[EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].
Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E
2014-01-01
The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.
Mathewson, Kyle E.; Beck, Diane M.; Ro, Tony; Maclin, Edward L.; Low, Kathy A.; Fabiani, Monica; Gratton, Gabriele
2015-01-01
We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously we proposed that alpha (8-12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top-down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently-recorded electroencephalogram (EEG), while subjects performed a visual target-detection task. The pre-target alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across subjects. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network, and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks prior to posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top-down control from attention networks modulates both posterior alpha and awareness of visual stimuli. PMID:24702458
EEG alpha activity and hallucinatory experience during sensory deprivation.
Hayashi, M; Morikawa, T; Hori, T
1992-10-01
The relationship between hallucinatory experiences under sensory deprivation and EEG alpha activities was studied. Each of seven male students lived alone in an air conditioned, soundproof dark room for 72 hours. When hallucinatory experiences occurred, the students pressed a button at once. If they could not press the button during the experience, they were required to press it two times when the hallucinatory experience was finished. Spectral analysis was performed on the consecutive EEG samples from just before button-presses to 10 min. before them, and the average alpha band amplitudes were obtained for the four epochs (0-.5, .5-2, 2-5, 5-10 min.). For the single button-presses, the amplitude of alpha band increased 2 min. before the button-presses. Right-hemisphere EEG activation was observed in the occipital area for the double button-presses. The results suggest an association between the hallucinatory experiences under sensory deprivation and the amount of EEG alpha activity.
EEG Alpha Synchronization Is Related to Top-Down Processing in Convergent and Divergent Thinking
ERIC Educational Resources Information Center
Benedek, Mathias; Bergner, Sabine; Konen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.
2011-01-01
Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing…
Topographical characteristics and principal component structure of the hypnagogic EEG.
Tanaka, H; Hayashi, M; Hori, T
1997-07-01
The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.
Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy
2018-02-01
Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.
Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick
2017-09-01
Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Adamaszek, Michael; Khaw, Alexander V.; Buck, Ulrike; Andresen, Burghard; Thomasius, Rainer
2010-01-01
Objective According to previous EEG reports of indicative disturbances in Alpha and Beta activities, a systematic search for distinct EEG abnormalities in a broader population of Ecstasy users may especially corroborate the presumed specific neurotoxicity of Ecstasy in humans. Methods 105 poly-drug consumers with former Ecstasy use and 41 persons with comparable drug history without Ecstasy use, and 11 drug naives were investigated for EEG features. Conventional EEG derivations of 19 electrodes according to the 10-20-system were conducted. Besides standard EEG bands, quantitative EEG analyses of 1-Hz-subdivided power ranges of Alpha, Theta and Beta bands have been considered. Results Ecstasy users with medium and high cumulative Ecstasy doses revealed an increase in Theta and lower Alpha activities, significant increases in Beta activities, and a reduction of background activity. Ecstasy users with low cumulative Ecstasy doses showed a significant Alpha activity at 11 Hz. Interestingly, the spectral power of low frequencies in medium and high Ecstasy users was already significantly increased in the early phase of EEG recording. Statistical analyses suggested the main effect of Ecstasy to EEG results. Conclusions Our data from a major sample of Ecstasy users support previous data revealing alterations of EEG frequency spectrum due rather to neurotoxic effects of Ecstasy on serotonergic systems in more detail. Accordingly, our data may be in line with the observation of attentional and memory impairments in Ecstasy users with moderate to high misuse. Despite the methodological problem of polydrug use also in our approach, our EEG results may be indicative of the neuropathophysiological background of the reported memory and attentional deficits in Ecstasy abusers. Overall, our findings may suggest the usefulness of EEG in diagnostic approaches in assessing neurotoxic sequela of this common drug abuse. PMID:21124854
Krivonogova, E V; Poskotinova, L V; Demin, D B
2015-01-01
A single session of heart rate variability (HRV) biofeedback in apparently healthy young people and adolescents aged 14-17 years in order to increase vagal effects on heart rhythm and also electroencephalograms were carried out. Different variants of EEG spectral power during the successful HRV biofeedback session were identified. In the case of I variant of EEG activity the increase of power spectrum of alpha-, betal-, theta-components takes place in all parts of the brain. In the case of II variant of EEG activity the reduction of power spectrum of alpha-, betal-, theta-activity in all parts of the brain was observed. I and II variants of EEG activity cause more intensive regime of cortical-subcortical interactions. During the III variant of EEG activity the successful biofeedback is accompanied by increase of alpha activity in the central, front and anteriofrontal brain parts and so indicates the formation of thalamocortical relations of neural network in order to optimize the vegetal regulation of heart function. There was an increase in alpha- and beta1-activity in the parietal, central, frontal and temporal brain parts during the IV variant of EEG activity and so that it provides the relief of neural networks communication for information processing. As a result of V variance of EEG activity there was the increase of power spectrum of theta activity in the central and frontal parts of both cerebral hemispheres, so it was associated with the cortical-hippocampal interactions to achieve a successful biofeedback.
EEG activity during estral cycle in the rat.
Corsi-Cabrera, M; Juárez, J; Ponce-de-León, M; Ramos, J; Velázquez, P N
1992-10-01
EEG activity was recorded from right and left parietal cortex in adult female rats daily during 6 days. Immediately after EEG recording vaginal smears were taken and were microscopically analyzed to determine the estral stage. Absolute and relative powers and interhemispheric correlation of EEG activity were calculated and compared between estral stages. Interhemispheric correlation was significantly lower during diestrous as compared to proestrous and estrous. Absolute and relative powers did not show significant differences between estral stages. Absolute powers of alpha1, alpha2, beta1 and beta2 bands were significantly higher at the right parietal cortex. Comparisons of the same EEG records with estral stages randomly grouped showed no significant differences for any of the EEG parameters. EEG activity is a sensitive tool to study functional changes related to the estral cycle.
Papousek, Ilona; Weiss, Elisabeth M; Schulter, Günter; Fink, Andreas; Reiser, Eva M; Lackner, Helmut K
2014-12-01
Changes of EEG alpha asymmetry in terms of increased right versus left sided activity in prefrontal cortex are considered to index activation of the withdrawal/avoidance motivational system. The present study aimed to add evidence of the validity of individual differences in the EEG alpha asymmetry response and their relevance regarding the impact of emotional events. The magnitude of the EEG alpha asymmetry response while watching a film consisting of scenes of real injury and death correlated with components of transient cardiac responses to sudden horrifying events happening to persons in the film which index withdrawal/avoidance motivation and heightened attention and perceptual intake. Additionally, it predicted greater mood deterioration following the film and film-related intrusive memories and avoidance over the following week. The study provides further evidence for prefrontal EEG alpha asymmetry changes in response to relevant stimuli reflecting an individual's sensitivity to negative social-emotional cues encountered in everyday life. Copyright © 2014 Elsevier B.V. All rights reserved.
Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn
2018-03-01
Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.
Petrovic, Jelena; Milosevic, Vuk; Zivkovic, Miroslava; Stojanov, Dragan; Milojkovic, Olga; Kalauzi, Aleksandar; Saponjic, Jasna
2017-01-01
We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal-Wallis ANOVA with a post-hoc Mann-Whitney U two-tailed test, and Spearman's correlation. We demonstrated transient cognitive impairment alongside a slower alpha frequency ( α AVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered "alpha flow", indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3-F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric "alpha flow" within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric "alpha flow" represented a permanent consequence of the "hidden" stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Our study indicates slower EEG alpha generation, synchronization and "flow" as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.
2009-04-30
successfully raised physiological and 15. SUBJECT TERMS brain, cognitive neuroscience, EEG , neurofeedback , competition, stress, neuroendocrine, shooting...efficacy of the Neurofeedback training to elevate frontal EEG asymmetry (F4 minus F3 alpha power) in an attempt to enhance emotion regulation. The...observed a remarkable increase or synchrony of EEG alpha power (i.e., low-alpha) across the general scalp topography for both groups ( neurofeedback
Schreckenberger, Mathias; Lange-Asschenfeldt, Christian; Lange-Asschenfeld, Christian; Lochmann, Matthias; Mann, Klaus; Siessmeier, Thomas; Buchholz, Hans-Georg; Bartenstein, Peter; Gründer, Gerhard
2004-06-01
Purpose of this study was to investigate the functional relationship between electroencephalographic (EEG) alpha power and cerebral glucose metabolism before and after pharmacological alpha suppression by lorazepam. Ten healthy male volunteers were examined undergoing two F18-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) scans with simultaneous EEG recording: 1x placebo, 1x lorazepam. EEG power spectra were computed by means of Fourier analysis. The PET data were analyzed using SPM99, and the correlations between metabolism and alpha power were calculated for both conditions. The comparison lorazepam versus placebo revealed reduced glucose metabolism of the bilateral thalamus and adjacent subthalamic areas, the occipital cortex and temporo-insular areas (P < 0.001). EEG alpha power was reduced in all derivations (P < 0.001). Under placebo, there was a positive correlation between alpha power and metabolism of the bilateral thalamus and the occipital and adjacent parietal cortex (P < 0.001). Under lorazepam, the thalamic and parietal correlations were maintained, whereas the occipital correlation was no longer detectable (P < 0.001). The correlation analysis of the difference lorazepam-placebo showed the alpha power exclusively correlated with the thalamic activity (P < 0.0001). These results support the hypothesis of a close functional relationship between thalamic activity and alpha rhythm in humans mediated by corticothalamic loops which are independent of sensory afferences. The study paradigm could be a promising approach for the investigation of cortico-thalamo-cortical feedback loops in neuropsychiatric diseases.
Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu
2014-08-15
Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.
Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo
2013-10-25
The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.
2017-04-01
We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.
Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG.
Ueda, Jun; Kawamoto, Michi; Hikiami, Ryota; Ishii, Junko; Yoshimura, Hajime; Matsumoto, Riki; Kohara, Nobuo
2017-12-01
Anti-NMDA receptor encephalitis is a paraneoplastic encephalitis characterised by psychiatric features, involuntary movement, and autonomic instability. Various EEG findings in patients with anti-NMDA receptor encephalitis have been reported, however, the correlation between the EEG findings and clinical course of anti-NMDA receptor encephalitis remains unclear. We describe a patient with anti-NMDA receptor encephalitis with a focus on EEG findings, which included: status epilepticus, generalised rhythmic delta activity, excess beta activity, extreme delta brush, and paroxysmal alpha activity upon arousal from sleep, which we term"arousal alpha pattern". Initially, status epilepticus was observed on the EEG when the patient was comatose with conjugate deviation. The EEG then indicated excess beta activity, followed by the emergence of continuous slow activity, including generalised rhythmic delta activity and extreme delta brush, in the most severe phase. Slow activity gradually faded in parallel with clinical amelioration. Excess beta activity persisted, even after the patient became almost independent in daily activities, and finally disappeared with full recovery. In summary, our patient with anti-NMDA receptor encephalitis demonstrated slow activity on the EEG, including extreme delta brush during the most severe phase, which gradually faded in parallel with clinical amelioration, with excess beta activity persisting into the recovery phase.
Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Maglione, Anton Giulio; Colosimo, Alfredo; Babiloni, Fabio
2014-05-01
To date, no objective measure of the pleasantness of music perception by children with cochlear implants has been reported. The EEG alpha asymmetries of pre-frontal cortex activation are known to relate to emotional/affective engagement in a perceived stimulus. More specifically, according to the "withdrawal/approach" model, an unbalanced de-synchronization of the alpha activity in the left prefrontal cortex has been associated with a positive affective state/approach toward a stimulus, and an unbalanced de-synchronization of the same activity in the right prefrontal cortex with a negative affective state/withdrawal from a stimulus. In the present study, High-Resolution EEG with Source Reconstruction was used to compare the music-induced alpha asymmetries of the prefrontal cortex in a group of prelingually deaf implanted children and in a control group of normal-hearing children. Six normal-hearing and six age-matched deaf children using a unilateral cochlear implants underwent High-Resolution EEG recordings as they were listening to a musical cartoon. Musical stimuli were delivered in three versions: Normal, Distort (reverse audio flow) and Mute. The EEG alpha rhythm asymmetry was analyzed: Power Spectral Density was calculated for each Region of Interest, together with a right-left imbalance index. A map of cortical activation was then reconstructed on a realistic cortical model. Asymmetries of EEG alpha rhythm in the prefrontal cortices were observed in both groups. In the normal-hearing children, the asymmetries were consistent with the withdrawal/approach model, whereas in cochlear implant users they were not. Moreover, in implanted children a different pattern of alpha asymmetries in extrafrontal cortical areas was noticed as compared to normal-hearing subjects. The peculiar pattern of alpha asymmetries in implanted children's prefrontal cortex in response to musical stimuli suggests an inability by these subjects to discriminate normal from dissonant music and to appreciate the pleasantness of normal music. High-Resolution EEG may prove to be a promising tool for objectively measuring prefrontal cortex alpha asymmetries in child cochlear implant users. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Jurewicz, Katarzyna; Paluch, Katarzyna; Kublik, Ewa; Rogala, Jacek; Mikicin, Mirosław; Wróbel, Andrzej
2018-01-08
The frequency-function relation of various EEG bands has inspired EEG-neurofeedback procedures intending to improve cognitive abilities in numerous clinical groups. In this study, we administered EEG-neurofeedback (EEG-NFB) to a healthy population to determine the efficacy of this procedure. We evaluated feedback manipulation in the beta band (12-22Hz), known to be involved in visual attention processing. Two groups of healthy adults were trained to either up- or down-regulate beta band activity, thus providing mutual control. Up-regulation training induced increases in beta and alpha band (8-12Hz) amplitudes during the first three sessions. Group-independent increases in the activity of both bands were observed in the later phase of training. EEG changes were not matched by measured behavioural indices of attention. Parallel changes in the two bands challenge the idea of frequency-specific EEG-NFB protocols and suggest their interdependence. Our study exposes the possibility (i) that the alpha band is more prone to manipulation, and (ii) that changes in the bands' amplitudes are independent from specified training. We therefore encourage a more comprehensive approach to EEG-neurofeedback training embracing physiological and/or operational relations among various EEG bands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Correlation between disease severity and brain electric LORETA tomography in Alzheimer's disease.
Gianotti, Lorena R R; Künig, Gabriella; Lehmann, Dietrich; Faber, Pascal L; Pascual-Marqui, Roberto D; Kochi, Kieko; Schreiter-Gasser, Ursula
2007-01-01
To compare EEG power spectra and LORETA-computed intracortical activity between Alzheimer's disease (AD) patients and healthy controls, and to correlate the results with cognitive performance in the AD group. Nineteen channel resting EEG was recorded in 21 mild to moderate AD patients and in 23 controls. Power spectra and intracortical LORETA tomography were computed in seven frequency bands and compared between groups. In the AD patients, the EEG results were correlated with cognitive performance (Mini Mental State Examination, MMSE). AD patients showed increased power in EEG delta and theta frequency bands, and decreased power in alpha2, beta1, beta2 and beta3. LORETA specified that increases and decreases of power affected different cortical areas while largely sparing prefrontal cortex. Delta power correlated negatively and alpha1 power positively with the AD patients' MMSE scores; LORETA tomography localized these correlations in left temporo-parietal cortex. The non-invasive EEG method of LORETA localized pathological cortical activity in our mild to moderate AD patients in agreement with the literature, and yielded striking correlations between EEG delta and alpha1 activity and MMSE scores in left temporo-parietal cortex. The present data support the hypothesis of an asymmetrical progression of the Alzheimer's disease.
The effect of alpha rhythm sleep on EEG activity and individuals' attention.
Kim, Seon Chill; Lee, Myoung Hee; Jang, Chel; Kwon, Jung Won; Park, Joo Wan
2013-12-01
[Purpose] This study examined whether the alpha rhythm sleep alters the EEG activity and response time in the attention and concentration tasks. [Subjects and Methods] The participants were 30 healthy university students, who were randomly and equally divided into two groups, the experimental and control groups. They were treated using the Happy-sleep device or a sham device, respectively. All participants had a one-week training period. Before and after training sessions, a behavioral task test was performed and EEG alpha waves were measured to confirm the effectiveness of training on cognitive function. [Results] In terms of the behavioral task test, reaction time (RT) variations in the experimental group were significantly larger than in the control group for the attention item. Changes in the EEG alpha power in the experimental group were also significantly larger than those of the control group. [Conclusions] These findings suggest that sleep induced using the Happy-sleep device modestly enhances the ability to pay attention and focus during academic learning.
Dynamic correlations between heart and brain rhythm during Autogenic meditation
Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan
2013-01-01
This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion. PMID:23914165
Dynamic correlations between heart and brain rhythm during Autogenic meditation.
Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan
2013-01-01
This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.
Modulation of the COMT Val(158)Met polymorphism on resting-state EEG power.
Solís-Ortiz, Silvia; Pérez-Luque, Elva; Gutiérrez-Muñoz, Mayra
2015-01-01
The catechol-O-methyltransferase (COMT) Val(158)Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val(158)Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women.
Modulation of the COMT Val158Met polymorphism on resting-state EEG power
Solís-Ortiz, Silvia; Pérez-Luque, Elva; Gutiérrez-Muñoz, Mayra
2015-01-01
The catechol-O-methyltransferase (COMT) Val158Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val158Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women. PMID:25883560
Individual neurophysiological profile in external effects investigation
NASA Astrophysics Data System (ADS)
Schastlivtseva, Daria; Tatiana Kotrovskaya, D..
Cortex biopotentials are the significant elements in human psychophysiological individuality. Considered that cortical biopotentials are diverse and individually stable, therefore there is the existence of certain dependence between the basic properties of higher nervous activity and cerebral bioelectric activity. The main purpose of the study was to reveal the individual neurophysiological profile and CNS initial functional state manifestation in human electroencephalogram (EEG) under effect of inert gases (argon, xenon, helium), hypoxia, pressure changes (0.02 and 0.2 MPa). We obtained 5-minute eyes closed background EEG on 19 scalp positions using Ag/AgCl electrodes mounted in an electrode cap. All EEG signals were re-referenced to average earlobes; Fast Furies Transformation analysis was used to calculate the relative power spectrum of delta-, theta-, alpha- and beta frequency band in artifact-free EEG. The study involved 26 healthy men who provided written informed consent, aged 20 to 35 years. Data obtained depend as individual EEG type and initial central nervous functional state as intensity, duration and mix of factors. Pronounced alpha rhythm in the raw EEG correlated with their adaptive capacity under studied factor exposure. Representation change and zonal distribution perversion of EEG alpha rhythm were accompanied by emotional instability, increased anxiety and difficulty adapting subjects. High power factor or combination factor with psychological and emotional or physical exertion minimizes individual EEG pattern.
Kremer, Heidemarie; Lutz, Franz P C; McIntosh, Roger C; Dévieux, Jessy G; Ironson, Gail
2016-04-01
Resting EEGs of 40 people living with HIV (PLWH) on long-term antiretroviral treatment were examined for z-scored deviations from a healthy control (normative database) to examine the main and interaction effects of depression and gender. Regions of interest were frontal (alpha) and central (all bands) for interhemispheric asymmetries in quantitative EEGs and theta in the rostral anterior cingulate cortex (rACC) in low-resolution electromagnetic tomography (LORETA). Z-scored normed deviations of depressed PLWH, compared with nondepressed, showed right-dominant interhemispheric asymmetries in all regions. However, after adjusting for multiple testing, significance remained only central for theta, alpha, and beta. Reversed (left-dominant) frontal alpha asymmetry is a potential EEG marker of depression in the HIV negative population that was not reversed in depressive PLWH; however, corresponding with extant literature, gender had an effect on the size of frontal alpha asymmetry. The LORETA analysis revealed a trending interactional effect of depression and gender on theta activity in the rACC in Brodmann area 32. We found that compared to men, women had greater right-dominant frontal alpha-asymmetry and elevated theta activity in voxels of the rACC, which may indicate less likelihood of depression and a higher likelihood of response to antidepressants. In conclusion, subtle EEG deviations, such as right-dominant central theta, alpha, and beta asymmetries and theta activity in the rACC may mark HIV-related depressive symptoms and may predict the likelihood of response to antidepressants but gender effects need to be taken into account. Although this study introduced the use of LORETA to examine the neurophysiological correlates of negative affect in PLWH, further research is needed to assess the utility of this tool in diagnostics and treatment monitoring of depression in PLWH. © EEG and Clinical Neuroscience Society (ECNS) 2015.
Vorobyov, Vasily; Kaptsov, Vladimir; Kovalev, Georgy; Sengpiel, Frank
2011-05-30
To study the effects of acute and repeated injections of nootropics and to learn how glutamate receptors might be involved in their mediation, the frequency spectra of cortical and hippocampal electroencephalogram (EEG) were analyzed in non-narcotized rats subcutaneously injected repeatedly with Piracetam (400mg/kg) or its analogue, Noopept (0.2mg/kg), after intracerebroventricular infusions of saline (5 μl) or the antagonists of NMDA and quisqualate/AMPA receptors: CPP (0.1 nmol) and GDEE (1 μmol), respectively. Piracetam increased alpha/beta1 EEG activity in the left frontal cortex, and alpha activity in both the right cortex and hippocampus, with a 10-min latency and 40-min duration. Noopept increased alpha/beta1 activity, with 30-min latency and 40-min duration in all brain areas. CPP pretreatment eliminated Piracetam EEG effects; reduced Noopept effects in the cortex and completely suppressed them in the hippocampus. After four injections of Piracetam, EEG effects were very small in the cortex, and completely lacking in the hippocampus, while GDEE pretreatment partially recovered them. The effect of Noopept in the alpha/beta1 ranges was replaced by increased beta2 activity after the eighth injection, while no effects were observed after the ninth one. GDEE pretreatment restored the effect of Noopept in the beta2 frequency range. These results demonstrate similarities in EEG effects and their mediatory mechanisms for Piracetam and its much more effective analogue, Noopept. Activation of NMDA receptors is involved in the effects of a single injection of the nootropics, whereas activation of quisqualate/AMPA receptors is associated with the decrease in their efficacy after repeated use. Copyright © 2011 Elsevier Inc. All rights reserved.
Transient Cognitive Dynamics, Metastability, and Decision Making
2008-05-02
imaging (fMRI) and EEG have opened new possibilities for understanding and modeling cognition [11–15]. Experimental recordings have revealed detailed...between different phase-synchronized states of alpha activity in spontaneous EEG . Alpha activity has been characterized as a series of globally...novel protocols of assisted neurofeedback [59– 62], which can open a wide variety of new medical and brain- machine applications. Methods Stable
[Voluntary alpha-power increasing training impact on the heart rate variability].
Bazanova, O M; Balioz, N V; Muravleva, K B; Skoraia, M V
2013-01-01
In order to study the effect of the alpha EEG power increasing training at heart rate variability (HRV) as the index of the autonomic regulation of cognitive functions there were follow tasks: (1) to figure out the impact of biofeedback in the voluntary increasing the power in the individual high-frequency alpha-band effect on heart rate variability and related characteristics of cognitive and emotional spheres, (2) to determine the nature of the relationship between alpha activity indices and heart rate variability, depending on the alpha-frequency EEG pattern at rest (3) to examine how the individual alpha frequency EEG pattern is reflected in changes HRV as a result of biofeedback training. Psychometric indicators of cognitive performance, the characteristics of the alpha-EEG activity and heart rate variability (HRV) as LF/HF and pNN50 were recorded in 27 healthy men aged 18-34 years, before, during, and after 10 sessions of training of voluntary increase in alpha power in the individual high-frequency alpha band with eyes closed. To determine the biofeedback effect on the alpha power increasing training, data subjects are compared in 2 groups: experimental (14) with the real and the control group (13 people)--with mock biofeedback. The follow up effect of trainings was studied through month over the 10 training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, decreased anxiety and frontal EMG, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did change neither cognitive performance, nor HRV indices. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. The positive correlation between the alpha-peak frequency and pNN50 in patients with initially low, but negative--those with high baseline alpha frequency explains the multidirectional biofeedback effects on HRV in low and high alpha frequency subjects. The individual alpha-frequency EEG pattern determines the effectiveness of the alpha EEG biofeedback training in changing heart rate variability, which provides a basis for predicting the results and develop individual approaches to the biofeedback technology implementation that can be used in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.
EEG alpha synchronization is related to top-down processing in convergent and divergent thinking
Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.
2011-01-01
Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking. PMID:21925520
Dynamics of Sensorimotor Oscillations in a Motor Task
NASA Astrophysics Data System (ADS)
Pfurtscheller, Gert; Neuper, Christa
Many BCI systems rely on imagined movement. The brain activity associated with real or imagined movement produces reliable changes in the EEG. Therefore, many people can use BCI systems by imagining movements to convey information. The EEG has many regular rhythms. The most famous are the occipital alpha rhythm and the central mu and beta rhythms. People can desynchronize the alpha rhythm (that is, produce weaker alpha activity) by being alert, and can increase alpha activity by closing their eyes and relaxing. Sensory processing or motor behavior leads to EEG desynchronization or blocking of central beta and mu rhythms, as originally reported by Berger [1], Jasper and Andrew [2] and Jasper and Penfield [3]. This desynchronization reflects a decrease of oscillatory activity related to an internally or externally-paced event and is known as Event-Related Desynchronization (ERD, [4]). The opposite, namely the increase of rhythmic activity, was termed Event-Related Synchronization (ERS, [5]). ERD and ERS are characterized by fairly localized topography and frequency specificity [6]. Both phenomena can be studied through topographiuthc maps, time courses, and time-frequency representations (ERD maps, [7]).
Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu
2014-01-01
The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.
Creativity as a distinct trainable mental state: An EEG study of musical improvisation.
Lopata, Joel A; Nowicki, Elizabeth A; Joanisse, Marc F
2017-05-01
Alpha-band EEG was used to index how creative mental states relate to the creation of artistic works in skilled musicians. We contrasted differences in frontal upper alpha-band activity between tasks with high and low creativity demands by recording EEGs while skilled musicians listened to, played back, and improvised jazz melodies. Neural responses were compared for skilled musicians with training in musical improvisation versus those who had no formal improvisation training. Consistent with our hypotheses, individuals showed increased frontal upper alpha-band activity during more creative tasks (i.e., improvisation) compared to during less creative tasks (i.e., rote playback). Moreover, this effect was greatest for musicians with formal improvisation training. The strength of this effect also appeared to modulate the quality of these improvisations, as evidenced by significant correlations between upper alpha EEG power and objective post-hoc ratings of individuals' performances. These findings support a conceptualization of creativity as a distinct mental state and suggest spontaneous processing capacity is better nurtured through formal institutional training than informal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Graziani, I; Cherubino, P; Astolfi, L; Marsella, P; Colosimo, A; Babiloni, Fabio
2013-01-01
The perception of the music in cochlear implanted (CI) patients is an important aspect of their quality of life. In fact, the pleasantness of the music perception by such CI patients can be analyzed through a particular analysis of EEG rhythms. Studies on healthy subjects show that exists a particular frontal asymmetry of the EEG alpha rhythm which can be correlated with pleasantness of the perceived stimuli (approach-withdrawal theory). In particular, here we describe differences between EEG activities estimated in the alpha frequency band for a monolateral CI group of children and a normal hearing one during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns related to the normal hearing group refers to a higher pleasantness perception when compared to the cerebral activity of the monolateral CI patients. In fact, the present results support the statement that a monolateral CI group could perceive the music in a less pleasant way when compared to normal hearing children.
Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy
2016-01-01
Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala-based rtfMRI-nf. Combination of the two could enhance emotion regulation training and benefit MDD patients. PMID:26958462
Moyanova, Slavianka G; Kirov, Roumen K; Kortenska, Lidia V
2002-04-01
Age-related changes in neocortical high-voltage spindle (HVS) and in electroencephalographic (EEG) alpha power were examined in young (3.0 to 4.6 months), middle-aged (10.2 to 13.8 months), and old (21.5 to 24.0 months) male Wistar rats during quiet waking. Whereas the duration of quiet waking stage did not change as a function of age, a significant increase in HVS amount and EEG alpha peak power was observed in the middle-aged rats with only a tendency for a further enhancement in the old animals. An additional analysis showed that the elevation of alpha power is associated with age rather than with HVS activity.
Alpha Rhythms in Audition: Cognitive and Clinical Perspectives
Weisz, Nathan; Hartmann, Thomas; Müller, Nadia; Lorenz, Isabel; Obleser, Jonas
2011-01-01
Like the visual and the sensorimotor systems, the auditory system exhibits pronounced alpha-like resting oscillatory activity. Due to the relatively small spatial extent of auditory cortical areas, this rhythmic activity is less obvious and frequently masked by non-auditory alpha-generators when recording non-invasively using magnetoencephalography (MEG) or electroencephalography (EEG). Following stimulation with sounds, marked desynchronizations can be observed between 6 and 12 Hz, which can be localized to the auditory cortex. However knowledge about the functional relevance of the auditory alpha rhythm has remained scarce so far. Results from the visual and sensorimotor system have fuelled the hypothesis of alpha activity reflecting a state of functional inhibition. The current article pursues several intentions: (1) Firstly we review and present own evidence (MEG, EEG, sEEG) for the existence of an auditory alpha-like rhythm independent of visual or motor generators, something that is occasionally met with skepticism. (2) In a second part we will discuss tinnitus and how this audiological symptom may relate to reduced background alpha. The clinical part will give an introduction into a method which aims to modulate neurophysiological activity hypothesized to underlie this distressing disorder. Using neurofeedback, one is able to directly target relevant oscillatory activity. Preliminary data point to a high potential of this approach for treating tinnitus. (3) Finally, in a cognitive neuroscientific part we will show that auditory alpha is modulated by anticipation/expectations with and without auditory stimulation. We will also introduce ideas and initial evidence that alpha oscillations are involved in the most complex capability of the auditory system, namely speech perception. The evidence presented in this article corroborates findings from other modalities, indicating that alpha-like activity functionally has an universal inhibitory role across sensory modalities. PMID:21687444
An EEG Finger-Print of fMRI deep regional activation.
Meir-Hasson, Yehudit; Kinreich, Sivan; Podlipsky, Ilana; Hendler, Talma; Intrator, Nathan
2014-11-15
This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. Copyright © 2013 Elsevier Inc. All rights reserved.
Statistical features of hypnagogic EEG measured by a new scoring system.
Tanaka, H; Hayashi, M; Hori, T
1996-11-01
The purpose of this study was to examine the durations of individual occurrences of each of nine hypnagogic electroencephalographic (EEG) stages and the interchange relationship among these stages. Most of the alpha patterns (stages 1, 2, and 3), ripples (stage 5), and spindles (stage 9) tended to last > 2 minutes. On the other hand, histograms of the durations of time in EEG flattening (stage 4) and vertex sharp wave (stages 6, 7, and 8) patterns had peaks that lasted < 30 seconds. Analysis of the sequences of EEG stage changes demonstrated that shifts to adjacent stages were most common for all stages. A smooth change in EEG stage occurred in the downward or upward direction in the hypnagogic state. This was especially true for the first five stages. EEG stages with vertex sharp waves (stages 6, 7, and 8), however, showed less-smooth changes, with approximately 20% of all changes involving a jump of more than one stage. These results show that the basic EEG activities in the sleep onset period are the alpha, theta, and sleep spindles activities, whereas the activities of vertex sharp waves seem to have a secondary or enhancing role, instead of independent characteristics.
Sleep Dysfunction and EEG Alterations in Mice Overexpressing Alpha-Synuclein
McDowell, Kimberly A.; Shin, David; Roos, Kenneth P.; Chesselet, Marie-Françoise
2018-01-01
Background: Sleep disruptions occur early and frequently in Parkinson’s disease (PD). PD patients also show a slowing of resting state activity. Alpha-synuclein is causally linked to PD and accumulates in sleep-related brain regions. While sleep problems occur in over 75% of PD patients and severely impact the quality of life of patients and caregivers, their study is limited by a paucity of adequate animal models. Objective: The objective of this study was to determine whether overexpression of wildtype alpha-synuclein could lead to alterations in sleep patterns reminiscent of those observed in PD by measuring sleep/wake activity with rigorous quantitative methods in a well-characterized genetic mouse model. Methods: At 10 months of age, mice expressing human wildtype alpha-synuclein under the Thy-1 promoter (Thy1-aSyn) and wildtype littermates underwent the subcutaneous implantation of a telemetry device (Data Sciences International) for the recording of electromyograms (EMG) and electroencephalograms (EEG) in freely moving animals. Surgeries and data collection were performed without knowledge of mouse genotype. Results: Thy1-aSyn mice showed increased non-rapid eye movement sleep during their quiescent phase, increased active wake during their active phase, and decreased rapid eye movement sleep over a 24-h period, as well as a shift in the density of their EEG power spectra toward lower frequencies with a significant decrease in gamma power during wakefulness. Conclusions: Alpha-synuclein overexpression in mice produces sleep disruptions and altered oscillatory EEG activity reminiscent of PD, and this model provides a novel platform to assess mechanisms and therapeutic strategies for sleep dysfunction in PD. PMID:24867919
High-voltage electroencephalogram spindles in rats, aging and 5-HT2 antagonism.
Moyanova, S; Kortenska, L; Kirov, R
1998-03-09
We examined the effects of serotonin-2 (5-hydroxytryptamine-2, 5-HT2) receptor antagonists on the so-called high-voltage spindles (HVS, electroencephalographic patterns, characterized by large amplitude rhythmic waves mainly in the alpha band), recorded from the frontal cortex of young, middle-aged and old freely-moving rats during waking immobility. The study was based on the assumption that the effects of 5-HT2 receptor antagonists on the HVS activity depend on the age of rats, because there is evidence for an age-related decrease in the 5-HT2 binding sites density. Four parameters of the electroencephalogram (EEG) were used to characterize the HVS activity: the square root-transformed EEG peak power in the alpha band, the frequency corresponding to this peak (both measured from the EEG power spectra using the fast Fourier transform), the HVS mean duration, and the HVS incidence (both measured from the EEG records). The EEG parameters were analyzed after i.p. administration of three 5-HT2 receptor antagonists: ketanserin, ritanserin and cyproheptadine. In young rats, the three drugs increased the alpha power, but did not change the alpha peak-corresponding frequency. Ketanserin and ritanserin did not change the HVS mean duration and HVS incidence, while cyproheptadine increased both these parameters in young rats. In middle-aged and old untreated rats, the HVS activity was significantly increased. The three 5-HT2 antagonists did not change the HVS activity in aged rats, which could be due to age-related suppression of the 5-HT2 receptor functions. Copyright 1998 Elsevier Science B.V.
Alpha Power Modulates Perception Independently of Endogenous Factors.
Brüers, Sasskia; VanRullen, Rufin
2018-01-01
Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.
Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Giannantonio, S; Colosimo, A; Babiloni, F; Vecchiato, G
2015-01-01
The aim of the present study is to investigate the variations of the electroencephalographic (EEG) alpha rhythm in order to measure the appreciation of bilateral and unilateral young cochlear implant users during the observation of a musical cartoon. The cartoon has been modified for the generation of three experimental conditions: one with the original audio, another one with a distorted sound and, finally, a mute version. The EEG data have been recorded during the observation of the cartoons in the three experimental conditions. The frontal alpha EEG imbalance has been calculated as a measure of motivation and pleasantness to be compared across experimental populations and conditions. The EEG frontal imbalance of the alpha rhythm showed significant variations during the perception of the different cartoons. In particular, the pattern of activation of normal-hearing children is very similar to the one elicited by the bilateral implanted patients. On the other hand, results related to the unilateral subjects do not present significant variations of the imbalance index across the three cartoons. The presented results suggest that the unilateral patients could not appreciate the difference in the audio format as well as bilaterally implanted and normal hearing subjects. The frontal alpha EEG imbalance is a useful tool to detect the differences in the appreciation of audiovisual stimuli in cochlear implant patients.
Topographic mapping of electroencephalography coherence in hypnagogic state.
Tanaka, H; Hayashi, M; Hori, T
1998-04-01
The present study examined the topographic characteristics of hypnagogic electroencephalography (EEG), using topographic mapping of EEG power and coherence corresponding to nine EEG stages (Hori's hypnagogic EEG stages). EEG stages 1 and 2, the EEG stages 3-8, and the EEG stage 9 each correspond with standard sleep stage W, 1 and 2, respectively. The dominant topographic components of delta and theta activities increased clearly from the vertex sharp-wave stage (the EEG stages 6 and 7) in the anterior-central areas. The dominant topographic component of alpha 3 activities increased clearly from the EEG stage 9 in the anterior-central areas. The dominant topographic component of sigma activities increased clearly from the EEG stage 8 in the central-parietal area. These results suggested basic sleep process might start before the onset of sleep stage 2 or of the manually scored spindles.
EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression.
Saletu, B; Anderer, P; Saletu-Zyhlarz, G M
2010-10-01
Earlier investigations suggested an involvement of the right hemisphere and the left prefrontal cortex (PFC) in the pathogenesis of depression. This paper presents our own electroencephalographic (EEG) topography and low-resolution brain electromagnetic tomography (LORETA) data obtained in unmedicated depressed patients, and the effects of two representative drugs of non-sedative and sedative antidepressants, i.e., citalopram (CIT) and imipramine (IMI), as compared with placebo in normal subjects. Sixty female menopausal syndrome patients with the diagnosis of a depressive episode without psychotic symptoms as well as 30 healthy controls were investigated. Concerning the effects of antidepressants, normal healthy subjects received single oral doses of 20 mg CIT, 75 mg IMI and placebo p.o. A 3-min vigilance-controlled EEG and a 4-min resting EEG was recorded pre- and post-drug administration and analyzed by means of EEG mapping and LORETA. In the EEG mapping, depressed patients demonstrated a decrease in absolute power in all frequency bands, an augmentation of relative delta/theta and beta and a decrease in alpha activity as well as a slowing of the delta/theta centroid and an acceleration of the alpha and beta centroid, which suggests vigilance decrements. In the alpha asymmetry index, they showed right frontal hyper- and left frontal hypoactivation correlated with the Hamilton Depression Score (HAMD). LORETA predominantly revealed decreased power in the theta and alpha-1 frequency band. Negative correlations between theta power and the HAMD were observed in the ventro-medial PFC, the bilateral rostral anterior cingulate cortex (ACC) and the left insular cortex; between alpha-1 power and the HAMD in the right PFC. In the EEG mapping of antidepressants, 20 mg CIT showed mainly activating, 75 mg IMI partly sedative properties. LORETA revealed that CIT increased alpha-2, beta-1, beta-2 and beta-3 power more over the right than over the left hemisphere. However, also a left temporal and frontal delta increase was observed. In conclusion, EEG topography and tomography of depressed menopausal patients demonstrated a right frontal hyper- and left frontal hypoactivation in the alpha asymmetry index as well as a vigilance decrease, with a right-hemispheric preponderance. Within antidepressants at least 2 subtypes may be distinguished from the electrophysiological point of view, a non-sedative and a sedative. LORETA identifies cerebral generators responsible for the pathogenesis of depression as well as for the mode of action of antidepressants.
Wang, Ying; Cao, Liu; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Chen, Fei; Zheng, Dingchang
2017-05-01
This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p < 0.05). However, no significant difference of the power in alpha between 1 kg and 3 kg was observed (p > 0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p < 0.01 for all the force loads except 3 kg force from C4-EEG). With magnetic stimulation, the powers of alpha from C3-EEG and C4-EEG were significantly decreased than without stimulation (all p < 0.05), and the difference in the power of alpha between fatigue and non-fatigue status disappeared with 1 kg and 3 kg force loads, The powers of beta and gamma bands and SampEn were not significantly different between different force loads, between fatigue and non-fatigue status, and between with and without ELF magnetic stimulation (all p > 0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG). Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation.
Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L
2016-05-01
Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the distinct electrophysiological cortical frequency-dependent networks within which they operate.
Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.
2016-01-01
Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465
Riedner, Brady A; Goldstein, Michael R; Plante, David T; Rumble, Meredith E; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M
2016-04-01
To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4-8 Hz) and alpha (8-12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. © 2016 Associated Professional Sleep Societies, LLC.
Samaha, Jason; Sprague, Thomas C; Postle, Bradley R
2016-08-01
Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.
Arns, Martijn; Bruder, Gerard; Hegerl, Ulrich; Spooner, Chris; Palmer, Donna M; Etkin, Amit; Fallahpour, Kamran; Gatt, Justine M; Hirshberg, Laurence; Gordon, Evian
2016-01-01
To determine whether EEG occipital alpha and frontal alpha asymmetry (FAA) distinguishes outpatients with major depression (MDD) from controls, predicts antidepressant treatment outcome, and to explore the role of gender. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, randomized, prospective open-label trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-extended release. The study also recruited 336 healthy controls. Treatment response was established after eight weeks and resting EEG was measured at baseline (two minutes eyes open and eyes closed). No differences in EEG alpha for occipital and frontal cortex, or for FAA, were found in MDD participants compared to controls. Alpha in the occipital and frontal cortex was not associated with treatment outcome. However, a gender and drug-class interaction effect was found for FAA. Relatively greater right frontal alpha (less cortical activity) in women only was associated with a favorable response to the Selective Serotonin Reuptake Inhibitors escitalopram and sertraline. No such effect was found for venlafaxine-extended release. FAA does not differentiate between MDD and controls, but is associated with antidepressant treatment response and remission in a gender and drug-class specific manner. Future studies investigating EEG alpha measures in depression should a-priori stratify by gender. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.
Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon
2017-03-01
To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P < .001). IBI and all frequencies' amplitude were positively correlated to the upper aEEG border ( P ≤ .001). CA was negatively correlated to aEEG span while IBI, alpha, beta, and theta frequencies' amplitude were positively correlated to the aEEG span. Important information is retained and integrated in the transformation of premature neonatal EEG to aEEG. aEEG recordings in high-risk premature neonates reflect reliably EEG background information related to continuity and amplitude.
Zhang, Da-Wei; Johnstone, Stuart J; Roodenrys, Steven; Luo, Xiangsheng; Li, Hui; Wang, Encong; Zhao, Qihua; Song, Yan; Liu, Lu; Qian, Qiujin; Wang, Yufeng; Sun, Li
2018-06-01
This study explored the relationships between resting-state electroencephalogram (RS-EEG) localized activation and two important types of executive functions (EF) to extend the prognostic utilization of RS-EEG in children with Attention-Deficit/Hyperactivity Disorder (AD/HD). Also, the role of central nervous system (CNS) arousal in the relationships was examined. Fifty-eight children with AD/HD participated in the study. RS-EEG localized activation was derived from spectral power differences between EEG in eyes-closed and eyes-open conditions. CNS arousal was measured based on alpha band power. Common and everyday EF scores were obtained as EF outcomes. Frontal delta activation predicted common EF ability and posterior alpha activation predicted everyday EF. A serial mediation analysis found that lower CNS baseline arousal was related to greater arousal and delta activation in series, which in turn related to worse common EF. A follow-up study found that baseline arousal was related to larger interference cost. RS-EEG is indicative of individual differences in two important types of EF in children with AD/HD. Lower CNS arousal may be a driving force for the poorer common EF performance. The current study supports prognostic utilization of RS-EEG and AD/HD models that take resting brain activity into consideration in children with AD/HD. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Massage therapy of moderate and light pressure and vibrator effects on EEG and heart rate.
Diego, Miguel A; Field, Tiffany; Sanders, Chris; Hernandez-Reif, Maria
2004-01-01
Three types of commonly used massage therapy techniques were assessed in a sample of 36 healthy adults, randomly assigned to: (1) moderate massage, (2) light massage, or (3) vibratory stimulation group (n = 12 per group). Changes in anxiety and stress were assessed, and EEG and EKG were recorded. Anxiety scores decreased for all groups, but the moderate pressure massage group reported the greatest decrease in stress. The moderate massage group also experienced a decrease in heart rate and EEG changes including an increase in delta and a decrease in alpha and beta activity, suggesting a relaxation response. Finally, this group showed increased positive affect, as indicated by a shift toward left frontal EEG activation. The light massage group showed increased arousal, as indicated by decreased delta and increased deta activity and increased heart rate. The vibratory stimulation group also showed increased arousal, as indicated by increased heart rate and increased theta, alpha, and beta activity.
Harrewijn, A; Van der Molen, M J W; Westenberg, P M
2016-12-01
The goal of the present study was to examine whether frontal alpha asymmetry and delta-beta cross-frequency correlation during resting state, anticipation, and recovery are electroencephalographic (EEG) measures of social anxiety. For the first time, we jointly examined frontal alpha asymmetry and delta-beta correlation during resting state and during a social performance task in high (HSA) versus low (LSA) socially anxious females. Participants performed a social performance task in which they first watched and evaluated a video of a peer, and then prepared their own speech. They believed that their speech would be videotaped and evaluated by a peer. We found that HSA participants showed significant negative delta-beta correlation as compared to LSA participants during both anticipation of and recovery from the stressful social situation. This negative delta-beta correlation might reflect increased activity in subcortical brain regions and decreased activity in cortical brain regions. As we hypothesized, no group differences in delta-beta correlation were found during the resting state. This could indicate that a certain level of stress is needed to find EEG measures of social anxiety. As for frontal alpha asymmetry, we did not find any group differences. The present frontal alpha asymmetry results are discussed in relation to the evident inconsistencies in the frontal alpha asymmetry literature. Together, our results suggest that delta-beta correlation is a putative EEG measure of social anxiety.
EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer's.
Kanda, Paulo A M; Oliveira, Eliezyer F; Fraga, Francisco J
2017-01-01
Eyes-closed-awake electroencephalogram (EEG) is a useful tool in the diagnosis of Alzheimer's. However, there is eyes-closed-awake EEG with dominant or rare alpha rhythm. In this paper, we show that random selection of EEG epochs disregarding the alpha rhythm will lead to bias concerning EEG-based Alzheimer's Disease diagnosis. We compared EEG epochs with more than 30% and with less than 30% alpha rhythm of mild Alzheimer's Disease patients and healthy elderly. We classified epochs as dominant alpha scenario and rare alpha scenario according to alpha rhythm (8-13 Hz) percentage in O1, O2 and Oz channels. Accordingly, we divided the probands into four groups: 17 dominant alpha scenario controls, 15 mild Alzheimer's patients with dominant alpha scenario epochs, 12 rare alpha scenario healthy elderly and 15 mild Alzheimer's Disease patients with rare alpha scenario epochs. We looked for group differences using one-way ANOVA tests followed by post-hoc multiple comparisons (p < 0.05) over normalized energy values (%) on the other four well-known frequency bands (delta, theta, beta and gamma) using two different electrode configurations (parieto-occipital and central). After carrying out post-hoc multiple comparisons, for both electrode configurations we found significant differences between mild Alzheimer's patients and healthy elderly on beta- and theta-energy (%) only for the rare alpha scenario. No differences were found for the dominant alpha scenario in any of the five frequency bands. This is the first study of Alzheimer's awake-EEG reporting the influence of alpha rhythm on epoch selection, where our results revealed that, contrarily to what was most likely expected, less synchronized EEG epochs (rare alpha scenario) better discriminated mild Alzheimer's than those presenting abundant alpha (dominant alpha scenario). In addition, we find out that epoch selection is a very sensitive issue in qEEG research. Consequently, for Alzheimer's studies dealing with resting state EEG, we propose that epoch selection strategies should always be cautiously designed and thoroughly explained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Iskra-Golec, Irena; Golonka, Krystyna; Wyczesany, Miroslaw; Smith, Lawrence; Siemiginowska, Patrycja; Wątroba, Joanna
2017-01-01
Growing evidence suggests an alerting effect of monochromatic blue light on brain activity. Little is known about the moderation of those effects by timing and duration of exposure. The present electroencephalography (EEG ) study examined such moderations on delta, theta, alpha1, alpha2, and beta EEG bands. A counterbalanced repeated-measures design was applied. The 16-hr daytime period was divided into three sessions: 07:00-12:20, 12:20-17:40, and 17:40-23:00 (timing of exposure). Two light conditions comparable in luminance but differing in wavelength were applied, namely polychromatic white light and monochromatic blue light (460 nm). There were two durations of exposure—the shorter one lasting 30 min and the longer one lasting 4 hrs. Thirty male students participated in the study. Four factors analyses of variance (ANOV As, for light conditions, timing of exposure, duration of exposure, and brain area) were performed on each EEG band. Results indicated an alerting effect of short exposure to monochromatic blue light at midday and in the evening, which was demonstrated by a decrease in lower frequency bands (alpha1, delta, and theta, respectively). Long exposure to blue light may have a reverse effect, especially in the morning and at midday, when increases in lower frequency bands (theta in the morning and theta and alpha1 at midday) were observed. It can be concluded that the daytime effect of monochromatic blue light on EEG activity depends on timing and duration of exposure. PMID:29062437
Electroencephalograph (EEG) study on self-contemplating image formation
NASA Astrophysics Data System (ADS)
Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen
2016-05-01
Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.
Correlation of EEG with neuropsychological status in children with epilepsy.
Hsu, David A; Rayer, Katherine; Jackson, Daren C; Stafstrom, Carl E; Hsu, Murielle; Ferrazzano, Peter A; Dabbs, Kevin; Worrell, Gregory A; Jones, Jana E; Hermann, Bruce P
2016-02-01
To determine correlations of the EEG frequency spectrum with neuropsychological status in children with idiopathic epilepsy. Forty-six children ages 8-18 years old with idiopathic epilepsy were retrospectively identified and analyzed for correlations between EEG spectra and neuropsychological status using multivariate linear regression. In addition, the theta/beta ratio, which has been suggested as a clinically useful EEG marker of attention-deficit hyperactivity disorder (ADHD), and an EEG spike count were calculated for each subject. Neuropsychological status was highly correlated with posterior alpha (8-15 Hz) EEG activity in a complex way, with both positive and negative correlations at lower and higher alpha frequency sub-bands for each cognitive task in a pattern that depends on the specific cognitive task. In addition, the theta/beta ratio was a specific but insensitive indicator of ADHD status in children with epilepsy; most children both with and without epilepsy have normal theta/beta ratios. The spike count showed no correlations with neuropsychological status. (1) The alpha rhythm may have at least two sub-bands which serve different purposes. (2) The theta/beta ratio is not a sensitive indicator of ADHD status in children with epilepsy. (3) The EEG frequency spectrum correlates more robustly with neuropsychological status than spike count analysis in children with idiopathic epilepsy. (1) The role of posterior alpha rhythms in cognition is complex and can be overlooked if EEG spectral resolution is too coarse or if neuropsychological status is assessed too narrowly. (2) ADHD in children with idiopathic epilepsy may involve different mechanisms from those in children without epilepsy. (3) Reliable correlations with neuropsychological status require longer EEG samples when using spike count analysis than when using frequency spectra. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Bochkarev, V K; Teleshova, E S; Siuniakov, S A; Davydova, D V; Neznamov, G G
2008-01-01
An effect of a new nootropic drug noopept on the dynamics of main EEG rhythms and narrow-band spectral EEG characteristics in patients with cerebral asthenic and cognitive disturbances caused by traumas or vascular brain diseases has been studied. Noopept caused the EEG changes characteristic of the action of nootropics: the increase of alpha- and beta-rhythms power and reduction of delta-rhythms power. The reaction of alpha-rhythm was provided mostly by the dynamics of its low and medium frequencies (6,7-10,2 Hz), the changes of beta-rhythm were augmented in frontal and attenuated in occipital areas. The analysis of frequency and spatial structure of EEG changes reveals that noopept exerts a nonspecific activation and anxyolytic effect. The differences in EEG changes depending on the brain pathology were found. The EEG indices of nootropic effect of the drug were most obvious in cerebral vascular diseases. The EEG changes in posttraumatic brain lesion were less typical.
Henz, Diana; Schöllhorn, Wolfgang I; Poeggeler, Burkhard
2018-01-01
Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was shown. We hypothesize that a reduction of EEG beta and gamma activation constitutes the key neural mechanism in mobile phone chip use that supports the brain to a degree in maintaining its natural activity and performance level during mobile phone use.
Henz, Diana; Schöllhorn, Wolfgang I.; Poeggeler, Burkhard
2018-01-01
Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was shown. We hypothesize that a reduction of EEG beta and gamma activation constitutes the key neural mechanism in mobile phone chip use that supports the brain to a degree in maintaining its natural activity and performance level during mobile phone use. PMID:29670503
Katahira, Kenji; Yamazaki, Yoichi; Yamaoka, Chiaki; Ozaki, Hiroaki; Nakagawa, Sayaka; Nagata, Noriko
2018-01-01
Flow experience is a subjective state experienced during holistic involvement in a certain activity, which has been reported to function as a factor promoting motivation, skill development, and better performance in the activity. To verify the positive effects of flow and develop a method to utilize it, the establishment of a reliable measurement of the flow state is essential. The present study utilized an electroencephalogram (EEG) during an experimentally evoked flow state and examined the possibility of objective measurement of immediate flow. A total of 16 participants (10 males, 6 females) participated in the experiment that employed a mental arithmetic task developed in a previous study. Post-trial self-report of the flow state and EEG during task execution were measured and compared among three conditions (Boredom, Flow, and Overload) that had different levels of task difficulty. Furthermore, the correlations between subjective flow items and EEG activity were examined. As expected, the ratings on the subjective evaluation items representing the flow state were the highest in the Flow condition. Regarding the EEG data, theta activities in the frontal areas were higher in the Flow and the Overload conditions than in the Boredom condition, and alpha activity in the frontal areas and the right central area gradually increased depending on the task difficulty. These EEG activities correlated with self-reported flow experience, especially items related to the concentration on the task and task difficulty. From the results, the flow state was characterized by increased theta activities in the frontal areas and moderate alpha activities in the frontal and central areas. The former may be related to a high level of cognitive control and immersion in task, and the latter suggests that the load on the working memory was not excessive. The findings of this study suggest the possibility of distinguishing the flow state from other states using multiple EEG activities and indicate the need for other physiological indicators corresponding to the other aspects of flow experience.
Katahira, Kenji; Yamazaki, Yoichi; Yamaoka, Chiaki; Ozaki, Hiroaki; Nakagawa, Sayaka; Nagata, Noriko
2018-01-01
Flow experience is a subjective state experienced during holistic involvement in a certain activity, which has been reported to function as a factor promoting motivation, skill development, and better performance in the activity. To verify the positive effects of flow and develop a method to utilize it, the establishment of a reliable measurement of the flow state is essential. The present study utilized an electroencephalogram (EEG) during an experimentally evoked flow state and examined the possibility of objective measurement of immediate flow. A total of 16 participants (10 males, 6 females) participated in the experiment that employed a mental arithmetic task developed in a previous study. Post-trial self-report of the flow state and EEG during task execution were measured and compared among three conditions (Boredom, Flow, and Overload) that had different levels of task difficulty. Furthermore, the correlations between subjective flow items and EEG activity were examined. As expected, the ratings on the subjective evaluation items representing the flow state were the highest in the Flow condition. Regarding the EEG data, theta activities in the frontal areas were higher in the Flow and the Overload conditions than in the Boredom condition, and alpha activity in the frontal areas and the right central area gradually increased depending on the task difficulty. These EEG activities correlated with self-reported flow experience, especially items related to the concentration on the task and task difficulty. From the results, the flow state was characterized by increased theta activities in the frontal areas and moderate alpha activities in the frontal and central areas. The former may be related to a high level of cognitive control and immersion in task, and the latter suggests that the load on the working memory was not excessive. The findings of this study suggest the possibility of distinguishing the flow state from other states using multiple EEG activities and indicate the need for other physiological indicators corresponding to the other aspects of flow experience. PMID:29593605
Fusing Multiple Sensor Modalities for Complex Physiological State Monitoring
2012-12-01
sleep-alpha variants (drowsiness alpha activity and REM -alpha bursts) over frontal, central, parietal and occipital regions. Note the higher spectral...contribution of the slowest components (7.8–8.6 Hz) during REM alpha bursts as compared with drowsiness-alpha activity (13...occipital regions of the brain during the drowsiness state as compared to REM sleep and other states, as seen in figure 1 (13). Furthermore, using EEG
Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu
2013-04-01
Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.
Prediction of subjective ratings of emotional pictures by EEG features
NASA Astrophysics Data System (ADS)
McFarland, Dennis J.; Parvaz, Muhammad A.; Sarnacki, William A.; Goldstein, Rita Z.; Wolpaw, Jonathan R.
2017-02-01
Objective. Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. Approach. To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. Main results. Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. Significance. The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.
EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions.
Simon, Michael; Schmidt, Eike A; Kincses, Wilhelm E; Fritzsche, Martin; Bruns, Andreas; Aufmuth, Claus; Bogdan, Martin; Rosenstiel, Wolfgang; Schrauf, Michael
2011-06-01
The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions. An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to real data recorded under real traffic conditions and compared with the performance of traditional EEG fatigue measures, i.e. alpha-band power. As a highly valid fatigue reference, the last 20 min of driving from participants who aborted the drive due to heavy fatigue were used in contrast to the initial 20 min of driving. Statistical analysis revealed significant increases from the first to the last driving section of several alpha spindle parameters and among all traditional EEG frequency bands, only of alpha-band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue over the same time periods for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters. EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha-band power. It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Autism, Attention, and Alpha Oscillations: An Electrophysiological Study of Attentional Capture.
Keehn, Brandon; Westerfield, Marissa; Müller, Ralph-Axel; Townsend, Jeanne
2017-09-01
Autism spectrum disorder (ASD) is associated with deficits in adaptively orienting attention to behaviorally-relevant information. Neural oscillatory activity plays a key role in brain function and provides a high-resolution temporal marker of attention dynamics. Alpha band (8-12 Hz) activity is associated with both selecting task-relevant stimuli and filtering task-irrelevant information. The present study used electroencephalography (EEG) to examine alpha-band oscillatory activity associated with attentional capture in nineteen children with ASD and twenty-one age- and IQ-matched typically developing (TD) children. Participants completed a rapid serial visual presentation paradigm designed to investigate responses to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors, which either did or did not share a behaviorally-relevant feature. Participants also completed six minutes of eyes-open resting EEG. In contrast to their TD peers, children with ASD did not evidence posterior alpha desynchronization to behaviorally-relevant targets. Additionally, reduced target-related desynchronization and poorer target detection were associated with increased ASD symptomatology. TD children also showed behavioral and electrophysiological evidence of contingent attention capture, whereas children with ASD showed no behavioral facilitation or alpha desynchronization to distractors that shared a task-relevant feature. Lastly, children with ASD had significantly decreased resting alpha power, and for all participants increased resting alpha levels were associated with greater task-related alpha desynchronization. These results suggest that in ASD under-responsivity and impairments in orienting to salient events within their environment are reflected by atypical EEG oscillatory neurodynamics, which may signify atypical arousal levels and/or an excitatory/inhibitory imbalance.
