trinity as end members. This may indicate that 87Sr/86Sr values and SO4 concentrations are controlled by varying extents of mixing between the two units. Groundwater from units in the Glen Rose Formation (between the Edwards and lowermost Trinity units) cannot be accounted for by this mixing process due to elevated SO4 concentrations likely associated with dissolution of evaporites. 87Sr/86Sr values of evaporites recovered from the well are consistent with 87Sr/86Sr values of groundwater from these Glen Rose units. Although the geochemical model results suggest possible mixing between the Edwards and Trinity aquifers, water-level variations and the presence of distinct hydrochemical facies indicate that vertical flow between the Edwards and Trinity is limited to the uppermost units of the Trinity. This study suggests that the Edwards aquifer and lowermost Trinity units are not likely in hydrologic communication and independent management may be possible.
5. INTERIOR, INSTRUMENTATION AND CONTROL BUILDING ADDITION. Looking north. ...
5. INTERIOR, INSTRUMENTATION AND CONTROL BUILDING ADDITION. Looking north. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA
2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. ...
2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
2012-04-11
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a maintenance technician from NASA’s Dryden Flight Research Center in California checks controls inside NASA’s Shuttle Carrier Aircraft modified 747 jet, or SCA, after arriving at the Shuttle Landing Facility from Edwards Air Force Base in California. During the Space Shuttle Program’s transition and retirement processing, Discovery was prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Discovery is scheduled to be transported atop the SCA, designated NASA 905, to Dulles International Airport in Virginia on April 17 and then moved to the Smithsonian for permanent public display on April 19. The SCA is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Frankie Martin
NASA Dryden flow visualization facility
NASA Technical Reports Server (NTRS)
Delfrate, John H.
1995-01-01
This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.
Clark, Amy R.; Blome, Charles D.; Faith, Jason R.
2009-01-01
Rock units forming the Edwards and Trinity aquifers in northern Bexar County, Texas, are exposed within all or parts of seven 7.5-minute quadrangles: Bulverde, Camp Bullis, Castle Hills, Helotes, Jack Mountain, San Geronimo, and Van Raub. The Edwards aquifer is the most prolific ground-water source in Bexar County, whereas the Trinity aquifer supplies water for residential, commercial, and industrial uses for areas north of the San Antonio. The geologic map of northern Bexar County shows the distribution of informal hydrostratigraphic members of the Edwards Group and the underlying upper member of the Glen Rose Limestone. Exposures of the Glen Rose Limestone, which forms the Trinity aquifer alone, cover approximately 467 km2 in the county. This study also describes and names five informal hydrostratigraphic members that constitute the upper member of the Glen Rose Limestone; these include, in descending order, the Caverness, Camp Bullis, Upper evaporite, Fossiliferous, and Lower evaporite members. This study improves our understanding of the hydrogeologic connection between the two aquifers as it describes the geology that controls the infiltration of surface water and subsurface flow of ground water from the catchment area (outcropping Trinity aquifer rocks) to the Edwards water-bearing exposures.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 transport aircraft approaches its first landing under engine power only on Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 approaches the first landing ever of a transport aircraft under engine power only on Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when it normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
Pathfinder aircraft taking off - setting new solar powered altitude record
NASA Technical Reports Server (NTRS)
1995-01-01
The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)
Supporting SMEs in public sector bids.
James, Edward
2016-03-01
Edward James, workstream lead, Estates, Facilities and Professional Services Workstream, at NHS London Procurement Partnership (pictured), looks at the workings and benefits of Dynamic Purchasing Systems--electronic systems used by a public bodies to purchase commonly used goods, works, or services. One of the major benefits, he explains, is that under a 'DPS'--an 'open market' system revised in 2015--smaller businesses have a greater opportunity to win business than in traditional ('closed') framework agreements.
Department of Defense Facilities Sustainment, Restoration, & Modernization Program Plan
2009-05-15
Insul System and Roof $509 E 44090005 N/ A N/ A Jun-09 Sep-09...CA Repair Substation and Switchgear, Fac 2143 $5,179 E BAEY060036 N/ A N/ A Jun-09 Oct-09 Dec-10 135 Edwards AFB CA Construct Concrete Pad for Civil...Helo Hangar Fire Suppression, Bldg. 609 $848 O QSEU090104 N/ A N/ A Jun-09 Jun-09 Sep-09 578 Moody AFB GA Repair Airfield Electrical System
11. CONTROL ROOM INTERIOR, SHOWING SEVERAL PERISCOPES. Looking north along ...
11. CONTROL ROOM INTERIOR, SHOWING SEVERAL PERISCOPES. Looking north along west wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Taylor-Phillips, Sian; Freeman, Karoline; Geppert, Julia; Agbebiyi, Adeola; Uthman, Olalekan A; Madan, Jason; Clarke, Angus; Quenby, Siobhan; Clarke, Aileen
2016-01-01
Objective To measure test accuracy of non-invasive prenatal testing (NIPT) for Down, Edwards and Patau syndromes using cell-free fetal DNA and identify factors affecting accuracy. Design Systematic review and meta-analysis of published studies. Data sources PubMed, Ovid Medline, Ovid Embase and the Cochrane Library published from 1997 to 9 February 2015, followed by weekly autoalerts until 1 April 2015. Eligibility criteria for selecting studies English language journal articles describing case–control studies with ≥15 trisomy cases or cohort studies with ≥50 pregnant women who had been given NIPT and a reference standard. Results 41, 37 and 30 studies of 2012 publications retrieved were included in the review for Down, Edwards and Patau syndromes. Quality appraisal identified high risk of bias in included studies, funnel plots showed evidence of publication bias. Pooled sensitivity was 99.3% (95% CI 98.9% to 99.6%) for Down, 97.4% (95.8% to 98.4%) for Edwards, and 97.4% (86.1% to 99.6%) for Patau syndrome. The pooled specificity was 99.9% (99.9% to 100%) for all three trisomies. In 100 000 pregnancies in the general obstetric population we would expect 417, 89 and 40 cases of Downs, Edwards and Patau syndromes to be detected by NIPT, with 94, 154 and 42 false positive results. Sensitivity was lower in twin than singleton pregnancies, reduced by 9% for Down, 28% for Edwards and 22% for Patau syndrome. Pooled sensitivity was also lower in the first trimester of pregnancy, in studies in the general obstetric population, and in cohort studies with consecutive enrolment. Conclusions NIPT using cell-free fetal DNA has very high sensitivity and specificity for Down syndrome, with slightly lower sensitivity for Edwards and Patau syndrome. However, it is not 100% accurate and should not be used as a final diagnosis for positive cases. Trial registration number CRD42014014947. PMID:26781507
10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM ...
10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM INTERIOR, SHOWING ESCAPE HATCH. Looking north along east wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2009-01-01
The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
Credit BG. View looking northeast at southwestern side of Test ...
Credit BG. View looking northeast at southwestern side of Test Stand "D" complex. Test Stand "D" workshop (Building 4222/E-23) is at left; shed to its immediate right is an entrance to underground tunnel system which interconnects all test stands. To the right of Test Stand "D" tower are four Clayton water-tube flash boilers once used in the Steam Generator Plant 4280/E-81 to power the vacuum ejector system at "D" and "C" stands. A corner of 4280/E-81 appears behind the boilers. Boilers were removed as part of stand dismantling program. The Dv (vertical vacuum) Test Cell is located in the Test Stand "D" tower, behind the sunscreen on the west side. The top of the tower contains a hoist for lifting or lowering rocket engines into the Dv Cell. Other equipment mounted in the tower is part of the steam-driven vacuum ejector system - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. Looking southeast at Test Stand "D" (Building 4223/E24). ...
Credit BG. Looking southeast at Test Stand "D" (Building 4223/E-24). Left foreground contains six high-pressure nitrogen tanks which supplied nitrogen for operation of propellant valves. Several tanks for other substances have been removed from the base of the tower as part of decontamination and dismantling program. The vertical vacuum test cell can be seen in the tower behind the western sunscreen. At the top of the tower in the northeast corner is the interstage condenser used in the series of vacuum ejectors; at the top of the condenser is one of two Z-stage ejectors used to evacuate the condenser. The hoist beam for lifting/lowering rocket engines can be clearly seen projecting to the west over the pavement. In the distance on the right are Clayton water-tube steam generators from Building 4280/E-81, and the towers for Test Stand "C" and its scrubber-condenser - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
4. Credit JPL. Original 4" x 5" black and white ...
4. Credit JPL. Original 4" x 5" black and white negative housed in the JPL Archives, Pasadena, California. This interior view displays the machine shop in the Administration/Shops Building (the compass angle of the view is undetermined). Looking clockwise from the lower left, the machine tools in view are a power hacksaw, a heat-treatment oven (with white gloves on top), a large hydraulic press with a tool grinder at its immediate right; along the wall in the back of the view are various unidentified machine tool attachments and a vertical milling machine. In the background, a machinist is operating a radial drilling machine, to the right of which is a small drill press. To the lower right, another machinist is operating a Pratt & Whitney engine lathe; behind the operator stand a workbench and vertical bandsaw (JPL negative no. 384-10939, 29 July 1975). - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit
NASA Technical Reports Server (NTRS)
Price, T. W.; Shain, T. W.; Bryant, J. A.
1981-01-01
The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.
STS-92 - Shuttle Carrier Aircraft (SCA)
2000-10-29
One of NASA’s two modified Boeing 747 Shuttle Carrier Aircraft is bathed in the morning Sun at NASA’s Dryden Flight Research Center at Edwards, California. The modified jumbo jetliners are used to ferry the Space Shuttle orbiters between Dryden and the Kennedy Space Center in Florida and Boeing’s Reusable Space Systems modification facility at Palmdale, California. Features which distinguish the two SCAs from standard 747 jetliners are three struts, with associated interior structural strengthening, which protrude from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. All interior furnishings and equipment aft of the forward No. 1 doors have also been removed to reduce weight. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas.
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
Enabling a Science Support Structure for NASAs Global Hawk UASs
NASA Technical Reports Server (NTRS)
Sullivan, Donald V.
2014-01-01
In this paper we describe the information technologies developed by NASA for the Winter/Spring 2013/2014, and Fall 2014, NASA Earth Venture Campaigns, Hurricane and Severe Storm Sentinel (HS3) and Airborne Tropical TRopopause EXperiment (ATTREX). These campaigns utilized Global Hawk UAS vehicles equipped at the NASA Armstrong (previously Dryden) Flight Research Facility (AFRC), Edwards Air Force Base, California, and operated from there, the NASA Wallops Flight Facility (WFF), Virginia, and Anderson Air Force Base (AAFB), Guam. Part of this enabling infrastructure utilized a layer 2 encrypted terrestrial Virtual Local Area Network (VLAN) that, at times, spanned greater than ten thousand miles (AAFB <-> AFRC <-> WFF) and was routed over geosynchronous Ku band communication Satellites directly to the aircraft sensor network. This infrastructure enabled seamless hand off between Satellites, and Satellite ground stations in Guam, California and Virginia, so allowing simultaneous Aircraft Command and Control and Science operations from remote locations. Additionally, we will describe the other elements of this infrastructure, from on-board geo-enabled databases, to real time communications directly from the instruments (in some cases, more than twelve were carried, and simultaneously operated, on one aircraft) to the researchers and other interested parties, world wide.
6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape ...
6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape tunnel. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
1. LOOKING SOUTH TO THE CONTROL CENTER FROM THE EAST ...
1. LOOKING SOUTH TO THE CONTROL CENTER FROM THE EAST SIDE OF TEST STAND 1-A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
7. CONTROL AND EQUIPMENT ROOM INTERIOR. Looking to southwest corner ...
7. CONTROL AND EQUIPMENT ROOM INTERIOR. Looking to southwest corner and entrance to cable tunnel. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Giddings Edwards (Cretaceous) field, south Texas: carbonate channel or elongate buildup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomando, A.J.; Mazzullo, S.J.
1989-03-01
Giddings Edwards field, located in Fayette County, Texas, is situated on the broad Cretaceous (Albian) shallow shelf, approximately 20 mi north of the main Edwards shelf-margin reef trend. The Giddings field produces gas from an elongate stratigraphic trap approximately 9.5 mi long and 1.8 mi wide, encased in argillaceous lime mudstones and shales; the field is oriented normal to the contiguous Edwards reef trend. Available cores and cuttings samples from the central portion of the field indicate that the field reservoir is composed of biopackstones and grainstones interpreted to have been deposited in a high-energy shelf environment. The facies systemmore » is characterized by stacked reservoirs having a maximum gross pay thickness of over 100 ft, containing primary interparticle and secondary biomoldic porosity, both of which have been modified slightly by chemical compaction and partial occlusion by sparry calcite and saddle dolomite cements. Despite reasonable subsurface sample and mechanical log control within and surrounding the field, its depositional origin remains equivocal. Such uncertainty has important bearing on predictive models for the exploration for additional Edwards shelfal hydrocarbon reservoirs. The elongate, biconvex geometry of the productive carbonate sands, their northward thinning, and apparent updip bifurcation suggest deposition in a shallow-shelf channel system. By contrast, an alternative correlation and interpretation based on geometry and facies is that of an elongate in-situ carbonate buildup. A number of modern analogs of elongate buildups normal to major reef systems are available from which to compare and model the depositional system of Giddings Edwards field. The evaluation of this field serves as an example of using a multiple working hypothesis to develop an accurate exploration model.« less
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
A transport aircraft lands for the first time under engine power only, as this McDonnell Douglas MD-11 touches down at 11:38 a.m., Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
A transport aircraft lands for the first time under engine power only, as this McDonnell Douglas MD-11 touches down at 11:38 a.m., Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
Groschen, G.E.
1996-01-01
The Edwards aquifer in the San Antonio region supplies drinking water for more than 1 million people. Proper development and protection of the aquifer is a high priority for local and State authorities. To better understand the flow of water in two major flowpaths in the Edwards aquifer, stratigraphic, structural, hydrologic, and geochemical data were analyzed. The western Medina flowpath is in parts of Uvalde, Medina, and Bexar Counties, and the eastern flowpath is in northern Bexar and central Comal Counties. A major hydrogeologic factor that affects the pattern of flow in the Edwards aquifer is the spatial and temporal distribution of recharge. Other hydrogeologic factors that affect flowpaths include internal boundaries and the location and rate of spring discharge. The relative displacement of faults and the high permeability layers have substantial control on the discharge at springs and on the flowpaths in the Edwards aquifer. Analysis of the estimated recharge to the Edwards aquifer during 1982 89 indicated that during years of substantial precipitation, a large part of the net recharge probably is diffuse infiltration of precipitation over large parts of the recharge area. During years with below-normal precipitation, most recharge is leakage from rivers and streams that drain the catchment subbasins. In the western Medina flowpath, concentrations of major ions indicate saturation of calcite and undersaturation of dolomite the two minerals that constitute most of the Edwards aquifer matrix. Concentrations of dissolved calcium, alkalinity, and dissolved chloride in the eastern flowpath are greater than those in the western Medina flowpath. These upward trends in concentrations might result in part from: (1) increased development in the recharge area, (2) mineralized effluent from developed areas, or (3) increased dissolution of aquifer material. Tritium data from wells sampled in and near the western Medina flowpath indicate no vertical stratification of flow. Tritium concentrations in the recharge area of the western Medina flowpath are smaller than would be expected from previous studies and for the amount of recharge the area presumably received since 1952. Stable-isotopic data indicate that the water in the Edwards aquifer is meteoric and, except in one known area, has not been subjected to substantial evaporation or other isotope-fractionating processes. Evaporation of water from Medina Lake results in a heavier stable-isotopic ratio in lake water, which subsequently recharges the Edwards aquifer. The stable-isotopic data indicate that lake water does not enter either of the two flowpaths.
2001-05-24
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a worker points to some of the tiles on orbiter Atlantis that are being dried by clusters of 200-300 watt heat lamps. Significant rainstorms during the orbiter’s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused a moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing. Engineers are evaluating the current procedures to assure the tiles are in a safe and flight-ready condition
2001-05-24
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a worker points to some of the tiles on orbiter Atlantis that are being dried by clusters of 200-300 watt heat lamps. Significant rainstorms during the orbiter’s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused a moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing. Engineers are evaluating the current procedures to assure the tiles are in a safe and flight-ready condition
2009-06-24
STS003-010-613 (22-30 March 1982) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Space shuttle Columbia (STS-3), this mission, landed at the White Sands alternate landing site because of bad weather at Edwards AFB, CA. Photo credit: NASA
White Sands, Carrizozo Lava Beds, NM
1982-03-30
STS003-10-613 (22-30 March 1982) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Space shuttle Columbia (STS-3), this mission, landed at the White Sands alternate landing site because of bad weather at Edwards AFB, CA. Photo credit: NASA
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
The main landing gear (MLG) of Discovery, Orbiter Vehicle (OV) 103, rides along concrete runway 22 at Edwards Air Force Base (EAFB), California, bringing mission STS-31 to an end. The nose landing gear (NLG) is suspended above the runway prior to touchdown and wheel stop which occurred at 6:51:00 am (Pacific Daylight Time (PDT)). View shows OV-103's starboard side and deployed rudder/speedbrake. EAFB facilities are seen in the distance.
STS-26 Discovery, OV-103, touches down on dry lakebed runway 17 at EAFB
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on dry lakebed runway 17 at Edwards Air Force Base (EAFB), California. A cloud of dust forms behind MLG as OV-103 begins to slow down. Taken from the rear of the orbiter, view shows the space shuttle main engines (SSMEs) and the speedbrake/rudder deployed on tail section. EAFB and Dryden Flight Research Facility (DFRF) buildings and hangars appear in the background.
The Space Shuttle Discovery, atop a specially modified Boeing 747
2005-08-21
JSC2005-E-36604 (21 August 2005) --- The Space Shuttle Discovery, atop a specially modified Boeing 747, was photographed following touch down at NASA Kennedy Space Centers (KSC) Shuttle Landing Facility on Aug. 21, 2005 after a ferry flight from Edwards Air Force Base in California, where the shuttle landed Aug. 9. The 747, known as the Shuttle Carrier Aircraft (SCA), brought Discovery home to KSC after completing the historic STS-114 Return to Flight mission.
