Science.gov

Sample records for eeg alpha phenotypes

  1. Magnetic Resonance Therapy Improves Clinical Phenotype and EEG Alpha Power in Posttraumatic Stress Disorder

    PubMed Central

    Taghva, Alexander; Silvetz, Robert; Ring, Alex; Kim, Keun-young A.; Murphy, Kevin T.; Liu, Charles Y.; Jin, Yi

    2015-01-01

    Background: Posttraumatic stress disorder (PTSD) is a disabling and prevalent psychiatric disorder with limited effective treatment options. In addition to the clinical features of the disease, pathologic changes in the electroencephalogram (EEG), including decreased alpha power, have been reported. Objectives: To determine if magnetic brain stimulation can induce normalization of EEG abnormalities and improve clinical symptoms in PTSD in a preliminary, open-label evaluation. Materials and Methods: We reviewed prospectively-collected data on 21 veterans that were consecutively-treated for PTSD. Magnetic resonance therapy (MRT) was administered for two weeks at treatment frequencies based on frequency-domain analysis of each patient’s dominant alpha-band EEG frequencies and resting heart rate. Patients were evaluated on the PTSD checklist (PCL-M) and pre- and post-treatment EEGs before and after MRT. Results: Of the 21 patients who initiated therapy, 16 completed treatment. Clinical improvements on the PCL-M were seen in these 16 patients, with an average pre-treatment score of 54.9 and post-treatment score of 31.8 (P < 0.001). In addition, relative global EEG alpha-band (8 - 13 Hz) power increased from 32.0 to 38.5 percent (P = 0.013), and EEG delta-band (1 - 4 Hz) power decreased from 32.3 percent to 26.8 percent (P = 0.028). Conclusions: These open-label data show trends toward normalization of EEG and concomitant clinical improvement using magnetic stimulation for PTSD. PMID:26839865

  2. Interpreting EEG alpha activity.

    PubMed

    Bazanova, O M; Vernon, D

    2014-07-01

    Exploring EEG alpha oscillations has generated considerable interest, in particular with regards to the role they play in cognitive, psychomotor, psycho-emotional and physiological aspects of human life. However, there is no clearly agreed upon definition of what constitutes 'alpha activity' or which of the many indices should be used to characterize it. To address these issues this review attempts to delineate EEG alpha-activity, its physical, molecular and morphological nature, and examine the following indices: (1) the individual alpha peak frequency; (2) activation magnitude, as measured by alpha amplitude suppression across the individual alpha bandwidth in response to eyes opening, and (3) alpha "auto-rhythmicity" indices: which include intra-spindle amplitude variability, spindle length and steepness. Throughout, the article offers a number of suggestions regarding the mechanism(s) of alpha activity related to inter and intra-individual variability. In addition, it provides some insights into the various psychophysiological indices of alpha activity and highlights their role in optimal functioning and behavior.

  3. EEG Alpha Power and Intelligence.

    ERIC Educational Resources Information Center

    Doppelmayr, M.; Klimesch, W.; Stadler, W.; Pollhuber, D.; Heine, C.

    2002-01-01

    Tested whether alpha power in different sub-bands is selectively related to intelligence. For 74 Austrian subjects, the EEG was recorded during a resting session and 2 different intelligence tests were performed. Findings show a strong positive correlation between intelligence and alpha power. (SLD)

  4. EEG, alpha waves and coherence

    NASA Astrophysics Data System (ADS)

    Ascolani, Gianluca

    This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable y(t) is determined by a Langevin equation perturbed by a periodic process that in this time representation is hardly distinguishable from an erratic process. We show that the representation of this random process in the experimental time scale is characterized by a surprisingly extended coherence. We show that this model generates a sequence of damped oscillations with a time behavior that is remarkably similar to that derived from the analysis of real EEG's. The main result of this research work is that the existence of crucial events is not incompatible with the alpha wave coherence. In addition to this important result, we find another result that may help our group, or any other research

  5. PSYCHOPHYSICS OF EEG ALPHA STATE DISCRIMINATION

    PubMed Central

    Frederick, Jon A.

    2012-01-01

    Nearly all research in neurofeedback since the 1960s has focused on training voluntary control over EEG constructs. By contrast, EEG state discrimination training focuses on awareness of subjective correlates of EEG states. This study presents the first successful replication of EEG alpha state discrimination first reported by Kamiya (1962). A 150-second baseline was recorded in 106 participants. During the task, low (<30th percentile of the baseline) and high alpha events (>70th percentile) triggered a prompt. Participants indicated “high” or “low” with a keypress response and received immediate feedback. Seventy-five percent of participants achieved significant discrimination within nine sessions, with a significant learning curve effect. Performance was significantly related to physical properties of the EEG signal, including magnitude, duration, and absolute vs. relative amplitude. These results are consistent with a conceptualization of EEG state discrimination as a sensory modality, although it is also intricately related to voluntary control of these states. PMID:22800733

  6. EEG alpha power and creative ideation.

    PubMed

    Fink, Andreas; Benedek, Mathias

    2014-07-01

    Neuroscientific studies revealed first insights into neural mechanisms underlying creativity, but existing findings are highly variegated and often inconsistent. Despite the disappointing picture on the neuroscience of creativity drawn in recent reviews, there appears to be robust evidence that EEG alpha power is particularly sensitive to various creativity-related demands involved in creative ideation. Alpha power varies as a function of creativity-related task demands and the originality of ideas, is positively related to an individuals' creativity level, and has been observed to increase as a result of creativity interventions. Alpha increases during creative ideation could reflect more internally oriented attention that is characterized by the absence of external bottom-up stimulation and, thus, a form of top-down activity. Moreover, they could indicate the involvement of specific memory processes such as the efficient (re-)combination of unrelated semantic information. We conclude that increased alpha power during creative ideation is among the most consistent findings in neuroscientific research on creativity and discuss possible future directions to better understand the manifold brain mechanisms involved in creativity.

  7. EEG alpha power and creative ideation☆

    PubMed Central

    Fink, Andreas; Benedek, Mathias

    2014-01-01

    Neuroscientific studies revealed first insights into neural mechanisms underlying creativity, but existing findings are highly variegated and often inconsistent. Despite the disappointing picture on the neuroscience of creativity drawn in recent reviews, there appears to be robust evidence that EEG alpha power is particularly sensitive to various creativity-related demands involved in creative ideation. Alpha power varies as a function of creativity-related task demands and the originality of ideas, is positively related to an individuals’ creativity level, and has been observed to increase as a result of creativity interventions. Alpha increases during creative ideation could reflect more internally oriented attention that is characterized by the absence of external bottom-up stimulation and, thus, a form of top-down activity. Moreover, they could indicate the involvement of specific memory processes such as the efficient (re-)combination of unrelated semantic information. We conclude that increased alpha power during creative ideation is among the most consistent findings in neuroscientific research on creativity and discuss possible future directions to better understand the manifold brain mechanisms involved in creativity. PMID:23246442

  8. Relationship of genetically transmitted alpha EEG traits to anxiety disorders and alcoholism

    SciTech Connect

    Enoch, M.A.; Rohrbaugh, W.; Harris, C.R.

    1995-10-09

    We tested the hypothesis that a heritable EEG trait, the low voltage alpha (LV), is associated with psychiatric disorders. Modest to moderate evidence for genetic linkage of both panic disorder and the low voltage alpha trait to the same region of chromosome 20q has recently been reported, raising the issue of whether there is a phenotypic correlation between these traits. A total of 124 subjects including 50 unrelated index subjects and 74 relatives were studied. Alpha EEG power was measured and EEG phenotypes were impressionistically classified. Subjects were psychiatrically interviewed using the SADS-L and blind-rated by RDC criteria. Alcoholics were four times more likely to be LV (including so-called borderline low voltage alpha) than were nonalcoholic, nonanxious subjects. Alcoholics with anxiety disorder are 10 times more likely to be LV. However, alcoholics without anxiety disorder were similar to nonalcoholics in alpha power. An anxiety disorder (panic disorder, phobia, or generalized anxiety) was found in 14/17 LV subjects as compared to 34/101 of the rest of the sample (P < 0.01). Support for these observations was found in the unrelated index subjects in whom no traits would be shared by familial clustering. Lower alpha power in anxiety disorders was not state-dependent, as indicated by the Spielberger Anxiety Scale. Familial covariance of alpha power was 0.25 (P < 0.01). These findings indicate there may be a shared factor underlying the transmissible low voltage alpha EEG variant and vulnerability to anxiety disorders with associated alcoholism. This factor is apparently not rare, because LV was found in approximately 10% of unrelated index subjects and 5% of subjects free of alcoholism and anxiety disorders. 43 refs., 1 fig., 3 tabs.

  9. Line bisection task performance and resting EEG alpha power.

    PubMed

    Ciçek, Metehan; Nalçaci, Erhan; Kalaycioglu, Canan

    2003-06-01

    Neurologically normal subjects generally err to the left of veridical center when performing a line bisection task, a phenomenon termed "pseudoneglect." We hypothesized that resting electroencephalogram (EEG) alpha oscillations may show relationships with attentional mechanisms and give some clues about the underlying mechanisms of pseudoneglect. We recorded resting EEGs of 41 subjects and tested them with a paper-pencil line bisection task. Our results showed that line bisection scores of men (n=18) were less biased and their performance was higher compared to those of women (n=20), but these differences only approached significance. The eyes open resting EEG alpha power of women was significantly and positively correlated with their line bisection performance. In general, significant relationships were related to the left hand performance when the lines were presented in the left hemispace. Greater resting alpha power was correlated with lower absolute bisection score or, in other words, higher bisection performance. Greater alpha power also correlated with diminished leftward bisection bias (or reduced pseudo-neglect). The resting EEG alpha of men was weakly associated with bisection performance. Results discussed in terms of Kinsbourne's activation-orientation theory and Basar's view on brain oscillations.

  10. EEG alpha activity and hallucinatory experience during sensory deprivation.

    PubMed

    Hayashi, M; Morikawa, T; Hori, T

    1992-10-01

    The relationship between hallucinatory experiences under sensory deprivation and EEG alpha activities was studied. Each of seven male students lived alone in an air conditioned, soundproof dark room for 72 hours. When hallucinatory experiences occurred, the students pressed a button at once. If they could not press the button during the experience, they were required to press it two times when the hallucinatory experience was finished. Spectral analysis was performed on the consecutive EEG samples from just before button-presses to 10 min. before them, and the average alpha band amplitudes were obtained for the four epochs (0-.5, .5-2, 2-5, 5-10 min.). For the single button-presses, the amplitude of alpha band increased 2 min. before the button-presses. Right-hemisphere EEG activation was observed in the occipital area for the double button-presses. The results suggest an association between the hallucinatory experiences under sensory deprivation and the amount of EEG alpha activity.

  11. Frontal Alpha EEG Asymmetry Before and After Behavioral Activation Treatment for Depression

    PubMed Central

    Gollan, Jackie K.; Hoxha, Denada; Chihade, Dietta; Pflieger, Mark E.; Rosebrock, Laina; Cacioppo, John

    2015-01-01

    Background Mid-frontal and mid-lateral (F3/F4 and F7/F8) EEG asymmetry has been associated with motivation and affect. We examined alpha EEG asymmetry in depressed and healthy participants before and after Behavioral Activation treatment for depression; examined the association between alpha EEG asymmetry and motivational systems and affect; and evaluated the utility of alpha EEG asymmetry in predicting remission. Methods Depressed (n = 37) and healthy participants (n = 35) were assessed before and after treatment using a clinical interview, a task to measure baseline EEG, and questionnaires of behavioral activation and inhibition, avoidance, and affect. Results Alpha EEG asymmetry was significantly higher in depressed than healthy participants at pre-treatment, positively correlated with negative affect and behavioral inhibition, and inversely correlated with lower behavioral activation sensitivity. Conclusions Heightened alpha EEG asymmetry in depressed participants was significantly associated with increased behavioral inhibition and negative emotion and was independent of clinical remission. PMID:24674708

  12. EEG-based alpha neurofeedback training for mood enhancement.

    PubMed

    Phneah, Swee Wu; Nisar, Humaira

    2017-03-13

    The aim of this paper is to develop a preliminary neurofeedback system to improve the mood of the subjects using audio signals by enhancing their alpha brainwaves. Assessment of the effect of music on the human subjects is performed using three methods; subjective assessment of mood with the help of a questionnaire, the effect on brain by analysing EEG signals, and the effect on body by physiological assessment. In this study, two experiments have been designed. The first experiment was to determine the short-term effect of music on soothing human subjects, whereas the second experiment was to determine its long-term effect. Two types of music were used in the first experiment, the favourite music selected by the participants and a relaxing music with alpha wave binaural beats. The research findings showed that the relaxing music has a better soothing effect on the participants psychologically and physiologically. However, the one-way analysis of variance (ANOVA) results showed that the short-term soothing effect of both favourite music and relaxing music was not significant in changing the mean alpha absolute power and mean physiological measures (blood pressure and heart rate) at the significance level of 0.05. The second experiment was somewhat similar to an alpha neurofeedback training whereby the participants trained their brains to produce more alpha brainwaves by listening to the relaxing music with alpha wave binaural beats for a duration of 30 min daily. The results showed that the relaxing music has a long-term psychological and physiological effect on soothing the participants, as can be observed from the increase in alpha power and decrease in physiological measures after each session of training. The training was found to be effective in increasing the alpha power significantly [F(2,12) = 11.5458 and p = 0.0016], but no significant reduction in physiological measures was observed at the significance level of 0.05.

  13. EEG Alpha Synchronization Is Related to Top-Down Processing in Convergent and Divergent Thinking

    ERIC Educational Resources Information Center

    Benedek, Mathias; Bergner, Sabine; Konen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing…

  14. Alpha-band EEG activity in perceptual learning

    PubMed Central

    Bays, Brett C.; Visscher, Kristina M.; Le Dantec, Christophe C.; Seitz, Aaron R.

    2015-01-01

    In studies of perceptual learning (PL), subjects are typically highly trained across many sessions to achieve perceptual benefits on the stimuli in those tasks. There is currently significant debate regarding what sources of brain plasticity underlie these PL-based learning improvements. Here we investigate the hypothesis that PL, among other mechanisms, leads to task automaticity, especially in the presence of the trained stimuli. To investigate this hypothesis, we trained participants for eight sessions to find an oriented target in a field of near-oriented distractors and examined alpha-band activity, which modulates with attention to visual stimuli, as a possible measure of automaticity. Alpha-band activity was acquired via electroencephalogram (EEG), before and after training, as participants performed the task with trained and untrained stimuli. Results show that participants underwent significant learning in this task (as assessed by threshold, accuracy, and reaction time improvements) and that alpha power increased during the pre-stimulus period and then underwent greater desynchronization at the time of stimulus presentation following training. However, these changes in alpha-band activity were not specific to the trained stimuli, with similar patterns of posttraining alpha power for trained and untrained stimuli. These data are consistent with the view that participants were more efficient at focusing resources at the time of stimulus presentation and are consistent with a greater automaticity of task performance. These findings have implications for PL, as transfer effects from trained to untrained stimuli may partially depend on differential effort of the individual at the time of stimulus processing. PMID:26370167

  15. Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations.

    PubMed

    de Munck, J C; Gonçalves, S I; Mammoliti, R; Heethaar, R M; Lopes da Silva, F H

    2009-08-01

    In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.

  16. Spatial correspondence of brain alpha activity component in fMRI and EEG

    NASA Astrophysics Data System (ADS)

    Jeong, Jeong-Won; Kim, Sung-Heon; Singh, Manbir

    2005-04-01

    This paper presents a new approach to investigate the spatial correlation of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging brain alpha activity, data from each modality were acquired separately under a "three conditions" setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using the Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. The sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that solves an inverse problem in the framework of a classical four-sphere head model. The resulting dipole sources of EEG alpha activity were spatially transformed to 3D MRIs of the subject and compared to fMRI ICA-determined alpha activity maps.