Aoki, Yasunori; Kazui, Hiroaki; Tanaka, Toshihisa; Ishii, Ryouhei; Wada, Tamiki; Ikeda, Shunichiro; Hata, Masahiro; Canuet, Leonides; Musha, Toshimitsu; Matsuzaki, Haruyasu; Imajo, Kaoru; Yoshiyama, Kenji; Yoshida, Tetsuhiko; Shimizu, Yoshiro; Nomura, Keiko; Iwase, Masao; Takeda, Masatoshi
2013-01-01
Idiopathic normal pressure hydrocephalus (iNPH) is a neuropsychiatric syndrome characterized by gait disturbance, cognitive impairment and urinary incontinence that affect elderly individuals. These symptoms can potentially be reversed by cerebrospinal fluid (CSF) drainage or shunt operation. Prior to shunt operation, drainage of a small amount of CSF or “CSF tapping” is usually performed to ascertain the effect of the operation. Unfortunately, conventional neuroimaging methods such as single photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI), as well as electroencephalogram (EEG) power analysis seem to have failed to detect the effect of CSF tapping on brain function. In this work, we propose the use of Neuronal Activity Topography (NAT) analysis, which calculates normalized power variance (NPV) of EEG waves, to detect cortical functional changes induced by CSF tapping in iNPH. Based on clinical improvement by CSF tapping and shunt operation, we classified 24 iNPH patients into responders (N = 11) and nonresponders (N = 13), and performed both EEG power analysis and NAT analysis. We also assessed correlations between changes in NPV and changes in functional scores on gait and cognition scales before and after CSF tapping. NAT analysis showed that after CSF tapping there was a significant decrease in alpha NPV at the medial frontal cortex (FC) (Fz) in responders, while nonresponders exhibited an increase in alpha NPV at the right dorsolateral prefrontal cortex (DLPFC) (F8). Furthermore, we found correlations between cortical functional changes and clinical symptoms. In particular, delta and alpha NPV changes in the left-dorsal FC (F3) correlated with changes in gait status, while alpha and beta NPV changes in the right anterior prefrontal cortex (PFC) (Fp2) and left DLPFC (F7) as well as alpha NPV changes in the medial FC (Fz) correlated with changes in gait velocity. In addition, alpha NPV changes in the right DLPFC (F8) correlated with changes in WMS-R Mental Control scores in iNPH patients. An additional analysis combining the changes in values of alpha NPV over the left-dorsal FC (∆alpha-F3-NPV) and the medial FC (∆alpha-Fz-NPV) induced by CSF tapping (cut-off value of ∆alpha-F3-NPV + ∆alpha-Fz-NPV = 0), could correctly identified “shunt responders” and “shunt nonresponders” with a positive predictive value of 100% (10/10) and a negative predictive value of 66% (2/3). In contrast, EEG power spectral analysis showed no function related changes in cortical activity at the frontal cortex before and after CSF tapping. These results indicate that the clinical changes in gait and response suppression induced by CSF tapping in iNPH patients manifest as NPV changes, particularly in the alpha band, rather than as EEG power changes. Our findings suggest that NAT analysis can detect CSF tapping-induced functional changes in cortical activity, in a way that no other neuroimaging methods have been able to do so far, and can predict clinical response to shunt operation in patients with iNPH. PMID:24273735
Aoki, Yasunori; Kazui, Hiroaki; Tanaka, Toshihisa; Ishii, Ryouhei; Wada, Tamiki; Ikeda, Shunichiro; Hata, Masahiro; Canuet, Leonides; Musha, Toshimitsu; Matsuzaki, Haruyasu; Imajo, Kaoru; Yoshiyama, Kenji; Yoshida, Tetsuhiko; Shimizu, Yoshiro; Nomura, Keiko; Iwase, Masao; Takeda, Masatoshi
2013-01-01
Idiopathic normal pressure hydrocephalus (iNPH) is a neuropsychiatric syndrome characterized by gait disturbance, cognitive impairment and urinary incontinence that affect elderly individuals. These symptoms can potentially be reversed by cerebrospinal fluid (CSF) drainage or shunt operation. Prior to shunt operation, drainage of a small amount of CSF or "CSF tapping" is usually performed to ascertain the effect of the operation. Unfortunately, conventional neuroimaging methods such as single photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI), as well as electroencephalogram (EEG) power analysis seem to have failed to detect the effect of CSF tapping on brain function. In this work, we propose the use of Neuronal Activity Topography (NAT) analysis, which calculates normalized power variance (NPV) of EEG waves, to detect cortical functional changes induced by CSF tapping in iNPH. Based on clinical improvement by CSF tapping and shunt operation, we classified 24 iNPH patients into responders (N = 11) and nonresponders (N = 13), and performed both EEG power analysis and NAT analysis. We also assessed correlations between changes in NPV and changes in functional scores on gait and cognition scales before and after CSF tapping. NAT analysis showed that after CSF tapping there was a significant decrease in alpha NPV at the medial frontal cortex (FC) (Fz) in responders, while nonresponders exhibited an increase in alpha NPV at the right dorsolateral prefrontal cortex (DLPFC) (F8). Furthermore, we found correlations between cortical functional changes and clinical symptoms. In particular, delta and alpha NPV changes in the left-dorsal FC (F3) correlated with changes in gait status, while alpha and beta NPV changes in the right anterior prefrontal cortex (PFC) (Fp2) and left DLPFC (F7) as well as alpha NPV changes in the medial FC (Fz) correlated with changes in gait velocity. In addition, alpha NPV changes in the right DLPFC (F8) correlated with changes in WMS-R Mental Control scores in iNPH patients. An additional analysis combining the changes in values of alpha NPV over the left-dorsal FC (∆alpha-F3-NPV) and the medial FC (∆alpha-Fz-NPV) induced by CSF tapping (cut-off value of ∆alpha-F3-NPV + ∆alpha-Fz-NPV = 0), could correctly identified "shunt responders" and "shunt nonresponders" with a positive predictive value of 100% (10/10) and a negative predictive value of 66% (2/3). In contrast, EEG power spectral analysis showed no function related changes in cortical activity at the frontal cortex before and after CSF tapping. These results indicate that the clinical changes in gait and response suppression induced by CSF tapping in iNPH patients manifest as NPV changes, particularly in the alpha band, rather than as EEG power changes. Our findings suggest that NAT analysis can detect CSF tapping-induced functional changes in cortical activity, in a way that no other neuroimaging methods have been able to do so far, and can predict clinical response to shunt operation in patients with iNPH.
Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole
2015-01-01
Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.
Ehlers, Cindy L; Phillips, Evelyn
2007-02-01
Several studies support an association between electroencephalogram (EEG) voltage and alcohol dependence. However, the distribution of EEG variants also appears to differ depending on an individual's ethnic heritage, suggesting significant genetic stratification of this EEG phenotype. The present study's aims were to investigate the incidence of EEG alpha variants and spectral power in the alpha frequency range in Mexican American young adults based on gender, and personal and family history of alcohol dependence. Clinical ratings (high-, medium-, and low alpha voltage variants) and spectral characteristics of the EEG in the alpha frequency range (7.5-12 Hz) were investigated in young adult (age 18-25 years) Mexican American men (n=98) and women (n=138) who were recruited from the community. Nineteen percent (n=45) of the participants had a low-voltage alpha EEG variant, 18% had a high-voltage variant, and 63% had a medium-voltage variant. There were no significant differences in the distribution of the EEG variants based on family history of alcohol dependence. There was a significant relationship between gender and the three alpha variants (chi2=9.7; df=2; P<.008), and there were no male participants with alcohol dependence with high alpha variants (chi2=5.8; df=2; P<.056). Alcohol dependence, but not a family history of alcohol dependence, was associated with lower spectral power in the alpha frequency range in the right (F=4.4; df=1,96; P<.04) and left (F=5.3; df=1.96; P<.02) occipital areas in the men but not in the women. In conclusion, in this select population of Mexican American young adults, male gender and alcohol dependence are associated with an absence of high-voltage alpha variants and lower alpha power in the EEG. These data suggest that EEG low voltage, a highly heritable trait, may represent an important endophenotype in male Mexican Americans that may aid in linking brain function with genetic factors underlying alcohol dependence in this ethnic group.
Sanz-Martin, Araceli; Hernández-González, Marisela; Guevara, Miguel Ángel; Santana, Gloria; Gumá-Díaz, Emilio
2014-02-01
The metabolism of alcohol and cognitive functions can vary during the menstrual cycle. Also, both alcohol ingestion and hormonal variations during menstruation have been associated with characteristic changes in electroencephalographic (EEG) activity. AIM. To determine whether EEG activity during a working memory task is affected by acute alcohol consumption, and if these EEG patterns vary in relation to different phases of the menstrual cycle. 24 women who drank a moderate dose of alcohol or placebo during the follicular and early luteal phases of the menstrual cycle. The EEG activity was recorded during performance of viso-spatial working memory task. Although the alcohol did not deteriorate the performance of working memory task, it caused in the EEG a decrease of relative theta power and lower right fronto-parietal correlation in theta and alpha2 bands. Only women who drank alcohol in the follicular phase had a higher relative potency of alpha1, which could indicate a lower level of arousal and attention. These results contribute to a better understanding of the brain mechanisms underlying cognitive changes with alcohol and its relationship to the menstrual cycle.
Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy
ERIC Educational Resources Information Center
Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.
2014-01-01
Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…
Mangia, Anna L.; Pirini, Marco; Cappello, Angelo
2014-01-01
Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519
Ben-Simon, Eti; Podlipsky, Ilana; Okon-Singer, Hadas; Gruberger, Michal; Cvetkovic, Dean; Intrator, Nathan; Hendler, Talma
2013-03-01
The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Di Francesco, G; Vitiello, S; Colosimo, A; Babiloni, Fabio
2012-01-01
Interestingly, the international debate about the quality of music fruition for cochlear implanted users does not take into account the hypothesis that bilateral users could perceive music in a more pleasant way with respect to monolateral users. In this scenario, the aim of the present study was to investigate if cerebral signs of pleasantness during music perception in healthy child are similar to those observed in monolateral and in bilateral cochlear implanted users. In fact, previous observations in literature on healthy subjects have indicated that variations of the frontal EEG alpha activity are correlated with the perceived pleasantness of the sensory stimulation received (approach-withdrawal theory). In particular, here we described differences between cortical activities estimated in the alpha frequency band for a healthy child and in patients having a monolateral or a bilateral cochlear implant during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns observed in a healthy child and that of a bilateral cochlear implanted patient are congruent with the approach-withdrawal theory. Conversely, the scalp topographic distribution of EEG power spectra in the alpha band resulting from the monolateral cochlear user presents a different EEG pattern from the normal and bilateral implanted patients. Such differences could be explained at the light of the approach-withdrawal theory. In fact, the present findings support the hypothesis that a monolateral cochlear implanted user could perceive the music in a less pleasant way when compared to a healthy subject or to a bilateral cochlear user.
Allen, John J. B.; Cohen, Michael X
2010-01-01
Asymmetry in frontal electrocortical alpha-band (8–13 Hz) activity recorded during resting situations (i.e., in absence of a specific task) has been investigated in relation to emotion and depression for over 30 years. This asymmetry reflects an aspect of endogenous cortical dynamics that is stable over repeated measurements and that may serve as an endophenotype for mood or other psychiatric disorders. In nearly all of this research, EEG activity is averaged across several minutes, obscuring transient dynamics that unfold on the scale of milliseconds to seconds. Such dynamic states may ultimately have greater value in linking brain activity to surface EEG asymmetry, thus improving its status as an endophenotype for depression. Here we introduce novel metrics for characterizing frontal alpha asymmetry that provide a more in-depth neurodynamical understanding of recurrent endogenous cortical processes during the resting-state. The metrics are based on transient “bursts” of asymmetry that occur frequently during the resting-state. In a sample of 306 young adults, 143 with a lifetime diagnosis of major depressive disorder (62 currently symptomatic), three questions were addressed: (1) How do novel peri-burst metrics of dynamic asymmetry compare to conventional fast-Fourier transform-based metrics? (2) Do peri-burst metrics adequately differentiate depressed from non-depressed participants? and, (3) what EEG dynamics surround the asymmetry bursts? Peri-burst metrics correlated with traditional measures of asymmetry, and were sensitive to both current and past episodes of major depression. Moreover, asymmetry bursts were characterized by a transient lateralized alpha suppression that is highly consistent in phase across bursts, and a concurrent contralateral transient alpha enhancement that is less tightly phase-locked across bursts. This approach opens new possibilities for investigating rapid cortical dynamics during resting-state EEG. PMID:21228910
Jenson, David; Bowers, Andrew L.; Harkrider, Ashley W.; Thornton, David; Cuellar, Megan; Saltuklaroglu, Tim
2014-01-01
Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to (1) identify clusters of μ components common to all conditions and (2) examine real-time event-related spectral perturbations (ERSP) within alpha and beta bands. 17 and 15 out of 20 participants produced left and right μ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS) prior to and during stimulus presentation and later alpha event-related desynchronization (ERD) following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that μ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert attentional/motor processes. μ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while μ-alpha ERD may index sensory feedback during speech rehearsal and production. PMID:25071633
[Microsleep from the electro- and psychophysiological point of view].
Faber, J; Novák, M; Svoboda, P; Tatarinov, V; Tichý, T
2003-01-01
Impaired wakefulness in machine operators poses a danger not only to themselves but often also to the public at large. While on duty, such persons are expected to be continuously, i.e., without interruption, on the alert. For that purpose, we designed and carried out an experimental model of continuous vigilance monitoring using electroencephalography (EEG) and reaction time measured as the latency of the proband's reaction to sound. If constructed, the set together with other logical elements and an alarm can make for an automatic detection of vigilance and, possibly, also of arousal stimuli in cases of microsleep. We found the following new facts and confirmed the validity of some of the earlier ones: Vigilance is marked by alpha activity in the EEG record (oscillation of 8-13 Hz) and reaction time (RT) of 200-400 ms (milliseconds). Sleep is characterized by theta and delta activities (4-7 and 0.5-3.5 Hz respectively) with no reaction. Between wakefulness and sleep there are at least two stages: relaxation with prolonged RT of 400 to 800 ms and increased EEG alpha, sometimes also beta activities. Then there is the hypnagogic phase with disintegrating alpha and growing theta or even delta activities and an RT of 800 up to 1200 ms. Changes in the EEG and its spectrum and their actual localization on the cranial surface exhibit individual differences; hence, no straightforward categories for the above stages can be established. As for changes in vigilance in the relaxation and hypnagogic phases as well as in the processes of mentation, the most significant are the alpha and delta, less so the theta and beta bands. The most suitable sites for the detection of those changes on the skull surface are temporo-parieto-occipital (TPO) regions, i.e., those over the posterior parts of the skull with the least muscle and oculomotor artifacts and with the most energy for alpha and delta activities. In somnolence, the cortex does not behave as a whole, which means that different areas show different spectra while getting off to sleep, a fact easy to express by means of the alpha/delta ratio, separately for each of the cranial areas. At sleep onset, the alpha/delta ratio undergoes changes; it is greater than one in wakefulness, less than one in sleep, and in the region of one as the person goes to sleep. In the course of sleep with zero reactivity, the cortex already behaves as a whole, i.e., all cranial areas have similar or the same spectrograms, with the alpha/delta coefficient being less than one all over the skull. At times, the spectrogram taken during mentation (e.g., while undergoing psychological tests) resembles that of somnolence, with the alpha/delta coefficient being greater than one. However, there are differences: in somnolence, the delta activity is increased all over its band, i.e., from 0.5 to 3.5 Hz, while during mentation it is increased solely in the slow delta activity band (0.5 to 3.5 Hz). In somnolence, theta is on the increase, but not so in mentation. In the hypnagogic phase, alpha becomes completely extinct--unlike in mentation. As follows from the above listed facts, not everyone applying for an automatic alarm detector of vigilance can be provided with one at random and expect it to go off at the first sign of slumber. Conversely, every applicant ought to be treated as a proband, i.e., tested with simultaneous EEG registration, EEG analysis, determination of the best suitable area on the cranial surface and EEG frequency, separately for vigilance, relaxation, hypnagogic phase and mentation, and--in keeping with the above rules--have individual parameters of the alarm device adjusted accordingly.
Han, Yuliang; Wang, Kai; Jia, Jianjun; Wu, Weiping
2017-01-01
Object-location memory is particularly fragile and specifically impaired in Alzheimer's disease (AD) patients. Electroencephalogram (EEG) was utilized to objectively measure memory impairment for memory formation correlates of EEG oscillatory activities. We aimed to construct an object-location memory paradigm and explore EEG signs of it. Two groups of 20 probable mild AD patients and 19 healthy older adults were included in a cross-sectional analysis. All subjects took an object-location memory task. EEG recordings performed during object-location memory tasks were compared between the two groups in the two EEG parameters (spectral parameters and phase synchronization). The memory performance of AD patients was worse than that of healthy elderly adults The power of object-location memory of the AD group was significantly higher than the NC group (healthy elderly adults) in the alpha band in the encoding session, and alpha and theta bands in the retrieval session. The channels-pairs the phase lag index value of object-location memory in the AD group was clearly higher than the NC group in the delta, theta, and alpha bands in encoding sessions and delta and theta bands in retrieval sessions. The results provide support for the hypothesis that the AD patients may use compensation mechanisms to remember the items and episode.
Yokoi, Mari; Aoki, Ken; Shimomura, Yoshihiro; Iwanaga, Koichi; Katsuura, Tetsuo; Shiomura, Yoshihiro
2003-11-01
The purpose of this study was to investigate the effect of the exposure to bright light on EEG activity and subjective sleepiness at rest and at the mental task during nocturnal sleep deprivation. Eight male subjects lay awake in semi-supine in a reclining seat from 21:00 to 04:30 under the bright (BL; >2500 lux) or the dim (DL; <150 lux) light conditions. During the sleep deprivation, the mental task (Stroop color-word conflict test: CWT) was performed each 15 min in one hour. EEG, subjective sleepiness, rectal and mean skin temperatures and urinary melatonin concentrations were measured. The subjective sleepiness increased with time of sleep deprivation during both rest and CWT under the DL condition. The exposure to bright light delayed for 2 hours the increase in subjective sleepiness at rest and suppressed the increase in that during CWT. The bright light exposure also delayed the increase in the theta and alpha wave activities in EEG at rest. In contrast, the effect of the bright light exposure on the theta and alpha wave activities disappeared by CWT. Additionally, under the BL condition, the entire theta activity during CWT throughout nocturnal sleep deprivation increased significantly from that in a rest condition. Our results suggest that the exposure to bright light throughout nocturnal sleep deprivation influences the subjective sleepiness during the mental task and the EEG activity, as well as the subjective sleepiness at rest. However, the effect of the bright light exposure on the EEG activity at the mental task diminishes throughout nocturnal sleep deprivation.
[Alpha power voluntary increasing training for cognition enhancement study].
Alekseeva, M V; Balioz, N V; Muravleva, K B; Sapina, E V; Bazanova, O M
2012-01-01
With the aim simultaneous alpha EEG stimulating and EMG decreasing biofeedback training impact on the alpha-activity and cognitive functions 27 healthy male subjects (18-34 years) were investigated in pre- and post 10 training sessions of the voluntary increasing alpha power in individual upper alpha range. The accuracy of conceptual span task, fluency and flexibility in alternatives use task performance and alpha-activity indices were compared in real (14 participants) and sham (13 participants) biofeedback groups for the discrimination of the feedback role in training. The follow up effect oftrainings was studied through month over the training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did not change the cognitive performance. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. It could be concluded that alpha-EEG-EMG biofeedback has application not only for cognition enhancement, but also in prognostic aims in clinical practice and brain-computer interface technology.
Alpha absolute power measurement in panic disorder with agoraphobia patients.
de Carvalho, Marcele Regine; Velasques, Bruna Brandão; Freire, Rafael C; Cagy, Maurício; Marques, Juliana Bittencourt; Teixeira, Silmar; Rangé, Bernard P; Piedade, Roberto; Ribeiro, Pedro; Nardi, Antonio Egidio; Akiskal, Hagop Souren
2013-10-01
Panic attacks are thought to be a result from a dysfunctional coordination of cortical and brainstem sensory information leading to heightened amygdala activity with subsequent neuroendocrine, autonomic and behavioral activation. Prefrontal areas may be responsible for inhibitory top-down control processes and alpha synchronization seems to reflect this modulation. The objective of this study was to measure frontal absolute alpha-power with qEEG in 24 subjects with panic disorder and agoraphobia (PDA) compared to 21 healthy controls. qEEG data were acquired while participants watched a computer simulation, consisting of moments classified as "high anxiety"(HAM) and "low anxiety" (LAM). qEEG data were also acquired during two rest conditions, before and after the computer simulation display. We observed a higher absolute alpha-power in controls when compared to the PDA patients while watching the computer simulation. The main finding was an interaction between the moment and group factors on frontal cortex. Our findings suggest that the decreased alpha-power in the frontal cortex for the PDA group may reflect a state of high excitability. Our results suggest a possible deficiency in top-down control processes of anxiety reflected by a low absolute alpha-power in the PDA group while watching the computer simulation and they highlight that prefrontal regions and frontal region nearby the temporal area are recruited during the exposure to anxiogenic stimuli. © 2013 Elsevier B.V. All rights reserved.
Quantitative EEG After Brain Stimulation and Cognitive Training in Alzheimer Disease.
Gandelman-Marton, Revital; Aichenbaum, Sergio; Dobronevsky, Evgenya; Khaigrekht, Michael; Rabey, Jose M
2017-01-01
Medications are the currently accepted symptomatic treatment of Alzheimer disease (AD), but their impact on delaying the progression of cognitive deficits and functional impairment is limited. The authors aimed to explore long-term electrophysiological effects of repetitive transcranial magnetic stimulation interlaced with cognitive training on quantitative electroencephalography (EEG) in patients with AD. Quantitative EEG was assessed on non-repetitive transcranial magnetic stimulation interlaced with cognitive training treatment days before treatment and after each treatment phase in seven patients with mild AD. After 4.5 months (54 sessions) of treatment, a significant increase of delta activity over the temporal region was found compared with pretreatment values. Nonsignificant increases of the log EEG power were found for alpha band over the frontal and temporal regions, beta band over the frontal region, theta band over the frontal, temporal, and parieto-occipital regions, and delta band over the frontal and parieto-occipital regions. Nonsignificant decreases were found for alpha over the parieto-occipital region, and for beta over the temporal and parieto-occipital regions. A positive correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and Mini-Mental State Examination (MMSE) scores at 6 weeks and 4.5 months, and between log alpha power over the parieto-occipital regions and MMSE scores at 6 weeks. A negative correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and baseline Alzheimer's Disease Assessment Scale-cognitive subscale scores. Repetitive transcranial magnetic stimulation interlaced with cognitive training has long-term effects on quantitative EEG in patients with mild AD. Further research on the quantitative EEG long-term effects of transcranial magnetic stimulation interlaced with cognitive training is required to confirm the authors' data.
Babiloni, Claudio; Pennica, Alfredo; Del Percio, Claudio; Noce, Giuseppe; Cordone, Susanna; Muratori, Chiara; Ferracuti, Stefano; Donato, Nicole; Di Campli, Francesco; Gianserra, Laura; Teti, Elisabetta; Aceti, Antonio; Soricelli, Andrea; Viscione, Magdalena; Limatola, Cristina; Andreoni, Massimo; Onorati, Paolo
2016-03-01
This study tested a simple statistical procedure to recognize single treatment-naïve HIV individuals having abnormal cortical sources of resting state delta (<4 Hz) and alpha (8-13 Hz) electroencephalographic (EEG) rhythms with reference to a control group of sex-, age-, and education-matched healthy individuals. Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values were expected to show worse cognitive status. Resting state eyes-closed EEG data were recorded in 82 treatment-naïve HIV (39.8 ys.±1.2 standard error mean, SE) and 59 age-matched cognitively healthy subjects (39 ys.±2.2 SE). Low-resolution brain electromagnetic tomography (LORETA) estimated delta and alpha sources in frontal, central, temporal, parietal, and occipital cortical regions. Ratio of the activity of parietal delta and high-frequency alpha sources (EEG marker) showed the maximum difference between the healthy and the treatment-naïve HIV group. Z-score of the EEG marker was statistically abnormal in 47.6% of treatment-naïve HIV individuals with reference to the healthy group (p<0.05). Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values exhibited lower mini mental state evaluation (MMSE) score, higher CD4 count, and lower viral load (p<0.05). This statistical procedure permitted for the first time to identify single treatment-naïve HIV individuals having abnormal EEG activity. This procedure might enrich the detection and monitoring of effects of HIV on brain function in single treatment-naïve HIV individuals. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations.
de Munck, J C; Gonçalves, S I; Mammoliti, R; Heethaar, R M; Lopes da Silva, F H
2009-08-01
In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.
Changes of spontaneous oscillatory activity to tonic heat pain.
Peng, Weiwei; Hu, Li; Zhang, Zhiguo; Hu, Yong
2014-01-01
Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.
Capotosto, Paolo; Perrucci, M Gianni; Brunetti, Marcella; Del Gratta, Cosimo; Doppelmayr, Michael; Grabner, Roland H; Klimesch, Wolfgang; Neubauer, Aljoscha; Neuper, Christa; Pfurtscheller, Gert; Romani, Gian Luca; Babiloni, Claudio
2009-12-28
More intelligent persons (high IQ) typically present a higher cortical activity during tasks requiring the encoding of visuo-spatial information, namely higher alpha (about 10 Hz) event-related desynchronization (ERD; Doppelmayr et al., 2005). The opposite is true ("neural efficiency") during the retrieval of the encoded information, as revealed by both lower alpha ERD and/or lower theta (about 5 Hz) event-related synchronization (ERS; Grabner et al., 2004). To reconcile these contrasting results, here we evaluated the working hypothesis that more intelligent male subjects are characterized by a high cortical activity during the encoding phase. This deep encoding would explain the relatively low cortical activity for the retrieval of the encoded information. To test this hypothesis, electroencephalographic (EEG) data were recorded in 22 healthy young male volunteers during visuo-spatial information processing (encoding) and short-term retrieval of the encoded information. Cortical activity was indexed by theta ERS and alpha ERD. It was found that the higher the subjects' total IQ, the stronger the frontal theta ERS during the encoding task. Furthermore, the higher the subjects' total IQ, the lower the frontal high-frequency alpha ERD (about 10-12 Hz) during the retrieval task. This was not true for parietal counterpart of these EEG rhythms. These results reconcile previous contrasting evidence confirming that more intelligent persons do not ever show event-related cortical responses compatible with "neural efficiency" hypothesis. Rather, their cortical activity would depend on flexible and task-adapting features of frontal activation.
Changes of Spontaneous Oscillatory Activity to Tonic Heat Pain
Zhang, Zhiguo; Hu, Yong
2014-01-01
Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes. PMID:24603703
Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.
2012-01-01
The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860
Atypical Alpha Asymmetry in Adults with ADHD
ERIC Educational Resources Information Center
Hale, T. Sigi; Smalley, Susan L.; Hanada, Grant; Macion, James; McCracken, James T.; McGough, James J.; Loo, Sandra K.
2009-01-01
Introduction: A growing body of literature suggests atypical cerebral asymmetry and interhemispheric interaction in ADHD. A common means of assessing lateralized brain function in clinical populations has been to examine the relative proportion of EEG alpha activity (8-12 Hz) in each hemisphere (i.e., alpha asymmetry). Increased rightward alpha…
Relations among EEG-alpha asymmetry and positivity personality trait.
Alessandri, Guido; Caprara, Gian Vittorio; De Pascalis, Vilfredo
2015-07-01
The present study investigates cortical structures associated with personality dimension of positivity (POS) by using a standardized low-resolution brain electromagnetic tomography (sLORETA), which provides EEG localization measures that are independent of the recording reference. Resting EEG and self-report measures of positivity, self-esteem, life satisfaction, and optimism were collected from 51 female undergraduates. EEG was recorded across 29 scalp sites. Anterior and posterior source alpha asymmetries of cortical activation were obtained by using sLORETA. Based on previous research findings, 10 frontal and 6 parietal regions of interest (ROI) were derived. Alpha asymmetry in the posterior cingulate (i.e., BA23 and BA31) was uniquely associated with both POS scores. These areas are, hypothetically, part of a complex default-mode neural network (DMN). The activity in the DMN usually increases during tasks that invoke self-referential processing, such as responding to statements describing one's personality, attitudes, or preferences. Importantly, the cortical structures associated with POS were different from those associated with indicators. Indeed, measures of "optimism" failed to maintain a significant correlation with any of the previously significant ROI, but "self-esteem" and "life satisfaction" revealed robust associations with alpha asymmetry at the precuneus (i.e., BA7), after controlling for POS residual scores. Present findings support the assumption that POS is a basic disposition that reflects the concerted activity of brain structures that are essential for integrating self-referential thought and autobiographical memories and for assigning a positive valence to one's experience and attitude toward the future. Copyright © 2015 Elsevier Inc. All rights reserved.
Sonnleitner, Andreas; Treder, Matthias Sebastian; Simon, Michael; Willmann, Sven; Ewald, Arne; Buchner, Axel; Schrauf, Michael
2014-01-01
Driver distraction is responsible for a substantial number of traffic accidents. This paper describes the impact of an auditory secondary task on drivers' mental states during a primary driving task. N=20 participants performed the test procedure in a car following task with repeated forced braking on a non-public test track. Performance measures (provoked reaction time to brake lights) and brain activity (EEG alpha spindles) were analyzed to describe distracted drivers. Further, a classification approach was used to investigate whether alpha spindles can predict drivers' mental states. Results show that reaction times and alpha spindle rate increased with time-on-task. Moreover, brake reaction times and alpha spindle rate were significantly higher while driving with auditory secondary task opposed to driving only. In single-trial classification, a combination of spindle parameters yielded a median classification error of about 8% in discriminating the distracted from the alert driving. Reduced driving performance (i.e., prolonged brake reaction times) during increased cognitive load is assumed to be indicated by EEG alpha spindles, enabling the quantification of driver distraction in experiments on public roads without verbally assessing the drivers' mental states. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bazanova, Olga M; Auer, Tibor; Sapina, Elena A
2018-01-01
Background: Neurofeedback training (NFT) to decrease the theta/beta ratio (TBR) has been used for treating hyperactivity and impulsivity in attention deficit hyperactivity disorder (ADHD); however, often with low efficiency. Individual variance in EEG profile can confound NFT, because it may lead to influencing non-relevant activity, if ignored. More importantly, it may lead to influencing ADHD-related activities adversely, which may even result in worsening ADHD symptoms. Electromyogenic (EMG) signal resulted from forehead muscles can also explain the low efficiency of the NFT in ADHD from both practical and psychological point-of-view. The first aim of this study was to determine EEG and EMG biomarkers most related to the main ADHD characteristics, such as impulsivity and hyperactivity. The second aim was to confirm our hypothesis that the efficiency of the TBR NFT can be increased by individual adjustment of the frequency bands and simultaneous training on forehead muscle tension. Methods: We recruited 94 children diagnosed with ADHD (ADHD) and 23 healthy controls (HC). All participants were male and aged between six and nine. Impulsivity and attention were assessed with Go/no-Go task and delayed gratification task, respectively; and 19-channel EEG and forehead EMG were recorded. Then, the ADHD group was randomly subdivided into (1) standard, (2) individualized, (3) individualized+EMG, and (4) sham NFT (control) groups. The groups were compared based on TBR and EEG alpha activity, as well as hyperactivity and impulsivity three times: pre-NFT, post-NFT and 6 months after the NFT (follow-up). Results: ADHD children were characterized with decreased individual alpha peak frequency, alpha bandwidth and alpha amplitude suppression magnitude, as well as with increased alpha1/alpha2 (a1/a2) ratio and scalp muscle tension when c (η 2 ≥ 0.212). All contingent TBR NFT groups exhibited significant NFT-related decrease in TBR not evident in the control group. Moreover, we detected a higher overall alpha activity in the individualized but not in the standard NFT group. Mixed MANOVA considering between-subject factor GROUP and within-subject factor TIME showed that the individualized+EMG group exhibited the highest level of clinical improvement, which was associated with increase in the individual alpha activity at the 6 months follow-up when comparing with the other approaches (post hoc t = 3.456, p = 0.011). Conclusions: This study identified various (adjusted) alpha activity metrics as biomarkers with close relationship with ADHD symptoms, and demonstrated that TBR NFT individually adjusted for variances in alpha activity is more successful and clinically more efficient than standard, non-individualized NFT. Moreover, these training effects of the individualized TBR NFT lasted longer when combined with EMG.
Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V
2015-01-22
Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms.
Vecchio, Fabrizio; Babiloni, Claudio; Ferreri, Florinda; Curcio, Giuseppe; Fini, Rita; Del Percio, Claudio; Rossini, Paolo Maria
2007-03-01
We tested the working hypothesis that electromagnetic fields from mobile phones (EMFs) affect interhemispheric synchronization of cerebral rhythms, an important physiological feature of information transfer into the brain. Ten subjects underwent two electroencephalographic (EEG) recordings, separated by 1 week, following a crossover double-blind paradigm in which they were exposed to a mobile phone signal (global system for mobile communications; GSM). The mobile phone was held on the left side of the subject head by a modified helmet, and orientated in the normal position for use over the ear. The microphone was orientated towards the corner of the mouth, and the antenna was near the head in the parietotemporal area. In addition, we positioned another similar phone (but without battery) on the right side of the helmet, to balance the weight and to prevent the subject localizing the side of GSM stimulation (and consequently lateralizing attention). In one session the exposure was real (GSM) while in the other it was Sham; both sessions lasted 45 min. Functional interhemispheric connectivity was modelled using the analysis of EEG spectral coherence between frontal, central and parietal electrode pairs. Individual EEG rhythms of interest were delta (about 2-4 Hz), theta (about 4-6 Hz), alpha 1 (about 6-8 Hz), alpha 2 (about 8-10 Hz) and alpha 3 (about 10-12 Hz). Results showed that, compared to Sham stimulation, GSM stimulation modulated the interhemispheric frontal and temporal coherence at alpha 2 and alpha 3 bands. The present results suggest that prolonged mobile phone emission affects not only the cortical activity but also the spread of neural synchronization conveyed by interhemispherical functional coupling of EEG rhythms.
Wu, Lei; Eichele, Tom; Calhoun, Vince D
2010-10-01
Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yi, Guo-Sheng; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Han, Chun-Xiao
2013-02-01
To investigate whether and how manual acupuncture (MA) modulates brain activities, we design an experiment where acupuncture at acupoint ST36 of the right leg is used to obtain electroencephalograph (EEG) signals in healthy subjects. We adopt the autoregressive (AR) Burg method to estimate the power spectrum of EEG signals and analyze the relative powers in delta (0 Hz-4 Hz), theta (4 Hz-8 Hz), alpha (8 Hz-13 Hz), and beta (13 Hz-30 Hz) bands. Our results show that MA at ST36 can significantly increase the EEG slow wave relative power (delta band) and reduce the fast wave relative powers (alpha and beta bands), while there are no statistical differences in theta band relative power between different acupuncture states. In order to quantify the ratio of slow to fast wave EEG activity, we compute the power ratio index. It is found that the MA can significantly increase the power ratio index, especially in frontal and central lobes. All the results highlight the modulation of brain activities with MA and may provide potential help for the clinical use of acupuncture. The proposed quantitative method of acupuncture signals may be further used to make MA more standardized.
Pornpattananangkul, Narun; Nusslock, Robin
2016-01-01
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a greater preference for larger-but-delayed rewards. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur. PMID:27477630
Cortical oscillatory activity and the induction of plasticity in the human motor cortex.
McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C
2011-05-01
Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Convergence of EEG and fMRI measures of reward anticipation.
Gorka, Stephanie M; Phan, K Luan; Shankman, Stewart A
2015-12-01
Deficits in reward anticipation are putative mechanisms for multiple psychopathologies. Research indicates that these deficits are characterized by reduced left (relative to right) frontal electroencephalogram (EEG) activity and blood oxygenation level-dependent (BOLD) signal abnormalities in mesolimbic and prefrontal neural regions during reward anticipation. Although it is often assumed that these two measures capture similar mechanisms, no study to our knowledge has directly examined the convergence between frontal EEG alpha asymmetry and functional magnetic resonance imaging (fMRI) during reward anticipation in the same sample. Therefore, the aim of the current study was to investigate if and where in the brain frontal EEG alpha asymmetry and fMRI measures were correlated in a sample of 40 adults. All participants completed two analogous reward anticipation tasks--once during EEG data collection and the other during fMRI data collection. Results indicated that the two measures do converge and that during reward anticipation, increased relative left frontal activity is associated with increased left anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and left orbitofrontal cortex (OFC) activation. This suggests that the two measures may similarly capture PFC functioning, which is noteworthy given the role of these regions in reward processing and the pathophysiology of disorders such as depression and schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation
Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel
2015-01-01
The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings. PMID:26053854
Haghighi, Mohammad; Ludyga, Sebastian; Rahimi, Boshra; Jahangard, Leila; Ahmadpanah, Mohammad; Torabian, Saadat; Esnaashari, Farzaneh; Nazaribadie, Marzieh; Bajoghli, Hafez; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Brand, Serge
2017-05-01
Patients suffering from major depressive disorders (MDD) report anhedonia, low concentration and lack of goal-oriented behavior. Data from imaging and quantitative EEG (QEEG) studies show an asymmetry in the prefrontal cortex (PFC), with lower left as compared to right PFC-activity, associated with specific depression-related behavior. Cordance is a QEEG measurement, which combines absolute and relative power of EEG-spectra with strong correlations with regional perfusion. The aim of the present study was to investigate to what extent a four weeks lasting treatment with a standard SSRI had an influence on neuronal activation and MDD-related symptoms. Twenty patients suffering from severe MDD were treated with citalopram (40mg) for four consecutive weeks. At baseline and at the end of the treatment, patients underwent QEEG. Experts rated the degree of depression with the Hamilton Depression Rating Scale (HDRS). Over time, theta cordance increased over right ventromedial and left dorsolateral PFC, whereas alpha cordance decreased over dorsolateral PFC. Improvement in MDD-related symptoms was higher in patients showing decreased EEG theta cordance over right dorsal PFC and increased EEG alpha cordance over left dorsolateral PFC. In patients suffering from MDD, treatment response was associated with favorable changes in neuronal activity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation.
Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel
2015-01-01
The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings.
Electroencephalogram signatures of loss and recovery of consciousness from propofol
Purdon, Patrick L.; Pierce, Eric T.; Mukamel, Eran A.; Prerau, Michael J.; Walsh, John L.; Wong, Kin Foon K.; Salazar-Gomez, Andres F.; Harrell, Priscilla G.; Sampson, Aaron L.; Cimenser, Aylin; Ching, ShiNung; Kopell, Nancy J.; Tavares-Stoeckel, Casie; Habeeb, Kathleen; Merhar, Rebecca; Brown, Emery N.
2013-01-01
Unconsciousness is a fundamental component of general anesthesia (GA), but anesthesiologists have no reliable ways to be certain that a patient is unconscious. To develop EEG signatures that track loss and recovery of consciousness under GA, we recorded high-density EEGs in humans during gradual induction of and emergence from unconsciousness with propofol. The subjects executed an auditory task at 4-s intervals consisting of interleaved verbal and click stimuli to identify loss and recovery of consciousness. During induction, subjects lost responsiveness to the less salient clicks before losing responsiveness to the more salient verbal stimuli; during emergence they recovered responsiveness to the verbal stimuli before recovering responsiveness to the clicks. The median frequency and bandwidth of the frontal EEG power tracked the probability of response to the verbal stimuli during the transitions in consciousness. Loss of consciousness was marked simultaneously by an increase in low-frequency EEG power (<1 Hz), the loss of spatially coherent occipital alpha oscillations (8–12 Hz), and the appearance of spatially coherent frontal alpha oscillations. These dynamics reversed with recovery of consciousness. The low-frequency phase modulated alpha amplitude in two distinct patterns. During profound unconsciousness, alpha amplitudes were maximal at low-frequency peaks, whereas during the transition into and out of unconsciousness, alpha amplitudes were maximal at low-frequency nadirs. This latter phase–amplitude relationship predicted recovery of consciousness. Our results provide insights into the mechanisms of propofol-induced unconsciousness, establish EEG signatures of this brain state that track transitions in consciousness precisely, and suggest strategies for monitoring the brain activity of patients receiving GA. PMID:23487781
Electroencephalographic profiles for differentiation of disorders of consciousness
2013-01-01
Background Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. Methods Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. Results Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients’ behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. Conclusions Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). PMID:24143892
Scheuler, W
Spectral analysis was performed to study the response of various EEG sleep activities to a modification of GABAergic sleep regulation by flunitrazepam. We observed sleep stage- and sleep cycle-dependent differences in the topographic distribution of the reactions. An increase in power density was found in the frontal regions for the alpha 2 and sigma 1 frequency band whereas a decrease in power density was emphasized in the posterior regions for the delta and alpha 1 frequency band. These topographic differences might be related to the regional distribution of benzodiazepine receptor subtypes.
Cortical processes of speech illusions in the general population.
Schepers, E; Bodar, L; van Os, J; Lousberg, R
2016-10-18
There is evidence that experimentally elicited auditory illusions in the general population index risk for psychotic symptoms. As little is known about underlying cortical mechanisms of auditory illusions, an experiment was conducted to analyze processing of auditory illusions in a general population sample. In a follow-up design with two measurement moments (baseline and 6 months), participants (n = 83) underwent the White Noise task under simultaneous recording with a 14-lead EEG. An auditory illusion was defined as hearing any speech in a sound fragment containing white noise. A total number of 256 speech illusions (SI) were observed over the two measurements, with a high degree of stability of SI over time. There were 7 main effects of speech illusion on the EEG alpha band-the most significant indicating a decrease in activity at T3 (t = -4.05). Other EEG frequency bands (slow beta, fast beta, gamma, delta, theta) showed no significant associations with SI. SIs are characterized by reduced alpha activity in non-clinical populations. Given the association of SIs with psychosis, follow-up research is required to examine the possibility of reduced alpha activity mediating SIs in high risk and symptomatic populations.
Papadelis, Christos; Chen, Zhe; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Chouvarda, Ioanna; Bekiaris, Evangelos; Maglaveras, Nikos
2007-09-01
The objective of this study is the development and evaluation of efficient neurophysiological signal statistics, which may assess the driver's alertness level and serve as potential indicators of sleepiness in the design of an on-board countermeasure system. Multichannel EEG, EOG, EMG, and ECG were recorded from sleep-deprived subjects exposed to real field driving conditions. A number of severe driving errors occurred during the experiments. The analysis was performed in two main dimensions: the macroscopic analysis that estimates the on-going temporal evolution of physiological measurements during the driving task, and the microscopic event analysis that focuses on the physiological measurements' alterations just before, during, and after the driving errors. Two independent neurophysiologists visually interpreted the measurements. The EEG data were analyzed by using both linear and non-linear analysis tools. We observed the occurrence of brief paroxysmal bursts of alpha activity and an increased synchrony among EEG channels before the driving errors. The alpha relative band ratio (RBR) significantly increased, and the Cross Approximate Entropy that quantifies the synchrony among channels also significantly decreased before the driving errors. Quantitative EEG analysis revealed significant variations of RBR by driving time in the frequency bands of delta, alpha, beta, and gamma. Most of the estimated EEG statistics, such as the Shannon Entropy, Kullback-Leibler Entropy, Coherence, and Cross-Approximate Entropy, were significantly affected by driving time. We also observed an alteration of eyes blinking duration by increased driving time and a significant increase of eye blinks' number and duration before driving errors. EEG and EOG are promising neurophysiological indicators of driver sleepiness and have the potential of monitoring sleepiness in occupational settings incorporated in a sleepiness countermeasure device. The occurrence of brief paroxysmal bursts of alpha activity before severe driving errors is described in detail for the first time. Clear evidence is presented that eye-blinking statistics are sensitive to the driver's sleepiness and should be considered in the design of an efficient and driver-friendly sleepiness detection countermeasure device.
EEG in children with spelling disabilities.
Byring, R F; Salmi, T K; Sainio, K O; Orn, H P
1991-10-01
A total of 23 13-year-old boys with spelling disabilities and 21 matched controls were studied. EEG was recorded for visual and quantitative analysis, including FFT band powers and normalized slope descriptors (NSD). Visual analysis showed general excess of slow activity, as well as an excess of temporal slow wave activity in the index group. Quantitative analysis showed low alpha and beta powers, and low "activity" and high "complexity" (NSD) in parieto-occipital derivations in the index group. Quantitative EEG (qEEG) parameter ratios between temporal and parieto-occipital derivations were increased in the index group, implying a lack of spatial differentiation in these EEGs. In covariance analysis the qEEG parameter differences between the index group and controls were partly explained by the neurotic traits made evident in psychological tests. This implies that psychopathological artifacts should be considered in qEEG examinations of children with cognitive handicaps. Differences in anterior/posterior qEEG ratios were, however, little affected by any confounding factors. Thus these qEEG ratios seem potentially useful in clinical assessments of children with learning disabilities.
NASA Astrophysics Data System (ADS)
Nguyen, Thien; Ahn, Sangtae; Jang, Hyojung; Jun, Sung C.; Kim, Jae G.
2016-03-01
Driver's condition plays a critical role in driving safety. The fact that about 20 percent of automobile accidents occurred due to driver fatigue leads to a demand for developing a method to monitor driver's status. In this study, we acquired brain signals such as oxy- and deoxyhemoglobin and neuronal electrical activity by a hybrid fNIRS/EEG system. Experiments were conducted with 11 subjects under two conditions: Normal condition, when subjects had enough sleep, and sleep deprivation condition, when subject did not sleep previous night. During experiment, subject performed a driving task with a car simulation system for 30 minutes. After experiment, oxy-hemoglobin and deoxy-hemoglobin changes were derived from fNIRS data, while beta and alpha band relative power were calculated from EEG data. Decrement of oxy-hemoglobin, beta band power, and increment of alpha band power were found in sleep deprivation condition compare to normal condition. These features were then applied to classify two conditions by Fisher's linear discriminant analysis (FLDA). The ratio of alpha-beta relative power showed classification accuracy with a range between 62% and 99% depending on a subject. However, utilization of both EEG and fNIRS features increased accuracy in the range between 68% and 100%. The highest increase of accuracy is from 63% using EEG to 99% using both EEG and fNIRS features. In conclusion, the enhancement of classification accuracy is shown by adding a feature from fNIRS to the feature from EEG using FLDA which provides the need of developing a hybrid fNIRS/EEG system.
Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Rennie, C. J.; Rowe, D. L.
2002-04-01
Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
NASA Astrophysics Data System (ADS)
Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang
2015-08-01
The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.
Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang
2015-01-01
The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628
Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization.
Faber, Pascal L; Lehmann, Dietrich; Gianotti, Lorena R R; Milz, Patricia; Pascual-Marqui, Roberto D; Held, Marlene; Kochi, Kieko
2015-02-01
Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.
Physiological artifacts in scalp EEG and ear-EEG.
Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben
2017-08-11
A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.
Henz, Diana; Schöllhorn, Wolfgang I
2017-01-01
In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and fostering an attentive mind. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during Qigong meditation indicating a relaxed state. Much less is reported on effects of brain activation patterns induced by Qigong techniques involving bodily movement. In this study, we tested whether (1) physical Qigong training alters EEG theta and alpha activation, and (2) mental practice induces the same effect as a physical Qigong training. Subjects performed the dynamic Health Qigong technique Wu Qin Xi (five animals) physically and by mental practice in a within-subjects design. Experimental conditions were randomized. Two 2-min (eyes-open, eyes-closed) EEG sequences under resting conditions were recorded before and immediately after each 15-min exercise. Analyses of variance were performed for spectral power density data. Increased alpha power was found in posterior regions in mental practice and physical training for eyes-open and eyes-closed conditions. Theta power was increased after mental practice in central areas in eyes-open conditions, decreased in fronto-central areas in eyes-closed conditions. Results suggest that mental, as well as physical Qigong training, increases alpha activity and therefore induces a relaxed state of mind. The observed differences in theta activity indicate different attentional processes in physical and mental Qigong training. No difference in theta activity was obtained in physical and mental Qigong training for eyes-open and eyes-closed resting state. In contrast, mental practice of Qigong entails a high degree of internalized attention that correlates with theta activity, and that is dependent on eyes-open and eyes-closed resting state.
Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals
NASA Astrophysics Data System (ADS)
Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha
2016-02-01
Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.
Music therapy modulates fronto-temporal activity in rest-EEG in depressed clients.
Fachner, Jörg; Gold, Christian; Erkkilä, Jaakko
2013-04-01
Fronto-temporal areas process shared elements of speech and music. Improvisational psychodynamic music therapy (MT) utilizes verbal and musical reflection on emotions and images arising from clinical improvisation. Music listening is shifting frontal alpha asymmetries (FAA) in depression, and increases frontal midline theta (FMT). In a two-armed randomized controlled trial (RCT) with 79 depressed clients (with comorbid anxiety), we compared standard care (SC) versus MT added to SC at intake and after 3 months. We found that MT significantly reduced depression and anxiety symptoms. The purpose of this study is to test whether or not MT has an impact on anterior fronto-temporal resting state alpha and theta oscillations. Correlations between anterior EEG, Montgomery-Åsberg Depression Rating Scale (MADRS) and the Hospital Anxiety and Depression Scale-Anxiety Subscale (HADS-A), power spectral analysis (topography, means, asymmetry) and normative EEG database comparisons were explored. After 3 month of MT, lasting changes in resting EEG were observed, i.e., significant absolute power increases at left fronto-temporal alpha, but most distinct for theta (also at left fronto-central and right temporoparietal leads). MT differed to SC at F7-F8 (z scored FAA, p < .03) and T3-T4 (theta, p < .005) asymmetry scores, pointing towards decreased relative left-sided brain activity after MT; pre/post increased FMT and decreased HADS-A scores (r = .42, p < .05) indicate reduced anxiety after MT. Verbal reflection and improvising on emotions in MT may induce neural reorganization in fronto-temporal areas. Alpha and theta changes in fronto-temporal and temporoparietal areas indicate MT action and treatment effects on cortical activity in depression, suggesting an impact of MT on anxiety reduction.
Pornpattananangkul, Narun; Nusslock, Robin
2016-10-01
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur. Copyright © 2016 Elsevier Ltd. All rights reserved.
FFT transformed quantitative EEG analysis of short term memory load.
Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana
2015-07-01
The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.
The effect of pre- vs. post-reward attainment on EEG asymmetry in melancholic depression.
Shankman, Stewart A; Sarapas, Casey; Klein, Daniel N
2011-02-01
Clinical investigators have long theorized about the role of reward processing and positive affect in depression. One theory posits that compared to nonmelancholic depressives, melancholic depressives experience less consummatory (i.e., post-reward), but comparably low anticipatory (prior to reward), positive affect. We tested whether frontal EEG asymmetry, a putative marker of the anticipatory reward system, is present only before an individual receives a reward or also after receiving a reward (i.e., during consummatory reward processing). We also examined whether melancholic depression, a condition characterized by a deficit in consummatory reward processing, is associated with abnormal EEG asymmetries in alpha band power. Effects in other frequency bands (delta, theta, or beta) were also explored. EEG was recorded in 34 controls, 48 nonmelancholic depressives, and 17 melancholic depressives during a slot machine task designed to elicit anticipatory and consummatory reward processing. Results indicated that, for alpha, the frontal EEG asymmetry of greater relative left activity was specific to anticipatory reward processing. During the consummatory phase, individuals with melancholic depression exhibited different posterior EEG asymmetries than individuals with nonmelancholic depression (and controls at a trend level). This second finding was largely due to melancholics exhibiting relatively lower right posterior activity and nonmelancholics exhibiting relatively lower left activity. These results suggest that a posterior asymmetry may be a marker for melancholic depression and aberrant consummatory reward processing. Copyright © 2010 Elsevier B.V. All rights reserved.
The physiological correlates of Kundalini Yoga meditation: a study of a yoga master.
Arambula, P; Peper, E; Kawakami, M; Gibney, K H
2001-06-01
This study explores the physiological correlates of a highly practiced Kundalini Yoga meditator. Thoracic and abdominal breathing patterns, heart rate (HR), occipital parietal electroencephalograph (EEG), skin conductance level (SCL), and blood volume pulse (BVP) were monitored during prebaseline, meditation, and postbaseline periods. Visual analyses of the data showed a decrease in respiration rate during the meditation from a mean of 11 breaths/min for the pre- and 13 breaths/min for the postbaseline to a mean of 5 breaths/min during the meditation, with a predominance of abdominal/diaphragmatic breathing. There was also more alpha EEG activity during the meditation (M = 1.71 microV) compared to the pre- (M = .47 microV) and postbaseline (M = .78 microV) periods, and an increase in theta EEG activity immediately following the meditation (M = .62 microV) compared to the pre-baseline and meditative periods (each with M = .26 microV). These findings suggest that a shift in breathing patterns may contribute to the development of alpha EEG, and those patterns need to be investigated further.
EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.
Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E
2016-03-01
This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings.
NASA Technical Reports Server (NTRS)
Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.
2001-01-01
Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.
Verbeke, Willem J. M. I.; Pozharliev, Rumen; Van Strien, Jan W.; Belschak, Frank; Bagozzi, Richard P.
2014-01-01
We took EEG recordings to measure task-free resting-state cortical brain activity in 35 participants under two conditions, alone (A) or together (T). We also investigated whether psychological attachment styles shape human cortical activity differently in these two settings. The results indicate that social context matters and that participants' cortical activity is moderated by the anxious, but not avoidant attachment style. We found enhanced alpha, beta and theta band activity in the T rather than the A resting-state condition, which was more pronounced in posterior brain regions. We further found a positive correlation between anxious attachment style and enhanced alpha power in the T vs. A condition over frontal and parietal scalp regions. There was no significant correlation between the absolute powers registered in the other two frequency bands and the participants' anxious attachment style. PMID:25071516
Alfimova, M V; Uvarova, L G
2007-01-01
To search for EEG-correlates of emotional processing that might be indicators of genetic predisposition to schizophrenia, changes in EEG spectral power during perception of neutral and emotionally salient words were examined in 36 schizophrenic patients, 50 of their unaffected first-degree relatives, and 47 healthy individuals without any family history of psychoses. In healthy persons, passive listening to neutral words induced minimum changes in cortical rhythmical activity, predominantly in the form of synchronization of slow and fast waves, whereas perception of emotional words was followed by a generalized depression of the alpha and beta1 activity and a locally specific decrease in the power of theta and beta2 frequency bands. The patients and their relatives showed a decrease in the alpha and beta1 activity simultaneously with an increase in the power of delta activity in response to both groups of words. Thus, in the patients and their relatives, reactions to neutral and emotional words were ulterior as a result of augmented reactions to the neutral words. These findings suggest that the EEG changes reflect familial and possibly hereditable abnormal involuntary attention. No prominent decrease in reactivity to emotional stimuli was revealed in schizophrenic families.
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
NASA Astrophysics Data System (ADS)
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Piano, Carla; Mazzucchi, Edoardo; Bentivoglio, Anna Rita; Losurdo, Anna; Calandra Buonaura, Giovanna; Imperatori, Claudio; Cortelli, Pietro; Della Marca, Giacomo
2017-01-01
The aim of the study was to evaluate the EEG modifications in patients with Huntington disease (HD) compared with controls, by means of the exact LOw REsolution Tomography (eLORETA) software. We evaluated EEG changes during wake, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Moreover, we reviewed the literature concerning EEG modifications in HD. Twenty-three consecutive adult patients affected by HD were enrolled, 14 women and 9 men, mean age was 57.0 ± 12.4 years. Control subjects were healthy volunteers (mean age 58.2 ± 14.6 years). EEG and polygraphic recordings were performed during wake (before sleep) and during sleep. Sources of EEG activities were determined using the eLORETA software. In wake EEG, significant differences between patients and controls were detected in the delta frequency band (threshold T = ±4.606; P < .01) in the Brodmann areas (BAs) 3, 4, and 6 bilaterally. In NREM sleep, HD patients showed increased alpha power (T = ±4.516; P < .01) in BAs 4 and 6 bilaterally; decreased theta power (T = ±4.516; P < .01) in the BAs 23, 29, and 30; and decreased beta power (T = ±4.516; P < .01) in the left BA 30. During REM, HD patients presented decreased theta and alpha power (threshold T = ±4.640; P < .01) in the BAs 23, 29, 30, and 31 bilaterally. In conclusion, EEG data suggest a motor cortex dysfunction during wake and sleep in HD patients, which correlates with the clinical and polysomnographic evidence of increased motor activity during wake and NREM, and nearly absent motor abnormalities in REM. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Henz, Diana; John, Alexander; Merz, Christian; Schöllhorn, Wolfgang I.
2018-01-01
A large body of research has shown superior learning rates in variable practice compared to repetitive practice. More specifically, this has been demonstrated in the contextual interference (CI) and in the differential learning (DL) approach that are both representatives of variable practice. Behavioral studies have indicate different learning processes in CI and DL. Aim of the present study was to examine immediate post-task effects on electroencephalographic (EEG) brain activation patterns after CI and DL protocols that reveal underlying neural processes at the early stage of motor consolidation. Additionally, we tested two DL protocols (gradual DL, chaotic DL) to examine the effect of different degrees of stochastic fluctuations within the DL approach with a low degree of fluctuations in gradual DL and a high degree of fluctuations in chaotic DL. Twenty-two subjects performed badminton serves according to three variable practice protocols (CI, gradual DL, chaotic DL), and a repetitive learning protocol in a within-subjects design. Spontaneous EEG activity was measured before, and immediately after each 20-min practice session from 19 electrodes. Results showed distinguishable neural processes after CI, DL, and repetitive learning. Increases in EEG theta and alpha power were obtained in somatosensory regions (electrodes P3, P7, Pz, P4, P8) in both DL conditions compared to CI, and repetitive learning. Increases in theta and alpha activity in motor areas (electrodes C3, Cz, C4) were found after chaotic DL compared to gradual DL, and CI. Anterior areas (electrodes F3, F7, Fz, F4, F8) showed increased activity in the beta and gamma bands after CI. Alpha activity was increased in occipital areas (electrodes O1, O2) after repetitive learning. Post-task EEG brain activation patterns suggest that DL stimulates the somatosensory and motor system, and engages more regions of the cortex than repetitive learning due to a tighter stimulation of the motor and somatosensory system during DL practice. CI seems to activate specifically executively controlled processing in anterior brain areas. We discuss the obtained patterns of post-training EEG traces as evidence for different underlying neural processes in CI, DL, and repetitive learning at the early stage of motor learning. PMID:29445334
Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults
Ponomareva, Natalya; Andreeva, Tatiana; Protasova, Maria; Shagam, Lev; Malina, Daria; Goltsov, Andrei; Fokin, Vitaly; Mitrofanov, Andrei; Rogaev, Evgeny
2013-01-01
Polymorphism in the genomic region harboring the CLU gene (rs11136000) has been associated with the risk for Alzheimer’s disease (AD). CLU C allele is assumed to confer risk for AD and the allele T may have a protective effect. We investigated the influence of the AD-associated CLU genotype on a common neurophysiological trait of brain activity (resting-state alpha-rhythm activity) in non-demented adults and elucidated whether this influence is modified over the course of aging. We examined quantitative electroencephalography (EEG) in a cohort of non-demented individuals (age range 20–80) divided into young (age range 20–50) and old (age range 51–80) cohorts and stratified by CLU polymorphism. To rule out the effect of the apolipoprotein E (ApoE) genotype on EEG characteristics, only subjects without the ApoE ε4 allele were included in the study. The homozygous presence of the AD risk variant CLU CC in non-demented subjects was associated with an increase of alpha3 absolute power. Moreover, the influence of CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of age. The study also showed age-dependent alterations of alpha topographic distribution that occur independently of the CLU genotype. The increase of upper alpha power has been associated with hippocampal atrophy in patients with mild cognitive impairment (Moretti etal., 2012a). In our study, the CLU CC-dependent increase in upper alpha rhythm, particularly enhanced in elderly non-demented individuals, may imply that the genotype is related to preclinical dysregulation of hippocampal neurophysiology in aging and that this factor may contribute to the pathogenesis of AD. PMID:24379779
NASA Technical Reports Server (NTRS)
Cajochen, C.; Khalsa, S. B.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.