2002-06-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour lands on runway 15 at KSC's Shuttle Landing Facility at 10:58 a.m. EDT atop a modified Boeing 747 Shuttle Carrier Aircraft. The cross-country ferry flight became necessary when three days of unfavorable weather conditions at KSC forced Endeavour to land on runway 22 at Dryden Flight Research Center, Edwards Air Force Base, Calif., on June 19 following mission STS-111. Processing of Endeavour will now begin for the launch of mission STS-113 targeted for October 2002
2002-06-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour lands on runway 15 at KSC's Shuttle Landing Facility at 10:58 a.m. EDT atop a modified Boeing 747 Shuttle Carrier Aircraft. The cross-country ferry flight became necessary when three days of unfavorable weather conditions at KSC forced Endeavour to land on runway 22 at Dryden Flight Research Center, Edwards Air Force Base, Calif., on June 19 following mission STS-111. Processing of Endeavour will now begin for the launch of mission STS-113 targeted for October 2002
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Miley, George H.
2016-10-01
The following sections are included: * Futurology of High Intensity Lasers (LIRPP Vol. 3A) * Lecture in Connection with the Edward Teller Medal Award (LIRPP Vol. 10) * Photo of the First Recipients of the Edward Teller Medal in 1991 * Photos from the Edward Teller Medal Celebration in 1997 * Photo with Participants of the LIRPP No. 12 Conference, 1995 * Photo with Edward Teller Medalists at IFSA01, Kyoto, 2001 * Keynote Address: The Edward Teller Lecture (LIRPP Vol. 11) * Keynote Address: Dr. Edward Teller (LIRPP Vol. 12) * Teller Award Presentation and Keynote Address (LIRPP Vol. 13) * Laudations of Awardees 1991-1995 (LIRPP Vol. 13) * Laudations of Awardees 1999-2003
Small, Ted A.; Lambert, Rebecca B.
1998-01-01
The Trinity aquifer, which crops out in the northern part of the Medina Lake area and underlies the Edwards aquifer in the southern part, is much less permeable and productive than the Edwards aquifer. Where the Trinity aquifer underlies the Edwards, the Trinity acts as a lower confining unit on the Edwards.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121510 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121511 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121512 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121509 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
NASA Technical Reports Server (NTRS)
Findley, D. S.; Huckel, V.; Henderson, H. R.
1975-01-01
In order to evaluate reaction of people to sonic booms of varying overpressures and time durations, a series of closely controlled and systematic flight test studies were conducted in the vicinity of Edwards AFB, California, from June 3 to June 23, 1966. The dynamic responses of several building structures were measured as a part of these studies, and the measurements made in a one-story residence structure (Edwards test structure No. 1) are presented. Sample acceleration and strain recordings are presented from F-104, B-58, and XB-70 sonic-boom exposures, along with tabulations of the maximum acceleration and strain values measured for each one of about 140 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. From left, Sen. John F. Kerry, D- Mass., Sen. Bob Graham, D-Fla., and former astronaut and Sen. John H. Glenn, D-Ohio, receive a briefing from Kennedy Space Center Director James W. Kennedy before a tour of the Orbiter Processing Facility (OPF). In the OPF, the orbiter Discovery is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. Bill Nelson (second from left), D-Fla., former astronaut and Sen. John H. Glenn, D-Ohio, and Sen. John F. Kerry, D-Mass., receive a briefing from NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. John F. Kerry, D-Mass., visits the flight deck of Space Shuttle Discovery during a tour of the Orbiter Processing Facility (OPF). The bunny suit he is wearing is clean room attire required for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. Bill Nelson (second from left), D-Fla., former astronaut and Sen. John H. Glenn, D-Ohio, and Sen. John F. Kerry, D-Mass., receive a briefing from NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - From left, Sen. John F. Kerry, D-Mass., Sen. Bob Graham, D-Fla., and former astronaut and Sen. John H. Glenn, D-Ohio, receive a briefing from Kennedy Space Center Director James W. Kennedy before a tour of the Orbiter Processing Facility (OPF). In the OPF, the orbiter Discovery is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. John F. Kerry, D-Mass., visits the flight deck of Space Shuttle Discovery during a tour of the Orbiter Processing Facility (OPF). The “bunny suit” he is wearing is clean room attire required for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
The Effectiveness of Permanent Highway Runoff Controls: Sedimentation/Filtration Systems
DOT National Transportation Integrated Search
1998-09-01
Original Report Date: October 1997. This study evaluates the performance of sedimentation/filtration systems that are the most common control for treating highway runoff in the Edwards Aquifer recharge zone. The study includes: 1) monitoring and eval...
Activities in the Mission Control Center during STS 41-C
1984-04-13
41C-03229 (13 April 1984) --- An overall view of activity in the Mission Operations Control Room (MOCR) of the Johnson Space Center (JSC) Mission Control Center (MCC) during post-landing activity at the Challenger's landing site at Edwards Air Force Base in California.
Taylor-Phillips, Sian; Freeman, Karoline; Geppert, Julia; Agbebiyi, Adeola; Uthman, Olalekan A; Madan, Jason; Clarke, Angus; Quenby, Siobhan; Clarke, Aileen
2016-01-18
To measure test accuracy of non-invasive prenatal testing (NIPT) for Down, Edwards and Patau syndromes using cell-free fetal DNA and identify factors affecting accuracy. Systematic review and meta-analysis of published studies. PubMed, Ovid Medline, Ovid Embase and the Cochrane Library published from 1997 to 9 February 2015, followed by weekly autoalerts until 1 April 2015. English language journal articles describing case-control studies with ≥ 15 trisomy cases or cohort studies with ≥ 50 pregnant women who had been given NIPT and a reference standard. 41, 37 and 30 studies of 2012 publications retrieved were included in the review for Down, Edwards and Patau syndromes. Quality appraisal identified high risk of bias in included studies, funnel plots showed evidence of publication bias. Pooled sensitivity was 99.3% (95% CI 98.9% to 99.6%) for Down, 97.4% (95.8% to 98.4%) for Edwards, and 97.4% (86.1% to 99.6%) for Patau syndrome. The pooled specificity was 99.9% (99.9% to 100%) for all three trisomies. In 100,000 pregnancies in the general obstetric population we would expect 417, 89 and 40 cases of Downs, Edwards and Patau syndromes to be detected by NIPT, with 94, 154 and 42 false positive results. Sensitivity was lower in twin than singleton pregnancies, reduced by 9% for Down, 28% for Edwards and 22% for Patau syndrome. Pooled sensitivity was also lower in the first trimester of pregnancy, in studies in the general obstetric population, and in cohort studies with consecutive enrolment. NIPT using cell-free fetal DNA has very high sensitivity and specificity for Down syndrome, with slightly lower sensitivity for Edwards and Patau syndrome. However, it is not 100% accurate and should not be used as a final diagnosis for positive cases. CRD42014014947. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Main Building (4800) at Dryden FRC
1991-09-05
The X-1E research aircraft provides a striking view at the entrance of NASA's Dryden Flight Research Center, Edwards, California. The X-1E, one of the three original X-1 aircraft modified with a raised cockpit canopy and an ejection seat, was flown at the facility between 1953 and 1958 to investigate speeds at twice that of sound, and also to evaluate a thin wing designed for high-speed flight. The Dryden complex was originally established in 1946 as a small high-speed flight station to support the X-1 program. The X-1 was the first aircraft to fly at supersonic speeds. The main administrative building is to the rear of the X-1E and is the center of a research installation that has grown to more than 450 government employees and nearly 400 civilian contractors. Located on the northwest "shore" of Rogers Dry Lake, the Dryden Center was built around the original administrative-hangar building constructed in 1954 at a cost of $3.8 million. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the newest addition, the Integrated Test Facility.
Kuniansky, E.L.; Holligan, K.Q.
1994-01-01
The transmissivity values used in the simulations were within estimated ranges and generally are: 1,000 to 10,000 ft2/d (feet squared per day) for the Edwards-Trinity and Trinity aquifers; 100,000 to greater than 1 million ft2/d for the Edwards aquifer; and less than 500 to 10,000 ft2/d in contiguous hydraulically connected units. Simulated flow through the Edwards-Trinity aquifer system and contiguous hydraulically connected units is about 3 million acre-feet per year. Estimates of areally distributed recharge from the simulations range from 0.1 to 1 inch per year for the Edwards-Trinity aquifer and increase to 4 inches per year for the Trinity aquifer. Recharge to the Edwards aquifer occurs along streambeds that cross outcropped high-permeability rocks of the Edwards Group through joints and faults. Many of the streams are diverted completely underground during periods of no precipitation. The movement of a substantial quantity of water (about 400 cubic feet per second) from the Trinity and Edwards-Trinity aquifers into the Edwards aquifer was simulated. Results of the simulations indicate that anisotropy strongly influences flow in the Edwards aquifer. In the San Antonio and Austin areas, the Edwards aquifer is the most active part of the ground-water flow system with one-third of ground-water discharge occurring in 5 percent of the modeled area for both simulations.
8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance ...
8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance and inner blast door. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
4. Credit USAF, ca. 1945. Original housed in the Photograph ...
4. Credit USAF, ca. 1945. Original housed in the Photograph Files, AFFTC/HO, Edwards AFB, California. Low level oblique aerial view of Muroc Flight Test Base (North Base), looking southwest along flightline. HANG-P-A hangar (Building 4505) is in the right foreground. A Bell XP-59A Airacomet, the United States military's first jet propelled aircraft, is being towed on the apron toward the control tower. Other aircraft in the foreground include Douglas DC-3s, North American Aviation P-51 Mustangs, and Lockheed P-38 Lightnings. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
3. CABLE TUNNEL TO TEST STAND 1A, LOOKING SOUTH TO ...
3. CABLE TUNNEL TO TEST STAND 1-A, LOOKING SOUTH TO STAIRS LEADING UP TO CONTROL CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Dynamic data analysis of climate and recharge conditions over time in the Edwards Aquifer, Texas
NASA Astrophysics Data System (ADS)
Pierce, S. A.; Collins, J.; Banner, J.
2017-12-01
Understanding the temporal patterns in datasets related to climate, recharge, and water resource conditions is important for informing water management and policy decisions. Data analysis and pipelines for evaluating these disparate sources of information are challenging to set up and rely on emerging informatics tools to complete. This project gathers data from both historical and recent sources for the Edwards Aquifer of central Texas. The Edwards faces a unique array of challenges, as it is composed of karst limestone, is susceptible to contaminants and climate change, and is expected to supply water for a rapidly growing population. Given these challenges, new approaches to integrating data will be particularly important. Case study data from the Edwards is used to evaluate aquifer and hydrologic system conditions over time as well as to discover patterns and possible relationships across the information sources. Prior research that evaluated trends in discharge and recharge of the aquifer is revisited by considering new data from 1992-2015, and the sustainability of the Edwards as a water resource within the more recent time period is addressed. Reusable and shareable analytical data pipelines are constructed using Jupyter Notebooks and Python libraries, and an interactive visualization is implemented with the information. In addition to the data sources that are utilized for the water balance analyses, the Global Surface Water Monitoring System from the University of Minnesota, a tool that integrates a wide number of satellite datasets with known surface water dynamics and machine learning, is used to evaluate water body persistence and change over time at regional scales. Preliminary results indicate that surface water body over the Edwards with differing aerial extents are declining, excepting some dam-controlled lakes in the region. Other existing tools and machine learning applications are also considered. Results are useful to the Texas Water Research Network and provide a reproducible geoinformatics approach to integrated data analysis for water resources at regional scales.
Credit WCT. Photographic copy of photograph, low level aerial view ...
Credit WCT. Photographic copy of photograph, low level aerial view of Test Stand "D," looking due south, after completion of Dd station installation in 1961. Note Test Stand "D" "neutralization pond" to immediate southeast of tower. A steel barrier north of and parallel to the Dd station separates fuel run tanks (on south side obscured from view) from oxidizer run tanks (on north side). Small Dj injector test stand is visible to the immediate left of oxidizer run tanks; it is oriented on a northeast/southwest diagonal to the Dd test station. The large tank to the north of the oxidizer run tanks (near center bottom of view) is an oxidizer storage tank for nitrogen tetroxide. Slender tanks to the northwest of the tower (lower right of view) contain high pressure nitrogen gas. A large vertical tank at the base of the tower contains distilled water for flushing propellant lines. (JPL negative no. 384-2997-B, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. This view looks northwest (290°) in the mixer ...
Credit BG. This view looks northwest (290°) in the mixer room at the 30-gallon Baker-Perkins model 121/2 PVM mixer and its associated equipment. The hopper in the left background feeds ingredients to the mixing pot when the hopper is mounted on the mixer frame; the hoist overhead is used to mount the hopper. The mixing pot is in its lowered position beneath the mixer blades. The pot is normally raised and secured to the upper half of the mixer, and a vacuum is applied during mixing operations to prevent the entrainment of air bubbles in the mix. A second mixing pot appears in the right background, and a pot vacuum lid appears in the extreme right foreground. The equipment on the palette in the left foreground is not related to the mixer. Note the explosion-proof fluorescent lighting fixtures suspended from the ceiling. The floor has an electrically conductive coating to dissipate static electrical charges - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-20
The 22,000-acre Otis National Guard/Camp Edwards site is a former military vehicle maintenance facility on Cape Cod, Massachusetts, within the Massachusetts Military Reservation (MMR). The Area of Contamination Chemical Spill Area Number 4 (AOC CS-4) plume extends 11,000 feet and is located 1.1 miles from the southern boundary of MMR. Wastes and equipment handled at AOC CS-4 included oils, solvents, antifreeze, battery electrolytes, paint, and waste fuels. Additionally, the northern portion of AOC CS-4 was used as a storage yard for wastes generated by shops and laboratories operating at MMR. Liquid wastes were stored in containers or underground storage tanksmore » (USTs) in an unbermed area or deposited in USTs designated for motor gasoline. The ROD addresses OU2, the interim action for MMR AOC CS-4 ground water to prevent further down gradient migration of the contaminants. The primary contaminants of concern affecting the ground water are VOCs, including PCE and TCE.« less
A Summary of NASA and USAF Hypergolic Propellant Related Spills and Fires
NASA Technical Reports Server (NTRS)
Nufer, Brian
2010-01-01
Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system test, checkout, and operational use.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. Bill Nelson (right), D-Fla., explains the layout of the glass cockpit to Sen. John F. Kerry, D-Mass., on the flight deck of orbiter Discovery during a tour of the Orbiter Processing Facility (OPF). The bunny suits they are wearing are clean room attire required for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. John F. Kerry (left), D-Mass., and Sen. Bill Nelson, D-Fla., dressed in clean room attire, visit the flight deck of Space Shuttle Discovery during a tour of the Orbiter Processing Facility (OPF). The bunny suits are required dress for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
Hypergolic Propellants: The Handling Hazards and Lessons Learned from Use
NASA Technical Reports Server (NTRS)
Nufer, Brian
2010-01-01
Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system testing, checkout, and operational use.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. John F. Kerry (left), D-Mass., and Sen. Bill Nelson, D-Fla., dressed in clean room attire, visit the flight deck of Space Shuttle Discovery during a tour of the Orbiter Processing Facility (OPF). The “bunny suits” are required dress for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
Pathfinder aircraft taking off - setting new solar powered altitude record
NASA Technical Reports Server (NTRS)
1995-01-01
The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, rolls along concrete runway 22 at Edwards Air Force Base (EAFB), California, after nose landing gear (NLG) and main landing gear (MLG) touchdown. This view looks down OV-103's port side from the space shuttle main engines (SSMEs) to the nose section. The SSMEs are gimbaled to their descent position and the rudder/speedbrake is deployed on the vertical stabilizer. Wheel stop occurred at 6:51 am (Pacific Daylight Time (PDT)). In the distance EAFB facilities are visible.
2002-06-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour approaches the Mate-Demate Device (left) following landing on runway 15 at KSC's Shuttle Landing Facility at 10:58 a.m. EDT atop a modified Boeing 747 Shuttle Carrier Aircraft. The cross-country ferry flight became necessary when three days of unfavorable weather conditions at KSC forced Endeavour to land on runway 22 at Dryden Flight Research Center, Edwards Air Force Base, Calif., on June 19 following mission STS-111. Processing of Endeavour will now begin for the launch of mission STS-113 targeted for October 2002
2002-06-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour is towed toward the Mate-Demate Device (right) following landing on runway 15 at KSC's Shuttle Landing Facility at 10:58 a.m. EDT atop a modified Boeing 747 Shuttle Carrier Aircraft. The cross-country ferry flight became necessary when three days of unfavorable weather conditions at KSC forced Endeavour to land on runway 22 at Dryden Flight Research Center, Edwards Air Force Base, Calif., on June 19 following mission STS-111. Processing of Endeavour will now begin for the launch of mission STS-113 targeted for October 2002
Banks of lights dry tiles on Atlantis
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Orbiter Processing Facility, a worker points to some of the tiles on orbiter Atlantis that are being dried by clusters of 200-300 watt heat lamps. Significant rainstorms during the orbiter'''s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused a moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing. Engineers are evaluating the current procedures to assure the tiles are in a safe and flight-ready condition.
The Human Performance Envelope: Past Research, Present Activities and Future Directions
NASA Technical Reports Server (NTRS)
Edwards, Tamsyn
2017-01-01
Air traffic controllers (ATCOs) must maintain a consistently high level of human performance in order to maintain flight safety and efficiency. In current control environments, performance-influencing factors such as workload, fatigue and situation awareness can co-occur, and interact, to effect performance. However, multifactor influences and the association with performance are under-researched. This study utilized a high fidelity human in the loop enroute air traffic control simulation to investigate the relationship between workload, situation awareness and ATCO performance. The study aimed to replicate and extend Edwards, Sharples, Wilson and Kirwans (2012) previous study and confirm multifactor interactions with a participant sample of ex-controllers. The study also aimed to extend Edwards et als previous research by comparing multifactor relationships across 4 automation conditions. Results suggest that workload and SA may interact to produce a cumulative impact on controller performance, although the effect of the interaction on performance may be dependent on the context and amount of automation present. Findings have implications for human-automation teaming in air traffic control, and the potential prediction and support of ATCO performance.