  17. Synergetic fMRI-EEG brain mapping in alpha-rhythm voluntary control mode.

    PubMed

    Shtark, M B; Verevkin, E G; Kozlova, L I; Mazhirina, K G; Pokrovskii, M A; Petrovskii, E D; Savelov, A A; Starostin, A S; Yarosh, S V

    2015-03-01

    For the first time in neurobiology-related issues, the synergistic spatial dynamics of EEG and fMRI (BOLD phenomenon) was studied during cognitive alpha biofeedback training in the operant conditioning mode (acoustic reinforcement of alpha-rhythm development and stability). Significant changes in alpha-rhythm intensity were found in T6 electrode area (Brodmann area 37). Brodmann areas related to solving alpha-training tasks and maximally involved in the formation of new neuronal network were middle and superior temporal gyri (areas 21, 22, and 37), fusiform gyrus, inferior frontal gyrus (areas 4, 6, and 46), anterior cingulate gyrus (areas 23 and 24), cuneus, and precuneus (area 7). Wide involvement of Brodmann areas is determined by psychological architecture of alpha-rhythm generating system control that includes complex cognitive activities: decision making, retrieval of long-term memory, evaluation of the reward and control efficiency during alpha-EEG biofeedback.

  18. Dynamics of Interaction of Neural Networks in the Course of EEG Alpha Biofeedback.

    PubMed

    Kozlova, L I; Bezmaternykh, D D; Mel'nikov, M E; Savelov, A A; Petrovskii, E D; Shtark, M B

    2017-03-31

    Brain EEG-fMRI activity was studied in subjects, who had successfully completed the EEG alpha stimulating training course (20 sessions): for 14 healthy men (20-35 years) three records were obtained in the feedback loop (biofeedback with EEG alpha rhythm with sound reinforcement): in the beginning, middle and at the end of the course. During alpha training, increased functional connectivity was revealed between precuneus network and anterior salience network, left executive control network, default mode network, primary visual network; anterior salience network and executive control network, visual-spatial network. The most prominent changes were found for precuneus network and anterior salience network, which could be due to their key role in the biofeedback phenomenon. Significant changes in functional connectivity were recorded for anterior salience network and precuneus network (synchronicity increased from the first to the third trial) and right and left executive control networks (weakening from the first to the second session.

  19. EEG alpha frequency correlates of burnout and depression: The role of gender.

    PubMed

    Tement, Sara; Pahor, Anja; Jaušovec, Norbert

    2016-02-01

    EEG alpha frequency band biomarkers of depression are widely explored. Due to their trait-like features, they may help distinguish between depressive and burnout symptomatology, which is often referred to as "work-related depression". The present correlational study strived to examine whether individual alpha frequency (IAF), power, and coherence in the alpha band can provide evidence for establishing burnout as a separate diagnostic entity. Resting EEG (eyes closed) was recorded in 117 individuals (42 males). In addition, the participants filled-out questionnaires of burnout and depression. Regression analyses highlighted the differential value of IAF and power in predicting burnout and depression. IAF was significantly related to depressive symptomatology, whereas power was linked mostly to burnout. Moreover, seven out of twelve interactions between EEG indicators and gender were significant. Connectivity patterns were significant for depression displaying gender-related differences. The results offer tentative support for establishing burnout as a separate clinical syndrome.

  20. Cognitive control in the intertrial interval: evidence from EEG alpha power.

    PubMed

    Compton, Rebecca J; Arnstein, Daniel; Freedman, Gili; Dainer-Best, Justin; Liss, Alison

    2011-05-01

    This study used electroencephalogram (EEG) power spectrum analyses to characterize neural activity during the intertrial interval, a period during which online cognitive adjustments in response to errors or conflict are thought to occur. EEG alpha power was quantified as an inverse index of cerebral activity during the period between each response and the next stimulus in a Stroop task. Alpha power was significantly reduced following error responses compared to correct responses, indicating greater cerebral activity following errors. Reduced alpha power was also observed following Stroop conflict trials compared to no-conflict trials, suggesting that conflict engages processes of mental adjustment. Finally, hemispheric differences in alpha power during the intertrial interval supported the complementary roles of the left and right hemispheres in behavioral activation and inhibition.

  1. Alpha and beta EEG power reflects L-dopa acute administration in parkinsonian patients

    PubMed Central

    Melgari, Jean-Marc; Curcio, Giuseppe; Mastrolilli, Francesca; Salomone, Gaetano; Trotta, Laura; Tombini, Mario; di Biase, Lazzaro; Scrascia, Federica; Fini, Rita; Fabrizio, Emma; Rossini, Paolo Maria; Vernieri, Fabrizio

    2014-01-01

    Aim: To evaluate the effect of an acute L-dopa administration on eye-closed resting state electroencephalographic (EEG) activity of cognitively preserved Parkinsonian patients. Methods: We examined 24 right-handed patients diagnosed as uncomplicated probable Parkinson’s disease (PD). Each patient underwent Unified Parkinson’s Disease Rating Scale (UPDRS)-part-III evaluation before and 60 min after an oral load of L-dopa-methyl-ester/carbidopa 250/25 mg. Resting condition eyes-closed EEG data were recorded both pre- and post L-dopa load. Absolute EEG power values were calculated at each scalp derivation for Delta, Theta, Alpha and Beta frequency bands. UPDRS scores (both global and subscale scores) and EEG data (power values of different frequency bands for each scalp derivation) were submitted to a statistical analysis to compare Pre and Post L-Dopa conditions. Finally, a correlation analysis was carried out between EEG spectral content and UPDRS scores. Results: Considering EEG power spectral analysis, no statistically significant differences arose on Delta and Theta bands after L-dopa intake. Conversely, Alpha and Beta rhythms significantly increased on centro-parietal scalp derivations, as a function of L-dopa administration. Correlation analysis indicated a significant negative correlation between Beta power increase on centro-parietal areas and UPDRS subscores (Rigidity of arms and Bradykinesia). A minor significant negative correlation was also found between Alpha band increase and resting tremor. Conclusions: Assuming that a significant change in EEG power spectrum after L-dopa intake may be related to dopaminergic mechanisms, our findings are consistent with the hypothesis that dopaminergic defective networks are implicated in cortical oscillatory abnormalities at rest in non-demented PD patients. PMID:25452725

  2. Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG Alpha Waves

    PubMed Central

    Descoteaux, Maxime; Bernier, Michaël; Garyfallidis, Eleftherios; Whittingstall, Kevin

    2016-01-01

    At rest, healthy human brain activity is characterized by large electroencephalography (EEG) fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although it is well known that EEG alpha activity varies across individuals, few studies have investigated how this may be related to underlying morphological variations in brain structure. Specifically, it is generally believed that the lateral geniculate nucleus (LGN) and its efferent fibres (optic radiation, OR) play a key role in alpha activity, yet it is unclear whether their shape or size variations contribute to its inter-subject variability. Given the widespread use of EEG alpha in basic and clinical research, addressing this is important, though difficult given the problems associated with reliably segmenting the LGN and OR. For this, we employed a multi-modal approach and combined diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI) and EEG in 20 healthy subjects to measure structure and function, respectively. For the former, we developed a new, semi-automated approach for segmenting the OR and LGN, from which we extracted several structural metrics such as volume, position and diffusivity. Although these measures corresponded well with known morphology based on previous post-mortem studies, we nonetheless found that their inter-subject variability was not significantly correlated to alpha power or peak frequency (p >0.05). Our results therefore suggest that alpha variability may be mediated by an alternative structural source and our proposed methodology may in general help in better understanding the influence of anatomy on function such as measured by EEG or fMRI. PMID:27383146

  3. Differences in EEG Alpha Activity between Gifted and Non-Identified Individuals: Insights into Problem Solving.

    ERIC Educational Resources Information Center

    Jausovec, Norbert

    1997-01-01

    This study examined differences in electroencephalography (EEG) alpha activity between gifted and nongifted Slovenian student-teachers (N=17 each). Gifted students showed greater left hemisphere activation than nongifted subjects in relaxed states, but lower activation during problem solving. The same pattern was observed in overall hemispheric…

  4. EEG alpha asymmetry in virtual environments for the assessment of stress-related disorders.

    PubMed

    Cipresso, Pietro; Gaggioli, Andrea; Serino, Silvia; Pallavicini, Federica; Raspelli, Simona; Grassi, Alessandra; Sellitti, Luigi; Riva, Giuseppe

    2012-01-01

    In this study we consider neurophysiological aspects for the assessment of stress-related disorders. EEG Alpha Asymmetry could represent an effective method to be used in the virtual environment. Nonetheless, new protocols need to be defined. In this study herein, we present two methods and a case study.

  5. EEG epoch selection: lack of alpha rhythm improves discrimination of Alzheimer's disease.

    PubMed

    Fraga, Francisco J; Oliveira, Eliezyer F; Kanda, Paulo A M

    2016-08-01

    In this work we propose a detailed EEG epoch selection method and compare epochs with rare and abundant alpha rhythm (AR) of patients with Alzheimer's disease (AD) and normal controls. Epochs were classified as Dominant Alpha Scenario (DAS) and Rare Alpha Scenario (RAS) according to the AR percentage (energy within the 8-13 Hz bandwidth) in O1, O2 and Oz electrodes. Participants were divided into four groups: 17 DAS controls (N1), 15 DAS mild-AD patients (AD1), 12 RAS controls (N2) and 15 RAS mild-AD patients (AD2). We found out that scenario factor (DAS vs. RAS, two-way ANOVA) is significant over a great amount of electrode-bandwidth situations. Furthermore, one-way ANOVA showed significant differences between RAS AD and RAS controls in much more situations as compared to DAS. This is the first study using AD awake EEG reporting the decisive influence of alpha rhythm on epoch selection, where our results revealed that, contrary to what was initially expected, EEG epochs with poor alpha (RAS) discriminate mild AD much better than those presenting richer alpha content (DAS).

  6. White-matter vascular lesions correlate with alpha EEG sources in mild cognitive impairment.

    PubMed

    Babiloni, Claudio; Frisoni, Giovanni B; Pievani, Michela; Toscano, Leonia; Del Percio, Claudio; Geroldi, Cristina; Eusebi, Fabrizio; Miniussi, Carlo; Rossini, Paolo M

    2008-01-01

    It is an open issue if vascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI), as a preclinical stage of Alzheimer's disease (AD) at group level. In the present study, we tested the hypothesis that electroencephalographic (EEG) alpha rhythms, which are affected (i.e. decreased in amplitude) by AD processes, are relatively preserved in MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold), 80 MCI, and 40 AD subjects. In the MCI subjects, white-matter vascular load was quantified based on MRI (0-30 Wahlund visual rating scale). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), and beta 2 (20-30Hz). Low resolution electromagnetic source tomography (LORETA) was used for EEG source analysis. As expected, we observed that alpha 1 sources in parietal, occipital, and temporal areas were lower in amplitude in the AD and MCI subjects than in the Nold subjects, whereas the amplitude of wide delta sources was higher in the AD than in the Nold and MCI subjects. As novel results, the amplitude of parietal, occipital, and temporal alpha 1 sources was higher in the MCI V+ (high vascular load; N=42; MMSE=26) than MCI V- group (low vascular load; N=37; MMSE=26.7). Furthermore, a weak but significant (p<0.05) positive statistical correlation was found between the parietal alpha 1 sources and the score of Wahlund scale across all MCI subjects (i.e. the more severe white-matter lesions, the higher parietal alpha source power). The present results are in line with the additive model of cognitive impairment postulating that this arises as the sum of neurodegenerative and cerebrovascular lesions.

  7. EEG

    MedlinePlus

    Chernecky CC, Berger BJ. Electroencephalography (EEG) - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013: ...

  8. EEG alpha rhythms and transient chromatic and achromatic pattern visual evoked potentials in children and adults.

    PubMed

    Boon, Mei Ying; Chan, Kar Ying; Chiang, Jaclyn; Milston, Rebecca; Suttle, Catherine

    2011-04-01

    Transient chromatic pattern visual evoked potentials (VEPs) have been found to be less repeatable in morphology in children than in adults at low to moderate chromatic contrasts. The purpose of this study is to investigate whether low repeatability of VEP components can be associated with high alpha power, in a comparison of alpha activity in children and adults. Transient chromatic contrast and achromatic resolution VEPs were recorded in children (n = 14, mean 9.6 years) and adults (n = 12, mean 21.8 years) with normal vision and assessed for repeatability. Isoluminant chromatic (magenta-cyan) and luminance-modulated achromatic grating stimuli were presented at and above psychophysical threshold levels, in pattern onset-offset at 2 Hz temporal frequency. EEGs (eyes closed and open) were recorded as single sweeps (1 s long) over three 30 s periods while facing a uniform computer display. An index of VEP detectability by observation was developed based on VEP component repeatability. The index was examined for correlations with alpha-wave parameters. Alpha power was calculated as the sum of the powers of 8-13 Hz frequencies of the EEG sweeps (using the discrete Fourier transform). Alpha power variability was calculated using the standard deviation of the powers of each sweep in a 30 s time period. The children had significantly higher alpha powers than the adults for both the eyes-open and eyes-closed conditions. Alpha power variability was significantly higher for the eyes-open condition only. There was no relationship between alpha power parameters and index of VEP detectability by observation for both the chromatic and achromatic grating stimuli. Poor repeatability of transient pattern VEPs is not associated with high alpha power or its variability in EEG measurements in older children or young adults at Oz.

  9. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking.

    PubMed

    Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C

    2011-10-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking.

  10. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking

    PubMed Central

    Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking. PMID:21925520

  11. An EEGLAB plugin to analyze individual EEG alpha rhythms using the "channel reactivity-based method".

    PubMed

    Goljahani, A; Bisiacchi, P; Sparacino, G

    2014-03-01

    A recent paper [1] proposed a new technique, termed the channel reactivity-based method (CRB), for characterizing EEG alpha rhythms using individual (IAFs) and channel (CAFs) alpha frequencies. These frequencies were obtained by identifying the frequencies at which the power of the alpha rhythms decreases. In the present study, we present a graphical interactive toolbox that can be plugged into the popular open source environment EEGLAB, making it easy to use CRB. In particular, we illustrate the major functionalities of the software and discuss the advantages of this toolbox for common EEG investigations. The CRB analysis plugin, along with extended documentation and the sample dataset utilized in this study, is freely available on the web at http://bio.dei.unipd.it/crb/.

  12. Depressive symptoms and baseline prefrontal EEG alpha activity: a study utilizing Ecological Momentary Assessment.

    PubMed

    Putnam, Katherine M; McSweeney, Lauren B

    2008-02-01

    Prefrontal cortex (PFC) electroencephalography (EEG) alpha asymmetry has been found in individuals with major depression. However, EEG activity has never been examined in regard to specific depressive symptoms. We examine the relationship between resting baseline PFC alpha activity and both rumination and self-esteem in a depressed outpatient group (N=6) and a healthy control group (N=7) using high-density EEG sampling and multiple longitudinal self report measures, i.e. Ecological Momentary Assessment (EMA). Symptom measures were collected five times daily for 7 days, i.e. 35 assessments. Using a mixed-level analysis, significant Group x Hemisphere interactions for PFC sites and both rumination and self-esteem were found. Within the depressed group, lower bilateral PFC activity predicted higher levels of rumination, and lower right PFC activity predicted higher levels of self-esteem. There were no significant effects for the control group. Results indicate that specific symptoms of depression are uniquely associated with patterns of PFC EEG alpha activity.

  13. Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking.

    PubMed

    Goncharova, I I; Barlow, J S

    1990-09-01

    Spontaneously occurring brief periods of lower voltage irregular activity occurring amid a background of alpha activity (i.e., alpha blocking) in eyes-closed resting occipital EEG recordings from 32 healthy human subjects have been investigated to determine the extent of changes of mean frequency and of spectral purity (degree of regularity/irregularity of the EEG activity) during such periods. New methods for determining mean frequency and spectral purity (the latter as a new measure, the Spectral Purity Index, which has a maximum value of 1.0 for a pure sine wave) permit their conjoint evaluation over a 0.5 sec window that is advanced along the EEG in 0.1 sec steps, thus permitting almost continuous feature extraction. The findings indicate that, although spectral purity invariably decreased during the periods of lower voltage irregular activity, the mean frequency remained relatively unaltered, i.e., it remained unchanged or it increased or decreased slightly but at most by 2.5 Hz. These results suggest that, at least for the periods of lower voltage irregular activity occurring spontaneously amid an alpha background during eyes-closed occipital EEG recordings, it may be inaccurate (as some authors have already suggested) to use the term 'low-voltage fast (or beta) activity.'

  14. Brain oscillations and human memory: EEG correlates in the upper alpha and theta band.

    PubMed

    Klimesch, W; Doppelmayr, M; Pachinger, T; Ripper, B

    1997-11-28

    The EEG was recorded while subjects judged whether sequentially presented feature-concept pairs are semantically congruent. Later and without prior warning they had to perform a semantic and episodic memory task. The results show that the upper alpha band is most sensitive to the encoding and processing of semantic information. It is only the upper alpha band that distinguishes between good and bad semantic memory performers and that shows significant correlations with semantic memory performance during that time period, semantic processing actually takes place. Even when the influence of episodic memory was removed by partial correlations, a reliable association between upper alpha desynchronization and semantic memory was observed.