1999-01-01
The aim of this study was to quantify the associations between slow eye movements (SEMs), eye blink rate, waking electroencephalogram (EEG) power density, neurobehavioral performance, and the circadian rhythm of plasma melatonin in a cohort of 10 healthy men during up to 32 h of sustained wakefulness. The time course of neurobehavioral performance was characterized by fairly stable levels throughout the first 16 h of wakefulness followed by deterioration during the phase of melatonin secretion. This deterioration was closely associated with an increase in SEMs. Frontal low-frequency EEG activity (1-7 Hz) exhibited a prominent increase with time awake and little circadian modulation. EEG alpha activity exhibited circadian modulation. The dynamics of SEMs and EEG activity were phase locked to changes in neurobehavioral performance and lagged the plasma melatonin rhythm. The data indicate that frontal areas of the brain are more susceptible to sleep loss than occipital areas. Frontal EEG activity and ocular parameters may be used to monitor and predict changes in neurobehavioral performance associated with sleep loss and circadian misalignment.
Effect of low-level laser stimulation on EEG.
Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan
2012-01-01
Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.
[Effects of noise and music on EEG power spectrum].
Yuan, Q; Liu, X H; Li, D C; Wang, H L; Liu, Y S
2000-12-01
Objective. To observe the effect of noise and music on EEG power spectrum. Method. 12 healthy male pilots aged 30 +/- 0.58 years served as the subjects. Dynamic EEG from 16 regions was recorded during quiet, under noise or when listening to music using Oxford MR95 Holter recorder. Changes of EEG power spectrum of delta, theta, alpha1, alpha2, beta1 and beta2, frequency components in 16 regions were analyzed. Result. The total alpha1 power was significantly decreased, while the total theta power was significantly increased when listening to music; It implies that the interhemispheric transmission of information in the frontotemporal areas might be involved. Conclusion. The changes of the EEG power spectrum were closely related to man's emotions; relaxation was associated with music; Individual difference exists in the influence of sound on EEG.
Saletu, B; Grünberger, J; Linzmayer, L
1977-10-01
Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.
EEG responses to low-level chemicals in normals and cacosmics.
Schwartz, G E; Bell, I R; Dikman, Z V; Fernandez, M; Kline, J P; Peterson, J M; Wright, K P
1994-01-01
Recent studies from the University of Arizona indicate that normal subjects, both college students and the elderly, can register the presence of low-intensity odors in the electroencephalogram (EEG) in the absence of conscious awareness of the odors. The experimental paradigm involves subjects sniffing pairs of bottles, one containing an odorant (e.g. isoamyl acetate) dissolved in an odorless solvent (water or liquid silicone), the other containing just the solvent, while 19 channels of EEG are continuously recorded. For the low-intensity odor conditions, concentrations are adjusted downward (decreased) until subjects correctly identify the odor bottle at chance (50%). The order of odorants, concentrations, and hand holding the control bottle, are counterbalanced within and across subjects. Three previous experiments found that alpha activity (8-12 hz) decreased in midline and posterior regions when subjects sniffed the low-intensity odors. The most recent study suggests that decreased theta activity (4-8 hz) may reflect sensory registration and decreased alpha activity may reflect perceptual registration. In a just completed experiment involving college students who were selected based on combinations of high and low scores on a scale measuring cacosmia (chemical odor intolerance) and high and low scores on a scale measuring depression, cacosmic subjects (independent of depression) showed greater decreases in low-frequency alpha (8-10 hz) and greater increases in low-frequency beta (12-16 hz) to the solvent propylene glycol compared to an empty bottle. Topographic EEG mapping to low-intensity odorants may provide a useful tool for investigating possible increased sensitivity to specific chemicals in chemically sensitive individuals.
EEG Frequency Changes Prior to Making Errors in an Easy Stroop Task
Atchley, Rachel; Klee, Daniel; Oken, Barry
2017-01-01
Background: Mind-wandering is a form of off-task attention that has been associated with negative affect and rumination. The goal of this study was to assess potential electroencephalographic markers of task-unrelated thought, or mind-wandering state, as related to error rates during a specialized cognitive task. We used EEG to record frontal frequency band activity while participants completed a Stroop task that was modified to induce boredom, task-unrelated thought, and therefore mind-wandering. Methods: A convenience sample of 27 older adults (50–80 years) completed a computerized Stroop matching task. Half of the Stroop trials were congruent (word/color match), and the other half were incongruent (mismatched). Behavioral data and EEG recordings were assessed. EEG analysis focused on the 1-s epochs prior to stimulus presentation in order to compare trials followed by correct versus incorrect responses. Results: Participants made errors on 9% of incongruent trials. There were no errors on congruent trials. There was a decrease in alpha and theta band activity during the epochs followed by error responses. Conclusion: Although replication of these results is necessary, these findings suggest that potential mind-wandering, as evidenced by errors, can be characterized by a decrease in alpha and theta activity compared to on-task, accurate performance periods. PMID:29163101
Blue light aids in coping with the post-lunch dip: an EEG study.
Baek, Hongchae; Min, Byoung-Kyong
2015-01-01
The 'post-lunch dip' is a commonly experienced period of drowsiness in the afternoon hours. If this inevitable period can be disrupted by an environmental cue, the result will be enhanced workplace performance. Because blue light is known to be a critical cue for entraining biological rhythms, we investigated whether blue light illumination can be a practical strategy for coping with the post-lunch dip. Twenty healthy participants underwent a continuous performance test, during which the electroencephalogram (EEG) was recorded under four different illumination conditions: dark ( < 0.3 lx), 33% blue-enriched light, 66% blue-enriched light and white polychromatic light. As a result, exposure to blue-enriched light during the post-lunch dip period significantly reduced the EEG alpha activity, and increased task performance. Since desynchronisation of alpha activity reflects enhancement of vigilance, our findings imply that blue light might disrupt the post-lunch dip. Subsequent exploration of illumination parameters will be beneficial for possible chronobiological and ergonomic applications.
Using Single-trial EEG to Predict and Analyze Subsequent Memory
Noh, Eunho; Herzmann, Grit; Curran, Tim; de Sa, Virginia R.
2013-01-01
We show that it is possible to successfully predict subsequent memory performance based on single-trial EEG activity before and during item presentation in the study phase. Two-class classification was conducted to predict subsequently remembered vs. forgotten trials based on subjects’ responses in the recognition phase. The overall accuracy across 18 subjects was 59.6 % by combining pre- and during-stimulus information. The single-trial classification analysis provides a dimensionality reduction method to project the high-dimensional EEG data onto a discriminative space. These projections revealed novel findings in the pre- and during-stimulus period related to levels of encoding. It was observed that the pre-stimulus information (specifically oscillatory activity between 25–35Hz) −300 to 0 ms before stimulus presentation and during-stimulus alpha (7–12 Hz) information between 1000–1400 ms after stimulus onset distinguished between recollection and familiarity while the during-stimulus alpha information and temporal information between 400–800 ms after stimulus onset mapped these two states to similar values. PMID:24064073
Mathewson, Kyle E; Basak, Chandramallika; Maclin, Edward L; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele
2012-12-01
We hypothesized that control processes, as measured using electrophysiological (EEG) variables, influence the rate of learning of complex tasks. Specifically, we measured alpha power, event-related spectral perturbations (ERSPs), and event-related brain potentials during early training of the Space Fortress task, and correlated these measures with subsequent learning rate and performance in transfer tasks. Once initial score was partialled out, the best predictors were frontal alpha power and alpha and delta ERSPs, but not P300. By combining these predictors, we could explain about 50% of the learning rate variance and 10%-20% of the variance in transfer to other tasks using only pretraining EEG measures. Thus, control processes, as indexed by alpha and delta EEG oscillations, can predict learning and skill improvements. The results are of potential use to optimize training regimes. Copyright © 2012 Society for Psychophysiological Research.
Freeborn, Danielle L; McDaniel, Katherine L; Moser, Virginia C; Herr, David W
2015-01-15
The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long-Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED30 or an ED50-ED80 change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. Published by Elsevier Inc.
Human exposure to power frequency magnetic fields up to 7.6 mT: An integrated EEG/fMRI study.
Modolo, Julien; Thomas, Alex W; Legros, Alexandre
2017-09-01
We assessed the effects of power-line frequency (60 Hz in North America) magnetic fields (MF) in humans using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Twenty-five participants were enrolled in a pseudo-double-blind experiment involving "real" or "sham" exposure to sinusoidal 60 Hz MF exposures delivered using the gradient coil of an MRI scanner following two conditions: (i) 10 s exposures at 3 mT (10 repetitions); (ii) 2 s exposures at 7.6 mT (100 repetitions). Occipital EEG spectral power was computed in the alpha range (8-12 Hz, reportedly the most sensitive to MF exposure in the literature) with/without exposure. Brain functional activation was studied using fMRI blood oxygen level-dependent (BOLD, inversely correlated with EEG alpha power) maps. No significant effects were detected on occipital EEG alpha power during or post-exposure for any exposure condition. Consistent with EEG results, no effects were observed on fMRI BOLD maps in any brain region. Our results suggest that acute exposure (2-10 s) to 60 Hz MF from 3 to 7.6 mT (30,000 to 76,000 times higher than average public exposure levels for 60 Hz MF) does not induce detectable changes in EEG or BOLD signals. Combined with previous findings in which effects were observed on the BOLD signal after 1 h exposure to 3 mT, 60 Hz MF, this suggests that MF exposure in the low mT range (<10 mT) might require prolonged durations of exposure to induce detectable effects. Bioelectromagnetics. 38:425-435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Thomas, C; Hestermann, U; Walther, S; Pfueller, U; Hack, M; Oster, P; Mundt, C; Weisbrod, M
2008-02-01
Delirium in the elderly results in increased morbidity, mortality and functional decline. Delirium is underdiagnosed, particularly in dementia. To increase diagnostic accuracy, we investigated whether maintenance of activation assessed by EEG discriminates delirium in association with dementia (D+D) from dementia without delirium (DP) and cognitively unimpaired elderly subjects (CU). Routine and quantitative EEG (rEEG/qEEG) with additional prolonged activation (3 min eyes open period) were evaluated in hospitalised elderly patients with acute geriatric disease. Patients were assigned post hoc to three comparable groups (D+D/DP/CU) by expert consensus based on DSM-IV criteria. Dementia diagnosis was confirmed using cognitive and functional tests and caregiver rating (IQCODE, Informed Questionnaire of Cognitive Decline in the Elderly). While rEEG at rest showed low accuracy for a diagnosis of delirium, qEEG in DP and CU revealed a specific activation pattern of high significance found to be absent in the D+D group. Stepwise logistic regression confirmed that differentiation of D+D from DP was best resolved using activated upper alpha and delta power density which, compared with rEEG, enabled an 11% increase in diagnostic correctness to 83%, resulting in 67% sensitivity and 91% specificity. Among frail CU and D+D subjects, almost 90% were correctly classified. Dementia associated with delirium can be discriminated reliably from dementia alone in a meaningful clinical setting. Thus EEG evaluation in chronic encephalopathy should be optimised by a simple activation task and spectral analysis, particularly in the elderly with dementia.
Jäncke, Lutz; Alahmadi, Nsreen
2016-01-01
In this study, the neurophysiological underpinnings of learning disabilities (LD) in children are examined using resting state EEG. We were particularly interested in the neurophysiological differences between children with learning disabilities not otherwise specified (LD-NOS), learning disabilities with verbal disabilities (LD-Verbal), and healthy control (HC) children. We applied 2 different approaches to examine the differences between the different groups. First, we calculated theta/beta and theta/alpha ratios in order to quantify the relationship between slow and fast EEG oscillations. Second, we used a recently developed method for analyzing spectral EEG, namely the group independent component analysis (gICA) model. Using these measures, we identified substantial differences between LD and HC children and between LD-NOS and LD-Verbal children in terms of their spectral EEG profiles. We obtained the following findings: (a) theta/beta and theta/alpha ratios were substantially larger in LD than in HC children, with no difference between LD-NOS and LD-Verbal children; (b) there was substantial slowing of EEG oscillations, especially for gICs located in frontal scalp positions, with LD-NOS children demonstrating the strongest slowing; (c) the estimated intracortical sources of these gICs were mostly located in brain areas involved in the control of executive functions, attention, planning, and language; and (d) the LD-Verbal children demonstrated substantial differences in EEG oscillations compared with LD-NOS children, and these differences were localized in language-related brain areas. The general pattern of atypical neurophysiological activation found in LD children suggests that they suffer from neurophysiological dysfunction in brain areas involved with the control of attention, executive functions, planning, and language functions. LD-Verbal children also demonstrate atypical activation, especially in language-related brain areas. These atypical neurophysiological activation patterns might provide a helpful guide for rehabilitation strategies to treat the deficiencies in these children with LD. © EEG and Clinical Neuroscience Society (ECNS) 2015.
Jaime, Mark; McMahon, Camilla M; Davidson, Bridget C; Newell, Lisa C; Mundy, Peter C; Henderson, Heather A
2016-04-01
Although prior studies have demonstrated reduced resting state EEG coherence in adults with autism spectrum disorder (ASD), no studies have explored the nature of EEG coherence during joint attention. We examined the EEG coherence of the joint attention network in adolescents with and without ASD during congruent and incongruent joint attention perception and an eyes-open resting condition. Across conditions, adolescents with ASD showed reduced right hemisphere temporal-central alpha coherence compared to typically developing adolescents. Greater right temporal-central alpha coherence during joint attention was positively associated with social cognitive performance in typical development but not in ASD. These results suggest that, in addition to a resting state, EEG coherence during joint attention perception is reduced in ASD.
Jaime, Mark; McMahon, Camilla M.; Davidson, Bridget C.; Newell, Lisa C.; Mundy, Peter C.; Henderson, Heather A.
2016-01-01
Although prior studies have demonstrated reduced resting state EEG coherence in adults with autism spectrum disorder (ASD), no studies have explored the nature of EEG coherence during joint attention. We examined the EEG coherence of the joint attention network in adolescents with and without ASD during congruent and incongruent joint attention perception and an eyes-open resting condition. Across conditions, adolescents with ASD showed reduced right hemisphere temporal–central alpha coherence compared to typically developing adolescents. Greater right temporal–central alpha coherence during joint attention was positively associated with social cognitive performance in typical development but not in ASD. These results suggest that, in addition to a resting state, EEG coherence during joint attention perception is reduced in ASD. PMID:26659813
Hanoglu, Lutfu; Yildiz, Sultan; Polat, Burcu; Demirci, Sema; Tavli, Ahmet Mithat; Yilmaz, Nesrin; Yulug, Burak
2016-01-01
Charles Bonnet Syndrome (CBS) is a rare clinical condition which is characterized by complex hallucinations in visually impaired patients. The pathophysiology of this disorder remains largely unknown, and there is still no proven treatment for this disease. In our study, we aimed to investigate the neural activity through Electroencephalography (EEG) power and evaluate the effect of rivastigmine in combination with alpha-lipoic acid on hallucination in two CBS patients with diabetic retinopathy. EEG data was recorded with standard routine EEG protocols for both patients in our electrophysiological research laboratory (REMER Clinical Electrophysiology and Neuromodulation Research and Application Laboratory) with Brain Vision Recorder (Brainproduct, Munich, Germany). All spectral analyses were processed by BrainVision Analyzer 2 (Brainproduct, Munich, Germany, 2.0.4 Version) in 128 Hz sample rates and the EEG recording and analysis was performed before the administration of rivastigmine (4.5 mg/daily and five patch daily for the first and second patients, respectively) in combination with alpha-lipoic acid (600 mg/daily) for both patients while they were not hallucinated during the time period recordings. Based on our measurement protocol, we have compared the patients in the study group with the three control subjects who were found to be normal except of visual disturbances secondary to significant diabetic retinopathy. Highest theta power values were found in right occipital and left temporo-parietal regions for first and second CBS patients, respectively. Additionally, power spectra were lower in two cases as compared to their control groups in the alpha band for all electrodes. We have also shown that acid rivastigmine in combination with alpha-lipoic exerted significant anti-hallucinatory efficiency. Our present findings could support the hypothesis that increased activation of specific areas in the source monitoring system plays an important role in the pathogenesis of CBS. In addition, rivastigmine in combination with alpha-lipoic acid could be a new valuable option for CBS patients.
Rominger, Christian; Papousek, Ilona; Perchtold, Corinna M; Weber, Bernhard; Weiss, Elisabeth M; Fink, Andreas
2018-02-13
This study investigated EEG activity in the upper alpha band during the well-known Picture Completion Task of the Torrance Test of Creative Thinking (TTCT), a widely used creative ideation task in the figural domain. The application of a sophisticated computerized version of the TTCT facilitating the online assessment and digitalizing of participant's drawings allowed to separate two central stages of the creative ideation process (i.e., idea generation and idea elaboration). During idea generation, the participants' task was to generate an initial draft of an original and creative completion of the presented abstract lines and figures of the TTCT. During idea elaboration, the participants were required to mentally improve the originality of the initially generated idea/draft. Creative ideation in this figural task was generally associated with comparatively strong desynchronization of upper alpha power over parietal and occipital sites, indicating high visual/figural processing demands. Interestingly, the stage of idea elaboration was accompanied by a relative increase of upper alpha power at parietal and occipital sites compared to the stage of idea generation, indicating heightened top-down processing demands. Furthermore, task performance was associated with relative increases of upper alpha power at frontal sites and relative decreases at centro-temporal sites from the stage of idea generation to idea elaboration. This association suggests the importance of increased inhibitory control over stimulus-based bottom-up information and motor imagery in order to achieve more creative outputs. Taken together these findings add to the relevant literature in that they a) extend research on the relationship between EEG alpha activity and creativity to the figural domain, and b) support a multistage view of creative ideation, involving cognitive control and mental imagery as important components of creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bauer, L O; Kranzler, H R
1994-08-01
Electroencephalographic (EEG) and subjective reactions to cocaine cues were evaluated in 18 cocaine-dependent outpatients, after 14 or fewer days of abstinence, and 16 noncocaine-dependent controls. EEG activity and desire for cocaine were recorded while subjects viewed three 5-min films that featured either cocaine-associated, erotic, or neutral stimuli. Other measures of mood state and cocaine craving, derived from the Mood Adjective Checklist and the Cocaine Craving Questionnaire, respectively, were recorded immediately after each film. Analyses of absolute EEG power within six frequency bands (delta, theta, slow and fast alpha, slow and fast beta) revealed no EEG abnormalities in the cocaine-dependent group under any condition. In both subject groups, the cocaine-associated and erotic films produced a similar reduction in total EEG power. The cocaine-associated and erotic films also produced a similar increase in the self-rated desire for cocaine, but this change only occurred in the cocaine-dependent group.
Schneider-Helmert, D; Kumar, A
1995-01-15
Intrusion of alpha activity, an electroencephalographic (EEG) pattern typical for wakefulness, into sleep stages has repeatedly been described and investigated in various populations. Some studies suggested that it is a less deep and restorative sleep, but others did not support this interpretation. The present study was carried out to collect ample data on neurophysiology and subjective experience of sleep and on daytime cognitive performance to clarify this point. A sample of 128 primary insomniacs was investigated with polysomnography (PSG) that was submitted to a computerized, automatic analysis of alpha activity during sleep. It yielded two groups of 64 Ss each with a normal, that is, nonalpha sleep EEG and with alpha-sleep, respectively. Contrasting the two groups for PSG showed that alpha sleep Ss had significantly more stage 4 and a (nonsignificant) tendency for more awakenings. Subjectively, they largely underestimated intermittent wake time and consequently overestimated sleep duration by 50 min. The performance test battery showed a difference in one test only, that is, a better short-term memory function by alpha sleep Ss. In conclusion, there was no result supporting the assumption that alpha sleep is less restorative, but a significant lack of perception of intermittent awakenings during night sleep by alpha sleep Ss was found. The authors propose an explanation and point to the implications this misperception might have for the clinician.
Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.
Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria
2016-03-01
Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.
EEG alpha power and creative ideation☆
Fink, Andreas; Benedek, Mathias
2014-01-01
Neuroscientific studies revealed first insights into neural mechanisms underlying creativity, but existing findings are highly variegated and often inconsistent. Despite the disappointing picture on the neuroscience of creativity drawn in recent reviews, there appears to be robust evidence that EEG alpha power is particularly sensitive to various creativity-related demands involved in creative ideation. Alpha power varies as a function of creativity-related task demands and the originality of ideas, is positively related to an individuals’ creativity level, and has been observed to increase as a result of creativity interventions. Alpha increases during creative ideation could reflect more internally oriented attention that is characterized by the absence of external bottom-up stimulation and, thus, a form of top-down activity. Moreover, they could indicate the involvement of specific memory processes such as the efficient (re-)combination of unrelated semantic information. We conclude that increased alpha power during creative ideation is among the most consistent findings in neuroscientific research on creativity and discuss possible future directions to better understand the manifold brain mechanisms involved in creativity. PMID:23246442
[EEG features during olfactory stimulation in drug dependence persons].
Batukhtina, E I; Nevidimova, T I; Vetlugina, T P; Kokorina, N P; Bokhan, N A
2013-01-01
Power spectra analysis EEG was used for baseline interval and during olfactory stimulation in drug dependence and healthy persons. Intergroup differences of EEG spectra were related with enhancement of cortex biopotential power in narcological patients at parietal and temporal sites. Interhemispheres features of frequency bands contribution in EEG spectra were identified. Increased biopotential power in drug dependence persons was observed at left temporal hemisphere in high-frequency bands in baseline interval and during olfactory stimulation. Increased power of alpha activity was typical for right temporal hemisphere in narcological patients as compare to healthy persons. Detected neurophysiological patterns may be related with psychological and behavioral features of addictive disorders.
Thomas, Bianca Lee; Viljoen, Margaretha
2016-01-01
The aim of this study was to assess baseline EEG brain wave activity in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of evoked attention and methylphenidate on this activity. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulant (methylphenidate) medication. Control subjects (n = 18) were tested once. EEG brain wave activity was tested both at baseline and during focussed attention. Attention was evoked and EEG brain wave activity was determined by means of the BioGraph Infiniti biofeedback apparatus. The main finding of this study was that control subjects and stimulant-free children with ADHD exhibited the expected reactivity in high alpha-wave activity (11-12 Hz) from baseline to focussed attention; however, methylphenidate appeared to abolish this reactivity. Methylphenidate attenuates the normal cortical response to a cognitive challenge. © 2016 S. Karger AG, Basel.
Iznak, E V; Iznak, A F; Pankratova, E A; Zavadenko, N N; Guzilova, L S; Guzilova, Iu I
2010-01-01
To assess objectively a dynamics of brain functional state, EEG spectral power and peak latency of the P300 component of cognitive auditory evoked potentials have been analyzed in adolescents during the course of nootropic therapy of residual asthenic consequences of traumatic brain injury (ICD-10 F07.2). The study included 76 adolescents, aged 12-18 years, who have undergone severe closed head trauma with brain commotion 1/2--5 years ago. Patients have been divided into 3 groups treated during one month with cerebrolysin, piracetam or magne-B6, respectively. After the end of the nootropic therapy, 77% of patients treated with cerebrolysin as well as 50% of patients treated with piracetam and magne-B6 have demonstrated the positive dynamics of their brain functional state that manifested itself in the appearance of occipital EEG alpha rhythm or in the increase of its spectral power; in the normalization of alpha rhythm frequency; in the decrease in the spectral power of slow wave (theta and delta) EEG activity, in the amount (up to the disappearance) of paroxysmal EEG activity, in the EEG response to hyperventilation and in the shortening of the P300 peak latency. Such positive changes of neurophysiological parameters have been associated with the improvement of clinical conditions of patients and correlated significantly with the dynamics of psychometric scores of attention and memory.
EEG Alpha and Beta Activity in Normal and Deaf Subjects.
ERIC Educational Resources Information Center
Waldron, Manjula; And Others
Electroencephalogram and task performance data were collected from three groups of young adult males: profoundly deaf Ss who signed from an early age, profoundly deaf Ss who only used oral (speech and speedreading) methods of communication, and normal hearing Ss. Alpha and Beta brain wave patterns over the Wernicke's area were compared across…
Tenke, Craig E.; Kayser, Jürgen; Pechtel, Pia; Webb, Christian A.; Dillon, Daniel G.; Goer, Franziska; Murray, Laura; Deldin, Patricia; Kurian, Benji T.; McGrath, Patrick J.; Parsey, Ramin; Trivedi, Madhukar; Fava, Maurizio; Weissman, Myrna M.; McInnis, Melvin; Abraham, Karen; Alvarenga, Jorge; Alschuler, Daniel M.; Cooper, Crystal; Pizzagalli, Diego A.; Bruder, Gerard E.
2016-01-01
Growing evidence suggests that loudness dependency of auditory evoked potentials (LDAEP) and resting EEG alpha and theta may be biological markers for predicting response to antidepressants. In spite of this promise, little is known about the joint reliability of these markers, and thus their clinical applicability. New, standardized procedures were developed to improve the compatibility of data acquired with different EEG platforms, and used to examine test-retest reliability for the three electrophysiological measures selected for a multisite project—Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). Thirty nine healthy controls across four clinical research sites were tested in two sessions separated by about one week. Resting EEG (eyes-open and eyes-closed conditions) was recorded and LDAEP measured using binaural tones (1000 Hz, 40 ms) at five intensities (60–100 dB SPL). Principal components analysis (PCA) of current source density (CSD) waveforms reduced volume conduction and provided reference-free measures of resting EEG alpha and N1 dipole activity to tones from auditory cortex. Low Resolution Electromagnetic Tomography (LORETA) extracted resting theta current density measures corresponding to rostral anterior cingulate (rACC), which has been implicated in treatment response. There were no significant differences in posterior alpha, N1 dipole or rACC theta across sessions. Test-retest reliability was .84 for alpha, .87 for N1 dipole, and .70 for theta rACC current density. The demonstration of good-to-excellent reliability for these measures provides a template for future EEG/ERP studies from multiple testing sites, and an important step for evaluating them as biomarkers for predicting treatment response. PMID:28000259
Tenke, Craig E; Kayser, Jürgen; Pechtel, Pia; Webb, Christian A; Dillon, Daniel G; Goer, Franziska; Murray, Laura; Deldin, Patricia; Kurian, Benji T; McGrath, Patrick J; Parsey, Ramin; Trivedi, Madhukar; Fava, Maurizio; Weissman, Myrna M; McInnis, Melvin; Abraham, Karen; E Alvarenga, Jorge; Alschuler, Daniel M; Cooper, Crystal; Pizzagalli, Diego A; Bruder, Gerard E
2017-01-01
Growing evidence suggests that loudness dependency of auditory evoked potentials (LDAEP) and resting EEG alpha and theta may be biological markers for predicting response to antidepressants. In spite of this promise, little is known about the joint reliability of these markers, and thus their clinical applicability. New standardized procedures were developed to improve the compatibility of data acquired with different EEG platforms, and used to examine test-retest reliability for the three electrophysiological measures selected for a multisite project-Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). Thirty-nine healthy controls across four clinical research sites were tested in two sessions separated by about 1 week. Resting EEG (eyes-open and eyes-closed conditions) was recorded and LDAEP measured using binaural tones (1000 Hz, 40 ms) at five intensities (60-100 dB SPL). Principal components analysis of current source density waveforms reduced volume conduction and provided reference-free measures of resting EEG alpha and N1 dipole activity to tones from auditory cortex. Low-resolution electromagnetic tomography (LORETA) extracted resting theta current density measures corresponding to rostral anterior cingulate (rACC), which has been implicated in treatment response. There were no significant differences in posterior alpha, N1 dipole, or rACC theta across sessions. Test-retest reliability was .84 for alpha, .87 for N1 dipole, and .70 for theta rACC current density. The demonstration of good-to-excellent reliability for these measures provides a template for future EEG/ERP studies from multiple testing sites, and an important step for evaluating them as biomarkers for predicting treatment response. © 2016 Society for Psychophysiological Research.
Cuspineda, E R; Machado, C; Virues, T; Martínez-Montes, E; Ojeda, A; Valdés, P A; Bosch, J; Valdes, L
2009-07-01
Conventional EEG and quantitative EEG visual stimuli (close-open eyes) reactivity analysis have shown their usefulness in clinical practice; however studies at the level of EEG generators are limited. The focus of the study was visual reactivity of cortical resources in healthy subjects and in a stroke patient. The 64 channel EEG and T1 magnetic resonance imaging (MRI) studies were obtained from 32 healthy subjects and a middle cerebral artery stroke patient. Low Resolution Electromagnetic Tomography (LORETA) was used to estimate EEG sources for both close eyes (CE) vs. open eyes (OE) conditions using individual MRI. The t-test was performed between source spectra of the two conditions. Thresholds for statistically significant t values were estimated by the local false discovery rate (lfdr) method. The Z transform was used to quantify the differences in cortical reactivity between the patient and healthy subjects. Closed-open eyes alpha reactivity sources were found mainly in posterior regions (occipito-parietal zones), extended in some cases to anterior and thalamic regions. Significant cortical reactivity sources were found in frequencies different from alpha (lower t-values). Significant changes at EEG reactivity sources were evident in the damaged brain hemisphere. Reactivity changes were also found in the "healthy" hemisphere when compared with the normal population. In conclusion, our study of brain sources of EEG alpha reactivity provides information that is not evident in the usual topographic analysis.
2012-01-01
Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object. PMID:22364485
Bae, Gi-Yeul; Luck, Steven J
2018-01-10
In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.
The effects of Dalmane /flurazepam hydrochloride/ on human EEG characteristics.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Carrie, J. R. G.; Borda, R. P.; Kellaway, P.
1973-01-01
Evaluation of the changes in the waking EEGs of six healthy male subjects who received 30 mg daily oral doses of flurazepam hydrochloride for two weeks. A placebo was then substituted for flurazepam for another two weeks. An increase in beta activity with a maximum in fronto-central leads was observed during the test period. A small increase in the mean wavelength of the alpha and theta activities in the central-occipital derivations was also apparent in the subjects during the period.
Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona
2017-07-21
Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.
Jap, Budi Thomas; Lal, Sara; Fischer, Peter
2010-06-01
The current study investigated the effect of monotonous driving on inter-hemispheric electroencephalography (EEG) coherence. Twenty-four non-professional drivers were recruited to perform a fatigue instigating monotonous driving task while 30 channels of EEG were simultaneously recorded. The EEG recordings were then divided into 5 equal sections over the entire driving period for analysis. Inter-hemispheric coherence was computed from 5 homologous EEG electrode pairs (FP1-FP2, C3-C4, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha and beta frequency bands. Results showed that frontal and occipital inter-hemispheric coherence values were significantly higher than central, parietal, and temporal sites for all four frequency bands (p<0.0001). In the alpha frequency band, significant difference was found between earlier and later driving sections (p=0.02). The coherence values in all EEG frequency bands were slightly increased at the end of the driving session, except for FP1-FP2 electrode pair, which showed no significant change in coherence in the beta frequency band at the end of the driving session. Copyright 2010 Elsevier B.V. All rights reserved.
Training of support afferentation in postmenopausal women.
Bazanova, O M; Kholodina, N V; Nikolenko, E D; Payet, J
2017-12-01
We have recently shown a diminishing of the Menopause Index in old-aged women who underwent special training directed at the enhancement of support afferentation by increasing the plantar forefoot sensitivity (Bazanova et al., 2015). Based on these results we hypothesized, that purposeful training of support afferentation through stimulation of plantar graviceptors by Aikido practice will decrease excessive postural and psychoemotional tension not only in rest condition, but during cognitive and manual task performance too. Fluency of cognitive and motor task performance, EEG alpha power as an index of neuronal efficiency of cognitive control, amount of alpha power suppression as a visual activation measure and EMG power of forehead muscles as a sign of psychoemotional tension were compared in three groups of post-menopausal women: i) 8years training with forefeet support afferentation with Aikido practice (A), ii) 8years fitness training (F) and iii) no dedicated fitness training for past 8years (N). Simultaneous stabilometry, EEG, and frontal EMG recording were performed in sitting and standing up position in eyes closed and eyes open condition. Recording done at rest and while performing cognitive and finger motor tasks. We compared studied parameters between groups with one- and two-way analyses of variance (ANOVAs) with Bonferroni correction for multiple comparisons, followed by post hoc two-tailed unpaired t-tests. The fluency of tasks performance, EMG and alpha-EEG-activity displayed similar values in all groups in a sitting position. Center of pressure (CoP) sway length, velocity and energy demands for saving balance increased when standing up, more in group N than in groups F and A (all contrasts p values<0.002, η 2 >0.89). Post hoc t-tests showed increased fluency in standing in both Aikido (p<0.01) and Fitness (p<0.05) subjects in relation to untrained subjects. Increasing fluency in motor task performance was in parallel with enhancing the EEG alpha-2-power and decreasing EMG power only in A group (η 2 >0.77). Fluency in motor task and alpha EEG power decreased, but frontal EMG power increased in response to standing in untrained women (group N) and did not change in F group. Post hoc t-tests showed that EEG amount of alpha-2 power suppression in response to visual activation and frontal EMG power was lower in A than F and N groups (p<0.004) during motor task performance in the standing position. These results were interpreted as showing that training of forefoot plantar surface sensitivity in postmenopausal women decreases levels of psychoemotional tension and increases cognitive control caused by the psychomotor and postural challenges. Thus, Aikido training aimed at learning coordination between manual task performance and balance control by increasing the plantar support zones sensation decreases the cost of maintained vertical position and dependence of motor coordination on visual contribution. Copyright © 2017 Elsevier B.V. All rights reserved.
Validation of the Karolinska sleepiness scale against performance and EEG variables.
Kaida, Kosuke; Takahashi, Masaya; Akerstedt, Torbjörn; Nakata, Akinori; Otsuka, Yasumasa; Haratani, Takashi; Fukasawa, Kenji
2006-07-01
The Karolinska sleepiness scale (KSS) is frequently used for evaluating subjective sleepiness. The main aim of the present study was to investigate the validity and reliability of the KSS with electroencephalographic, behavioral and other subjective indicators of sleepiness. Participants were 16 healthy females aged 33-43 (38.1+/-2.68) years. The experiment involved 8 measurement sessions per day for 3 consecutive days. Each session contained the psychomotor vigilance task (PVT), the Karolinska drowsiness test (KDT-EEG alpha & theta power), the alpha attenuation test (AAT-alpha power ratio open/closed eyes) and the KSS. Median reaction time, number of lapses, alpha and theta power density and the alpha attenuation coefficients (AAC) showed highly significant increase with increasing KSS. The same variables were also significantly correlated with KSS, with a mean value for lapses (r=0.56). The KSS was closely related to EEG and behavioral variables, indicating a high validity in measuring sleepiness. KSS ratings may be a useful proxy for EEG or behavioral indicators of sleepiness.
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
NASA Astrophysics Data System (ADS)
Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.
2016-08-01
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Horan, William P; Wynn, Jonathan K; Mathis, Ian; Miller, Gregory A; Green, Michael F
2014-01-01
Although motivational disturbances are common in schizophrenia, their neurophysiological and psychological basis is poorly understood. This electroencephalography (EEG) study examined the well-established motivational direction model of asymmetric frontal brain activity in schizophrenia. According to this model, relative left frontal activity in the resting EEG reflects enhanced approach motivation tendencies, whereas relative right frontal activity reflects enhanced withdrawal motivation tendencies. Twenty-five schizophrenia outpatients and 25 healthy controls completed resting EEG assessments of frontal asymmetry in the alpha frequency band (8-12 Hz), as well as a self-report measure of behavioral activation and inhibition system (BIS/BAS) sensitivity. Patients showed an atypical pattern of differences from controls. On the EEG measure patients failed to show the left lateralized activity that was present in controls, suggesting diminished approach motivation. On the self-report measure, patients reported higher BIS sensitivity than controls, which is typically interpreted as heightened withdrawal motivation. EEG asymmetry scores did not significantly correlate with BIS/BAS scores or with clinical symptom ratings among patients. The overall pattern suggests a motivational disturbance in schizophrenia characterized by elements of both diminished approach and elevated withdrawal tendencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeborn, Danielle L., E-mail: Freeborn.danielle@epa.gov; McDaniel, Katherine L., E-mail: McDaniel.kathy@epa.gov; Moser, Virginia C., E-mail: Moser.ginger@epa.gov
The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long–Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefonmore » (triazole; 1 h), using dosages that produced approximately an ED{sub 30} or an ED{sub 50}–ED{sub 80} change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. - Highlights: • Pesticides with different modes of action have different effects on in vivo rodent EEG. • The EEG was also changed differently after single vs. repeated treatment with fipronil. • The data suggest that EEG may be used as an apical measure for detecting chemical effects on the central nervous system.« less
Analysis of bioelectric records and fabrication of phototype sleep analysis equipment
NASA Technical Reports Server (NTRS)
Kellaway, P.
1972-01-01
A computer-analysis technique was used to evaluate the changes in the waking EEGs of 5 normal subjects which occurred during the oral administration of flurazepam hydrochloride (Dalmane). While the subjects were receiving the drug, there was an increase in the amount of beta (14-38 c/sec) activity in fronto-central EEG leads in all 5 subjects. This increase in beta activity was characterized by a highly consistent increase in the number of waves that occurred during an EEG recording interval of fixed duration and by a less consistent increase in average wave amplitude. There was no detectable change in mean EEG wavelength (frequency) within the beta frequency range. The EEG patterns reverted to their baseline condition during 2-3 weeks after withdrawal of the drug. Analysis of the alpha, theta and delta components of the EEG indicated no changes during or following administration of the drug. This study clearly illustrates the usefulness of specific computer-analysis techniques in the characterization and quantification of sleep-promoting drugs upon the EEG of the normal young adults in the waking state. Two preamplifiers and 150 EEG monitoring caps with electrodes were delivered to MSC.
Mikicin, Mirosław; Kowalczyk, Marek
2015-09-01
The aim of the present study was to investigate the effect of regular audio-visual relaxation combined with Schultz's autogenic training on: (1) the results of behavioral tests that evaluate work performance during burdensome cognitive tasks (Kraepelin test), (2) changes in classical EEG alpha frequency band, neocortex (frontal, temporal, occipital, parietal), hemisphere (left, right) versus condition (only relaxation 7-12 Hz). Both experimental (EG) and age-and skill-matched control group (CG) consisted of eighteen athletes (ten males and eight females). After 7-month training EG demonstrated changes in the amplitude of mean electrical activity of the EEG alpha bend at rest and an improvement was significantly changing and an improvement in almost all components of Kraepelin test. The same examined variables in CG were unchanged following the period without the intervention. Summing up, combining audio-visual relaxation with autogenic training significantly improves athlete's ability to perform a prolonged mental effort. These changes are accompanied by greater amplitude of waves in alpha band in the state of relax. The results suggest usefulness of relaxation techniques during performance of mentally difficult sports tasks (sports based on speed and stamina, sports games, combat sports) and during relax of athletes.
Borghini, Gianluca; Astolfi, Laura; Vecchiato, Giovanni; Mattia, Donatella; Babiloni, Fabio
2014-07-01
This paper reviews published papers related to neurophysiological measurements (electroencephalography: EEG, electrooculography EOG; heart rate: HR) in pilots/drivers during their driving tasks. The aim is to summarise the main neurophysiological findings related to the measurements of pilot/driver's brain activity during drive performance and how particular aspects of this brain activity could be connected with the important concepts of "mental workload", "mental fatigue" or "situational awareness". Review of the literature suggests that exists a coherent sequence of changes for EEG, EOG and HR variables during the transition from normal drive, high mental workload and eventually mental fatigue and drowsiness. In particular, increased EEG power in theta band and a decrease in alpha band occurred in high mental workload. Successively, increased EEG power in theta as well as delta and alpha bands characterise the transition between mental workload and mental fatigue. Drowsiness is also characterised by increased blink rate and decreased HR values. The detection of such mental states is actually performed "offline" with accuracy around 90% but not online. A discussion on the possible future applications of findings provided by these neurophysiological measurements in order to improve the safety of the vehicles will be also presented. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alfimova, M V; Uvarova, L G
2008-06-01
EEG correlates of impairments in the processing of emotiogenic information which might reflect a genetic predisposition to schizophrenia were sought by studying the dynamics of EEG rhythm powers on presentation of neutral and emotional words in 36 patients with schizophrenia, 50 of their unaffected first-degree relatives, and 47 healthy subjects without any inherited predisposition to psychoses. In controls, passive hearing of neutral words produced minimal changes in cortical rhythms, predominantly in the form of increases in the power levels of slow and fast waves, while perception of emotional words was accompanied by generalized reductions in the power of the alpha and beta(1) rhythms and regionally specific suppression of theta and beta(2) activity. Patients and their relatives demonstrated reductions in power of alpha and beta(1) activity, with an increase in delta power on hearing both groups of words. Thus, differences in responses to neutral and emotional words in patients and their relatives were weaker, because of increased reactions to neutral words. These results may identify EEG reflections of pathology of involuntary attention, which is familial and, evidently, inherited in nature. No reduction in reactions to emotiogenic stimuli was seen in patients' families.
Sowndhararajan, Kandhasamy; Kim, Songmun
2016-01-01
The influence of fragrances such as perfumes and room fresheners on the psychophysiological activities of humans has been known for a long time, and its significance is gradually increasing in the medicinal and cosmetic industries. A fragrance consists of volatile chemicals with a molecular weight of less than 300 Da that humans perceive through the olfactory system. In humans, about 300 active olfactory receptor genes are devoted to detecting thousands of different fragrance molecules through a large family of olfactory receptors of a diverse protein sequence. The sense of smell plays an important role in the physiological effects of mood, stress, and working capacity. Electrophysiological studies have revealed that various fragrances affected spontaneous brain activities and cognitive functions, which are measured by an electroencephalograph (EEG). The EEG is a good temporal measure of responses in the central nervous system and it provides information about the physiological state of the brain both in health and disease. The EEG power spectrum is classified into different frequency bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz), and each band is correlated with different features of brain states. A quantitative EEG uses computer software to provide the topographic mapping of the brain activity in frontal, temporal, parietal and occipital brain regions. It is well known that decreases of alpha and beta activities and increases of delta and theta activities are associated with brain pathology and general cognitive decline. In the last few decades, many scientific studies were conducted to investigate the effect of inhalation of aroma on human brain functions. The studies have suggested a significant role for olfactory stimulation in the alteration of cognition, mood, and social behavior. This review aims to evaluate the available literature regarding the influence of fragrances on the psychophysiological activities of humans with special reference to EEG changes. PMID:27916830
Smirnov, Michael S.; Kiyatkin, Eugene A.
2009-01-01
Many important physiological, behavioral and subjective effects of intravenous (iv) cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed EEG and EMG recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of iv COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by iv COC methiodide, a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC methiodide had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by iv procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, iv saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, iv COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the sensory effects of COC, thus contributing to the learning and development of drug-taking behavior. PMID:19861149
Long-Range Correlation in alpha-Wave Predominant EEG in Human
NASA Astrophysics Data System (ADS)
Sharif, Asif; Chyan Lin, Der; Kwan, Hon; Borette, D. S.
2004-03-01
The background noise in the alpha-predominant EEG taken from eyes-open and eyes-closed neurophysiological states is studied. Scale-free characteristic is found in both cases using the wavelet approach developed by Simonsen and Nes [1]. The numerical results further show the scaling exponent during eyes-closed is consistently lower than eyes-open. We conjecture the origin of this difference is related to the temporal reconfiguration of the neural network in the brain. To further investigate the scaling structure of the EEG background noise, we extended the second order statistics to higher order moments using the EEG increment process. We found that the background fluctuation in the alpha-predominant EEG is predominantly monofractal. Preliminary results are given to support this finding and its implication in brain functioning is discussed. [1] A.H. Simonsen and O.M. Nes, Physical Review E, 58, 2779¡V2748 (1998).
Chenxi, Li; Chen, Yanni; Li, Youjun; Wang, Jue; Liu, Tian
2016-06-01
The multiscale entropy (MSE) is a novel method for quantifying the intrinsic dynamical complexity of physiological systems over several scales. To evaluate this method as a promising way to explore the neural mechanisms in ADHD, we calculated the MSE in EEG activity during the designed task. EEG data were collected from 13 outpatient boys with a confirmed diagnosis of ADHD and 13 age- and gender-matched normal control children during their doing multi-source interference task (MSIT). We estimated the MSE by calculating the sample entropy values of delta, theta, alpha and beta frequency bands over twenty time scales using coarse-grained procedure. The results showed increased complexity of EEG data in delta and theta frequency bands and decreased complexity in alpha frequency bands in ADHD children. The findings of this study revealed aberrant neural connectivity of kids with ADHD during interference task. The results showed that MSE method may be a new index to identify and understand the neural mechanism of ADHD. Copyright © 2016 Elsevier Inc. All rights reserved.
Alpha-theta border EEG abnormalities in preclinical Huntington's disease.
Ponomareva, Natalya; Klyushnikov, Sergey; Abramycheva, Natalya; Malina, Daria; Scheglova, Nadejda; Fokin, Vitaly; Ivanova-Smolenskaia, Irina; Illarioshkin, Sergey
2014-09-15
Brain dysfunction precedes clinical manifestation of Huntington's disease (HD) by decades. This study was aimed to determine whether resting EEG is altered in preclinical HD mutations carriers (pre-HD). We examined relative power of broad traditional EEG bands as well as 1-Hz sub-bands of theta and alpha from the resting-state EEG of 29 pre-HD individuals and of 29 age-matched normal controls. The relative power of the narrow sub-band in the border of theta-alpha (7-8 Hz) was significantly reduced in pre-HD subjects as compared to normal controls, while the alterations in relative power of the broad frequency bands were not significant. In pre-HD subjects, the number of CAG repeats in the huntingtin (HTT) gene as well as the disease burden score (DBS) showed a positive correlation with relative power of the delta and theta frequency bands and their sub-bands and a negative correlation with alpha band relative power and the differences of relative power of the 7-8 Hz and 4-5 Hz frequency sub-bands. The obtained results suggest that EEG alterations in pre-HD individuals may be related to the course of the pathological process and to HD endophenotype. Analysis of the narrow EEG bands was found to be more useful for assessing EEG alterations in pre-HD individuals than a more traditional approach using broad bandwidths. Copyright © 2014 Elsevier B.V. All rights reserved.
Relationship of genetically transmitted alpha EEG traits to anxiety disorders and alcoholism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enoch, M.A.; Rohrbaugh, W.; Harris, C.R.
We tested the hypothesis that a heritable EEG trait, the low voltage alpha (LV), is associated with psychiatric disorders. Modest to moderate evidence for genetic linkage of both panic disorder and the low voltage alpha trait to the same region of chromosome 20q has recently been reported, raising the issue of whether there is a phenotypic correlation between these traits. A total of 124 subjects including 50 unrelated index subjects and 74 relatives were studied. Alpha EEG power was measured and EEG phenotypes were impressionistically classified. Subjects were psychiatrically interviewed using the SADS-L and blind-rated by RDC criteria. Alcoholics weremore » four times more likely to be LV (including so-called borderline low voltage alpha) than were nonalcoholic, nonanxious subjects. Alcoholics with anxiety disorder are 10 times more likely to be LV. However, alcoholics without anxiety disorder were similar to nonalcoholics in alpha power. An anxiety disorder (panic disorder, phobia, or generalized anxiety) was found in 14/17 LV subjects as compared to 34/101 of the rest of the sample (P < 0.01). Support for these observations was found in the unrelated index subjects in whom no traits would be shared by familial clustering. Lower alpha power in anxiety disorders was not state-dependent, as indicated by the Spielberger Anxiety Scale. Familial covariance of alpha power was 0.25 (P < 0.01). These findings indicate there may be a shared factor underlying the transmissible low voltage alpha EEG variant and vulnerability to anxiety disorders with associated alcoholism. This factor is apparently not rare, because LV was found in approximately 10% of unrelated index subjects and 5% of subjects free of alcoholism and anxiety disorders. 43 refs., 1 fig., 3 tabs.« less
Clemens, Béla; Piros, Pálma; Bessenyei, Mónika; Tóth, Márton; Hollódy, Katalin; Kondákor, István
2008-10-01
Anatomical localization of the cortical effect of lamotrigine (LTG) in patients with idiopathic generalized epilepsy (IGE). 19 patients with untreated IGE were investigated. EEG was recorded in the untreated condition and 3 months later when LTG treatment abolished the seizures. 19-channel EEG was recorded, and a total of 2min artifact-free, waking EEG was processed to low-resolution electromagnetic tomography (LORETA) analysis. Activity (that is, current source density, A/m(2)) was computed in four frequency bands (delta, theta, alpha, and beta), for 2394 voxels that represented the cortical gray matter and the hippocampi. Group differences between the untreated and treated conditions were computed for the four bands and all voxels by multiple t-tests for interdependent datasets. The results were presented in terms of anatomical distribution and statistical significance. p<0.01 (uncorrected) changes (decrease of activity) emerged in the theta and the alpha bands. Theta activity decreased in a large cluster of voxels including parts of the temporal, parietal, occipital cortex bilaterally, and in the transverse temporal gyri, insula, hippocampus, and uncus on the right side. Alpha activity decreased in a relatively smaller cortical area involving the right temporo-parietal junction and surrounding parts of the cortex, and part of the insula on the right side. LTG decreased theta activity in several cortical areas where abnormally increased theta activity had been found in a prior study in another cohort of untreated IGE patients [Clemens, B., Bessenyei, M., Piros, P., Tóth, M., Seress, L., Kondákor, I., 2007b. Characteristic distribution of interictal brain electrical activity in idiopathic generalized epilepsy. Epilepsia 48, 941-949]. These LTG-related changes might be related to the decrease of seizure propensity in IGE.
The Utility of EEG Band Power Analysis in the Study of Infancy and Early Childhood
Saby, Joni N.; Marshall, Peter J.
2012-01-01
Research employing electroencephalographic (EEG) techniques with infants and young children has flourished in recent years due to increased interest in understanding the neural processes involved in early social and cognitive development. This review focuses on the functional characteristics of the alpha, theta, and gamma frequency bands in the developing EEG. Examples of how analyses of EEG band power have been applied to specific lines of developmental research are also discussed. These examples include recent work on the infant mu rhythm and action processing, frontal alpha asymmetry and approach-withdrawal tendencies, and EEG power measures in the study of early psychosocial adversity. PMID:22545661
ERIC Educational Resources Information Center
Lee, Hyangsook
2013-01-01
The purpose of the study was to compare 2D and 3D visual presentation styles, both still frame and animation, on subjects' brain activity measured by the amplitude of EEG alpha wave and on their recall to see if alpha power and recall differ significantly by depth and movement of visual presentation style and by spatial intelligence. In addition,…
Bazanova, O M; Kholodina, N V; Podoinikov, A S; Nikolenko, E D
2015-01-01
Ageing, lack of physical activity and sedentary lifestyle cause disorders of the sensorimotor system of postural control. The role of support afferentation in the changes in cortical activity in balance impairments has not been studied yet. The purpose of this study was to investigate the changes in the stabilographic parameters of the body center of gravity, alpha activity indices of the electroencephalography (EEG) and electromyographic (EMG) measurements of forehead muscle tone in response to visual activation in standing and sitting positions in postmenopausal women after and without training of leg support sensation (LSS) The variables were compared between 3 groups: Group A (n = 12, age: 66 ± 9 years)--women who have trained LSS with the help of Aikido techniques for 8 years; group F (n = 12, age: 65 ± 6 years)--women who have attended Fitness training for 8 years; group N (n = 11, age: 66 ± 7 years)--women who have not taken physical exercises for the last 8 years. It was found that in group N a change in body position from "sitting" to "standing" leads to a much greater increase in the area of stabilogram and in the energy expenditure needed to maintain the bal- ance than in groups A and F. Posture changes from sitting to standing position increases the tension of the forehead muscles and the suppression of alpha-1-amplitude, but decreases the power in high- and low-frequency alpha-band of EEG and the width of alpha-band in group N. In women ofgroup F the posture change does not result in an increase in EMG and signs of activation or tension in EEG; in group A it leads to a decrease of visual activation indices and psychoemotional tension and to an increase in power in alpha-2-band which is a sign of neuronal efficiency. Basing on these data, we can conclude that training focused on support afferentation in postmenopausal women decreases the psychoemotional tension and increases neuronal efficiency ofsensorimotor integration of postural control system and can be used in the prevention of falls in elderly people.
Toth, Marton; Kondakor, Istvan; Faludi, Bela
2016-10-01
The effects of initiation of continuous positive airway pressure (CPAP) therapy on electroencephalographic (EEG) background activity were investigated in patients exhibiting both moderate (n = 13) and severe (n = 12) obstructive sleep apnea syndromes in the testing of the potential differences of alterations of brain electrical activity caused by chronic hypoxia between these two groups. A normal control group (n = 14) was also examined. Two EEG examinations were achieved in each group: before and after first-time CPAP therapy. Low-resolution electromagnetic tomography (LORETA) was implemented towards localizing the generators of EEG activity in separate frequency bands. Prior to CPAP treatment, as a common direction of change, analysis with LORETA demonstrated increased activity in comparison with the patient and control groups. In the moderate group, significant changes were detected in the alpha2 band in the posterior cingulate cortex as well as in the beta1 band in the right posterior parietal cortex and the left supramarginal gyrus. In the severe group, significant changes were found in theta and alpha1 bands in the posterior cingulate cortex. Following CPAP treatment, these significant differences vanished in the severe group. In the moderate group, significantly decreased activity was seen in the beta3 band in the right fusiform gyrus. These findings potentially suggest a normalizing effect of CPAP therapy on EEG background activity in both groups of obstructive sleep apnea syndrome patients. Compensatory alterations of brain electrical activity in regions associated with influencing successful memory retrieval, emotional perception, default mode network, anorexia and fear network caused by chronic intermittent hypoxia could possibly be reversed with the use of CPAP therapy. © 2016 European Sleep Research Society.
Mason, L I; Alexander, C N; Travis, F T; Marsh, G; Orme-Johnson, D W; Gackenbach, J; Mason, D C; Rainforth, M; Walton, K G
1997-02-01
Standard ambulatory night sleep electroencephalograph (EEG) of 11 long-term practitioners of the Transcendental Meditation (TM) program reporting "higher states of consciousness" during sleep (the experimental group) was compared to that of nine short-term practitioners and 11 non-practitioners. EEG tracings during stages 3 and 4 sleep showed the experimental group to have: 1) theta-alpha activity simultaneously with delta activity and 2) decreased chin electromyograph (EMG) during deep sleep (p = 0.002) compared to short-term practitioners. Spectral analysis fast Fourier transform (FFT) data of the first three cycles showed that: 3) the experimental subjects had significantly greater theta 2 (6-8 Hz)-alpha 1 (8-10 Hz) relative power during stages 3 and 4 than the combined control groups [t(30) = 5.5, p = 0.0000008] with no difference in time in delta; 4) there was a graded difference across groups during stages 3 and 4 in theta 2-alpha 1 power, with experimentals having greater power than short-term practitioners, who in turn had greater power than non-practitioners [t(30) = 5.08, p = 0.00002]; and 5) experimentals also had increased rapid eye movement (REM) density during REM periods compared to short-term practitioners (p = 0.04). Previous studies have found increased theta-alpha EEG activity during reported periods of "transcendental consciousness" during the TM technique. In the Vedic tradition, as described by Maharishi Mahesh Yogi, transcendental consciousness is the first of a sequence of higher states. The maintenance of transcendental consciousness along with deep sleep is said to be a distinctive criterion of further, stabilized higher states of consciousness. The findings of this study are interpreted as physiological support for this model.
Yuvaraj, Rajamanickam; Murugappan, Murugappan; Mohamed Ibrahim, Norlinah; Iqbal, Mohd; Sundaraj, Kenneth; Mohamad, Khairiyah; Palaniappan, Ramaswamy; Mesquita, Edgar; Satiyan, Marimuthu
2014-04-09
While Parkinson's disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients.
Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.
Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz
2018-01-01
There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clemens, Béla; Bánk, József; Piros, Pálma; Bessenyei, Mónika; Veto, Sára; Tóth, Márton; Kondákor, István
2008-09-01
Investigating the brain of migraine patients in the pain-free interval may shed light on the basic cerebral abnormality of migraine, in other words, the liability of the brain to generate migraine attacks from time to time. Twenty unmedicated "migraine without aura" patients and a matched group of healthy controls were investigated in this explorative study. 19-channel EEG was recorded against the linked ears reference and was on-line digitized. 60 x 2-s epochs of eyes-closed, waking-relaxed activity were subjected to spectral analysis and a source localization method, low resolution electromagnetic tomography (LORETA). Absolute power was computed for 19 electrodes and four frequency bands (delta: 1.5-3.5 Hz, theta: 4.0-7.5 Hz, alpha: 8.0-12.5 Hz, beta: 13.0-25.0 Hz). LORETA "activity" (=current source density, ampers/meters squared) was computed for 2394 voxels and the above specified frequency bands. Group comparison was carried out for the specified quantitative EEG variables. Activity in the two groups was compared on a voxel-by-voxel basis for each frequency band. Statistically significant (uncorrected P < 0.01) group differences were projected to cortical anatomy. Spectral findings: there was a tendency for more alpha power in the migraine that in the control group in all but two (F4, C3) derivations. However, statistically significant (P < 0.01, Bonferroni-corrected) spectral difference was only found in the right occipital region. The main LORETA-finding was that voxels with P < 0.01 differences were crowded in anatomically contiguous cortical areas. Increased alpha activity was found in a cortical area including part of the precuneus, and the posterior part of the middle temporal gyrus in the right hemisphere. Decreased alpha activity was found bilaterally in medial parts of the frontal cortex including the anterior cingulate and the superior and medial frontal gyri. Neither spectral analysis, nor LORETA revealed statistically significant differences in the delta, theta, and beta bands. LORETA revealed the anatomical distribution of the cortical sources (generators) of the EEG abnormalities in migraine. The findings characterize the state of the cerebral cortex in the pain-free interval and might be suitable for planning forthcoming investigations.