First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.
2015-05-01
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .
Third of three panoramic views of North Base as seen ...
Third of three panoramic views of North Base as seen from top of Building 4500, Control Tower. View looks west (268°) at ancillary structures surrounding Building 4505. In immediate foreground is Building 4499 Loading Ramp. To the far upper left is Building 4497 Guard House, adjacent to Building 4496 Security Facility. At the extreme right of the view is the chimney and western corner of Building 4505 to which is attached a large light-colored wing used as offices and workspaces; to the immediate southwest of this wing stands Building 4498 Supply Warehouse. In the background, just above Building 4498 in view, stands Building 4494 Cafeteria. The round drum to the right of Building 4494 is Building 4503, a 500,000 gallon water tank which supplies the firefighting system; to the immediate right of the tank is Building 4504 Deluge Water Pumping Station which contains large pumps for firefighting. Just visible above the water tank is Building 4493 Gymnasium. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
5. INSTRUMENT ROOM INTERIOR, SHOWING BACKS OF CONSOLE LOCKERS. Looking ...
5. INSTRUMENT ROOM INTERIOR, SHOWING BACKS OF CONSOLE LOCKERS. Looking northeast to firing control room passageway. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
3. NORTHEAST REAR, SHOWING CONCRETE ENCASEMENT FOR STAIRWAY LEADING FROM ...
3. NORTHEAST REAR, SHOWING CONCRETE ENCASEMENT FOR STAIRWAY LEADING FROM INSTRUMENT ROOM TO UNDERGROUND FIRING CONTROL ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
Small, Ted A.; Clark, Allan K.
2000-01-01
The hydrogeologic subdivisions of the Edwards aquifer outcrop in Medina County generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The most porous and permeable rocks of the Devils River Formation in Medina County appear to be in the top layer. The upper member of the Glen Rose Limestone, the lower confining unit, has much less porosity and permeability than that observed in the Edwards aquifer.The Edwards aquifer has relatively large porosity and permeability resulting, in part, from the development or redistribution of secondary porosity. Lithology, stratigraphy, diagenesis, and karstification account for the effective porosity and permeability in the Edwards aquifer outcrop. Karst features that can greatly enhance effective porosity and permeability in the Edwards aquifer outcrop include sinkholes, dolines, and caves. The Edwards aquifer rocks in Medina County change from the eight-member Edwards Group to the essentially indivisible Devils River Formation. The facies change occurs along a line extending northwestward from just south of Medina Lake.
Joint min-max distribution and Edwards-Anderson's order parameter of the circular 1/f-noise model
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Le Doussal, Pierre
2016-05-01
We calculate the joint min-max distribution and the Edwards-Anderson's order parameter for the circular model of 1/f-noise. Both quantities, as well as generalisations, are obtained exactly by combining the freezing-duality conjecture and Jack-polynomial techniques. Numerical checks come with significantly improved control of finite-size effects in the glassy phase, and the results convincingly validate the freezing-duality conjecture. Application to diffusive dynamics is discussed. We also provide a formula for the pre-factor ratio of the joint/marginal Carpentier-Le Doussal tail for minimum/maximum which applies to any logarithmic random energy model.
13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO ...
13. WALKWAY FROM LAUNCHING PAD TO CABLE TUNNEL STAIRWELL, ALSO SHOWING A PROTECTIVE BERM AT TOP LEFT, AND FIRING CONTROL BLOCKHOUSE 0545 AT TOP RIGHT. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
10. ENTRY STAIRWELL TO CABLE TUNNEL, ABOUT THREE QUARTERS THE ...
10. ENTRY STAIRWELL TO CABLE TUNNEL, ABOUT THREE QUARTERS THE DISTANCE TO THE SLED LAUNCHING PAD FROM THE FIRING CONTROL BLOCKHOUSE 0545. Looking west northwest. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Western Aeronautical Test Range (WATR) Mission Control Gold Room During X-29 Flight
NASA Technical Reports Server (NTRS)
1989-01-01
The mission control Gold room is seen here during a research flight of the X-29 at the Dryden Flight Research Center, Edwards, California. All aspects of a research mission are monitored from one of two of these control rooms at Dryden. Dryden and its control rooms are part of the Western Aeronautical Test Range (WATR). The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests; corridors are provided for low, medium, and high-altitude supersonic flight; and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave pilots excellent control response at angles of attack of up to 45 degrees. During its flight history, the X-29 aircraft flew 422 research missions and a total of 436 missions. Sixty of the research flights were part of the X-29 follow-on 'vortex control' phase. The forward-swept wing of the X-29 resulted in reverse airflow, toward the fuselage rather than away from it, as occurs on the usual aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and prevented stalling (loss of lift) at high angles of attack. Introduction of composite materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty. The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns. During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward-swept wing- canard design. The NASA/Air Force-designed high-gain flight control laws also contributed to the good flying qualities. During the Air Force-initiated vortex-control phase, the X-29 successfully demonstrated vortex flow control (VFC). This VFC was more effective than expected in generating yaw forces, especially in high angles of attack where the rudder is less effective. VFC was less effective in providing control when sideslip (wind pushing on the side of the aircraft) was present, and it did little to decrease rocking oscillation of the aircraft. The X-29 vehicle was a single-engine aircraft, 48.1 feet long with a wing span of 27.2 feet. Each aircraft was powered by a General Electric F404-GE-400 engine producing 16,000 pounds of thrust. The program was a joint effort of the Department of Defense's Defense Advanced Research Projects Agency (DARPA), the U.S. Air Force, the Ames-Dryden Flight Research Facility, the Air Force Flight Test Center, and the Grumman Corporation. The program was managed by the Air Force's Wright Laboratory, Wright Patterson Air Force Base, Ohio.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. Bob Graham (back), D-Fla., former astronaut and Sen. John H. Glenn (front left), D-Ohio, Sen. John F. Kerry, D-Mass., and Sen. Bill Nelson, D-Fla., don clean room attire during a tour of the Orbiter Processing Facility (OPF). The bunny suits are required dress for anyone coming in close proximity to the orbiter Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. Bill Nelson (right), D-Fla., explains the layout of the glass cockpit to Sen. John F. Kerry, D-Mass., on the flight deck of orbiter Discovery during a tour of the Orbiter Processing Facility (OPF). The “bunny suits” they are wearing are clean room attire required for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. Bob Graham (back), D-Fla., former astronaut and Sen. John H. Glenn (front left), D-Ohio, Sen. John F. Kerry, D-Mass., and Sen. Bill Nelson, D-Fla., don clean room attire during a tour of the Orbiter Processing Facility (OPF). The “bunny suits” are required dress for anyone coming in close proximity to the orbiter Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet
NASA Technical Reports Server (NTRS)
1997-01-01
The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)
2003-07-15
Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.
3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. ...
3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA
X-31 Unloading Returning from Paris Air Show
NASA Technical Reports Server (NTRS)
1995-01-01
After being flown in the Paris Air Show in June 1995, the X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is off-loaded from an Air Force Reserve C-5 transport after the ferry flight back to Edwards. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.
23. Photographic copy of an asconstructed site plan for North ...
23. Photographic copy of an as-constructed site plan for North Base: Air Force Flight Test Center, Edwards Air Force Base, Edwards, California: North Base Site Plan, February 1970. This drawing shows the North Base building distribution substantially as it appears in 1995. Records on file at AFFTC/CE-CECC-B (Design/Construction Flight/RPMC), Edwards AFB, California. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
STS-4 landing at Edwards Air Foce Base, California
NASA Technical Reports Server (NTRS)
1982-01-01
STS-4 landing at Edwards Air Foce Base, California. Actor Roy Rogers with Astronauts Jerry L. Ross, left, and Guy S. Gardner at Edwards for the STS-4 landing on July 1, 1982. Also present (behind Gardner at extreme right) was former Astronaut Edwin E. Aldrin, Jr. (33226); President Ronald Reagan and First Lady Nancy Reagan meet Astronauts Thomas K. Mattingly, II., right, and Henry W. Hartsfield, Jr., after the landing of the Columbia at Edwards (33227,33230); Space Shuttle Columbia, followed by two T-38 chase planes, touches down on Edwards Air Force Base's Runway 22 to complete mission. In this view, one chase plane appears to be directly above and behind the Columbia, whose nose wheels have not yet touched ground. The other plane appears to be further up front (33228); The rear wheels of the Columbia touch down on the Edwards AFB runway. There are no chase planes in sight in this photo (33229).
Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas
NASA Astrophysics Data System (ADS)
Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.
2007-05-01
Airborne and ground geophysical surveys conducted in Uvalde, Medina, and northern Bexar counties, Texas, can be used to define and characterize hydrostratigraphic units of the Edwards and Trinity aquifers. Airborne magnetic surveys have defined numerous Cretaceous intrusive stocks and laccoliths, mainly in Uvalde County, that influence local hydrology and perhaps regional ground-water flow paths. Depositional environments in the aquifers can be classified as shallow water platforms (San Marcos Platform, Edwards Group), shoal and reef facies (Devils River Trend, Devils River Formation), and deeper water basins (Maverick Basin, West Nueces, McKnight, and Salmon Peak Formations). Detailed airborne and ground electromagnetic surveys have been conducted over the Edwards aquifer catchment zone (exposed Trinity aquifer rocks), recharge zone (exposed Edwards aquifer rocks), and artesian zone (confined Edwards) in the Seco Creek area (northeast Uvalde and Medina Counties; Devils River Trend). These geophysical survey data have been used to divide the Edwards exposed within the Balcones fault zone into upper and lower hydrostratigraphic units. Although both units are high electrical resistivity, the upper unit has slightly lower resistivity than the lower unit. The Georgetown Formation, at the top of the Edwards Group has a moderate resistivity. The formations that comprise the upper confining units to the Edwards aquifer rocks have varying resistivities. The Eagleford and Del Rio Groups (mainly clays) have very low resistivities and are excellent electrical marker beds in the Seco Creek area. The Buda Limestone is characterized by high resistivities. Moderate resistivities characterize the Austin Group rocks (mainly chalk). The older Trinity aquifer, underlying the Edwards aquifer rocks, is characterized by less limestone (electrically resistive or low conductivity units) and greater quantities of mudstones (electrically conductive or low resistivity units). In the western area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1985-01-01
This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1980-01-01
This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
Pegasus Mated to B-52 Mothership - First Flight
1989-11-09
The Pegasus air-launched space booster is carried aloft under the right wing of NASA's B-52 carrier aircraft on its first captive flight from the Dryden Flight Research Center, Edwards, California. The first of two scheduled captive flights was completed on November 9, 1989. Pegasus is used to launch satellites into low-earth orbits cheaply. In 1997, a Pegasus rocket booster was also modified to test a hypersonic experiment (PHYSX). An experimental "glove," installed on a section of its wing, housed hundreds of temperature and pressure sensors that sent hypersonic flight data to ground tracking facilities during the experiment’s flight.
1986-12-11
MMR main gate (see Figure 3.2-1). In those ponds Umbrella-grass (Guirena-pumila) and Hyssop Hedge- nettle (Stachys- hyssopifolia) were found. The other...has conducted research in Buildings 286 and 240. From 1963 to 1969, the lab tested insecticides for private companies. Residuals from the 4...Airport Turf Insecticidal Treatments for Japanese Beetle and European Chafer, Eastern Region. Stahl, Ralph G., Joachim G. Liehr, and Ernst M. Davis. 1984
2007-07-03
KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, workers supervise the movement of the sling above the orbiter Atlantis. The sling will be attached and lift the orbiter away from the shuttle carrier aircraft (SCA) underneath. The SCA carried the orbiter piggyback from California. Atlantis landed at Edwards Air Force Base in California on June 22 to end mission STS-117. It returned to Kennedy atop the SCA on July 3 after a three-day, cross-country flight due to fuel stops and weather delays. Touchdown was at 8:27 a.m. EDT. Photo credit: NASA/Kim Shiflett
Regenerative Fuel Cell System Testbed Program for Government and Commercial Applications
NASA Technical Reports Server (NTRS)
1996-01-01
NASA Lewis Research Center's Electrochemical Technology Branch has led a multiagency effort to design, fabricate, and operate a regenerative fuel cell (RFC) system testbed. Key objectives of this program are to evaluate, characterize, and demonstrate fully integrated RFC's for space, military, and commercial applications. The Lewis-led team is implementing the program through a unique international coalition that encompasses both Government and industry participants. Construction of the 25-kW RFC testbed at the NASA facility at Edwards Air Force Base was completed in January 1995, and the system has been operational since that time.
22. Photographic copy of an asconstructed site plan for North ...
22. Photographic copy of an as-constructed site plan for North Base: Job No. Muroc AFB A-52, War Department-Corps of Engineers, Office of the District Engineer, Los Angeles, California: Muroc Air Force Base, Muroc, California; Additonal Sprinkler Facilities, Test Base, Electrical Distribution & Pump House No. 3 Details, Sheet No. 14 of 17, October 1950. This drawing gives the contemporary temporary building numbers (T-xx) for all structures at North Base in 1950 Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
Jamaica plans petchem JV with Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-22
Israel`s Dankner group is negotiating with the Jamaican government for conversion of the Pertojam refinery into a petrochemical complex. The plan represents a revival of a year-old proposal by the Jamaican opposition leader Edward Seaga. It calls for a $120-million upgrade of the refinery, including a catalytic cracker and a $150-million chlor-alkali facility to produce 550,000 m.t./year of chlorine that would in turn be used to produce 300,000 m.t./year of polvinyl chloride. Jamaica is a major importer of caustic soda, consuming about 330,000 m.t./year in its bauxite industry.
6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA ...
6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA 1957; AT RIGHT, FACING CAMERA, 10,000 P.S.I. PANEL. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA
5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. ...
5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. 8668) IN MIDDLE DISTANCE AT LEFT, AND TEST AREAS 1-120 AND 1-125 BEYOND. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Astronauts Gibson and Pogue at Apollo Telescope Mount display/control panel
1973-09-10
S73-32837 (10 Sept. 1973) --- Scientist-astronaut Edward G. Gibson, seated, and astronaut William R. Pogue discuss a mission procedure at the Apollo Telescope Mount (ATM) display and control panel mock-up in the one-G trainer for the Multiple Docking Adapter (MDA) at Johnson Space Center. Photo credit: NASA
Observation hall along west side. Looking south to escape ladder. ...
Observation hall along west side. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
12. "TAPE ROOM" LOCATED AT SOUTHEAST CORNER OF MAIN ROOM. ...
12. "TAPE ROOM" LOCATED AT SOUTHEAST CORNER OF MAIN ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... further tidal marsh improvements, more aggressive control of invasive weeds, revegetation of grassland areas, and more aggressive enhancement and restoration of the marsh-upland ecotone. All priority public...
6. SOUTH SIDE, DETAIL OF BULLET GLASS WINDOWS AT GROUND ...
6. SOUTH SIDE, DETAIL OF BULLET GLASS WINDOWS AT GROUND LEVEL. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
2000-12-08
The X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.
Credit BG. View looking northeast down from the tower onto ...
Credit BG. View looking northeast down from the tower onto the two horizontal test stations at Test Stand "D." Station Dy is at the far left (Dy vacuum cell out of view), with in-line exhaust gas cooling sections and steam-driven "air ejector" (or evacuator) discharging engine exhausts to the east. The Dd cell is visible at the lower left, and the Dd exhaust train has the same functions as at Dy. The spherical tank is an electrically heated "accumulator" which supplies steam to the ejectors at Dv, Dd, and Dy stations. Other large piping delivered cooling water to the horizontal train cooling sections. The horizontal duct at the "Y" branch in the Dd train connects the Dd ejector to the Dv and Cv vacuum duct system (a blank can be bolted into this duct to isolate the Dd system). The shed roof for the Dpond test station appears at bottom center of this image. The open steel frame to the lower left of the image supports a hoist and crane for installing or removing test engines from the Dd test cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
ASTRONAUT EDWARD H. WHITE II - GEMINI-TITAN (GT)-IV - ZERO GRAVITY - OUTER SPACE
2015-03-20
S65-30427 (3 June 1965) --- Astronaut Edward H. White II, pilot for the Gemini-Titan 4 (GT-4) spaceflight, floats in the zero-gravity of space during the third revolution of the GT-4 spacecraft. White wears a specially designed spacesuit. His face is shaded by a gold-plated visor to protect him from unfiltered rays of the sun. In his right hand he carries a Hand-Held Self-Maneuvering Unit (HHSMU) that gives him control over his movements in space. White also wears an emergency oxygen chest pack; and he carries a camera mounted on the HHSMU for taking pictures of the sky, Earth and the GT-4 spacecraft. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line. Both lines are wrapped together in gold tape to form one cord. Astronaut James A. McDivitt, command pilot, remained inside the spacecraft during the extravehicular activity (EVA). Photo credit: NASA EDITOR'S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.
Ground winds and winds aloft for Edwards AFB, California (1978 revision)
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.
1978-01-01
Ground level runway wind statistics for the Edwards AFB, California area are presented. Crosswind, headwind, tailwind, and headwind reversal percentage frequencies are given with respect to month and hour for the two major Edwards AFB runways. Also presented are Edwards AFB bivariate normal wind statistics for a 90 degree flight azimuth for altitudes 0 through 27 km. Wind probability distributions and statistics for any rotation of axes can be computed from the five given parameters.
Diffuse-flow conceptualization and simulation of the Edwards aquifer, San Antonio region, Texas
Lindgren, R.J.