  15. The time-course of EEG alpha power changes in creative ideation

    PubMed Central

    Schwab, Daniela; Benedek, Mathias; Papousek, Ilona; Weiss, Elisabeth M.; Fink, Andreas

    2014-01-01

    Increases in EEG alpha power during creative ideation are among the most consistent findings in the neuroscientific study of creativity, but existing studies did not focus on time-related changes of EEG alpha activity patterns during the process of creative ideation so far. Since several cognitive processes are involved in the generation of creative ideas, different EEG correlates may result as a function of time. In this study we addressed this crucial point. Forty-five participants worked on the “Alternative Uses Task” while the EEG was recorded and changes in task-related power (relative to rest) in the upper-frequency band (10–12 Hz) for three isochronous time intervals of the idea generation period were determined. Alpha power changes during idea generation followed a characteristic time course: we found a general increase of alpha power at the beginning of idea generation that was followed by a decrease and finally by a re-increase of alpha prior to responding that was most pronounced at parietal and temporal sites of the right hemisphere. Additionally, the production of more original ideas was accompanied by increasing hemispheric asymmetry (more alpha in the right than left hemisphere) with increasing duration of the idea generation period. The observed time course of brain activity may reflect the progression of different but well-known stages in the idea generation process: that is the initial retrieval of common and old ideas followed by the actual generation of novel and more creative ideas by overcoming typical responses through processes of mental simulation and imagination. PMID:24860485

  16. Task difficulty and EEG alpha asymmetry: an amplitude and frequency analysis.

    PubMed

    Earle, J B

    1988-01-01

    The effects of mathematical, spatial and verbal task difficulty on EEG alpha amplitude and mean frequency asymmetry were investigated. Twenty right-handed subjects with no familial left-handedness (10 female, 10 male) were presented 3 levels of difficulty for each type of task. Difficulty was varied through increasing the rate of auditorily presented numerical stimuli. Also examined were EEG alpha correlates with measures of performance anxiety, subjective difficulty, loss of vigilance, confusion, the tendency to rely on a guessing strategy and performance. While increasing task difficulty led to right-parietal and posttemporal alpha acceleration for all tasks, task-dependent bilateral changes in alpha frequency were also observed. Increased mathematical task difficulty widened parietal amplitude asymmetry differences between high- and low-performance subjects, and produced performance-dependent changes in left-parietal and right-temporal alpha frequency. A curvilinear relationship between spatial-task difficulty and relative right-hemisphere alpha attenuation was found for the high-performance group only. Finally, numerous correlations were found between alpha measures and subjective and performance variables. Most of these correlations were found to be both task- and difficulty-level-specific. Task anxiety appeared to play a significant role in the determination of parietal- and temporal-lobe asymmetry.

  17. Bright illumination reduces parietal EEG alpha activity during a sustained attention task.

    PubMed

    Min, Byoung-Kyong; Jung, Young-Chul; Kim, Eosu; Park, Jin Young

    2013-11-13

    The influence of the illumination condition on our cognitive-performance seems to be more critical in the modern life, wherein, most people work in an office under a specific illumination condition. However, neurophysiological changes in a specific illumination state and their cognitive interpretation still remain unclear. Thereby, in the present study, the effect of different illumination conditions on the same cognitive performance was evaluated particularly by EEG wavelet analyses. During a sustained attention task, we observed that the higher illumination condition yielded significantly lower parietal tonic electroencephalogram (EEG) alpha activity before the presentation of the probe digit and longer reaction times, than that of the other illumination conditions. Although previous studies suggest that lower prestimulus EEG alpha activity is related to higher performance in an upcoming task, the reduced prestimulus alpha activity under higher illumination was associated with delayed reaction times in the present study. Presumably, the higher background illumination condition seems to be too bright for normal attentional processing and distracted participants' attention during a sustained attention task. Such a bottom-up effect by stimulus salience seemed to overwhelm a prestimulus top-down effect reflected in prestimulus alpha power during the bright background condition. This finding might imply a dynamic competition between prestimulus top-down and poststimulus bottom-up processes. Our findings provide compelling evidence that the illumination condition substantially modulates our attentional processing. Further refinement of the illumination parameters and subsequent exploration of cognitive-modulation are necessary to facilitate our cognitive performance.

  18. Prefrontal EEG alpha asymmetry changes while observing disaster happening to other people: cardiac correlates and prediction of emotional impact.

    PubMed

    Papousek, Ilona; Weiss, Elisabeth M; Schulter, Günter; Fink, Andreas; Reiser, Eva M; Lackner, Helmut K

    2014-12-01

    Changes of EEG alpha asymmetry in terms of increased right versus left sided activity in prefrontal cortex are considered to index activation of the withdrawal/avoidance motivational system. The present study aimed to add evidence of the validity of individual differences in the EEG alpha asymmetry response and their relevance regarding the impact of emotional events. The magnitude of the EEG alpha asymmetry response while watching a film consisting of scenes of real injury and death correlated with components of transient cardiac responses to sudden horrifying events happening to persons in the film which index withdrawal/avoidance motivation and heightened attention and perceptual intake. Additionally, it predicted greater mood deterioration following the film and film-related intrusive memories and avoidance over the following week. The study provides further evidence for prefrontal EEG alpha asymmetry changes in response to relevant stimuli reflecting an individual's sensitivity to negative social-emotional cues encountered in everyday life.

  19. Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy

    NASA Astrophysics Data System (ADS)

    Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.

    2015-11-01

    The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.

  20. Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli.

    PubMed

    Walz, Jennifer M; Goldman, Robin I; Carapezza, Michael; Muraskin, Jordan; Brown, Truman R; Sajda, Paul

    2015-06-01

    EEG alpha-band activity is generally thought to represent an inhibitory state related to decreased attention and play a role in suppression of task-irrelevant stimulus processing, but a competing hypothesis suggests an active role in processing task-relevant information - one in which phase dynamics are involved. Here we used simultaneous EEG-fMRI and a whole-brain analysis to investigate the effects of prestimulus alpha activity on the event-related BOLD response during an auditory oddball task. We separately investigated the effects of the posterior alpha rhythm's power and phase on activity related to task-relevant stimulus processing and also investigated higher-level decision-related processing. We found stronger decision-related BOLD activity in areas late in the processing stream when subjects were in the high alpha power state prior to stimulus onset, but did not detect any effect in primary sensory regions. Our phase analysis revealed correlates in the bilateral thalamus, providing support for a thalamo-cortical loop in attentional modulations and suggesting that the cortical alpha rhythm acts as a cyclic modulator of task-related responses very early in the processing stream. Our results help to reconcile the competing inhibition and active-processing hypotheses for ongoing alpha oscillations and begin to tease apart the distinct roles and mechanisms underlying their power and phase.

  1. EEG Alpha and Beta Activity in Normal and Deaf Subjects.

    ERIC Educational Resources Information Center

    Waldron, Manjula; And Others

    Electroencephalogram and task performance data were collected from three groups of young adult males: profoundly deaf Ss who signed from an early age, profoundly deaf Ss who only used oral (speech and speedreading) methods of communication, and normal hearing Ss. Alpha and Beta brain wave patterns over the Wernicke's area were compared across…

  2. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study

    PubMed Central

    Omata, Kei; Hanakawa, Takashi; Morimoto, Masako; Honda, Manabu

    2013-01-01

    The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG) is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD) signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS) during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04–0.167 Hz) and slow fluctuation (0–0.04 Hz). Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG. PMID:23824708

  3. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance.

    PubMed

    Scheeringa, René; Petersson, Karl Magnus; Oostenveld, Robert; Norris, David G; Hagoort, Peter; Bastiaansen, Marcel C M

    2009-02-01

    PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG-fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task.

  4. Dynamics of alpha control: Preparatory suppression of posterior alpha oscillations by frontal modulators revealed with combined EEG and event-related optical signal (EROS)

    PubMed Central

    Mathewson, Kyle E.; Beck, Diane M.; Ro, Tony; Maclin, Edward L.; Low, Kathy A.; Fabiani, Monica; Gratton, Gabriele

    2015-01-01

    We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously we proposed that alpha (8-12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top-down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently-recorded electroencephalogram (EEG), while subjects performed a visual target-detection task. The pre-target alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across subjects. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network, and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks prior to posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top-down control from attention networks modulates both posterior alpha and awareness of visual stimuli. PMID:24702458

  5. The validity of individual frontal alpha asymmetry EEG neurofeedback

    PubMed Central

    Quaedflieg, C. W. E. M.; Smulders, F. T. Y.; Meyer, T.; Peeters, F.; Merckelbach, H.; Smeets, T.

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. PMID:26163671

  6. The validity of individual frontal alpha asymmetry EEG neurofeedback.

    PubMed

    Quaedflieg, C W E M; Smulders, F T Y; Meyer, T; Peeters, F; Merckelbach, H; Smeets, T

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback.

  7. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers.

    PubMed

    Fink, Andreas; Graif, Barbara; Neubauer, Aljoscha C

    2009-07-01

    Neuroscientific research on creativity has revealed valuable insights into possible brain correlates underlying this complex mental ability domain. However, most of the studies investigated brain activity during the performance of comparatively simple (verbal) type of tasks and the majority of studies focused on samples of the normal population. In this study we investigate EEG activity in professional dancers (n=15) who have attained a high level of expertise in this domain. This group was compared with a group of novices (n=17) who have only basic experience in dancing and completed no comprehensive training in this field. The EEG was recorded during performance of two different dancing imagery tasks which differed with respect to creative demands. In the first task participants were instructed to mentally perform a dance which should be as unique and original as possible (improvisation dance). In the waltz task they were asked to imagine dancing the waltz, a standard dance which involves a sequence of monotonous steps (lower creative demands). In addition, brain activity was also measured during performance of the Alternative Uses test. We observed evidence that during the generation of alternative uses professional dancers show stronger alpha synchronization in posterior parietal brain regions than novice dancers. During improvisation dance, professional dancers exhibited more right-hemispheric alpha synchronization than the group of novices did, while during imagining dancing the waltz no significant group differences emerged. The findings complement and extend existing findings on the relationship between EEG alpha activity and creative thinking.

  8. The Effect of Alpha Rhythm Sleep on EEG Activity and Individuals’ Attention

    PubMed Central

    Kim, Seon Chill; Lee, Myoung Hee; Jang, Chel; Kwon, Jung Won; Park, Joo Wan

    2014-01-01

    [Purpose] This study examined whether the alpha rhythm sleep alters the EEG activity and response time in the attention and concentration tasks. [Subjects and Methods] The participants were 30 healthy university students, who were randomly and equally divided into two groups, the experimental and control groups. They were treated using the Happy-sleep device or a sham device, respectively. All participants had a one-week training period. Before and after training sessions, a behavioral task test was performed and EEG alpha waves were measured to confirm the effectiveness of training on cognitive function. [Results] In terms of the behavioral task test, reaction time (RT) variations in the experimental group were significantly larger than in the control group for the attention item. Changes in the EEG alpha power in the experimental group were also significantly larger than those of the control group. [Conclusions] These findings suggest that sleep induced using the Happy-sleep device modestly enhances the ability to pay attention and focus during academic learning. PMID:24409009

  9. A novel EEG for alpha brain state training, neurobiofeedback and behavior change.

    PubMed

    Stinson, Bruce; Arthur, David

    2013-08-01

    Mindfulness meditation, with the resulting alpha brain state, is gaining a strong following as an adjunct to health, so too is applying self-affirmation to stimulate behavior change through subconscious re-programming. Until recently the EEG technology needed to demonstrate this has been cumbersome and required specialist training. This paper reports a pilot study using a remote EEG headband, which through a sophisticated algorithm, provides a real-time EEG readout unencumbered by conventional artifacts. In a convenience sample of 13, the difference in brain waves was examined while the subjects were occupied in an 'attention' and an 'alpha mind state' exercise. There was a significant difference in the mean scores for theta, delta, beta and gamma brain waves. Alpha brain waves remained static suggesting an ability of the headset to discriminate a mindful state and to provide real-time, easy to interpret feedback for the facilitator and subject. The findings provide encouragement for research applications in health care activities providing neurobiofeedback to subjects involved in mindfulness behavior change activities.

  10. Tracking EEG changes in response to alpha and beta binaural beats.

    PubMed

    Vernon, D; Peryer, G; Louch, J; Shaw, M

    2014-07-01

    A binaural beat can be produced by presenting two tones of a differing frequency, one to each ear. Such auditory stimulation has been suggested to influence behaviour and cognition via the process of cortical entrainment. However, research so far has only shown the frequency following responses in the traditional EEG frequency ranges of delta, theta and gamma. Hence a primary aim of this research was to ascertain whether it would be possible to produce clear changes in the EEG in either the alpha or beta frequency ranges. Such changes, if possible, would have a number of important implications as well as potential applications. A secondary goal was to track any observable changes in the EEG throughout the entrainment epoch to gain some insight into the nature of the entrainment effects on any changes in an effort to identify more effective entrainment regimes. Twenty two healthy participants were recruited and randomly allocated to one of two groups, each of which was exposed to a distinct binaural beat frequency for ten 1-minute epochs. The first group listened to an alpha binaural beat of 10 Hz and the second to a beta binaural beat of 20 Hz. EEG was recorded from the left and right temporal regions during pre-exposure baselines, stimulus exposure epochs and post-exposure baselines. Analysis of changes in broad-band and narrow-band amplitudes, and frequency showed no effect of binaural beat frequency eliciting a frequency following effect in the EEG. Possible mediating factors are discussed and a number of recommendations are made regarding future studies, exploring entrainment effects from a binaural beat presentation.

  11. Distraction affects frontal alpha rhythms related to expectancy of pain: an EEG study.

    PubMed

    Del Percio, Claudio; Le Pera, Domenica; Arendt-Nielsen, Lars; Babiloni, Claudio; Brancucci, Alfredo; Chen, Andrew C N; De Armas, Liala; Miliucci, Roberto; Restuccia, Domenico; Valeriani, Massimiliano; Rossini, Paolo Maria

    2006-07-01

    Previous electroencephalographic (EEG) evidence has shown event-related desynchronization (ERD) of alpha rhythms before predictable painful stimuli, as a possible neural concomitant of attentional preparatory processes (Babiloni, C., Brancucci, A., Babiloni, F., Capotosto, P., Carducci, F., Cincotti, F., Arendt-Nielsen, L., Chen, A.C., Rossini, P.M., 2003. Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study. Eur. J. Neurosci. 18 (6) 1692-700). This study tested the hypothesis that alpha ERD before predictable painful stimuli is reduced as an effect of distraction. A visual warning stimulus preceded a laser painful stimulation, which was strictly followed by visual imperative stimuli. In the Pain (control) condition, no task was required after the imperative stimuli. In the Pain + Movement condition, subjects had to perform a movement of the right index finger. In the Pain + Cognition condition, they had to mentally perform an arithmetical task. EEG data were recorded in 10 subjects from 30 electrodes. Artifact-free recordings were spatially enhanced by surface Laplacian transformation. Alpha ERD was computed at three alpha sub-bands according to subjects' individual alpha frequency peak (i.e., about 6-8 Hz, 8-10 Hz, 10-12 Hz). Compared to the control condition, the subjects reported a significantly lower stimulus intensity perception and unpleasantness in the Pain + Movement and Pain + Cognition conditions. In addition, there was a cancellation of the alpha 3 ERD (i.e., about 10-12 Hz) in Pain + Cognition condition and even a generation of a statistically significant alpha 3 ERS in Pain + Movement condition. These effects were maximum over fronto-central midline. These results suggest that distraction during the expectancy of pain is related to a reduced neural desynchronization of fronto-central midline alpha rhythms (i.e., reduced cortical activation) towards an overt hyper

  12. Posterior EEG alpha at rest and during task performance: Comparison of current source density and field potential measures

    PubMed Central

    Tenke, Craig E.; Kayser, Jürgen; Abraham, Karen; Alvarenga, Jorge E.; Bruder, Gerard E.