Single-trial log transformation is optimal in frequency analysis of resting EEG alpha.
Smulders, Fren T Y; Ten Oever, Sanne; Donkers, Franc C L; Quaedflieg, Conny W E M; van de Ven, Vincent
2018-02-01
The appropriate definition and scaling of the magnitude of electroencephalogram (EEG) oscillations is an underdeveloped area. The aim of this study was to optimize the analysis of resting EEG alpha magnitude, focusing on alpha peak frequency and nonlinear transformation of alpha power. A family of nonlinear transforms, Box-Cox transforms, were applied to find the transform that (a) maximized a non-disputed effect: the increase in alpha magnitude when the eyes are closed (Berger effect), and (b) made the distribution of alpha magnitude closest to normal across epochs within each participant, or across participants. The transformations were performed either at the single epoch level or at the epoch-average level. Alpha peak frequency showed large individual differences, yet good correspondence between various ways to estimate it in 2 min of eyes-closed and 2 min of eyes-open resting EEG data. Both alpha magnitude and the Berger effect were larger for individual alpha than for a generic (8-12 Hz) alpha band. The log-transform on single epochs (a) maximized the t-value of the contrast between the eyes-open and eyes-closed conditions when tested within each participant, and (b) rendered near-normally distributed alpha power across epochs and participants, thereby making further transformation of epoch averages superfluous. The results suggest that the log-normal distribution is a fundamental property of variations in alpha power across time in the order of seconds. Moreover, effects on alpha power appear to be multiplicative rather than additive. These findings support the use of the log-transform on single epochs to achieve appropriate scaling of alpha magnitude. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping
2014-02-28
Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.
Puzzo, Ignazio; Cooper, Nicholas R; Cantarella, Simona; Fitzgerald, Paul B; Russo, Riccardo
2013-12-06
Previous research suggested that EEG markers of mirror neuron system activation may differ, in the normal population as a function of different levels of the autistic spectrum quotient; (AQ). The present study aimed at modulating the EEG sensorimotor reactivity induced by hand movement observation by means of repetitive transcranial magnetic stimulation (rTMS) applied to the inferior parietal lobule. We examined how the resulting rTMS modulation differed in relation to the self-reported autistic traits in the typically developing population. Results showed that during sham stimulation, all participants had significantly greater sensorimotor alpha reactivity (motor cortex-C electrodes) when observing hand movements compared to static hands. This sensorimotor alpha reactivity difference was reduced during active rTMS stimulation. Results also revealed that in the average AQ group at sham there was a significant increase in low beta during hand movement than static hand observation (pre-motor areas-FC electrodes) and that (like alpha over the C electrodes) this difference is abolished when active rTMS is delivered. Participants with high AQ scores showed no significant difference in low beta sensorimotor reactivity between active and sham rTMS during static hand or hand movement observation. These findings suggest that unlike sham, active rTMS over the IPL modulates the oscillatory activity of the low beta frequency of a distal area, namely the anterior sector of the sensorimotor cortex, when participants observe videos of static hand. Importantly, this modulation differs according to the degree of self-reported traits of autism in a typically developing population. © 2013 Elsevier B.V. All rights reserved.
Evaluating the effectiveness of using electroencephalogram power indices to measure visual fatigue.
Hsu, Bin-Wei; Wang, Mao-Jiun J
2013-02-01
Electroencephalography (EEG) is widely used in cognitive and behavioral research. This study evaluates the effectiveness of using the EEG power index to measure visual fatigue. Three common visual fatigue measures, critical-flicker fusion (CFF), near-point accommodation (NPA), and subjective eye-fatigue rating, were used for comparison. The study participants were 20 men with a mean age of 20.4 yr. (SD = 1.5). The experimental task was a car-racing video game. Results indicated that the EEG power indices were valid as a visual fatigue measure and the sensitivity of the objective measures (CFF and EEG power index) was higher than the subjective measure. The EEG beta and EEG alpha were effective for measuring visual fatigue in short- and long-duration tasks, respectively. EEG beta/alpha were the most effective power indexes for the visual fatigue measure.
Tenke, Craig E.; Kayser, Jürgen; Svob, Connie; Miller, Lisa; Alvarenga, Jorge E.; Abraham, Karen; Warner, Virginia; Wickramaratne, Priya; Weissman, Myrna M.; Bruder, Gerard E.
2017-01-01
A prior report (Tenke et al. 2013 Biol. Psychol. 94:426–432) found that participants who rated religion or spirituality (R/S) highly important had greater posterior alpha after 10 years compared to those who did not. Participants who subsequently lowered their rating also had prominent alpha, while those who increased their rating did not. Here we report EEG findings 20 years after initial assessment. Clinical evaluations and R/S ratings were obtained from 73 (52 new) participants in a longitudinal study of family risk for depression. Frequency PCA of current source density transformed EEG concisely quantified posterior alpha. Those who initially rated R/S as highly important had greater alpha compared to those who did not, even if their R/S rating later increased. Furthermore, changes in religious denomination were associated with decreased alpha. Results suggest the possibility of a critical stage in the ontogenesis of R/S that is linked to posterior resting alpha. PMID:28119066
Thibaut, Aurore; Russo, Cristina; Hurtado-Puerto, Aura Maria; Morales-Quezada, Jorge Leon; Deitos, Alícia; Petrozza, John Christopher; Freedman, Steven; Fregni, Felipe
2017-01-01
Chronic visceral pain (CVP) syndromes are persistently painful disorders with a remarkable lack of effective treatment options. This study aimed at evaluating the effects of different neuromodulation techniques in patients with CVP on cortical activity, through electreocephalography (EEG) and on pain perception, through clinical tests. A pilot crossover randomized controlled study. Out-patient. Adults with CVP (>3 months). Participants received four interventions in a randomized order: (1) transcranial pulsed current stimulation (tPCS) and active transcranial direct current stimulation (tDCS) combined, (2) tPCS alone, (3) tDCS alone, and (4) sham condition. Resting state quantitative electroencephalography (qEEG) and pain assessments were performed before and after each intervention. Results were compared with a cohort of 47 healthy controls. We enrolled six patients with CVP for a total of 21 visits completed. Compared with healthy participants, patients with CVP showed altered cortical activity characterized by increased power in theta, alpha and beta bands, and a significant reduction in the alpha/beta ratio. Regarding tES, the combination of tDCS with tPCS had no effect on power in any of the bandwidths, nor brain regions. Comparing tPCS with tDCS alone, we found that tPCS induced higher increase in power within the theta and alpha bandwidths. This study confirms that patients with CVP present abnormal EEG-indexed cortical activity compared with healthy controls. Moreover, we showed that combining two types of neurostimulation techniques had no effect, whereas the two interventions, when applied individually, have different neural signatures.
Erla, Silvia; Faes, Luca; Tranquillini, Enzo; Orrico, Daniele; Nollo, Giandomenico
2011-05-01
The characterization of the EEG response to photic stimulation (PS) is an important issue with significant clinical relevance. This study aims to quantify and map the complexity of the EEG during PS, where complexity is measured as the degree of unpredictability resulting from local linear prediction. EEG activity was recorded with eyes closed (EC) and eyes open (EO) during resting and PS at 5, 10, and 15 Hz in a group of 30 healthy subjects and in a case-report of a patient suffering from cerebral ischemia. The mean squared prediction error (MSPE) resulting from k-nearest neighbour local linear prediction was calculated in each condition as an index of EEG unpredictability. The linear or nonlinear nature of the system underlying EEG activity was evaluated quantifying MSPE as a function of the neighbourhood size during local linear prediction, and by surrogate data analysis as well. Unpredictability maps were obtained for each subject interpolating MSPE values over a schematic head representation. Results on healthy subjects evidenced: (i) the prevalence of linear mechanisms in the generation of EEG dynamics, (ii) the lower predictability of EO EEG, (iii) the desynchronization of oscillatory mechanisms during PS leading to increased EEG complexity, (iv) the entrainment of alpha rhythm during EC obtained by 10 Hz PS, and (v) differences of EEG predictability among different scalp regions. Ischemic patient showed different MSPE values in healthy and damaged regions. The EEG predictability decreased moving from the early acute stage to a stage of partial recovery. These results suggest that nonlinear prediction can be a useful tool to characterize EEG dynamics during PS protocols, and may consequently constitute a complement of quantitative EEG analysis in clinical applications. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Changes in EEG alpha power to different disgust elicitors: the specificity of mutilations.
Sarlo, Michela; Buodo, Giulia; Poli, Silvia; Palomba, Daniela
2005-07-15
It is unclear in the literature whether the various disgust elicitors are differentially processed by the brain and/or able to elicit distinct psychophysiological response patterns. On the other hand, disgusting stimuli depicting mutilations have been proved to elicit a distinct autonomic response pattern and to demand greater attentional resources, as compared with other unpleasant visual stimuli. In this EEG study, 34 participants viewed 4 film-clips depicting surgery, cockroach invasion, human attack and neutral landscape during EEG recording, and then rated the clips for valence, arousal and the basic emotions. Independent of location, the highest cortical activation was found during the viewing of the surgery scene. Moreover, the above activation was prominent over the right posterior regions.
Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg
2016-01-01
Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.
The effect of task demand and incentive on neurophysiological and cardiovascular markers of effort.
Fairclough, Stephen H; Ewing, Kate
2017-09-01
According to motivational intensity theory, effort is proportional to the level of task demand provided that success is possible and successful performance is deemed worthwhile. The current study represents a simultaneous manipulation of demand (working memory load) and success importance (financial incentive) to investigate neurophysiological (EEG) and cardiovascular measures of effort. A 2×2 repeated-measures study was conducted where 18 participants performed a n-back task under three conditions of demand: easy (1-back), hard (4-back) and very hard (7-back). In addition, participants performed these tasks in the presence of performance-contingent financial incentive or in a no-incentive (pilot trial) condition. Three bands of EEG activity were quantified: theta (4-7Hz), lower-alpha (7.5-10Hz) and upper-alpha (10.5-13Hz). Fronto-medial activity in the theta band and activity in the upper-alpha band at frontal, central and parietal sites were sensitive to demand and indicated greatest effort when the task was challenging and success was possible. Mean systolic blood pressure and activity in the lower-alpha band at parietal sites were also sensitive to demand but also increased in the incentive condition across all levels of task demand. The results of the study largely support the predictions of motivational intensity using neurophysiological markers of effort. Copyright © 2017. Published by Elsevier B.V.
Quantitative EEG and functional outcome following acute ischemic stroke.
Bentes, Carla; Peralta, Ana Rita; Viana, Pedro; Martins, Hugo; Morgado, Carlos; Casimiro, Carlos; Franco, Ana Catarina; Fonseca, Ana Catarina; Geraldes, Ruth; Canhão, Patrícia; Pinho E Melo, Teresa; Paiva, Teresa; Ferro, José M
2018-06-18
To identify the most accurate quantitative electroencephalographic (qEEG) predictor(s) of unfavorable post-ischemic stroke outcome, and its discriminative capacity compared to already known demographic, clinical and imaging prognostic markers. Prospective cohort of 151 consecutive anterior circulation ischemic stroke patients followed for 12 months. EEG was recorded within 72 h and at discharge or 7 days post-stroke. QEEG (global band power, symmetry, affected/unaffected hemisphere and time changes) indices were calculated from mean Fast Fourier Transform and analyzed as predictors of unfavorable outcome (mRS ≥ 3), at discharge and 12 months poststroke, before and after adjustment for age, admission NIHSS and ASPECTS. Higher delta, lower alpha and beta relative powers (RP) predicted outcome. Indices with higher discriminative capacity were delta-theta to alpha-beta ratio (DTABR) and alpha RP. Outcome models including either of these and other clinical/imaging stroke outcome predictors were superior to models without qEEG data. In models with qEEG indices, infarct size was not a significant outcome predictor. DTAABR and alpha RP are the best qEEG indices and superior to ASPECTS in post-stroke outcome prediction. They improve the discriminative capacity of already known clinical and imaging stroke outcome predictors, both at discharge and 12 months after stroke. qEEG indices are independent predictors of stroke outcome. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Marsella, Pasquale; Scorpecci, Alessandro; Cartocci, Giulia; Giannantonio, Sara; Maglione, Anton Giulio; Venuti, Isotta; Brizi, Ambra; Babiloni, Fabio
2017-08-01
Deaf subjects with hearing aids or cochlear implants generally find it challenging to understand speech in noisy environments where a great deal of listening effort and cognitive load are invested. In prelingually deaf children, such difficulties may have detrimental consequences on the learning process and, later in life, on academic performance. Despite the importance of such a topic, currently, there is no validated test for the assessment of cognitive load during audiological tasks. Recently, alpha and theta EEG rhythm variations in the parietal and frontal areas, respectively, have been used as indicators of cognitive load in adult subjects. The aim of the present study was to investigate, by means of EEG, the cognitive load of pediatric subjects affected by asymmetric sensorineural hearing loss as they were engaged in a speech-in-noise identification task. Seven children (4F and 3M, age range = 8-16 years) affected by asymmetric sensorineural hearing loss (i.e. profound degree on one side, mild-to-severe degree on the other side) and using a hearing aid only in their better ear, were included in the study. All of them underwent EEG recording during a speech-in-noise identification task: the experimental conditions were quiet, binaural noise, noise to the better hearing ear and noise to the poorer hearing ear. The subjects' Speech Recognition Thresholds (SRT) were also measured in each test condition. The primary outcome measures were: frontal EEG Power Spectral Density (PSD) in the theta band and parietal EEG PSD in the alpha band, as assessed before stimulus (word) onset. No statistically significant differences were noted among frontal theta power levels in the four test conditions. However, parietal alpha power levels were significantly higher in the "binaural noise" and in the "noise to worse hearing ear" conditions than in the "quiet" and "noise to better hearing ear" conditions (p < 0.001). SRT scores were consistent with task difficulty, but did not correlate with alpha and theta power level variations. This is the first time that EEG has been applied to children with sensorineural hearing loss with the purpose of studying the cognitive load during effortful listening. Significantly higher parietal alpha power levels in two of three noisy conditions, compared to the quiet condition, are consistent with increased cognitive load. Specifically, considering the time window of the analysis (pre-stimulus), parietal alpha power levels may be a measure of cognitive functions such as sustained attention and selective inhibition. In this respect, the significantly lower parietal alpha power levels in the most challenging listening condition (i.e. noise to the better ear) may be attributed to loss of attention and to the subsequent fatigue and "withdrawal" from the task at hand. Copyright © 2017 Elsevier B.V. All rights reserved.
EEG correlates of social interaction at distance
Giroldini, William; Pederzoli, Luciano; Bilucaglia, Marco; Caini, Patrizio; Ferrini, Alessandro; Melloni, Simone; Prati, Elena; Tressoldi, Patrizio
2016-01-01
This study investigated EEG correlates of social interaction at distance between twenty-five pairs of participants who were not connected by any traditional channels of communication. Each session involved the application of 128 stimulations separated by intervals of random duration ranging from 4 to 6 seconds. One of the pair received a one-second stimulation from a light signal produced by an arrangement of red LEDs, and a simultaneous 500 Hz sinusoidal audio signal of the same length. The other member of the pair sat in an isolated sound-proof room, such that any sensory interaction between the pair was impossible. An analysis of the Event-Related Potentials associated with sensory stimulation using traditional averaging methods showed a distinct peak at approximately 300 ms, but only in the EEG activity of subjects who were directly stimulated. However, when a new algorithm was applied to the EEG activity based on the correlation between signals from all active electrodes, a weak but robust response was also detected in the EEG activity of the passive member of the pair, particularly within 9 – 10 Hz in the Alpha range. Using the Bootstrap method and the Monte Carlo emulation, this signal was found to be statistically significant. PMID:26966513
EEG alpha frequency correlates of burnout and depression: The role of gender.
Tement, Sara; Pahor, Anja; Jaušovec, Norbert
2016-02-01
EEG alpha frequency band biomarkers of depression are widely explored. Due to their trait-like features, they may help distinguish between depressive and burnout symptomatology, which is often referred to as "work-related depression". The present correlational study strived to examine whether individual alpha frequency (IAF), power, and coherence in the alpha band can provide evidence for establishing burnout as a separate diagnostic entity. Resting EEG (eyes closed) was recorded in 117 individuals (42 males). In addition, the participants filled-out questionnaires of burnout and depression. Regression analyses highlighted the differential value of IAF and power in predicting burnout and depression. IAF was significantly related to depressive symptomatology, whereas power was linked mostly to burnout. Moreover, seven out of twelve interactions between EEG indicators and gender were significant. Connectivity patterns were significant for depression displaying gender-related differences. The results offer tentative support for establishing burnout as a separate clinical syndrome. Copyright © 2015 Elsevier B.V. All rights reserved.
Electroencephalography in Normotensive and Hypertensive Pregnancies and Subsequent Quality of Life.
Brussé, Ingrid A; Duvekot, Johannes J; Meester, Ivette; Jansen, Gerard; Rizopoulos, Dimitris; Steegers, Eric A P; Visser, Gerhard H
2016-01-01
To compare electroencephalography (EEG) findings during pregnancy and postpartum in women with normotensive pregnancies and pregnancies complicated by hypertensive disorders. Also the health related quality of life postpartum was related to these EEG findings. An observational case-control study in a university hospital in the Netherlands. Twenty-nine normotensive and 58 hypertensive pregnant women were included. EEG's were recorded on several occasions during pregnancy and 6-8 weeks postpartum. Postpartum, the women filled out health related quality of life questionnaires. Main outcome measures were qualitative and quantitative assessments on EEG, multidimensional fatigue inventory, Short Form (36) Health Survey and EuroQoL visual analogue scale. In women with severe preeclampsia significantly lower alpha peak frequency, more delta and theta activity bilaterally and a higher EEG Sum Score were seen. Postpartum, these women showed impaired mental health, mental fatigue and social functioning, which could not be related to the EEG findings. Severe preeclamptic patients show more EEG abnormalities and have impaired mental wellbeing postpartum, but these findings are not correlated.
Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.
Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir
2012-01-01
Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.
Dynamical complexity in a mean-field model of human EEG
NASA Astrophysics Data System (ADS)
Frascoli, Federico; Dafilis, Mathew P.; van Veen, Lennaert; Bojak, Ingo; Liley, David T. J.
2008-12-01
A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.
Smith, Ezra E; Reznik, Samantha J; Stewart, Jennifer L; Allen, John J B
2017-01-01
Frontal electroencephalographic (EEG) alpha asymmetry is widely researched in studies of emotion, motivation, and psychopathology, yet it is a metric that has been quantified and analyzed using diverse procedures, and diversity in procedures muddles cross-study interpretation. The aim of this article is to provide an updated tutorial for EEG alpha asymmetry recording, processing, analysis, and interpretation, with an eye towards improving consistency of results across studies. First, a brief background in alpha asymmetry findings is provided. Then, some guidelines for recording, processing, and analyzing alpha asymmetry are presented with an emphasis on the creation of asymmetry scores, referencing choices, and artifact removal. Processing steps are explained in detail, and references to MATLAB-based toolboxes that are helpful for creating and investigating alpha asymmetry are noted. Then, conceptual challenges and interpretative issues are reviewed, including a discussion of alpha asymmetry as a mediator/moderator of emotion and psychopathology. Finally, the effects of two automated component-based artifact correction algorithms-MARA and ADJUST-on frontal alpha asymmetry are evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of passive concentration as instructional set for training enhancement of EEG alpha.
Knox, S S
1980-12-01
The technique of passive concentration, employed by autogenic training and Transcendental Meditation for achieving relaxation, was tested here as a technique for enhancing EEG alpha. Of 30 subjects displaying between 15% and 74% alpha in their resting EEGs recruited, 10 had to be eliminated. The remaining 20 constituted two groups. One was instructed only to attempt to maintain a tone indicating alpha but given no information about technique (control group). The other was given additional instructions in passive concentration (experimental group). Both were given four 5-min. trials a day for 4 consecutive days. Heart rate and skin conductance were measured to monitor autonomic arousal. The group receiving instructions in passive concentration had significantly less alpha than the control group, which did not increase amount of alpha above baseline. The reduction of alpha in the experimental group was interpreted as resulting from beginning long training periods (20 min. per day), a practice advocated by Transcendental Meditation but discouraged by autogenic training. It was concluded that the relevance of passive concentration for alpha enhancement is doubtful.
Deiber, Marie-Pierre; Meziane, Hadj Boumediene; Hasler, Roland; Rodriguez, Cristelle; Toma, Simona; Ackermann, Marine; Herrmann, François; Giannakopoulos, Panteleimon
2015-01-01
Future treatments of Alzheimer's disease need the identification of cases at high risk at the preclinical stage of the disease before the development of irreversible structural damage. We investigated here whether subtle cognitive deterioration in a population of healthy elderly individuals could be predicted by EEG signals at baseline under cognitive activation. Continuous EEG was recorded in 97 elderly control subjects and 45 age-matched mild cognitive impairment (MCI) cases during a simple attentional and a 2-back working memory task. Upon 18-month neuropsychological follow-up, the final sample included 55 stable (sCON) and 42 deteriorated (dCON) controls. We examined the P1, N1, P3, and PNwm event-related components as well as the oscillatory activities in the theta (4-7 Hz), alpha (8-13 Hz), and beta (14-25 Hz) frequency ranges (ERD/ERS: event-related desynchronization/synchronization, and ITC: inter-trial coherence). Behavioral performance, P1, and N1 components were comparable in all groups. The P3, PNwm, and all oscillatory activity indices were altered in MCI cases compared to controls. Only three EEG indices distinguished the two control groups: alpha and beta ERD (dCON > sCON) and beta ITC (dCON < sCON). These findings show that subtle cognitive deterioration has no impact on EEG indices associated with perception, discrimination, and working memory processes but mostly affects attention, resulting in an enhanced recruitment of attentional resources. In addition, cognitive decline alters neural firing synchronization at high frequencies (14-25 Hz) at early stages, and possibly affects lower frequencies (4-13 Hz) only at more severe stages.
Puskás, S; Bessenyei, M; Fekete, I; Hollódy, K; Clemens, B
2010-09-01
Epileptic predisposition means genetically determined, increased seizure susceptibility. Neurophysiological evaluation of this condition is still lacking. In order to investigate "pure epileptic predisposition" (without epilepsy) in this pilot study the authors prospectively recruited ten persons who displayed generalized tonic-clonic seizures precipitated by 24 or more hours of sleep deprivation but were healthy in any other respects. 21-channel EEGs were recorded in the morning, in the waking state, after a night of sufficient sleep in the interictal period. For each person, a total of 120s artifact-free EEG was processed to low resolution electromagnetic tomography (LORETA) analysis. LORETA activity (Ampers/meters squared) was computed for 2394 voxels, 19 active electrodes and 1Hz very narrow bands from 1 to 25Hz. The data were compressed into four frequency bands (delta: 0.5-4.0Hz, theta: 4.5-8.0Hz, alpha: 8.5-12.0Hz, beta: 12.5-25.0Hz) and projected onto the MRI figures of a digitized standard brain atlas. The band-related LORETA results were compared to those of ten, age- and sex-matched healthy persons using independent t-tests. p<0.01 differences were accepted as statistically significant. Statistically significant decrease of alpha activity was found in widespread, medial and lateral parts of the cortex above the level of the basal ganglia. Maximum alpha decrease and statistically significant beta decrease were found in the left precuneus. Statistically not significant differences were delta increase in the medial-basal frontal area and theta increase in the same area and in the basal temporal area. The significance of alpha decrease in the patient group remains enigmatic. beta decrease presumably reflects non-specific dysfunction of the cortex. Prefrontal delta and theta increase might have biological meaning despite the lack of statistical significance: these findings are topographically similar to those reported in idiopathic generalized epilepsy in previous investigations. Quantitative EEG characteristics of the genetically determined epilepsy predisposition were given in terms of frequency bands and anatomical distribution. Copyright 2010 Elsevier B.V. All rights reserved.
Lelic, Dina; Hansen, Tine M; Mark, Esben B; Olesen, Anne E; Drewes, Asbjørn M
2017-09-01
Opioids and antidepressants that inhibit serotonin and norepinephrine reuptake (SNRI) are recognized as analgesics to treat moderate to severe pain, but the central mechanisms underlying their analgesia remain unclear. This study investigated how brain activity at rest and exposed to tonic pain is modified by oxycodone (opioid) and venlafaxine (SNRI). Twenty healthy males were included in this randomized, cross-over, double-blinded study. 61-channel electroencephalogram (EEG) was recorded before and after five days of treatment with placebo, oxycodone (10 mg extended release b.i.d) or venlafaxine (37.5 mg extended release b.i.d) at rest and during tonic pain (hand immersed in 2 °C water for 80 s). Subjective pain and unpleasantness scores of tonic pain were recorded. Spectral analysis and sLORETA source localization were done in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta1 (12-18 Hz) and beta2 (18-32 Hz) frequency bands. Oxycodone decreased pain and unpleasantness scores (P < 0.05), whereas venlafaxine decreased the pain scores (P < 0.05). None of the treatments changed the spectral indices or brain sources underlying resting EEG. Venlafaxine decreased spectral indices in alpha band of the EEG to tonic pain, whereas oxycodone decreased the spectral indices and brain source activity in delta and theta frequency bands (all P < 0.05). The brain source activity predominantly decreased in the insula and inferior frontal gyrus. The decrease of activity within insula and inferior frontal gyrus is likely involved in pain inhibition due to oxycodone treatment, whereas the decrease in alpha activity is likely involved in pain inhibition due to venlafaxine treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
EEG source imaging during two Qigong meditations.
Faber, Pascal L; Lehmann, Dietrich; Tei, Shisei; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Kochi, Kieko
2012-08-01
Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.
Individual musical tempo preference correlates with EEG beta rhythm.
Bauer, Anna-Katharina R; Kreutz, Gunter; Herrmann, Christoph S
2015-04-01
Every individual has a preferred musical tempo, which peaks slightly above 120 beats per minute and is subject to interindividual variation. The preferred tempo is believed to be associated with rhythmic body movements as well as motor cortex activity. However, a long-standing question is whether preferred tempo is determined biologically. To uncover the neural correlates of preferred tempo, we first determined an individual's preferred tempo using a multistep procedure. Subsequently, we correlated the preferred tempo with a general EEG timing parameter as well as perceptual and motor EEG correlates-namely, individual alpha frequency, auditory evoked gamma band response, and motor beta activity. Results showed a significant relation between preferred tempo and the frequency of motor beta activity. These findings suggest that individual tempo preferences result from neural activity in the motor cortex, explaining the interindividual variation. Copyright © 2014 Society for Psychophysiological Research.
Meerwijk, Esther L; Ford, Judith M; Weiss, Sandra J
2015-02-01
Psychological pain is a prominent symptom of clinical depression. We asked if frontal alpha asymmetry, frontal EEG power, and frontal fractal dimension asymmetry predicted psychological pain in adults with a history of depression. Resting-state frontal EEG (F3/F4) was recorded while participants (N=35) sat upright with their eyes closed. Frontal delta power predicted psychological pain while controlling for depressive symptoms, with participants who exhibited less power experiencing greater psychological pain. Frontal fractal dimension asymmetry, a nonlinear measure of complexity, also predicted psychological pain, such that greater left than right complexity was associated with greater psychological pain. Frontal alpha asymmetry did not contribute unique variance to any regression model of psychological pain. As resting-state delta power is associated with the brain's default mode network, results suggest that the default mode network was less activated during high psychological pain. Findings are consistent with a state of arousal associated with psychological pain. Copyright © 2015 Elsevier B.V. All rights reserved.
Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Colosimo, Alfredo; Maglione, Anton Giulio; Babiloni, Fabio
2014-05-01
To investigate by means of non-invasive neuroelectrical imaging the differences in the perceived pleasantness of music between children with cochlear implants (CI) and normal-hearing (NH) children. 5 NH children and 5 children who received a sequential bilateral CI were assessed by means of High-Resolution EEG with Source Reconstruction as they watched a musical cartoon. Implanted children were tested before and after the second implant. For each subject the scalp Power Spectral Density was calculated in order to investigate the EEG alpha asymmetry. The scalp topographic distribution of the EEG power spectrum in the alpha band was different in children using one CI as compared to NH children (see figure). With two CIs the cortical activation pattern changed significantly, becoming more similar to the one observed in NH children. The findings support the hypothesis that bilateral CI users have a closer-to-normal perception of the pleasantness of music than unilaterally implanted children.
Reflection enhances creativity: Beneficial effects of idea evaluation on idea generation.
Hao, Ning; Ku, Yixuan; Liu, Meigui; Hu, Yi; Bodner, Mark; Grabner, Roland H; Fink, Andreas
2016-03-01
The present study aimed to explore the neural correlates underlying the effects of idea evaluation on idea generation in creative thinking. Participants were required to generate original uses of conventional objects (alternative uses task) during EEG recording. A reflection task (mentally evaluating the generated ideas) or a distraction task (object characteristics task) was inserted into the course of idea generation. Behavioral results revealed that participants generated ideas with higher originality after evaluating the generated ideas than after performing the distraction task. The EEG results revealed that idea evaluation was accompanied with upper alpha (10-13 Hz) synchronization, most prominent at frontal cortical sites. Moreover, upper alpha activity in frontal cortices during idea generation was enhanced after idea evaluation. These findings indicate that idea evaluation may elicit a state of heightened internal attention or top-down activity that facilitates efficient retrieval and integration of internal memory representations. Copyright © 2016 Elsevier Inc. All rights reserved.
Sex Differences in Brain Activity Related to General and Emotional Intelligence
ERIC Educational Resources Information Center
Jausovec, Norbert; Jausovec, Ksenija
2005-01-01
The study investigated gender differences in resting EEG (in three individually determined narrow [alpha] frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was…
Sharma, Kanishka; Chandra, Sushil; Dubey, Ashok Kumar
2018-01-01
Background: Rajyoga meditation is taught by Prajapita Brahmakumaris World Spiritual University (Brahmakumaris) and has been followed by more than one million followers across the globe. However, rare studies were conducted on physiological aspects of rajyoga meditation using electroencephalography (EEG). Band power and cortical asymmetry were not studied with Rajyoga meditators. Aims: This study aims to investigate the effect of regular meditation practice on EEG brain dynamics in low-frequency bands of long-term Rajyoga meditators. Settings and Design: Subjects were matched for age in both groups. Lower frequency EEG bands were analyzed in resting and during meditation. Materials and Methods: Twenty-one male long-term meditators (LTMs) and same number of controls were selected to participate in study as par inclusion criteria. Semi high-density EEG was recorded before and during meditation in LTM group and resting in control group. The main outcome of the study was spectral power of alpha and theta bands and cortical (hemispherical) asymmetry calculated using band power. Statistical Analysis: One-way ANOVA was performed to find the significant difference between EEG spectral properties of groups. Pearson's Chi-square test was used to find difference among demographics data. Results: Results reveal high-band power in alpha and theta spectra in meditators. Cortical asymmetry calculated through EEG power was also found to be high in frontal as well as parietal channels. However, no correlation was seen between the experience of meditation (years, hours) practice and EEG indices. Conclusion: Overall findings indicate contribution of smaller frequencies (alpha and theta) while maintaining meditative experience. This suggests a positive impact of meditation on frontal and parietal areas of brain, involved in the processes of regulation of selective and sustained attention as well as provide evidence about their involvement in emotion and cognitive processing. PMID:29343928
2014-01-01
Objective While Parkinson’s disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. Method EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. Results Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. Conclusion These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients. PMID:24716619
Quantitative electroencephalography in a swine model of blast-induced brain injury.
Chen, Chaoyang; Zhou, Chengpeng; Cavanaugh, John M; Kallakuri, Srinivasu; Desai, Alok; Zhang, Liying; King, Albert I
2017-01-01
Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.
Neural Correlates of Three Promising Endophenotypes of Depression: Evidence from the EMBARC Study
Webb, Christian A; Dillon, Daniel G; Pechtel, Pia; Goer, Franziska K; Murray, Laura; Huys, Quentin JM; Fava, Maurizio; McGrath, Patrick J; Weissman, Myrna; Parsey, Ramin; Kurian, Benji T; Adams, Phillip; Weyandt, Sarah; Trombello, Joseph M; Grannemann, Bruce; Cooper, Crystal M; Deldin, Patricia; Tenke, Craig; Trivedi, Madhukar; Bruder, Gerard; Pizzagalli, Diego A
2016-01-01
Major depressive disorder (MDD) is clinically, and likely pathophysiologically, heterogeneous. A potentially fruitful approach to parsing this heterogeneity is to focus on promising endophenotypes. Guided by the NIMH Research Domain Criteria initiative, we used source localization of scalp-recorded EEG resting data to examine the neural correlates of three emerging endophenotypes of depression: neuroticism, blunted reward learning, and cognitive control deficits. Data were drawn from the ongoing multi-site EMBARC study. We estimated intracranial current density for standard EEG frequency bands in 82 unmedicated adults with MDD, using Low-Resolution Brain Electromagnetic Tomography. Region-of-interest and whole-brain analyses tested associations between resting state EEG current density and endophenotypes of interest. Neuroticism was associated with increased resting gamma (36.5–44 Hz) current density in the ventral (subgenual) anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC). In contrast, reduced cognitive control correlated with decreased gamma activity in the left dorsolateral prefrontal cortex (dlPFC), decreased theta (6.5–8 Hz) and alpha2 (10.5–12 Hz) activity in the dorsal ACC, and increased alpha2 activity in the right dlPFC. Finally, blunted reward learning correlated with lower OFC and left dlPFC gamma activity. Computational modeling of trial-by-trial reinforcement learning further indicated that lower OFC gamma activity was linked to reduced reward sensitivity. Three putative endophenotypes of depression were found to have partially dissociable resting intracranial EEG correlates, reflecting different underlying neural dysfunctions. Overall, these findings highlight the need to parse the heterogeneity of MDD by focusing on promising endophenotypes linked to specific pathophysiological abnormalities. PMID:26068725
Anderson, Clare; Horne, James A
2004-06-01
Others have shown that frontally dominant EEG activity of around 7-8 Hz is linked to ongoing cognitive performance. Interestingly, we have found that this EEG activity is particularly evident during the relatively artefact-free period following "lights out" at bedtime when people report "thinking" when lying relaxed in their own beds prior to the appearance of EEG-determined sleepiness. Here, we explore the extent to which this localised activity is indicative of 'trait' performance on left frontal neuropsychological tasks, as well as with less localised, more general tasks. Twelve right-handed young adults (mean age: 21.3 years) and 12 right-handed older adults (mean age: 67.2 years) underwent (i) morning, laboratory-based, waking EEGs comprising (eyes closed) contrived thinking tasks, and (ii) a home-based wake EEG at bedtime. EEGs divided the cortex into the four comparable quadrants: Fp1-F3; Fp2-F4; O1-P3; and O2-P4. From a wide frequency band of 3-10 Hz analysed in 1-Hz bins, only 7-8 Hz was associated with the neuropsychological performance (nonverbal planning, verbal fluency) for both younger and older participants. This was most evident during relaxed waking after 'lights out,' and from the left frontal EEG. Such associations were not apparent for the other EEG channels or for the nonspecific tasks. Laboratory-based daytime, frontal EEG recordings are problematic because of eye movement artefact and when participants are not fully relaxed. In contrast, the nighttime data are almost artefact-free and from fully relaxed participants. This particular EEG is useful for assessing cortically localised behaviour and indicates that a more traditional approach of using large bandwidths (e.g., the whole of "alpha" or "theta" ranges) may mask subfrequencies of functional importance.
Lin, Lung-Chang; Ouyang, Chen-Sen; Chiang, Ching-Tai; Wu, Rong-Ching; Wu, Hui-Chuan
2014-01-01
Summary Objective Listening to Mozart K.448 has been demonstrated to improve spatial task scores, leading to what is known as the Mozart Effect. However, most of these reports only describe the phenomena but lack the scientific evidence needed to properly investigate the mechanism of Mozart Effect. In this study, we used electroencephalography (EEG) and heart rate variability (HRV) to evaluate the effects of Mozart K.448 on healthy volunteers to explore Mozart Effect. Design An EEG-based post-intervention analysis. Setting Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Participants Twenty-nine college students were enrolled. They received EEG and electrocardiogram examinations simultaneously before, during and after listening to the first movement of Mozart K.448. Main outcome measure EEG alpha, theta and beta power and HRV were compared in each stage. Results The results showed a significant decrease in alpha, theta and beta power when they listened to Mozart K.448. In addition, the average root mean square successive difference, the proportion derived by dividing NN50 by the total number of NN intervals, standard deviations of NN intervals and standard deviations of differences between adjacent NN intervals showed a significant decrease, while the high frequency revealed a significant decrease with a significantly elevated low-frequency/high-frequency ratio. Conclusion Listening to Mozart K.448 significantly decreased EEG alpha, theta and beta power and HRV. This study indicates that there is brain cortical function and sympathetic tone activation in healthy adults when listening to Mozart K.448, which may play an important role in the mechanism of Mozart Effect. PMID:25383198
Tenke, Craig E; Kayser, Jürgen; Svob, Connie; Miller, Lisa; Alvarenga, Jorge E; Abraham, Karen; Warner, Virginia; Wickramaratne, Priya; Weissman, Myrna M; Bruder, Gerard E
2017-03-01
A prior report (Tenke et al., 2013 Biol. Psychol. 94:426-432) found that participants who rated religion or spirituality (R/S) highly important had greater posterior alpha after 10 years compared to those who did not. Participants who subsequently lowered their rating also had prominent alpha, while those who increased their rating did not. Here we report EEG findings 20 years after initial assessment. Clinical evaluations and R/S ratings were obtained from 73 (52 new) participants in a longitudinal study of family risk for depression. Frequency PCA of current source density transformed EEG concisely quantified posterior alpha. Those who initially rated R/S as highly important had greater alpha compared to those who did not, even if their R/S rating later increased. Furthermore, changes in religious denomination were associated with decreased alpha. Results suggest the possibility of a critical stage in the ontogenesis of R/S that is linked to posterior resting alpha. Copyright © 2017 Elsevier B.V. All rights reserved.
EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington's disease.
Painold, Annamaria; Anderer, Peter; Holl, Anna K; Letmaier, Martin; Saletu-Zyhlarz, Gerda M; Saletu, Bernd; Bonelli, Raphael M
2011-05-01
Previous studies have shown abnormal electroencephalography (EEG) in Huntington's disease (HD). The aim of the present investigation was to compare quantitatively analyzed EEGs of HD patients and controls by means of low-resolution brain electromagnetic tomography (LORETA). Further aims were to delineate the sensitivity and utility of EEG LORETA in the progression of HD, and to correlate parameters of cognitive and motor impairment with neurophysiological variables. In 55 HD patients and 55 controls a 3-min vigilance-controlled EEG (V-EEG) was recorded during midmorning hours. Power spectra and intracortical tomography were computed by LORETA in seven frequency bands and compared between groups. Spearman rank correlations were based on V-EEG and psychometric data. Statistical overall analysis by means of the omnibus significance test demonstrated significant (p < 0.01) differences between HD patients and controls. LORETA theta, alpha and beta power were decreased from early to late stages of the disease. Only advanced disease stages showed a significant increase in delta power, mainly in the right orbitofrontal cortex. Correlation analyses revealed that a decrease of alpha and theta power correlated significantly with increasing cognitive and motor decline. LORETA proved to be a sensitive instrument for detecting progressive electrophysiological changes in HD. Reduced alpha power seems to be a trait marker of HD, whereas increased prefrontal delta power seems to reflect worsening of the disease. Motor function and cognitive function deteriorate together with a decrease in alpha and theta power. This data set, so far the largest in HD research, helps to elucidate remaining uncertainties about electrophysiological abnormalities in HD.
Diurnal alterations of brain electrical activity in healthy adults: a LORETA study.
Toth, Marton; Kiss, Attila; Kosztolanyi, Peter; Kondakor, Istvan
2007-01-01
EEG background activity was investigated by low resolution brain electromagnetic tomography (LORETA) to test the diurnal alterations of brain electrical activity in healthy adults. Fourteen right-handed healthy male postgraduate medical students were examined four times (8 a.m., 2 p.m., 8 p.m. and next day 2 p.m.). LORETA was computed to localize generators of EEG frequency components. Comparing the EEG activity between 2 p.m. and 8 a.m., increased activity was seen (1) in theta band (6.5-8 Hz) in the left prefrontal, bilateral mesial frontal and anterior cingulate cortex; (2) in alpha2 band (10.5-12 Hz) in the bilateral precuneus and posterior parietal cortex as well as in the right temporo-occipital cortex; (3) in beta1-2-3 band (12.5-30 Hz) in the right hippocampus and parieto-occipital cortex, left frontal and bilateral cingulate cortex. Comparing the brain activity between 8 p.m. and 8 a.m., (1) midline theta activity disappeared; (2) increased alpha2 band activity was seen in the left hemisphere (including the left hippocampus); and (3) increased beta bands activity was found over almost the whole cortex (including both of hippocampi) with the exception of left temporo-occipital region. There were no significant changes between the background activities of 2 p.m. and next day 2 p.m. Characteristic distribution of increased activity of cortex (no change in delta band, and massive changes in the upper frequency bands) may mirror increasing activation of reticular formation and thus evoked thalamocortical feedback mechanisms as a sign of maintenance of arousal.
Lee, Seung Min; Kim, Jeong Hun; Byeon, Hang Jin; Choi, Yoon Young; Park, Kwang Suk; Lee, Sang-Hoon
2013-06-01
Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring. We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential. We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear. These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.
Wang, Lihan; Gan, John Q; Zhang, Li; Wang, Haixian
2018-06-01
Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations. Copyright © 2018 Elsevier B.V. All rights reserved.
Pacheco, Thaiana Barbosa Ferreira; Oliveira Rego, Isabelle Ananda; Campos, Tania Fernandes; Cavalcanti, Fabrícia Azevedo da Costa
2017-01-01
Virtual Reality (VR) has been contributing to Neurological Rehabilitation because of its interactive and multisensory nature, providing the potential of brain reorganization. Given the use of mobile EEG devices, there is the possibility of investigating how the virtual therapeutic environment can influence brain activity. To compare theta, alpha, beta and gamma power in healthy young adults during a lower limb motor task in a virtual and real environment. Ten healthy adults were submitted to an EEG assessment while performing a one-minute task consisted of going up and down a step in a virtual environment - Nintendo Wii virtual game "Basic step" - and in a real environment. Real environment caused an increase in theta and alpha power, with small to large size effects mainly in the frontal region. VR caused a greater increase in beta and gamma power, however, with small or negligible effects on a variety of regions regarding beta frequency, and medium to very large effects on the frontal and the occipital regions considering gamma frequency. Theta, alpha, beta and gamma activity during the execution of a motor task differs according to the environment that the individual is exposed - real or virtual - and may have varying size effects if brain area activation and frequency spectrum in each environment are taken into consideration.
Resting state EEG correlates of memory consolidation.
Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J
2016-04-01
Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (<1Hz), in concert with reduced alpha (8-12Hz) activity. Mindwandering during the retention interval was also associated with improved memory. These observations suggest that a short period of quiet rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.
Smirnov, M S; Kiyatkin, E A
2010-01-20
Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the sensory effects of COC, thus contributing to the learning and development of drug-taking behavior.
Gómez, Carlos; Poza, Jesús; Gutiérrez, María T; Prada, Esther; Mendoza, Nuria; Hornero, Roberto
2016-11-01
The aim of this study was to assess the changes induced in electroencephalographic (EEG) activity by a Snoezelen(®) intervention on individuals with brain-injury and control subjects. EEG activity was recorded preceding and following a Snoezelen(®) session in 18 people with cerebral palsy (CP), 18 subjects who have sustained traumatic brain-injury (TBI) and 18 controls. EEG data were analyzed by means of spectral and nonlinear measures: median frequency (MF), individual alpha frequency (IAF), sample entropy (SampEn) and Lempel-Ziv complexity (LZC). Our results showed decreased values for MF, IAF, SampEn and LZC as a consequence of the therapy. The main changes between pre-stimulation and post-stimulation conditions were found in occipital and parietal brain areas. Additionally, these changes are more widespread in controls than in brain-injured subjects, which can be due to cognitive deficits in TBI and CP groups. Our findings support the notion that Snoezelen(®) therapy affects central nervous system, inducing a slowing of oscillatory activity, as well as a decrease of EEG complexity and irregularity. These alterations seem to be related with higher levels of relaxation of the participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nakatani, Hironori; van Leeuwen, Cees
2013-01-01
Oculomotor events such as blinks and saccades transiently interrupt the visual input and, even though this mostly goes undetected, these brief interruptions could still influence the percept. In particular, both blinking and saccades facilitate switching in ambiguous figures such as the Necker cube. To investigate the neural state antecedent to these oculomotor events during the perception of an ambiguous figure, we measured the human scalp electroencephalogram (EEG). When blinking led to perceptual switching, antecedent occipital alpha band activity exhibited a transient increase in amplitude. When a saccade led to switching, a series of transient increases and decreases in amplitude was observed in the antecedent occipital alpha band activity. Our results suggest that the state of occipital alpha band activity predicts the impact of oculomotor events on the percept. PMID:23745106
Tracking variations in the alpha activity in an electroencephalogram
NASA Technical Reports Server (NTRS)
Prabhu, K. S.
1971-01-01
The problem of tracking Alpha voltage variations in an electroencephalogram is discussed. This problem is important in encephalographic studies of sleep and effects of different stimuli on the brain. Very often the Alpha voltage is tracked by passing the EEG signal through a bandpass filter centered at the Alpha frequency, which hopefully will filter out unwanted noise from the Alpha activity. Some alternative digital techniques are suggested and their performance is compared with the standard technique. These digital techniques can be used in an environment where an electroencephalograph is interfaced with a small digital computer via an A/D convertor. They have the advantage that statistical statements about their variability can sometimes be made so that the effect sought can be assessed correctly in the presence of random fluctuations.
A natural basis for efficient brain-actuated control
NASA Technical Reports Server (NTRS)
Makeig, S.; Enghoff, S.; Jung, T. P.; Sejnowski, T. J.
2000-01-01
The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.
Intermittency in electric brain activity in the perception of ambiguous images
NASA Astrophysics Data System (ADS)
Kurovskaya, Maria K.; Runnova, Anastasiya E.; Zhuravlev, Maxim O.; Grubov, Vadim V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Pisarchik, Alexander N.
2017-04-01
Present paper is devoted to the study of intermittency during the perception of bistable Necker cube image being a good example of an ambiguous object, with simultaneous measurement of EEG. Distributions of time interval lengths corresponding to the left-oriented and right-oriented cube perception have been obtain. EEG data have been analyzed using continuous wavelet transform and it was shown that the destruction of alpha rhythm with accompanying generation of high frequency oscillations can serve as a marker of Necker cube recognition process.
EEG deficits in chronic marijuana abusers during monitored abstinence: preliminary findings.
Herning, Ronald I; Better, Warren; Tate, Kimberly; Cadet, Jean L
2003-05-01
Cognitive, cerebrovascular, and psychiatric impairments have been documented with chronic marijuana users. To better understand the nature and duration of these neurocognitive changes in marijuana abusers, we recorded the resting EEG of 29 abstinent chronic marijuana abusers and 21 control subjects. The marijuana abusers were tested twice: the first evaluation occurred within 72 hours of admission to the inpatient research unit; the second evaluation occurred after 28 to 30 days of monitored abstinence. A three-minute period of EEG was recorded during resting eyes-closed conditions from eight electrodes (F(3), C(3), P(3), O(1), F(4), C(4), P(4), and O(2)). The artifacted EEG was converted to six frequency bands (delta, theta, alpha(1), alpha(2), beta(1), and beta(2)) using a fast Fourier transform. During early abstinence, absolute power was significantly lower (p < 0.05) for the marijuana abusers than for the control subjects for the theta and alpha(1) bands. These reductions in theta and alpha(1) power persisted for 28 days of monitored abstinence. These EEG changes, together with cerebral blood flow deficits, might underlie the cognitive alterations observed in marijuana abusers. Additional research is needed to determine how long these deficits persist during abstinence and if treatment with neuroprotective agents may reverse them.
Plastic modulation of PTSD resting-state networks by EEG neurofeedback
Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.
2015-01-01
Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644
Alpha coma in an adolescent with diabetic ketoacidosis.
Ostojic, Slavica; Vukovic, Rade; Milenkovic, Tatjana; Mitrovic, Katarina; Djuric, Milena; Nikolic, Ljubica
2017-01-01
Ostojic S, Vukovic R, Milenkovic T, Mitrovic K, Djuric M, Nikolic L. Alpha coma in an adolescent with diabetic ketoacidosis. Turk J Pediatr 2017; 59: 318-321. This is the first report of alpha coma (AC) caused by brain edema in a patient with diabetic ketoacidosis (DKA). A previously healthy 15-year-old girl was admitted to the intensive care unit due to altered state of consciousness during the course of treatment for DKA. Patient was in a coma, intubated and had tachycardia with poor peripheral perfusion. Results of laboratory analyses indicated severe DKA and computed tomography scan indicated diffuse brain edema. The EEG pattern showed uniform alpha activity. Treatment with intravenous fluids, insulin and mannitol was started. Patient`s state of consciousness gradually improved and on the third day she was extubated. On the fifth day, her neurologic status and EEG findings were completely normal with no residual neurological deficits. In conclusion, although AC is associated with a high fatality rate, favorable outcome can be achieved with prompt recognition and treatment of cerebral edema in pediatric patients with DKA.
Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo
2014-10-01
The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria
2014-01-01
Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.
de Araujo Furtado, Marcio; Zheng, Andy; Sedigh-Sarvestani, Madineh; Lumley, Lucille; Lichtenstein, Spencer; Yourick, Debra
2009-10-30
The organophosphorous compound soman is an acetylcholinesterase inhibitor that causes damage to the brain. Exposure to soman causes neuropathology as a result of prolonged and recurrent seizures. In the present study, long-term recordings of cortical EEG were used to develop an unbiased means to quantify measures of seizure activity in a large data set while excluding other signal types. Rats were implanted with telemetry transmitters and exposed to soman followed by treatment with therapeutics similar to those administered in the field after nerve agent exposure. EEG, activity and temperature were recorded continuously for a minimum of 2 days pre-exposure and 15 days post-exposure. A set of automatic MATLAB algorithms have been developed to remove artifacts and measure the characteristics of long-term EEG recordings. The algorithms use short-time Fourier transforms to compute the power spectrum of the signal for 2-s intervals. The spectrum is then divided into the delta, theta, alpha, and beta frequency bands. A linear fit to the power spectrum is used to distinguish normal EEG activity from artifacts and high amplitude spike wave activity. Changes in time spent in seizure over a prolonged period are a powerful indicator of the effects of novel therapeutics against seizures. A graphical user interface has been created that simultaneously plots the raw EEG in the time domain, the power spectrum, and the wavelet transform. Motor activity and temperature are associated with EEG changes. The accuracy of this algorithm is also verified against visual inspection of video recordings up to 3 days after exposure.
Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness
NASA Technical Reports Server (NTRS)
Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.
2002-01-01
The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.
[Prognostic value of EEG in acute posttraumatic coma (author's transl)].
Walser, H; Friedli, W; Glinz, W
1981-12-01
To evaluate the prognostic power of a single EEG-record, the recordings of 50 patients with posttraumatic coma performed within 48 hours after the injury were compared with the outcome after 6 months. A 5-point scale comprising 2 EEG-patterns being notorious for their dismal prognostic significance (suppression bursts, alpha-coma) and changes of vigilance were used as a mean of visual assessment of the recordings. In 24 out of the 28 patients with a bad outcome, the EEG had shown the patterns of category I, II and III (suppression bursts, alpha coma, no changes of vigilance). Of the 22 patients with a good outcome, the EEG had been classified as IV or V (clearly discernible changes of vigilance, sleep patterns). Further findings of particular dismal prognostic significance were focal epileptic discharges, as 9 out of the 11 patients with this EEG pattern had not survived the posttraumatic coma for more than 6 months.
EEG and EMG responses to emotion-evoking stimuli processed without conscious awareness.
Wexler, B E; Warrenburg, S; Schwartz, G E; Janer, L D
1992-12-01
Dichotic stimulus pairs were constructed with one word that was emotionally neutral and another that evoked either negative or positive feelings. Temporal and spectral overlap between the members of each pair was so great that the two words fused into a single auditory percept. Subjects were consciously aware of hearing only one word from most pairs; sometimes the emotion-evoking word was heard consciously, other times the neutral word was heard consciously. Subjects were instructed to let their thoughts wander in response to the word they heard, during which time EEG alpha activity over left and right frontal regions, and muscle activity (EMG) in the corrugator ("frowning") and zygomatic ("smiling") regions were recorded. Both EEG and EMG provided evidence of emotion-specific responses to stimuli that were processed without conscious awareness. Moreover both suggested relatively greater right hemisphere activity with unconscious rather than conscious processing.
Analysis of EEG activity in response to binaural beats with different frequencies.
Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng
2014-12-01
When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. Copyright © 2014. Published by Elsevier B.V.
Performance and brain electrical activity during prolonged confinement.
Lorenz, B; Lorenz, J; Manzey, D
1996-01-01
A subset of the AGARD-STRES battery including memory search, unstable tracking, and a combination of both tasks (dual-task), was applied repeatedly to the four chamber crew members before, during, and after the 60-day isolation period of EXEMSI. Five ground control group members served as a control group. A subjective state questionnaire was also included. The results were subjected to a quantitative single-subject analysis. Electroencephalograms (EEG) were recorded to permit correlation of changes in task performance with changes in the physiological state. Evaluation of the EEG focused on spectral parameters of spontaneous EEG waves. No physiological data were collected from the control group. Significant decrements in tracking ability were observed in the chamber crew. The time course of these effects followed a triphasic pattern with initial deterioration, intermediate recovery to pre-isolation baseline scores after the first half of the isolation period, and a second deterioration towards the end. None of the control group subjects displayed such an effect. Memory search (speed and accuracy) was only occasionally impaired during isolation, but the control group displayed a similar pattern of changes. It is suggested that a state of decreased alertness causes tracking deterioration, which leads to a reduced efficiency of sustained cue utilization. The assumption of low alertness was further substantiated by higher fatigue ratings by the chamber crew compared to those of the control group. Analysis of the continuous EEG recordings revealed that only two subjects produced reliable alpha wave activity (8-12 Hz) over Pz and, to a much smaller extent, Fz-theta wave activity (5-7 Hz) during task performance. In both subjects Pz-alpha power decreased consistently under task conditions involving single-task and dual-task tracking. Fz-theta activity was increased more by single-task and dual-task memory search than by single-task tracking. The alpha attenuation appears to be associated with an increasing demand on perceptual cue utilization required by the tracking performance. In one subject marked attenuation of alpha power occurred during the first half of the confinement period, where he also scored the highest fatigue ratings. A striking increase in fronto-central theta activity was observed in the same subject after six weeks of isolation. The change was associated with an efficient rather than a degraded task performance, and a high rating of the item "concentrated" and a low rating of the item "fatigued." This finding supports the hypothesis that the activation state associated with increased fronto-central theta activity accompanies efficient performance of demanding mental tasks. The usefulness of standardized laboratory tasks as monitoring instruments is demonstrated by the direct comparability with results of studies obtained from other relevant research applications using the same tasks. The feasibility of a self-administered integrated psychophysiological assessment of the individual state was illustrated by the nearly complete collection of data. The large number of individual data collected over the entire period permitted application of quantitative single-subject analysis, allowing reliable determination of changes in the individual state in the course of time. It thus appears that this assessment technique can be adapted for in-flight monitoring of astronauts during prolonged spaceflights. Parallel EEG recording can provide relevant supplementary information for diagnosing the individual activation state associated with task performance. The existence of large individual differences in the generation of task-sensitive EEG rhythms forms an important issue for further studies.
Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B
2014-01-01
Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118
Zheng, Gaoxing; Qi, Xiaoying; Li, Yuzhu; Zhang, Wei; Yu, Yuguo
2018-01-01
The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording. PMID:29593490
Mientus, Susanne; Gallinat, Jürgen; Wuebben, Yvonne; Pascual-Marqui, Roberto D; Mulert, Christoph; Frick, Kurt; Dorn, Hans; Herrmann, Werner M; Winterer, Georg
2002-11-30
This study was performed in order to address the question whether the newly introduced technique of low-resolution electromagnetic tomography (LORETA) is able to detect hypofrontality in schizophrenic patients. We investigated resting EEGs of 19 unmedicated schizophrenics and 20 normal subjects. For comparison, we also investigated 19 subjects with schizotypal personality and 30 unmedicated depressive patients. A significant increase of delta activity was found in schizophrenic patients over the whole cortex, most strongly in the anterior cingulate gyrus and temporal lobe (fusiform gyrus). Both schizotypal subjects and depressive subjects showed significantly less delta, theta and beta activity in the anterior cingulum, a decrease of alpha1 activity in the right temporal lobe and a decrease of alpha2 activity in the left temporal lobe. The results suggest general cortical hypoactivation, most pronounced in the anterior cingulate and temporal lobe in schizophrenics, whereas there is evidence for a complex, frequency-dependent spatial pattern of hyperactivation in schizotypal subjects and depressive patients. The results are discussed within a neurophysiological and methodological framework.
Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form.
Martínez-Rodrigo, Arturo; Fernández-Sotos, Alicia; Latorre, José Miguel; Moncho-Bogani, José; Fernández-Caballero, Antonio
2017-01-01
This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.
Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form
Martínez-Rodrigo, Arturo; Fernández-Sotos, Alicia; Latorre, José Miguel; Moncho-Bogani, José; Fernández-Caballero, Antonio
2017-01-01
This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG) by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form. PMID:28496406
[Time-organization of EEG patterns' structure in anxiety and phobic disorders].
Sviatogor, I A; Mokhovikova, I A
2005-01-01
Thirty-five patients, aged 19-48 years (mean age 38 years) with anxiety and phobic disorders were examined. According to ICD-10 criteria--social phobia (F40.1), panic disorder (F41.0), somatoform autonomic dysfunction (F45.3) were diagnosed. Using electroencephalography data, qualitative and quantitative characteristics of the time- and spatial-organization of brain EEG activity in anxiety and phobic disorders of different severity were established. It were determined 4 types of wave interactions between EEG components, which reflected a different extent of the regulatory mechanisms lesions: 2 structures with one core component (alpha or beta), a structure with two core components and a non-organized structure.
Neuroimaging Study of Alpha and Beta EEG Biofeedback Effects on Neural Networks.