2006-01-01
A numerical ground-water-flow model (hereinafter, the conduit-flow Edwards aquifer model) of the karstic Edwards aquifer in south-central Texas was developed for a previous study on the basis of a conceptualization emphasizing conduit development and conduit flow, and included simulating conduits as one-cell-wide, continuously connected features. Uncertainties regarding the degree to which conduits pervade the Edwards aquifer and influence ground-water flow, as well as other uncertainties inherent in simulating conduits, raised the question of whether a model based on the conduit-flow conceptualization was the optimum model for the Edwards aquifer. Accordingly, a model with an alternative hydraulic conductivity distribution without conduits was developed in a study conducted during 2004-05 by the U.S. Geological Survey, in cooperation with the San Antonio Water System. The hydraulic conductivity distribution for the modified Edwards aquifer model (hereinafter, the diffuse-flow Edwards aquifer model), based primarily on a conceptualization in which flow in the aquifer predominantly is through a network of numerous small fractures and openings, includes 38 zones, with hydraulic conductivities ranging from 3 to 50,000 feet per day. Revision of model input data for the diffuse-flow Edwards aquifer model was limited to changes in the simulated hydraulic conductivity distribution. The root-mean-square error for 144 target wells for the calibrated steady-state simulation for the diffuse-flow Edwards aquifer model is 20.9 feet. This error represents about 3 percent of the total head difference across the model area. The simulated springflows for Comal and San Marcos Springs for the calibrated steady-state simulation were within 2.4 and 15 percent of the median springflows for the two springs, respectively. The transient calibration period for the diffuse-flow Edwards aquifer model was 1947-2000, with 648 monthly stress periods, the same as for the conduit-flow Edwards aquifer model. The root-mean-square error for a period of drought (May-November 1956) for the calibrated transient simulation for 171 target wells is 33.4 feet, which represents about 5 percent of the total head difference across the model area. The root-mean-square error for a period of above-normal rainfall (November 1974-July 1975) for the calibrated transient simulation for 169 target wells is 25.8 feet, which represents about 4 percent of the total head difference across the model area. The root-mean-square error ranged from 6.3 to 30.4 feet in 12 target wells with long-term water-level measurements for varying periods during 1947-2000 for the calibrated transient simulation for the diffuse-flow Edwards aquifer model, and these errors represent 5.0 to 31.3 percent of the range in water-level fluctuations of each of those wells. The root-mean-square errors for the five major springs in the San Antonio segment of the aquifer for the calibrated transient simulation, as a percentage of the range of discharge fluctuations measured at the springs, varied from 7.2 percent for San Marcos Springs and 8.1 percent for Comal Springs to 28.8 percent for Leona Springs. The root-mean-square errors for hydraulic heads for the conduit-flow Edwards aquifer model are 27, 76, and 30 percent greater than those for the diffuse-flow Edwards aquifer model for the steady-state, drought, and above-normal rainfall synoptic time periods, respectively. The goodness-of-fit between measured and simulated springflows is similar for Comal, San Marcos, and Leona Springs for the diffuse-flow Edwards aquifer model and the conduit-flow Edwards aquifer model. The root-mean-square errors for Comal and Leona Springs were 15.6 and 21.3 percent less, respectively, whereas the root-mean-square error for San Marcos Springs was 3.3 percent greater for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. The root-mean-square errors for San Antonio and San Pedro Springs were appreciably greater, 80.2 and 51.0 percent, respectively, for the diffuse-flow Edwards aquifer model. The simulated water budgets for the diffuse-flow Edwards aquifer model are similar to those for the conduit-flow Edwards aquifer model. Differences in percentage of total sources or discharges for a budget component are 2.0 percent or less for all budget components for the steady-state and transient simulations. The largest difference in terms of the magnitude of water budget components for the transient simulation for 1956 was a decrease of about 10,730 acre-feet per year (about 2 per-cent) in springflow for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. This decrease in springflow (a water budget discharge) was largely offset by the decreased net loss of water from storage (a water budget source) of about 10,500 acre-feet per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.
2010-10-07
The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was anmore » investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.« less
Clark, Allan K.; Faith, Jason R.; Blome, Charles D.; Pedraza, Diana E.
2006-01-01
The southern segment of the Edwards aquifer in south-central Texas is one of the most productive subsurface reservoirs of potable water in the world, providing water of excellent quality to more than a million people in the San Antonio region, where the Environmental Protection Agency (EPA) has declared it to be a sole-source aquifer (van der Leeden and others, 1990). Depending on the depositional province within which the associated carbonate rocks originated (Maclay and Small, 1984), the Edwards aquifer is composed of several geologic formations (primarily limestone and dolostone) of Early Cretaceous age. Most water pumped from the Edwards aquifer comes form the Person and Kainer Formations, which were deposited over the San Marcos Platform. The principal source of ground water in study area is the Devils River Formation, which was deposited in the Devils River trend. The Devils River Formation provides large quantities of irrigation water to fertile bottomland areas of Medina and Uvalde Counties, where the success of farming and ranching activities has long depended upon water from the Edwards aquifer. The study area includes all of the Edwards aquifer recharge zone between the Sabinal River (on the west) and the Medina River (on the east) plus an updip fringe of the confined zone in east-central Uvalde and central Medina Counties. Over about ninety percent of the study area--within the Devils River trend--the Edwards aquifer is composed of the Georgetown Formation plus the underlying Devils River Formation. Over the remaining area--over the southwestern margin of the San Marcos platform--the Edwards aquifer consists of the Georgetown Formation plus the underlying Edwards Group (Rose, 1972), which comprises the Kainer and Person Formations.
Springett, Anna L; Morris, Joan K
2014-09-01
Pregnancies with Edwards or Patau syndrome are often detected through screening for Down's syndrome. We aimed to evaluate the impact of screening for Down's syndrome on the prevalence of live births and antenatal diagnoses of Edwards and Patau syndrome. England and Wales, 2005 to 2012. Data from the National Down Syndrome Cytogenetic Register, which contains information on nearly all ante- or postnatally diagnosed cases of Edwards or Patau syndrome in which a karyotype was confirmed, were analysed. From 2005 to 2012, 3,941 diagnoses of Edwards syndrome and 1,567 diagnoses of Patau syndrome were recorded (prevalence of 7.0 and 2.8 per 10,000 births respectively). Only 11% (95% confidence interval [CI]: 10-12) of diagnoses of Edwards syndrome and 13% (95% CI: 11-14) of Patau syndrome were live births, resulting in live birth prevalences of 0.8 (95% CI: 0.7-0.8) and 0.4 (95% CI: 0.3-0.4) per 10,000 live births respectively. About 90% of pregnancies with Edwards or Patau syndrome were diagnosed antenatally, and this proportion remained constant over time. The proportion of diagnoses detected before 15 weeks increased from 50% in 2005 to 53% in 2012 for Edwards syndrome, and from 41% in 2005 to 63% in 2012 for Patau syndrome. Almost 700 women per year had a pregnancy with Edwards or Patau syndrome. Over 90% of these pregnancies were detected antenatally, with the increased use of first trimester screening for Down's syndrome resulting in the reduction in the mean gestational age at diagnosis of these syndromes. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Instrumentation and control systems, equipment location; instrumentation and control building, ...
Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Quality of water in the Trinity and Edwards aquifers, south-central Texas, 1996-98
Fahlquist, Lynne; Ardis, Ann F.
2004-01-01
During 1996–98, the U.S. Geological Survey studied surface- and ground-water quality in south-central Texas. The ground-water components included the upper and middle zones (undifferentiated) of the Trinity aquifer in the Hill Country and the unconfined part (recharge zone) and confined part (artesian zone) of the Edwards aquifer in the Balcones fault zone of the San Antonio region. The study was supplemented by information compiled from four ground-water-quality studies done during 1996–98.Trinity aquifer waters are more mineralized and contain larger dissolved solids, sulfate, and chloride concentrations compared to Edwards aquifer waters. Greater variability in water chemistry in the Trinity aquifer likely reflects the more variable lithology of the host rock. Trace elements were widely detected, mostly at small concentrations. Median total nitrogen was larger in the Edwards aquifer than in the Trinity aquifer. Ammonia nitrogen was detected more frequently and at larger concentrations in the Trinity aquifer than in the Edwards aquifer. Although some nitrate nitrogen concentrations in the Edwards aquifer exceeded a U.S. Geological Survey national background threshold concentration, no concentrations exceeded the U.S. Environmental Protection Agency public drinking-water standard.Synthetic organic compounds, such as pesticides and volatile organic compounds, were detected in the Edwards aquifer and less frequently in the Trinity aquifer, mostly at very small concentrations (less than 1 microgram per liter). These compounds were detected most frequently in urban unconfined Edwards aquifer samples. Atrazine and its breakdown product deethylatrazine were the most frequently detected pesticides, and trihalomethanes were the most frequently detected volatile organic compounds. Widespread detections of these compounds, although at small concentrations, indicate that anthropogenic activities affect ground-water quality.Radon gas was detected throughout the Trinity aquifer but not throughout the Edwards aquifer. Fourteen samples from the Trinity aquifer and 10 samples from the Edwards aquifer exceeded a proposed U.S. Environmental Protection Agency public drinking-water standard. Sources of radon in the study area might be granitic sediments underlying the Trinity aquifer and igneous intrusions in and below the Edwards aquifer.The presence of tritium in nearly all Edwards aquifer samples indicates that some component of sampled water is young (less than about 50 years), even for long flow paths in the confined zone. About one-half of the Trinity aquifer samples contained tritium, indicating that only part of the aquifer contains young water.Hydrogen and oxygen isotopes of water provide indicators of recharge sources to the Trinity and Edwards aquifers. Most ground-water samples have a meteorological isotopic signature indicating recharge as direct infiltration of water with little residence time on the land surface. Isotopic data from some samples collected from the unconfined Edwards aquifer indicate the water has undergone evaporation. At the time that ground-water samples were collected (during a drought), nearby streams were the likely sources of recharge to these wells.
IVF endocrinology: the Edwards era.
Hillier, Stephen G
2013-12-01
Through pioneering human IVF as a global infertility treatment, Robert Edwards and his clinical partner Patrick Steptoe launched the field of IVF endocrinology. Following repeated failures with oocytes collected in human menopausal gonadotrophin (HMG) primed cycles timed to injection of human chorionic gonadotrophin (HCG), the first successful IVF pregnancy came from a spontaneous menstrual cycle. Intensive endocrine monitoring was used to track pre-ovulatory follicular development and collect a single ripe egg timed to the natural LH surge. Despite this groundbreaking achievement, ovulation induction was clearly required to make IVF treatment clinically robust and reliable. Ovarian stimulation with clomiphene citrate was used to achieve the first maternity from a superovulated human IVF cycle in 1980. HMG/HCG regimens were then successfully introduced-including substitution of 'pure' follicle-stimulating hormone as the principal ovarian stimulant. The application and success of IVF treatment were dramatically enhanced by the introduction of gonadotrophin-releasing hormone analogues that enabled elective control of endogenous gonadotrophin release during ovarian stimulation. Programmed gonadotrophin regimes yielding double-digit oocyte numbers became normal: 'more is better' was the ethos. Bob Edwards expressed increasing concern over the cost, complexity and potential long-term health risks of such high-order ovarian stimulation. In later life he repeatedly called for a return to minimalist approaches based on the natural menstrual cycle to improve oocyte quality over quantity. This article reviews the application of ovulation induction to human IVF and celebrates Edwards' abiding impact on the field, which firmly grounds him in the reproductive endocrinology pantheon.
Gas Analysis and Control Methods for Thermal Batteries
2013-09-01
THERMAL BATTERIES (PDFS) INC DOUG BRISCOE JEFFREY REINIG 3 ENERSYS ADVANCED SYSTEMS (PDFS) PAUL SCHISSELBAUER ANDREW SEIDEL TIM...MGMT ATTN RDRL CIO LL TECHL LIB 3 SANDIA NATIONAL LABORATORIES (PDFS) DANIEL WESOLOWSKI EDWARD PIEKOS ANNE GRILLET 2 ADVANCED
4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, ...
4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, NORTH PART. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ...
14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
2. DETAIL, EAST ENTRANCE, SHOWING OUTER BLAST DOOR AND INNER ...
2. DETAIL, EAST ENTRANCE, SHOWING OUTER BLAST DOOR AND INNER DOORS. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
8. NORTH PART OF ROOF, WITH PERISCOPES ALSO SHOWING WEST ...
8. NORTH PART OF ROOF, WITH PERISCOPES ALSO SHOWING WEST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
6. INTERIOR, ORIGINAL BLOCKHOUSE SECTION OF BUILDING 0512, NORTH WALL ...
6. INTERIOR, ORIGINAL BLOCKHOUSE SECTION OF BUILDING 0512, NORTH WALL FACING TEST TRACK. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA
Test pilots 1952 - Walker, Butchart, and Jones
NASA Technical Reports Server (NTRS)
1952-01-01
This photo shows test pilots, (Left-Right) Joseph A. Walker, Stanley P. Butchart and Walter P. Jones, standing in front of the Douglas D-558-II Skystreak, in 1952. These three test pilots at the National Advisory Committee for Aeronautics' High-Speed Flight Research Station probably were discussing their flights in the aircraft. Joe flew research flights on the D-558-I #3 (14 flights, first on June 29, 1951) investigating buffeting, tail loads, and longitudinal stability. He flew the D-558-II #2 (3 flights, first on April 29, 1955) and recorded data on lateral stability and control. He also made pilot check-out flights in the D-558-II #3 (2 flights, first on May 7, 1954). For fifteen years Walker served as a pilot at the Edwards flight research facility (today known as the National Aeronautics and Space Administration's Dryden Flight Research Center) on research flights as well as chase missions for other pilots on NASA and Air Force research programs. On June 8, 1966, he was flying chase in NASA's F-104N for the Air Force's experimental bomber, North American XB-70A, when he was fatally injured in a mid-air collision between the planes. Stan flew the D-558-I #3 (12 flights, first on October 19, 1951) to determine the dynamic longitudinal stability characteristics and investigations of the lateral stability and control. He made one flight in the D-558-II #3 on June 26, 1953, as a pilot check-out flight. Butchart retired from the NASA Dryden Flight Research Center at Edwards, California, on February 27, 1976, after a 25-year career in research aviation. Stan served as a research pilot, chief pilot, and director of flight operations. Walter P. Jones was a research pilot for NACA from the fall of 1950 to July 1952. He had been in the U.S. Air Force as a pilot before joining the Station. Jones flew the D-558-I #3 (5 flights, first on February 13, 1951) to study buffeting, tail loads and longitudinal stability. Jones made research flights on the D-558-II #3 ( 7 flights, first on July 20, 1951). These flights investigated pitch-up and evaluated outboard wing fences. Walt also made research flights in the Northrop X-4 (14 flights, first on March 26, 1952) and the Bell X-5 (8 flights, first on June 20, 1952). In July 1952, Walt left NACA's High-Speed Flight Research Station to join Northrop Corporation as a pilot. Returning from a test mission in a Northrop YF-89D Scorpion he was fatally injured on October 20, 1953, near Edwards Air Force Base.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
2007-07-03
KENNEDY SPACE CENTER, FLA. -- After a three-day trip from California, the shuttle carrier aircraft, or SCA, and its piggyback passenger Atlantis are parked on the KSC Shuttle Landing Facility. Touchdown was at 8:27 a.m. EDT. The SCA is a modified Boeing 747 jetliner. Visible on Atlantis is the tail cone that covers and protects the main engines during the ferry flight. Atlantis landed at Edwards Air Force Base in California to end mission STS-117. The return to KSC began July 1 and took three days after stops across the country for fuel. The last stop was at Ft. Campbell in Kentucky. Weather conditions over the last leg postponed the return trip until July 3. Atlantis will be removed from the back of the SCA via the mate/demate device at the SLF. It will then be towed to the Orbiter Processing Facility to begin processing for its next launch, mission STS-122 in December. Photo credit: NASA/Ken Thornsley
Instrumentation and control building, architectural, sections and elevation. Specifications No. ...
Instrumentation and control building, architectural, sections and elevation. Specifications No. Eng -04-353-55-72; Drawing No. 60-09-12; sheet 65 of 148; file no. 1321/16. Stamped: record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Instrumentation and control building, architectural, floor plans. Specifications no. Eng-04-353-55-72; Drawing No. 60-09-12' sheet 64 of 148; file no. 1321/15. Stamped: record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Edward S. Curtis's The North American Indian
Northwestern University Digital Library Collections Edward S. Curtis's The North American Indian , supported largely by funds from the Institute for Museum and Library Services. Edward S. Curtis ca.1899 special.collections@northwestern.edu Northwestern University seal NUcat | Electronic Resources | Library Home | Search
2. SOUTHEAST SIDE AND NORTHEAST REAR. SHOP BUILDING IN DISTANCE. ...
2. SOUTHEAST SIDE AND NORTHEAST REAR. SHOP BUILDING IN DISTANCE. NOTE CONCRETE PROTECTION SLAB FOR UNDERGROUND CONTROL ROOM AND ESCAPE HATCH ON GROUND AT RIGHT MIDDLE DISTANCE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
Ecological implications of using goats for control of juniper in Texas
Stephan A. Nelle
2001-01-01
The Edwards Plateau region of central Texas supports a rich diversity of plants and animals. The diversity and abundance of trees and shrubs is especially noteworthy, but two species of juniper (Juniperus ashei, Juniperus pinchotii) now dominate much of the landscape. Goats are currently being recommended to control juniper infestations. The concept of using biological...
13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO ...
13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO MAIN ROOM. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND ...
6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Psychological Needs, Academic Achievement and Marijuana Consumption
ERIC Educational Resources Information Center
Simon, William E.
1974-01-01
Forty-four undergradute marihuana users were asked to complete the Edwards Personal Preference Schedule and to report their high school and college grade-point averages. Ss were compared to a control group of 44 Ss who never had used marihuana. (Author)
76 FR 76710 - Baine, Edward H.; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6541-001] Baine, Edward H.; Notice of Filing Take notice that on December 1, 2011, Edward H. Baine submitted for filing, an application for authority to hold interlocking positions, pursuant to section 305(b) of the Federal Power Act...