    2015-01-01

    Resting and task-related EEG alpha are used in studies of cognition and psychopathogy. Although Laplacian methods have been applied, apprehensions about loss of global activity dissuade researchers from greater use except as a supplement to reference-dependent measures. The unfortunate result has been continued reliance on reference strategies that differ across labs, and a systemic preference for a montage-dependent average reference over true reference-free measures. We addressed these concerns by comparing resting- and task-related EEG alpha using three EEG transformations: nose- (NR) and average-referenced (AR) EEG, and the corresponding CSD. Amplitude spectra of resting and prestimulus task-related EEG (novelty oddball) and event-related spectral perturbations were scaled to equate each transformation. Alpha measures quantified for 8-12 Hz bands were: 1) net amplitude (eyes-closed minus eyes-open) and 2) overall amplitude (eyes-closed plus eyes-open); 3) task amplitude (prestimulus baseline) and 4) task event-related desynchronization (ERD). Mean topographies unambiguously represented posterior alpha for overall, net and task, as well as poststimulus alpha ERD. Topographies were similar for the three transformations, but differed in dispersion, CSD being sharpest and NR most broadly distributed. Transformations also differed in scale, AR showing less attenuation or spurious secondary maxima at anterior sites, consistent with simulations of distributed posterior generators. Posterior task alpha and alpha ERD were positively correlated with overall alpha, but not with net alpha. CSD topographies consistently and appropriately represented posterior EEG alpha for all measures. PMID:26026372

  13. Correlations between personality traits and specific groups of alpha waves in the human EEG.

    PubMed

    Johannisson, Tomas

    2016-01-01

    Background. Different individuals have alpha waves with different wavelengths. The distribution of the wavelengths is assumed to be bell-shaped and smooth. Although this view is generally accepted, it is still just an assumption and has never been critically tested. When exploring the relationship between alpha waves and personality traits, it makes a huge difference if the distribution of the alpha waves is smooth or if specific groups of alpha waves can be demonstrated. Previous studies have not considered the possibility that specific groups of alpha waves may exist. Methods. Computerized EEGs have become standard, but wavelength measurements are problematic when based on averaging procedures using the Fourier transformation because such procedures cause a large systematic error. If the actual wavelength is of interest, it is necessary to go back to basic physiology and use raw EEG signals. In the present study, measurements were made directly from sequences of alpha waves where every wave could be identified. Personality dimensions were measured using an inventory derived from the International Personality Item Pool. Results. Recordings from 200 healthy individuals revealed that there are three main groups of alpha waves. These groups had frequencies around 8, 10, and 12 waves per second. The middle group had a bimodal distribution, and a subdivision gave a total of four alpha groups. In the center of each group, the degree of extraversion was high and the degree of neuroticism was low. Many small differences in personality traits were found when the centers were compared with one another. This gave four personality profiles that resemble the four classical temperaments. When people in the surrounding zones were compared with those in the centers, relatively large differences in personality traits were found. Conclusions. Specific groups of alpha waves exist, and these groups have to be taken into account when correlations are made to personality dimensions and

  14. Correlations between personality traits and specific groups of alpha waves in the human EEG

    PubMed Central

    2016-01-01

    Background. Different individuals have alpha waves with different wavelengths. The distribution of the wavelengths is assumed to be bell-shaped and smooth. Although this view is generally accepted, it is still just an assumption and has never been critically tested. When exploring the relationship between alpha waves and personality traits, it makes a huge difference if the distribution of the alpha waves is smooth or if specific groups of alpha waves can be demonstrated. Previous studies have not considered the possibility that specific groups of alpha waves may exist. Methods. Computerized EEGs have become standard, but wavelength measurements are problematic when based on averaging procedures using the Fourier transformation because such procedures cause a large systematic error. If the actual wavelength is of interest, it is necessary to go back to basic physiology and use raw EEG signals. In the present study, measurements were made directly from sequences of alpha waves where every wave could be identified. Personality dimensions were measured using an inventory derived from the International Personality Item Pool. Results. Recordings from 200 healthy individuals revealed that there are three main groups of alpha waves. These groups had frequencies around 8, 10, and 12 waves per second. The middle group had a bimodal distribution, and a subdivision gave a total of four alpha groups. In the center of each group, the degree of extraversion was high and the degree of neuroticism was low. Many small differences in personality traits were found when the centers were compared with one another. This gave four personality profiles that resemble the four classical temperaments. When people in the surrounding zones were compared with those in the centers, relatively large differences in personality traits were found. Conclusions. Specific groups of alpha waves exist, and these groups have to be taken into account when correlations are made to personality dimensions and

  15. Clozapine augments delta, theta, and right frontal EEG alpha power in schizophrenic patients.

    PubMed

    Maccrimmon, D; Brunet, D; Criollo, M; Galin, H; Lawson, J S

    2012-01-01

    Objective. To explore the Quantitative EEG (QEEG) effects of established clozapine therapy regimes compared to those of previous ineffective antipsychotic regimes among 64 chronic (DSM-IV) schizophrenic patients. Methods. Data from 20 EEG channels referenced to linked ears were collected before and during maintenance clozapine therapy (mean duration 1.4 years). Absolute power was calculated in six frequency bands: delta (0.4-3.6 Hz), theta (4.2-7.8 Hz), alpha (8.2-11.8 Hz), beta1 (12.2-15.8 Hz), beta2 (16.2-19.8 Hz), and beta3 (20.2-23.8 Hz). Results. Clozapine augments power globally in the delta and theta bands, but this effect is more pronounced over frontal areas. Beta3 power was reduced. Alpha showed a frontal increase, more pronounced in the right, coupled with a posterior decrease with no net change in overall power. Conclusion. The demonstration of a significant clozapine-induced alpha topographic shift frontally and to the right is a novel discovery that may serve to encourage further investigations of subcortical structures in attempts to better understand the diverse aetiologies and optimal treatments of the schizophrenias.

  16. Clozapine Augments Delta, Theta, and Right Frontal EEG Alpha Power in Schizophrenic Patients

    PubMed Central

    MacCrimmon, D.; Brunet, D.; Criollo, M.; Galin, H.; Lawson, J. S.

    2012-01-01

    Objective. To explore the Quantitative EEG (QEEG) effects of established clozapine therapy regimes compared to those of previous ineffective antipsychotic regimes among 64 chronic (DSM-IV) schizophrenic patients. Methods. Data from 20 EEG channels referenced to linked ears were collected before and during maintenance clozapine therapy (mean duration 1.4 years). Absolute power was calculated in six frequency bands: delta (0.4–3.6 Hz), theta (4.2–7.8 Hz), alpha (8.2–11.8 Hz), beta1 (12.2–15.8 Hz), beta2 (16.2–19.8 Hz), and beta3 (20.2–23.8 Hz). Results. Clozapine augments power globally in the delta and theta bands, but this effect is more pronounced over frontal areas. Beta3 power was reduced. Alpha showed a frontal increase, more pronounced in the right, coupled with a posterior decrease with no net change in overall power. Conclusion. The demonstration of a significant clozapine-induced alpha topographic shift frontally and to the right is a novel discovery that may serve to encourage further investigations of subcortical structures in attempts to better understand the diverse aetiologies and optimal treatments of the schizophrenias. PMID:23738206

  17. EEG Alpha Band Synchrony Predicts Cognitive and Motor Performance in Patients with Ischemic Stroke

    PubMed Central

    Dubovik, Sviatlana; Ptak, Radek; Aboulafia, Tatiana; Magnin, Cécile; Gillabert, Nicole; Allet, Lara; Pignat, Jean-Michel; Schnider, Armin; Guggisberg, Adrian G.

    2013-01-01

    Functional brain networks are known to be affected by focal brain lesions. However, the clinical relevance of these changes remains unclear. This study assesses resting-state functional connectivity (FC) with electroencephalography (EEG) and relates observed topography of FC to cognitive and motor deficits in patients three months after ischemic stroke. Twenty patients (mean age 61.3 years, range 37–80, 9 females) and nineteen age-matched healthy participants (mean age 66.7 years, range 36–88, 13 females) underwent a ten-minute EEG-resting state examination. The neural oscillations at each grey matter voxel were reconstructed using an adaptive spatial filter and imaginary component of coherence (IC) was calculated as an index of FC. Maps representing mean connectivity value at each voxel were correlated with the clinical data. Compared to healthy controls, alpha band IC of stroke patients was locally reduced in brain regions critical to observed behavioral deficits. A voxel-wise Pearson correlation of clinical performances with FC yielded maps of the neural structures implicated in motor, language, and executive function. This correlation was again specific to alpha band coherence. Ischemic lesions decrease the synchrony of alpha band oscillations between affected brain regions and the rest of the brain. This decrease is linearly related to cognitive and motor deficits observed in the patients. PMID:22713421

  18. Brief Report: Reduced Temporal-Central EEG Alpha Coherence During Joint Attention Perception in Adolescents with Autism Spectrum Disorder.

    PubMed

    Jaime, Mark; McMahon, Camilla M; Davidson, Bridget C; Newell, Lisa C; Mundy, Peter C; Henderson, Heather A

    2016-04-01

    Although prior studies have demonstrated reduced resting state EEG coherence in adults with autism spectrum disorder (ASD), no studies have explored the nature of EEG coherence during joint attention. We examined the EEG coherence of the joint attention network in adolescents with and without ASD during congruent and incongruent joint attention perception and an eyes-open resting condition. Across conditions, adolescents with ASD showed reduced right hemisphere temporal-central alpha coherence compared to typically developing adolescents. Greater right temporal-central alpha coherence during joint attention was positively associated with social cognitive performance in typical development but not in ASD. These results suggest that, in addition to a resting state, EEG coherence during joint attention perception is reduced in ASD.

  19. Reduced Temporal-Central EEG Alpha Coherence during Joint Attention Perception in Adolescents with Autism Spectrum Disorder

    PubMed Central

    Jaime, Mark; McMahon, Camilla M.; Davidson, Bridget C.; Newell, Lisa C.; Mundy, Peter C.; Henderson, Heather A.

    2016-01-01

    Although prior studies have demonstrated reduced resting state EEG coherence in adults with autism spectrum disorder (ASD), no studies have explored the nature of EEG coherence during joint attention. We examined the EEG coherence of the joint attention network in adolescents with and without ASD during congruent and incongruent joint attention perception and an eyes-open resting condition. Across conditions, adolescents with ASD showed reduced right hemisphere temporal–central alpha coherence compared to typically developing adolescents. Greater right temporal–central alpha coherence during joint attention was positively associated with social cognitive performance in typical development but not in ASD. These results suggest that, in addition to a resting state, EEG coherence during joint attention perception is reduced in ASD. PMID:26659813

  20. Detecting Driver Mental Fatigue Based on EEG Alpha Power Changes during Simulated Driving

    PubMed Central

    GHARAGOZLOU, Faramarz; NASL SARAJI, Gebraeil; MAZLOUMI, Adel; NAHVI, Ali; MOTIE NASRABADI, Ali; RAHIMI FOROUSHANI, Abbas; ARAB KHERADMAND, Ali; ASHOURI, Mohammadreza; SAMAVATI, Mehdi

    2015-01-01

    Background: Driver fatigue is one of the major implications in transportation safety and accounted for up to 40% of road accidents. This study aimed to analyze the EEG alpha power changes in partially sleep-deprived drivers while performing a simulated driving task. Methods: Twelve healthy male car drivers participated in an overnight study. Continuous EEG and EOG records were taken during driving on a virtual reality simulator on a monotonous road. Simultaneously, video recordings from the driver face and behavior were performed in lateral and front views and rated by two trained observers. Moreover, the subjective self-assessment of fatigue was implemented in every 10-min interval during the driving using Fatigue Visual Analog Scale (F-VAS). Power spectrum density and fast Fourier transform (FFT) were used to determine the absolute and relative alpha powers in the initial and final 10 minutes of driving. Results: The findings showed a significant increase in the absolute alpha power (P = 0.006) as well as F-VAS scores during the final section of driving (P = 0.001). Meanwhile, video ratings were consistent with subjective self-assessment of fatigue. Conclusion: The increase in alpha power in the final section of driving indicates the decrease in the level of alertness and attention and the onset of fatigue, which was consistent with F-VAS and video ratings. The study suggested that variations in alpha power could be a good indicator for driver mental fatigue, but for using as a countermeasure device needed further investigations. PMID:26811821

  1. The contribution of different frequency bands of fMRI data to the correlation with EEG alpha rhythm.

    PubMed

    Zhan, Zhichao; Xu, Lele; Zuo, Tian; Xie, Dongliang; Zhang, Jiacai; Yao, Li; Wu, Xia

    2014-01-16

    Alpha rhythm is a prominent EEG rhythm observed during resting state and is thought to be related to multiple cognitive processes. Previous simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) studies have demonstrated that alpha rhythm is associated with blood oxygen level dependent (BOLD) signals in several different functional networks. How these networks influence alpha rhythm respectively is unclear. The low-frequency oscillations (LFO) in spontaneous BOLD activity are thought to contribute to the local correlations in resting state. Recent studies suggested that either LFO or other components of fMRI can be further divided into sub-components on different frequency bands. We hypothesized that those BOLD sub-components characterized the contributions of different brain networks to alpha rhythm. To test this hypothesis, EEG and fMRI data were simultaneously recorded from 17 human subjects performing an eyes-close resting state experiment. EEG alpha rhythm was correlated with the filtered fMRI time courses at different frequency bands (0.01-0.08 Hz, 0.08-0.25 Hz, 0.01-0.027 Hz, 0.027-0.073 Hz, 0.073-0.198 Hz, and 0.198-0.25 Hz). The results demonstrated significant relations between alpha rhythm and the BOLD signals in the visual network and in the attention network at LFO band, especially at the very low frequency band (0.01-0.027 Hz).

  2. Supine posture inhibits cortical activity: Evidence from Delta and Alpha EEG bands.

    PubMed

    Spironelli, Chiara; Busenello, Jessica; Angrilli, Alessandro

    2016-08-01

    Past studies have shown consistent evidence that body position significantly affects brain activity, revealing that both head-down and horizontal bed-rest are associated with cortical inhibition and altered perceptual and cognitive processing. The present study investigates the effects of body position on spontaneous, open-eyes, resting-state EEG cortical activity in 32 young women randomly assigned to one of two conditions, seated position (SP) or horizontal bed rest (BR). A between-group repeated-measure experimental design was used, EEG recordings were made from 38 scalp locations, and low-frequency (delta and alpha) amplitudes of the two groups were compared in four different conditions: when both groups (a) were seated (T0), (b) assumed two different body positions (seated vs. supine conditions, immediate [T1] and 120min later [T2]), and (c) were seated again (T3). Overall, the results showed no a priori between-group differences (T0) before experimental manipulation. As expected, delta amplitude, an index of cortical inhibition in awake resting participants, was significantly increased in group BR, revealing both rapid (T1) and mid-term (T2) inhibitory effects of supine or horizontal positions. Instead, the alpha band was highly sensitive to postural transitions, perhaps due to baroreceptor intervention and, unlike the delta band, underwent habituation and decreased after a 2-h bed rest. These results indicate clear-cut differences at rest between the seated and supine positions, thus supporting the view that the role of body position in the differences found between brain metabolic methods (fMRI and PET) in which participants lie horizontally, and EEG-MEG-TMS techniques with participants in a seated position, has been largely underestimated so far.

  3. Phase-locking and amplitude modulations of EEG alpha: Two measures reflect different cognitive processes in a working memory task.

    PubMed

    Herrmann, Christoph S; Senkowski, Daniel; Röttger, Stefan

    2004-01-01

    It has been demonstrated in numerous experiments that oscillatory EEG responses in the alpha frequency band (8-12 Hz) increase with memory load during the retention interval in working memory tasks. However, the findings diverge with respect to which measurement of alpha activity is influenced by memory processes. Here, we differentiate between evoked and total alpha activity in order to separate effects of phase-locking and amplitude modulation. We present data from a delayed-matching-to-sample task (S1-S2 paradigm) for which we compared EEG alpha responses between a perception and a memory condition. Increased total alpha activity was found in the retention interval for the memory as compared to the perception condition. Evoked alpha activity, however, did not differentiate between memory and perception conditions but, instead, was increased for the more complex condition of processing non-Kanizsa figures as compared to Kanizsa figures. Thus, our results demonstrate a functional differentiation between evoked and total alpha activity. While alpha phase locking seemed to be influenced mainly by task complexity, alpha amplitude clearly reflected memory demands in our paradigm.