Shtark, Mark B; Kozlova, Lyudmila I; Bezmaternykh, Dmitriy D; Mel'nikov, Mikhail Ye; Savelov, Andrey A; Sokhadze, Estate M
2018-06-01
Neural networks interaction was studied in healthy men (20-35 years old) who underwent 20 sessions of EEG biofeedback training outside the MRI scanner, with concurrent fMRI-EEG scans at the beginning, middle, and end of the course. The study recruited 35 subjects for EEG biofeedback, but only 18 of them were considered as "successful" in self-regulation of target EEG bands during the whole course of training. Results of fMRI analysis during EEG biofeedback are reported only for these "successful" trainees. The experimental group (N = 23 total, N = 13 "successful") upregulated the power of alpha rhythm, while the control group (N = 12 total, N = 5 "successful") beta rhythm, with the protocol instructions being as for alpha training in both. The acquisition of the stable skills of alpha self-regulation was followed by the weakening of the irrelevant links between the cerebellum and visuospatial network (VSN), as well as between the VSN, the right executive control network (RECN), and the cuneus. It was also found formation of a stable complex based on the interaction of the precuneus, the cuneus, the VSN, and the high level visuospatial network (HVN), along with the strengthening of the interaction of the anterior salience network (ASN) with the precuneus. In the control group, beta enhancement training was accompanied by weakening of interaction between the precuneus and the default mode network, and a decrease in connectivity between the cuneus and the primary visual network (PVN). The differences between the alpha training group and the control group increased successively during training. Alpha training was characterized by a less pronounced interaction of the network formed by the PVN and the HVN, as well as by an increased interaction of the cerebellum with the precuneus and the RECN. The study demonstrated the differences in the structure and interaction of neural networks involved into alpha and beta generating systems forming and functioning, which should be taken into account during planning neurofeedback interventions. Possibility of using fMRI-guided biofeedback organized according to the described neural networks interaction may advance more accurate targeting specific symptoms during neurotherapy.
Sundrić, Zvonko; Rajsić, Nenad; Lakocević, Milan; Nikolić-Djorić, Emilija
2010-01-01
Decrease of daily alertness is a common cause of accidents in the work place, especially traffic accidents. Therefore, an increasing interest exists to determine reliable indicators of a tendency to fall asleep involuntarily. To determine an optimal electroencephalographic (EEG) indicator of an involuntary tendency to fall asleep, we performed a study on neurologically healthy subjects, after one night of sleep deprivation. Total sleep deprivation was aimed at increasing daily sleepiness in healthy subjects, providing us with an opportunity to test different methods of evaluation. We applied a visual analogue scale for sleepiness (VASS), EEG registration with the specific test of alpha activity attenuation (TAA) in 87 healthy subjects. The test was perfomed in a standard way (sTAA) as well as in accordance with new modifications related to changes of EEG filter width in the range from 5 to 32 Hz (mTAA). After sleep deprivation, we observed involuntary falling asleep in 54 subjects. The comparison of VASS results showed no differences, contrary to a more objective TAA. Between two variants of TAA, the modified test provided us with a better prediction for subjects who would fall asleep involuntarily. The application of a more objective EEG test in evaluation of daily alertness represents the optimal method of testing. Modified TAA attracts special attention, offering a simple solution for reliable testing of decreased daily alertness in medical services related to professional aircraft personnel.
Stavropoulos, Katherine Kuhl-Meltzoff; Carver, Leslie J
2018-01-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, and multiple theories have emerged concerning core social deficits. While the social motivation hypothesis proposes that deficits in the social reward system cause individuals with ASD to engage less in social interaction, the overly intense world hypothesis (sensory over-responsivity) proposes that individuals with ASD find stimuli to be too intense and may have hypersensitivity to social interaction, leading them to avoid these interactions. EEG was recorded during reward anticipation and reward processing. Reward anticipation was measured using alpha asymmetry, and post-feedback theta was utilized to measure reward processing. Additionally, we calculated post-feedback alpha suppression to measure attention and salience. Participants were 6- to 8-year-olds with ( N = 20) and without ( N = 23) ASD. Children with ASD showed more left-dominant alpha suppression when anticipating rewards accompanied by nonsocial stimuli compared to social stimuli. During reward processing, children with ASD had less theta activity than typically developing (TD) children. Alpha activity after feedback showed the opposite pattern: children with ASD had greater alpha suppression than TD children. Significant correlations were observed between behavioral measures of autism severity and EEG activity in both the reward anticipation and reward processing time periods. The findings provide evidence that children with ASD have greater approach motivation prior to nonsocial (compared to social) stimuli. Results after feedback suggest that children with ASD evidence less robust activity thought to reflect evaluation and processing of rewards (e.g., theta) compared to TD children. However, children with ASD evidence greater alpha suppression after feedback compared to TD children. We hypothesize that post-feedback alpha suppression reflects general cognitive engagement-which suggests that children with ASD may experience feedback as overly intense. Taken together, these results suggest that aspects of both the social motivation hypothesis and the overly intense world hypothesis may be occurring simultaneously.
Nir, Rony-Reuven; Sinai, Alon; Moont, Ruth; Harari, Eyal; Yarnitsky, David
2012-03-01
Pain neurophysiology has been chiefly characterized via event-related potentials (ERPs), which are exerted using brief, phase-locked noxious stimuli. Striving for objectively characterizing clinical pain states using more natural, prolonged stimuli, tonic pain has been recently associated with the individual peak frequency of alpha oscillations. This finding encouraged us to explore whether alpha power, reflecting the magnitude of the synchronized activity within this frequency range, will demonstrate a corresponding relationship with subjective perception of tonic pain. Five-minute-long continuous EEG was recorded in 18 healthy volunteers under: (i) resting-state; (ii) innocuous temperature; and (iii) psychophysically-anchored noxious temperature. Numerical pain scores (NPSs) collected during the application of tonic noxious stimuli were tested for correlation with alpha-1 and alpha-2 power. NPSs and alpha power remained stable throughout the recording conditions (Ps⩾0.381). In the noxious condition, alpha-1 power obtained at the bilateral temporal scalp was negatively correlated with NPSs (Ps⩽0.04). Additionally, resting-state alpha-1 power recorded at the bilateral temporal scalp was negatively correlated with NPSs reported during the noxious condition (Ps⩽0.038). Current findings suggest alpha-1 power may serve as a direct, objective and experimentally stable measure of subjective perception of tonic pain. Furthermore, resting-state alpha-1 power might reflect individuals' inherent tonic pain responsiveness. The relevance of alpha-1 power to tonic pain perception may deepen the understanding of the mechanisms underlying the processing of prolonged noxious stimulation. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Shin, Jung-Hyun; Eom, Tae-Hoon; Kim, Young-Hoon; Chung, Seung-Yun; Lee, In-Goo; Kim, Jung-Min
2017-07-01
Valproate (VPA) is an antiepileptic drug (AED) used for initial monotherapy in treating childhood absence epilepsy (CAE). EEG might be an alternative approach to explore the effects of AEDs on the central nervous system. We performed a comparative analysis of background EEG activity during VPA treatment by using standardized, low-resolution, brain electromagnetic tomography (sLORETA) to explore the effect of VPA in patients with CAE. In 17 children with CAE, non-parametric statistical analyses using sLORETA were performed to compare the current density distribution of four frequency bands (delta, theta, alpha, and beta) between the untreated and treated condition. Maximum differences in current density were found in the left inferior frontal gyrus for the delta frequency band (log-F-ratio = -1.390, P > 0.05), the left medial frontal gyrus for the theta frequency band (log-F-ratio = -0.940, P > 0.05), the left inferior frontal gyrus for the alpha frequency band (log-F-ratio = -0.590, P > 0.05), and the left anterior cingulate for the beta frequency band (log-F-ratio = -1.318, P > 0.05). However, none of these differences were significant (threshold log-F-ratio = ±1.888, P < 0.01; threshold log-F-ratio = ±1.722, P < 0.05). Because EEG background is accepted as normal in CAE, VPA would not be expected to significantly change abnormal thalamocortical oscillations on a normal EEG background. Therefore, our results agree with currently accepted concepts but are not consistent with findings in some previous studies.
Farabi, Sarah S; Prasad, Bharati; Quinn, Lauretta; Carley, David W
2014-01-15
To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG.
Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael
2010-01-01
Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131
Kaneda, T; Ochiai, R; Takeda, J; Fukushima, K
1995-11-01
We have investigated the influence of nitrous oxide (N2O) on central nervous system (CNS) during sevoflurane anesthesia by using zero-crossing method of EEG in 31 patients. The study was divided into three parts: Study 1 (n = 18), Study 2 (n = 6) and Study 3 (n = 7). (Study 1) After induction of anesthesia, sevoflurane 1.0 % in oxygen (O2), and sevoflurane 1.0 % with 67 % N2O in O2 were given to the patients sequentially in a random fashion, and EEG was recorded. (Study 2) Sevoflurane 1.7 % in O2, and sevoflurane 0.7 % with 67 % N2O in O2, which were considered to be the same anesthetic depth (= sevoflurane 1 MAC), were inhaled, and EEG was recorded in the same manner as in the study 1. (Study 3) We compared the effects of N2O on EEG during intravenous administration of fentanyl and midazolam with 67 % N2O, and without N2O, and EEG was recorded in the same manner. In all studies, percentage of each frequency range (delta, theta, alpha, beta) and average frequency were calculated by zero-crossing method. During sevoflurane anesthesia, the EEG activity was decelerated with N2O, depending on minimum alveolar concentration (MAC). But there were no significant changes in EEG activity of the patient with and those without N2O during intravenous anesthesia. We concluded that the influences of N2O on CNS can be evaluated by quantitative analysis of EEG.
Changes in Resting EEG in Colombian Ex-combatants ith Antisocial Personality Disorder.
Ramos, Claudia; Duque-Grajales, Jon; Rendón, Jorge; Montoya-Betancur, Alejandro; Baena, Ana; Pineda, David; Tobón, Carlos
Although the social and economic consequences of Colombian internal conflicts mainly affected the civilian population, they also had other implications. The ex-combatants, the other side of the conflict, have been the subject of many studies that question their personality structures and antisocial features. Results suggest that ex-combatants usually have characteristics of an antisocial personality disorder (ASPD) that is related with their behaviour. Quantitative EEG (qEEG) was used to evaluate differences in cortical activity patterns between an ex-combatants group and a control group. The Psychopathy Checklist-Revised (PCL-R) was used to assess the presence of ASPD in the ex-combatants group, as well as the Diagnostic Interview for Genetic Studies (DIGS) for other mental disorders classified in the DCI-10. There are significant differences in psychopathy levels between groups, as well as in alpha-2 and beta waves, especially in left temporal and frontal areas for alpha-2 waves and left temporal-central regions for beta waves. qEEG measurements allow spectral resting potential to be differentiated between groups that are related with features typically involved in antisocial personality disorder, and to correlate them with patterns in the questionnaires and clinical interview. Copyright © 2017 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Toth, Marton; Faludi, Bela; Kondakor, Istvan
2012-10-01
Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long-term memory and motor performances caused by chronic hypoxia could be reversed by CPAP-therapy.
Analysis and visualization of single-trial event-related potentials
NASA Technical Reports Server (NTRS)
Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.
2001-01-01
In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image visualization to the analysis of sets of single trials from event-related EEG (or MEG) experiments can increase the information available from ERP (or ERF) data. Copyright 2001 Wiley-Liss, Inc.
Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback.
Kluetsch, R C; Ros, T; Théberge, J; Frewen, P A; Calhoun, V D; Schmahl, C; Jetly, R; Lanius, R A
2014-08-01
Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8-12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with post-traumatic stress disorder (PTSD). Twenty-one individuals with PTSD related to childhood abuse underwent 30 min of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase ('rebound') in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Our study represents a first step in elucidating the potential neurobehavioural mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG 'rebound' after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nishida, K; Yoshimura, M; Isotani, T; Yoshida, T; Kitaura, Y; Saito, A; Mii, H; Kato, M; Takekita, Y; Suwa, A; Morita, S; Kinoshita, T
2011-09-01
To determine the electrophysiological characteristics of frontotemporal dementia (FTD) and the distinction with Alzheimer's disease (AD). We performed analyses of global field power (GFP) which is a measure of whole brain electric field strength, and EEG neuroimaging analyses with sLORETA (standardized low resolution electromagnetic tomography), in the mild stages of FTD (n = 19; mean age = 68.11 ± 7.77) and AD (n = 19; mean age = 69.42 ± 9.57) patients, and normal control (NC) subjects (n = 22; mean age = 66.13 ± 6.02). In the GFP analysis, significant group effects were observed in the delta (1.5-6.0 Hz), alpha1 (8.5-10.0 Hz), and beta1 (12.5-18.0 Hz) bands. In sLORETA analysis, differences in activity were observed in the alpha1 band (NC > FTD) in the orbital frontal and temporal lobe, in the delta band (AD>NC) in widespread areas including the frontal lobe, and in the beta1 band (FTD > AD) in the parietal lobe and sensorimotor area. Differential patterns of brain regions and EEG frequency bands were observed between the FTD and AD groups in terms of pathological activity. FTD and AD patients in the early stages displayed different patterns in the cortical localization of oscillatory activity across different frequency bands. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Eye contact with neutral and smiling faces: effects on autonomic responses and frontal EEG asymmetry
Pönkänen, Laura M.; Hietanen, Jari K.
2012-01-01
In our previous studies we have shown that seeing another person “live” with a direct vs. averted gaze results in enhanced skin conductance responses (SCRs) indicating autonomic arousal and in greater relative left-sided frontal activity in the electroencephalography (asymmetry in the alpha-band power), associated with approach motivation. In our studies, however, the stimulus persons had a neutral expression. In real-life social interaction, eye contact is often associated with a smile, which is another signal of the sender's approach-related motivation. A smile could, therefore, enhance the affective-motivational responses to eye contact. In the present study, we investigated whether the facial expression (neutral vs. social smile) would modulate autonomic arousal and frontal EEG alpha-band asymmetry to seeing a direct vs. an averted gaze in faces presented “live” through a liquid crystal (LC) shutter. The results showed that the SCRs were greater for the direct than the averted gaze and that the effect of gaze direction was more pronounced for a smiling than a neutral face. However, in this study, gaze direction and facial expression did not affect the frontal EEG asymmetry, although, for gaze direction, we found a marginally significant correlation between the degree of an overall bias for asymmetric frontal activity and the degree to which direct gaze elicited stronger left-sided frontal activity than did averted gaze. PMID:22586387
Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study.
Zhao, Xiaojie; Li, Xiaoyun; Yao, Li
2017-01-01
Working memory (WM) is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA). Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.
Sun, Li; Wang, Yu-feng; He, Hua; Chen, Jin
2007-10-18
To explore the alpha competitive structure in children with attention deficit hyperactivity disorder (ADHD) with/without learning disabilities (LD). According to DSM-IV diagnostic criteria, the study involved ADHD children with LD, pure ADHD children and normal controls. Each group consisted of 68 subjects. All subjects were between the ages of 7 and 14 years, and the groups were matched by sex, age and ADHD subtypes. EEG data were recorded during an eye-closed resting period and then were analyzed with EEG-encephaloflutuographic technology (EEG-ET). (1) The pure ADHD children showed significantly more 8 Hz activity (25.84%+/-14.81%) than that of the normal control group (16.50%+/-11.42%, P=0.000); The main frequency of alpha band was 10 Hz in the pure ADHD children, while the energy distribution among alpha components was diffuse. (2) ADHD children with LD showed significantly more 8 Hz and 13 Hz activity (25.11%+/-11.88%, 1.14%+/-1.14%, separately) than that of the normal control (16.50%+/-11.42%, 0.74%+/-0.97%, P=0.000, P=0.009, separately); The dominant probability of 10 Hz (27.80%+/-13.28%) in this group was significantly lower than that of the control group (36.06%+/-17.21%, P=0.011); The energy distribution among alpha components was diffuse in ADHD children with LD, whose main frequency of alpha band was 9 Hz; The entropy value of the ADHD children with LD was significantly higher than that of the control group in the right brain and the left parietal region, temporal region, occipital region (P<0.01). In the right temporal region and right occipital region, the entropy value of the ADHD children with LD was significantly higher than that of the pure ADHD children (P<0.05). The pathogenic mechanisms are different between ADHD children with or without LD. The pure ADHD children show more maturational lag pattern in the central nervous system, while ADHD children with LD have a developmental deviation from normal children, whose brain function is in a lower efficient state.
Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer
2011-04-01
The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the EEG/fMRI analysis of the transient event-related potentials (ERPs) in terms of expecting more reliable and consistent correlations between EEG and fMRI responses, when the analyses are carried out on evoked or induced oscillations (spectral perturbations) in separate frequency bands instead of the time-domain ERP peaks.
Kornrumpf, Benthe; Dimigen, Olaf; Sommer, Werner
2017-06-01
Visuospatial attention is an important mechanism in reading that governs the uptake of information from foveal and parafoveal regions of the visual field. However, the spatiotemporal dynamics of how attention is allocated during eye fixations are not completely understood. The current study explored the use of EEG alpha-band oscillations to investigate the spatial distribution of attention during reading. We reanalyzed two data sets, focusing on the lateralization of alpha activity at posterior scalp sites. In each experiment, participants read short lists of German nouns in two paradigms: either by freely moving their eyes (saccadic reading) or by fixating the screen center while the text moved passively from right to left at the same average speed (RSVP paradigm). In both paradigms, upcoming words were either visible or masked, and foveal processing load was manipulated by varying the words' lexical frequencies. Posterior alpha lateralization revealed a sustained rightward bias of attention during saccadic reading, but not in the RSVP paradigm. Interestingly, alpha lateralization was not influenced by word frequency (foveal load) or preview during the preceding fixation. Hence, alpha did not reflect transient attention shifts within a given fixation. However, in both experiments, we found that in the saccadic reading condition a stronger alpha lateralization shortly before a saccade predicted shorter fixations on the subsequently fixated word. These results indicate that alpha lateralization can serve as a measure of attention deployment and its link to oculomotor behavior in reading. © 2017 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Almurshedi, Ahmed; Ismail, Abd Khamim
2015-04-01
EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.
Papageorgiou, Christos; Manios, Efstathios; Tsaltas, Eleftheria; Koroboki, Eleni; Alevizaki, Maria; Angelopoulos, Elias; Dimopoulos, Meletios-Athanasios; Papageorgiou, Charalabos; Zakopoulos, Nikolaos
2017-01-01
Essential hypertension is associated with reduced pain sensitivity of unclear aetiology. This study explores this issue using the Cold Pressor Test (CPT), a reliable pain/stress model, comparing CPT-related EEG activity in first episode hypertensives and controls. 22 untreated hypertensives and 18 matched normotensives underwent 24-hour ambulatory blood pressure monitoring (ABPM). EEG recordings were taken before, during, and after CPT exposure. Significant group differences in CPT-induced EEG oscillations were covaried with the most robust cardiovascular differentiators by means of a Canonical Analysis. Positive correlations were noted between ABPM variables and Delta (1-4 Hz) oscillations during the tolerance phase; in high-alpha (10-12 Hz) oscillations during the stress unit and posttest phase; and in low-alpha (8-10 Hz) oscillations during CPT phases overall. Negative correlations were found between ABPM variables and Beta2 oscillations (16.5-20 Hz) during the posttest phase and Gamma (28.5-45 Hz) oscillations during the CPT phases overall. These relationships were localised at several sites across the cerebral hemispheres with predominance in the right hemisphere and left frontal lobe. These findings provide a starting point for increasing our understanding of the complex relationships between cerebral activation and cardiovascular functioning involved in regulating blood pressure changes.
Meditation States and Traits: EEG, ERP, and Neuroimaging Studies
ERIC Educational Resources Information Center
Cahn, B. Rael; Polich, John
2006-01-01
Neuroelectric and imaging studies of meditation are reviewed. Electroencephalographic measures indicate an overall slowing subsequent to meditation, with theta and alpha activation related to proficiency of practice. Sensory evoked potential assessment of concentrative meditation yields amplitude and latency changes for some components and…
Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.
Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen
2017-11-13
Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.
Moyanova, S; Kortenska, L; Kirov, R; Iliev, I
1998-12-01
The powerful vasoconstrictor peptide endothelin-1 (ET1) has been shown to reduce local cerebral blood flow in brain areas supplied by the middle cerebral artery (MCA) to a pathologically low level upon intracerebral injection adjacent to the MCA. This reduction manifests itself as an ischemic infarct, that is fully developed within 3 days after ET1 injection. The aim of the present study is to examine the effect of ET1 on electroencephalographic (EEG) activity. ET1 was microinjected unilaterally at a dose of 60 pmol in 3 microl of saline to the MCA in conscious rats. EEG signals were recorded from the frontoparietal cortical area, supplied by MCA, from the first up to the fourteenth day after ET1 injection. EEG activity was analyzed by the fast Fourier transformation. A significant shift to a lower EEG frequency, i.e., augmentation of slow waves and a reduction of alpha-like and faster EEG waves was found post-ET1. This effect was maximal after 3-7 days when the most severe destruction of neurons in this cortical area occurs, as has been previously demonstrated. The results suggest that the quantitative EEG analysis may provide useful additional information about the functional disturbances associated with focal cerebral ischemia.
Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo
2010-06-25
The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.
Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A.; Park, Hyunwook; Yoo, Seung-Schik
2010-01-01
The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with the ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta- and alpha-rhythms that are sleep onset related EEG signatures along with the subsequent neural circuitries from a sleep deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable. PMID:19922343
Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A; Park, Hyunwook; Yoo, Seung-Schik
2009-01-01
The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta and alpha rhythms that are sleep onset-related EEG signatures along with the subsequent neural circuitries from a sleep-deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable.
Working memory training using EEG neurofeedback in normal young adults.
Xiong, Shi; Cheng, Chen; Wu, Xia; Guo, Xiaojuan; Yao, Li; Zhang, Jiacai
2014-01-01
Recent studies have shown that working memory (WM) performance can be improved by intensive and adaptive computerized training. Here, we explored the WM training effect using Electroencephalography (EEG) neurofeedback (NF) in normal young adults. In the first study, we identified the EEG features related to WM in normal young adults. The receiver operating characteristic (ROC) curve showed that the power ratio of the theta-to-alpha rhythms in the anterior-parietal region, accurately classified a high percentage of the EEG trials recorded during WM and fixation control (FC) tasks. Based on these results, a second study aimed to assess the training effects of the theta-to-alpha ratio and tested the hypothesis that up-regulating the power ratio can improve working memory behavior. Our results demonstrated that these normal young adults succeeded in improving their WM performance with EEG NF, and the pre- and post-test evaluations also indicated that WM performance increase in experimental group was significantly greater than control groups. In summary, our findings provided preliminarily evidence that WM performance can be improved through learned regulation of the EEG power ratio using EEG NF.
Ehinger, Benedikt V.; Fischer, Petra; Gert, Anna L.; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter
2014-01-01
In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation. PMID:24616681
Ehinger, Benedikt V; Fischer, Petra; Gert, Anna L; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter
2014-01-01
In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.
Gender specific changes in cortical activation patterns during exposure to artificial gravity
NASA Astrophysics Data System (ADS)
Schneider, Stefan; Robinson, Ryan; Smith, Craig; von der Wiesche, Melanie; Goswami, Nandu
2014-11-01
Keeping astronauts healthy during long duration spaceflight remains a challenge. Artificial gravity (AG) generated by a short arm human centrifuges (SAHC) is proposed as the next generation of integrated countermeasure devices that will allow human beings to safely spend extended durations in space, although comparatively little is known about any psychological side effects of AG on brain function. 16 participants (8 male and 8 female, GENDER) were exposed to 10 min at a baseline gravitational load (G-Load) of +.03 Gz, then 10 min at +.6 Gz for females and +.8 Gz for males, before being exposed to increasing levels of AG in a stepped manner by increasing the acceleration by +.1 Gz every 3 min until showing signs of pre-syncope. EEG recordings were taken of brain activity during 2 min time periods at each AG level. Analysing the results of the mixed total population of participants by two way ANOVA, a significant effect of centrifugation on alpha and beta activity was found (p<.01). Furthermore results revealed a significant interaction between G-LOAD and GENDER alpha-activity (p<.01), but not for beta-activity. Although the increase in alpha and beta activity with G-LOAD does not reflect a general model of cortical arousal and therefore cannot support previous findings reporting that AG may be a cognitively arousing environment, the gender specific responses identified in this study may have wider implications for EEG and AG research.
Nonlinear Directed Interactions Between HRV and EEG Activity in Children With TLE.
Schiecke, Karin; Pester, Britta; Piper, Diana; Benninger, Franz; Feucht, Martha; Leistritz, Lutz; Witte, Herbert
2016-12-01
Epileptic seizure activity influences the autonomic nervous system (ANS) in different ways. Heart rate variability (HRV) is used as indicator for alterations of the ANS. It was shown that linear, nondirected interactions between HRV and EEG activity before, during, and after epileptic seizure occur. Accordingly, investigations of directed nonlinear interactions are logical steps to provide, e.g., deeper insight into the development of seizure onsets. Convergent cross mapping (CCM) investigates nonlinear, directed interactions between time series by using nonlinear state space reconstruction. CCM is applied to simulated and clinically relevant data, i.e., interactions between HRV and specific EEG components of children with temporal lobe epilepsy (TLE). In addition, time-variant multivariate Autoregressive model (AR)-based estimation of partial directed coherence (PDC) was performed for the same data. Influence of estimation parameters and time-varying behavior of CCM estimation could be demonstrated by means of simulated data. AR-based estimation of PDC failed for the investigation of our clinical data. Time-varying interval-based application of CCM on these data revealed directed interactions between HRV and delta-related EEG activity. Interactions between HRV and alpha-related EEG activity were visible but less pronounced. EEG components mainly drive HRV. The interaction pattern and directionality clearly changed with onset of seizure. Statistical relevant interactions were quantified by bootstrapping and surrogate data approach. In contrast to AR-based estimation of PDC CCM was able to reveal time-courses and frequency-selective views of nonlinear interactions for the further understanding of complex interactions between the epileptic network and the ANS in children with TLE.
Jesulola, Emmanuel; Sharpley, Christopher F; Bitsika, Vicki; Agnew, Linda L; Wilson, Peter
2015-10-01
Depression has been described as a process of behavioural withdrawal from overwhelming aversive stressors, and which manifests itself in the diagnostic symptomatology for Major Depressive Disorder (MDD). The underlying neurobiological pathways to that behavioural withdrawal are suggested to include greater activation in the right vs the left frontal lobes, described as frontal EEG asymmetry. However, despite a previous meta-analysis that provided overall support for this EEG asymmetry hypothesis, inconsistencies and several methodological confounds exist. The current review examines the literature on this issue, identifies inconsistencies in findings and discusses several key research issues that require addressing for this field to move towards a defensible theoretical model of depression and EEG asymmetry. In particular, the position of EEG asymmetry in the brain, measurement of severity and symptoms profiles of depression, and the effects of gender are considered as potential avenues to more accurately define the specific nature of the depression-EEG asymmetry association. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of musical expertise on oscillatory brain activity in response to emotional sounds.
Nolden, Sophie; Rigoulot, Simon; Jolicoeur, Pierre; Armony, Jorge L
2017-08-01
Emotions can be conveyed through a variety of channels in the auditory domain, be it via music, non-linguistic vocalizations, or speech prosody. Moreover, recent studies suggest that expertise in one sound category can impact the processing of emotional sounds in other sound categories as they found that musicians process more efficiently emotional musical and vocal sounds than non-musicians. However, the neural correlates of these modulations, especially their time course, are not very well understood. Consequently, we focused here on how the neural processing of emotional information varies as a function of sound category and expertise of participants. Electroencephalogram (EEG) of 20 non-musicians and 17 musicians was recorded while they listened to vocal (speech and vocalizations) and musical sounds. The amplitude of EEG-oscillatory activity in the theta, alpha, beta, and gamma band was quantified and Independent Component Analysis (ICA) was used to identify underlying components of brain activity in each band. Category differences were found in theta and alpha bands, due to larger responses to music and speech than to vocalizations, and in posterior beta, mainly due to differential processing of speech. In addition, we observed greater activation in frontal theta and alpha for musicians than for non-musicians, as well as an interaction between expertise and emotional content of sounds in frontal alpha. The results reflect musicians' expertise in recognition of emotion-conveying music, which seems to also generalize to emotional expressions conveyed by the human voice, in line with previous accounts of effects of expertise on musical and vocal sounds processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Münch, M; Scheuermaier, KD; Zhang, R; Dunne, SP; Guzik, AM; Silva, EJ; Ronda, JM; Duffy, JF
2011-01-01
Evening bright light exposure is reported to ameliorate daytime sleepiness and age-related sleep complaints, and also delays the timing of circadian rhythms. We tested whether evening light exposure given to older adults with sleep-wake complaints would delay the timing of their circadian rhythms with respect to their sleep timing, thereby reducing evening sleepiness and improving subsequent sleep quality. We examined the impact of evening light exposure from two different light sources on subjective alertness, EEG activity during wakefulness, and sleep stages. Ten healthy older adults with sleep complaints (mean age=63.3 yrs; 6F) participated in a 13-day study. After three baseline days, circadian phase was assessed. On the evening of days 5–8 the subjects were exposed for 2 h to either polychromatic blue-enriched white light or standard white fluorescent light, and on the following day circadian phase was re-assessed. Subjects were allowed to leave the laboratory during all but the two days when the circadian phase assessment took place. Evening assessments of subjective alertness, and wake and sleep EEG data were analyzed. Subjective alertness and wake EEG activity in the alpha range (9.75–11.25 Hz) were significantly higher during light exposures when compared to the pre-light exposure evening (p<0.05). The light exposures produced circadian phase shifts and significantly prolonged latency to rapid eye-movement (REM) sleep for both light groups (p<0.05). The increase in wake EEG alpha activity during the light exposures was negatively correlated with REM sleep duration (p<0.05). Evening light exposure could benefit older adults with early evening sleepiness, without negatively impacting the subsequent sleep episode. PMID:21664380
ERIC Educational Resources Information Center
Jaime, Mark; McMahon, Camilla M.; Davidson, Bridget C.; Newell, Lisa C.; Mundy, Peter C.; Henderson, Heather A.
2016-01-01
Although prior studies have demonstrated reduced resting state EEG coherence in adults with autism spectrum disorder (ASD), no studies have explored the nature of EEG coherence during joint attention. We examined the EEG coherence of the joint attention network in adolescents with and without ASD during congruent and incongruent joint attention…
NASA Astrophysics Data System (ADS)
Yu, Haitao; Liu, Jing; Cai, Lihui; Wang, Jiang; Cao, Yibin; Hao, Chongqing
2017-02-01
Electroencephalogram (EEG) signal evoked by acupuncture stimulation at "Zusanli" acupoint is analyzed to investigate the modulatory effect of manual acupuncture on the functional brain activity. Power spectral density of EEG signal is first calculated based on the autoregressive Burg method. It is shown that the EEG power is significantly increased during and after acupuncture in delta and theta bands, but decreased in alpha band. Furthermore, synchronization likelihood is used to estimate the nonlinear correlation between each pairwise EEG signals. By applying a threshold to resulting synchronization matrices, functional networks for each band are reconstructed and further quantitatively analyzed to study the impact of acupuncture on network structure. Graph theoretical analysis demonstrates that the functional connectivity of the brain undergoes obvious change under different conditions: pre-acupuncture, acupuncture, and post-acupuncture. The minimum path length is largely decreased and the clustering coefficient keeps increasing during and after acupuncture in delta and theta bands. It is indicated that acupuncture can significantly modulate the functional activity of the brain, and facilitate the information transmission within different brain areas. The obtained results may facilitate our understanding of the long-lasting effect of acupuncture on the brain function.
Relationship between speed and EEG activity during imagined and executed hand movements
NASA Astrophysics Data System (ADS)
Yuan, Han; Perdoni, Christopher; He, Bin
2010-04-01
The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.
NASA Technical Reports Server (NTRS)
Freeman, Frederick
1995-01-01
A biocybernetic system for use in adaptive automation was evaluated using EEG indices based on the beta, alpha, and theta bandwidths. Subjects performed a compensatory tracking task while their EEG was recorded and one of three engagement indices was derived: beta/(alpha + theta), beta/alpha, or 1/alpha. The task was switched between manual and automatic modes as a function of the subjects' level of engagement and whether they were under a positive or negative feedback condition. It was hypothesized that negative feedback would produce more switches between manual and automatic modes, and that the beta/(alpha + theta) index would produce the strongest effect. The results confirmed these hypotheses. There were no systematic changes in these effects over three 16-minute trials. Tracking performance was found to be better under negative feedback. An analysis of the different EEG bands under positive and negative feedback in manual and automatic modes found more beta power in the positive feedback/manual condition and less in the positive feedback/automatic condition. The opposite effect was observed for alpha and theta power. The implications of biocybernetic systems for adaptive automation are discussed.
Chen, Andrew C N; Liu, Feng-Jun; Wang, Li; Arendt-Nielsen, Lars
2006-02-15
This study determined: (a) if acupuncture stimulation at a traditional site might modulate ongoing EEG as compared with stimulation of a control site; (b) if high-frequency vs. low-frequency stimulation could exert differential effects of acupuncture; (c) if the observed effects of acupuncture were specific to certain EEG bands; and (d) if the acupuncture effect could be isolated at a specific scalp field, with its putative underlying intracranial source. Twelve healthy male volunteers (age range 22-35) participated in two experimental sessions separated by 1 week, which involved transcutaneous acupoint stimulation at selected acupoint (Li 4, HeGu) vs. a mock point at the fourth interosseous muscle area on the left hand in high (HF: 100 Hz) vs. low-frequency (LF: 2 Hz) stimulation by counter-balanced order. 124-ch EEG data were used to analyze the Delta, Theta, Alpha-1, Alpha-2, Beta, and Gamma bands. The absolute EEG powers (muv2) at focal maxima across three stages (baseline, stimulation, post) were examined by two-way (condition, stage) repeated measures ANOVA. The activity of the Theta power significantly decreased (P = 0.02), compared with control during HF but not LF stimulation at acupoint stimulation, however, there was no study effect at the mock point. A decreased Theta EEG power was prominent at the frontal midline sites (FCz, Fz) and the contralateral right hemisphere front site (FCC2h). In contrast, the Theta power of low-frequency stimulation showed an increase from the baseline as those in both controlled mock point stimulations. The observed high-frequency acupoint stimulation effects of Theta EEG were only present during, but not after, simulation. The topographic Theta activity was tentatively identified to originate from the intracranial current source in cingulate cortex, likely ACC. It is likely that short-term cortical plasticity occurs during high-frequency but not low-frequency stimulation at the HeGu point, but not mock point. We suggest that HeGu acupuncture stimulation modulates limbic cingulum by a frequency modulation mode, which then may damp nociceptive processing in the brain.
Olejarczyk, Elzbieta; Bogucki, Piotr; Sobieszek, Aleksander
2017-01-01
Electroencephalographic (EEG) patterns were analyzed in a group of ambulatory patients who ranged in age and sex using spectral analysis as well as Directed Transfer Function, a method used to evaluate functional brain connectivity. We tested the impact of window size and choice of reference electrode on the identification of two or more peaks with close frequencies in the spectral power distribution, so called "split alpha." Together with the connectivity analysis, examination of spatiotemporal maps showing the distribution of amplitudes of EEG patterns allowed for better explanation of the mechanisms underlying the generation of split alpha peaks. It was demonstrated that the split alpha spectrum can be generated by two or more independent and interconnected alpha wave generators located in different regions of the cerebral cortex, but not necessarily in the occipital cortex. We also demonstrated the importance of appropriate reference electrode choice during signal recording. In addition, results obtained using the original data were compared with results obtained using re-referenced data, using average reference electrode and reference electrode standardization techniques.
NASA Astrophysics Data System (ADS)
Ghosn, Rania; Villégier, Anne-Sophie; Selmaoui, Brahim; Thuróczy, Georges; de Sèze, René
2013-05-01
Most of clinical studies on radiofrequency electromagnetic fields (RF) were directed at mobile phone-related exposures, usually at the level of the head, at their effect on some physiological functions including sleep, brain electrical activity (EEG), cognitive processes, brain vascularisation, and more generally on the cardiovascular and endocrine systems. They were frequently carried out on healthy adults. Effects on the amplitude of EEG alpha waves, mainly during sleep, look reproducible. It would however be important to define more precisely whether and how the absence of electromagnetic disturbance between RF exposure and the recording systems is checked. No consensus arises about cognitive effects. Some effects on cerebral vascularisation need complementary work.
EEG Biofeedback: A Critical Evaluation of the Results and Underlying Rationale.
1977-01-31
workers (Nowlia & Kamiya, 1970), improved delayed recall have published a series of studies evaluating the (Cannon 6 Sternbach , 1971), extrasensory ... perception role of the visuomotor system in the control of (Ifonorton , Davidson, 6 Bindier, 1971) , and decreased alpha activity (Mulholland 6 Runnals, 1962
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
NASA Astrophysics Data System (ADS)
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
Michela, Abele; Bellman, Anne; Vuadens, Philippe; Saj, Arnaud; Vuilleumier, Patrik
2017-01-01
Despite recent attempts to use electroencephalogram (EEG) neurofeedback (NFB) as a tool for rehabilitation of motor stroke, its potential for improving neurological impairments of attention—such as visuospatial neglect—remains underexplored. It is also unclear to what extent changes in cortical oscillations contribute to the pathophysiology of neglect, or its recovery. Utilizing EEG-NFB, we sought to causally manipulate alpha oscillations in 5 right-hemisphere stroke patients in order to explore their role in visuospatial neglect. Patients trained to reduce alpha oscillations from their right posterior parietal cortex (rPPC) for 20 minutes daily, over 6 days. Patients demonstrated successful NFB learning between training sessions, denoted by improved regulation of alpha oscillations from rPPC. We observed a significant negative correlation between visuospatial search deficits (i.e., cancellation test) and reestablishment of spontaneous alpha-rhythm dynamic range (i.e., its amplitude variability). Our findings support the use of NFB as a tool for investigating neuroplastic recovery after stroke and suggest reinstatement of intact parietal alpha oscillations as a promising target for reversing attentional deficits. Specifically, we demonstrate for the first time the feasibility of EEG-NFB in neglect patients and provide evidence that targeting alpha amplitude variability might constitute a valuable marker for clinical symptoms and self-regulation. PMID:28529806
Validation of Regression-Based Myogenic Correction Techniques for Scalp and Source-Localized EEG
McMenamin, Brenton W.; Shackman, Alexander J.; Maxwell, Jeffrey S.; Greischar, Lawrence L.; Davidson, Richard J.
2008-01-01
EEG and EEG source-estimation are susceptible to electromyographic artifacts (EMG) generated by the cranial muscles. EMG can mask genuine effects or masquerade as a legitimate effect - even in low frequencies, such as alpha (8–13Hz). Although regression-based correction has been used previously, only cursory attempts at validation exist and the utility for source-localized data is unknown. To address this, EEG was recorded from 17 participants while neurogenic and myogenic activity were factorially varied. We assessed the sensitivity and specificity of four regression-based techniques: between-subjects, between-subjects using difference-scores, within-subjects condition-wise, and within-subject epoch-wise on the scalp and in data modeled using the LORETA algorithm. Although within-subject epoch-wise showed superior performance on the scalp, no technique succeeded in the source-space. Aside from validating the novel epoch-wise methods on the scalp, we highlight methods requiring further development. PMID:19298626
Modulation of Alpha Oscillations in the Human EEG with Facial Preference
Kang, Jae-Hwan; Kim, Su Jin; Cho, Yang Seok; Kim, Sung-Phil
2015-01-01
Facial preference that results from the processing of facial information plays an important role in social interactions as well as the selection of a mate, friend, candidate, or favorite actor. However, it still remains elusive which brain regions are implicated in the neural mechanisms underlying facial preference, and how neural activities in these regions are modulated during the formation of facial preference. In the present study, we investigated the modulation of electroencephalography (EEG) oscillatory power with facial preference. For the reliable assessments of facial preference, we designed a series of passive viewing and active choice tasks. In the former task, twenty-four face stimuli were passively viewed by participants for multiple times in random order. In the latter task, the same stimuli were then evaluated by participants for their facial preference judgments. In both tasks, significant differences between the preferred and non-preferred faces groups were found in alpha band power (8–13 Hz) but not in other frequency bands. The preferred faces generated more decreases in alpha power. During the passive viewing task, significant differences in alpha power between the preferred and non-preferred face groups were observed at the left frontal regions in the early (0.15–0.4 s) period during the 1-s presentation. By contrast, during the active choice task when participants consecutively watched the first and second face for 1 s and then selected the preferred one, an alpha power difference was found for the late (0.65–0.8 s) period over the whole brain during the first face presentation and over the posterior regions during the second face presentation. These results demonstrate that the modulation of alpha activity by facial preference is a top-down process, which requires additional cognitive resources to facilitate information processing of the preferred faces that capture more visual attention than the non-preferred faces. PMID:26394328
Søholm, Helle; Kjær, Troels Wesenberg; Kjaergaard, Jesper; Cronberg, Tobias; Bro-Jeppesen, John; Lippert, Freddy K; Køber, Lars; Wanscher, Michael; Hassager, Christian
2014-11-01
Out-of-hospital cardiac arrest (OHCA) is associated with a poor prognosis and predicting outcome is complex with neurophysiological testing and repeated clinical neurological examinations as key components of the assessment. In this study we examine the association between different electroencephalography (EEG) patterns and mortality in a clinical cohort of OHCA-patients. From 2002 to 2011 consecutive patients were admitted to an intensive-care-unit after resuscitation from OHCA. Utstein-criteria for pre-hospital data and review of individual patients' charts for post-resuscitation care were used. EEG reports were analysed according to the 2012 American Clinical Neurophysiology Society's guidelines. A total of 1076 patients were included, and EEG was performed in 20% (n=219) with a median of 3(IQR 2-4) days after OHCA. Rhythmic Delta Activity (RDA) was found in 71 patients (36%) and Periodic Discharges (PD) in 100 patients (45%). Background EEG frequency of Alpha+ or Theta was noted in 107 patients (49%), and change in cerebral EEG activity to stimulation (reactivity) was found in 38 patients (17%). Suppression (all activity <10 μV) was found in 26 (12%) and burst-suppression in 17 (8%) patients. A favourable EEG pattern (reactivity, favourable background frequency and RDA) was independently associated with reduced mortality with hazard ratio (HR) 0.43 (95%CI: 0.24-0.76), p=0.004 (false positive rate: 31%) and a non-favourable EEG pattern (no reactivity, unfavourable background frequency, and PD, suppressed voltage or burst-suppression) was associated with higher mortality (HR=1.62(1.09-2.41), p=0.02) after adjustment for known prognostic factors (false positive rate: 9%). EEG may be useful in work-up in prognostication of patients with OHCA. Findings such as Rhythmic Delta Activity (RDA) seem to be associated with a better prognosis, whereas suppressed voltage and burst-suppression patterns were associated with poor prognosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nayak, Chetan S; Mariyappa, N; Majumdar, Kaushik K; Prasad, Pradeep D; Ravi, G S; Nagappa, M; Kandavel, Thennarasu; Taly, Arun B; Sinha, Sanjib
2018-05-01
Excessive cortical synchrony within neural ensembles has been implicated as an important mechanism driving epileptiform activity. The current study measures and compares background electroencephalographic (EEG) phase synchronization in patients having various types of epilepsies and healthy controls during awake and sleep stages. A total of 120 patients with epilepsy (PWE) subdivided into 3 groups (juvenile myoclonic epilepsy [JME], temporal lobe epilepsy [TLE], and extra-temporal lobe epilepsy [Ex-TLE]; n = 40 in each group) and 40 healthy controls were subjected to overnight polysomnography. EEG phase synchronization (SI) between the 8 EEG channels was assessed for delta, theta, alpha, sigma, and high beta frequency bands using ensemble measure on 10-second representative time windows and compared between patients and controls and also between awake and sleep stages. Mean ± SD of SI was compared using 2-way analysis of variance followed by pairwise comparison ( P ≤ .05). In both delta and theta bands, the SI was significantly higher in patients with JME, TLE, and Ex-TLE compared with controls, whereas in alpha, sigma, and high beta bands, SI was comparable between the groups. On comparison of SI between sleep stages, delta band: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3, whereas REM (rapid eye movement) was comparable to wake; theta band: decreased SI during N2 and increase during N3; alpha band: SI was highest in wake and lower in N1, N2, N3, and REM; and sigma and high beta bands: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3; however, sigma band showed lower SI during REM. This study found an increased background cortical synchronization in PWE compared with healthy controls in delta and theta bands during wake and sleep. This background hypersynchrony may be an important property of epileptogenic brain circuitry in PWE, which enables them to effortlessly generate a paroxysmal EEG depolarization shift.
Modeling EEG fractal dimension changes in wake and drowsy states in humans--a preliminary study.
Bojić, Tijana; Vuckovic, Aleksandra; Kalauzi, Aleksandar
2010-01-21
Aim of this preliminary study was to examine and compare topographic distribution of Higuchi's fractal dimension (FD, measure of signal complexity) of EEG signals between states of relaxed wakefulness and drowsiness, as well as their FD differences. The experiments were performed on 10 healthy individuals using a fourteen-channel montage. An explanation is offered on the causes of the detected FD changes. FD values of 60s records belonging to wake (Hori's stage 1) and drowsy (Hori's stages 2-4) states were calculated for each channel and each subject. In 136 out of 140 epochs an increase in FD was obtained. Relationship between signal FD and its relative alpha amplitude was mathematically modeled and we quantitatively demonstrated that the increase in FD was predominantly due to a reduction in alpha activity. The model was generalized to include other EEG oscillations. By averaging FD values for each channel across 10 subjects, four clusters (O2O1; T6P4T5P3; C3F3F4C4F8F7; T4T3) for the wake and two clusters (O2O1P3T6P4T5; C3C4F4F3F8T4T3F7) for the drowsy state were statistically verified. Topographic distribution of FD values in wakefulness showed a lateral symmetry and a partial fronto-occipital gradient. In drowsiness, a reduction in the number of clusters was detected, due to regrouping of channels T3, T4, O1 and O2. Topographic distribution of absolute FD differences revealed largest values at F7, O1 and F3. Reorganization of channel clusters showed that regionalized brain activity, specific for wakefulness, became more global by entering into drowsiness. Since the global increase in FD during wake-to-drowsy transition correlated with the decrease of alpha power, we inferred that increase of EEG complexity may not necessarily be an index of brain activation.
Sale, Patrizio; Infarinato, Francesco; Del Percio, Claudio; Lizio, Roberta; Babiloni, Claudio; Foti, Calogero; Franceschini, Marco
2015-12-01
Stroke is the leading cause of permanent disability in developed countries; its effects may include sensory, motor, and cognitive impairment as well as a reduced ability to perform self-care and participate in social and community activities. A number of studies have shown that the use of robotic systems in upper limb motor rehabilitation programs provides safe and intensive treatment to patients with motor impairments because of a neurological injury. Furthermore, robot-aided therapy was shown to be well accepted and tolerated by all patients; however, it is not known whether a specific robot-aided rehabilitation can induce beneficial cortical plasticity in stroke patients. Here, we present a procedure to study neural underpinning of robot-aided upper limb rehabilitation in stroke patients. Neurophysiological recordings use the following: (a) 10-20 system electroencephalographic (EEG) electrode montage; (b) bipolar vertical and horizontal electrooculographies; and (c) bipolar electromyography from the operating upper limb. Behavior monitoring includes the following: (a) clinical data and (b) kinematic and dynamic of the operant upper limb movements. Experimental conditions include the following: (a) resting state eyes closed and eyes open, and (b) robotic rehabilitation task (maximum 80 s each block to reach 4-min EEG data; interblock pause of 1 min). The data collection is performed before and after a program of 30 daily rehabilitation sessions. EEG markers include the following: (a) EEG power density in the eyes-closed condition; (b) reactivity of EEG power density to eyes opening; and (c) reactivity of EEG power density to robotic rehabilitation task. The above procedure was tested on a subacute patient (29 poststroke days) and on a chronic patient (21 poststroke months). After the rehabilitation program, we observed (a) improved clinical condition; (b) improved performance during the robotic task; (c) reduced delta rhythms (1-4 Hz) and increased alpha rhythms (8-12 Hz) during the resting state eyes-closed condition; (d) increased alpha desynchronization to eyes opening; and (e) decreased alpha desynchronization during the robotic rehabilitation task. We conclude that the present procedure is suitable for evaluation of the neural underpinning of robot-aided upper limb rehabilitation.
Regional differences in trait-like characteristics of the waking EEG in early adolescence.
Benz, Dominik C; Tarokh, Leila; Achermann, Peter; Loughran, Sarah P
2013-10-09
The human waking EEG spectrum shows high heritability and stability and, despite maturational cortical changes, high test-retest reliability in children and teens. These phenomena have also been shown to be region specific. We examined the stability of the morphology of the wake EEG spectrum in children aged 11 to 13 years recorded over weekly intervals and assessed whether the waking EEG spectrum in children may also be trait-like. Three minutes of eyes open and three minutes of eyes closed waking EEG was recorded in 22 healthy children once a week for three consecutive weeks. Eyes open and closed EEG power density spectra were calculated for two central (C3LM and C4LM) and two occipital (O1LM and O2LM) derivations. A hierarchical cluster analysis was performed to determine whether the morphology of the waking EEG spectrum between 1 and 20 Hz is trait-like. We also examined the stability of the alpha peak using an ANOVA. The morphology of the EEG spectrum recorded from central derivations was highly stable and unique to an individual (correctly classified in 85% of participants), while the EEG recorded from occipital derivations, while stable, was much less unique across individuals (correctly classified in 42% of participants). Furthermore, our analysis revealed an increase in alpha peak height concurrent with a decline in the frequency of the alpha peak across weeks for occipital derivations. No changes in either measure were observed in the central derivations. Our results indicate that across weekly recordings, power spectra at central derivations exhibit more "trait-like" characteristics than occipital derivations. These results may be relevant for future studies searching for links between phenotypes, such as psychiatric diagnoses, and the underlying genes (i.e., endophenotypes) by suggesting that such studies should make use of more anterior rather than posterior EEG derivations.
Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder
Nusslock, Robin; Harmon-Jones, Eddie; Alloy, Lauren B.; Urosevic, Snezana; Goldstein, Kim; Abramson, Lyn Y.
2013-01-01
Bipolar disorder is characterized by a hypersensitivity to reward-relevant cues and a propensity to experience an excessive increase in approach-related affect, which may be reflected in hypo/manic symptoms. The present study examined the relationship between relative left-frontal electroencephalographic (EEG) activity, a proposed neurophysiological index of approach-system sensitivity and approach/reward-related affect, and bipolar course and state-related variables. Fifty-eight individuals with cyclothymia or bipolar II disorder and 59 healthy control participants with no affective psychopathology completed resting EEG recordings. Alpha power was obtained and asymmetry indices computed for homologous electrodes. Bipolar spectrum participants were classified as being in a major/minor depressive episode, a hypomanic episode, or a euthymic/remitted state at EEG recording. Participants were then followed prospectively for an average 4.7 year follow-up period with diagnostic interview assessments every four-months. Sixteen bipolar spectrum participants converted to bipolar I disorder during follow-up. Consistent with hypotheses, elevated relative left-frontal EEG activity at baseline 1) prospectively predicted a greater likelihood of converting from cyclothymia or bipolar II disorder to bipolar I disorder over the 4.7 year follow-up period, 2) was associated with an earlier age-of-onset of first bipolar spectrum episode, and 3) was significantly elevated in bipolar spectrum individuals in a hypomanic episode at EEG recording. This is the first study to identify a neurophysiological marker that prospectively predicts conversion to bipolar I disorder. The fact that unipolar depression is characterized by decreased relative left-frontal EEG activity suggests that unipolar depression and vulnerability to hypo/mania may be characterized by different profiles of frontal EEG asymmetry. PMID:22775582
Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.
Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2018-05-01
People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.
Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C; Hardiman, Orla
2015-01-01
Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05). There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS.
Using theta and alpha band power to assess cognitive workload in multitasking environments.
Puma, Sébastien; Matton, Nadine; Paubel, Pierre-V; Raufaste, Éric; El-Yagoubi, Radouane
2018-01-01
Cognitive workload is of central importance in the fields of human factors and ergonomics. A reliable measurement of cognitive workload could allow for improvements in human machine interface designs and increase safety in several domains. At present, numerous studies have used electroencephalography (EEG) to assess cognitive workload, reporting the rise in cognitive workload to be associated with increases in theta band power and decreases in alpha band power. However, results have been inconsistent with some failing to reach the required level of significance. We hypothesized that the lack of consistency could be related to individual differences in task performance and/or to the small sample sizes in most EEG studies. In the present study we used EEG to assess the increase in cognitive workload occurring in a multitasking environment while taking into account differences in performance. Twenty participants completed a task commonly used in airline pilot recruitment, which included an increasing number of concurrent sub-tasks to be processed from one to four. Subjective ratings, performances scores, pupil size and EEG signals were recorded. Results showed that increases in EEG alpha and theta band power reflected increases in the involvement of cognitive resources for the completion of one to three subtasks in a multitasking environment. These values reached a ceiling when performances dropped. Consistent differences in levels of alpha and theta band power were associated to levels of task performance: highest performance was related to lowest band power. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of EEG workload indices for diagnostic monitoring of vigilance decrement.
Kamzanova, Altyngul T; Kustubayeva, Almira M; Matthews, Gerald
2014-09-01
A study was run to test which of five electroencephalographic (EEG) indices was most diagnostic of loss of vigilance at two levels of workload. EEG indices of alertness include conventional spectral power measures as well as indices combining measures from multiple frequency bands, such as the Task Load Index (TLI) and the Engagement Index (El). However, it is unclear which indices are optimal for early detection of loss of vigilance. Ninety-two participants were assigned to one of two experimental conditions, cued (lower workload) and uncued (higher workload), and then performed a 40-min visual vigilance task. Performance on this task is believed to be limited by attentional resource availability. EEG was recorded continuously. Performance, subjective state, and workload were also assessed. The task showed a vigilance decrement in performance; cuing improved performance and reduced subjective workload. Lower-frequency alpha (8 to 10.9 Hz) and TLI were most sensitive to the task parameters. The magnitude of temporal change was larger for lower-frequency alpha. Surprisingly, higher TLI was associated with superior performance. Frontal theta and El were influenced by task workload only in the final period of work. Correlational data also suggested that the indices are distinct from one another. Lower-frequency alpha appears to be the optimal index for monitoring vigilance on the task used here, but further work is needed to test how diagnosticity of EEG indices varies with task demands. Lower-frequency alpha may be used to diagnose loss of operator alertness on tasks requiring vigilance.
Park, Doo-Heum; Ha, Jee Hyun; Ryu, Seung-Ho; Yu, Jaehak; Shin, Chul-Jin
2015-10-01
Electroencephalographic (EEG) patterns during sleep are markedly different from those measured during the waking state, but the process of falling asleep is not fully understood in terms of biochemical and neurophysiological aspects. We sought to investigate EEG changes that occur during the transitional period from wakefulness to sleep in a 3-dimensional manner to gain a better understanding of the physiological meaning of sleep for the brain. We examined EEG 3-dimensionally using LORETA (low-resolution electromagnetic tomography), to localize the brain region associated with changes that occur during the sleep onset period (SOP). Thirty-channel EEG was recorded in 61 healthy subjects. EEG power spectra and intracortical standardized LORETA were compared between 4 types of 30-second states, including the wakeful stage, transition stage, early sleep stage 1, and late sleep stage 1. Sleep onset began with increased delta and theta power and decreased alpha-1 power in the occipital lobe, and increased theta power in the parietal lobe. Thereafter, global reductions of alpha-1 and alpha-2 powers and greater increases of theta power in the occipito-parietal lobe occurred. As sleep became deeper in sleep stage 1, beta-2 and beta-3, powers decreased mainly in the frontal lobe and some regions of the parieto-temporo-limbic area. These findings suggest that sleep onset includes at least 3 steps in a sequential manner, which include an increase in theta waves in the posterior region of the brain, a global decrease in alpha waves, and a decrease in beta waves in the fronto-central area. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Sanguinetti, Joseph L; Trujillo, Logan T; Schnyer, David M; Allen, John J B; Peterson, Mary A
2016-09-01
Figure-ground assignment is thought to entail inhibitory competition between potential objects on opposite sides of a shared border; the winner is perceived as the figure, and the loser as the shapeless ground. Computational models and response time measures support this understanding but to date no online measure of inhibitory competition during figure-ground assignment has been reported. The current study assays electroencephalogram (EEG) alpha power as a measure of inhibitory competition during figure-ground assignment. Activity in the EEG alpha band has been linked to functional inhibition in the brain, and it has been proposed that increased alpha power reflects increased inhibition. In 2 experiments participants viewed silhouettes designed so that the insides would be perceived as figures. Real-world silhouettes depicted namable objects. Novel silhouettes depicted novel objects on the insides of their borders, but varied in the amount of hypothesized cross-border competition for figural status: In "Low-Competition" silhouettes, the borders suggested novel objects on the outside as well as on the inside. In "High-Competition" silhouettes the borders suggested portions of real-world objects on the outside; these compete with the figural properties favoring the inside as figure. Participants accurately categorized both types of novel silhouettes as "novel" objects and were unaware of the real world objects suggested on the outside of the High-Competition silhouettes. In both experiments, we observed more alpha power while participants viewed High- rather than Low-Competition novel silhouettes. These are the first results to show via an online index of neural activity that figure assignment entails inhibitory competition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experience-dependent modulation of alpha and beta during action observation and motor imagery.
Di Nota, Paula M; Chartrand, Julie M; Levkov, Gabriella R; Montefusco-Siegmund, Rodrigo; DeSouza, Joseph F X
2017-03-06
EEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas. Functional modulation of these networks through expertise in dance has been established using fMRI, with greater activation among experts during AO. While there is evidence for experience-dependent plasticity of alpha power during AO of dance, the influence of familiarity on beta power during AO, and alpha and beta activity during KMI, remain unclear. The purpose of the present study was to measure the impact of familiarity on confidence ratings and EEG activity during (1) AO of a brief ballet sequence, (2) KMI of this same sequence, and (3) KMI of non-dance movements among ballet dancers, dancers from other genres, and non-dancers. Ballet dancers highly familiar with the genre of the experimental stimulus demonstrated higher individual alpha peak frequency (iAPF), greater alpha desynchronization, and greater task-related beta power during AO, as well as faster iAPF during KMI of non-dance movements. While no between-group differences in alpha or beta power were observed during KMI of dance or non-dance movements, all participants showed significant desynchronization relative to baseline, and further desynchronization during dance KMI relative to non-dance KMI indicative of greater cognitive load. These findings confirm and extend evidence for experience-dependent plasticity of alpha and beta activity during AO of dance and KMI. We also provide novel evidence for modulation of iAPF that is faster when tuned to the specific motor repertoire of the observer. By considering the multiple functional roles of these frequency bands during the same task (AO), we have disentangled the compounded contribution of familiarity and expertise to alpha desynchronization for mediating task engagement among familiar ballet dancers and reflecting task difficulty among unfamiliar non-dance subjects, respectively. That KMI of a complex dance sequence relative to everyday, non-dance movements recruits greater cognitive resources suggests it may be a more powerful tool in driving neural plasticity of action networks, especially among the elderly and those with movement disorders.