Space Shuttle Atlantis landing at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force B
NASA Technical Reports Server (NTRS)
2001-01-01
Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
Space Shuttle Atlantis landing at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, Ca
NASA Technical Reports Server (NTRS)
2001-01-01
Space Shuttle Atlantis landed at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
1. BUILDING 8698, TEST STAND 13, WEST ELEVATION. NOTE TUNNEL ...
1. BUILDING 8698, TEST STAND 1-3, WEST ELEVATION. NOTE TUNNEL BETWEEN BLDG. 8668 AND TEST STAND 1-3. TEST AREA 1-120 IN THE MIDDLE DISTANCE, AND TEST AREA 1-125 ON THE HORIZON. Looking northeast from the roof of Building 8668, Instrumentation and Control Center. Note: Photograph CA-236-F-2 is an 8" x 10" enlargement from a 4" x 5" negative. This view is a photocopy of a recent resin coated print made from a print held at the Main Base History Office, Edwards Air Force Base, California. Photographer unknown. Date and file number unknown. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
X-40A on runway after Free Flight #2A
2001-04-12
Second free-flight of the X-40A at the NASA Dryden Flight Research Center, on Edwards AFB, Calif., was made on Apr. 12, 2001. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, is proving the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. The April 12 flight introduced complex vehicle maneuvers during the landing sequence. The X-40A was released from an Army Chinook helicopter flying 15,050 feet overhead. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission.
Clark, Allan K.; Morris, Robert R.
2017-11-16
The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that are highly permeable and transmissive. Because of faulting the juxtaposition of the aquifers and hydrostratigraphic units has resulted in areas of interconnectedness between the Edwards and Trinity aquifers and the various hydrostratigraphic units that form the aquifers.
Podesser, B K; Khuenl-Brady, G; Eigenbauer, E; Roedler, S; Schmiedberger, A; Wolner, E; Moritz, A
1998-05-01
The Edwards Duromedics valve (Baxter Healthcare Corp., Edwards Division, Santa Ana, Calif.) was designed with a self-irrigating hinge mechanism to reduce thromboembolic complications. After good initial clinical results, distribution was suspended in 1988 after reports of valve fracture after 20,000 valves had been implanted. The manufacturer conducted extensive studies to improve the Edwards Duromedics and reintroduced a modified version, which is available as Edwards Tekna. The purpose of the study was the evaluation of long-term results of the original Edwards Duromedics that might be important for the current version, the Edwards Tekna valve. A prospective clinical 10-year follow-up was performed of 508 patients who underwent valve replacement with the Edwards Duromedics valve in the aortic (n = 268), mitral (n = 183), and aortic and mitral (n = 56) position. The perioperative mortality rate was 6.9%; follow-up was 98% complete, comprising 3648 patient-years for a mean follow-up of 86 months (range: 33 to 144 months). The actuarial freedom from complications at the 10-year follow-up and the incidence rate (percent per patient-year) were as follows: late mortality rate, 69.2% +/- 2.4% (3.5% per patient-year); thromboembolism, 90.7% +/- 1.6% (0.96% per patient-year); anticoagulation-related hemorrhage, 87.7% +/- 1.7% (1.34% per patient-year); prosthetic valve endocarditis, 96.7% +/- 0.09% (0.38% per patient-year); valve-related mortality rate, 89.3% +/- 1.6% (1.21% per patient-year); valve failure, 86.2% +/- 1.85% (1.54% per patient-year); and valve-related morbidity and mortality rate, 71.1% +/- 2.3% (3.2% per patient-year). Three leaflet escapes were observed (one lethal, two successful reoperations; 99.1% +/- 0.05% freedom, 0.08% per patient-year). All patients functionally improved (86% in New York Heart Association classes I and II), and incidence of anemia was insignificant. These results confirm that the Edwards Duromedics valve shows excellent performance concerning thromboembolism, hemolysis, and functional improvement and will serve as a reference for the last version, the Edwards Tekna valve, where comparable long-term data are currently not available.
A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California
NASA Technical Reports Server (NTRS)
2001-01-01
A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida.
Small, T.A.; Hanson, J.A.
1994-01-01
In Comal County, the Edwards aquifer is probably most vulnerable to surface contamination in the rapidly urbanizing areas on the Edwards aquifer outcrop. Possible contamination can result from spills, leakage of hazardous materials, or runoff onto the intensely faulted and fractured, karstic limestone outcrops characteristic of the recharge zone.
Services for Children with Special Needs in Prince Edward Island over the Last Decade.
ERIC Educational Resources Information Center
Timmons, Vianne
2001-01-01
This article describes legislative and policy provisions that support educational services for children with disabilities in Prince Edward Island. It begins with some general information on Prince Edward Island and then explores recent teacher education and inclusion initiatives that have affected the service delivery for children with…
Efficacy of Edwards' Cognitive Shift Approach to Art Education.
ERIC Educational Resources Information Center
Chambliss, Catherine A.; Hartl, Alan J.
1987-01-01
Noting the lack of experimental evidence substantiating the efficacy of educational strategies designed to exploit the right hemisphere of the brain, a study was designed to assess the cognitive shift model of the Edwards' training procedure. Results showed no difference between the Edwards' procedure and a placebo procedure. Implications for the…
1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST ...
1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST STAND 1-3 IS AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
7. SOUTH REAR. Looking northwest from corner of the Instrumentation ...
7. SOUTH REAR. Looking northwest from corner of the Instrumentation and Control Building (Building 8762). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Altus II descending from a flight over Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.
First high-convergence cryogenic implosion in a near-vacuum hohlraum
Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; ...
2015-04-29
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less
Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N. B.; Mackinnon, A. J.; Ho, D. D.; Jones, O. S.; Khan, S.; Milovich, J. L.; Ross, J. S.; Amendt, P.; Casey, D.; Celliers, P. M.; Pak, A.; Peterson, J. L.; Ralph, J.; Rygg, J. R.
2015-05-01
Recent experiments at the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] have explored driving high-density carbon ablators with near-vacuum hohlraums, which use a minimal amount of helium gas fill. These hohlraums show improved efficiency relative to conventional gas-filled hohlraums in terms of minimal backscatter, minimal generation of suprathermal electrons, and increased hohlraum-capsule coupling. Given these advantages, near-vacuum hohlraums are a promising choice for pursuing high neutron yield implosions. Long pulse symmetry control, though, remains a challenge, as the hohlraum volume fills with material. Two mitigation methodologies have been explored, dynamic beam phasing and increased case-to-capsule ratio (larger hohlraum size relative to capsule). Unexpectedly, experiments have demonstrated that the inner laser beam propagation is better than predicted by nominal simulations, and an enhanced beam propagation model is required to match measured hot spot symmetry. Ongoing work is focused on developing a physical model which captures this enhanced propagation and on utilizing the enhanced propagation to drive longer laser pulses than originally predicted in order to reach alpha-heating dominated neutron yields.
Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida
1991-05-02
NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, begins the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters.
White, R; Mitchell, T; Gyorfi-Dyke, E; Sweet, L; Hebert, R; Moase, O; MacPhee, R; MacDonald, B
2001-01-01
This paper provides an overview of the Prince Edward Island Heart Health Program (PEIHHP) Dissemination Research Project. Prince Edward Island (PEI) is a small province in the Atlantic region of Canada with a population of 137,980. The Island's economy is dependent on the fishery, agriculture, and tourism industries. Although unemployment rates are high (14.4%), Prince Edward Island has the lowest poverty rate in the country at 15.2%, high levels of social support (86%), and the second lowest rate of high chronic stress (Report on the Health of Canadians, 1996, 1999).
Hanson, John A.; Small, Ted A.
1995-01-01
All of the hydrogeologic subdivisions within the Edwards aquifer outcrop in Hays County have some porosity and permeability. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; hydrogeologic subdivision III, the leached and collapsed members, undivided; and hydrogeologic subdivision II, the cyclic and marine members, undivided, of the Person Formation. The two types of porosity in the Edwards aquifer outcrop are fabric selective, which is related to depositional or diagenetic elements and typically exists in specific stratigraphic horizons; and not fabric selective, which can exist in any lithostratigraphic horizon. Permeability, the capacity of porous rock to transmit water, depends on the physical properties of the rock such as size, shape, and distribution of pores, and fissuring and dissolution. Two faults, San Marcos Springs and Mustang Branch, completely, or almost completely, offset the Edwards aquifer by juxtaposing Edwards aquifer limestone against nearly impermeable upper confining units along parts of their traces across Hays County. These faults are thought to be barriers, or partial barriers, to groundwater flow where the beds are juxtaposed. In Hays County, the Edwards aquifer probably is most vulnerable to surface contamination in the rapidly urbanizing areas on the Edwards aquifer outcrop. Contamination can result from spills or leakage of hazardous materials; or runoff on the intensely faulted and fractured, karstic limestone outcrops characteristic of the recharge zone.
2001-05-01
A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... margin on newly-purchased shares of mutual funds not managed or sponsored by Edward Jones or any affiliate of Edward Jones (``non-proprietary mutual funds'') in instances in which the customer makes a dollar-for-dollar substitution by selling an already- margined non-proprietary mutual fund and buying...
Pilot Edwards reads a rendezvous timeline
1998-03-03
STS089-385-004 (22-31 Jan. 1998) --- Astronaut Joe F. Edwards Jr., STS-89 pilot, highlights important data on a checklist while temporarily occupying the commander's station on the port side of the space shuttle Endeavour's flight deck. Edwards, making his first spaceflight, is an alumnus of the 1995 class of astronaut candidates (ASCAN). Photo credit: NASA
3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS ...
3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS AND PERISCOPE FACING TO TEST STAND 1-3. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
2. WEST REAR, WITH PORTHOLE ESCAPE HATCH ABOVE ENTRY DOOR. ...
2. WEST REAR, WITH PORTHOLE ESCAPE HATCH ABOVE ENTRY DOOR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
News and Comment: Knapp Reinterprets Excellence at NSF.
ERIC Educational Resources Information Center
Walsh, John
1983-01-01
Examines changes at the National Science Foundation since Edward Knapp was appointed director, including relations with National Science Board, vacancies in deputy directorship and four assistant directorships, relations with Office of Science and Technology Policy, research grant administration, budget control, policy analysis, programs outside…
12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN ...
12. DETAIL, ENTRY STAIRWELL TO CABLE TUNNEL, LAUNCHING PAD IN THE LEFT DISTANCE, TRACKSIDE CAMERA STAND AT TOP CENTER. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST ...
7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST REAR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
2001-02-26
The Space Shuttle Atlantis is centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
1998-01-31
KENNEDY SPACE CENTER, FLA. -- STS-89 Commander Terrence Wilcutt, at left, shakes hands with Pilot Joe Edwards Jr. under the orbiter Endeavour after it landed on Runway 15 at KSC’s Shuttle Landing Facility Jan. 31. Kneeling in front of the wheel of the orbiter's nose, the commander and pilot congratulate each other on a perfect alignment of the wheel down the center of the runway. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the orbiter with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Wilcutt; Pilot Edwards; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov of the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts
1985-12-19
This image shows a plastic 1/48-scale model of an F-18 aircraft inside the "Water Tunnel" more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow vi
7. "CONTROL BUILDING; FLOOR PLAN, ELEVATIONS AND DETAILS." Specifications No. ...
7. "CONTROL BUILDING; FLOOR PLAN, ELEVATIONS AND DETAILS." Specifications No. OC1-59-53; Drawing No. 5841-A-1; D.O. SERIES AW1525/2 Rev. B. Stamped: RECORD DRAWING AS CONSTRUCTED. Below stamp: Contract No. 5619, Rev. B. Date: 7-8-59. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
3 CFR 8403 - Proclamation 8403 of August 26, 2009. Death of Senator Edward M. Kennedy
Code of Federal Regulations, 2010 CFR
2010-01-01
... 3 The President 1 2010-01-01 2010-01-01 false Proclamation 8403 of August 26, 2009. Death of Senator Edward M. Kennedy 8403 Proclamation 8403 Presidential Documents Proclamations Proclamation 8403 of... chapter in our American story has come to an end. As a mark of respect for the memory of Senator Edward M...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
..., AL, Jack Edwards, ILS OR LOC RWY 27, Amdt 1 Gulf Shores, AL, Jack Edwards, RNAV (GPS) RWY 9, Amdt 3 Gulf Shores, AL, Jack Edwards, RNAV (GPS) RWY 27, Amdt 2 Montgomery, AL, Montgomery Rgnl (Dannelly... Williams Memorial, RNAV (GPS) RWY 24, Amdt 1 Vineyard Haven, MA, Marthas Vineyard, RNAV (GPS) RWY 6, Amdt 1...
ERIC Educational Resources Information Center
Tillerson-Brown, Amy
2016-01-01
In light of contemporary school choice proposals and the 60th anniversary of the Southern Manifesto, the Prince Edward County, Virginia public schools crisis provides interesting historical discussion. Prince Edward County (PEC), a rural community in central Virginia, was one of five school districts represented in the 1954 "Brown v. Board of…
Griffith Edwards' rigorous sympathy with Alcoholics Anonymous.
Humphreys, Keith
2015-07-01
Griffith Edwards made empirical contributions early in his career to the literature on Alcoholics Anonymous (AA), but the attitude he adopted towards AA and other peer-led mutual help initiatives constitutes an even more important legacy. Unlike many treatment professionals who dismissed the value of AA or were threatened by its non-professional approach, Edwards was consistently respectful of the organization. However, he never became an uncritical booster of AA or overgeneralized what could be learnt from it. Future scholarly and clinical endeavors concerning addiction-related mutual help initiatives will benefit by continuing Edwards' tradition of 'rigorous sympathy'. © 2015 Society for the Study of Addiction.
A not-so-funny thing happened on the way to relicensing the Edwards Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayer, F.J.; Isaacson, M.
1995-12-31
What started out as a seemingly straightforward and simple exercise, obtaining a new FERC license for the Edwards Dam in Augusta, Maine, turned out to be anything but straightforward and far from simple. This article tells the story of one of the more interesting and possibly precedent setting cases in the {open_quotes}class of 93{close_quotes} and is presented in three sections: (1) the history of the Edwards Dam and the FERC regulatory process through the spring of 1995; (2) Edwards` response to the dam removal campaign; and (3) recommendations for FERC licensees threatened by dam removal during relicensing.
2013-05-15
EDWARDS, Calif. – ED13-0142-03: Shrouded in plastic wrap with its wings and tail structure removed for ground transport, Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article is hauled across the bed of Rogers Dry Lake in front of the control tower at Edwards Air Force Base, Calif., to NASA's Dryden Flight Research Center. The Dream Chaser will begin its flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida
2001-04-12
Second free-flight of the X-40A at the NASA Dryden Flight Research Center, on Edwards AFB, Calif., was made on Apr. 12, 2001. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, is proving the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. The April 12 flight introduced complex vehicle maneuvers during the landing sequence. The X-40A was released from an Army Chinook helicopter flying 15,050 feet overhead. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission.
Astronaut Edward White during training for first EVA
1965-03-29
S65-19504 (28 May 1965) --- Astronaut Edward H. White II, pilot for the Gemini-Titan 4 prime crew, is pictured during an extravehicular exercise in the Building 4 laboratory at the Manned Spacecraft Center in Houston, Texas. White is controlling about the yaw (vertical) axis while translating. He stands on a Balance Extravehicular Training Aircraft which is separated from the level steel floor by a .001th-inch cushion of air. In his right hand White holds a zero-gravity integral propulsion unit which is a self-maneuvering device used by an astronaut in a zero-gravity environment. This condition is simulated in this training exercise. White's spacesuit is pressurized to create a realistic training condition. The simulated umbilical line is floated on air with the aid of eleven small air pads.
1. STATION "50" AREA OVERVIEW, BUILDING 0512 AT FAR LEFT, ...
1. STATION "50" AREA OVERVIEW, BUILDING 0512 AT FAR LEFT, AND PADS FOR SHOP AND STORAGE BUILDINGS IN CENTER. Looking northeast. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA
5. NORTH REAR, EAST PART, SHOWING ESCAPE HATCH. TEST STAND ...
5. NORTH REAR, EAST PART, SHOWING ESCAPE HATCH. TEST STAND 1-3 AND ITS MACHINE SHOP ARE IN MIDDLE DISTANCE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane
2016-11-29
NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.
1964-08-27
R4D-6 (Bu. No. 99827 NACA 18, NASA 701). TAKE-OFF MONITOR TEST, EDWARDS AIR FORCE BASE. Gunsight Tracking and Guidance and Control Displays. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 76
Slagle, Diana L.; Ardis, Ann F.; Slade, Raymond M.
1986-01-01
The Edwards aquifer extends in a narrow belt from Bell County in the northeast to Kinney County in the southwest (index map) and provides water for at least nine counties in south-central Texas. Hydrologic boundaries divide the Edwards aquifer in the Austin area for which Barton Springs is the major discharge point. This part of the Edwards aquifer provides the municipal, industrial, domestic, and agricultural water supplies for about 30,000 people in the Austin area (southern Travis and northern Hays counties). Discharge from Barton Springs sustains streamflow at the mouth of Barton Creek and flows into Town Lake. Much of the land use within the outcrop area of the Edwards aquifer near Austin is rapidly changing from natural woodland and grassland to commercial and residential developments. Because urban development can result in a substantial degradation of the quality of water that recharges the aquifer, the extent of the recharge zone of the Edwards aquifer was delineated to provide information to the City of Austin for their use in formulating a plan for protecting and managing groundwater quality. The purpose of this report is to define and delineate the areal extent of the recharge zone of the Edwards aquifer in southern Travis and northern Hays Counties. The areal boundary of the recharge zone was determined by: (1) geologic mapping of the aquifer area; (2) interpretation of aerial photographs; (3) field verification of existing geologic maps; and (4) streamflow-loss studies.
15. "GENERAL, INSTRUMENTATION AND CONTROL SYSTEMS, ISOMETRIC." Test Area 1120. ...