  4. Modulation of Alpha Oscillations in the Human EEG with Facial Preference

    PubMed Central

    Kang, Jae-Hwan; Kim, Su Jin; Cho, Yang Seok; Kim, Sung-Phil

    2015-01-01

    Facial preference that results from the processing of facial information plays an important role in social interactions as well as the selection of a mate, friend, candidate, or favorite actor. However, it still remains elusive which brain regions are implicated in the neural mechanisms underlying facial preference, and how neural activities in these regions are modulated during the formation of facial preference. In the present study, we investigated the modulation of electroencephalography (EEG) oscillatory power with facial preference. For the reliable assessments of facial preference, we designed a series of passive viewing and active choice tasks. In the former task, twenty-four face stimuli were passively viewed by participants for multiple times in random order. In the latter task, the same stimuli were then evaluated by participants for their facial preference judgments. In both tasks, significant differences between the preferred and non-preferred faces groups were found in alpha band power (8–13 Hz) but not in other frequency bands. The preferred faces generated more decreases in alpha power. During the passive viewing task, significant differences in alpha power between the preferred and non-preferred face groups were observed at the left frontal regions in the early (0.15–0.4 s) period during the 1-s presentation. By contrast, during the active choice task when participants consecutively watched the first and second face for 1 s and then selected the preferred one, an alpha power difference was found for the late (0.65–0.8 s) period over the whole brain during the first face presentation and over the posterior regions during the second face presentation. These results demonstrate that the modulation of alpha activity by facial preference is a top-down process, which requires additional cognitive resources to facilitate information processing of the preferred faces that capture more visual attention than the non-preferred faces. PMID:26394328

  5. Mathematical cognitive style and arithmetic sign comprehension: a study of EEG alpha and theta activity.

    PubMed

    Earle, J B; Garcia-Dergay, P; Manniello, A; Dowd, C

    1996-01-01

    The localization of arithmetic sign comprehension was investigated using EEG spectral parameters as indicators of cortical engagement. Right-handed male subjects were selected on the basis of scores on the Mathematics Cognitive Style Survey and assigned to 2 groups, a 'left hemisphere oriented (LHO)' (N = 9) and 'right hemisphere oriented (RHO)' (N = 9) group. Subjects were presented with 4 conditions, a motoric baseline condition, two arithmetic fact retrieval tasks employing either a sign operator or verbal operator and a sign comprehension task which required subjects to fill in a missing sign (e.g. 6 ? 4 = 24). Both across subject correlational analysis of EEG alpha 1 asymmetry and performance as well as within subject analysis of condition means indicated a somewhat unique contribution of the right hemisphere to sign comprehension. LHO subjects exhibited greater relative left mid-temporal lobe activation than RHO subjects but less relative left frontal activation (theta band) than RHO subjects during the verbal operator task. It was tentatively concluded that this frontal lobe asymmetry difference was due to a mismatch in strategy preference and coding requirements among RHO subjects.

  6. Childhood EEG frontal alpha power as a predictor of adolescent antisocial behavior: A twin heritability study

    PubMed Central

    Niv, Sharon; Ashrafulla, Syed; Tuvblad, Catherine; Joshi, Anand; Raine, Adrian; Leahy, Richard; Baker, Laura A.

    2015-01-01

    High EEG frontal alpha power (FAP) is thought to represent a state of low arousal in the brain, which has been related in past research to antisocial behavior (ASB). We investigated a longitudinal sample of 900 twins in two assessments in late childhood and mid-adolescence to verify whether relationships exist between FAP and both aggressive and nonaggressive ASB. ASB was measured by the Child Behavioral Checklist, and FAP was calculated using connectivity analysis methods that used principal components analysis to derive power of the most dominant frontal activation. Significant positive predictive relationships emerged in males between childhood FAP and adolescent aggressive ASB using multilevel mixed modeling. No concurrent relationships were found. Using bivariate biometric twin modeling analysis, the relationship between childhood FAP and adolescent aggressive ASB in males was found to be entirely due to genetic factors, which were correlated r = 0.22. PMID:25456277

  7. Local and interregional alpha EEG dynamics dissociate between memory for search and memory for recognition.

    PubMed

    van Driel, Joram; Gunseli, Eren; Meeter, Martijn; Olivers, Christian N L

    2017-04-01

    Attention during visual search is thought to be guided by an active visual working memory (VWM) representation of the search target. We tested the hypothesis that a VWM representation used for searching a target among competing information (a "search template") is distinct from VWM representations used for simple recognition tasks, without competition. We analyzed EEG from 20 human participants while they performed three different VWM-based visual detection tasks. All tasks started with identical lateralized VWM cues, but differed with respect to the presence and nature of competing distractors during the target display at test, where participants performed a simple recognition task without distractors, or visual search in pop-out (distinct) and serial (non-distinct) search displays. Performance was worst for non-distinct search, and best for simple recognition. During the one second delay period between cue and test, we observed robust suppression of EEG dynamics in the alpha (8-14Hz) band over parieto-occipital sites contralateral to the relevant VWM item, both in terms of local power as well as interregional phase synchrony within a posterior-parietal network. Importantly, these lateralization dynamics were more strongly expressed prior to search compared to simple recognition. Furthermore, before the VWM cue, alpha phase synchrony between prefrontal and mid-posterior-parietal sites was strongest for non-distinct search, reflecting enhanced anticipatory control prior to VWM encoding. Directional connectivity analyses confirmed this effect to be in an anterior-to-posterior direction. Together, these results provide evidence for frontally mediated top-down control of VWM in preparation of visual search.

  8. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study

    PubMed Central

    Ehinger, Benedikt V.; Fischer, Petra; Gert, Anna L.; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter

    2014-01-01

    In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation. PMID:24616681

  9. The neurophysiologic types of nonconvulsive status epilepticus: EEG patterns of different phenotypes.

    PubMed

    Sutter, Raoul; Kaplan, Peter W

    2013-09-01

    Proceeding from the proposed classification of status epilepticus syndromes by Shorvon in 1994, we performed a systematic search for reports presenting electroencephalography (EEG) patterns of nonconvulsive status epilepticus (NCSE) on all syndromes in the classification, where possible. Using the online medical search engine PubMed for 22 different search strategies, EEG patterns supporting a diagnosis of NCSE were sought. From a total of 4,328 search results, 123 cases with corresponding EEG patterns could be allocated to underlying epilepsy syndromes. Based on the characteristic EEG patterns found for the different NCSE syndromes, we present a synthesis of the significant EEG morphologies and evolutions in the individual NCSE syndromes.

  10. Putative EEG measures of social anxiety: Comparing frontal alpha asymmetry and delta-beta cross-frequency correlation.

    PubMed

    Harrewijn, A; Van der Molen, M J W; Westenberg, P M

    2016-12-01

    The goal of the present study was to examine whether frontal alpha asymmetry and delta-beta cross-frequency correlation during resting state, anticipation, and recovery are electroencephalographic (EEG) measures of social anxiety. For the first time, we jointly examined frontal alpha asymmetry and delta-beta correlation during resting state and during a social performance task in high (HSA) versus low (LSA) socially anxious females. Participants performed a social performance task in which they first watched and evaluated a video of a peer, and then prepared their own speech. They believed that their speech would be videotaped and evaluated by a peer. We found that HSA participants showed significant negative delta-beta correlation as compared to LSA participants during both anticipation of and recovery from the stressful social situation. This negative delta-beta correlation might reflect increased activity in subcortical brain regions and decreased activity in cortical brain regions. As we hypothesized, no group differences in delta-beta correlation were found during the resting state. This could indicate that a certain level of stress is needed to find EEG measures of social anxiety. As for frontal alpha asymmetry, we did not find any group differences. The present frontal alpha asymmetry results are discussed in relation to the evident inconsistencies in the frontal alpha asymmetry literature. Together, our results suggest that delta-beta correlation is a putative EEG measure of social anxiety.

  11. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory

    PubMed Central

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-01-01

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain. PMID:28266595

  12. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory.

    PubMed

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-03-07

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain.

  13. Expectancy of pain is influenced by motor preparation: a high-resolution EEG study of cortical alpha rhythms.

    PubMed

    Babiloni, Claudio; Brancucci, Alfredo; Capotosto, Paolo; Arendt-Nielsen, Lars; Chen, Andrew C N; Rossini, Paolo Maria

    2005-04-01

    This high-resolution electroencephalographic (EEG) study on alpha event-related desynchronization (ERD) evaluated whether anticipatory activity precedes a sensorimotor interaction induced by concomitant painful stimuli and sensorimotor demand. An omitted-stimulus paradigm induced the expectancy of the painful stimulation at the left hand. In the experimental condition, the painful stimulation was associated with a visual go/no-go task triggering right-hand movements. Two control conditions manipulated the painful sensorimotor interaction variable. Compared with the control conditions, the expectancy of the painful sensorimotor interaction increased the high-band alpha EEG oscillations over the right primary sensorimotor cortex contralateral to the nociceptive stimuli and, to a lesser extent, over the centroparietal midline. These findings suggest that concomitant painful stimuli and simple sensorimotor go/no-go demands affect anticipatory activity as revealed by alpha ERD.

  14. Is the relationship between frontal EEG alpha asymmetry and depression mediated by implicit or explicit self-esteem?

    PubMed

    De Raedt, Rudi; Franck, Erik; Fannes, Katrien; Verstraeten, Edwin

    2008-01-01

    A robust physiological finding is a higher relative left sided activity in the prefrontal cortex during the experience of positive approach related emotions and a higher relative right sided activity during the experience of negative withdrawal related emotions. Since self-esteem can be conceptualized within a framework of approach/withdrawal tendencies, the present study aimed at investigating if the relation between frontal EEG alpha asymmetry and depressive symptoms is mediated by implicit or explicit self-esteem. Self-esteem was measured by questionnaires (explicit) and in an indirect way (implicit). The mediation analyses showed that only explicit self-esteem acted as a partial mediator in the path from EEG alpha asymmetry to depression.

  15. Motor and attentional mechanisms involved in social interaction--evidence from mu and alpha EEG suppression.

    PubMed

    Perry, Anat; Stein, Libi; Bentin, Shlomo

    2011-10-01

    Mu rhythms are EEG oscillations in the 8-13 Hz recorded at sites located roughly over the sensory-motor cortex. There is reliable evidence that the amplitude of mu rhythms is reduced when the participant performs a motor act (mu suppression). Recent studies found mu suppression not only in response to actual movements but also while the participant observes actions executed by someone else. This finding putatively associates the mu suppression to the activity of a mirror neurons system which, in humans, has been suggested to contribute to social skills. In the present study we explored the effects of different levels of social interaction on mu suppression. Participants observed dynamic displays of hand gestures performing actions used in the Rock-Scissors-Paper game. In different blocks, participants passively viewed identical video clips with no game context and in the context of a game, or while being actually engaged in the game either by imagining actions or by actual playing. As a baseline for calculating mu suppression we used a dynamic display of a rolling ball. In addition, to isolate the social aspect of the actual movements, participants performed the same acts outside the game context. Mu suppression was larger while participants were engaged in the social game than when they passively looked at the "opponent" actions or when they performed movements without the game context. This effect was found while viewing the opponent play as well as while actually playing, which supports the view that mu suppression is affected not only by motion, but also by the social context of the motion. However, we did not find differences in mu suppression between perception segments in which the participant did not actually play. Furthermore, in all perception segments occipital alpha suppression was more robust than mu suppression suggesting the involvement of a strong attentional component. While actually playing, however, mu suppression was stronger than alpha

  16. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study.

    PubMed

    Sonnleitner, Andreas; Treder, Matthias Sebastian; Simon, Michael; Willmann, Sven; Ewald, Arne; Buchner, Axel; Schrauf, Michael

    2014-01-01

    Driver distraction is responsible for a substantial number of traffic accidents. This paper describes the impact of an auditory secondary task on drivers' mental states during a primary driving task. N=20 participants performed the test procedure in a car following task with repeated forced braking on a non-public test track. Performance measures (provoked reaction time to brake lights) and brain activity (EEG alpha spindles) were analyzed to describe distracted drivers. Further, a classification approach was used to investigate whether alpha spindles can predict drivers' mental states. Results show that reaction times and alpha spindle rate increased with time-on-task. Moreover, brake reaction times and alpha spindle rate were significantly higher while driving with auditory secondary task opposed to driving only. In single-trial classification, a combination of spindle parameters yielded a median classification error of about 8% in discriminating the distracted from the alert driving. Reduced driving performance (i.e., prolonged brake reaction times) during increased cognitive load is assumed to be indicated by EEG alpha spindles, enabling the quantification of driver distraction in experiments on public roads without verbally assessing the drivers' mental states.

  17. EEG alpha oscillations during the performance of verbal creativity tasks: differential effects of sex and verbal intelligence.

    PubMed

    Fink, Andreas; Neubauer, Aljoscha C

    2006-10-01

    Task-related power changes in the EEG alpha band were analyzed in 31 participants (17 males and 14 females) during performance of two verbal creativity tasks. Participants were confronted with verbal problems that are in need of explanation (insight problems) and utopian situations that will actually never happen. In both tasks they were instructed to generate as many but also as unusual, unique or original ideas as possible. To assess brain responses that come along with highly original ideas, individual responses were divided into more and less original ideas (within each participant). Creative problem solving was generally accompanied by lower levels of cortical arousal (i.e., increases in alpha power from a pre-stimulus reference to an activation interval). Additionally, more original (vs. less original) responses were associated with a stronger task-related alpha synchronization in posterior (particularly centroparietal) cortices. Task-related alpha power changes during creative problem solving were also moderated by verbal IQ and sex.

  18. Effects of Instructions and Biofeedback on EEG-Alpha Production and the Effects of EEG-Alpha Biofeedback Training for Controlling Arousal in a Subsequent Stressful Situation.

    ERIC Educational Resources Information Center

    Holmes, David S.; And Others

    1980-01-01

    Results indicate that the instructions (and related information concerning alpha) rather than the biofeedback are critical in alpha biofeedback training and that this training does not appear to have utility for controlling arousal under stress. (Author)

  19. Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy

    ERIC Educational Resources Information Center

    Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.

    2014-01-01

    Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…

  20. Genetic and Environmental Influences on Frontal EEG Asymmetry and Alpha Power in 9–10 Year Old Twins

    PubMed Central

    Gao, Yu; Tuvblad, Catherine; Raine, Adrian; Lozano, Dora I.; Baker, Laura A.

    2008-01-01

    Modest genetic influences on frontal EEG asymmetry have been found in adults, but little is known about its genetic origins in children. Resting frontal asymmetry and alpha power were examined in 951 9–10-year-old twins. Results showed that in both males and females: (1) a modest but significant amount of variance in frontal asymmetry was accounted for by genetic factors (11–27%) with the remainder accounted for by non-shared environmental influences, and (2) alpha power were highly heritable, with 70–85% of the variance accounted for by genetic factors. Results suggest that the genetic architecture of frontal asymmetry and alpha power in late childhood are similar to that in adulthood and that the high non-shared environmental influences on frontal asymmetry may reflect environmentally-influenced individual differences in the maturation of frontal cortex as well as state-dependent influences on specific measurements. PMID:19386046

  1. Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks.

    PubMed

    Mathewson, Kyle E; Basak, Chandramallika; Maclin, Edward L; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele

    2012-12-01

    We hypothesized that control processes, as measured using electrophysiological (EEG) variables, influence the rate of learning of complex tasks. Specifically, we measured alpha power, event-related spectral perturbations (ERSPs), and event-related brain potentials during early training of the Space Fortress task, and correlated these measures with subsequent learning rate and performance in transfer tasks. Once initial score was partialled out, the best predictors were frontal alpha power and alpha and delta ERSPs, but not P300. By combining these predictors, we could explain about 50% of the learning rate variance and 10%-20% of the variance in transfer to other tasks using only pretraining EEG measures. Thus, control processes, as indexed by alpha and delta EEG oscillations, can predict learning and skill improvements. The results are of potential use to optimize training regimes.

  2. A human-mouse chimera of the alpha3alpha4alpha5(IV) collagen protomer rescues the renal phenotype in Col4a3-/- Alport mice.