Changes in music tempo entrain movement related brain activity.
Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J
2014-01-01
The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength.
[Use of quantitative electroencephalogram in patients with septic shock].
Ma, Yujie; Ouyang, Bin; Guan, Xiangdong
2016-01-19
To observe the quantitative electroencephalogram (qEEG) characteristics of the patients with septic shock in intensive care unit (ICU), and to find the early presence and severity of septic-associated encephalopathy (SAE) in these patients. During November 2014 to August 2015, 26 cases with septic shock were included from the ICU of the First Affiliated Hospital, Sun Yat-sen University.During the same period, 14 healthy volunteers were included as control. The brain function instrument was used to monitor the patients by the bed, placing leads as the internationally used 10-20 system, bipolar longitudinal F3-P3, F4-P4 four channels, and then consecutive clips of 5 minutes was chosen, using the average value of the clips, the amplitude integrated electroencephalogram (aEEG), relative frequency band energy, spectrum entropy, relative alpha ariability to carry out statistical analysis.And the qEEG features of septic shock patients with different Glasgow coma scale (GCS) levels were also analyzed. (1) 96% of the patients with septic shock had EEG abnormalities.Alpha frequency band energy, alpha ariability, aEEG amplitude, spectrum entropy decreased significantly (P<0.05=, while the delta frequency band energy significantly increased (P<0.05=. (2) aEEG amplitude decline appeared in 34% of patients with septic shock, and within the septic shock groups, amplitude decreased significantly (P<0.05= in patients with GCS under five. Patients with septic shock tends to have diffuse inhibition in EEG, and the inhibition degree can reflect cerebral lesion degree; changes of EEG frequency as early warning indicators of brain damage are sensitive, and the decline of amplitude often indicates critical injury.
Hillard, Brent; El-Baz, Ayman S; Sears, Lonnie; Tasman, Allan; Sokhadze, Estate M
2013-07-01
Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.
Posterior resting state EEG asymmetries are associated with hedonic valuation of food.
van Bochove, Marlies E; Ketel, Eva; Wischnewski, Miles; Wegman, Joost; Aarts, Esther; de Jonge, Benjamin; Medendorp, W Pieter; Schutter, Dennis J L G
2016-12-01
Research on the hedonic value of food has been important in understanding the motivational and emotional correlates of normal and abnormal eating behaviour. The aim of the present study was to explore associations between hemispheric asymmetries recorded during resting state electroencephalogram (EEG) and hedonic valuation of food. Healthy adult volunteers were recruited and four minutes of resting state EEG were recorded from the scalp. Hedonic food valuation and reward sensitivity were assessed with the hedonic attitude to food and behavioural activation scale. Results showed that parieto-occipital resting state EEG asymmetries in the alpha (8-12Hz) and beta (13-30Hz) frequency range correlate with the hedonic valuation of food. Our findings suggest that self-reported sensory-related attitude towards food is associated with interhemispheric asymmetries in resting state oscillatory activity. Our findings contribute to understanding the electrophysiological correlates of hedonic valuation, and may provide an opportunity to modulate the cortical imbalance by using non-invasive brain stimulation methods to change food consumption. Copyright © 2016 Elsevier B.V. All rights reserved.
Increased oscillatory theta activation evoked by violent digital game events.
Salminen, Mikko; Ravaja, Niklas
2008-04-11
The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events.
Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?
Poch, Claudia; Valdivia, María; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo
2018-03-27
Selective attention can enhance Working Memory (WM) performance by selecting relevant information, while preventing distracting items from encoding or from further maintenance. Alpha oscillatory modulations are a correlate of visuospatial attention. Specifically, an enhancement of alpha power is observed in the ipsilateral posterior cortex to the locus of attention, along with a suppression in the contralateral hemisphere. An influential model proposes that the alpha enhancement is functionally related to the suppression of information. However, whether ipsilateral alpha power represents a mechanism through which no longer relevant WM representations are inhibited has yet not been explored. Here we examined whether the amount of distractors to be suppressed during WM maintenance is functionally related to alpha power lateralized activity. We measure EEG activity while participants (N = 36) performed a retro-cue task in which the WM load was varied across the relevant/irrelevant post-cue hemifield. We found that alpha activity was lateralized respect to the locus of attention, but did not track post-cue irrelevant load. Additionally, non-lateralized alpha activity increased with post-cue relevant load. We propose that alpha lateralization associated to retro-cuing might be related to a general orienting mechanism toward relevant representation. Copyright © 2018 Elsevier B.V. All rights reserved.
Okello, Edward J; Abadi, Awatf M; Abadi, Saad A
2016-06-01
Tea has been associated with many mental benefits, such as attention enhancement, clarity of mind, and relaxation. These psychosomatic states can be measured in terms of brain activity using an electroencephalogram (EEG). Brain activity can be assessed either during a state of passive activity or when performing attention tasks and it can provide useful information about the brain's state. This study investigated the effects of green and black consumption on brain activity as measured by a simplified EEG, during passive activity. Eight healthy volunteers participated in the study. The EEG measurements were performed using a two channel EEG brain mapping instrument - HeadCoach™. Fast Fourier transform algorithm and EEGLAB toolbox using the Matlab software were used for data processing and analysis. Alpha, theta, and beta wave activities were all found to increase after 1 hour of green and black tea consumption, albeit, with very considerable inter-individual variations. Our findings provide further evidence for the putative beneficial effects of tea. The highly significant increase in theta waves (P < 0.004) between 30 minutes and 1 hour post-consumption of green tea may be an indication of its putative role in cognitive function, specifically alertness and attention. There were considerable inter-individual variations in response to the two teas which may be due genetic polymorphisms in metabolism and/or influence of variety/blend, dose and content of the selected products whose chemistry and therefore efficacy will have been influenced by 'from field to shelf practices'.
Colon, Elisabeth; Liberati, Giulia; Mouraux, André
2017-01-01
The recording of event-related brain potentials triggered by a transient heat stimulus is used extensively to study nociception and diagnose lesions or dysfunctions of the nociceptive system in humans. However, these responses are related exclusively to the activation of a specific subclass of nociceptive afferents: quickly-adapting thermonociceptors. In fact, except if the activation of Aδ fibers is avoided or if A fibers are blocked, these responses specifically reflect activity triggered by the activation of Type 2 quickly-adapting A fiber mechano-heat nociceptors (AMH-2). Here, we propose a novel method to isolate, in the human electroencephalogram (EEG), cortical activity related to the sustained periodic activation of heat-sensitive thermonociceptors, using very slow (0.2 Hz) and long-lasting (75 s) sinusoidal heat stimulation of the skin between baseline and 50°C. In a first experiment, we show that when such long-lasting thermal stimuli are applied to the hand dorsum of healthy volunteers, the slow rises and decreases of skin temperature elicit a consistent periodic EEG response at 0.2 Hz and its harmonics, as well as a periodic modulation of the magnitude of theta, alpha and beta band EEG oscillations. In a second experiment, we demonstrate using an A fiber block that these EEG responses are predominantly conveyed by unmyelinated C fiber nociceptors. The proposed approach constitutes a novel mean to study C fiber function in humans, and to explore the cortical processing of tonic heat pain in physiological and pathological conditions. PMID:27871921
Niv, Sharon; Ashrafulla, Syed; Tuvblad, Catherine; Joshi, Anand; Raine, Adrian; Leahy, Richard; Baker, Laura A.
2015-01-01
High EEG frontal alpha power (FAP) is thought to represent a state of low arousal in the brain, which has been related in past research to antisocial behavior (ASB). We investigated a longitudinal sample of 900 twins in two assessments in late childhood and mid-adolescence to verify whether relationships exist between FAP and both aggressive and nonaggressive ASB. ASB was measured by the Child Behavioral Checklist, and FAP was calculated using connectivity analysis methods that used principal components analysis to derive power of the most dominant frontal activation. Significant positive predictive relationships emerged in males between childhood FAP and adolescent aggressive ASB using multilevel mixed modeling. No concurrent relationships were found. Using bivariate biometric twin modeling analysis, the relationship between childhood FAP and adolescent aggressive ASB in males was found to be entirely due to genetic factors, which were correlated r = 0.22. PMID:25456277
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R
2018-01-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.
Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment.
Brayet, Pauline; Petit, Dominique; Frauscher, Birgit; Gagnon, Jean-François; Gosselin, Nadia; Gagnon, Katia; Rouleau, Isabelle; Montplaisir, Jacques
2016-04-01
The basal forebrain cholinergic system, which is impaired in early Alzheimer's disease, is more crucial for the activation of rapid-eye-movement (REM) sleep electroencephalogram (EEG) than it is for wakefulness. Quantitative EEG from REM sleep might thus provide an earlier and more accurate marker of the development of Alzheimer's disease in subjects with mild cognitive impairment (MCI) subjects than that from wakefulness. To assess the superiority of the REM sleep EEG as a screening tool for preclinical Alzheimer's disease, 22 subjects with amnestic MCI (a-MCI; 63.9±7.7 years), 10 subjects with nonamnestic MCI (na-MCI; 64.1±4.5 years) and 32 controls (63.7±6.6 years) participated in the study. Spectral analyses of the waking EEG and REM sleep EEG were performed and the [(delta+theta)/(alpha+beta)] ratio was used to assess between-group differences in EEG slowing. The a-MCI subgroup showed EEG slowing in frontal lateral regions compared to both na-MCI and control groups. This EEG slowing was present in wakefulness (compared to controls) but was much more prominent in REM sleep. Moreover, the comparison between amnestic and nonamnestic subjects was found significant only for the REM sleep EEG. There was no difference in EEG power ratio between na-MCI and controls for any of the 7 cortical regions studied. These findings demonstrate the superiority of the REM sleep EEG in the discrimination between a-MCI and both na-MCI and control subjects. © EEG and Clinical Neuroscience Society (ECNS) 2015.
Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy
NASA Astrophysics Data System (ADS)
Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.
2015-11-01
The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.
Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won
2014-12-01
In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.
I must have missed that: Alpha-band oscillations track attention to spoken language.
Boudewyn, M A; Carter, C S
2018-05-26
Attention is critical to the construction of mental representations of language context during comprehension. We investigated the consequences of momentary lapses in attention during listening comprehension on neural activity and behavior. Participants listened to two full-length stories while EEG was recorded, and afterwards completed multiple choice comprehension questions. Listening was periodically interrupted by attention probes, in which participants were asked whether their attention immediately preceding the probe's appearance was focused on the story. The results showed that (1) participants spent a substantial amount of time off-task, endorsing attention lapses on over 30% of probes; (2) for probes on which an attention lapse was endorsed, later accuracy on comprehension questions querying pre-probe information was decreased; (3) the pre-probe period just before the endorsement of an attention lapse was characterized by a greater percentage of above-threshold oscillations in the alpha-band (8-12 Hz) compared to just prior to the endorsement of on-task or split-attention listening; and (4) when participants made "I have no idea" responses to comprehension questions, their EEG record revealed a greater percentage of above-threshold alpha oscillations during the original presentation of the information queried by the comprehension questions, compared to correct responses or incorrect guesses. These results connect changes in neural activity in the alpha band to episodes of mind-wandering during listening comprehension, and in turn to decreased comprehension accuracy. This demonstrates how alpha can be used to track attentional engagement during language comprehension, and illustrates the dependence of successful language comprehension on attention. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception
Helfrich, Randolph F.; Huang, Melody; Wilson, Guy; Knight, Robert T.
2017-01-01
Conscious visual perception is proposed to arise from the selective synchronization of functionally specialized but widely distributed cortical areas. It has been suggested that different frequency bands index distinct canonical computations. Here, we probed visual perception on a fine-grained temporal scale to study the oscillatory dynamics supporting prefrontal-dependent sensory processing. We tested whether a predictive context that was embedded in a rapid visual stream modulated the perception of a subsequent near-threshold target. The rapid stream was presented either rhythmically at 10 Hz, to entrain parietooccipital alpha oscillations, or arrhythmically. We identified a 2- to 4-Hz delta signature that modulated posterior alpha activity and behavior during predictive trials. Importantly, delta-mediated top-down control diminished the behavioral effects of bottom-up alpha entrainment. Simultaneous source-reconstructed EEG and cross-frequency directionality analyses revealed that this delta activity originated from prefrontal areas and modulated posterior alpha power. Taken together, this study presents converging behavioral and electrophysiological evidence for frontal delta-mediated top-down control of posterior alpha activity, selectively facilitating visual perception. PMID:28808023
Prefrontal brain asymmetry and aggression in imprisoned violent offenders.
Keune, Philipp M; van der Heiden, Linda; Várkuti, Bálint; Konicar, Lilian; Veit, Ralf; Birbaumer, Niels
2012-05-02
Anterior brain asymmetry, assessed through the alpha and beta band in resting-state electroencephalogram (EEG) is associated with approach-related behavioral dispositions, particularly with aggression in the general population. To date, the association between frontal asymmetry and aggression has not been examined in highly aggressive groups. We examined the topographic characteristics of alpha and beta activity, the relation of both asymmetry metrics to trait aggression, and whether alpha asymmetry was extreme in anterior regions according to clinical standards in a group of imprisoned violent offenders. As expected, these individuals were characterized by stronger right than left-hemispheric alpha activity, which was putatively extreme in anterior regions in one third of the cases. We also report that in line with observations made in the general population, aggression was associated with stronger right-frontal alpha activity in these violent individuals. This suggests that frontal alpha asymmetry, as a correlate of trait aggression, might be utilizable as an outcome measure in studies which assess the effects of anti-aggressiveness training in violent offenders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Kuznetsova, G D; Gabova, A V; Lazarev, I E; Obukhov, Iu V; Obukhov, K Iu; Morozov, A A; Kulikov, M A; Shchatskova, A B; Vasil'eva, O N; Tomilovskaia, E S
2015-01-01
Frequency-temporal electroencephalogram (EEG) reactions to hypogravity were studied in 7 male subjects at the age of 20 to 27 years. The experiment was conducted using dry immersion (DI) as the best known method of simulating the space microgravity effects on the Earth. This hypogravity model reproduces hypokinesia, i.e. the weight-bearing and mechanic load removal, which is typical of microgravity. EEG was recorded by Neuroscan-2 (Compumedics) before the experiment (baseline data) and at the end of day 2 in DI. Comparative analysis of the EEG frequency-temporal structure was performed with the use of 2 techniques: Fourier transform and modified wavelet analysis. The Fourier transform elicited that after 2 days in DI the main shifts occurring to the EEG spectral composition are a decline in the alpha power and a slight though reliable growth of theta power. Similar frequency shifts were detected in the same records analyzed using the wavelet transform. According to wavelet analysis, during DI shifts in EEG frequency spectrum are accompanied by frequency desorganization of the EEG dominant rhythm and gross impairment of total stability of the electrical activity with time. Wavelet transform provides an opportunity to quantify changes in the frequency-temporal structure of the electrical activity of the brain. Quantitative evidence of frequency desorganization and temporal instability of EEG wavelet spectrograms may be the key to the understanding of mechanisms that drive functional disorders in the brain cortex in the conditions of hypogravity.
Neurodevelopmental Correlates of Theory of Mind in Preschool Children
ERIC Educational Resources Information Center
Sabbagh, Mark A.; Bowman, Lindsay C.; Evraire, Lyndsay E.; Ito, Jennie M. B.
2009-01-01
Baseline electroencephalogram (EEG) data were collected from twenty-nine 4-year-old children who also completed batteries of representational theory-of-mind (RTM) tasks and executive functioning (EF) tasks. Neural sources of children's EEG alpha (6-9 Hz) were estimated and analyzed to determine whether individual differences in regional EEG alpha…
The EEG as an index of neuromodulator balance in memory and mental illness.
Vakalopoulos, Costa
2014-01-01
There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.
Brain computer interface to enhance episodic memory in human participants
Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.
2015-01-01
Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605
Timofeeva, O A; Gordon, C J
2001-03-02
Organophosphates (OPs) inhibit acetylcholinesterase (AChE) activity causing cholinergic stimulation in the central nervous system (CNS). Cholinergic systems are crucial in electroencephalogram (EEG) generation and regulation of behavior; however, little is known about how OP exposure affects the EEG and behavioral states. We recorded EEG, core temperature and motor activity before and after exposure to the OP pesticide chlorpyrifos (CHP) in adult female rats implanted with telemetric transmitters. The recording and reference electrodes were placed in the occipital and frontal bones, respectively. The animals received CHP, 25 mg/kg, p.o., or oxotremorine (OX), 0.2 mg/kg, s.c. CHP led to a significant increase in delta (0.1-3.5 Hz), slow theta (4-6.5 Hz), gamma 2 (35.5-50 Hz), reduction in fast theta (7-8.5 Hz), alpha/sigma (9-14 Hz), beta 1 (14.5-24 Hz), beta 2 (24.5-30 Hz) and gamma 1 (30.5-35 Hz) powers, slowing of peak frequencies in 1-9 Hz range, hypothermia and decrease in motor activity. The drop in 7-14 Hz was associated with cholinergic suppression of sleep spindles. Changes in behavioral state were characterized by dramatic diminution of sleep postures and exploring activity and prolongation of quiet waking. There was recovery in all bands in spite of continued inhibition of AChE activity [44,45] in rats exposed to CHP. OX-induced EEG and behavioral alterations were similar to CHP except there was no increase in delta and the onset and recovery were more rapid. We did not find a correlation between the EEG and core temperature alterations. Overall, changes in EEG (except in delta band) and behavior following CHP were attributable to muscarinic stimulation. Cortical arousal together with increased quiet waking and decreased sleep after CHP occurred independently from inhibition of motor activity and lowering of core temperature.
Selen, L. P. J.; Medendorp, W. P.
2014-01-01
Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108
Saletu, B; Saletu, M; Grünberger, J; Frey, R; Zatschek, I; Mader, R
1990-01-01
1. In a double-blind study forty abstinent hospitalized male patients with an alcoholic organic brain syndrome (OBS) were treated for 6 weeks with either 200 mg modafinil or placebo. 2. Modafinil (CRL 40476) is a putative central alpha-1 adrenergic agonist. It's pharmacological profile is quite different from that of amphetamine, which can be seen by the lack of peripheral sympathomimetic effects. The vigilance promoting effect of modafinil has been shown previously in pharmaco-EEG and psychometric studies as well as in clinical studies involving treatment of daytime sleepiness in idiopathic hypersomniacs and narcoleptics. 3. The present clinical investigations demonstrated that the spontaneous restitution of the alcoholic OBS was significantly augmented and accelerated by modafinil. 4. Psychometric tests did not show significant intergroup differences. Modafinil- and placebo-treated patients improved continously over the 6-week period. 5. Psychophysiological and autonomous nervous system parameters were affected neither by placebo nor by modafinil. 6. Neurophysiological investigations by means of quantitative pharmaco-EEG showed partly inconsistent findings. However, superimposed dosages of modafinil (on the top of 6 weeks chronic administration) induced a decrease of slow activity and an increase of alpha activity suggesting an improvement of vigilance after the daily drug intake. 7. Considering the beneficial effects of modafinil in abstinent chronic alcoholic patients, it may be said that activation and improvement of adaptive behaviour by an alpha-adrenergic agonist could be regarded as a therapeutic principle in the treatment of the OBS, eventually due to noradrenergic deficits.
Differential Training Facilitates Early Consolidation in Motor Learning
Henz, Diana; Schöllhorn, Wolfgang I.
2016-01-01
Current research demonstrates increased learning rates in differential learning (DL) compared to repetitive training. To date, little is known on the underlying neurophysiological processes in DL that contribute to superior performance over repetitive practice. In the present study, we measured electroencephalographic (EEG) brain activation patterns after DL and repetitive badminton serve training. Twenty-four semi-professional badminton players performed badminton serves in a DL and repetitive training schedule in a within-subjects design. EEG activity was recorded from 19 electrodes according to the 10–20 system before and immediately after each 20-min exercise. Increased theta activity was obtained in contralateral parieto-occipital regions after DL. Further, increased posterior alpha activity was obtained in DL compared to repetitive training. Results indicate different underlying neuronal processes in DL and repetitive training with a higher involvement of parieto-occipital areas in DL. We argue that DL facilitates early consolidation in motor learning indicated by post-training increases in theta and alpha activity. Further, brain activation patterns indicate somatosensory working memory processes where attentional resources are allocated in processing of somatosensory information in DL. Reinforcing a somatosensory memory trace might explain increased motor learning rates in DL. Finally, this memory trace is more stable against interference from internal and external disturbances that afford executively controlled processing such as attentional processes. PMID:27818627
Farabi, Sarah S.; Prasad, Bharati; Quinn, Lauretta; Carley, David W.
2014-01-01
Study Objectives: To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). Methods: EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Results: Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. Conclusions: This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG. Citation: Farabi SS; Prasad B; Quinn L; Carley DW. Impact of dronabinol on quantitative electroencephalogram (qEEG) measures of sleep in obstructive sleep apnea syndrome. J Clin Sleep Med 2014;10(1):49-56. PMID:24426820
Fernández-Soto, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio
2018-06-01
For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.
NASA Astrophysics Data System (ADS)
Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.
2016-03-01
This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.
Lundahl, Jonas; Deacon, Steve; Maurice, Damien; Staner, Luc
2012-08-01
There is significant interest in the functional significance and the therapeutic value of slow-wave sleep (SWS)-enhancing drugs. A prerequisite for studies of the functional differences is characterization of the electroencephalography (EEG) spectra following treatment in relevant patients. We evaluate for the first time gaboxadol and zolpidem treatments in insomniac patients using power spectra analysis. We carried out two randomized, double-blind, crossover studies. Study 1, 38 patients received gaboxadol 10 mg and 20 mg and zolpidem 10 mg; study 2, 23 patients received gaboxadol 5 mg and 15 mg. Treatments were administered during two nights and compared with placebo. Gaboxadol 10, 15 and 20 mg enhanced slow-wave activity (SWA) and theta power. In 1 Hz bins gaboxadol 10 and 20 mg enhanced power up to 9 Hz. In study 2, 15 mg gaboxadol showed a similar effect pattern. Zolpidem suppressed theta and alpha power, and increased sigma power, with no effect on SWA. In the 1 Hz bins zolpidem suppressed power between 5-10 Hz. Gaboxadol dose-dependently increased SWA and theta power in insomniac patients. In contrast, zolpidem did not affect SWA, reduced theta and alpha activity and enhanced sigma power. EEG spectral power differences may be consequences of the different mechanisms of action for zolpidem and the SWS-enhancing agent, gaboxadol.
Tsaltas, Eleftheria; Koroboki, Eleni; Alevizaki, Maria; Angelopoulos, Elias; Dimopoulos, Meletios-Athanasios; Papageorgiou, Charalabos; Zakopoulos, Nikolaos
2017-01-01
Objective Essential hypertension is associated with reduced pain sensitivity of unclear aetiology. This study explores this issue using the Cold Pressor Test (CPT), a reliable pain/stress model, comparing CPT-related EEG activity in first episode hypertensives and controls. Method 22 untreated hypertensives and 18 matched normotensives underwent 24-hour ambulatory blood pressure monitoring (ABPM). EEG recordings were taken before, during, and after CPT exposure. Results Significant group differences in CPT-induced EEG oscillations were covaried with the most robust cardiovascular differentiators by means of a Canonical Analysis. Positive correlations were noted between ABPM variables and Delta (1–4 Hz) oscillations during the tolerance phase; in high-alpha (10–12 Hz) oscillations during the stress unit and posttest phase; and in low-alpha (8–10 Hz) oscillations during CPT phases overall. Negative correlations were found between ABPM variables and Beta2 oscillations (16.5–20 Hz) during the posttest phase and Gamma (28.5–45 Hz) oscillations during the CPT phases overall. These relationships were localised at several sites across the cerebral hemispheres with predominance in the right hemisphere and left frontal lobe. Conclusions These findings provide a starting point for increasing our understanding of the complex relationships between cerebral activation and cardiovascular functioning involved in regulating blood pressure changes. PMID:28573048
Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L
2013-06-01
Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.
Wickering, Ellis; Gaspard, Nicolas; Zafar, Sahar; Moura, Valdery J; Biswal, Siddharth; Bechek, Sophia; OʼConnor, Kathryn; Rosenthal, Eric S; Westover, M Brandon
2016-06-01
The purpose of this study is to evaluate automated implementations of continuous EEG monitoring-based detection of delayed cerebral ischemia based on methods used in classical retrospective studies. We studied 95 patients with either Fisher 3 or Hunt Hess 4 to 5 aneurysmal subarachnoid hemorrhage who were admitted to the Neurosciences ICU and underwent continuous EEG monitoring. We implemented several variations of two classical algorithms for automated detection of delayed cerebral ischemia based on decreases in alpha-delta ratio and relative alpha variability. Of 95 patients, 43 (45%) developed delayed cerebral ischemia. Our automated implementation of the classical alpha-delta ratio-based trending method resulted in a sensitivity and specificity (Se,Sp) of (80,27)%, compared with the values of (100,76)% reported in the classic study using similar methods in a nonautomated fashion. Our automated implementation of the classical relative alpha variability-based trending method yielded (Se,Sp) values of (65,43)%, compared with (100,46)% reported in the classic study using nonautomated analysis. Our findings suggest that improved methods to detect decreases in alpha-delta ratio and relative alpha variability are needed before an automated EEG-based early delayed cerebral ischemia detection system is ready for clinical use.
Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.
Takano, Kouji; Ora, Hiroki; Sekihara, Kensuke; Iwaki, Sunao; Kansaku, Kenji
2014-01-01
The visual P300 brain-computer interface (BCI), a popular system for electroencephalography (EEG)-based BCI, uses the P300 event-related potential to select an icon arranged in a flicker matrix. In earlier studies, we used green/blue (GB) luminance and chromatic changes in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray (WG) luminance flicker matrix. To highlight areas involved in improved P300-BCI performance, we used simultaneous EEG-fMRI recordings and showed enhanced activities in bilateral and right lateralized parieto-occipital areas. Here, to capture coherent activities of the areas during P300-BCI, we collected whole-head 306-channel magnetoencephalography data. When comparing functional connectivity between the right and left parieto-occipital channels, significantly greater functional connectivity in the alpha band was observed under the GB flicker matrix condition than under the WG flicker matrix condition. Current sources were estimated with a narrow-band adaptive spatial filter, and mean imaginary coherence was computed in the alpha band. Significantly greater coherence was observed in the right posterior parietal cortex under the GB than under the WG condition. Re-analysis of previous EEG-based P300-BCI data showed significant correlations between the power of the coherence of the bilateral parieto-occipital cortices and their performance accuracy. These results suggest that coherent activity in the bilateral parieto-occipital cortices plays a significant role in effectively driving the P300-BCI.
Jacobs, G D; Lubar, J F
1989-01-01
This study examined the effects of the relaxation response, elicited by autogenic training, on central nervous system (CNS) activity. We used computerized spectral analysis of EEG activity as a dependent measure. After baseline EEG data were obtained for all subjects, the experimental group practiced standard autogenic exercises for 15 experimental sessions with home practice. The control subjects received the same number of sessions under identical conditions, except that they listened to a pleasant radio show without home practice. Subjects were then posttested to assess the acute and chronic effects of autogenic training and the relaxation response on CNS activity. The results indicated significant acute effects differences between groups; the experimental group showed greater increases in theta and greater decreases in alpha percent total power. The results suggest that the relaxation response elicited by autogenic training produces significant acute changes in EEG activity and a characteristic spectral pattern; the results also suggest that focusing attention on a repetitive, internal stimulus is a key element in Benson's relaxation response model.
Duann, Jeng-Ren; Chiou, Jin-Chern
2016-01-01
Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.
Maclin, Edward L; Mathewson, Kyle E; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele
2011-09-01
Changes in attention allocation with complex task learning reflect processing automatization and more efficient control. We studied these changes using ERP and EEG spectral analyses in subjects playing Space Fortress, a complex video game comprising standard cognitive task components. We hypothesized that training would free up attentional resources for a secondary auditory oddball task. Both P3 and delta EEG showed a processing trade-off between game and oddball tasks, but only some game events showed reduced attention requirements with practice. Training magnified a transient increase in alpha power following both primary and secondary task events. This contrasted with alpha suppression observed when the oddball task was performed alone, suggesting that alpha may be related to attention switching. Hence, P3 and EEG spectral data are differentially sensitive to changes in attentional processing occurring with complex task training. Copyright © 2011 Society for Psychophysiological Research.
Bell, Iris R; Brooks, Audrey J; Howerter, Amy; Jackson, Nicholas; Schwartz, Gary E
2011-10-01
Homeopathic pathogenetic trials usually rely on symptom self report measures. Adding objective biomarkers could enhance detection of subtle initial remedy effects. The present feasibility study examined electroencephalographic (EEG) effects of repeated olfactory administration of two polycrest remedies. College student volunteers (ages 18-30, both sexes) from an introductory psychology course were screened for good health and relatively elevated Sulphur or Pulsatilla symptom scores on the Homeopathic Constitutional Type Questionnaire (CTQ). Subjects underwent a series of 3 once-weekly double-blind sessions during which they repeatedly sniffed the remedy matched to their CTQ type and solvent controls. Each remedy was given in a 6c, 12c, and 30c potency, one potency per week, in randomly assigned order. Solvent controls included both plain distilled water and a water-ethanol (95%) solution. All sniff test solutions were further diluted just prior to laboratory sessions (0.5 ml test solution in 150 ml distilled water). Within a session, remedies and control solvents were administered via 2-s sniffs (8 sniffs of each of 4 different succussion levels for the potency in randomized order). Primary outcome variable was relative EEG power (alpha 1 8-10 Hz; alpha 2 10-12 Hz) averaged over 19 electrode sites, including all succussions for a given potency. Mixed-effect models revealed significant main effects for remedy type (Sulphur >Pulsatilla) in both alpha bands, controlling for gender, baseline resting EEG alpha, and solvent control responses. Additional analyses showed significant nonlinear interactions between dilution and time (weekly session) in alpha 2 for both remedies and alpha 1 for Sulphur. EEG alpha offers an objective biomarker of remedy effects for future studies and potential method for distinguishing time-dependent effects of specific remedies and remedy potencies from one another. Copyright © 2011 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Bell, Iris R.; Brooks, Audrey J.; Howerter, Amy; Jackson, Nicholas; Schwartz, Gary E.
2011-01-01
Introduction Homeopathic pathogenetic trials usually rely on symptom self report measures. Adding objective biomarkers could enhance detection of subtle initial remedy effects. The present feasibility study examined electroencephalographic (EEG) effects of repeated olfactory administration of two polycrest remedies. Methods College student volunteers (ages 18–30, both sexes) from an introductory psychology course were screened for good health and relatively elevated Sulphur OR Pulsatilla symptom scores on the Homeopathic Constitutional Type Questionnaire. Subjects underwent a series of 3 once-weekly double-blind sessions during which they repeatedly sniffed the remedy matched to their CTQ type and solvent controls. Each remedy was given in a 6c, 12c, and 30c potency, one potency per week, in randomly assigned order. Solvent controls included both plain distilled water and a water-ethanol (95%) solution. All sniff test solutions were further diluted just prior to laboratory sessions (0.5 ml test solution in 150 ml distilled water). Within a session, remedies and control solvents were administered via 2-second sniffs (8 sniffs of each of 4 different succussion levels for the potency in randomized order). Primary outcome variable was relative EEG power (alpha 1 8–10 hertz; alpha 2 10–12 hertz) averaged over 19 electrode sites, including all succussions for a given potency. Results Mixed-effect models revealed significant main effects for remedy type (Sulphur>Pulsatilla) in both alpha bands, controlling for gender, baseline resting EEG alpha, and solvent control responses. Additional analyses showed significant non-linear interactions between dilution and time (weekly session) in alpha 2 for both remedies and alpha 1 for Sulphur. Conclusion EEG alpha offers an objective biomarker of remedy effects for future studies and potential method for distinguishing time-dependent effects of specific remedies and remedy potencies from one another. PMID:21962194
Changes in the electroencephalogram during anaesthesia and their physiological basis.
Hagihira, S
2015-07-01
The use of EEG monitors to assess the level of hypnosis during anaesthesia has become widespread. Anaesthetists, however, do not usually observe the raw EEG data: they generally pay attention only to the Bispectral Index (BIS™) and other indices calculated by EEG monitors. This abstracted information only partially characterizes EEG features. To properly appreciate the availability and reliability of EEG-derived indices, it is necessary to understand how raw EEG changes during anaesthesia. With hemi-frontal lead EEGs obtained under volatile anaesthesia or propofol anaesthesia, the dominant EEG frequency decreases and the amplitude increases with increasing concentrations of anaesthetic. Looking more closely, the EEG changes are more complicated. At surgical concentrations of anaesthesia, spindle waves (alpha range) become dominant. At deeper levels, this activity decreases, and theta and delta waves predominate. At even deeper levels, EEG waveform changes into a burst and suppression pattern, and finally becomes flat. EEG waveforms vary in the presence of noxious stimuli (surgical skin incision), which is not always reflected in BIS™, or other processed EEG indices. Spindle waves are adequately sensitive, however, to noxious stimuli: under surgical anaesthesia they disappear when noxious stimuli are applied, and reappear when adequate analgesia is obtained. To prevent awareness during anaesthesia, I speculate that the most effective strategy is to administer anaesthetic agents in such a way as to maintain anaesthesia at a level where spindle waves predominate. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C.; Hardiman, Orla
2015-01-01
Background Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. Methods 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Results Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05). Discussion There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS. PMID:26091258
Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.
Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F
2016-01-01
Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.
2010-01-01
Background The physiopathological mechanism underlying the tinnitus phenomenon is still the subject of an ongoing debate. Since oscillatory EEG activity is increasingly recognized as a fundamental hallmark of cortical integrative functions, this study investigates deviations from the norm of different resting EEG parameters in patients suffering from chronic tinnitus. Results Spectral parameters of resting EEG of male tinnitus patients (n = 8, mean age 54 years) were compared to those of age-matched healthy males (n = 15, mean age 58.8 years). On average, the patient group exhibited higher spectral power over the frequency range of 2-100 Hz. Using LORETA source analysis, the generators of delta, theta, alpha and beta power increases were localized dominantly to left auditory (Brodmann Areas (BA) 41,42, 22), temporo-parietal, insular posterior, cingulate anterior and parahippocampal cortical areas. Conclusions Tinnitus patients show a deviation from the norm of different resting EEG parameters, characterized by an overproduction of resting state delta, theta and beta brain activities, providing further support for the microphysiological and magnetoencephalographic evidence pointing to a thalamocortical dysrhythmic process at the source of tinnitus. These results also provide further confirmation that reciprocal involvements of both auditory and associative/paralimbic areas are essential in the generation of tinnitus. PMID:20334674
Frøkjær, Jens B; Graversen, Carina; Brock, Christina; Khodayari-Rostamabad, Ahmad; Olesen, Søren S; Hansen, Tine M; Søfteland, Eirik; Simrén, Magnus; Drewes, Asbjørn M
2017-02-01
Diabetes mellitus (DM) is associated with structural and functional changes of the central nervous system. We used electroencephalography (EEG) to assess resting state cortical activity and explored associations to relevant clinical features. Multichannel resting state EEG was recorded in 27 healthy controls and 24 patients with longstanding DM and signs of autonomic dysfunction. The power distribution based on wavelet analysis was summarized into frequency bands with corresponding topographic mapping. Source localization analysis was applied to explore the electrical cortical sources underlying the EEG. Compared to controls, DM patients had an overall decreased EEG power in the delta (1-4Hz) and gamma (30-45Hz) bands. Topographic analysis revealed that these changes were confined to the frontal region for the delta band and to central cortical areas for the gamma band. Source localization analysis identified sources with reduced activity in the left postcentral gyrus for the gamma band and in right superior parietal lobule for the alpha1 (8-10Hz) band. DM patients with clinical signs of autonomic dysfunction and gastrointestinal symptoms had evidence of altered resting state cortical processing. This may reflect metabolic, vascular or neuronal changes associated with diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Moore, Robert Davis; Sauve, William; Ellemberg, Dave
2016-12-01
Understanding the neuropathological underpinnings of sport-related concussion are critical for diagnosis, prognosis, and remediation. Although electro-encephalographic (EEG) methods have proven invaluable for understanding psycho-affective pathologies in various clinical conditions, they have not been used to understand the psycho-affective outcomes of concussive injuries. Accordingly, we evaluated the relation of electroencephalographic (EEG) power in collegiate athletes to psycho-affective measures. We predicted that athletes with a history of concussion would exhibit alterations in frontal EEG asymmetries indicative of increased depression, anxiety and more general mood disturbance. During this cross-sectional study, resting EEG and measures of mood and affect, including the Beck Depression Inventory-II (BDI-II) and Profile of Mood States (POMS) were collected in 81 young-adult male athletes (52 concussion history; 29 controls). All athletes with a history of concussion (9+ months from injury) reported to be symptom free, and all participants were actively taking part in their sport at the time of testing. Compared to control athletes, the athletes with a history of concussion exhibited alterations in frontal-alpha and frontal-beta asymmetry (p's < .05). Correlational analyses revealed that alterations in frontal-alpha asymmetry were related to self-reported depression and anxiety, and alterations in beta-asymmetry were related to self-reported anger/aggression, but these relations were only significant for athletes with a history of concussion. The current study suggests that athletes with a history of concussion who made a complete return to play and reported to be asymptomatic on a commonly used symptom checklist may still exhibit neural activity associated with increased levels of depression, anxiety and anger/hostility. The current results reinforce the clinical necessity for long-term evaluations of athletes irrespective of apparent symptom resolution, and suggest that EEG may serve as a sensitive tool to identify and track concussion-related alterations in psycho-affective health before they manifest as clinical disorders.
Trunk, Attila; Stefanics, Gábor; Zentai, Norbert; Kovács-Bálint, Zsófia; Thuróczy, György; Hernádi, István
2013-01-01
Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone-like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event-related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double-blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency-deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN. Copyright © 2012 Wiley Periodicals, Inc.
Designing EEG Neurofeedback Procedures to Enhance Open-Ended versus Closed-Ended Creative Potentials
ERIC Educational Resources Information Center
Lin, Wei-Lun; Shih, Yi-Ling
2016-01-01
Recent empirical evidence demonstrated that open-ended creativity (which refers to creativity measures that require various and numerous responses, such as divergent thinking) correlated with alpha brain wave activation, whereas closed-ended creativity (which refers to creativity measures that ask for one final correct answer, such as insight…
Sex Role Learning: A Test of the Selective Attention Hypothesis.
ERIC Educational Resources Information Center
Bryan, Janice Westlund; Luria, Zella
This paper reports three studies designed to determine whether children show selective attention and/or differential memory to slide pictures of same-sex vs. opposite-sex models and activities. Attention was measured using a feedback EEG procedure, which measured the presence or absence of alpha rhythms in the subjects' brains during presentation…
Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms
Babiloni, Claudio; Del Percio, Claudio; Iacoboni, Marco; Infarinato, Francesco; Lizio, Roberta; Marzano, Nicola; Crespi, Gianluca; Dassù, Federica; Pirritano, Mirella; Gallamini, Michele; Eusebi, Fabrizio
2008-01-01
It is not known whether frontal cerebral rhythms of the two hemispheres are implicated in fine motor control and balance. To address this issue, electroencephalographic (EEG) and stabilometric recordings were simultaneously performed in 12 right-handed expert golfers. The subjects were asked to stand upright on a stabilometric force platform placed at a golf green simulator while playing about 100 golf putts. Balance during the putts was indexed by body sway area. Cortical activity was indexed by the power reduction in spatially enhanced alpha (8–12 Hz) and beta (13–30 Hz) rhythms during movement, referred to as the pre-movement period. It was found that the body sway area displayed similar values in the successful and unsuccessful putts. In contrast, the high-frequency alpha power (about 10–12 Hz) was smaller in amplitude in the successful than in the unsuccessful putts over the frontal midline and the arm and hand region of the right primary sensorimotor area; the stronger the reduction of the alpha power, the smaller the error of the unsuccessful putts (i.e. distance from the hole). These results indicate that high-frequency alpha rhythms over associative, premotor and non-dominant primary sensorimotor areas subserve motor control and are predictive of the golfer's performance. PMID:17947315
Brain-computer interface for alertness estimation and improving
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina
2018-02-01
Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.
Dijk, D J; Shanahan, T L; Duffy, J F; Ronda, J M; Czeisler, C A
1997-01-01
1. The circadian pacemaker regulates the timing, structure and consolidation of human sleep. The extent to which this pacemaker affects electroencephalographic (EEG) activity during sleep remains unclear. 2. To investigate this, a total of 1.22 million power spectra were computed from EEGs recorded in seven men (total, 146 sleep episodes; 9 h 20 min each) who participated in a one-month-long protocol in which the sleep-wake cycle was desynchronized from the rhythm of plasma melatonin, which is driven by the circadian pacemaker. 3. In rapid eye movement (REM) sleep a small circadian variation in EEG activity was observed. The nadir of the circadian rhythm of alpha activity (8.25-10.5 Hz) coincided with the end of the interval during which plasma melatonin values were high, i.e. close to the crest of the REM sleep rhythm. 4. In non-REM sleep, variation in EEG activity between 0.25 and 11.5 Hz was primarily dependent on prior sleep time and only slightly affected by circadian phase, such that the lowest values coincided with the phase of melatonin secretion. 5. In the frequency range of sleep spindles, high-amplitude circadian rhythms with opposite phase positions relative to the melatonin rhythm were observed. Low-frequency sleep spindle activity (12.25-13.0 Hz) reached its crest and high-frequency sleep spindle activity (14.25-15.5 Hz) reached its nadir when sleep coincided with the phase of melatonin secretion. 6. These data indicate that the circadian pacemaker induces changes in EEG activity during REM and non-REM sleep. The changes in non-REM sleep EEG spectra are dissimilar from the spectral changes induced by sleep deprivation and exhibit a close temporal association with the melatonin rhythm and the endogenous circadian phase of sleep consolidation. PMID:9457658
Brain-computer interface design using alpha wave
NASA Astrophysics Data System (ADS)
Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng
2010-01-01
A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.
Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task
López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa
2013-01-01
In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436
Frontal alpha asymmetry and sexually motivated states.
Prause, Nicole; Staley, Cameron; Roberts, Verena
2014-03-01
Anterior alpha asymmetry of electroencephalographic (EEG) signals has been suggested to index state approach (or avoidance) motivation. This model has not yet been extended to high approach-motivation sexual stimuli, which may represent an important model of reward system function. Sixty-five participants viewed a neutral and a sexually motivating film while their EEG was recorded, and reported their sexual feelings after each film. Greater alpha power in the left hemisphere during sexually motivated states was evident. A positive relationship between self-reported mental sexual arousal and alpha asymmetry was identified, where coherence between these indicators was higher in women. Notably, coherence was stronger when mental versus physical sexual arousal was rated. Alpha asymmetry appears to offer a new method for further examining this novel coherence pattern across men and women. Copyright © 2014 Society for Psychophysiological Research.
EEG-LORETA endophenotypes of the common idiopathic generalized epilepsy syndromes.
Clemens, B; Puskás, S; Besenyei, M; Emri, M; Opposits, G; Kis, S A; Hollódy, K; Fogarasi, A; Kondákor, I; Füle, K; Bense, K; Fekete, I
2012-05-01
We tested the hypothesis that the cortical areas with abnormal local EEG synchronization are dissimilar in the three common idiopathic generalized epilepsy (IGE) phenotypes: IGE patients with absence seizures (ABS), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures exclusively (EGTCS). Groups of unmedicated ABS, JME and EGTCS patients were investigated. Waking EEG background activity (without any epileptiform potentials) was analyzed by a source localization method, LORETA (Low Resolution Electromagnetic Tomography). Each patient group was compared to a separate, age-matched group of healthy control persons. Voxel-based, normalized broad-band (delta, theta, alpha, and beta) and very narrow band (VNB, 1Hz bandwidth, from 1 to 25Hz) LORETA activity (=current source density, A/m(2)) were computed for each person. Group comparison included subtraction (average patient data minus average control data) and group statistics (multiple t-tests, where Bonferroni-corrected p<0.05 values were accepted as statistically significant). Statistically not significant main findings were: overall increased delta and theta broad band activity in the ABS and JME groups; decrease of alpha and beta activity in the EGTCS group. Statistically significant main findings were as follows. JME group: bilaterally increased theta activity in posterior (temporal, parietal, and occipital) cortical areas; bilaterally increased activity in the medial and basal prefrontal area in the 8Hz VNB; bilaterally decreased activity in the precuneus, posterior cingulate and superior parietal lobule in the 11Hz and 21-22Hz VNBs. ABS group: bilaterally increased theta activity emerged in the basal prefrontal and medial temporal limbic areas. Decreased activity was found at 19-21Hz in the right postcentral gyrus and parts of the right superior and medial temporal gyri. EGTCS group: decreased activity was found in the frontal cortex and the postcentral gyrus at 10-11Hz, increased activity in the right parahippocampal gyrus at 16-18Hz. Increased theta activity in the posterior parts of the cortex is the endophenotype for JME. Increased theta activity in the fronto-temporal limbic areas is the endophenotype for ABS. Statistically not significant findings might indicate diffuse biochemical abnormality of the cortex in JME and ABS. EEG-LORETA endophenotypes may correspond to the selective propensity to generate absence and myoclonic seizures in the ABS and JME syndromes. Copyright © 2011 Elsevier B.V. All rights reserved.
Automatic sleep scoring: a search for an optimal combination of measures.
Krakovská, Anna; Mezeiová, Kristína
2011-09-01
The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. The adopted multidimensional analysis involved quadratic discriminant analysis, forward selection procedure, and selection by the best subset procedure. Two situations were considered: the use of four polysomnographic signals (EEG, EMG, EOG, and ECG) and the use of the EEG alone. For the given database, the best automatic sleep classifier achieved approximately an 81% agreement with the hypnograms of experts. The classifier was based on the next 14 features of polysomnographic signals: the ratio of powers in the beta and delta frequency range (EEG, channel C3), the fractal exponent (EMG), the variance (EOG), the absolute power in the sigma 1 band (EEG, C3), the relative power in the delta 2 band (EEG, O2), theta/gamma (EEG, C3), theta/alpha (EEG, O1), sigma/gamma (EEG, C4), the coherence in the delta 1 band (EEG, O1-O2), the entropy (EMG), the absolute theta 2 (EEG, Fp1), theta/alpha (EEG, Fp1), the sigma 2 coherence (EEG, O1-C3), and the zero-crossing rate (ECG); however, even with only four features, we could perform sleep scoring with a 74% accuracy, which is comparable to the inter-rater agreement between two independent specialists. We have shown that 4-14 carefully selected polysomnographic features were sufficient for successful sleep scoring. The efficiency of the corresponding automatic classifiers was verified and conclusively demonstrated on all-night recordings from healthy adults. Copyright © 2011 Elsevier B.V. All rights reserved.
Mancini, Matteo; Brignani, Debora; Conforto, Silvia; Mauri, Piercarlo; Miniussi, Carlo; Pellicciari, Maria Concetta
2016-10-15
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that can alter cortical excitability and modulate behaviour in a polarity-dependent way. Despite the widespread use of this method in the neuroscience field, its effects on ongoing local or global (network level) neuronal activity are still not foreseeable. A way to shed light on the neuronal mechanisms underlying the cortical connectivity changes induced by tDCS is provided by the combination of tDCS with electroencephalography (EEG). In this study, twelve healthy subjects underwent online tDCS-EEG recording (i.e., simultaneous), during resting-state, using 19 EEG channels. The protocol involved anodal, cathodal and sham stimulation conditions, with the active and the reference electrodes in the left frontocentral area (FC3) and on the forehead over the right eyebrow, respectively. The data were processed using a network model, based on graph theory and the synchronization likelihood. The resulting graphs were analysed for four frequency bands (theta, alpha, beta and gamma) to evaluate the presence of tDCS-induced differences in synchronization patterns and graph theory measures. The resting state network connectivity resulted altered during tDCS, in a polarity-specific manner for theta and alpha bands. Anodal tDCS weakened synchronization with respect to the baseline over the fronto-central areas in the left hemisphere, for theta band (p<0.05). In contrast, during cathodal tDCS a significant increase in inter-hemispheric synchronization connectivity was observed over the centro-parietal, centro-occipital and parieto-occipital areas for the alpha band (p<0.05). Local graph measures showed a tDCS-induced polarity-specific differences that regarded modifications of network activities rather than specific region properties. Our results show that applying tDCS during the resting state modulates local synchronization as well as network properties in slow frequency bands, in a polarity-specific manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Michels, Lars; Muthuraman, Muthuraman; Anwar, Abdul R.; Kollias, Spyros; Leh, Sandra E.; Riese, Florian; Unschuld, Paul G.; Siniatchkin, Michael; Gietl, Anton F.; Hock, Christoph
2017-01-01
The assessment of effects associated with cognitive impairment using electroencephalography (EEG) power mapping allows the visualization of frequency-band specific local changes in oscillatory activity. In contrast, measures of coherence and dynamic source synchronization allow for the study of functional and effective connectivity, respectively. Yet, these measures have rarely been assessed in parallel in the context of mild cognitive impairment (MCI) and furthermore it has not been examined if they are related to risk factors of Alzheimer’s disease (AD) such as amyloid deposition and apolipoprotein ε4 (ApoE) allele occurrence. Here, we investigated functional and directed connectivities with Renormalized Partial Directed Coherence (RPDC) in 17 healthy controls (HC) and 17 participants with MCI. Participants underwent ApoE-genotyping and Pittsburgh compound B positron emission tomography (PiB-PET) to assess amyloid deposition. We observed lower spectral source power in MCI in the alpha and beta bands. Coherence was stronger in HC than MCI across different neuronal sources in the delta, theta, alpha, beta and gamma bands. The directed coherence analysis indicated lower information flow between fronto-temporal (including the hippocampus) sources and unidirectional connectivity in MCI. In MCI, alpha and beta RPDC showed an inverse correlation to age and gender; global amyloid deposition was inversely correlated to alpha coherence, RPDC and beta and gamma coherence. Furthermore, the ApoE status was negatively correlated to alpha coherence and RPDC, beta RPDC and gamma coherence. A classification analysis of cognitive state revealed the highest accuracy using EEG power, coherence and RPDC as input. For this small but statistically robust (Bayesian power analyses) sample, our results suggest that resting EEG related functional and directed connectivities are sensitive to the cognitive state and are linked to ApoE and amyloid burden. PMID:29081745
Neural correlates of mathematical problem solving.
Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping
2015-03-01
This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.
Hallioğlu, O; Ozge, A; Comelekoglu, U; Topaloglu, A K; Kanik, A; Duzovali, O; Yilgor, E
2001-10-01
This study was undertaken to evaluate resting electroencephalographic (EEG) changes and their relations to cerebral maturation in children with primary nocturnal enuresis. Cerebral maturation is known to be important in the pathogenesis of this disorder. Twenty-five right-handed patients with primary nocturnal enuresis, aged 6 to 14 years, and 23 age- and sex-matched healthy children were included in this cross-sectional case-control study. The abnormalities detected using such techniques as hemispheral asymmetry, regional differences, and hyperventilation response in addition to visual and quantitative EEG analysis were examined statistically by multivariate analysis. A decrease in alpha activity in the left (dominant hemisphere) temporal lobe and in the frontal lobes bilaterally and an increase in delta activity in the right temporal region were observed. We concluded that insufficient cerebral maturation is an important factor in the pathogenesis of primary nocturnal enuresis, and EEG, as a noninvasive and inexpensive method, could be used in evaluating cerebral maturation.
Razumnikova, O M; Vol'f, N V; Tarasova, I V
2007-01-01
Effect of extrinsic motivation stimulating the most original problem solving during verbal and figurative divergent thinking was studied by EEG mapping. The righthanded university students (27 males and 26 females) participated in the experiments. An instruction "to create the most original solution" as compared to condition with an instruction "to create any solution" induced an increase in the baseline power of the alpha 1 and alpha 2 rhythms most pronounced in the posterior cortex. Task-related desynchronization of the alpha rhythms was higher but the beta-2 synchronization was lower after the former than after the latter instruction. Differences in the asymmetry of the alpha 1 and alpha 2 rhythms in the parietal and temporal regions of hemispheres suggested the right hemisphere dominance in intrinsic alertness and evoked activation related to divergent thinking. The findings were common and gender-independent in both figurative and verbal tasks suggesting a generalized influence of extrinsic motivation on creative activity.
Herrera-Díaz, Adianes; Mendoza-Quiñones, Raúl; Melie-Garcia, Lester; Martínez-Montes, Eduardo; Sanabria-Diaz, Gretel; Romero-Quintana, Yuniel; Salazar-Guerra, Iraklys; Carballoso-Acosta, Mario; Caballero-Moreno, Antonio
2016-05-01
This study was aimed at exploring the electroencephalographic features associated with alcohol use disorders (AUD) during a resting-state condition, by using quantitative EEG and Functional Connectivity analyses. In addition, we explored whether EEG functional connectivity is associated with trait impulsivity. Absolute and relative powers and Synchronization Likelihood (SL) as a measure of functional connectivity were analyzed in 15 AUD women and fifteen controls matched in age, gender and education. Correlation analysis between self-report impulsivity as measured by the Barratt impulsiveness Scale (BIS-11) and SL values of AUD patients were performed. Our results showed increased absolute and relative beta power in AUD patients compared to matched controls, and reduced functional connectivity in AUD patients predominantly in the beta and alpha bands. Impaired connectivity was distributed at fronto-central and occipito-parietal regions in the alpha band, and over the entire scalp in the beta band. We also found that impaired functional connectivity particularly in alpha band at fronto-central areas was negative correlated with non-planning dimension of impulsivity. These findings suggest that functional brain abnormalities are present in AUD patients and a disruption of resting-state EEG functional connectivity is associated with psychopathological traits of addictive behavior.
Mental stress assessment using simultaneous measurement of EEG and fNIRS
Al-Shargie, Fares; Kiguchi, Masashi; Badruddin, Nasreen; Dass, Sarat C.; Hani, Ahmad Fadzil Mohammad; Tang, Tong Boon
2016-01-01
Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively. PMID:27867700
A multimodal approach to estimating vigilance using EEG and forehead EOG.
Zheng, Wei-Long; Lu, Bao-Liang
2017-04-01
Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
Detection and description of non-linear interdependence in normal multichannel human EEG data.
Breakspear, M; Terry, J R
2002-05-01
This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex.
Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording.
Chen, Yun-Hsuan; Op de Beeck, Maaike; Vanderheyden, Luc; Carrette, Evelien; Mihajlović, Vojkan; Vanstreels, Kris; Grundlehner, Bernard; Gadeyne, Stefanie; Boon, Paul; Van Hoof, Chris
2014-12-10
Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only ~10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes.
Scanlon, Joanna E M; Townsend, Kimberley A; Cormier, Danielle L; Kuziek, Jonathan W P; Mathewson, Kyle E
2017-12-14
Mobile EEG allows the investigation of brain activity in increasingly complex environments. In this study, EEG equipment was adapted for use and transportation in a backpack while cycling. Participants performed an auditory oddball task while cycling outside and sitting in an isolated chamber inside the lab. Cycling increased EEG noise and marginally diminished alpha amplitude. However, this increased noise did not influence the ability to measure reliable event related potentials (ERP). The P3 was similar in topography, and morphology when outside on the bike, with a lower amplitude in the outside cycling condition. There was only a minor decrease in the statistical power to measure reliable ERP effects. Unexpectedly, when biking outside significantly decreased P2 and increased N1 amplitude were observed when evoked by both standards and targets compared with sitting in the lab. This may be due to attentional processes filtering the overlapping sounds between the tones used and similar environmental frequencies. This study established methods for mobile recording of ERP signals. Future directions include investigating auditory P2 filtering inside the laboratory. Copyright © 2017. Published by Elsevier B.V.
Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela
2008-07-16
Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.
Pizzagalli, D; Koenig, T; Regard, M; Lehmann, D
1999-01-01
We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning. Copyright 1999 Elsevier Science B.V.
Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H
2006-06-01
delta-Opioid agonists produce convulsions and antidepressant-like effects in rats. It has been suggested that the antidepressant-like effects are produced through a convulsant mechanism of action either through overt convulsions or nonconvulsive seizures. This study evaluated the convulsive and seizurogenic effects of nonpeptidic delta-opioid agonists at doses that previously were reported to produce antidepressant-like effects. In addition, delta-opioid agonist-induced electroencephalographic (EEG) and behavioral changes were compared with those produced by the chemical convulsant pentylenetetrazol (PTZ). For these studies, EEG changes were recorded using a telemetry system before and after injections of the delta-opioid agonists [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenz (SNC80) and [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide [(+)-BW373U86]. Acute administration of nonpeptidic delta-opioid agonists produced bilateral ictal and paroxysmal spike and/or sharp wave discharges. delta-Opioid agonists produced brief changes in EEG recordings, and tolerance rapidly developed to these effects; however, PTZ produced longer-lasting EEG changes that were exacerbated after repeated administration. Studies with antiepileptic drugs demonstrated that compounds used to treat absence epilepsy blocked the convulsive effects of nonpeptidic delta-opioid agonists. Overall, these data suggest that delta-opioid agonist-induced EEG changes are not required for the antidepressant-like effects of these compounds and that neural circuitry involved in absence epilepsy may be related to delta-opioid agonist-induced convulsions. In terms of therapeutic development, these data suggest that it may be possible to develop delta-opioid agonists devoid of convulsive properties.
Envelope Responses in Single-trial EEG Indicate Attended Speaker in a Cocktail Party
2014-06-25
attention at the cued location, which may not produce strong lateralization in alpha power. In fact, a similar cocktail party study found that alpha...enhances selective speech envelope tracking in auditory cortex at a ‘ cocktail party ’ J. Neurosci. 33 1417–26 [9] Cherry E C 1953 Some experiments on the...Envelope responses in single-trial EEG indicate attended speaker in a ‘ cocktail party ’ Cort Horton1, Ramesh Srinivasan1,2 and Michael D’Zmura1
Saletu, Bernd; Anderer, Peter; Wolzt, Michael; Nosiska, Dorothea; Assandri, Alessandro; Noseda, Emanuele; Nannipieri, Fabrizio; Saletu-Zyhlarz, Gerda M
2009-01-01
Effects of ABIO-08/01, a new potentially anxiolytic isoxazoline, on regional electrical brain generators were investigated by 3-dimensional EEG tomography. In a double- blind, placebo-controlled, multiple-ascending-dose study, 16 healthy males (30.2 +/- 5.7 years) received 3 oral drug doses (10, 20, 40 mg) and placebo for 7 days (8-day wash-out) in a randomized non-balanced design for phase-1 studies. A 3-min vigilance-controlled (V) EEG, a 4-min resting (R) EEG with eyes closed, a 1-min eyes-open (EO) EEG and psychometric tests were performed 0, 1 and 6 h after taking the drug on days 1 and 5. Low-resolution brain electromagnetic tomography (LORETA) was computed from the spectrally analyzed EEG data, and differences between drug and placebo were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux Human Brain Atlas available as a digitized MRI. An overall omnibus significance test followed by a voxel-by-voxel t test demonstrated significant regional EEG changes after ABIO-08/01 versus placebo, dependent on recording condition, dose and time. While in the EO-EEG specifically the lowest dose of ABIO-08/01 induced pronounced sedative effects (delta/theta and beta increase) 1 h after acute and slightly less so after superimposed administration, in the 6th hour a decrease in alpha and beta activity signaled less sedative and more relaxant action. In the V-EEG these changes were less pronounced, in the R-EEG partly opposite. Hemisphere-specific changes were observed, suggesting increases in LORETA power over the left temporal, parietal, superior frontal regions and decreases over the right prefrontal, temporal pole and occipital regions. These LORETA changes are discussed in the light of neuroimaging findings on anxiety and anxiolytics. 2009 S. Karger AG, Basel.