15. "GENERAL, INSTRUMENTATION AND CONTROL SYSTEMS, ISOMETRIC." Test Area 1-120. Specifications No. ENG04-353-55-72; Drawing No. 60-09-12; sheet 6 of 148; file no. 1320/57. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Total Quality Management (TQM) Awareness Seminar. Revision 8
1990-04-18
in the United States and abroad, including Dr. W. Edwards Deming, Dr. Joseph Juran, Philip Crosby, Genichi Taguchi, Kaoru Ishikawa , and Armand...Hall, Inc., Englewood Cliffs, NJ 07022. 1985 Ishikawa , Kaoru , Guide to Quality Control, Tokyo; Asian Productivity Organization, 1976 (Available from...Random House Business Division, 201 East 50th Street, New York, NY 10022. Ishikawa , Karou, What is Total Quality Control?: The Japanese Way, Prentice
Paresev 1-A on lakebed with tow plane
1962-08-24
The Paresev 1-A (Paraglider Research Vehicle) and the tow airplane, 450-hp Stearman sport Biplane, sitting on Rogers dry lakebed, Edwards, California. The control system in the Paresev 1-A had a more conventional control stick position and was cable-operated; the main landing gear used shocks and bungees with the 100-square-foot wing membrane being made of 6-ounce unsealed Dacron.
75 FR 28756 - Amendment of Restricted Area R-2502A; Fort Irwin, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
...-0471; Airspace Docket No. 10-AWP-7] RIN 2120-AA66 Amendment of Restricted Area R-2502A; Fort Irwin, CA... controlling agency of Restricted Area R-2502A, Fort Irwin, CA, from ``FAA, Hi-Desert TRACON, Edwards, CA'' to... Regulations (14 CFR) part 73 by changing the controlling agency for R-2502A from ``FAA, Hi- Desert TRACON...
2007-02-01
control AVAQMD Antelope Valley Air Quality Management District AQMD Air Quality Management Districts BACT Best Available Control Technology BLM Bureau...Aeronautics NAGPRA Native American Graves Protection and Repatriation Act NASA National Aeronautics and Space Administration NBCC nuclear, biological...support of the National Aeronautics and Space Administration ( NASA ) shuttle program is required to be maintained. This includes rescue, medical evaluation
Paresev 1-A on lakebed with tow plane
NASA Technical Reports Server (NTRS)
1962-01-01
The Paresev 1-A (Paraglider Research Vehicle) and the tow airplane, 450-hp Stearman sport Biplane, sitting on Rogers dry lakebed, Edwards, California. The control system in the Paresev 1-A had a more conventional control stick position and was cable-operated; the main landing gear used shocks and bungees with the 150-square-foot wing membrane being made of 6-ounce unsealed Dacron.
Control of Atherosclerosis Regression by PRMT2 in Diabetes
2017-08-01
AWARD NUMBER: W81XWH-16-1-0374 TITLE: Control of Atherosclerosis Regression by PRMT2 in Diabetes PRINCIPAL INVESTIGATOR: Edward Fisher, MD, PhD...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM...TO THE ABOVE ADDRESS. 1. REPORT DATE August 2017 2. REPORT TYPE Annual 3. DATES COVERED 01 Aug 2016- 31-July 2017 4. TITLE AND SUBTITLE Control of
Small, Ted A.; Hanson, John A.; Hauwert, Nico M.
1996-01-01
In the Barton Springs segment of the Edwards aquifer, the aquifer probably is most vulnerable to surface contamination in the rapidly urbanizing areas on the Edwards aquifer outcrop. Contamination can result from spills or leakage of hazardous materials; or runoff on the intensely faulted and fractured, karstic limestone outcrops characteristic of the recharge zone.
2009-09-20
EDWARDS AIR FORCE BASE, Calif. – ED09-0253-103) Space shuttle Discovery and its modified 747 carrier aircraft lift off from Edwards Air Force Base early in the morning on Sept. 20, 2009 on the first leg of its ferry flight back to the Kennedy Space Center in Florida. Discovery had landed at Edwards Sept. 11 after the STS-128 mission to the International Space Station. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. NASA photo /Tom Tschida
Administrators in Wonderland: Leadership through the New Sciences.
ERIC Educational Resources Information Center
Slowinski, Joseph
Recent theories associated with physical reality have increasingly been adapted as social-science paradigms. Chaos Theory and Perceptual Control Theory (PCT) are two advances that are applicable to the educational administration field. According to Edward Lorenz's Chaos Theory, profound changes in outcome can arise from small variations of input.…
9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST ...
9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST STAND 1-3 AT FAR LEFT, AND ITS MACHINE SHOP AT LEFT CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
New Paradigms for Creating Quality Schools.
ERIC Educational Resources Information Center
Greene, Brad
The Quality Schools movement combines the principles of control theory with Edward Deming's principles of total quality management. The outcome is a school environment in which the focus is on quality work, discipline is maintained without coercion, and students continuously evaluate their own work. This book describes the application of Quality…
Autonomous Locator of Thermals (ALOFT) Autonomous Soaring Algorithm
2015-04-03
estimator used on the NRL CICADA Mk 3 micro air vehicle [13]. An extended Kalman filter (EKF) was designed to estimate the airspeed sensor bias and...Boulder, 2007. ALOFT Autonomous Soaring Algorithm 31 13. A.D. Kahn and D.J. Edwards, “Navigation, Guidance and Control for the CICADA Expendable
11. ENTRY STAIRWELL TO CABLE TUNNEL. REMAINS OF ELECTRICAL DISTRIBUTION ...
11. ENTRY STAIRWELL TO CABLE TUNNEL. REMAINS OF ELECTRICAL DISTRIBUTION STATIONS AT LEFT, TRACKSIDE CAMERA STAND AT FAR RIGHT. Looking northeast toward launch pad. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
NASA Acting Deputy Chief Technologist Briefed on Operation of Sonic Boom Prediction Algorithms
2017-08-29
NASA Acting Deputy Chief Technologist Vicki Crips being briefed by Tim Cox, Controls Engineer at NASA’s Armstrong Flight Research Center at Edwards, California, on the operation of the sonic boom prediction algorithms being used in engineering simulation for the NASA Supersonic Quest program.
20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, ...
20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, BETWEEN TEST STAND 1-A AND INSTRUMENTATION AND CONTROL BUILDING. Looking northwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
13. LONG WEST WALL (LEFT) AND SHORT SOUTH WALL (RIGHT) ...
13. LONG WEST WALL (LEFT) AND SHORT SOUTH WALL (RIGHT) OF AR-9, ALSO SHOWING MORE RECENT CONTROL ROOM BUILDING AT RIGHT. VIEW IS TO THE NORTHEAST. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA
15. "FIRING CONTROL BLOCKHOUSE; STATION '0' AREA; PLAN, AND SECTIONS." ...
15. "FIRING CONTROL BLOCKHOUSE; STATION '0' AREA; PLAN, AND SECTIONS." Specifications No. ENG-04-353-57-75; Drawing No. AF-60-09-15; sheet 40 of 96; D.O. Series No. AF 1394/60, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 5296 Rev. A, Date: 11/17/59. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Thomas, Jonathan V.
2014-01-01
The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. Resource managers would like to understand the future availability of water in the Edwards-Trinity aquifer in the Pecos County region and the effects of the possible increase or temporal redistribution of groundwater withdrawals. To provide resource managers with that information, the U.S. Geological Survey (USGS), in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1, completed a three-phase study of the Edwards-Trinity and related aquifers in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The first phase was to collect groundwater, surface-water, geochemical, geophysical, and geologic data in the study area and develop a geodatabase of historical and collected data. Data compiled in the first phase of the study were used to develop the conceptual model in the second phase of the study. The third phase of the study involved the development and calibration of a numerical groundwater-flow model of the Edwards-Trinity aquifer to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Analysis of well, geophysical, geochemical, and hydrologic data contributed to the development of the conceptual model in phase 1. Lithologic information obtained from well reports and geophysical data was used to describe the hydrostratigraphy and structural features of the groundwater-flow system, and aquifer-test data were used to estimate aquifer hydraulic properties. Geochemical data were used to evaluate groundwater-flow paths, water-rock interaction, aquifer interaction, and the mixing of water from different sources in phase 2. Groundwater-level data also were used to evaluate aquifer interaction, as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths. During phase 3, the data collected and compiled along with the conceptual information in the study area were incorporated into a numerical groundwater-flow model to evaluate the sustainability of recent (2008) and projected water-use demands on groundwater resources in the study area.
Strategic Uncertainty: Thinking About Tactical Level Cyberspace Operations
2015-05-25
places on the topic. For example, the Edward Snowden revelations on U.S. intelligence agencies’ surveillance programs heightened tensions between the...generates a new level of strategic uncertainty? The answer is yes. The Edward Snowden disclosures are one example that made it more difficult to assure...revelations from Edward Snowden . Backlash over additional offensive cyber capabilities development and extension down to even lower levels in the Force is
Information Search in Judgment Tasks: The Effects of Unequal Cue Validity and Cost.
1984-05-01
bookbag before betting on the contents of the bag being sampled ( Edwards , 1965). They proposed an alternative model for the regression (or continuous...ly displaced vertically for clarity.) The analogous relationship for the Bayesian model is developed by Edwards (1965). Snapper and Peterson (1971...A re- gression model and some preliminary findings." Organizational Behavior and Human Performance, 1982, 30, 330-350. Edwards , W.: "Optimal
2005-05-01
4. TITLE AND SUBTITLE Final Environmental Assessment for Low-Level Flight Testing, Evaluation, and Training, Edwards Air Force Base 5a. CONTRACT...NAME(S) AND ADDRESS(ES) Air Force Flight Test Center,Environmental Management Directorate,Edwards AFB,CA,93524 8. PERFORMING ORGANIZATION REPORT...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The U.S. Air Force Flight Test
Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.
2017-10-01
The Balcones Escarpment in central Texas is a sloped region between the Edwards Plateau and the coastal plain. The metropolitan areas located along the Balcones Escarpment (e.g., San Antonio, Austin, and Dallas-Fort Worth) are prone to heavy rain and devastating flood events. While the associated hydrological issues of the Balcones Escarpment have been extensively studied, the meteorological impacts of the Edwards Plateau and Balcones Escarpment are not well understood. The indeterminate impacts of the thermal and dynamic effects of the Edwards Plateau on August climatological precipitation are investigated in this study using the multisensor Stage IV precipitation data, high-resolution dynamic downscaling, and short-term sensitivity simulations. Analysis results indicate that the total August precipitation east of the Balcones Escarpment is suppressed and precipitation over the eastern part of the Edwards Plateau is enhanced. Locally initiated moist convection in the afternoon contributes most to the total precipitation during August in the region. The dynamic downscaling output captures the spatial pattern of afternoon precipitation, which is well aligned with the simulated upward motions. The clay-based soil types that dominate the Edwards Plateau have great potential to retain soil moisture and limit latent heat fluxes, consequently leading to higher sensible heat flux than over the plain to the east. As a result, vertical motion is induced, triggering the afternoon moist convection over the Edwards Plateau under favorable conditions. In comparison, the sloping terrain plays a smaller role in triggering the convection. Short-term sensitivity simulations for a clear day confirm and further prove such a diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beutelman, H.P.; Lawrence, A.
1999-07-01
Edwards Air Force Base (AFB), located in the Mojave Desert of southern California, is required to comply with environmental requirements for air pollution emissions, hazardous waste disposal, and clean water. The resources required to meet these many compliance requirements represents an ever increasing financial burden to the base, and to the Department of Defense. A recognized superior approach to environmental management is to achieve compliance through a proactive pollution prevention (P2) program which mitigates, and when possible, eliminates compliance requirements and costs, while at the same time reducing pollution released to the environment. At Edwards AFB, the Environmental Management Officemore » P2 Branch developed and implemented a strategy that addresses this concept, better known as Compliance Through Pollution Prevention (CTP2). At the 91st AWMA Annual Meeting and Exhibition, Edwards AFB presented a paper on its strategy and implementation of its CTP2 concept. Part of that strategy and implementation included accomplishment of process specific focused P2 opportunity assessments (OAs). Starting in 1998, Edwards AFB initiated a CTP2 OA project where OAs were targeted on those operational processes, identified as compliance sites, that contributed most to the compliance requirements and costs at Edwards AFB. The targeting of these compliance sites was accomplished by developing a compliance matrix that prioritized processes in accordance with an operational risk management approach. The Edwards AFB CTP2 PPOA project is the first of its kind within the Air Force Material Command, and is serving as a benchmark for establishment of the CTP2 OA process.« less
X-33 Integrated Test Facility Extended Range Simulation
NASA Technical Reports Server (NTRS)
Sharma, Ashley
1998-01-01
In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
NASA Technical Reports Server (NTRS)
1992-01-01
As the orbiter Columbia (STS-50) rolled down Runway 33 of Kennedy Space Center's (KSC) Shuttle Landing Facility, its distinctively colored drag chute deployed to slow down the spaceship. This landing marked OV-102's first end-of-mission landing at KSC and the tenth in the program, and the second shuttle landing with the drag chute. Edwards Air Force Base, CA, was the designated prime for the landing of Mission STS-50, but poor weather necessitated the switch to KSC after a one-day extension of the historic flight. STS-50 was the longest in Shuttle program historyo date, lasting 13 days, 19 hours, 30 minutes and 4 seconds. A crew of seven and the USML-1 were aboard.
1992-07-09
As the orbiter Columbia (STS-50) rolled down Runway 33 of Kennedy Space Center's (KSC) Shuttle Landing Facility, its distinctively colored drag chute deployed to slow down the spaceship. This landing marked OV-102's first end-of-mission landing at KSC and the tenth in the program, and the second shuttle landing with the drag chute. Edwards Air Force Base, CA, was the designated prime for the landing of Mission STS-50, but poor weather necessitated the switch to KSC after a one-day extension of the historic flight. STS-50 was the longest in Shuttle program historyo date, lasting 13 days, 19 hours, 30 minutes and 4 seconds. A crew of seven and the USML-1 were aboard.
1986-12-11
MG/L Chmia Oxyge 00340 ARSENIC 01000 002BORON 0102 Total Ov-gale 00640 BARIUM 131005 01007 BORON. 01020 CARDON as C 0 * Diseelvud 0 1 CADMIUM 01025...Goldenrod) U - Utricularia sp. (Bladderwort) B - Scirpus sp. (Bulrush) h6 - Myriophyllum tenellui (Leafless Mil- H2 - Elodea sp. (Waterweed) foil) n1... Dioxide I - -- -- Arsenic C 10 (10 10 410 ug/L Barium 14200 j( 200 (200 (200 ug/L Cadmium !4 10 ( 10 1 10 4 10 ug/L Chromium ( 50 4 50 4 50 50 ugSL
Preflight coverage of STS-114 & Expedition 7 Crews, Emergency Egress Training
2002-09-12
JSC2002-01650 (12 September 2002) --- The STS-114 and Expedition Seven crews, attired in training versions of the full-pressure launch and entry suit, pose for a group photo prior to a training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). From the left are astronauts Eileen M. Collins, James M. Kelly, STS-114 mission commander and pilot, respectively; Soichi Noguchi and Stephen K. Robinson, both STS-114 mission specialists; Edward T. Lu, Expedition Seven flight engineer; cosmonauts Sergei I. Moschenko and Yuri I. Malenchenko, Expedition Seven flight engineer and mission commander, respectively. Moschenko and Malenchenko represent Rosaviakosmos and Noguchi represents Japans National Space Development Agency (NASDA).
STS-114 with Expedition 7 during ASC/CAP/OES Training.
2002-11-12
JSC2002-02020 (12 November 2002) --- The STS-114 and Expedition Seven crews, attired in training versions of the full-pressure launch and entry suit, pose for a group photo prior to a training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). From the left are astronauts Soichi Noguchi, Stephen K. Robinson, both STS-114 mission specialists; James M. Kelly, STS-114 pilot; Eileen M. Collins, STS-114 mission commander; Edward T. Lu, Expedition Seven flight engineer; cosmonauts Yuri I. Malenchenko, Expedition Seven mission commander; and Alexander Y. Kaleri, Expedition Seven flight engineer. Noguchi represents Japans National Space Development Agency (NASDA). Malenchenko and Kaleri represent Rosaviakosmos.
Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida
1991-05-02
NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters.
Credit PSR. View looking north northeast (12°) across surface remains ...
Credit PSR. View looking north northeast (12°) across surface remains of North Base swimming pool. The southeast edge of the pool appearing in the foreground may seem to be a sidewalk to the casual observer; the wavy inside edge of this walk matches the pool side visible in historic construction photos (See HAER photo CA-170-Q-2). The telephone pole in the midground of the view is inside the pool proper. Building 4312 (Liquid Oxygen Repair Facility) appears in left background, Building 4456 (Fire House No. 4) in middle background, and Building 4444 (Communications Building) in right background - Edwards Air Force Base, North Base, Swimming Pool, Second Street, Boron, Kern County, CA
EVA - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE
1965-06-03
S65-30271 (3 June 1965) --- Astronaut Edward H. White II, pilot on the Gemini-Titan IV (GT-4) spaceflight, floats in the zero gravity of space outside the Gemini IV spacecraft. His face is covered by a shaded visor to protect him from the unfiltered rays of the sun. White became the first American astronaut to walk in space. He remained outside the spacecraft for 21 minutes during the third revolution of the Gemini IV mission. He wears a specially designed spacesuit for the EVA. His right hand (out of frame) is holding the Hand-Held Self-Maneuvering Unit (HHSMU), with which he controlled his movements while in space, and a camera is attached to the HHSMU. He was attached to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped together with gold tape to form one cord. He wears an emergency oxygen supply check pack. Astronaut James A. McDivitt is command pilot for the GT-4 mission. The mission was a four-day, 62-revolution flight, during which McDivitt and White performed a series of scientific and engineering experiments. (This image is black and white) Photo credit: NASA EDITOR?S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy, Florida, on Jan. 27, 1967.
EVA - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE
1965-06-03
S65-30272 (3 June 1965) --- Astronaut Edward H. White II, pilot on the Gemini-Titan IV (GT-4) spaceflight, floats in the zero gravity of space outside the Gemini IV spacecraft. His face is covered by a shaded visor to protect him from the unfiltered rays of the sun. White became the first American astronaut to walk in space. He remained outside the spacecraft for 21 minutes during the third revolution of the Gemini IV mission. He wears a specially designed spacesuit for the EVA. His right hand is holding the Hand-Held Self-Maneuvering Unit (HHSMU), with which he controlled his movements while in space, and a camera is attached to the HHSMU. He was attached to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped together with gold tape to form one cord. He wears an emergency oxygen supply check pack. Astronaut James A. McDivitt is command pilot for the GT-4 mission. The mission was a four-day, 62-revolution flight, during which McDivitt and White performed a series of scientific and engineering experiments. (This image is black and white) Photo credit: NASA EDITOR?S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy, Florida, on Jan. 27, 1967.