    PubMed

    Heidet, Laurence; Borza, Dorin-Bogdan; Jouin, Mélanie; Sich, Mireille; Mattei, Marie-Geneviève; Sado, Yoshikazu; Hudson, Billy G; Hastie, Nicholas; Antignac, Corinne; Gubler, Marie-Claire

    2003-10-01

    Collagen IV is a major structural component of basement membranes. In the glomerular basement membrane (GBM) of the kidney, the alpha3, alpha4, and alpha5(IV) collagen chains form a distinct network that is essential for the long-term stability of the glomerular filtration barrier, and is absent in most patients affected with Alport syndrome, a progressive inherited nephropathy associated with mutation in COL4A3, COL4A4, or COL4A5 genes. To investigate, in vivo, the regulation of the expression, assembly, and function of the alpha3alpha4alpha5(IV) protomer, we have generated a yeast artificial chromosome transgenic line of mice carrying the human COL4A3-COL4A4 locus. Transgenic mice expressed the human alpha3 and alpha4(IV) chains in a tissue-specific manner. In the kidney, when expressed onto a Col4a3(-/-) background, the human alpha3(IV) chain restored the expression of and co-assembled with the mouse alpha4 and alpha5(IV) chains specifically at sites where the human alpha3(IV) was expressed, demonstrating that the expression of all three chains is required for network assembly. The co-assembly of the human and mouse chains into a hybrid network in the GBM restores a functional GBM and rescues the Alport phenotype, providing further evidence that defective assembly of the alpha3-alpha4-alpha5(IV) protomer, caused by mutations in any of the three chains, is the pathogenic mechanism responsible for the disease. This line of mice, humanized for the alpha3(IV) collagen chain, will also provide a valuable model for studying the pathogenesis of Goodpasture syndrome, an autoimmune disease caused by antibodies against this chain.

  3. Audio-Visual and Autogenic Relaxation Alter Amplitude of Alpha EEG Band, Causing Improvements in Mental Work Performance in Athletes.

    PubMed

    Mikicin, Mirosław; Kowalczyk, Marek

    2015-09-01

    The aim of the present study was to investigate the effect of regular audio-visual relaxation combined with Schultz's autogenic training on: (1) the results of behavioral tests that evaluate work performance during burdensome cognitive tasks (Kraepelin test), (2) changes in classical EEG alpha frequency band, neocortex (frontal, temporal, occipital, parietal), hemisphere (left, right) versus condition (only relaxation 7-12 Hz). Both experimental (EG) and age-and skill-matched control group (CG) consisted of eighteen athletes (ten males and eight females). After 7-month training EG demonstrated changes in the amplitude of mean electrical activity of the EEG alpha bend at rest and an improvement was significantly changing and an improvement in almost all components of Kraepelin test. The same examined variables in CG were unchanged following the period without the intervention. Summing up, combining audio-visual relaxation with autogenic training significantly improves athlete's ability to perform a prolonged mental effort. These changes are accompanied by greater amplitude of waves in alpha band in the state of relax. The results suggest usefulness of relaxation techniques during performance of mentally difficult sports tasks (sports based on speed and stamina, sports games, combat sports) and during relax of athletes.

  4. Association of posterior EEG alpha with prioritization of religion or spirituality: A replication and extension at 20-year follow-up.

    PubMed

    Tenke, Craig E; Kayser, Jürgen; Svob, Connie; Miller, Lisa; Alvarenga, Jorge E; Abraham, Karen; Warner, Virginia; Wickramaratne, Priya; Weissman, Myrna M; Bruder, Gerard E

    2017-03-01

    A prior report (Tenke et al., 2013 Biol. Psychol. 94:426-432) found that participants who rated religion or spirituality (R/S) highly important had greater posterior alpha after 10 years compared to those who did not. Participants who subsequently lowered their rating also had prominent alpha, while those who increased their rating did not. Here we report EEG findings 20 years after initial assessment. Clinical evaluations and R/S ratings were obtained from 73 (52 new) participants in a longitudinal study of family risk for depression. Frequency PCA of current source density transformed EEG concisely quantified posterior alpha. Those who initially rated R/S as highly important had greater alpha compared to those who did not, even if their R/S rating later increased. Furthermore, changes in religious denomination were associated with decreased alpha. Results suggest the possibility of a critical stage in the ontogenesis of R/S that is linked to posterior resting alpha.

  5. A comparison of methods for assessing alpha phase resetting in electrophysiology, with application to intracerebral EEG in visual areas.

    PubMed

    Krieg, Julien; Trébuchon-Da Fonseca, Agnès; Martínez-Montes, Eduardo; Marquis, Patrick; Liégeois-Chauvel, Catherine; Bénar, Christian-G

    2011-03-01

    There are two competing views on the mechanisms underlying the generation of visual evoked potentials/fields in EEG/MEG. The classical hypothesis assumes an additive wave on top of background noise. Another hypothesis states that the evoked activity can totally or partially arise from a phase resetting of the ongoing alpha rhythm. There is no consensus however, on the best tools for distinguishing between these two hypotheses. In this study, we have tested different measures on a large series of simulations under a variety of scenarios, involving in particular trial-to-trial variability and different dynamics of ongoing alpha rhythm. No single measure or set of measures was found to be necessary or sufficient for defining phase resetting in the context of our simulations. Still, simulations permitted to define criteria that were the most reliable in practice for distinguishing additive and phase resetting hypotheses. We have then applied these criteria on intracerebral EEG data recordings in the visual areas during a visual discrimination task. We investigated the intracerebral channels that presented both ERP and ongoing alpha oscillations (n=37). Within these channels, a total of 30% fulfilled phase resetting criteria during the generation of the visual evoked potential, based on criteria derived from simulations. Moreover, 19% of the 37 channels presented dependence of the ERP on the level of pre-stimulus alpha. Only 5% of channels fulfilled both the simulation-related criteria and dependence on baseline alpha level. Our simulation study points out to the difficulty of clearly assessing phase resetting based on observed macroscopic electrophysiological signals. Still, some channels presented an indication of phase resetting in the context of our simulations. This needs to be confirmed by further work, in particular at a smaller recording scale.

  6. Stress, emotion regulation and cognitive performance: the predictive contributions of trait and state relative frontal EEG alpha asymmetry.

    PubMed

    Goodman, Ronald N; Rietschel, Jeremy C; Lo, Li-Chuan; Costanzo, Michelle E; Hatfield, Bradley D

    2013-02-01

    The relationship between trait and state measures of frontal lobe EEG alpha-band asymmetry in regard to indexing the approach-withdrawal dimension of emotion is unclear. The comparative predictive power of these constructs to explain emotion regulation and cognitive performance was examined under varying degrees of emotional challenge. The Capability Model posits the neural underpinnings of the relative difference in electrical activity between the left and right frontal lobes as a situational mechanism possibly indexing prefrontal-amygdalar interactions and psychological state. EEG, skin conductance, heart rate and acoustic startle amplitude were collected during a working memory task under three increasing levels of stress (final level was threat of shock). During threat of shock participants with higher state asymmetry exhibited greater emotion regulation compared to those with lower scores as indexed by significant attenuation of eyeblink startle magnitudes. The trait measure of frontal EEG asymmetry failed to account for significant variability in emotion regulation. Results implicate state-specific relative left frontal lobe activity as having an adaptive role in the regulation of emotion during cognitive challenge, but only under conditions of sufficient stress.

  7. Positive Emotional Experience: Induced by Vibroacoustic Stimulation Using a Body Monochord in Patients with Psychosomatic Disorders: Is Associated with an Increase in EEG-Theta and a Decrease in EEG-Alpha Power.

    PubMed

    Sandler, H; Tamm, S; Fendel, U; Rose, M; Klapp, B F; Bösel, R

    2016-07-01

    Relaxation and meditation techniques are generally characterized by focusing attention, which is associated with an increase of frontal EEG Theta. Some studies on music perception suggest an activation of Frontal Midline Theta during emotionally positive attribution, others display a lateralization of electrocortical processes in the attribution of music induced emotion of different valence. The present study examined the effects of vibroacoustic stimulation using a Body Monochord and the conventional relaxation music from an audio CD on the spontaneous EEG of patients suffering from psychosomatic disorders (N = 60). Each treatment took about 20 min and was presented to the patients in random order. Subjective experience was recorded via self-rating scale. EEG power spectra of the Theta, Alpha-1 and Alpha-2 bands were analysed and compard between the two treatment conditions. There was no lateralization of electrocortical activity in terms of the emotional experience of the musical pieces. A reduction in Alpha-2 power occurred during both treatments. An emotionally positive attribution of the experience of the vibroacoustically induced relaxation state is characterized by a more pronounced release of control. In the context of focused attention this is interpreted as flow experience. The spontaneous EEG showed an increase in Theta power, particularly in the frontal medial and central medial area, and a greater reduction in Alpha-2 power. The intensity of positive emotional feelings during the CD music showed no significant effect on the increase in Theta power.

  8. [EEG correlates of geno-phenotypical features of the brain development in children of the native and newcomers' population of the Russian North-East].

    PubMed

    Soroko, S I; Bekshaev, S S; Rozhkov, V P

    2012-01-01

    Traditional and original methods of EEG analysis were used to study the brain electrical activity maturation in 156 children and adolescents from 7 to 17 years old who represented the native (Koryaks and Evenks) and newcomers' populations living in severe climatic and geographic conditions of the Russian North-East. New data revealing age-, sex- and ethnic-related features in quantitative EEG parameters are presented. Markers are obtained that characterize alterations in the structure of interaction between different EEG rhythms. The results demonstrate age-dependent transformation of this structure separated in time for both different cortical areas and different EEG frequency bands. These alterations show time lag from 2 to 3 years in children of native population compared to the newcomers. The revealed differences are assumed to reflect geno-phenotypical features of morpho-functional CNS development in children of the native and newcomers' population that depend on strong adaptation tension for extreme environmental conditions.

  9. Sensitivity of Alpha and Beta Oscillations to Sensorimotor Characteristics of Action: An EEG Study of Action Production and Gesture Observation

    PubMed Central

    Quandt, Lorna C.; Marshall, Peter J.; Shipley, Thomas F.; Beilock, Sian L.; Goldin-Meadow, Susan

    2012-01-01

    The sensorimotor experiences we gain when performing an action have been found to influence how our own motor systems are activated when we observe others performing that same action. Here we asked whether this phenomenon applies to the observation of gesture. Would the sensorimotor experiences we gain when performing an action on an object influence activation in our own motor systems when we observe others performing a gesture for that object? Participants were given sensorimotor experience with objects that varied in weight, and then observed video clips of an actor producing gestures for those objects. Electroencephalography (EEG) was recorded while participants first observed either an iconic gesture (pantomiming lifting an object) or a deictic gesture (pointing to an object) for an object, and then grasped and lifted the object indicated by the gesture. We analyzed EEG during gesture observation to determine whether oscillatory activity was affected by the observer’s sensorimotor experiences with the object represented in the gesture. Seeing a gesture for an object previously experienced as light was associated with a suppression of power in alpha and beta frequency bands, particularly at posterior electrodes. A similar pattern was found when participants lifted the light object, but over more diffuse electrodes. Moreover, alpha and beta bands at right parieto-occipital electrodes were sensitive to the type of gesture observed (iconic vs. deictic). These results demonstrate that sensorimotor experience with an object affects how a gesture for that object is processed, as measured by the gesture-observer’s EEG, and suggest that different types of gestures recruit the observer’s own motor system in different ways. PMID:22910276

  10. Alpha-1-antitrypsin phenotypes in Saudi Arabia: A study in the central province.

    PubMed

    Warsy, A S; El-Hazmi, M A; Sedrani, S H; Kinhal, M

    1991-03-01

    This study was conducted on 204 plasma samples obtained from Saudis living in the central province of Saudi Arabia, to determine the prevalence of alpha-1-antitrypsin (alpha1AT) phenotypes. The alpha1AT phenotypes were separated by isoelectric focusing on ampholine gels (pH 4-5). The prevalences of PiMM, MS, MZ, SZ, and ZZ were 0.8676, 0.0931, 0.0245, 0.0098, and 0.0049, respectively. The gene frequencies of the alpha1AT variants, i.e.., PiM, PiS, and PiZ, were 0.9265, 0.0515, 0.022, respectively. We describe and compare our results in a Saudi population with those reported for other populations.

  11. Differential interaction between iron and mutant alpha-synuclein causes distinctive Parkinsonian phenotypes in Drosophila.

    PubMed

    Zhu, Zhou-Jing; Wu, Ka-Chun; Yung, Wing-Ho; Qian, Zhong-Ming; Ke, Ya

    2016-04-01

    Alpha-synuclein aggregation is the central hallmark of both sporadic and familial Parkinson's disease (PD). Patients with different PD-causing genetic defects of alpha-synuclein usually show distinctive clinical features that are atypical to sporadic PD. Iron accumulation is invariably found in PD. Recent studies showed that mutant and wild-type alpha-synuclein may have differential interaction with iron and mutant alpha-synuclein toxicity could be preferentially exacerbated by iron. We hence hypothesized that iron overload could selectively influence mutant alpha-synuclein toxicity and disease phenotypes. To test the hypothesis, we investigated if Drosophila melanogaster over-expressing A53T, A30P, and wild-type (WT) alpha-synuclein have different responses to iron treatment. We showed that iron treatment induced similar reduction of survival rate in all flies but induced a more severe motor decline in A53T and A30P mutant alpha-synuclein expressing flies, suggesting interaction between mutant alpha-synuclein and iron. Although no significant difference in total head iron content was found among these flies, we demonstrated that iron treatment induced selective DA neuron loss in motor-related PPM3 cluster only in the flies that express A53T and A30P mutant alpha-synuclein. We provided the first in vivo evidence that iron overload could induce distinctive neuropathology and disease phenotypes in mutant but not WT alpha-synuclein expressing flies, providing insights to the cause of clinical features selectively exhibited by mutant alpha-synuclein carriers.

  12. Phenotypic classification of male pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency

    SciTech Connect

    Sinnecker, G.H.G; Hiort, O.; Kruse, K.; Dibbelt, L.

    1996-05-03

    Conversion of testosterone (T) to dihydrotestosterone (DHT) in genital tissue is catalysed by the enzyme 5{alpha}-reductase 2, which is encoded by the SRD5A2 gene. The potent androgen DHT is required for full masculinization of the external genitalia. Mutations of the SRD5A2 gene inhibit enzyme activity, diminish DHT formation, and hence cause masculinization defects of varying degree. The classical syndrome, formerly described as pseudovaginal perineoscrotal hypospadias, is characterized by a predominantly female phenotype at birth and significant virilization without gynecomastia at puberty. We investigated nine patients with steroid 5{alpha}-reductase 2 deficiency (SRD). T/DHT-ratios were highly increased in the classical syndrome, but variable in the less severe affected patients. Mutations in the SRD5A2 gene had been characterized using PCR-SSCP analysis and direct DNA sequencing. A small deletion was encountered in two patients, while all other patients had single base mutations which result in amino acid substitutions. We conclude that phenotypes may vary widely in patients with SRD5A2 gene mutations spanning the whole range from completely female to normal male without distinctive clinical signs of the disease. Hence, steroid 5{alpha}-reductase deficiency should be considered not only in sex reversed patients with female or ambiguous phenotypes, but also in those with mild symptoms of undermasculinization as encountered in patients with hypospadias and/or micropenis. A classification based on the severity of the masculinization defect may be used for correlation of phenotypes with enzyme activities and genotypes, and for comparisons of phenotypes between different patients as the basis for clinical decisions to be made in patients with pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency. 22 refs., 2 figs., 2 tabs.

  13. Alpha-locus hexosaminidase genetic compound with juvenile gangliosidosis phenotype: clinical, genetic, and biochemical studies.

    PubMed Central

    Johnson, W G; Cohen, C S; Miranda, A F; Waran, S P; Chutorian, A M

    1980-01-01

    A 3-year-old boy developed progressive neurological deterioration in his third year, characterized by dementia, ataxia, myoclonic jerks, and bilateral macular cherry-red spots. Hexosaminidase A (HEX A) was partially decreased in the patient's serum, leukocytes, and cultured skin fibroblasts. Hexosaminidase was studied in serum and leukocytes from family members. Four members of the paternal branch appeared to be carriers of classical infantile Tay-Sachs allele, HEX alpha 2, probably receiving the gene from one great-grandparent of Ashkenazi origin. In the maternal branch, no one was a carrier of classical infantile Tay-Sachs disease, but five individuals were carriers of a milder alpha-locus defect. The patient, therefore, was a genetic compound of two different alpha-locus hexosaminidase mutations. At least 21 families with late-infantile or juvenile GM2 gangliosidosis have been reported, 18 of them with alpha-locus mutations, and three with beta-locus mutations. Genetic compounds of hexosaminidase have been reported in at least seven families, five with alpha-locus mutations and two with beta-locus mutations. The compound had the phenotype of infantile Tay-Sachs disease in one family, infantile Sandhoff disease in another, and the normal phenotype in the rest. PMID:6772023

  14. Effects of Heart Rate Variability Biofeedback on EEG Alpha Asymmetry and Anxiety Symptoms in Male Athletes: A Pilot Study.