EEG patterns associated with nitrogen narcosis (breathing air at 9 ATA).
Pastena, Lucio; Faralli, Fabio; Mainardi, Giovanni; Gagliardi, Riccardo
2005-11-01
The narcotic effect of nitrogen impairs diver performance and limits dive profiles, especially for deep dives using compressed air. It would be helpful to establish measurable correlates of nitrogen narcosis. The authors observed the electroencephalogram (EEG) of 10 subjects, ages 22-27 yr, who breathed air during a 3-min compression to a simulated depth of 80 msw (9 ATA). The EEG from a 19-electrode cap was recorded for 20 min while the subject reclined on a cot with eyes closed, first at 1 ATA before the dive and again at 9 ATA. Signals were analyzed using Fast Fourier Transform and brain mapping for frequency domains 0-4 Hz, 4-7 Hz, 7-12 Hz, and 12-15 Hz. Student's paired t-test and correlation tests were used to compare results for the two conditions. Two EEG patterns were observed. The first was an increase in delta and theta activity in all cortical regions that appeared in the first 2 min at depth and was related to exposure time. The second was an increase in delta and theta activity and shifting of alpha activity to the frontal regions at minute 6 of breathing air at 9 ATA and was related to the narcotic effects of nitrogen. If confirmed by studies with larger case series, this EEG pattern could be used to identify nitrogen narcosis for various gas mixtures and prevent the dangerous impact of nitrogen on diver performance.
Dmochowski, Jacek P; Sajda, Paul; Dias, Joao; Parra, Lucas C
2012-01-01
Recent evidence from functional magnetic resonance imaging suggests that cortical hemodynamic responses coincide in different subjects experiencing a common naturalistic stimulus. Here we utilize neural responses in the electroencephalogram (EEG) evoked by multiple presentations of short film clips to index brain states marked by high levels of correlation within and across subjects. We formulate a novel signal decomposition method which extracts maximally correlated signal components from multiple EEG records. The resulting components capture correlations down to a one-second time resolution, thus revealing that peak correlations of neural activity across viewings can occur in remarkable correspondence with arousing moments of the film. Moreover, a significant reduction in neural correlation occurs upon a second viewing of the film or when the narrative is disrupted by presenting its scenes scrambled in time. We also probe oscillatory brain activity during periods of heightened correlation, and observe during such times a significant increase in the theta band for a frontal component and reductions in the alpha and beta frequency bands for parietal and occipital components. Low-resolution EEG tomography of these components suggests that the correlated neural activity is consistent with sources in the cingulate and orbitofrontal cortices. Put together, these results suggest that the observed synchrony reflects attention- and emotion-modulated cortical processing which may be decoded with high temporal resolution by extracting maximally correlated components of neural activity.
Dmochowski, Jacek P.; Sajda, Paul; Dias, Joao; Parra, Lucas C.
2012-01-01
Recent evidence from functional magnetic resonance imaging suggests that cortical hemodynamic responses coincide in different subjects experiencing a common naturalistic stimulus. Here we utilize neural responses in the electroencephalogram (EEG) evoked by multiple presentations of short film clips to index brain states marked by high levels of correlation within and across subjects. We formulate a novel signal decomposition method which extracts maximally correlated signal components from multiple EEG records. The resulting components capture correlations down to a one-second time resolution, thus revealing that peak correlations of neural activity across viewings can occur in remarkable correspondence with arousing moments of the film. Moreover, a significant reduction in neural correlation occurs upon a second viewing of the film or when the narrative is disrupted by presenting its scenes scrambled in time. We also probe oscillatory brain activity during periods of heightened correlation, and observe during such times a significant increase in the theta band for a frontal component and reductions in the alpha and beta frequency bands for parietal and occipital components. Low-resolution EEG tomography of these components suggests that the correlated neural activity is consistent with sources in the cingulate and orbitofrontal cortices. Put together, these results suggest that the observed synchrony reflects attention- and emotion-modulated cortical processing which may be decoded with high temporal resolution by extracting maximally correlated components of neural activity. PMID:22623915
Quantitative EEG and LORETA: valuable tools in discerning FTD from AD?
Caso, Francesca; Cursi, Marco; Magnani, Giuseppe; Fanelli, Giovanna; Falautano, Monica; Comi, Giancarlo; Leocani, Letizia; Minicucci, Fabio
2012-10-01
Drawing a clinical distinction between frontotemporal dementia (FTD) and Alzheimer's disease (AD) is tricky, particularly at the early stages of disease. This study evaluates the possibility in differentiating 39 FTD, 39 AD, and 39 controls (CTR) by means of power spectral analysis and standardized low resolution brain electromagnetic tomography (sLORETA) within delta, theta, alpha 1 and 2, beta 1, 2, and 3 frequency bands. Both analyses revealed in AD patients, relative to CTR, higher expression of diffuse delta/theta and lower central/posterior fast frequency (from alpha1 to beta2) bands. FTD patients showed diffuse increased theta power compared with CTR and lower delta relative to AD patients. Compared with FTD, AD patients showed diffuse higher theta power at spectral analysis and, at sLORETA, decreased alpha2 and beta1 values in central/temporal regions. Spectral analysis and sLORETA provided complementary information that might help characterizing different patterns of electroencephalogram (EEG) oscillatory activity in AD and FTD. Nevertheless, this differentiation was possible only at the group level because single patients could not be discerned with sufficient accuracy. Copyright © 2012 Elsevier Inc. All rights reserved.
Maintenance of relational information in working memory leads to suppression of the sensory cortex.
Ikkai, Akiko; Blacker, Kara J; Lakshmanan, Balaji M; Ewen, Joshua B; Courtney, Susan M
2014-10-15
Working memory (WM) for sensory-based information about individual objects and their locations appears to involve interactions between lateral prefrontal and sensory cortexes. The mechanisms and representations for maintenance of more abstract, nonsensory information in WM are unknown, particularly whether such actively maintained information can become independent of the sensory information from which it was derived. Previous studies of WM for individual visual items found increased electroencephalogram (EEG) alpha (8-13 Hz) power over posterior electrode sites, which appears to correspond to the suppression of cortical areas that represent irrelevant sensory information. Here, we recorded EEG while participants performed a visual WM task that involved maintaining either concrete spatial coordinates or abstract relational information. Maintenance of relational information resulted in higher alpha power in posterior electrodes. Furthermore, lateralization of alpha power due to a covert shift of attention to one visual hemifield was marginally weaker during storage of relational information than during storage of concrete information. These results suggest that abstract relational information is maintained in WM differently from concrete, sensory representations and that during maintenance of abstract information, posterior sensory regions become task irrelevant and are thus suppressed. Copyright © 2014 the American Physiological Society.
Lehembre, Rémy; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Chatelle, Camille; Cologan, Victor; Leclercq, Yves; Soddu, Andrea; Macq, Benoît; Laureys, Steven; Noirhomme, Quentin
2012-01-01
Summary The aim of this study was to look for differences in the power spectra and in EEG connectivity measures between patients in the vegetative state (VS/UWS) and patients in the minimally conscious state (MCS). The EEG of 31 patients was recorded and analyzed. Power spectra were obtained using modern multitaper methods. Three connectivity measures (coherence, the imaginary part of coherency and the phase lag index) were computed. Of the 31 patients, 21 were diagnosed as MCS and 10 as VS/UWS using the Coma Recovery Scale-Revised (CRS-R). EEG power spectra revealed differences between the two conditions. The VS/UWS patients showed increased delta power but decreased alpha power compared with the MCS patients. Connectivity measures were correlated with the CRS-R diagnosis; patients in the VS/UWS had significantly lower connectivity than MCS patients in the theta and alpha bands. Standard EEG recorded in clinical conditions could be used as a tool to help the clinician in the diagnosis of disorders of consciousness. PMID:22687166
Automatic sleep stage classification using two-channel electro-oculography.
Virkkala, Jussi; Hasan, Joel; Värri, Alpo; Himanen, Sari-Leena; Müller, Kiti
2007-10-15
An automatic method for the classification of wakefulness and sleep stages SREM, S1, S2 and SWS was developed based on our two previous studies. The method is based on a two-channel electro-oculography (EOG) referenced to the left mastoid (M1). Synchronous electroencephalographic (EEG) activity in S2 and SWS was detected by calculating cross-correlation and peak-to-peak amplitude difference in the 0.5-6 Hz band between the two EOG channels. An automatic slow eye-movement (SEM) estimation was used to indicate wakefulness, SREM and S1. Beta power 18-30 Hz and alpha power 8-12 Hz was also used for wakefulness detection. Synchronous 1.5-6 Hz EEG activity and absence of large eye movements was used for S1 separation from SREM. Simple smoothing rules were also applied. Sleep EEG, EOG and EMG were recorded from 265 subjects. The system was tuned using data from 132 training subjects and then applied to data from 131 validation subjects that were different to the training subjects. Cohen's Kappa between the visual and the developed new automatic scoring in separating 30s wakefulness, SREM, S1, S2 and SWS epochs was substantial 0.62 with epoch by epoch agreement of 72%. With automatic subject specific alpha thresholds for offline applications results improved to 0.63 and 73%. The automatic method can be further developed and applied for ambulatory sleep recordings by using only four disposable, self-adhesive and self-applicable electrodes.
Yeom, Seul-Ki; Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan
2017-01-01
On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9-11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used.
NASA Astrophysics Data System (ADS)
Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto
2015-09-01
This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement
EEG alpha activity during imagining creative moves in soccer decision-making situations.
Fink, Andreas; Rominger, Christian; Benedek, Mathias; Perchtold, Corinna M; Papousek, Ilona; Weiss, Elisabeth M; Seidel, Anna; Memmert, Daniel
2018-06-01
This study investigated task-related changes of EEG alpha power while participants were imagining creative moves in soccer decision-making situations. After presenting brief video clips of a soccer scene, participants had to imagine themselves as the acting player and to think either of a creative/original or an obvious/conventional move (control condition) that might lead to a goal. Performance of the soccer task generally elicited comparatively strong alpha power decreases at parietal and occipital sites, indicating high visuospatial processing demands. This power decrease was less pronounced in the creative vs. control condition, reflecting a more internally oriented state of information processing characterized by more imaginative mental simulation rather than stimulus-driven bottom-up processing. In addition, more creative task performance in the soccer task was associated with stronger alpha desynchronization at left cortical sites, most prominently over motor related areas. This finding suggests that individuals who generated more creative moves were more intensively engaged in processes related to movement imagery. Unlike the domain-specific creativity measure, individual's trait creative potential, as assessed by a psychometric creativity test, was globally positively associated with alpha power at all cortical sites. In investigating creative processes implicated in complex creative behavior involving more ecologically valid demands, this study showed that thinking creatively in soccer decision-making situations recruits specific brain networks supporting processes related to visuospatial attention and movement imagery, while the relative increase in alpha power in more creative conditions and in individuals with higher creative potential might reflect a pattern relevant across different creativity domains. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Itoh, Toru; Sumiyoshi, Tomiki; Higuchi, Yuko; Suzuki, Michio; Kawasaki, Yasuhiro
2011-08-01
We sought to determine if altered electroencephalography (EEG) activities, such as delta band activity, in specific brain regions are associated with psychotic symptoms. Data were obtained from 17 neuroleptic-naive patients with schizophrenia and age- and sex-matched 17 healthy control subjects. Low Resolution Brain Electromagnetic Tomography (LORETA) was used to generate current source density images of delta, theta, alpha, and beta activities. Localization of the difference in EEG activity between the two groups was assessed by voxel-by-voxel non-paired t-test of the LORETA images. Spearman's correlation coefficient was obtained to relate LORETA values of EEG current density in brain regions showing a significant between-group difference and psychopathology scores. Delta band activity, represented by LORETA current density, was greater for patients in the following areas; the left inferior temporal gyrus, right middle frontal gyrus, right superior frontal gyrus, right inferior frontal gyrus, and right parahippocampal gyrus. LORETA values for delta band activity in the above five brain regions were negatively correlated with negative, but not positive symptoms. The results of this study suggest the role for electrophysiological changes in some of the brain regions, e.g. prefrontal cortex, in the manifestation of negative symptoms. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Niv, Sharon; Ashrafulla, Syed; Tuvblad, Catherine; Joshi, Anand; Raine, Adrian; Leahy, Richard; Baker, Laura A
2015-02-01
High EEG frontal alpha power (FAP) is thought to represent a state of low arousal in the brain, which has been related in past research to antisocial behavior (ASB). We investigated a longitudinal sample of 900 twins in two assessments in late childhood and mid-adolescence to verify whether relationships exist between FAP and both aggressive and nonaggressive ASB. ASB was measured by the Child Behavioral Checklist, and FAP was calculated using connectivity analysis methods that used principal components analysis to derive power of the most dominant frontal activation. Significant positive predictive relationships emerged in males between childhood FAP and adolescent aggressive ASB using multilevel mixed modeling. No concurrent relationships were found. Using bivariate biometric twin modeling analysis, the relationship between childhood FAP and adolescent aggressive ASB in males was found to be entirely due to genetic factors, which were correlated r=0.22. Copyright © 2014 Elsevier B.V. All rights reserved.
Graph properties of synchronized cortical networks during visual working memory maintenance.
Palva, Satu; Monto, Simo; Palva, J Matias
2010-02-15
Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles. Copyright 2009 Elsevier Inc. All rights reserved.
Driver state examination--Treading new paths.
Wascher, Edmund; Getzmann, Stephan; Karthaus, Melanie
2016-06-01
A large proportion of crashes in road driving can be attributed to driver fatigue. Several types of fatigue are discussed, comprising sleep-related fatigue, active task-related fatigue (as a consequence of workload in demanding driving situations) as well as passive task-related fatigue (as related to monotonous driving situations). The present study investigated actual states of fatigue in a monotonous driving situation, using EEG measures and a long-lasting driving simulation experiment, in which drivers had to keep the vehicle on track by compensating crosswind of different strength. Performance data and electrophysiological correlates of mental fatigue (EEG Alpha and Theta power, Inter Trial Coherence (ITC), and auditory event-related potentials to short sound stimuli) were analyzed. Driving errors and driving lane variability increased with time on task and with increasing crosswind. The posterior Alpha and Theta power also increased with time on task, but decreased with stronger crosswind. The P3a to sound stimuli decreased with time on task when the crosswind was weak, but remained stable when the crosswind was strong. The analysis of ITC revealed less frontal Alpha and Theta band synchronization with time on task, but no effect of crosswind. The results suggest that Alpha power in monotonous driving situations reflects boredom or attentional withdrawal due to monotony rather than the decline of processing abilities as a consequence of high mental effort. A more valid indicator of declining mental resources with increasing time on task seems to be provided by brain oscillatory synchronization measures and event-related activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Frontal-posterior coherence and cognitive function in older adults.
Fleck, Jessica I; Kuti, Julia; Brown, Jessica; Mahon, Jessica R; Gayda-Chelder, Christine
2016-12-01
The reliable measurement of brain health and cognitive function is essential in mitigating the negative effects associated with cognitive decline through early and accurate diagnosis of change. The present research explored the relationship between EEG coherence for electrodes within frontal and posterior regions, as well as coherence between frontal and posterior electrodes and performance on standard neuropsychological measures of memory and executive function. EEG coherence for eyes-closed resting-state EEG activity was calculated for delta, theta, alpha, beta, and gamma frequency bands. Participants (N=66; mean age=67.15years) had their resting-state EEGs recorded and completed a neuropsychological battery that assessed memory and executive function, two cognitive domains that are significantly affected during aging. A positive relationship was observed between coherence within the frontal region and performance on measures of memory and executive function for delta and beta frequency bands. In addition, an inverse relationship was observed for coherence between frontal and posterior electrode pairs, particularly within the theta frequency band, and performance on Digit Span Sequencing, a measure of working memory. The present research supports a more substantial link between EEG coherence, rather than spectral power, and cognitive function. Continued study in this area may enable EEG to be applied broadly as a diagnostic measure of cognitive ability. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.
Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe
2017-09-01
Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.
Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John
2010-01-01
This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.
EEG slow waves in traumatic brain injury: Convergent findings in mouse and man
Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.
2016-01-01
Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987
EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.
Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M
2016-07-01
Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.
Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.
Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin
2017-12-04
Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Cuellar, M; Harkrider, A W; Jenson, D; Thornton, D; Bowers, A; Saltuklaroglu, T
2016-07-01
Electroencephalography (EEG) was used to map the temporal dynamics of sensorimotor integration relative to the strength and timing of muscular activity during swallowing. 64-channel EEG data and surface electromyographic (sEMG) data were recorded from 25 neurologically-healthy adults during swallowing and tongue-tapping. Events were demarcated so that sensorimotor activity primarily from the pharyngeal and esophageal phases of swallowing could be compared to activity resulting from tongue tapping. Independent component analysis identified bilateral clusters of sensorimotor mu components localized to the premotor and primary motor cortices as well as an infrahyoid myogenic cluster. Subsequent event-related spectral perturbations (ERSP) analyses showed event-related desynchronization (ERD) in the spectral power in the alpha (8-13Hz) and beta (15-25Hz) frequency bands of the mu clusters in both tasks. Mu ERD was stronger during swallowing when compared to tongue tapping (pFDR<.05) and the differences in sensorimotor processing between conditions was greater in the right hemisphere than the left, suggesting stronger right hemisphere lateralization for swallowing than tongue-tapping. Mu activity was interpreted as representing a normal feed forward and feedback driven sensorimotor loop during the later stages of swallowing. Results support further use of this novel neuroimaging technique to concurrently map neural and muscle activity during swallowing in clinical populations using EEG. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Vollebregt, Madelon A; Zumer, Johanna M; Ter Huurne, Niels; Buitelaar, Jan K; Jensen, Ole
2016-05-01
This study aimed to characterize alpha modulations in children with ADHD in relation to their attentional performance. The posterior alpha activity (8-12Hz) was measured in 30 typically developing children and 30 children with ADHD aged 7-10years, using EEG while they performed a visuospatial covert attention task. We focused the analyses on typically developing boys (N=9) and boys with ADHD (N=17). Alpha activity in typically developing boys was similar to previous results of healthy adults: it decreased in the hemisphere contralateral to the attended hemifield, whereas it relatively increased in the other hemisphere. However, in boys with ADHD this hemispheric lateralization in the alpha band was not obvious (group contrast, p=.018). A robust relation with behavioral performance was lacking in both groups. The ability to modulate alpha oscillations in visual regions with the allocation of spatial attention was clearly present in typically developing boys, but not in boys with ADHD. These results open up the possibility to further study the underlying mechanisms of ADHD by examining how differences in the fronto-striatal network might explain different abilities in modulating the alpha band activity. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Envelope responses in single-trial EEG indicate attended speaker in a 'cocktail party'.
Horton, Cort; Srinivasan, Ramesh; D'Zmura, Michael
2014-08-01
Recent studies have shown that auditory cortex better encodes the envelope of attended speech than that of unattended speech during multi-speaker ('cocktail party') situations. We investigated whether these differences were sufficiently robust within single-trial electroencephalographic (EEG) data to accurately determine where subjects attended. Additionally, we compared this measure to other established EEG markers of attention. High-resolution EEG was recorded while subjects engaged in a two-speaker 'cocktail party' task. Cortical responses to speech envelopes were extracted by cross-correlating the envelopes with each EEG channel. We also measured steady-state responses (elicited via high-frequency amplitude modulation of the speech) and alpha-band power, both of which have been sensitive to attention in previous studies. Using linear classifiers, we then examined how well each of these features could be used to predict the subjects' side of attention at various epoch lengths. We found that the attended speaker could be determined reliably from the envelope responses calculated from short periods of EEG, with accuracy improving as a function of sample length. Furthermore, envelope responses were far better indicators of attention than changes in either alpha power or steady-state responses. These results suggest that envelope-related signals recorded in EEG data can be used to form robust auditory BCI's that do not require artificial manipulation (e.g., amplitude modulation) of stimuli to function.
Rosenthal, Eric S; Biswal, Siddharth; Zafar, Sahar F; O'Connor, Kathryn L; Bechek, Sophia; Shenoy, Apeksha V; Boyle, Emily J; Shafi, Mouhsin M; Gilmore, Emily J; Foreman, Brandon P; Gaspard, Nicolas; Leslie-Mazwi, Thabele M; Rosand, Jonathan; Hoch, Daniel B; Ayata, Cenk; Cash, Sydney S; Cole, Andrew J; Patel, Aman B; Westover, M Brandon
2018-04-16
Delayed cerebral ischemia (DCI) is a common, disabling complication of subarachnoid hemorrhage (SAH). Preventing DCI is a key focus of neurocritical care, but interventions carry risk and cannot be applied indiscriminately. Although retrospective studies have identified continuous electroencephalographic (cEEG) measures associated with DCI, no study has characterized the accuracy of cEEG with sufficient rigor to justify using it to triage patients to interventions or clinical trials. We therefore prospectively assessed the accuracy of cEEG for predicting DCI, following the Standards for Reporting Diagnostic Accuracy Studies. We prospectively performed cEEG in nontraumatic, high-grade SAH patients at a single institution. The index test consisted of clinical neurophysiologists prospectively reporting prespecified EEG alarms: (1) decreasing relative alpha variability, (2) decreasing alpha-delta ratio, (3) worsening focal slowing, or (4) late appearing epileptiform abnormalities. The diagnostic reference standard was DCI determined by blinded, adjudicated review. Primary outcome measures were sensitivity and specificity of cEEG for subsequent DCI, determined by multistate survival analysis, adjusted for baseline risk. One hundred three of 227 consecutive patients were eligible and underwent cEEG monitoring (7.7-day mean duration). EEG alarms occurred in 96.2% of patients with and 19.6% without subsequent DCI (1.9-day median latency, interquartile range = 0.9-4.1). Among alarm subtypes, late onset epileptiform abnormalities had the highest predictive value. Prespecified EEG findings predicted DCI among patients with low (91% sensitivity, 83% specificity) and high (95% sensitivity, 77% specificity) baseline risk. cEEG accurately predicts DCI following SAH and may help target therapies to patients at highest risk of secondary brain injury. Ann Neurol 2018. © 2018 American Neurological Association.
Wen, Dong; Bian, Zhijie; Li, Qiuli; Wang, Lei; Lu, Chengbiao; Li, Xiaoli
2016-01-01
This study was meant to explore whether the coupling strength and direction of resting-state electroencephalogram (rsEEG) could be used as an indicator to distinguish the patients of type 2 diabetes mellitus (T2DM) with or without amnestic mild cognitive impairment (aMCI). Permutation conditional mutual information (PCMI) was used to calculate the coupling strength and direction of rsEEG signals between different brain areas of 19 aMCI and 20 normal control (NC) with T2DM on 7 frequency bands: Delta, Theta, Alpha1, Alpha2, Beta1, Beta2 and Gamma. The difference in coupling strength or direction of rsEEG between two groups was calculated. The correlation between coupling strength or direction of rsEEG and score of different neuropsychology scales were also calculated. We have demonstrated that PCMI can calculate effectively the coupling strength and directionality of EEG signals between different brain regions. The significant difference in coupling strength and directionality of EEG signals was found between the patients of aMCI and NC with T2DM on different brain regions. There also existed significant correlation between sex or age and coupling strength or coupling directionality of EEG signals between a few different brain regions from all subjects. The coupling strength or directionality of EEG signals calculated by PCMI are significantly different between aMCI and NC with T2DM. These results showed that the coupling strength or directionality of EEG signals calculated by PCMI might be used as a biomarker in distinguishing the aMCI from NC with T2DM. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Yu, Jianqiang; Li, Yuxiang; Zhao, Chengjun; Gong, Xin; Liu, Jianping; Wang, Feng; Jiang, Yuanxu
2010-05-01
To observe the effect of oxysophoridine (OSR) on the EEG and its power spectrum of reticulum formation in mesencephalon of anaesthetized rat. Utilizing the technique of brain stereotactic apparatus, electrodes were implanted into reticulum formation of mesencephalon. Monopolar lead and computerized FFT technique were employed to record and analyse the index of EEG, power spectrum and frequency distribution in order to study the effect of oxysophoridine on the bioelectricity change of mesencephalon reticulum formation in rats. After administrating(icy) with oxysophoridine at the dose of 2.5,5, 10 mg/rat, the EEG of mesencephalon reticulum formation mainly characterized with low amplitude and slow waves accompanied by spindle-formed sleeping waves with a significant decrease of total power of EEG (P < 0.05) while the ratio of theta, alpha waves increased in total frequency of rats (P < 0.05). Oxysophoridine possesses central inhibitory effects and its inhibitory mechanism may associate with the reduction of bioelectricity in mesencephalon reticulum formation. Mesencephalon reticulum formation may serve as one part of the structure serving as the circuit conducting the central inhibitory effect of oxysophoridine. [Key words] oxysophoridine; reticulum formation; electroencephalogram (EEG) ; rats
Liu, Zhong-Xu; Glizer, Daniel; Tannock, Rosemary; Woltering, Steven
2016-02-01
The present study examined whether neural indices of working memory maintenance differ between young adults with ADHD and their healthy peers (Study 1), and whether this neural index would change after working memory training (Study 2). Study 1 involved 136 college students with ADHD and 41 healthy peers (aged 18-35 years) and measured their posterior alpha activity during a visual delayed-match-to-sample task using electroencephalography (EEG). Study 2 involved 99 of the participants with ADHD who were randomized into a standard-length or shortened-length Cogmed working memory training program or a waitlist control group. The ADHD group tended to be less accurate than the peers. Similarly, the ADHD group exhibited lower posterior alpha power at a trend level compared to their healthy peers. There were no training effects on participants' performance and only marginal increases in posterior alpha power in training groups compared to the waitlist group. Considering that the training effects were small and there was no load and dose effect, we conclude that the current study provides no convincing evidence for specific effects of Cogmed. These findings provide unique insights into neuroplasticity, or lack thereof, with near-transfer tasks in individuals with ADHD. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Fleck, Jessica I.; Green, Deborah L.; Stevenson, Jennifer L.; Payne, Lisa; Bowden, Edward M.; Jung-Beeman, Mark; Kounios, John
2008-01-01
Transliminality reflects individual differences in the threshold at which unconscious processes or external stimuli enter into consciousness. Individuals high in transliminality possess characteristics such as magical ideation, belief in the paranormal, and creative personality traits, and also report the occurrence of manic/mystic experiences. The goal of the present research was to determine if resting brain activity differs for individuals high versus low in transliminality. We compared baseline EEG recordings (eyes-closed) between individuals high versus low in transliminality, assessed using The Revised Transliminality Scale of Lange et al. (2000). Identifying reliable differences at rest between high- and low-transliminality individuals would support a predisposition for transliminality-related traits. Individuals high in transliminality exhibited lower alpha, beta, and gamma power than individuals low in transliminality over left posterior association cortex and lower high alpha, low beta, and gamma power over the right superior temporal region. In contrast, when compared to individuals low in transliminality, individuals high in transliminality exhibited greater gamma power over the frontal-midline region. These results are consistent with prior research reporting reductions in left temporal/parietal activity, as well as the desynchronization of right temporal activity in schizotypy and related schizophrenia spectrum disorders. Further, differences between high- and low-transliminality groups extend existing theories linking altered hemispheric asymmetries in brain activity to a predisposition toward schizophrenia, paranormal beliefs, and unusual experiences. PMID:18814870
Emotion processing in Parkinson's disease: an EEG spectral power study.
Yuvaraj, R; Murugappan, M; Omar, Mohd Iqbal; Ibrahim, Norlinah Mohamed; Sundaraj, Kenneth; Mohamad, Khairiyah; Satiyan, M
2014-07-01
Although an emotional deficit is a common finding in Parkinson's disease (PD), its neurobiological mechanism on emotion recognition is still unknown. This study examined the emotion processing deficits in PD patients using electroencephalogram (EEG) signals in response to multimodal stimuli. EEG signals were investigated on both positive and negative emotions in 14 PD patients and 14 aged-matched normal controls (NCs). The relative power (i.e., ratio of EEG signal power in each frequency band compared to the total EEG power) was computed over three brain regions: the anterior (AF3, F7, F3, F4, F8 and AF4), central (FC5 and FC6) and posterior (T7, P7, O1, O2, P8 and T8) regions for theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-60 Hz) frequency sub-bands, respectively. Behaviorally, PD patients showed decreased performance in classifying emotional stimuli as measured by subjective ratings. EEG power at theta, alpha, beta, and gamma bands in all regions were significantly different between the NC and PD groups during both the emotional tasks, with p-values less than 0.05. Furthermore, an increase of relative spectral powers in the theta and gamma bands and a decrease of relative powers in the alpha and beta bands were observed for PD patients compared with NCs during emotional information processing. The results suggest the possibility of the existence of a distinctive neurobiological substrate of PD patients during emotional information processing. Also, these distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients.
Tracking EEG changes in response to alpha and beta binaural beats.
Vernon, D; Peryer, G; Louch, J; Shaw, M
2014-07-01
A binaural beat can be produced by presenting two tones of a differing frequency, one to each ear. Such auditory stimulation has been suggested to influence behaviour and cognition via the process of cortical entrainment. However, research so far has only shown the frequency following responses in the traditional EEG frequency ranges of delta, theta and gamma. Hence a primary aim of this research was to ascertain whether it would be possible to produce clear changes in the EEG in either the alpha or beta frequency ranges. Such changes, if possible, would have a number of important implications as well as potential applications. A secondary goal was to track any observable changes in the EEG throughout the entrainment epoch to gain some insight into the nature of the entrainment effects on any changes in an effort to identify more effective entrainment regimes. Twenty two healthy participants were recruited and randomly allocated to one of two groups, each of which was exposed to a distinct binaural beat frequency for ten 1-minute epochs. The first group listened to an alpha binaural beat of 10 Hz and the second to a beta binaural beat of 20 Hz. EEG was recorded from the left and right temporal regions during pre-exposure baselines, stimulus exposure epochs and post-exposure baselines. Analysis of changes in broad-band and narrow-band amplitudes, and frequency showed no effect of binaural beat frequency eliciting a frequency following effect in the EEG. Possible mediating factors are discussed and a number of recommendations are made regarding future studies, exploring entrainment effects from a binaural beat presentation. Copyright © 2012 Elsevier B.V. All rights reserved.
Ratmanova, Patricia; Semenyuk, Roxana; Popov, Daniil; Kuznetsov, Sergey; Zelenkova, Irina; Napalkov, Dmitry; Vinogradova, Olga
2016-07-01
The aim of the study was to investigate the effects of voluntary breath-holding on brain activity and physiological functions. We hypothesised that prolonged apnoea would trigger cerebral hypoxia, resulting in a decrease of brain performance; and the apnoea's effects would be more pronounced in breath-hold divers. Trained breath-hold divers and non-divers performed maximal dry breath-holdings. Lung volume, alveolar partial pressures of O2 and CO2, attention and anxiety levels were estimated. Heart rate, blood pressure, arterial blood oxygenation, brain tissue oxygenation, EEG, and DC potential were monitored continuously during breath-holding. There were a few significant changes in electrical brain activity caused by prolonged apnoea. Brain tissue oxygenation index and DC potential were relatively stable up to the end of the apnoea in breath-hold divers and non-divers. We also did not observe any decrease of attention level or speed of processing immediately after breath-holding. Interestingly, trained breath-hold divers had some peculiarities in EEG activity at resting state (before any breath-holding): non-spindled, sharpened alpha rhythm; slowed-down alpha with the frequency nearer to the theta band; and untypical spatial pattern of alpha activity. Our findings contradicted the primary hypothesis. Apnoea up to 5 min does not lead to notable cerebral hypoxia or a decrease of brain performance in either breath-hold divers or non-divers. It seems to be the result of the compensatory mechanisms similar to the diving response aimed at centralising blood circulation and reducing peripheral O2 uptake. Adaptive changes during apnoea are much more prominent in trained breath-hold divers.
NASA Technical Reports Server (NTRS)
Bert, J.; Collomb, H.
1980-01-01
The EEG of the baboon was studied under two very different sets of conditions: 37 were totally immobolized while 12 were studied in their free movements with 4 channel telemetry. For the immobilzed, 3 stages were described: (1) activation, record desynchronized; (2) rest with 13-15 cm/sec rhythm, like the human alpha rhythm stage but with eyes open or closed; (3)relaxation with a decrease in 13-15 rhythm and the appearance of 5-7 cm/sec theta waves, eyelids closed, animal apparently sleeping. For the free animals the rest stage appeared when the animal's attention was not directed anywhere and there was no relaxation stage. It is concluded that the EEG pattern of the immobilized animal that was described as the "relaxation" stage really represents a special functional state which one must distinguish clearly from the physiological stages of sleep.
Forschack, Norman; Nierhaus, Till; Müller, Matthias M; Villringer, Arno
2017-07-19
Attention filters and weights sensory information according to behavioral demands. Stimulus-related neural responses are increased for the attended stimulus. Does alpha-band activity mediate this effect and is it restricted to conscious sensory events (suprathreshold), or does it also extend to unconscious stimuli (subthreshold)? To address these questions, we recorded EEG in healthy male and female volunteers undergoing subthreshold and suprathreshold somatosensory electrical stimulation to the left or right index finger. The task was to detect stimulation at the randomly alternated cued index finger. Under attention, amplitudes of somatosensory evoked potentials increased 50-60 ms after stimulation (P1) for both suprathreshold and subthreshold events. Prestimulus amplitude of peri-Rolandic alpha, that is mu, showed an inverse relationship to P1 amplitude during attention compared to when the finger was unattended. Interestingly, intermediate and high amplitudes of mu rhythm were associated with the highest P1 amplitudes during attention and smallest P1 during lack of attention, that is, these levels of alpha rhythm seemed to optimally support the behavioral goal ("detect" stimuli at the cued finger while ignoring the other finger). Our results show that attention enhances neural processing for both suprathreshold and subthreshold stimuli and they highlight a rather complex interaction between attention, Rolandic alpha activity, and their effects on stimulus processing. SIGNIFICANCE STATEMENT Attention is crucial in prioritizing processing of relevant perceptible (suprathreshold) stimuli: it filters and weights sensory input. The present study investigates the controversially discussed question whether this attention effect extends to imperceptible (subthreshold) stimuli as well. We found noninvasive EEG signatures for attentional modulation of neural events following perceptible and imperceptible somatosensory stimulation in human participants. Specifically, stimulus processing for both kinds of stimulation, subthreshold and suprathreshold, is enhanced by attention. Interestingly, Rolandic alpha rhythm strength and its influence on stimulus processing are strikingly altered by attention most likely to optimally achieve the behavioral goal. Copyright © 2017 the authors 0270-6474/17/376983-12$15.00/0.
Alpha reactivity to first names differs in subjects with high and low dream recall frequency
Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie
2013-01-01
Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000–1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high and low-recallers. PMID:23966960
Correlation of Visuospatial Ability and EEG Slowing in Patients with Parkinson's Disease
Meyer, Antonia; Chaturvedi, Menorca; Hatz, Florian; Gschwandtner, Ute
2017-01-01
Background. Visuospatial dysfunction is among the first cognitive symptoms in Parkinson's disease (PD) and is often predictive for PD-dementia. Furthermore, cognitive status in PD-patients correlates with quantitative EEG. This cross-sectional study aimed to investigate the correlation between EEG slowing and visuospatial ability in nondemented PD-patients. Methods. Fifty-seven nondemented PD-patients (17 females/40 males) were evaluated with a comprehensive neuropsychological test battery and a high-resolution 256-channel EEG was recorded. A median split was performed for each cognitive test dividing the patients sample into either a normal or lower performance group. The electrodes were split into five areas: frontal, central, temporal, parietal, and occipital. A linear mixed effects model (LME) was used for correlational analyses and to control for confounding factors. Results. Subsequently, for the lower performance, LME analysis showed a significant positive correlation between ROCF score and parietal alpha/theta ratio (b = .59, p = .012) and occipital alpha/theta ratio (b = 0.50, p = .030). No correlations were found in the group of patients with normal visuospatial abilities. Conclusion. We conclude that a reduction of the parietal alpha/theta ratio is related to visuospatial impairments in PD-patients. These findings indicate that visuospatial impairment in PD-patients could be influenced by parietal dysfunction. PMID:28348918
Mousavi, Seyed Mortaza; Adamoğlu, Ahmet; Demiralp, Tamer; Shayesteh, Mahrokh G
2014-01-01
Awareness during general anesthesia for its serious psychological effects on patients and some juristically problems for anesthetists has been an important challenge during past decades. Monitoring depth of anesthesia is a fundamental solution to this problem. The induction of anesthesia alters frequency and mean of amplitudes of the electroencephalogram (EEG), and its phase couplings. We analyzed EEG changes for phase coupling between delta and alpha subbands using a new algorithm for depth of general anesthesia measurement based on complex wavelet transform (CWT) in patients anesthetized by Propofol. Entropy and histogram of modulated signals were calculated by taking bispectral index (BIS) values as reference. Entropies corresponding to different BIS intervals using Mann-Whitney U test showed that they had different continuous distributions. The results demonstrated that there is a phase coupling between 3 and 4 Hz in delta and 8-9 Hz in alpha subbands and these changes are shown better at the channel T 7 of EEG. Moreover, when BIS values increase, the entropy value of modulated signal also increases and vice versa. In addition, measuring phase coupling between delta and alpha subbands of EEG signals through continuous CWT analysis reveals the depth of anesthesia level. As a result, awareness during anesthesia can be prevented.
Struve, F A; Straumanis, J J; Patrick, G
1994-04-01
In a previous pilot study using psychiatric patients we reported that daily marihuana users had significant elevations of (1) Absolute Alpha Power, (2) Relative Alpha Power, and (3) Interhemispheric Alpha Coherence over both frontal and frontal-central areas when contrasted with subjects who did not use marihuana. We referred to this phenomenon as Hyperfrontality of Alpha. The study presented here is a successful replication of our previous findings using new samples of subjects and identical methods. Post hoc analyses based on the combined sample from both studies suggest that variables of psychiatric diagnoses and medication did not bias our results. In addition, a discriminant function analysis using quantitative EEG variables as candidate predictors generated a 95% correct THC user versus nonuser classification accuracy which received a successful jackknife replication.
Detecting Driver Mental Fatigue Based on EEG Alpha Power Changes during Simulated Driving.
Gharagozlou, Faramarz; Nasl Saraji, Gebraeil; Mazloumi, Adel; Nahvi, Ali; Motie Nasrabadi, Ali; Rahimi Foroushani, Abbas; Arab Kheradmand, Ali; Ashouri, Mohammadreza; Samavati, Mehdi
2015-12-01
Driver fatigue is one of the major implications in transportation safety and accounted for up to 40% of road accidents. This study aimed to analyze the EEG alpha power changes in partially sleep-deprived drivers while performing a simulated driving task. Twelve healthy male car drivers participated in an overnight study. Continuous EEG and EOG records were taken during driving on a virtual reality simulator on a monotonous road. Simultaneously, video recordings from the driver face and behavior were performed in lateral and front views and rated by two trained observers. Moreover, the subjective self-assessment of fatigue was implemented in every 10-min interval during the driving using Fatigue Visual Analog Scale (F-VAS). Power spectrum density and fast Fourier transform (FFT) were used to determine the absolute and relative alpha powers in the initial and final 10 minutes of driving. The findings showed a significant increase in the absolute alpha power (P = 0.006) as well as F-VAS scores during the final section of driving (P = 0.001). Meanwhile, video ratings were consistent with subjective self-assessment of fatigue. The increase in alpha power in the final section of driving indicates the decrease in the level of alertness and attention and the onset of fatigue, which was consistent with F-VAS and video ratings. The study suggested that variations in alpha power could be a good indicator for driver mental fatigue, but for using as a countermeasure device needed further investigations.
Hypoglycemia-Associated EEG Changes Following Antecedent Hypoglycemia in Type 1 Diabetes Mellitus.
Sejling, Anne-Sophie; Kjaer, Troels W; Pedersen-Bjergaard, Ulrik; Remvig, Line S; Frandsen, Christian S; Hilsted, Linda; Faber, Jens; Holst, Jens Juul; Tarnow, Lise; Møller, Jakob Skadkær; Nielsen, Martin N; Thorsteinsson, Birger; Juhl, Claus B
2017-02-01
Recurrent hypoglycemia has been shown to blunt hypoglycemia symptom scores and counterregulatory hormonal responses during subsequent hypoglycemia. We therefore studied whether hypoglycemia-associated electroencephalogram (EEG) changes are affected by an antecedent episode of hypoglycemia. Twenty-four patients with type 1 diabetes mellitus (10 with normal hypoglycemia awareness, 14 with hypoglycemia unawareness) were studied on 2 consecutive days by hyperinsulinemic glucose clamp at hypoglycemia (2.0-2.5 mmol/L) during a 1-h period. EEG was recorded, cognitive function assessed, and hypoglycemia symptom scores and counterregulatory hormonal responses were obtained. Twenty-one patients completed the study. Hypoglycemia-associated EEG changes were identified on both days with no differences in power or frequency distribution in the theta, alpha, or the combined theta-alpha band during hypoglycemia on the 2 days. Similar degree of cognitive dysfunction was also present during hypoglycemia on both days. When comparing the aware and unaware group, there were no differences in the hypoglycemia-associated EEG changes. There were very subtle differences in cognitive function between the two groups on day 2. The symptom response was higher in the aware group on both days, while only subtle differences were seen in the counterregulatory hormonal response. Antecedent hypoglycemia does not affect hypoglycemia-associated EEG changes in patients with type 1 diabetes mellitus.
A multimodal approach to estimating vigilance using EEG and forehead EOG
NASA Astrophysics Data System (ADS)
Zheng, Wei-Long; Lu, Bao-Liang
2017-04-01
Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
ERIC Educational Resources Information Center
Yordanova, Juliana; Kolev, Vasil; Wagner, Ullrich; Born, Jan; Verleger, Rolf
2012-01-01
The number reduction task (NRT) allows us to study the transition from implicit knowledge of hidden task regularities to explicit insight into these regularities. To identify sleep-associated neurophysiological indicators of this restructuring of knowledge representations, we measured frequency-specific power of EEG while participants slept during…
Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects
Loiacono, Idalba; Lanzo, Giovanni; Gori, Luigi; Macchi, Claudio; Epifani, Francesco
2018-01-01
We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β-caryophyllene. The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature. The subjects described themselves as more energetic, relaxed, and calm. The analysis EEG showed a significant increase in the mean frequency of alpha (8–13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5–30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4–8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5–4 Hz) power and relative power was recorded in the posterior region of the brain. These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety. PMID:29576792
Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects.
Gulluni, Nadia; Re, Tania; Loiacono, Idalba; Lanzo, Giovanni; Gori, Luigi; Macchi, Claudio; Epifani, Francesco; Bragazzi, Nicola; Firenzuoli, Fabio
2018-01-01
We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β -caryophyllene. The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature. The subjects described themselves as more energetic, relaxed, and calm. The analysis EEG showed a significant increase in the mean frequency of alpha (8-13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5-30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4-8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5-4 Hz) power and relative power was recorded in the posterior region of the brain. These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety.
Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety.
Mennella, Rocco; Patron, Elisabetta; Palomba, Daniela
2017-05-01
Frontal alpha asymmetry has been proposed to underlie the balance between approach and withdrawal motivation associated to each individual's affective style. Neurofeedback of EEG frontal alpha asymmetry represents a promising tool to reduce negative affect, although its specific effects on left/right frontal activity and approach/withdrawal motivation are still unclear. The present study employed a neurofeedback training to increase frontal alpha asymmetry (right - left), in order to evaluate discrete changes in alpha power at left and right sites, as well as in positive and negative affect, anxiety and depression. Thirty-two right-handed females were randomly assigned to receive either the neurofeedback on frontal alpha asymmetry, or an active control training (N = 16 in each group). The asymmetry group showed an increase in alpha asymmetry driven by higher alpha at the right site (p < 0.001), as well as a coherent reduction in both negative affect and anxiety symptoms (ps < 0.05), from pre-to post-training. No training-specific modulation emerged for positive affect and depressive symptoms. These findings provide a strong rationale for the use of frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety in clinical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clarke, Adam R; Barry, Robert J; Baker, Iris E; McCarthy, Rory; Selikowitz, Mark
2017-07-01
Stimulant medications are the most commonly prescribed treatment for Attention-Deficit/Hyperactivity Disorder (AD/HD). These medications result in a normalization of the EEG. However, past research has found that complete normalization of the EEG is not always achieved. One reason for this may be that studies have used different medications interchangeably, or groups of subjects on different stimulants. This study investigated whether methylphenidate and dexamphetamine produce different levels of normalization of the EEG in children with AD/HD. Three groups of 20 boys participated in this study. There were 2 groups with a diagnosis of AD/HD; one group, good responders to methylphenidate, and the second, good responders to dexamphetamine. The third group was a normal control group. Baseline EEGs were recorded using an eyes-closed resting condition, and analyzed for total power and relative delta, theta, alpha, and beta. Subjects were placed on a 6-month trial of methylphenidate or dexamphetamine, after which a second EEG was recorded. At baseline, the children with AD/HD had elevated relative theta, less relative alpha and beta compared with controls. Baseline differences were found between the two medication groups, with the dexamphetamine group having greater EEG abnormalities than the methylphenidate group. The results indicate that good responders to methylphenidate and dexamphetamine have different EEG profiles when assessed before medication, and these differences may represent different underlying central nervous system deficits. The 2 medications were found to result in substantial normalization of the EEG, with no significant differences in EEG changes occurring between the 2 medications. This indicates that the degree of pretreatment EEG abnormality was the major factor contributing to the degree of normalization of the EEG. As good responders to the 2 medications appear to have different central nervous system abnormalities, it is recommended that stimulant medications be treated independently and not used interchangeably in research and treatment of AD/HD.
Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study.
Liang, Mingli; Starrett, Michael J; Ekstrom, Arne D
2018-04-22
Numerous reports have demonstrated low-frequency oscillations during navigation using invasive recordings in the hippocampus of both rats and human patients. Given evidence, in some cases, of low-frequency synchronization between midline cortex and hippocampus, it is also possible that low-frequency movement-related oscillations manifest in healthy human neocortex. However, this possibility remains largely unexplored, in part due to the difficulties of coupling free ambulation and effective scalp EEG recordings. In the current study, participants freely ambulated on an omnidirectional treadmill and explored an immersive virtual reality city rendered on a head-mounted display while undergoing simultaneous wireless scalp EEG recordings. We found that frontal-midline (FM) delta-theta (2-7.21 Hz) oscillations increased during movement compared to standing still periods, consistent with a role in navigation. In contrast, posterior alpha (8.32-12.76 Hz) oscillations were suppressed in the presence of visual input, independent of movement. Our findings suggest that FM delta-theta and posterior alpha oscillations arise at independent frequencies, under complementary behavioral conditions, and, at least for FM delta-theta oscillations, at independent recordings sites. Together, our findings support a double dissociation between movement-related FM delta-theta and resting-related posterior alpha oscillations. Our study thus provides novel evidence that FM delta-theta oscillations arise, in part, from real-world ambulation, and are functionally independent from posterior alpha oscillations. © 2018 Society for Psychophysiological Research.
Low-Complexity Discriminative Feature Selection From EEG Before and After Short-Term Memory Task.
Behzadfar, Neda; Firoozabadi, S Mohammad P; Badie, Kambiz
2016-10-01
A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Szirmai, Imre; Amrein, Ilona; Pálvölgyi, László; Debreczeni, Róbert; Kamondi, Anita
2005-06-01
Cognitive effort modifies blood flow velocity (BFV) in the middle cerebral artery (MCA) which can be recorded by transcranial Doppler sonography (TCD). EEG parameters can be used as indicators of cortical activation. To find temporal and spatial relation between circulatory and bioelectric phenomena, we used combined EEG and TCD measurements during cognitive experiments. Bilateral BFV in the MCAs and 16-channel scalp EEG were recorded during mental arithmetic (MA) and verbal fluency (VF) tests in 12 healthy volunteers. Temporal profile of BFV, heart rate (HR), EEG central frequency (CF), relative alpha power (ralphap), and laterality index (Li) for BFV and CF were statistically analysed. During mental effort, BFV changes showed a reproducible pattern, which was different in MA and VF tests. The Li(BFV) correlated with handedness in 9/12 subjects (75%) in the VF, and in 6/12 subjects (50%) in the MA test. Significant correlation was found between Li(BFV) and Li(CF) during VF (r(2) = 0.69). Li was more indicative for the hemispheric dominance in the VF than in the MA test. During VF test, correlation between HR and BFV was significant in 7/12 subjects. CF and ralphap provide real time assessment of the functional state of the brain tissue during cognition. The correlation between CF and BFV during mental activity suggests a short latency neurogenic and a long latency, supposedly chemical regulation of regional blood flow. Parallel analysis of EEG and flow parameters increases the confidence of determining hemispheric dominance and provides an alternative to study physiological consequences of cognitive processes.
Reduced mind wandering in experienced meditators and associated EEG correlates.
Brandmeyer, Tracy; Delorme, Arnaud
2016-11-04
One outstanding question in the contemplative science literature relates to the direct impact of meditation experience on the monitoring of internal states and its respective correspondence with neural activity. In particular, to what extent does meditation influence the awareness, duration and frequency of the tendency of the mind to wander. To assess the relation between mind wandering and meditation, we tested 2 groups of meditators, one with a moderate level of experience (non-expert) and those who are well advanced in their practice (expert). We designed a novel paradigm using self-reports of internal mental states based on an experiential sampling probe paradigm presented during ~1 h of seated concentration meditation to gain insight into the dynamic measures of electroencephalography (EEG) during absorption in meditation as compared to reported mind wandering episodes. Our results show that expert meditation practitioners report a greater depth and frequency of sustained meditation, whereas non-expert practitioners report a greater depth and frequency of mind wandering episodes. This is one of the first direct behavioral indices of meditation expertise and its associated impact on the reduced frequency of mind wandering, with corresponding EEG activations showing increased frontal midline theta and somatosensory alpha rhythms during meditation as compared to mind wandering in expert practitioners. Frontal midline theta and somatosensory alpha rhythms are often observed during executive functioning, cognitive control and the active monitoring of sensory information. Our study thus provides additional new evidence to support the hypothesis that the maintenance of both internal and external orientations of attention may be maintained by similar neural mechanisms and that these mechanisms may be modulated by meditation training.
Anderer, P; Saletu, B; Pascual-Marqui, R D
2000-12-04
In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.
Vecchiato, Giovanni; Tieri, Gaetano; Jelic, Andrea; De Matteis, Federico; Maglione, Anton G; Babiloni, Fabio
2015-01-01
Nowadays there is the hope that neuroscientific findings will contribute to the improvement of building design in order to create environments which satisfy man's demands. This can be achieved through the understanding of neurophysiological correlates of architectural perception. To this aim, the electroencephalographic (EEG) signals of 12 healthy subjects were recorded during the perception of three immersive virtual reality environments (VEs). Afterwards, participants were asked to describe their experience in terms of Familiarity, Novelty, Comfort, Pleasantness, Arousal, and Presence using a rating scale from 1 to 9. These perceptual dimensions are hypothesized to influence the pattern of cerebral spectral activity, while Presence is used to assess the realism of the virtual stimulation. Hence, the collected scores were used to analyze the Power Spectral Density (PSD) of the EEG for each behavioral dimension in the theta, alpha and mu bands by means of time-frequency analysis and topographic statistical maps. Analysis of Presence resulted in the activation of the frontal-midline theta, indicating the involvement of sensorimotor integration mechanisms when subjects expressed to feel more present in the VEs. Similar patterns also characterized the experience of familiar and comfortable VEs. In addition, pleasant VEs increased the theta power across visuomotor circuits and activated the alpha band in areas devoted to visuospatial exploration and processing of categorical spatial relations. Finally, the de-synchronization of the mu rhythm described the perception of pleasant and comfortable VEs, showing the involvement of left motor areas and embodied mechanisms for environment appreciation. Overall, these results show the possibility to measure EEG correlates of architectural perception involving the cerebral circuits of sensorimotor integration, spatial navigation, and embodiment. These observations can help testing architectural hypotheses in order to design environments matching the changing needs of humans.
Vecchiato, Giovanni; Tieri, Gaetano; Jelic, Andrea; De Matteis, Federico; Maglione, Anton G.; Babiloni, Fabio
2015-01-01
Nowadays there is the hope that neuroscientific findings will contribute to the improvement of building design in order to create environments which satisfy man's demands. This can be achieved through the understanding of neurophysiological correlates of architectural perception. To this aim, the electroencephalographic (EEG) signals of 12 healthy subjects were recorded during the perception of three immersive virtual reality environments (VEs). Afterwards, participants were asked to describe their experience in terms of Familiarity, Novelty, Comfort, Pleasantness, Arousal, and Presence using a rating scale from 1 to 9. These perceptual dimensions are hypothesized to influence the pattern of cerebral spectral activity, while Presence is used to assess the realism of the virtual stimulation. Hence, the collected scores were used to analyze the Power Spectral Density (PSD) of the EEG for each behavioral dimension in the theta, alpha and mu bands by means of time-frequency analysis and topographic statistical maps. Analysis of Presence resulted in the activation of the frontal-midline theta, indicating the involvement of sensorimotor integration mechanisms when subjects expressed to feel more present in the VEs. Similar patterns also characterized the experience of familiar and comfortable VEs. In addition, pleasant VEs increased the theta power across visuomotor circuits and activated the alpha band in areas devoted to visuospatial exploration and processing of categorical spatial relations. Finally, the de-synchronization of the mu rhythm described the perception of pleasant and comfortable VEs, showing the involvement of left motor areas and embodied mechanisms for environment appreciation. Overall, these results show the possibility to measure EEG correlates of architectural perception involving the cerebral circuits of sensorimotor integration, spatial navigation, and embodiment. These observations can help testing architectural hypotheses in order to design environments matching the changing needs of humans. PMID:26733924
QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.
Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell
2017-05-01
Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.
Wackermann, Jiri; Pütz, Peter; Büchi, Simone; Strauch, Inge; Lehmann, Dietrich
2002-11-01
Manifestations of experimentally induced altered states of consciousness in the brain's electrical activity as well as in subjective experience were explored via the hypnagogic state at sleep onset, and the state induced by exposure to an unstructured perceptual field (ganzfeld). Twelve female paid volunteers participated in sessions involving sleep onset, ganzfeld, and eyes-closed relaxed waking, and were repeatedly prompted for recall of their momentary mentation, according to a predefined schedule. Nineteen channel EEG, two channels EOG and EMG were recorded simultaneously. The mentation reports were followed by the subjects' ratings of their experience on a number of ordinal scales. Two-hundred and forty-one mentation reports were collected. EEG epochs immediately preceding the mentation reports were FFT-analysed and the spectra compared between states. The ganzfeld EEG spectrum, showing no signs of decreased vigilance, was very similar to the EEG spectrum of waking states, even showed a minor acceleration of alpha activity. The subjective experience data were reduced to four principal components: Factor I represented the subjective vigilance dimension, as confirmed by correlations with EEG spectral indices. Only Factor IV, the 'absorption' dimension, differentiated between the ganzfeld state (more absorption) and other states. In waking states and in ganzfeld, the subjects estimated elapsed time periods significantly shorter than in states at sleep onset. The results did not support the assumption of a hypnagogic nature of the ganzfeld imagery. Dream-like imagery can occur in various global functional states of the brain; hypnagogic and ganzfeld-induced states should be conceived as special cases of a broader class of 'hypnagoid' phenomena.
Cao, Dan; Li, Yingjie; Niznikiewicz, Margaret A; Tang, Yingying; Wang, Jijun
2018-03-02
Prefrontal cortex (PFC) plays an important role in emotional processing and therefore is one of the most frequently targeted regions for non-invasive brain stimulation such as repetitive transcranial magnetic stimulation (rTMS) in clinical trials, especially in the treatment of emotional disorders. As an approach to enhance the effectiveness of rTMS, continuous theta burst stimulation (cTBS) has been demonstrated to be efficient and safe. However, it is unclear how cTBS affects brain processes related to emotion. In particular, psychophysiological studies on the underlying neural mechanisms are sparse. In the current study, we investigated how the cTBS influences emotional processing when applied over the right PFC. Participants performed an emotion recognition Go/NoGo task, which asked them to select a GO response to either happy or fearful faces after the cTBS or after sham stimulation, while 64-channel electroencephalogram (EEG) was recorded. EEG oscillation was examined using event-related spectral perturbation (ERSP) in a time-interval between 170 and 310ms after face stimuli onset. In the sham group, we found a significant difference in the alpha band between response to happy and fearful stimuli but that effect did not exist in the cTBS group. The alpha band activity at the scalp was reduced suggesting the excitatory effect at the brain level. The beta and gamma band activity was not sensitive to cTBS intervention. The results of the current study demonstrate that cTBS does affect emotion processing and the effect is reflected in changes in EEG oscillations in the alpha band specifically. The results confirm the role of prefrontal cortex in emotion processing. We also suggest that this pattern of cTBS results elucidates mechanisms by which mood improvement in depressive disorders is achieved using cTBS intervention. Copyright © 2017 Elsevier Inc. All rights reserved.
Prestimulus neural oscillations inhibit visual perception via modulation of response gain.
Chaumon, Maximilien; Busch, Niko A
2014-11-01
The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities. To move beyond qualitative description, we formally compared psychometric functions obtained under different levels of ongoing alpha power and evaluated the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain models. This procedure opens the way to understanding the actual functional mechanisms by which ongoing brain activity affects visual performance. We found that strong prestimulus occipital alpha oscillations-but not more anterior mu oscillations-reduce performance most strongly for stimuli of the highest intensities tested. This inhibitory effect is best explained by a divisive reduction of response gain. Ongoing occipital alpha oscillations thus reflect changes in the visual system's input/output transformation that are independent of the sensory input to the system. They selectively scale the system's response, rather than change its sensitivity to sensory information.