EVA - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE
1965-06-03
S65-30273 (3 June 1965) --- Astronaut Edward H. White II, pilot on the Gemini-Titan IV (GT-4) spaceflight, floats in the zero gravity of space outside the Gemini IV spacecraft. His face is covered by a shaded visor to protect him from the unfiltered rays of the sun. White became the first American astronaut to walk in space. He remained outside the spacecraft for 21 minutes during the third revolution of the Gemini IV mission. He wears a specially designed spacesuit for the EVA. His right hand is holding the Hand-Held Self-Maneuvering Unit (HHSMU), with which he controlled his movements while in space, and a camera is attached to the HHSMU. He was attached to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped together with gold tape to form one cord. He wears an emergency oxygen supply check pack. Astronaut James A. McDivitt is command pilot for the GT-4 mission. The mission was a four-day, 62-revolution flight, during which McDivitt and White performed a series of scientific and engineering experiments. (This image is black and white) Photo credit: NASA EDITOR?S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy, Florida, on Jan. 27, 1967.
JSC MCC Bldg 30 personnel monitor STS-26 post landing activities
1988-10-03
JSC Mission Control Center (MCC) Bldg 30 flight control room (FCR) personnel monitor STS-26 post landing activities and ceremonies at Edwards Air Force Base (EAFB) via their monitors. Displayed on front screens are approach and landing diagrams, data, the space shuttle program insignia, the STS-26 mission insignia, the Mission Operations Directorate insignia, and the STS-26 crew standing in front of Discovery, Orbiter Vehicle (OV) 103.
STAR 21. Strategic Technologies for the Army of the Twenty-First Century
1992-01-01
Professor Emeritus) Walter B. LaBerge , Lockheed Corporation (Retired) GEN John W. Pauly, Systems Control Technology, Inc. Charles J. Shoens, Science...Walter B. LaBerge , Lockheed Corporation (Retired) VADM William J. Moran, Consultant GEN John W. Pauly, Systems Control Technology, Inc. GEN John W. Vessey...Center John B. Harkins, Texas Instruments Walter B. LaBerge , Lockheed Corporation (Retired) Wilbert Lick, University of California at Santa Barbara Edward
Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students
2013-01-01
find amusing but that we find of less educational value, like having the robots say comical things. Those who have more teaching time would doubtless...Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students by Edward M. Measure and Edward Creegan...TR-6220 January 2013 Gains in the Education of Mathematics and Science (GEMS): Teaching Robotics to High School Students Edward M
Intro & Basic R&D Overview for NRC RAP Administrator
2011-07-13
Air Force Research Laboratory (AFMC) AFRL /RZS 5 Pollux Drive Edwards AFB CA...NUMBER (include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Air Force Research Laboratory Edwards Air Force ...BOUNDARY 0 5 10 SCALE IN MILES HWY 395 ROSAMOND BLVD. MERCURY BLVD. R O C K ET S IT E R O A D EDWARDS AIR FORCE BASE Air Force Research
1988-01-01
BM). Synonymy with vegans by Edwards, 1926: 136. virgatipes Edwards, 1914b: 126. +Holotype male: Hong Kong (BM). Synonymy with vegans by Edwards...for fourth-instar larval setae of Culex vegans Wiedemann.a Seta No. Head C Thorax Abdominal Segments P M T I II Ill 0 1 9-13(12)b - - 1 1 1 2
NASA Technical Reports Server (NTRS)
1995-01-01
The X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is secured inside the fuselage of an Air Force Reserve C-5 transport. The C-5 was used to ferry the X-31 from Europe back to Edwards, after being flown in the Paris Air Show in June 1995. The X-31's right wing, removed so the aircraft could fit inside the C-5, is in the shipping container in the foreground. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.
14. "FIRING CONTROL BLOCKHOUSE; STATION '0' AREA; PLAN, ELEVATIONS, SECTION, ...
14. "FIRING CONTROL BLOCKHOUSE; STATION '0' AREA; PLAN, ELEVATIONS, SECTION, DETAIL AND SCHED." Specifications No. ENG-04-353-57-75; Drawing No. AF-60-09-15; sheet 21 of 96; D.O. Series No. AF 1394/39, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 5296 Rev. A, Date: 11/17/59. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
The Concepts of Quality for Rural and Small School Decision Makers.
ERIC Educational Resources Information Center
Wilson, Alfred P.; Hedlund, Paul H.
This report briefly introduces the ideas of six influential individuals in the field of quality control, and relates these concepts to current educational innovations. Quality is defined by Philip B. Crosby as the result of a culture of relationships within an organization. W. Edwards Deming espouses intrinsic motivation for all employees,…
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking north from north end of the cable tunnel leading toward Control Center. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
2. OBLIQUE VIEW OF WEST FRONT. The frames on an ...
2. OBLIQUE VIEW OF WEST FRONT. The frames on an angle originally held mirrors for viewing the tests from inside the building. Vertical frame originally held bullet glass. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR9, ...
18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR-9, WITH THE MORE RECENT CONCRETE BLOCK CONTROL ROOM AT THE LEFT AND ASSOCIATED CONCRETE PAVING IN THE FOREGROUND. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA
Clark, Allan K.; Golab, James A.; Morris, Robert R.
2016-11-28
During 2014–16, the U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, documented the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas. The Edwards and Trinity aquifers are major sources of water for agriculture, industry, and urban and rural communities in south-central Texas. Both the Edwards and Trinity are classified as major aquifers by the State of Texas.The purpose of this report is to present the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. The report includes a detailed 1:24,000-scale hydrostratigraphic map, names, and descriptions of the geology and hydrostratigraphic units (HSUs) in the study area.The scope of the report is focused on geologic framework and hydrostratigraphy of the outcrops and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. In addition, parts of the adjacent upper confining unit to the Edwards aquifer are included.The study area, approximately 866 square miles, is within the outcrops of the Edwards and Trinity aquifers and overlying confining units (Washita, Eagle Ford, Austin, and Taylor Groups) in northern Bexar and Comal Counties, Tex. The rocks within the study area are sedimentary and range in age from Early to Late Cretaceous. The Miocene-age Balcones fault zone is the primary structural feature within the study area. The fault zone is an extensional system of faults that generally trends southwest to northeast in south-central Texas. The faults have normal throw, are en echelon, and are mostly downthrown to the southeast.The Early Cretaceous Edwards Group rocks were deposited in an open marine to supratidal flats environment during two marine transgressions. The Edwards Group is composed of the Kainer and Person Formations. Following tectonic uplift, subaerial exposure, and erosion near the end of Early Cretaceous time, the area of present-day south-central Texas was again submerged during the Late Cretaceous by a marine transgression resulting in deposition of the Georgetown Formation of the Washita Group.The Early Cretaceous Edwards Group, which overlies the Trinity Group, is composed of mudstone to boundstone, dolomitic limestone, argillaceous limestone, evaporite, shale, and chert. The Kainer Formation is subdivided into (bottom to top) the basal nodular, dolomitic, Kirschberg Evaporite, and grainstone members. The Person Formation is subdivided into (bottom to top) the regional dense, leached and collapsed (undivided), and cyclic and marine (undivided) members.Hydrostratigraphically the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. The Pecan Gap Formation (Taylor Group), Austin Group, Eagle Ford Group, Buda Limestone, and Del Rio Clay are generally considered to be the upper confining unit to the Edwards aquifer.The Edwards aquifer was subdivided into HSUs I to VIII. The Georgetown Formation of the Washita Group contains HSU I. The Person Formation of the Edwards Group contains HSUs II (cyclic and marine members [Kpcm], undivided), III (leached and collapsed members [Kplc,] undivided), and IV (regional dense member [Kprd]), and the Kainer Formation of the Edwards Group contains HSUs V (grainstone member [Kkg]), VI (Kirschberg Evaporite Member [Kkke]), VII (dolomitic member [Kkd]), and VIII (basal nodular member [Kkbn]).The Trinity aquifer is separated into upper, middle, and lower aquifer units (hereinafter referred to as “zones”). The upper zone of the Trinity aquifer is in the upper member of the Glen Rose Limestone. The middle zone of the Trinity aquifer is formed in the lower member of the Glen Rose Limestone, Hensell Sand, and Cow Creek Limestone. The regionally extensive Hammett Shale forms a confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer consists of the Sligo and Hosston Formations, which do not crop out in the study area.The upper zone of the Trinity aquifer is subdivided into five informal HSUs (top to bottom): cavernous, Camp Bullis, upper evaporite, fossiliferous, and lower evaporite. The middle zone of the Trinity aquifer is composed of the (top to bottom) Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, Honey Creek, Hensell, and Cow Creek HSUs. The underlying Hammett HSU is a regional confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer is not exposed in the study area.Groundwater recharge and flow paths in the study area are influenced not only by the hydrostratigraphic characteristics of the individual HSUs but also by faults and fractures and geologic structure. Faulting associated with the Balcones fault zone (1) might affect groundwater flow paths by forming a barrier to flow that results in water moving parallel to the fault plane, (2) might affect groundwater flow paths by increasing flow across the fault because of fracturing and juxtaposing porous and permeable units, or (3) might have no effect on the groundwater flow paths.The hydrologic connection between the Edwards and Trinity aquifers and the various HSUs is complex. The complexity of the aquifer system is a combination of the original depositional history, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas that have allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that are highly permeable and transmissive. The juxtaposition resulting from faulting has resulted in areas of interconnectedness between the Edwards and Trinity aquifers and the various HSUs that form the aquifers.
2010-05-01
way to friendship and peace.17 Edward Stettinius, U.S. Secretary of State Even as World War II still raged in the Pacific, fifty nations of...19 Edward R. Stettinius, Charter of the United Nations: Report to the President on the Results of the San Francisco Conference (New York...delegation to the San Francisco Conference, Edward Stettinius, highlighted the major shift in attitude and practice from the concepts of the League
2001-02-20
STS098-S-017 (20 Feb. 2001) --- A drag chute slows down the space shuttle Atlantis following its touchdown to mark mission completion at Edwards Air Force Base in the Mojave Desert of California. Onboard were astronauts Kenneth Cockrell, Mark Polansky, Robert Curbeam, Thomas Jones and Marsha Ivins. Atlantis touched down on Edward?s concrete runway at 2:33 p.m. (CST), Feb. 20, for a mission elapsed time of 12 days, 21 hours and 20 minutes. Photo credit: NASA
A Comparison of DNA Extraction Methods using Petunia hybrida Tissues
Tamari, Farshad; Hinkley, Craig S.; Ramprashad, Naderia
2013-01-01
Extraction of DNA from plant tissue is often problematic, as many plants contain high levels of secondary metabolites that can interfere with downstream applications, such as the PCR. Removal of these secondary metabolites usually requires further purification of the DNA using organic solvents or other toxic substances. In this study, we have compared two methods of DNA purification: the cetyltrimethylammonium bromide (CTAB) method that uses the ionic detergent hexadecyltrimethylammonium bromide and chloroform-isoamyl alcohol and the Edwards method that uses the anionic detergent SDS and isopropyl alcohol. Our results show that the Edwards method works better than the CTAB method for extracting DNA from tissues of Petunia hybrida. For six of the eight tissues, the Edwards method yielded more DNA than the CTAB method. In four of the tissues, this difference was statistically significant, and the Edwards method yielded 27–80% more DNA than the CTAB method. Among the different tissues tested, we found that buds, 4 days before anthesis, had the highest DNA concentrations and that buds and reproductive tissue, in general, yielded higher DNA concentrations than other tissues. In addition, DNA extracted using the Edwards method was more consistently PCR-amplified than that of CTAB-extracted DNA. Based on these results, we recommend using the Edwards method to extract DNA from plant tissues and to use buds and reproductive structures for highest DNA yields. PMID:23997658
Pruszewicz, Antoni; Wiskirska-Woźnica, Bożena; Wojnowski, Waldemar; Czerniejewska, Hanna; Jackowska, Joanna; Jarmuż, Małgorzata; Szyfter, Krzysztof; Leszczyńska, Małgorzata
2014-01-01
Patient: Female, 6 Final Diagnosis: Phenotype-genotype discordance in congenital malformations with communication disorders resembling trisomy 18 (Edwards syndrome) Symptoms: — Medication: — Clinical Procedure: — Specialty: Otolaryngology Objective: Congenital defects Background: Communication process disorders are very frequent in rare cases of chromosomal aberrations (deletions, insertions, and trisomies) such as Down syndrome (trisomy 21), Turner syndrome, Edwards syndrome (trisomy 18), or Patau syndrome (trisomy 13). Sometimes phenotype may delusively correspond to the characteristic features of a given syndrome, but genotype tests do not confirm its presence. Case Report: We present the case of a 6-year-old girl admitted to the Clinic of Phoniatrics and Audiology for the assessment of communication in the course of congenital malformations with phenotype characteristic for trisomy 18 (Edwards syndrome). Immediately upon birth, dysmorphic changes suggesting trisomy 18 (Edwards syndrome) were observed, but trisomy 18 was excluded after karyotype test results were normal (46, XX). Conclusions: Disturbed articulation was diagnosed: deformed linguo-dental and palatal sounds, interdental realization with flat tongue of the /s/, /z/, /c/, /dz/, /ś/, /ź/, /ć/, /dz/ sounds (sigmatismus interdentalis). Hearing loss was confirmed. PMID:24478819
NASA Technical Reports Server (NTRS)
1991-01-01
This photo shows NASA's PIK-20E motor-glider sailplane during a research flight from the Ames-Dryden Flight Research Facility (later, the Dryden Flight Research Center), Edwards, California, in 1991. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.
Foster, Linzy K.; White, Jeremy T.
2016-02-03
The Edwards aquifer consists of three water-quality zones. The freshwater zone of the Edwards aquifer is bounded to the south by a zone of brackish water (transition zone) where the aquifer transitions from fresh to saline water. The saline zone is downdip from the transition zone. There is concern that a recurrence of extreme drought, such as the 7-year drought from 1950 through 1956, could cause the transition zone to move toward (encroach upon) the freshwater zone, causing production wells near the transition zone to pump saltier water. There is also concern of drought effects on spring flows from Comal and San Marcos Springs. These concerns were evaluated through the development of a new numerical model of the Edwards aquifer.
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ...
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ROOM, PLANS AND SECTION." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 106 of 148; file no. 1321/57. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1A ...
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1-A IN FOREGROUND. LIGHTS OF MAIN BASE, EDWARDS AFB, IN THE BACKGROUND. EDWARDS AFB." Test Area 1-120. Looking west past Test Stand 1-A to Test Area 1-115 and Test Area 1-110. Photo no. "12,401 57; G-AFFTC 12 DEC 57; TS 1-A Aux #1". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Western Foreign Fighters in Syria: An Empirical Analysis of Recruitment and Mobilization Mechanisms
2015-06-01
Malet, Foreign Fighters, 5. 16 Ibid., 4–6. 17 See for example Ines von Behr, Anaïs Reding , Charlie Edwards, and Luke Gribbon, “Radicalization in the...summary see Ines von Behr, Anaïs Reding , Charlie Edwards, and Luke Gribbon, “Radicalization in the Digital Era: The Use of the Internet in 15 Cases of...12; <http://www.lexisnexis.com.libproxy.nps.edu/hottopics/lnacademic> [April 11, 2015]. 134 von Behr, Reding , Edwards, and Gribbon
2002-06-28
The Space Shuttle Endeavour, mounted securely atop one of NASA's modified Boeing 747 Shuttle Carrier Aircraft, left NASA's Dryden Flight Research Center at Edwards Air Force Base in Southern California at sunrise on Friday, June 28, nine days after concluding mission STS-111 to the International Space Station with a landing at Edwards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovorka, S.D.; Dutton, A.R.; Ruppel, S.C.
1994-09-01
The three-dimensional distribution of water in the Edwards aquifer was assessed using a core and log-based study. Porosity distribution reflects both depositional fabric and subsequent diagenesis. Vertical facies stacking patterns influence the depositional porosity as well as dolomitization and diagentic porosity modification. Subtidal facies deposited during sea level highstands are generally undolomitized and exhibit low porosity (5-10%); platform grainstones typically have high depositional porosity and significant solution enhancement (20-42% porosity). Dolomitized subtidal facies in tidal-flat-capped cycles have very high porosity (20-40%) because of selective dolomite dissolution in the freshwater aquifer. Porosity in gypsum beds is high in some areas becausemore » of dissolution and collapse, but low where gypsum was replaced by calcite cement. Low-energy subtidal and evaporitic units in the Maverick basin have porosity generally less than 15%. The overlying basinal packstones and grainstones have solution-enhanced porosities of 25 to 35%. Diagenesis associated with fluctuations in water chemistry near the saline-freshwater interface may explain one high-porosity trend. Other complex patterns of high and low porosity are attributed to structurally and hydrologically controlled porosity enhancement and cementation. Three-dimensional mapping of porosity trends provides data for improved aquifer management. Only about 3% of the maximum stored water lies above the water table at which natural spring flow is diminished. An average specific yield of 42% in the unconfined aquifer is determined from total porosity, changes in the water-table elevation, and changes in estimated recharge and discharge. Average storativity of 2.6 x 10{sup -4} in the confined Edwards is estimated using average porosity and barometric efficiency calculated from comparing water-level hydrographs and atmospheric pressure changes.« less
bidding farewell to outgoing commander, Rear Adm. Edward B. Cashman here, Tuesday, April 17, 2018. Joint , Rear Adm. Edward B. Cashman here, Tuesday, April 17, 2018. During the ceremony, Cashman read his orders
Edward Mills Purcell, August 30, 1912-March 7, 1997
NASA Astrophysics Data System (ADS)
Rigden, John S.
2011-03-01
I discuss the life, education, personality, and contributions of Edward Mills Purcell (1912-1997) to physics, radio astronomy, astrophysics, biological physics, physics teaching and education, and to the nation.