    PubMed

    Dziembowska, Inga; Izdebski, Paweł; Rasmus, Anna; Brudny, Janina; Grzelczak, Marta; Cysewski, Piotr

    2016-06-01

    Heart rate variability biofeedback (HRV-BFB) has been shown as useful tool to manage stress in various populations. The present study was designed to investigate whether the biofeedback-based stress management tool consisting of rhythmic breathing, actively self-generated positive emotions and a portable biofeedback device induce changes in athletes' HRV, EEG patterns, and self-reported anxiety and self-esteem. The study involved 41 healthy male athletes, aged 16-21 (mean 18.34 ± 1.36) years. Participants were randomly divided into two groups: biofeedback and control. Athletes in the biofeedback group received HRV biofeedback training, athletes in the control group didn't receive any intervention. During the randomized controlled trial (days 0-21), the mean anxiety score declined significantly for the intervention group (change-4 p < 0.001) but not for the control group (p = 0.817). In addition, as compared to the control, athletes in biofeedback group showed substantial and statistically significant improvement in heart rate variability indices and changes in power spectra of both theta and alpha brain waves, and alpha asymmetry. These changes suggest better self-control in the central nervous system and better flexibility of the autonomic nervous system in the group that received biofeedback training. A HRV biofeedback-based stress management tool may be beneficial for stress reduction for young male athletes.

  15. Pulsed Out of Awareness: EEG Alpha Oscillations Represent a Pulsed-Inhibition of Ongoing Cortical Processing

    PubMed Central

    Mathewson, Kyle E.; Lleras, Alejandro; Beck, Diane M.; Fabiani, Monica; Ro, Tony; Gratton, Gabriele

    2011-01-01

    Alpha oscillations are ubiquitous in the brain, but their role in cortical processing remains a matter of debate. Recently, evidence has begun to accumulate in support of a role for alpha oscillations in attention selection and control. Here we first review evidence that 8–12 Hz oscillations in the brain have a general inhibitory role in cognitive processing, with an emphasis on their role in visual processing. Then, we summarize the evidence in support of our recent proposal that alpha represents a pulsed-inhibition of ongoing neural activity. The phase of the ongoing electroencephalography can influence evoked activity and subsequent processing, and we propose that alpha exerts its inhibitory role through alternating microstates of inhibition and excitation. Finally, we discuss evidence that this pulsed-inhibition can be entrained to rhythmic stimuli in the environment, such that preferential processing occurs for stimuli at predictable moments. The entrainment of preferential phase may provide a mechanism for temporal attention in the brain. This pulsed inhibitory account of alpha has important implications for many common cognitive phenomena, such as the attentional blink, and seems to indicate that our visual experience may at least some times be coming through in waves. PMID:21779257

  16. Brief Report: Reduced Temporal-Central EEG Alpha Coherence during Joint Attention Perception in Adolescents with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jaime, Mark; McMahon, Camilla M.; Davidson, Bridget C.; Newell, Lisa C.; Mundy, Peter C.; Henderson, Heather A.

    2016-01-01

    Although prior studies have demonstrated reduced resting state EEG coherence in adults with autism spectrum disorder (ASD), no studies have explored the nature of EEG coherence during joint attention. We examined the EEG coherence of the joint attention network in adolescents with and without ASD during congruent and incongruent joint attention…

  17. Evidence for a dopaminergic link between working memory and agentic extraversion: an analysis of load-related changes in EEG alpha 1 activity.

    PubMed

    Chavanon, Mira-Lynn; Wacker, Jan; Leue, Anja; Stemmler, Gerhard

    2007-01-01

    Several lines of research point to the possibility of a partially overlapping dopaminergic foundation of the trait of agentic extraversion and individual differences in working memory functioning. This study investigates interactive effects of agentic extraversion and dopamine on spectral EEG measures of working memory. Using EEG activity in the alpha 1 band (8-10.25 Hz) as a dependent variable, we tested in a randomized double-blind design the effects of the D2-dopamine antagonist sulpiride during the performance of four load-graded n-back working memory tasks in participants high versus low in agentic extraversion. We expected extraversion-related differences in the load-responsivity pattern to be reversed by sulpiride, and the alpha 1 anterior-posterior difference actually depicted this reversal effect. However, in contrast to our expectations this effect was largely due to parietal instead of frontal sites.

  18. Changes in alpha band activity associated with application of the compression of fourth ventricular (CV-4) osteopathic procedure: a qEEG pilot study.

    PubMed

    Miana, Luiz; Bastos, Victor Hugo do Vale; Machado, Sergio; Arias-Carrión, Oscar; Nardi, Antonio Egidio; Almeida, Laís; Ribeiro, Pedro; Machado, Dionis; King, Hollis; Silva, Julio Guilherme

    2013-07-01

    The compression of the fourth ventricle (CV-4) is one of the more well known procedures in the cranial manipulation curriculum and practice. Cranial manipulation has received criticism because of the subtle, difficult to learn techniques, controversy over whether or not cranial bone structures move, and what if any clinical effects have been shown. The aim of this study was to measure the effects of CV-4 in 10 healthy subjects through quantitative electroencephalography (qEEG), specifically in alpha band. Participants were randomly distributed in control, sham-CV4 and CV4 conditions using a cross-over design. qEEG activity was recorded for each of the 10 subjects in each of the 3 conditions. There was a significant increase in the alpha absolute power between pre and post in the CV-4 condition. There appears to be potential for understanding the effect of the CV-4 if these finding are replicated in further clinical trials.

  19. Phenotypic variation in a family with partial androgen insensitivity syndrome explained by differences in 5alpha dihydrotestosterone availability.

    PubMed

    Boehmer, A L; Brinkmann, A O; Nijman, R M; Verleun-Mooijman, M C; de Ruiter, P; Niermeijer, M F; Drop, S L

    2001-03-01

    Mutations in the androgen receptor (AR) gene result in a wide range of phenotypes of the androgen insensitivity syndrome (AIS). Inter- and intrafamilial differences in the phenotypic expression of identical AR mutations are known, suggesting modifying factors in establishing the phenotype. Two 46,XY siblings with partial AIS sharing the same AR gene mutation, R846H, but showing very different phenotypes are studied. Their parents are first cousins. One sibling with grade 5 AIS was raised as a girl; the other sibling with grade 3 AIS was raised as a boy. In both siblings serum levels of hormones were measured; a sex hormone-binding globulin (SHBG) suppression test was completed; and mutation analysis of the AR gene, Scatchard, and SDS-PAGE analysis of the AR protein was performed. Furthermore, 5alpha-reductase 2 expression and activity in genital skin fibroblasts were investigated, and the 5alpha-reductase 2 gene was sequenced. The decrease in SHBG serum levels in a SHBG suppression test did not suggest differences in androgen sensitivity as the cause of the phenotypic variation. Also, androgen binding characteristics of the AR, AR expression levels, and the phosphorylation pattern of the AR on hormone binding were identical in both siblings. However, 5alpha-reductase 2 activity was normal in genital skin fibroblasts from the phenotypic male patient but undetectable in genital skin fibroblasts from the phenotypic female patient. The lack of 5alpha-reductase 2 activity was due to absent or reduced expression of 5alpha-reductase 2 in genital skin fibroblasts from the phenotypic female patient. Exon and flanking intron sequences of the 5alpha-reductase 2 gene showed no mutations in either sibling. Additional intragenic polymorphic marker analysis gave no evidence for different inherited alleles for the 5alpha-reductase 2 gene in the two siblings. Therefore, the absent or reduced expression of 5alpha-reductase 2 is likely to be additional to the AIS. Distinct phenotypic

  20. Pupil Dilation and EEG Alpha Frequency Band Power Reveal Load on Executive Functions for Link-Selection Processes during Text Reading.

    PubMed

    Scharinger, Christian; Kammerer, Yvonne; Gerjets, Peter

    2015-01-01

    Executive working memory functions play a central role in reading comprehension. In the present research we were interested in additional load imposed on executive functions by link-selection processes during computer-based reading. For obtaining process measures, we used a methodology of concurrent electroencephalographic (EEG) and eye-tracking data recording that allowed us to compare epochs of pure text reading with epochs of hyperlink-like selection processes in an online reading situation. Furthermore, this methodology allowed us to directly compare the two physiological load-measures EEG alpha frequency band power and pupil dilation. We observed increased load on executive functions during hyperlink-like selection processes on both measures in terms of decreased alpha frequency band power and increased pupil dilation. Surprisingly however, the two measures did not correlate. Two additional experiments were conducted that excluded potential perceptual, motor, or structural confounds. In sum, EEG alpha frequency band power and pupil dilation both turned out to be sensitive measures for increased load during hyperlink-like selection processes in online text reading.

  1. EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder.

    PubMed

    Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L

    2013-06-01

    Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.

  2. Long-Term Evolution Electromagnetic Fields Exposure Modulates the Resting State EEG on Alpha and Beta Bands.

    PubMed

    Yang, Lei; Chen, Qinghua; Lv, Bin; Wu, Tongning

    2016-04-25

    Long-term evolution (LTE) wireless telecommunication systems are widely used globally, which has raised a concern that exposure to electromagnetic fields (EMF) emitted from LTE devices can change human neural function. To date, few studies have been conducted on the effect of exposure to LTE EMF. Here, we evaluated the changes in electroencephalogram (EEG) due to LTE EMF exposure. An LTE EMF exposure system with a stable power emission, which was equivalent to the maximum emission from an LTE mobile phone, was used to radiate the subjects. Numerical simulations were conducted to ensure that the specific absorption rate in the subject's head was below the safety limits. Exposure to LTE EMF reduced the spectral power and the interhemispheric coherence in the alpha and beta bands of the frontal and temporal brain regions. No significant change was observed in the spectral power and the inter-hemispheric coherence in different timeslots during and after the exposure. These findings also corroborated those of our previous study using functional magnetic resonant imaging.

  3. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network.

    PubMed

    Mayhew, Stephen D; Ostwald, Dirk; Porcaro, Camillo; Bagshaw, Andrew P

    2013-08-01

    The human brain is continually, dynamically active and spontaneous fluctuations in this activity play a functional role in affecting both behavioural and neuronal responses. However, the mechanisms through which this occurs remain poorly understood. Simultaneous EEG-fMRI is a promising technique to study how spontaneous activity modulates the brain's response to stimulation, as temporal indices of ongoing cortical excitability can be integrated with spatially localised evoked responses. Here we demonstrate an interaction between the ongoing power of the electrophysiological alpha oscillation and the magnitude of both positive (PBR) and negative (NBR) fMRI responses to two contrasts of visual checkerboard reversal. Furthermore, the amplitude of pre-stimulus EEG alpha-power significantly modulated the amplitude and shape of subsequent PBR and NBR to the visual stimulus. A nonlinear reduction of visual PBR and an enhancement of auditory NBR and default-mode network NBR were observed in trials preceded by high alpha-power. These modulated areas formed a functionally connected network during a separate resting-state recording. Our findings suggest that the "baseline" state of the brain exhibits considerable trial-to-trial variability which arises from fluctuations in the balance of cortical inhibition/excitation that are represented by respective increases/decreases in the power of the EEG alpha oscillation. The consequence of this spontaneous electrophysiological variability is modulated amplitudes of both PBR and NBR to stimulation. Fluctuations in alpha-power may subserve a functional relationship in the visual-auditory network, acting as mediator for both short and long-range cortical inhibition, the strength of which is represented in part by NBR.

  4. Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements.

    PubMed

    Yuan, Han; Liu, Tao; Szarkowski, Rebecca; Rios, Cristina; Ashe, James; He, Bin

    2010-02-01

    Similar to the occipital alpha rhythm, electroencephalographic (EEG) signals in the alpha- and beta-frequency bands can be suppressed by movement or motor imagery and have thus been thought to represent the "idling state" of the sensorimotor cortex. A negative correlation between spontaneous alpha EEG and blood-oxygen-level-dependent (BOLD) signals has been reported in combined EEG and fMRI (functional Magnetic Resonance Imaging) experiments when subjects stayed at the resting state or alternated between the resting state and a task. However, the precise nature of the task-induced alpha modulation remains elusive. It was not clear whether alpha/beta rhythm suppressions may co-vary with BOLD when conducting tasks involving varying activations of the cortex. Here, we quantified the task-evoked responses of BOLD and alpha/beta-band power of EEG directly in the cortical source domain, by using source imaging technology, and examined their covariation across task conditions in a mixed block and event-related design. In this study, 13 subjects performed tasks of right-hand, right-foot or left-hand movement and motor imagery when EEG and fMRI data were separately collected. Task-induced increase of BOLD signal and decrease of EEG amplitudes in alpha and beta bands were shown to be co-localized at the somatotopic sensorimotor cortex. At the corresponding regions, the reciprocal changes of the two signals co-varied in the magnitudes across imagination and movement conditions. The spatial correspondence and negative covariation between the two measurements were further shown to exist at somatotopic brain regions associated with different body parts. These results suggest an inverse functional coupling relationship between task-induced changes of BOLD and low-frequency EEG signals.

  5. Reciprocal dynamics of EEG alpha and delta oscillations during spontaneous blinking at rest: a survey on a default mode-based visuo-spatial awareness.

    PubMed

    Bonfiglio, Luca; Sello, Stefano; Carboncini, Maria Chiara; Arrighi, Pieranna; Andre, Paolo; Rossi, Bruno

    2011-04-01

    By means of a narrowband wavelet analysis (0.5-6Hz), EEG delta event-related oscillations (EROs), both time- and phase-locked to spontaneous blinking (delta blink-related oscillations or delta BROs), have recently been demonstrated. On the basis of their spatiotemporal characteristics, delta BROs have been proposed as being involved in an automatic mechanism of maintaining awareness in a visuo-spatial context. The aim of the present study was: a) to investigate whether spontaneous blinking was also able to modulate alpha oscillations and, if so, b) whether this modulation was consistent with delta BROs, in order c) to acquire additional information for a better understanding of the cognitive phenomena underlying blinking. Using a broadband (0.5-100 Hz) continuous wavelet transform (CWT), we analysed a total of 189 three-second EEG epochs time-locked to the blinks of seven healthy volunteers. The EEG signals were submitted both to band-pass filtered cross-trial averaging (to obtain frequency-specific BROs) and to alpha event-related synchronization/desynchronization (i.e., blink-related synchronization/desynchronization, BRS/BRD). The alpha oscillations showed: a) an early BRS; b) a BRD in the same temporal window of the delta BROs and, c) a late BRS. We postulate that: a) the early BRS represents the short-term memory maintenance of the last visually perceived trace of the surroundings; b) the alpha BRD is associated with the comparison between the newly perceived image of the environment and its mnestic representation, and, lastly, c) the late BRS is connected with neuronal recovery phenomena.

  6. Mutation in collagen II alpha 1 isoforms delineates Stickler and Wagner syndrome phenotypes

    PubMed Central

    Tran-Viet, Khanh-Nhat; Soler, Vincent; Quiette, Valencia; Powell, Caldwell; Yanovitch, Tammy; Metlapally, Ravikanth; Luo, Xiaoyan; Katsanis, Nicholas; Nading, Erica

    2013-01-01

    Purpose Stickler syndrome is an arthro-ophthalmopathy with phenotypic overlap with Wagner syndrome. The common Stickler syndrome type I is inherited as an autosomal dominant trait, with causal mutations in collagen type II alpha 1 (COL2A1). Wagner syndrome is associated with mutations in versican (VCAN), which encodes for a chondroitin sulfate proteoglycan. A three-generation Caucasian family variably diagnosed with either syndrome was screened for sequence variants in the COL2A1 and VCAN genes. Methods Genomic DNA samples derived from saliva were collected from all family members (six affected and four unaffected individuals). Complete sequencing of COL2A1 and VCAN was performed on two affected individuals. Direct sequencing of remaining family members was conducted if the discovered variants followed segregation. Results A base-pair substitution (c.258C>A) in exon 2 of COL2A1 cosegregated with familial disease status. This known mutation occurs in a highly conserved site that causes a premature stop codon (p.C86X). The mutation was not seen in 1,142 ethnically matched control DNA samples. Conclusions Premature stop codons in COL2A1 exon 2 lead to a Stickler syndrome type I ocular-only phenotype with few or no systemic manifestations. Mutation screening of COL2A1 exon 2 in families with autosomal dominant vitreoretinopathy is important for accurate clinical diagnosis. PMID:23592912

  7. "I am resting but rest less well with you." The moderating effect of anxious attachment style on alpha power during EEG resting state in a social context.