Effects of dietary caffeine on EEG, performance and mood when rested and sleep restricted.
Keane, Michael A; James, Jack E
2008-12-01
Until recently, little account had been taken of the confounding effects of caffeine withdrawal and withdrawal reversal when examining the net effects of dietary caffeine. By including a manipulation involving sleep restriction, the present study aimed to extend recent findings from research in which caffeine withdrawal and withdrawal reversal were controlled. The main aims of the study were to examine the net effects of caffeine, as well as its potential restorative effects following sleep restriction, on EEG, performance and mood. A randomised cross-over design was used in which 15 participants alternated weekly between ingesting placebo and caffeine (1.75 mg/kg) three times daily for four consecutive weeks following either usual sleep or sleep restriction. EEG activity was measured at 32 sites during eyes closed, eyes open and performance of a vigilance task. Modest effects of caffeine were found in the delta and beta bandwidths, but no main effects of caffeine were observed in the theta or alpha bandwidths. Overall, the effects of caffeine on EEG activity were relatively few, weak and inconsistent, and no evidence was found of net restorative effects of caffeine for any outcome variables. The findings do not support the use of caffeine as a means for enhancing human function or as an antidote to the negative effects of sleep loss.
Muraskin, Jordan; Sherwin, Jason; Sajda, Paul
2015-12-01
Given a decision that requires less than half a second for evaluating the characteristics of the incoming pitch and generating a motor response, hitting a baseball potentially requires unique perception-action coupling to achieve high performance. We designed a rapid perceptual decision-making experiment modeled as a Go/No-Go task yet tailored to reflect a real scenario confronted by a baseball hitter. For groups of experts (Division I baseball players) and novices (non-players), we recorded electroencephalography (EEG) while they performed the task. We analyzed evoked EEG single-trial variability, contingent negative variation (CNV), and pre-stimulus alpha power with respect to the expert vs. novice groups. We found strong evidence for differences in inhibitory processes between the two groups, specifically differential activity in supplementary motor areas (SMA), indicative of enhanced inhibitory control in the expert (baseball player) group. We also found selective activity in the fusiform gyrus (FG) and orbital gyrus in the expert group, suggesting an enhanced perception-action coupling in baseball players that differentiates them from matched controls. In sum, our results show that EEG correlates of decision formation can be used to identify neural markers of high-performance athletes. Copyright © 2015 Elsevier Inc. All rights reserved.
Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording
Chen, Yun-Hsuan; de Beeck, Maaike Op; Vanderheyden, Luc; Carrette, Evelien; Mihajlović, Vojkan; Vanstreels, Kris; Grundlehner, Bernard; Gadeyne, Stefanie; Boon, Paul; Van Hoof, Chris
2014-01-01
Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only ∼10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes. PMID:25513825
Periictal activity in cooled asphyxiated neonates with seizures.
Major, Philippe; Lortie, Anne; Dehaes, Mathieu; Lodygensky, Gregory Anton; Gallagher, Anne; Carmant, Lionel; Birca, Ala
2017-04-01
Seizures are common in critically ill neonates. Both seizures and antiepileptic treatments may lead to short term complications and worsen the outcomes. Predicting the risks of seizure reoccurrence could enable individual treatment regimens and better outcomes. We aimed to identify EEG signatures of seizure reoccurrence by investigating periictal electrographic features and spectral power characteristics in hypothermic neonates with hypoxic-ischemic encephalopathy (HIE) with or without reoccurrence of seizures on rewarming. We recruited five consecutive HIE neonates, submitted to continuous EEG monitoring, with high seizure burden (>20% per hour) while undergoing therapeutic hypothermia. Two of them had reoccurrence of seizures on rewarming. We performed quantitative analysis of fifteen artifact-free consecutive seizures to appreciate spectral power changes between the interictal, preictal and ictal periods, separately for each patient. Visual analysis allowed description of electrographic features associated with ictal events. Every patient demonstrated a significant increase in overall spectral power from the interictal to preictal and ictal periods (p<0.01). Alpha power increase was more pronounced in the two patients with reoccurrence of seizures on rewarming and significant when comparing both interictal-to-preictal and interictal-to-ictal periods. This alpha activity increase could be also appreciated using visual analysis and distinguished neonates with and without seizure reoccurrence. This distinct alpha activity preceding ictal onset could represent a biomarker of propensity for seizure reoccurrence in neonates. Future studies should be performed to confirm whether quantitative periictal characteristics and electrographic features allow predicting the risks of seizure reoccurrence in HIE neonates and other critically ill patients. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Artificial gravity exposure impairs exercise-related neurophysiological benefits.
Vogt, Tobias; Abeln, Vera; Strüder, Heiko K; Schneider, Stefan
2014-01-17
Artificial gravity (AG) exposure is suggested to counteract health deconditioning, theoretically complementing exercise during space habitations. Exercise-benefits on mental health are well documented (i.e. well-being, enhanced executive functions). Although AG is coherent for the integrity of fundamental physiological systems, the effects of its exposure on neurophysiological processes related to cognitive performance are poorly understood and therefore characterize the primary aim of this study. 16 healthy males participated in two randomly assigned sessions, AG and exercise (30minute each). Participants were exposed to AG at continuous +2Gz in a short-arm human centrifuge and performed moderate exercise (cycling ergometer). Using 64 active electrodes, resting EEG was recorded before (pre), immediately after (post), and 15min after (post15) each session. Alpha (7.5-12.5Hz) and beta frequencies (12.5-35.0Hz) were exported for analysis. Cognitive performance and mood states were assessed before and after each session. Cognitive performance improved after exercise (p<0.05), but not after AG. This was reflected by typical EEG patterns after exercise, however not after AG. Frontal alpha (post p<0.01, post15 p<0.001) and beta activity (post15 p<0.001) increased after AG compared to a decrease in frontal alpha (post15 p<0.05) and beta activity (post p<0.01) after exercise. Relaxed cortical states were indicated after exercise, but were less apparent after AG. Changes in mood states failed significance after both sessions. Summarized, the benefits to mental health, recorded after exercise, were absent after AG, indicating that AG might cause neurocognitive deconditioning. © 2013.
Feasibility of eyes open alpha power training for mental enhancement in elite gymnasts.
Dekker, Marian K J; van den Berg, Berber R; Denissen, Ad J M; Sitskoorn, Margriet M; van Boxtel, Geert J M
2014-01-01
This study focuses on a novel, easy to use and instruction-less method for mental training in athletes. Previous findings suggest that particular mental capacities are needed for achieving peak performance; including attentional control, focus, relaxation and positive affect. Electroencephalography (EEG) alpha brain activity has been associated with neural inhibition during processes of selective attention, for improving efficiency in information processing. Here we hypothesised that eyes open alpha power training by music teaches athletes to (1) learn to self-regulate their brain activity, and (2) learn to increase their baseline alpha power, herewith improving mental capacities such as focusing the allocation of attention. The study was double-blind and placebo-controlled. Twelve elite gymnasts were either given eyes open alpha power training or random beta power training (controls). Results indicate small improvements in sleep quality, mental and physical shape. In our first attempt at getting a grip on mental capacities in athletes, we think this novel training method can be promising. Because gymnastics is one of the most mentally demanding sports, we value even small benefits for the athlete and consider them indicative for future research.
Etlinger, S C; Guttmann, G; Bauer, H
1986-07-01
A description of scalp-recorded, spontaneous, cerebral DC-potential shifts is given independent of other variables (shift stereotypy), in relationship to higher frequencies (theta, alpha 1, alpha 2: 4-13 Hz) and as analyzed pairwise across the median sagittal line (Fz, Cz, Pz) separately according to frequency and condition (relaxation and moderate mental load). Spontaneous DC-shifts are shown to behave unpredictably. Whether measured jointly (up to triads) or as dyad and triad context entropy, the frontal DC-shifts are calculated as being random, whereby their definition as such within the context of the Principle Component Analysis is supported by the analysis of longitudinal registrations. Cross-correlation analysis of the cerebral slow potential's relationship to each of the higher frequencies (theta, alpha 1, alpha 2) reveals it to be highly independent, the highest correlation accounting for merely 11% of the common variance, the average being 9% (R congruent to 0.3). By matching the conjoint activity of the DC-potential between Fz-Cz, Cz-Pz, and Fz-Pz to that of theta, alpha 1, alpha 2 at the same paired sites, the DC-activity is shown to be operating at higher levels of synchronous activity than the higher frequencies, regardless of pairing and/or condition, although the general level of synchronous activity (DC, theta, alpha 1, alpha 2) is remarkably high along the median sagittal line, 75% of the correlation averages of all analysis-pairings being above 0.60.
Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment
Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin
2015-01-01
Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554
Evaluation of a Low-cost and Low-noise Active Dry Electrode for Long-term Biopotential Recording
Pourahmad, Ali; Mahnam, Amin
2016-01-01
Wet Ag/AgCl electrodes, although very popular in clinical diagnosis, are not appropriate for expanding applications of wearable biopotential recording systems which are used repetitively and for a long time. Here, the development of a low-cost and low-noise active dry electrode is presented. The performance of the new electrodes was assessed for recording electrocardiogram (ECG) and electroencephalogram (EEG) in comparison with that of typical gel-based electrodes in a series of long-term recording experiments. The ECG signal recorded by these electrodes was well comparable with usual Ag/AgCl electrodes with a correlation up to 99.5% and mean power line noise below 6.0 μVRMS. The active electrodes were also used to measure alpha wave and steady state visual evoked potential by recording EEG. The recorded signals were comparable in quality with signals recorded by standard gel electrodes, suggesting that the designed electrodes can be employed in EEG-based rehabilitation systems and brain-computer interface applications. The mean power line noise in EEG signals recorded by the active electrodes (1.3 μVRMS) was statistically lower than when conventional gold cup electrodes were used (2.0 μVRMS) with a significant level of 0.05, and the new electrodes appeared to be more resistant to the electromagnetic interferences. These results suggest that the developed low-cost electrodes can be used to develop wearable monitoring systems for long-term biopotential recording. PMID:28028495
Marshall, Amanda C; Cooper, Nicholas R
2017-07-01
Cumulative experienced stress produces shortcomings in old adults' cognitive performance. These are reflected in electrophysiological changes tied to task execution. This study explored whether stress-related aberrations in older adults' electroencephalographic (EEG) activity were also apparent in the system at rest. To this effect, the amount of stressful life events experienced by 60 young and 60 elderly participants were assessed in conjunction with resting state power changes in the delta, theta, alpha, and beta frequencies during a resting EEG recording. Findings revealed elevated levels of delta power among elderly individuals reporting high levels of cumulative life stress. These differed significantly from young high and low stress individuals and old adults with low levels of stress. Increases of delta activity have been linked to the emergence of conditions such as Alzheimer's Disease and Mild Cognitive Impairment. Thus, a potential interpretation of our findings associates large amounts of cumulative stress with an increased risk of developing age-related cognitive pathologies in later life. Copyright © 2017 Elsevier B.V. All rights reserved.
Aftanas, L I; Reva, N V; Pavlov, S V; Korenek, V V; Brak, I V
2014-02-01
We investigated the coupling of EEG oscillators with cognitive (experience and valence) and physiological (cardiovascular reactivity) components of emotion. Emotions of anger and joy were evoked in healthy males (n = 49) using a guided imagery method, multichannel EEG and cardiovascular reactivity (Finometer) were simultaneously recorded. Correlational analysis revealed that specially distributed EEG oscillators seem to be selectively involved into cognitive (experience and valence) and physiological (cardiovascular reactivity) components of emotional responding. We showed that low theta (4-6 Hz) activity from medial and lateral frontal cortex of the right hemisphere predominantly correlated with the anger experience, high alpha (10-12 and 12-14 Hz) and gamma (30-45 Hz) activity from central-parieto-occipital regions of the left hemisphere--with cardiovascular reactivity to anger and joy, gamma-activity (30-45 Hz) from the left hemisphere in parietal areas--with cardiovascular reactivity to joy. The findings suggest that specially distributed neuronal networks oscillating at different frequencies may be regarded as a putative neurobiological mechanism coordination dynamical balance between cognitive and physiological components of emotion as well as psycho-neuro-somatic relationships within the mind-brain-body system.
NASA Technical Reports Server (NTRS)
Carrier, J.; Land, S.; Buysse, D. J.; Kupfer, D. J.; Monk, T. H.
2001-01-01
The effects of age and gender on sleep EEG power spectral density were assessed in a group of 100 subjects aged 20 to 60 years. We propose a new statistical strategy (mixed-model using fixed-knot regression splines) to analyze quantitative EEG measures. The effect of gender varied according to frequency, but no interactions emerged between age and gender, suggesting that the aging process does not differentially influence men and women. Women had higher power density than men in delta, theta, low alpha, and high spindle frequency range. The effect of age varied according to frequency and across the night. The decrease in power with age was not restricted to slow-wave activity, but also included theta and sigma activity. With increasing age, the attenuation over the night in power density between 1.25 and 8.00 Hz diminished, and the rise in power between 12.25 and 14.00 Hz across the night decreased. Increasing age was associated with higher power in the beta range. These results suggest that increasing age may be related to an attenuation of homeostatic sleep pressure and to an increase in cortical activation during sleep.
Vol'f, N V; Tarasova, I V; Razumnikova, O M
2009-01-01
The study was aimed to explore the features of interaction between cortical areas during figural creative task performance in high- and low-creative men and women. We divided the participants into two groups with high and low creativity by the median of originality score. EEG was recorded at rest and during task performance (Torrance Tests of Creative Thinking "Incomplete figures"). The EEG coherence was computed in six frequency bands from theta1 to beta2. We analyzed the total values of coherence for each of 16 sites, calculated separately for intrahemispheric and interhemispheric connections. In the theta2, alphal, and alpha2 bands, coherence values decreased in task performance as compared to baseline in subjects with lower originality scores, whereas in subjects with higher scores, they increased in the theta2 and alpha1 bands. The decrease in the alpha2 band in the higher-creativity group was significantly lower in comparison with the decrease in the lower-score group. In the alpha2 band, the interaction of gender, creativity, laterality, and electrode position factors was also found during analysis of task-induced coherence changes. Further examination of the interaction showed the similarity of EEG coherence patterns in men and women with opposite creative abilities and higher values of task-induced coherence changes in the anterior regions of the left hemisphere and posterior regions of the right hemisphere in high-creative in comparison with low-creative men. The findings are discussed in terms of different cognitive strategies used by men and women that may have the same results in creative problem solving.
Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M.; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu
2017-01-01
Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n-back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks. PMID:28553215
Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu
2017-01-01
Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n -back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks.
Buzzell, George A; Das, Babita; Cruz-Cano, Raul; Nkongho, Lizette E; Kidanu, Azieb W; Kim, Hyoshin; Clark, Pamela I; McDonald, Craig G
2016-09-01
Adequate evaluation of novel tobacco products must include investigation of consumers' psychological response to such products. Traditionally, subjective scales of product liking have been used to assess consumer acceptability of tobacco products. However, subjective scales may miss cognitive changes that can only be captured by direct neurophysiological assessment. The present investigation explored the viability of using electroencephalography (EEG), in combination with traditional subjective measures, to assess consumer acceptability of five smokeless tobacco products. Given previous work linking product liking to arousal/attentional (executive function) enhancement, we focused on EEG measures of attention/arousal to objectively characterize cognitive changes associated with tobacco product use. During five separate laboratory visits, smokeless tobacco users used Verve discs, Ariva dissolvables, Skoal snuff, Camel snus, or Nicorette lozenges. The N2 and P3b event-related potential components elicited by an oddball task were used to index attentional changes before/after product usage. Additionally, resting state alpha band EEG activity was analyzed before/after product usage to index cortical arousal. Although analyses of the subjective results provided limited inference, analyses of the electrophysiological measures, particularly the alpha suppression measure, revealed robust differences between products. Skoal elicited significantly enhanced alpha suppression compared to all four other products tested. Additionally, alpha suppression was found to correlate positively with subjective measures of satisfaction and psychological reward, but was unrelated to perceived aversion. The present results provide evidence that electrophysiological measures can yield important insights into consumer acceptability of novel tobacco products and are a valuable complement to subjective measures. This study is the first to employ a combination of electrophysiological measures and traditional subjective assays in order to assess the consumer acceptability of smokeless tobacco products. The results highlight the importance of adopting a multidimensional/multi-method approach to studying the consumer acceptability of tobacco products. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Electroencephalographic changes using virtual reality program: technical note.
Oliveira, Síria Monyelle Silva de; Medeiros, Candice Simões Pimenta de; Pacheco, Thaiana Barbosa Ferreira; Bessa, Nathalia Priscilla Oliveira Silva; Silva, Fernanda Gabrielle Mendonça; Tavares, Nathália Stéphany Araújo; Rego, Isabelle Ananda Oliveira; Campos, Tania Fernandes; Cavalcanti, Fabrícia Azevedo da Costa
2018-03-01
The aim of the study was to describe the technique of an electroencephalographic (EEG) assessment using the Emotiv EPOC® during the performance of a virtual reality motor task and compare theta, alpha, beta and gamma power frequencies between left and right hemispheres. This is technical note in which 9 healthy young subjects were submitted to an evaluation with Emotiv EPOC® during the Nintendo® Wii 'Basic Step' virtual game using the Wii Balance Board (WBB) on a support 13 centimeters high. The Wilcoxon statistical test was applied and pairing between the cerebral hemispheres was performed. Participants had a mean age of 22.55 ± 2.78 years, 77.8% were right-handed, and 22.8% had no experience with the selected virtual game. According to dominancy (right handed n = 7; and left handed n = 2), it was observed that the right-handed individuals showed significantly greater difference in the right hemisphere in the EEG in front region (gamma power in channels AF4, p = 0.028 and F4, p = 0.043) and parietal region (theta and beta power in P8 channel, p = 0.043), while alpha power showed a greater activity in the left hemisphere (P7 channel, p = 0.043). Considering the inter-hemispheric analysis, it was observed that the right hemisphere presented a higher activation potential in the frontal lobe for gamma waves (p = 0.038 for AF3-AF4 channels), and in the temporal lobe for beta and alpha waves (p = 0.021). This study showed that the virtual environment can provide distinct cortical activation patterns considering an inter-hemispheric analysis, highlighting greater activation potential in the right hemisphere.
Envelope responses in single-trial EEG indicate attended speaker in a “cocktail party”
Horton, Cort; Srinivasan, Ramesh; D’Zmura, Michael
2014-01-01
Objective Recent studies have shown that auditory cortex better encodes the envelope of attended speech than that of unattended speech during multi-speaker (“cocktail party”) situations. We investigated whether these differences were sufficiently robust within single-trial EEG data to accurately determine where subjects attended. Additionally, we compared this measure to other established EEG markers of attention. Approach High-resolution EEG was recorded while subjects engaged in a two-speaker “cocktail party” task. Cortical responses to speech envelopes were extracted by cross-correlating the envelopes with each EEG channel. We also measured steady-state responses (elicited via high-frequency amplitude modulation of the speech) and alpha-band power, both of which have been sensitive to attention in previous studies. Using linear classifiers, we then examined how well each of these features could be used to predict the subjects’ side of attention at various epoch lengths. Main Results We found that the attended speaker could be determined reliably from the envelope responses calculated from short periods of EEG, with accuracy improving as a function of sample length. Furthermore, envelope responses were far better indicators of attention than changes in either alpha power or steady-state responses. Significance These results suggest that envelope-related signals recorded in EEG data can be used to form robust auditory BCI’s that do not require artificial manipulation (e.g., amplitude modulation) of stimuli to function. PMID:24963838
Emotion processing biases and resting EEG activity in depressed adolescents
Auerbach, Randy P.; Stewart, Jeremy G.; Stanton, Colin H.; Mueller, Erik M.; Pizzagalli, Diego A.
2015-01-01
Background While theorists have posited that adolescent depression is characterized by emotion processing biases (greater propensity to identify sad than happy facial expressions), findings have been mixed. Additionally, the neural correlates associated with putative emotion processing biases remain largely unknown. Our aim was to identify emotion processing biases in depressed adolescents and examine neural abnormalities related to these biases using high-density resting EEG and source localization. Methods Healthy (n = 36) and depressed (n = 23) female adolescents, aged 13–18 years, completed a facial recognition task in which they identified happy, sad, fear, and angry expressions across intensities from 10% (low) to 100% (high). Additionally, 128-channel resting (i.e., task-free) EEG was recorded and analyzed using a distributed source localization technique (LORETA). Given research implicating the dorsolateral prefrontal cortex (DLPFC) in depression and emotion processing, analyses focused on this region. Results Relative to healthy youth, depressed adolescents were more accurate for sad and less accurate for happy, particularly low-intensity happy faces. No differences emerged for fearful or angry facial expressions. Further, LORETA analyses revealed greater theta and alpha current density (i.e., reduced brain activity) in depressed versus healthy adolescents, particularly in the left DLPFC (BA9/BA46). Theta and alpha current density were positively correlated, and greater current density predicted reduced accuracy for happy faces. Conclusion Depressed female adolescents were characterized by emotion processing biases in favor of sad emotions and reduced recognition of happiness, especially when cues of happiness were subtle. Blunted recognition of happy was associated with left DLPFC resting hypoactivity. PMID:26032684
Pezzetta, Rachele; Nicolardi, Valentina; Tidoni, Emmanuele; Aglioti, Salvatore Maria
2018-06-06
Detecting errors in one's own actions, and in the actions of others, is a crucial ability for adaptable and flexible behavior. Studies show that specific EEG signatures underpin the monitoring of observed erroneous actions (error-related negativity, error-positivity, mid-frontal theta oscillations). However, the majority of studies on action observation used sequences of trials where erroneous actions were less frequent than correct actions. Therefore, it was not possible to disentangle whether the activation of the performance monitoring system was due to an error - as a violation of the intended goal - or a surprise/novelty effect, associated with a rare and unexpected event. Combining EEG and immersive virtual reality (IVR-CAVE system), we recorded the neural signal of 25 young adults who observed in first-person perspective, simple reach-to-grasp actions performed by an avatar aiming for a glass. Importantly, the proportion of erroneous actions was higher than correct actions. Results showed that the observation of erroneous actions elicits the typical electro-cortical signatures of error monitoring and therefore the violation of the action goal is still perceived as a salient event. The observation of correct actions elicited stronger alpha suppression. This confirmed the role of the alpha frequency band in the general orienting response to novel and infrequent stimuli. Our data provides novel evidence that an observed goal error (the action slip) triggers the activity of the performance monitoring system even when erroneous actions, which are, typically, relevant events, occur more often than correct actions and thus are not salient because of their rarity.
Peak high-frequency HRV and peak alpha frequency higher in PTSD.
Wahbeh, Helané; Oken, Barry S
2013-03-01
Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p < 0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials.
Peak High-Frequency HRV and Peak Alpha Frequency Higher in PTSD
Oken, Barry S.
2012-01-01
Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p<0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials. PMID:23178990
Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.
Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M
2017-04-15
Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.
Rijken, Noortje H; Soer, Remko; de Maar, Ewold; Prins, Hilco; Teeuw, Wouter B; Peuscher, Jan; Oosterveld, Frits G J
2016-12-01
The aim of this pilot study was to investigate the effects of an intervention consisting of mental coaching combined with either electro encephalogram (EEG) alpha power feedback or heart rate variability (HRV) feedback on HRV, EEG outcomes and self-reported factors related to stress, performance, recovery and sleep quality in elite athletes. A prospective pilot study was performed with two distinct cohorts. Soccer players were provided with four sessions of mental coaching combined with daily HRV biofeedback (Group A); track and field athletes were provided with four sessions of mental coaching in combination with daily neurofeedback (Group B). Measurements were performed at baseline, post intervention and at 5 weeks follow-up. Objective measures: EEG and ECG. Subjective measures: Numeric Rating Scale for performance, Pittsburgh Sleep Quality Index, Rest and Stress Questionnaire and Sports Improvement-60. Group characteristics were too distinct to compare the interventions. Linear mixed models were used to analyze differences within groups over time. In Group A, significant changes over time were present in alpha power at 5 of 7 EEG locations (p < 0.01-0.03). LF/HF ratio significantly increased (p = 0.02) and the concentration (p = 0.02) and emotional scale (p = 0.03) of the SIM-60 increased significantly (p = 0.04). In Group B, the HRV low frequency power and recovery scale of the REST-Q significantly increased (p = 0.02 and <0.01 resp.). Other measures remained stable or improved non-significantly. A mental coaching program combined with either HRV or EEG alpha power feedback may increase HRV and alpha power and may lead to better performance-related outcomes and stress reduction. Further research is needed to elucidate the effects of either type of feedback and to compare effects with a control group.
The effect of hypobaric hypoxia on multichannel EEG signal complexity.
Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos
2007-01-01
The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.
Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G
2017-08-16
Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space produces spatially specific changes in visual cortex activity in anticipation of a stimulus. The mechanisms controlling these attention-related modulations of sensory cortex, however, are poorly understood. Here, we recorded these two complementary measures of brain activity simultaneously and examined their trial-to-trial covariations to gain insight into these attentional control mechanisms. This multi-methodological approach revealed the attention-related coordination of visual cortex modulation by the subcortical pulvinar nucleus of the thalamus while also disentangling the mechanisms underlying the attentional enhancement of relevant stimulus input and those underlying the concurrent suppression of irrelevant input. Copyright © 2017 the authors 0270-6474/17/377803-08$15.00/0.
Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation
Chang, Chih-Hao
2013-01-01
This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph). Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y), the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording), in Chan meditation (stage M), and the unique Chakra-focusing practice (stage C). Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group. PMID:24489583
Mathewson, Kyle E.; Lleras, Alejandro; Beck, Diane M.; Fabiani, Monica; Ro, Tony; Gratton, Gabriele
2011-01-01
Alpha oscillations are ubiquitous in the brain, but their role in cortical processing remains a matter of debate. Recently, evidence has begun to accumulate in support of a role for alpha oscillations in attention selection and control. Here we first review evidence that 8–12 Hz oscillations in the brain have a general inhibitory role in cognitive processing, with an emphasis on their role in visual processing. Then, we summarize the evidence in support of our recent proposal that alpha represents a pulsed-inhibition of ongoing neural activity. The phase of the ongoing electroencephalography can influence evoked activity and subsequent processing, and we propose that alpha exerts its inhibitory role through alternating microstates of inhibition and excitation. Finally, we discuss evidence that this pulsed-inhibition can be entrained to rhythmic stimuli in the environment, such that preferential processing occurs for stimuli at predictable moments. The entrainment of preferential phase may provide a mechanism for temporal attention in the brain. This pulsed inhibitory account of alpha has important implications for many common cognitive phenomena, such as the attentional blink, and seems to indicate that our visual experience may at least some times be coming through in waves. PMID:21779257
Jochumsen, Mads; Rovsing, Cecilie; Rovsing, Helene; Niazi, Imran Khan; Dremstrup, Kim; Kamavuako, Ernest Nlandu
2017-01-01
Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP) as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48 ± 0.05 (grasp types), 0.41 ± 0.07 (kinetic profiles, motor execution), and 0.39 ± 0.08 (kinetic profiles, motor imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.
Electroencephalogram of Healthy Horses During Inhaled Anesthesia.
Williams, D C; Aleman, M R; Brosnan, R J; Fletcher, D J; Holliday, T A; Tharp, B; Kass, P H; Steffey, E P; LeCouteur, R A
2016-01-01
Previous study of the diagnostic validity of electroencephalography (EEG) to detect abnormalities in equine cerebral cortical function relied on the administration of various drugs for sedation, induction, and maintenance of general anesthesia but used identical criteria to interpret recordings. To determine the effects of 2 inhalation anesthetics on the EEG of healthy horses. Six healthy horses. Prospective study. After the sole administration of one of either isoflurane or halothane at 1.2, 1.4, and 1.6 times the minimum alveolar concentration, EEG was recorded during controlled ventilation, spontaneous ventilation, and nerve stimulation. Burst suppression was observed with isoflurane, along with EEG events that resembled epileptiform discharges. Halothane results were variable between horses, with epileptiform-like discharges and bursts of theta, alpha, and beta recorded intermittently. One horse died and 2 were euthanized as the result of anesthesia-related complications. The results of this study indicate that the effects of halothane and isoflurane on EEG activity in the normal horse can be quite variable, even when used in the absence of other drugs. It is recommended that equine EEG be performed without the use of these inhalation anesthetics and that general anesthesia be induced and maintained by other contemporary means. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.
Huupponen, E; Maksimow, A; Lapinlampi, P; Särkelä, M; Saastamoinen, A; Snapir, A; Scheinin, H; Scheinin, M; Meriläinen, P; Himanen, S-L; Jääskeläinen, S
2008-02-01
Dexmedetomidine, a selective alpha(2)-adrenoceptor agonist, induces a unique, sleep-like state of sedation. The objective of the present work was to study human electroencephalogram (EEG) sleep spindles during dexmedetomidine sedation and compare them with spindles during normal physiological sleep, to test the hypothesis that dexmedetomidine exerts its effects via normal sleep-promoting pathways. EEG was continuously recorded from a bipolar frontopolar-laterofrontal derivation with Entropy Module (GE Healthcare) during light and deep dexmedetomidine sedation (target-controlled infusions set at 0.5 and 3.2 ng/ml) in 11 healthy subjects, and during physiological sleep in 10 healthy control subjects. Sleep spindles were visually scored and quantitatively analyzed for density, duration, amplitude (band-pass filtering) and frequency content (matching pursuit approach), and compared between the two groups. In visual analysis, EEG activity during dexmedetomidine sedation was similar to physiological stage 2 (S2) sleep with slight to moderate amount of slow-wave activity and abundant sleep spindle activity. In quantitative EEG analyses, sleep spindles were similar during dexmedetomidine sedation and normal sleep. No statistically significant differences were found in spindle density, amplitude or frequency content, but the spindles during dexmedetomidine sedation had longer duration (mean 1.11 s, SD 0.14 s) than spindles in normal sleep (mean 0.88 s, SD 0.14 s; P=0.0014). Analysis of sleep spindles shows that dexmedetomidine produces a state closely resembling physiological S2 sleep in humans, which gives further support to earlier experimental evidence for activation of normal non-rapid eye movement sleep-promoting pathways by this sedative agent.
Jestrović, Iva; Coyle, James L.; Perera, Subashan
2016-01-01
Consuming thicker fluids and swallowing in the chin-tuck position has been shown to be advantageous for some patients with neurogenic dysphagia who aspirate due to various causes. The anatomical changes caused by these therapeutic techniques are well known, but it is unclear whether these changes alter the cerebral processing of swallow-related sensorimotor activity. We sought to investigate the effect of increased fluid viscosity and chin-down posture during swallowing on brain networks. 55 healthy adults performed water, nectar-thick, and honey thick liquid swallows in the neutral and chin-tuck positions while EEG signals were recorded. After pre-processing of the EEG timeseries, the time-frequency based synchrony measure was used for forming the brain networks to investigate whether there were differences among the brain networks between the swallowing of different fluid viscosities and swallowing in different head positions. We also investigated whether swallowing under various conditions exhibit small-world properties. Results showed that fluid viscosity affects the brain network in the Delta, Theta, Alpha, Beta, and Gamma frequency bands and that swallowing in the chin-tuck head position affects brain networks in the Alpha, Beta, and Gamma frequency bands. In addition, we showed that swallowing in all tested conditions exhibited small-world properties. Therefore, fluid viscosity and head positions should be considered in future swallowing EEG investigations. PMID:27693396
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1977-01-01
Comparative data for further assessments of the EEG alterations seen during Skylab are elaborated. The variability of alpha, beta, theta, and delta EEG characteristics was analyzed with quantitative computer techniques in a group of six normal individuals over a period of two months, and the EEG effects of a prolonged period of bed rest were evaluated in two subjects. The results confirm that the inflight EEG changes seen during Skylab are statistically significant, but the absolute values obtained for the various parameters do not exceed the maximal range expected in a normal population. Further, the EEG manifestations of extended bed rest do not appear similar to those of space flight.
Slawecki, Craig J; Grahame, Nicholas J; Roth, Jennifer; Katner, Simon N; Ehlers, C L
2003-01-31
Neurophysiological measures, such as decreased P300 amplitude and altered EEG alpha activity, have been associated with increased alcoholism risk. The purpose of the present study was to extend the assessment of the neurophysiological indices associated with alcohol consumption to a recently developed mouse model of high ethanol consumption, the first replicate line of high alcohol preferring (HAP-1) and low alcohol preferring (LAP-1) mice. Male HAP-1, LAP-1, and HS mice from the Institute for Behavioral Genetics at the University of Colorado Health Science Center (i.e., HS/Ibg mice) were implanted with cortical electrodes. EEG activity, and event related potentials (ERPs) were then examined. Following electrophysiological assessment, ethanol preference was assessed to examine the relationship between neurophysiological indices and ethanol consumption. EEG analyses revealed that HAPs and HS/Ibgs had greater peak frequency in the 2-4-Hz band and lower peak frequency in the 6-8- and 1-50-Hz bands of the cortical EEG compared to LAPs. Compared to HAPs, LAPs and HS/Ibgs had decreased peak EEG frequency in the 8-16-Hz band. Decreased parietal cortical power from 8 to 50 Hz was associated with high initial ethanol preference in HAP mice. In regards to ERPs, P1 amplitude was greater in HAPs compared to both LAPs and HS/Ibgs and the P3 latency in LAPs was decreased compared to both HAPs and HS/Ibgs. As expected, HAPs consumed more ethanol and had higher ethanol preference than LAPs and HS/Ibgs. There were no significant differences in ethanol intake or preference between HS/Ibgs and LAPs. These data indicate that selective breeding of the HAP and LAP lines has resulted in the divergence of EEG and ERP phenotypes. The differences observed suggest that increased cortical P1 amplitude and altered cortical EEG activity in the 8-50-Hz frequency range may be neurophysiological 'risk factors' associated with high ethanol consumption in mice. Decreased P3 latency in LAPs compared to HAPs and HS/Ibgs mice may be a 'protective factor'.
NASA Technical Reports Server (NTRS)
Dijk, D. J.
1999-01-01
In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.
Bache, Cathleen; Kopp, Franziska; Springer, Anne; Stadler, Waltraud; Lindenberger, Ulman; Werkle-Bergner, Markus
2015-11-01
Infants possess the remarkable capacity to perceive occluded movements as ongoing and coherent. Little is known about the neural mechanisms that enable internal representation of conspecifics' and inanimate objects' movements during visual occlusion. In this study, 10-month-old infants watched briefly occluded human and object movements. Prior to occlusion, continuous and distorted versions of the movement were shown. EEG recordings were used to assess neural activity assumed to relate to processes of attention (occipital alpha), memory (frontal theta), and sensorimotor simulation (central alpha) before, during, and after occlusion. Oscillatory activity was analyzed using an individualized data approach taking idiosyncrasies into account. Results for occipital alpha were consistent with infants' preference for attending to social stimuli. Furthermore, frontal theta activity was more pronounced when tracking distorted as opposed to continuous movement, and when maintaining object as opposed to human movement. Central alpha did not discriminate between experimental conditions. In sum, we conclude that observing occluded movements recruits processes of attention and memory which are modulated by stimulus and movement properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans
Bottari, Davide; Troje, Nikolaus F.; Ley, Pia; Hense, Marlene; Kekunnaya, Ramesh; Röder, Brigitte
2016-01-01
Functional brain development is characterized by sensitive periods during which experience must be available to allow for the full development of neural circuits and associated behavior. Yet, only few neural markers of sensitive period plasticity in humans are known. Here we employed electroencephalographic recordings in a unique sample of twelve humans who had been blind from birth and regained sight through cataract surgery between four months and 16 years of age. Two additional control groups were tested: a group of visually impaired individuals without a history of total congenital blindness and a group of typically sighted individuals. The EEG was recorded while participants performed a visual discrimination task involving intact and scrambled biological motion stimuli. Posterior alpha and theta oscillations were evaluated. The three groups showed indistinguishable behavioral performance and in all groups evoked theta activity varied with biological motion processing. By contrast, alpha oscillatory activity was significantly reduced only in individuals with a history of congenital cataracts. These data document on the one hand brain mechanisms of functional recovery (related to theta oscillations) and on the other hand, for the first time, a sensitive period for the development of alpha oscillatory activity in humans. PMID:27080158
Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah
2016-09-01
Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.
Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions.
Braboszcz, Claire; Cahn, B Rael; Levy, Jonathan; Fernandez, Manuel; Delorme, Arnaud
2017-01-01
Despite decades of research, effects of different types of meditation on electroencephalographic (EEG) activity are still being defined. We compared practitioners of three different meditation traditions (Vipassana, Himalayan Yoga and Isha Shoonya) with a control group during a meditative and instructed mind-wandering (IMW) block. All meditators showed higher parieto-occipital 60-110 Hz gamma amplitude than control subjects as a trait effect observed during meditation and when considering meditation and IMW periods together. Moreover, this gamma power was positively correlated with participants meditation experience. Independent component analysis was used to show that gamma activity did not originate in eye or muscle artifacts. In addition, we observed higher 7-11 Hz alpha activity in the Vipassana group compared to all the other groups during both meditation and instructed mind wandering and lower 10-11 Hz activity in the Himalayan yoga group during meditation only. We showed that meditation practice is correlated to changes in the EEG gamma frequency range that are common to a variety of meditation practices.
Travis, Fred; Shear, Jonathan
2010-12-01
This paper proposes a third meditation-category--automatic self-transcending--to extend the dichotomy of focused attention and open monitoring proposed by Lutz. Automatic self-transcending includes techniques designed to transcend their own activity. This contrasts with focused attention, which keeps attention focused on an object; and open monitoring, which keeps attention involved in the monitoring process. Each category was assigned EEG bands, based on reported brain patterns during mental tasks, and meditations were categorized based on their reported EEG. Focused attention, characterized by beta/gamma activity, included meditations from Tibetan Buddhist, Buddhist, and Chinese traditions. Open monitoring, characterized by theta activity, included meditations from Buddhist, Chinese, and Vedic traditions. Automatic self-transcending, characterized by alpha1 activity, included meditations from Vedic and Chinese traditions. Between categories, the included meditations differed in focus, subject/object relation, and procedures. These findings shed light on the common mistake of averaging meditations together to determine mechanisms or clinical effects. Copyright © 2010 Elsevier Inc. All rights reserved.
Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan
2017-01-01
On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9–11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used. PMID:29121108
Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity
Li, Ling; Zhang, Jin-Xiang; Jiang, Tao
2011-01-01
Background Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. Methodology/Principal Findings In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. Conclusions/Significance We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task. PMID:21789253
EEG synchronization and migraine
NASA Astrophysics Data System (ADS)
Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.
2004-03-01
We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.
Jech, Robert; Růzicka, Evzen; Urgosík, Dusan; Serranová, Tereza; Volfová, Markéta; Nováková, Olga; Roth, Jan; Dusek, Petr; Mecír, Petr
2006-05-01
We studied changes of the EEG spectral power induced by deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease (PD). Also analyzed were changes of visual evoked potentials (VEP) with DBS on and off. Eleven patients with advanced PD treated with bilateral DBS STN were examined after an overnight withdrawal of L-DOPA and 2 h after switching off the neurostimulators. All underwent clinical examination followed by resting EEG and VEP recordings, a procedure repeated after DBS STN was switched on. With DBS switched on, the dominant EEG frequency increased from 9.44+/-1.3 to 9.71+/-1.3 Hz (P<0.01) while its relative spectral power dropped by 11% on average (P<0.05). Switching on the neurostimulators caused a decrease in the N70/P100 amplitude of the VEP (P<0.01), which inversely correlated with the intensity of DBS (black-and-white pattern: P<0.01; color pattern: P<0.05). Despite artifacts generated by neurostimulators, the VEP and resting EEG were suitable for the detection of effects related to DBS STN. The acceleration of dominant frequency in the alpha band may be evidence of DBS STN influence on speeding up of intracortical oscillations. The spectral power decrease, seen mainly in the fronto-central region, might reflect a desynchronization in the premotor and motor circuits, though no movement was executed. Similarly, desynchronization of the cortical activity recorded posteriorly may by responsible for the VEP amplitude decrease implying DBS STN-related influence even on the visual system. Changes in idling EEG activity observed diffusely over scalp together with involvement of the VEP suggest that the effects of DBS STN reach far beyond the motor system influencing the basic mechanisms of rhythmic cortical oscillations.
Professional musicians listen differently to music.
Mikutta, C A; Maissen, G; Altorfer, A; Strik, W; Koenig, T
2014-05-30
Experience-based adaptation of emotional responses is an important faculty for cognitive and emotional functioning. Professional musicians represent an ideal model in which to elicit experience-driven changes in the emotional processing domain. The changes of the central representation of emotional arousal due to musical expertise are still largely unknown. The aim of the present study was to investigate the electroencephalogram (EEG) correlates of experience-driven changes in the domain of emotional arousal. Therefore, the differences in perceived (subjective arousal via ratings) and physiologically measured (EEG) arousal between amateur and professional musicians were examined. A total of 15 professional and 19 amateur musicians listened to the first movement of Ludwig van Beethoven's 5th symphony (duration=∼7.4min), during which a continuous 76-channel EEG was recorded. In a second session, the participants evaluated their emotional arousal during listening. In a tonic analysis, we examined the average EEG data over the time course of the music piece. For a phasic analysis, a fast Fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. The subjective arousal ratings of the professional musicians were more consistent than those of the amateur musicians. In the tonic EEG analysis, a mid-frontal theta activity was observed in the professionals. In the phasic EEG, the professionals exhibited an increase of posterior alpha, central delta, and beta rhythm during high arousal. Professionals exhibited different and/or more intense patterns of emotional activation when they listened to the music. The results of the present study underscore the impact of music experience on emotional reactions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Saletu, M; Hauer, C; Anderer, P; Saletu-Zyhlarz, G; Gruber, G; Oberndorfer, S; Mandl, M; Popovic, R; Saletu, B
2000-03-24
There is evidence that daytime tiredness is caused by apnea/hypopnea with oxygen desaturation and/or by sleep fragmentation due to arousals. The aim of this study was to investigate objective and subjective sleep and awakening quality and daytime vigilance--objectified by midmorning mapping of vigilance-controlled EEG (V-EEG)--in sleep apnea patients (N: 18), as compared with age- and sex-matched normal controls (N: 18) as well as to correlate nocturnal respiratory distress and arousals to daytime brain function. Statistical analyses demonstrated a deterioration in subjective and objective sleep and awakening quality in apnea patients. Midmorning V-EEG mapping in apnea patients exhibited less total power, more delta and theta, less alpha and beta activity, as well as a slower dominant frequency and centroid of the total activity compared to controls, which suggests a vigilance decrement. The Spearman rank correlation between 6 polysomnographically registered respiratory variables and 36 diurnal quantitative EEG measures demonstrated the following: the higher the apnea, apnea-hypopnea, snoring and desaturation indices and the lower the minimum and average low oxygen saturation, the more pronounced was diurnal tiredness. Eleven arousal measures based on ASDA criteria showed the following significant correlations: the higher the nocturnal arousal index and the more arousals due to hypopneas, the greater was daytime tiredness. On the other hand, the greater the average frequency change during arousals and the more spontaneous arousals, the better was daytime vigilance. Our findings show that, in contrast to the lengthy Multiple Sleep Latency (MSLT) and Maintenance of Wakefulness (MWT) tests which evaluate sleep pressure under resting conditions conducive to sleep, V-EEG mapping provides a brief objective measure of a sleep apnea patient's daytime tiredness under conditions of wakefulness more appropriate to reflect the patient's everyday life.
Krause, Daniela; Folkerts, Malte; Karch, Susanne; Keeser, Daniel; Chrobok, Agnieszka I; Zaudig, Michael; Hegerl, Ulrich; Juckel, Georg; Pogarell, Oliver
2015-01-01
The issue of predicting treatment response and identifying, in advance, which patient will profit from treating obsessive-compulsive disorder (OCD) seems to be an elusive goal. This prospective study investigated brain electric activity [using Low-Resolution Brain Electromagnetic Tomography (LORETA)] for the purpose of predicting response to treatment. Forty-one unmedicated patients with a DSM-IV diagnosis of OCD were included. A resting 32-channel EEG was obtained from each participant before and after 10 weeks of standardized treatment with sertraline and behavioral therapy. LORETA was used to localize the sources of brain electrical activity. At week 10, patients were divided into responders and non-responders (according to a reduction of symptom severity >50% on the Y-BOCS). LORETA analysis revealed that at baseline responders showed compared to non-responders a significantly lower brain electric activity within the beta 1 (t = 2.86, p < 0.05), 2 (t = 2.81, p < 0.05), and 3 (t = 2.76, p < 0.05) frequency bands and ROI analysis confirmed a reduced activity in alpha 2 (t = 2.06, p < 0.05) in the anterior cingulate cortex (ACC). When baseline LORETA data were compared to follow-up data, the analysis showed in the responder group a significantly lower brain electrical resting activity in the beta 1 (t = 3.17. p < 0.05) and beta 3 (t = 3.11. p < 0.05) frequency bands and equally for the ROI analysis of the orbitofrontal cortex (OFC) in the alpha 2 (t = 2.15. p < 0.05) frequency band. In the group of non-responders the opposite results were found. In addition, a positive correlation between frequency alpha 2 (rho = 0.40, p = 0.010), beta 3 (rho = 0.42, p = 0.006), delta (rho = 0.33, p = 0.038), theta (rho = 0.34, p = 0.031), alpha 1 (rho = 0.38, p = 0.015), and beta1 (rho = 0.34, p = 0.028) of the OFC and the bands delta (rho = 0.33, p = 0.035), alpha 1 (rho = 0.36, p = 0.019), alpha 2 (rho = 0.34, p = 0.031), and beta 3 (rho = 0.38, p = 0.015) of the ACC with a reduction of the Y-BOCS scores was identified. Our results suggest that measuring brain activity with LORETA could be an efficient and applicable technique to prospectively identify treatment responders in OCD.
Krause, Daniela; Folkerts, Malte; Karch, Susanne; Keeser, Daniel; Chrobok, Agnieszka I.; Zaudig, Michael; Hegerl, Ulrich; Juckel, Georg; Pogarell, Oliver
2016-01-01
The issue of predicting treatment response and identifying, in advance, which patient will profit from treating obsessive-compulsive disorder (OCD) seems to be an elusive goal. This prospective study investigated brain electric activity [using Low-Resolution Brain Electromagnetic Tomography (LORETA)] for the purpose of predicting response to treatment. Forty-one unmedicated patients with a DSM-IV diagnosis of OCD were included. A resting 32-channel EEG was obtained from each participant before and after 10 weeks of standardized treatment with sertraline and behavioral therapy. LORETA was used to localize the sources of brain electrical activity. At week 10, patients were divided into responders and non-responders (according to a reduction of symptom severity >50% on the Y-BOCS). LORETA analysis revealed that at baseline responders showed compared to non-responders a significantly lower brain electric activity within the beta 1 (t = 2.86, p < 0.05), 2 (t = 2.81, p < 0.05), and 3 (t = 2.76, p < 0.05) frequency bands and ROI analysis confirmed a reduced activity in alpha 2 (t = 2.06, p < 0.05) in the anterior cingulate cortex (ACC). When baseline LORETA data were compared to follow-up data, the analysis showed in the responder group a significantly lower brain electrical resting activity in the beta 1 (t = 3.17. p < 0.05) and beta 3 (t = 3.11. p < 0.05) frequency bands and equally for the ROI analysis of the orbitofrontal cortex (OFC) in the alpha 2 (t = 2.15. p < 0.05) frequency band. In the group of non-responders the opposite results were found. In addition, a positive correlation between frequency alpha 2 (rho = 0.40, p = 0.010), beta 3 (rho = 0.42, p = 0.006), delta (rho = 0.33, p = 0.038), theta (rho = 0.34, p = 0.031), alpha 1 (rho = 0.38, p = 0.015), and beta1 (rho = 0.34, p = 0.028) of the OFC and the bands delta (rho = 0.33, p = 0.035), alpha 1 (rho = 0.36, p = 0.019), alpha 2 (rho = 0.34, p = 0.031), and beta 3 (rho = 0.38, p = 0.015) of the ACC with a reduction of the Y-BOCS scores was identified. Our results suggest that measuring brain activity with LORETA could be an efficient and applicable technique to prospectively identify treatment responders in OCD. PMID:26834658
Sampaio, Luis Rafael Leite; Borges, Lucas Teixeira Nunes; Barbosa, Talita Matias; Matos, Natalia Castelo Branco; Lima, Ricardo de Freitas; Oliveira, Mariana Nascimento de; Gularte, Viviane Nóbrega; Patrocínio, Manoel Cláudio Azevedo; Macêdo, Danielle; Vale, Otoni Cardoso do; Vasconcelos, Silvânia Maria Mendes de
2017-03-01
Schizophrenia is characterized by behavioral symptoms, brain function impairments and electroencephalographic (EEG) changes. Dysregulation of immune responses and oxidative imbalance underpins this mental disorder. The present study aimed to investigate the effects of the typical antipsychotic chlorpromazine (CP) alone or combined with the natural antioxidant alpha-lipoic acid (ALA) on changes in the hippocampal average spectral power induced by ketamine (KET). Three days after stereotactic implantation of electrodes, male Wistar rats were divided into groups treated for 10 days with saline (control) or KET (10 mg/kg, IP). CP (1 or 5 mg/kg, IP) alone or combined with ALA (100 mg/kg, P.O.) was administered 30 min before KET or saline. Hippocampal EEG recordings were taken on the 1st, 5th and 10th days of treatment immediately after the last drug administration. KET significantly increased average spectral power of delta and gamma-high bands on the 5th and 10th days of treatment when compared to control. Gamma low-band significantly increased on the 1st, 5th and 10th days when compared to control group. This effect of KET was prevented by CP alone or combined with ALA. Indeed, the combination of ALA 100 + CP1 potentiated the inhibitory effects of CP1 on gamma low-band oscillations. In conclusion, our results showed that KET presents excitatory and time-dependent effects on hippocampal EEG bands activity. KET excitatory effects on EEG were prevented by CP alone and in some situations potentiated by its combination with ALA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measures and Models for Estimating and Predicting Cognitive Fatigue
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Kochavi, Rebekah; Kubitz, Karla; Montgomery, Leslie D.; Rosipal, Roman; Matthews, Bryan
2004-01-01
We analyzed EEG and ERPs in a fatiguing mental task and created statistical models for single subjects. Seventeen subjects (4 F, 18-38 y) viewed 4-digit problems (e.g., 3+5-2+7=15) on a computer, solved the problems, and pressed keys to respond (intertrial interval = 1 s). Subjects performed until either they felt exhausted or three hours had elapsed. Re- and post-task measures of mood (Activation Deactivation Adjective Checklist, Visual Analogue Mood Scale) confirmed that fatigue increased and energy decreased over time. We tested response times (RT); amplitudes of ERP components N1, P2, P300, readiness potentials; and amplitudes of frontal theta and parietal alpha rhythms for change as a function of time. For subjects who completed 3 h (n=9) we analyzed 12 15-min blocks. For subjects who completed at least 1.5 h (n=17), we analyzed the first-, middle-, and last 100 error-free trials. Mean RT rose from 6.7 s to 8.5 s over time. We found no changes in the amplitudes of ERP components. In both analyses, amplitudes of frontal theta and parietal alpha rose by 30% or more over time. We used 30-channel EEG frequency spectra to model the effects of time in single subjects using a kernel partial least squares classifier. We classified 3.5s EEG segments as being from the first 100 or the last 100 trials, using random sub-samples of each class. Test set accuracies ranged from 63.9% to 99.6% correct. Only 2 of 17 subjects had mean accuracies lower than 80%. The results suggest that EEG accurately classifies periods of cognitive fatigue in 90% of subjects.
Electrocortical activity distinguishes between uphill and level walking in humans.
Bradford, J Cortney; Lukos, Jamie R; Ferris, Daniel P
2016-02-01
The objective of this study was to determine if electrocortical activity is different between walking on an incline compared with level surface. Subjects walked on a treadmill at 0% and 15% grades for 30 min while we recorded electroencephalography (EEG). We used independent component (IC) analysis to parse EEG signals into maximally independent sources and then computed dipole estimations for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Theta power fluctuated across the gait cycle for both conditions, but was greater during incline walking in the anterior cingulate, sensorimotor and posterior parietal clusters. We found greater gamma power during level walking in the left sensorimotor and anterior cingulate clusters. We also found distinct alpha and beta fluctuations, depending on the phase of the gait cycle for the left and right sensorimotor cortices, indicating cortical lateralization for both walking conditions. We validated the results by isolating movement artifact. We found that the frequency activation patterns of the artifact were different than the actual EEG data, providing evidence that the differences between walking conditions were cortically driven rather than a residual artifact of the experiment. These findings suggest that the locomotor pattern adjustments necessary to walk on an incline compared with level surface may require supraspinal input, especially from the left sensorimotor cortex, anterior cingulate, and posterior parietal areas. These results are a promising step toward the use of EEG as a feed-forward control signal for ambulatory brain-computer interface technologies.
Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness.
Hirvonen, Jonni; Palva, Satu
2016-01-01
Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept. © 2015 Wiley Periodicals, Inc.
Ehlers, Cindy L; Wills, Derek N; Phillips, Evelyn; Havstad, James
2015-10-01
Low voltage EEG (LVEEG) is a heritable phenotype that differs depending on ancestral heritage, yet its impact on brain networks and cognition remain relatively unexplored. In this study we assessed energy and task related phase locking of event-related oscillation (EROs), behavioral responses, measures of IQ and personality, and expected responses to alcohol in a large sample of individuals with LVEEG compared to those with higher voltage variants. Participants (n=762) were recruited from a Native American community and completed a diagnostic interview, the Quick Test, the Subjective High Assessment Scale Expectation Version (SHAS-E) and the Maudsley Personality Inventory. Clinical and spectral analyzed EEGs were collected for determination of the presence of a LVEEG variant. EROs were generated using a facial expression recognition task. Participants with LVEEG (n=451) were significantly more likely to be older, married and have higher degrees of Native American heritage but did not differ in gender, income or education. Individuals with LVEEG were also found to have decreased energy in their alpha EROs, increased phase locking between stimulus trials, and increased phase-locking between cortical brain areas. No significant differences in the cognitive tests, personality variables or alcohol dependence or anxiety diagnoses were found, however, individuals with LVEEG did report a larger number of drinks ever consumed in a 24-h period and a less intense expected response to alcohol. These data suggest that alpha power in the resting EEG is highly associated with energy and cortical connectivity measures generated by event-related stimuli, as well as potentially increased risk for alcohol use. Copyright © 2015 Elsevier B.V. All rights reserved.
Differences in Seizure Expression Between Magnetic Seizure Therapy and Electroconvulsive Shock.
Cycowicz, Yael M; Rowny, Stefan B; Luber, Bruce; Lisanby, Sarah H
2018-06-01
Evidence suggests that magnetic seizure therapy (MST) results in fewer side effects than electroconvulsive treatment, both in humans treated with electroconvulsive therapy (ECT) as well as in the animal preclinical model that uses electroconvulsive shock (ECS). Evidence suggests that MST results in fewer cognitive side effects than ECT. Although MST offers enhanced control over seizure induction and spread, little is known about how MST and ECT seizures differ. Seizure characteristics are associated with treatment effect. This study presents quantitative analyses of electroencephalogram (EEG) power after electrical and magnetic seizure induction and anesthesia-alone sham in an animal model. The aim was to test whether differential neurophysiological characteristics of the seizures could be identified that support earlier observations that the powers of theta, alpha, and beta but not delta frequency bands were lower after MST when compared with those after ECS. In a randomized, sham-controlled trial, 24 macaca mulatte received 6 weeks of daily sessions while scalp EEG was recorded. Electroencephalogram power was quantified within delta, theta, alpha, and beta frequency bands. Magnetic seizure therapy induced lower ictal expression in the theta, alpha and beta frequencies than ECS, but MST and ECS were indistinguishable in the delta band. Magnetic seizure therapy showed less postictal suppression than ECS. Increasing electrical dosage increased ictal power, whereas increasing MST dosage had no effect on EEG expression. Magnetic seizure therapy seizures have less robust electrophysiological expression than ECS, and these differences are largest in the alpha and beta bands. The relevance of these differences in higher frequency bands to clinical outcomes deserves further exploration. Contrasting EEG in ECS and MST may lead to insights on the physiological underpinnings of seizure-induced amnesia and to finding ways to reduce cognitive side effects.
Some sequential, distribution-free pattern classification procedures with applications
NASA Technical Reports Server (NTRS)
Poage, J. L.
1971-01-01
Some sequential, distribution-free pattern classification techniques are presented. The decision problem to which the proposed classification methods are applied is that of discriminating between two kinds of electroencephalogram responses recorded from a human subject: spontaneous EEG and EEG driven by a stroboscopic light stimulus at the alpha frequency. The classification procedures proposed make use of the theory of order statistics. Estimates of the probabilities of misclassification are given. The procedures were tested on Gaussian samples and the EEG responses.
Murri, L; Gori, S; Massetani, R; Bonanni, E; Marcella, F; Milani, S
1998-06-01
The sensitivity of quantitative electroencephalogram (EEG) was compared with that of conventional EEG in patients with acute ischaemic stroke. In addition, a correlation between quantitative EEG data and computerized tomography (CT) scan findings was carried out for all the areas of lesion in order to reassess the actual role of EEG in the evaluation of stroke. Sixty-five patients were tested with conventional and quantitative EEG within 24 h from the onset of neurological symptoms, whereas CT scan was performed within 4 days from the onset of stroke. EEG was recorded from 19 electrodes placed upon the scalp according to the International 10-20 System. Spectral analysis was carried out on 30 artefact-free 4-sec epochs. For each channel absolute and relative power were calculated for the delta, theta, alpha and beta frequency bands and such data were successively represented in colour-coded maps. Ten patients with extensive lesions documented by CT scan were excluded. The results indicated that conventional EEG revealed abnormalities in 40 of 55 cases, while EEG mapping showed abnormalities in 46 of 55 cases: it showed focal abnormalities in five cases and nonfocal abnormalities in one of six cases which had appeared to be normal according to visual inspection of EEG. In a further 11 cases, where the conventional EEG revealed abnormalities in one hemisphere, the quantitative EEG and maps allowed to further localize abnormal activity in a more localized way. The sensitivity of both methods was higher for frontocentral, temporal and parieto-occipital cortical-subcortical infarctions than for basal ganglia and internal capsule lesions; however, quantitative EEG was more efficient for all areas of lesion in detecting cases that had appeared normal by visual inspection and was clearly superior in revealing focal abnormalities. When we considered the electrode related to which the maximum power of the delta frequency band is recorded, a fairly close correlation was found between the localization of the maximum delta power and the position of lesions documented by CT scan for all areas of lesion excepting those located in the striatocapsular area.
EEG phase reset due to auditory attention: an inverse time-scale approach.
Low, Yin Fen; Strauss, Daniel J
2009-08-01
We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.