EXTRAVEHICULAR ACTIVITY (EVA) - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE
1965-06-03
S65-32924 (3 June 1965) --- Astronaut Edward H. White II, pilot of the Gemini IV four-day Earth-orbital mission, floats in the zero gravity of space outside the Gemini IV spacecraft. White wears a specially designed spacesuit; and the visor of the helmet is gold plated to protect him against the unfiltered rays of the sun. He wears an emergency oxygen pack, also. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped in gold tape to form one cord. In his right hand is a Hand-Held Self-Maneuvering Unit (HHSMU) with which he controls his movements in space. Astronaut James A. McDivitt, command pilot of the mission, remained inside the spacecraft. (This image is black and white) Photo credit: NASA EDITOR'S NOTE: Astronaut White died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.
EXTRAVEHICULAR ACTIVITY (EVA) - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE
1965-06-03
S65-32928 (3 June 1965) --- Astronaut Edward H. White II, pilot of the Gemini IV four-day Earth-orbital mission, floats in the zero gravity of space outside the Gemini IV spacecraft. White wears a specially designed spacesuit; and the visor of the helmet is gold plated to protect him against the unfiltered rays of the sun. He wears an emergency oxygen pack, also. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped in gold tape to form one cord. In his left hand is a Hand-Held Self-Maneuvering Unit (HHSMU) with which he controls his movements in space. Astronaut James A. McDivitt, command pilot of the mission, remained inside the spacecraft. (This image is black and white) Photo credit: NASA EDITOR'S NOTE: Astronaut White died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.
ASTRONAUT WHITE, EDWARD - GEMINI-TITAN (GT)-4 - EXTRAVEHICULAR ACTIVITY (EVA)
1965-01-01
S65-30433 (3 June 1965) --- Astronaut Edward H. White II, pilot of the Gemini IV four-day Earth-orbital mission, floats in the zero gravity of space outside the Gemini IV spacecraft. White wears a specially designed spacesuit; and the visor of the helmet is gold plated to protect him against the unfiltered rays of the sun. He wears an emergency oxygen pack, also. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped in gold tape to form one cord. In his right hand is a Hand-Held Self-Maneuvering Unit (HHSMU) with which he controls his movements in space. Astronaut James A. McDivitt, command pilot of the mission, remained inside the spacecraft. Photo credit: NASA EDITOR'S NOTE: Astronaut White died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.
Astronaut Edward White - Gemini IV Extravehicular Activity (EVA)
1965-01-01
S65-30429 (3 June 1965) --- Astronaut Edward H. White II, pilot of the Gemini IV four-day Earth-orbital mission, floats in the zero gravity of space outside the Gemini IV spacecraft. White wears a specially designed spacesuit; and the visor of the helmet is gold plated to protect him against the unfiltered rays of the sun. He wears an emergency oxygen pack, also. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped in gold tape to form one cord. In his right hand is a Hand-Held Self-Maneuvering Unit (HHSMU) with which he controls his movements in space. Astronaut James A. McDivitt, command pilot of the mission, remained inside the spacecraft. Photo credit: NASA EDITOR'S NOTE: Astronaut White died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.
SOUTHEAST AND NORTHEAST SIDES. Looking west Edwards Air Force ...
SOUTHEAST AND NORTHEAST SIDES. Looking west - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Fuel & Water Tank, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
SOUTH FRONT AND EAST SIDE. January, 1998 Edwards Air ...
SOUTH FRONT AND EAST SIDE. January, 1998 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Electrical Substation, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
1. DOWNRIVER VIEW OF BRIDGE, LOOKING SOUTHSOUTHWEST Peter J. Edwards, ...
1. DOWNRIVER VIEW OF BRIDGE, LOOKING SOUTH-SOUTHWEST Peter J. Edwards, photographer, August 1988 - Four Mile Bridge, Copper Creek Road, Spans Table Rock Fork, Mollala River, Molalla, Clackamas County, OR
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. Edwards ...
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell
NASA Technical Reports Server (NTRS)
2001-01-01
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
Alarie, Yves
2016-01-01
Abstract The Haliplidae, Gyrinidae and Dytiscidae (Coleoptera) of Prince Edward Island, Canada were surveyed during the years 2004–2005. A total of 2450 individuals from 79 species were collected from 98 different localities, among which 30 species are newly recorded from that region. Among these, Acilius sylvanus Hilsenhoff, Rhantus consimilis Motschulsky and Neoporus sulcipennis (Fall) stand out as representing the easternmost reports of these species in Canada. Once removed, Gyrinus aquiris LeConte (Gyrinidae) is reinstated in the faunal list of Prince Edward Island. According to this study and literature 84 species of Hydradephaga are currently known from Prince Edward Island. The Nearctic component of the fauna is made up of 68 species (80.9%) and the Holarctic component of 16 species (19.1%). Most species are characteristic of the Boreal and Atlantic Maritime Ecozones and have a transcontinental distribution. In an examination of the Hydradephaga of insular portions of Atlantic Canada, we found that despite significantly different land areas and different distances to the neighbouring continental mainland the island faunas of Prince Edward Island and insular Newfoundland are very similar in the number of species (84 and 94 species respectively) despite differences in composition. With a land area significantly larger than that of Prince Edward Island, however, the fauna of Cape Breton Island was 39% smaller consisting of 53 species. This difference could be due to the comparative lack of collecting efforts on Cape Breton Island. PMID:27408603
Alarie, Yves
2016-01-01
The Haliplidae, Gyrinidae and Dytiscidae (Coleoptera) of Prince Edward Island, Canada were surveyed during the years 2004-2005. A total of 2450 individuals from 79 species were collected from 98 different localities, among which 30 species are newly recorded from that region. Among these, Acilius sylvanus Hilsenhoff, Rhantus consimilis Motschulsky and Neoporus sulcipennis (Fall) stand out as representing the easternmost reports of these species in Canada. Once removed, Gyrinus aquiris LeConte (Gyrinidae) is reinstated in the faunal list of Prince Edward Island. According to this study and literature 84 species of Hydradephaga are currently known from Prince Edward Island. The Nearctic component of the fauna is made up of 68 species (80.9%) and the Holarctic component of 16 species (19.1%). Most species are characteristic of the Boreal and Atlantic Maritime Ecozones and have a transcontinental distribution. In an examination of the Hydradephaga of insular portions of Atlantic Canada, we found that despite significantly different land areas and different distances to the neighbouring continental mainland the island faunas of Prince Edward Island and insular Newfoundland are very similar in the number of species (84 and 94 species respectively) despite differences in composition. With a land area significantly larger than that of Prince Edward Island, however, the fauna of Cape Breton Island was 39% smaller consisting of 53 species. This difference could be due to the comparative lack of collecting efforts on Cape Breton Island.
2009-04-01
type with potential for higher altitudes above 100,000 feet is a steered free- floater . Dr. Edward Tomme, near-space expert, calls this concept the...sailboats of near- space.”88 This structure is less like an airship because it has no control surfaces or propulsion system. The free- floater would
Using Deming To Improve Quality in Colleges and Universities.
ERIC Educational Resources Information Center
Cornesky, Robert A.; And Others
Of all the people known for stressing quality in industry, W. Edwards Deming is the pioneer. He stresses statistical process control (SPC) and a 14-point process for managers to improve quality and productivity. His approach is humanistic and treats people as intelligent human beings who want to do a good job. Twelve administrators in a university…
2009-05-21
the State is critical to Huntington’s objective civilian control. Todor D. Tagarev21 wrote an article titled, "The Role of Military Education in...34Edward Preble papers." Library of Congress, August 25, 1801. Tagarev, Todor D. The Role ofMilitary Education in Harmonizing Civil Military
ERIC Educational Resources Information Center
Mikkelsen, Nina
An instructor's teaching practices have been influenced by Edward T. Hall's theory in "Beyond Culture," which begins with the notion that "what is known least well and is therefore in the poorest position to be studied is what is closest to oneself," the "unconscious patterns that control us." This wisdom has been…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blobaum, K M
This month's issue has the following articles: (1) Fifty Years of Stellar Laser Research - Commentary by Edward I. Moses; (2) A Stellar Performance - By combining computational models with test shot data, scientists at the National Ignition Facility have demonstrated that the laser is spot-on for ignition; (3) Extracting More Power from the Wind - Researchers are investigating how atmospheric turbulence affects power production from wind turbines; (4) Date for a Heart Cell - Carbon-14 dating reveals that a significant number of heart muscle cells are regenerated over the course of our lives; and (5) Unique Marriage of Biologymore » and Semiconductors - A new device featuring a layer of fat surrounding a thin silicon wire takes advantage of the communication properties of both biomolecules and semiconductors.« less
10. Credit USAF, 7 September 1945. Original housed in the ...
10. Credit USAF, 7 September 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View looks northwest into jet engine test cell located on aircraft apron southeast of Building 4305. In background of photo can be seen doors of Unicon Portable Hangar on left, and southeast end of Building T-l Bachelor Officers' Quarters ("Desert Rat Hotel"). This view emphasizes the hangar's role as a test facility for developing and testing aircraft and aircraft systems, not simply as a "garage" for aircraft. - Edwards Air Force Base, North Base, Unicon Portable Hangar, First & C Streets, Boron, Kern County, CA
USAF Test Pilot School. Flying Qualities Textbook, Volume 2, Part 1
1986-04-01
Qualities Flight Testing, Performance and Flying Qaulities Branch, Flight Test Engneerd ision, 6510th Test Wing, Air Force Flight Mayst Ce1ter, Edwards...For these aircraft, the program manager may re*uire a mil spec written specifically for the aircraft and control system involwd. 5.20.2 _EL k,Tt...OR MANAGED IN CONTEXT OF MISSION, WITH AVAILABLE PILOT ATTENTION. S UNCONTROLLABLE CONTROL WILL BE LOST DURING SOME PORTION OF MISSION. ACCEPTABLE
2015-03-24
distribution is unlimited. . Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates Presenter: Dr...Edwards AFB, CA 4 California State University, Long Beach, CA 90840 2 Outline: Basic Studies of Moisture Uptake in Cyanate Ester Networks • Background...Motivation • SOTA Theories of Moisture Uptake in Thermosetting Networks • New Tools and New Discoveries • Unresolved Issues and Ways to Address Them
Clark, Allan K.
2000-01-01
The Edwards aquifer, one of the most productive carbonate-rock aquifers in the Nation, is composed of the Kainer and Person Formations of the Edwards Group plus the overlying Georgetown Formation. Most recharge to the Edwards aquifer results from the percolation of streamflow loss and the infiltration of precipitation through porous parts of the recharge zone. Residential and commercial development is increasing, particularly in Bexar County in south-central Texas, atop the densely fractured and steeply faulted recharge zone. The increasing development has increased the vulnerability of ground water to contamination by spillage or leakage of waste materials, particularly fluids associated with urban runoff and (or) septic-tank leachate. This report describes a method of assessing the vulnerability of ground water to contamination in the Edwards aquifer recharge zone. The method is based on ratings of five natural features of the area: (1) hydraulic properties of outcropping hydrogeologic units; (2) presence or absence of faults; (3) presence or absence of caves and (or) sinkholes; (4) slope of land surface; and (5) permeability of soil. The sum of the ratings for the five natural features was used to develop a map showing the recharge zone's vulnerability to ground-water contamination.
Astronaut Edward Gibson sails through airlock module hatch
1974-02-01
SL4-150-5074 (February 1974) --- Scientist-astronaut Edward G. Gibson, science pilot for the Skylab 4 mission, demonstrates the effects of zero-gravity as he sails through airlock module hatch. Photo credit: NASA
4. DETAIL SHOWING FLAME DEFLECTOR. Looking southeast. Edwards Air ...
4. DETAIL SHOWING FLAME DEFLECTOR. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
8. SOUTH REAR, SUPERSTRUCTURE. Looking north from deck. Edwards ...
8. SOUTH REAR, SUPERSTRUCTURE. Looking north from deck. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
5. NORTHEAST CORNER. View to southwest from below. Edwards ...
5. NORTHEAST CORNER. View to southwest from below. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
7. INTERIOR, STEEL BLAST DOORS, INSTRUMENTATION ROOM. Edwards Air ...
7. INTERIOR, STEEL BLAST DOORS, INSTRUMENTATION ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
NORTHWEST FRONT AND SOUTHWEST SIDE, BUILDING 1933 Edwards Air ...
NORTHWEST FRONT AND SOUTHWEST SIDE, BUILDING 1933 - Edwards Air Force Base, X-15 Engine Test Complex, Observation Bunker Types, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Brenda K. Edwards, PhD | DCCPS/NCI/NIH
Brenda K. Edwards, PhD, has been with the Surveillance Research Program (SRP) and its predecessor organizations at the National Cancer Institute (NCI) since 1989, serving as SRP’s Associate Director from 1990-2011.
2005-11-18
2005, p. 23; Edward Cody, “China Builds A Smaller, Stronger Military,” Washington Post, April 12, 2005, p. 1; Bryan Bender, “China Bolsters Its Forces...testimony, p. 1; 2003 CFR task force report, pp. 24-25, 31-32, 62-63; Edward Cody, “China Builds A Smaller, Stronger Military,” April 12, 2005, p. 1; David...encircle” China, the report said. See also Edward Cody, “China Builds A Smaller, Stronger Military,” Washington Post, April 12, 2005, p. 1. 84 For
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinn, D J
This month's issue has the following articles: (1) The Edward Teller Centennial--Commentary by George H. Miller; (2) Edward Teller's Century: Celebrating the Man and His Vision--Colleagues at the Laboratory remember Edward Teller, cofounder of Lawrence Livermore, adviser to U.S. presidents, and physicist extraordinaire, on the 100th anniversary of his birth; (3) Quark Theory and Today's Supercomputers: It's a Match--Thanks to the power of BlueGene/L, Livermore has become an epicenter for theoretical advances in particle physics; and (4) The Role of Dentin in Tooth Fracture--Studies on tooth dentin show that its mechanical properties degrade with age.
Space Shuttle Atlantis/STS-98 shortly before being towed to NASA's Dryden Flight Research Center
2001-02-20
Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
Geologic history and hydrogeologic setting of the Edwards-Trinity aquifer system, west-central Texas
Barker, R.A.; Bush, P.W.; Baker, E.T.
1994-01-01
Because the diagenetic effects of cementation, recrystallization, and mineral replacement diminish the hydraulic conductivity of most rocks composing the Trinity and Edwards-Trinity aquifers, transmissivity values average less than 10,000 feet squared per day over more than 90 percent of the study area. However, the effects of tectonic fractures and dissolution in the Balcones fault zone cause transmissivity values to average about 750,000 feet squared per day in the Edwards aquifer, which occupies less than 10 percent of the study area.
50th anniversary of the inauguration of John F. Kennedy
2011-01-20
NASA Administrator Charles Bolden. 3rd from left, introduces Edward Moore Kennedy III, 4th from left, to NASA Astronaut Leland Melvin, left, and former NASA Astronaut Scott Altman, 2nd from left, as Edward's mother Kiki Kennedy, wife of Edward M Kennedy Jr. and NASA Deputy Administrator Lori Garver, right, look on at an event recognizing the 50th anniversary of the inauguration of John F. Kennedy as president of the United States, Thursday, Jan. 20, 2001 at the U.S. Capitol rotunda. Photo Credit: (NASA/Bill Ingalls)
Clark, Allan K.; Small, Ted A.
1997-01-01
The stratigraphic units of the Edwards aquifer in south-central Uvalde County generally are porous and permeable. The stratigraphic units that compose the Edwards aquifer in south-central Uvalde County are the Devils River Formation in the Devils River trend; and the West Nueces, McKnight, and Salmon Peak Formations in the Maverick Basin. The Balcones fault zone is the principal structural feature in Uvalde County; however, the displacement along the fault zone is less in Uvalde County than in adjacent Medina and Bexar Counties to the east. The Uvalde Salient is a structural high in south-central Uvalde County, and consists of several closely connected crustal uplifts that bring Edwards aquifer strata to the surface generally forming prominent hills. The crustal uplifts forming this structural high are the remnants of intrusive and extrusive magnatic activity. Six primary faults—Cooks, Black Mountain, Blue Mountain, Uvalde, Agape, and Connor—cross the length of the study area from the southwest to the northeast juxtaposing the Lower Cretaceous Salmon Peak Formation at the surface in the northwestern part of the study area against Upper Cretaceous formations in the central part of the study area. In the study area, the porosity of the rocks in the Edwards aquifer is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, distribution of pores, and fissuring and dissolution. The middle 185 feet of the lower part of the Devils River Formation, the upper part of the Devils River Formation, and the upper unit of the Salmon Peak Formation probably are the most porous and permeable stratigraphic zones of the Edwards aquifer in south-central Uvalde County.
4. BUILDING 8767, INTERIOR. Looking west. Edwards Air Force ...
4. BUILDING 8767, INTERIOR. Looking west. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Edward Wheeler Hones Jr. (1922-2012)
NASA Astrophysics Data System (ADS)
Baker, Daniel N.; McPherron, Robert L.; Birn, Joachim
2013-02-01
Space physicist Edward Wheeler Hones Jr. died on 17 September 2012 at his home in Los Alamos, N. M. He was 90 years old. The cause of death was a heart attack that came following a brief hospitalization.
Heitmuller, Franklin T.; Asquith, William H.
2008-01-01
The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.
2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. Edwards ...
2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. Edwards ...
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. Edwards ...
6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. Edwards ...
8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Self-Other Orientations and the Edwards Personal Preference Schedule
ERIC Educational Resources Information Center
Santee, Richard T.
1975-01-01
A modified version of the Edwards Personal Preference Schedule (EPPS) was administered to measure self and other orientations on 15 personality variables. The respondents were shown to have different preferences for themselves than for others. (Author/DEP)
STS-92 - Landing at Edwards Air Force Base
2000-10-24
With its drag parachute deployed to help slow it down, the Space Shuttle Discovery rolls down the runway after landing at Edwards Air Force Base in Southern California at the conclusion of mission STS-92 on October 24, 2000.