    PubMed

    Verbeke, Willem J M I; Pozharliev, Rumen; Van Strien, Jan W; Belschak, Frank; Bagozzi, Richard P

    2014-01-01

    We took EEG recordings to measure task-free resting-state cortical brain activity in 35 participants under two conditions, alone (A) or together (T). We also investigated whether psychological attachment styles shape human cortical activity differently in these two settings. The results indicate that social context matters and that participants' cortical activity is moderated by the anxious, but not avoidant attachment style. We found enhanced alpha, beta and theta band activity in the T rather than the A resting-state condition, which was more pronounced in posterior brain regions. We further found a positive correlation between anxious attachment style and enhanced alpha power in the T vs. A condition over frontal and parietal scalp regions. There was no significant correlation between the absolute powers registered in the other two frequency bands and the participants' anxious attachment style.

  8. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression.

    PubMed

    Sangan, Caroline B; Jover, Ramiro; Heimberg, Harry; Tosh, David

    2015-01-05

    There is currently a shortage of organ donors available for pancreatic beta cell transplantation into diabetic patients. An alternative source of beta cells is pre-existing pancreatic cells. While we know that beta cells can arise directly from alpha cells during pancreatic regeneration we do not understand the molecular basis for the switch in phenotype. The aim of the present study was to investigate if hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor essential for a normal beta cell phenotype, could induce the reprogramming of alpha cells towards potential beta cells. We utilised an in vitro model of pancreatic alpha cells, the murine αTC1-9 cell line. We initially characterised the αTC1-9 cell line before and following adenovirus-mediated ectopic expression of HNF4α. We analysed the phenotype at transcript and protein level and assessed its glucose-responsiveness. Ectopic HNF4α expression in the αTC1-9 cell line induced a change in morphology (1.7-fold increase in size), suppressed glucagon expression, induced key beta cell-specific markers (insulin, C-peptide, glucokinase, GLUT2 and Pax4) and pancreatic polypeptide (PP) and enabled the cells to secrete insulin in a glucose-regulated manner. In conclusion, HNF4α reprograms alpha cells to beta-like cells.

  9. Mindfulness-based cognitive therapy (MBCT), cognitive style, and the temporal dynamics of frontal EEG alpha asymmetry in recurrently depressed patients.

    PubMed

    Keune, Philipp M; Bostanov, Vladimir; Hautzinger, Martin; Kotchoubey, Boris

    2011-12-01

    Mindfulness-based cognitive therapy (MBCT), a meditation-based maintenance therapy, reduces the relapse risk in individuals suffering from major depressive disorder (MDD). However, only a few studies investigated the psychophysiological mechanisms underlying this protective effect. We examined effects of MBCT on trait rumination and mindfulness, as indicators of global cognitive style, as well as on residual depressive symptoms in a group of recurrently depressed patients (n=78) in remission. Additionally, alpha asymmetry in resting-state electroencephalogram (EEG) was assessed. Alpha asymmetry has been found to be predictive of affective style and a pattern indicative of stronger relative right-hemispheric anterior cortical activity may represent a trait marker for the vulnerability to develop MDD. In line with previous findings, residual depressive symptoms and trait rumination decreased, whereas trait mindfulness increased following MBCT, while no such changes took place in a wait-list control group. Mean values of alpha asymmetry, on the other hand, remained unaffected by training, and shifted systematically toward a pattern indicative of stronger relative right-hemispheric anterior cortical activity in the whole sample. These findings provide further support for the protective effect of MBCT. In the examined patients who were at an extremely high risk for relapse, however, this effect did not manifest itself on a neurophysiological level in terms of alpha asymmetry, where a shift, putatively indicative of increased vulnerability, was observed.

  10. Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: a study of short-term test-retest reliability.

    PubMed

    Mathewson, Karen J; Hashemi, Ali; Sheng, Bruce; Sekuler, Allison B; Bennett, Patrick J; Schmidt, Louis A

    2015-01-01

    Although regional alpha power and asymmetry measures have been widely used as indices of individual differences in emotional processing and affective style in younger populations, there have been relatively few studies that have examined these measures in older adults. Here, we examined the short-term test-retest reliability of resting regional alpha power (7.5-12.5 Hz) and asymmetry in a sample of 38 active, community-dwelling older adults (M age = 71.2, SD = 6.5 years). Resting electroencephalogram recordings were made before and after a perceptual computer task. Pearson and intra-class correlations indicated acceptable test-retest reliability for alpha power and asymmetry measures in all regions. Interestingly, alpha asymmetry appeared to be less affected by the task than was alpha power. Findings suggest that alpha asymmetry may reflect more enduring, "trait-like" characteristics, while alpha power may reflect more "state-like" processes in older adults.

  11. Phenotypic and genetic correlations between evoked EEG/ERP measures during the response anticipation period of a delayed response task.

    PubMed

    Smit, Dirk J A; Posthuma, Danielle; Boomsma, Dorret I; De Geus, Eco J C

    2009-03-01

    We investigated the relationship between three electrophysiological indices of response anticipation in a spatial delayed response task with a low and high memory load manipulation: a slow cortical potential (SCP), theta desynchronization, and upper alpha synchronization. Individual differences in these three measures were examined in 531 adult twins and siblings. Heritability of the SCP at occipital-parietal leads varied from 30% to 43%. Heritability of upper alpha synchronization (35% to 65%) and theta desynchronization (31% to 50%) was significant at all leads. Theta desynchronization and upper alpha synchronization were significantly correlated (r approximately 43%), but SCP was not correlated with either. The effect of working memory load on all three measures was not heritable. Response anticipation reliably evokes an SCP, upper alpha synchronization and theta desynchronization, but variation in these measures reflects different (genetic) sources.

  12. Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process.

    PubMed

    Roberts, Daniel M; Fedota, John R; Buzzell, George A; Parasuraman, Raja; McDonald, Craig G

    2014-08-01

    Recent work has demonstrated that the occipital-temporal N1 component of the ERP is sensitive to the difficulty of visual discrimination, in a manner that cannot be explained by simple differences in low-level visual features, arousal, or time on task. These observations provide evidence that the occipital-temporal N1 component is modulated by the application of top-down control. However, the timing of this control process remains unclear. Previous work has demonstrated proactive, top-down modulation of cortical excitability for cued spatial attention or feature selection tasks. Here, the possibility that a similar top-down process facilitates performance of a difficult stimulus discrimination task is explored. Participants performed an oddball task at two levels of discrimination difficulty, with difficulty manipulated by modulating the similarity between target and nontarget stimuli. Discrimination processes and cortical excitability were assessed via the amplitude of the occipital-temporal N1 component and prestimulus alpha oscillation of the EEG, respectively. For correct discriminations, prestimulus alpha power was reduced, and the occipital-temporal N1 was enhanced in the hard relative to the easy condition. Furthermore, within the hard condition, prestimulus alpha power was reduced, and the occipital-temporal N1 was enhanced for correct relative to incorrect discriminations. The generation of ERPs contingent on relative prestimulus alpha power additionally suggests that diminished alpha power preceding stimulus onset is related to enhancement of the occipital-temporal N1. As in spatial attention, proactive control appears to enhance cortical excitability and facilitate discrimination performance in tasks requiring nonspatial, feature-based attention, even in the absence of competing stimulus features.

  13. Hb Bronte or alpha93(FG5)Val-->Gly: a new unstable variant of the alpha2-globin gene, associated with a mild alpha(+)-thalassemia phenotype.

    PubMed

    Lacerra, Giuseppina; Testa, Rosario; De Angioletti, Maria; Schilirò, Gino; Carestia, Clementina

    2003-08-01

    We report a new unstable variant identified in three carriers of a family from East Sicily; it was named Hb Bronte after the place from which the family originated. DNA sequencing from nucleotides -181 to +894 (alpha1) and to +884 (alpha2) revealed a GTG-->GGG substitution at codon 93 of the alpha2-globin gene. The MCV and MCH values were at the lower end of the normal range in the carriers. On cation exchange high performance liquid chromatography (HPLC), the Hb A2 level was apparently increased to around 6%, and a small abnormal peak (0.3-0.4%) was detected after Hb A2. Two abnormal bands were detected by cellulose acetate electrophoresis: a major band (about 3-4%) migrated between Hb A and Hb F; a minor band (<1%) migrated between Hb A2 and carbonic anhydrase. Normal values of Hb A2 were detected by DEAE microchromatography. On reversed phase HPLC the variant chain was not detected, and most likely it was eluted with the alpha chain peak. The isopropanol stability test was very slightly positive in the carriers. Hemolytic symptoms were absent with the exception of indirect bilirubin, which was at high borderline in 2/3 carriers. In biosynthesis in vitro, the specific activity of the alpha chains was much higher than that of the beta-globin chains, and the alpha/beta biosynthetic ratio in the mother and proband was of the beta-thalassemia (thal) type (2.24 and 2.54, respectively). Time course experiments showed that the increase of the 3H-specific activity of the peak containing normal and variant alpha chains was not linear and was much higher than that of beta chains; moreover, the alpha/beta biosynthetic ratio varied during the 2 hours incubation.

  14. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm

    PubMed Central

    Jenson, David; Harkrider, Ashley W.; Thornton, David; Bowers, Andrew L.; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required “active” discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral “auditory” alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique. PMID

  15. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm.

    PubMed

    Jenson, David; Harkrider, Ashley W; Thornton, David; Bowers, Andrew L; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required "active" discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral "auditory" alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique.

  16. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency.

    PubMed

    Lansbergen, Marieke M; Arns, Martijn; van Dongen-Boomsma, Martine; Spronk, Desirée; Buitelaar, Jan K

    2011-01-15

    Attention-deficit/hyperactivity disorder (ADHD) was found to be characterized by a deviant pattern of electrocortical activity during resting state, particularly increased theta and decreased beta activity. The first objective of the present study is to confirm whether individuals with slow alpha peak frequency contribute to the finding of increased theta activity in ADHD. The second objective is to explore the relation between resting-state brain oscillations and specific cognitive functions. From 49 boys with ADHD and 49 healthy control boys, resting-state EEG during eyes open and eyes closed was recorded, and a variety of cognitive tasks were administered. Theta and beta power and theta/beta ratio were calculated using both fixed frequency bands and individualized frequency bands. As expected, theta/beta ratio, calculated using fixed frequency bands, was significantly higher in ADHD children than control children. However, this group effect was not significant when theta/beta ratio was assessed using individualized frequency bands. No consistent relation was found between resting-state brain oscillations and cognition. The present results suggest that previous findings of increased theta/beta ratio in ADHD may reflect individuals with slow alpha peak frequencies in addition to individuals with true increased theta activity. Therefore, the often reported theta/beta ratio in ADHD can be considered a non-specific measure combining several distinct neurophysiological subgroups such as frontal theta and slowed alpha peak frequencies. Future research should elucidate the functional role of resting-state brain oscillations by investigating neurophysiological subgroups, which may have a clearer relation to cognitive functions than single frequency bands.

  17. Frontoparietal EEG alpha-phase synchrony reflects differential attentional demands during word recall and oculomotor dual-tasks.

    PubMed

    Kwon, Gusang; Kim, Min-Young; Lim, Sanghyun; Kwon, Hyukchan; Lee, Yong-Ho; Kim, Kiwoong; Lee, Eun-Ju; Suh, Minah

    2015-12-16

    To study the relationship between the varying degrees of cognitive load and long-range synchronization among neural networks, we utilized a dual-task paradigm combining concurrent word recall working memory tasks and oculomotor tasks that differentially activate the common frontoparietal (FP) network. We hypothesized that each dual-task combination would generate differential neuronal activation patterns among long-range connection during word retention period. Given that the FP alpha-phase synchronization is involved in attentional top-down processes, one would expect that the long-range synchronization pattern is affected by the degrees of dual-task demand. We measured a single-trial phase locking value in the alpha frequency (8-12 Hz) with electroencephalography in healthy participants. Single-trial phase locking value characterized the synchronization between two brain signals. Our results revealed that different amounts of FP alpha-phase synchronization were produced by different dual-task combinations, particularly during the early phase of the word retention period. These differences were dependent on the individual's working memory capacity and memory load. Our study shows that during dual-task, each oculomotor task, which is subserved by distinct neural network, generates different modulation patterns on long-range neuronal activation and FP alpha-phase synchronization seems to reflect these differential cognitive loads.

  18. EEG Alpha Production Correlates of Cognitive Style Differences and Recall of Metaphor from Poetry. Technical Report No. 324.

    ERIC Educational Resources Information Center

    Reddix, Michael D.; Dunn, Bruce R.

    Differences in metaphor recall from poetry were investigated using 10 female and 10 male college student subjects hypothesized as having either an analytic or a holistic processing style. Style was determined using bilateral alpha (8-13Hz) scores measured from the cerebral cortex. It was suggested, on the basis of bimodal theory, that holistic…

  19. EEG synchronization and migraine

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.

    2004-03-01

    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.

  20. Fabry disease: thirty-five mutations in the alpha-galactosidase A gene in patients with classic and variant phenotypes.

    PubMed Central

    Eng, C. M.; Ashley, G. A.; Burgert, T. S.; Enriquez, A. L.; D'Souza, M.; Desnick, R. J.

    1997-01-01

    BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy. Images FIG. 2 PMID:9100224

  1. COMT polymorphism modulates the resting-state EEG alpha oscillatory response to acute nicotine in male non-smokers

    PubMed Central

    Bowers, H.; Smith, D.; de la Salle, S.; Choueiry, J.; Impey, D.; Philippe, T.; Dort, H.; Millar, A.; Daigle, M.; Albert, P. R.; Beaudoin, A.; Knott, V.

    2015-01-01

    Performance improvements in cognitive tasks requiring executive functions are evident with nicotinic acetylcholine receptor (nAChR) agonists, and activation of the underlying neural circuitry supporting these cognitive effects is thought to involve dopamine neurotransmission. As individual difference in response to nicotine may be related to a functional polymorphism in the gene encoding catechol-O-methyltransferase (COMT), an enzyme that strongly influences cortical dopamine metabolism, this study examined the modulatory effects of the COMT Val158Met polymorphism on the neural response to acute nicotine as measured with resting-state electroencephalographic (EEG) oscillations. In a sample of 62 healthy non-smoking adult males, a single dose (6 mg) of nicotine gum administered in a randomized, double-blind, placebo-controlled design was shown to affect α oscillatory activity, increasing power of upper α oscillations in frontocentral regions of Met/Met homozygotes and in parietal/occipital regions of Val/Met heterozygotes. Peak α frequency was also found to be faster with nicotine (vs. placebo) treatment in Val/Met heterozygotes, who exhibited a slower α frequency compared to Val/Val homozygotes. The data tentatively suggest that interindividual differences in brain α oscillations and their response to nicotinic agonist treatment are influenced by genetic mechanisms involving COMT. PMID:26096691

  2. An Increase in Alpha Band Frequency in Resting State EEG after Electrical Stimulation of the Ear in Tinnitus Patients—A Pilot Study

    PubMed Central

    Mielczarek, Marzena; Michalska, Joanna; Polatyńska, Katarzyna; Olszewski, Jurek

    2016-01-01

    In our clinic invasive transtympanal promontory positive DC stimulations were first used, with a success rate of 42%. However, non-invasive hydrotransmissive negative DC stimulations are now favored, with improvement being obtained in 37.8% directly after the treatment, and 51.3% in a follow up 1 month after treatment. The further improvement after 1 month may be due to neuroplastic changes at central level as a result of altered peripheral input. The aim of the study was to determine how/whether a single electrical stimulation of the ear influences cortical activity, and whether changes observed in tinnitus after electrical stimulation are associated with any changes in cortical activity recorded in EEG. The study included 12 tinnitus patients (F–6, M-6) divided into two groups. Group I comprised six patients with unilateral tinnitus - unilateral, ipsilateral ES was performed. Group II comprised six patients with bilateral tinnitus—bilateral ES was performed. ES was performed using a custom-made apparatus. The active, silver probe—was immersed inside the external ear canal filled with saline. The passive electrode was placed on the forehead. The stimulating frequency was 250 Hz, the intensity ranged from 0.14 to 1.08 mA. The voltage was kept constant at 3 V. The duration of stimulation was 4 min. The EEG recording (Deymed QEST 32) was performed before and after ES. The patients assessed the intensity of tinnitus on the VAS 1-10. Results: In both groups an improvement in VAS was observed—in group I—in five ears (83.3%), in group II—in seven ears (58.3%). In Group I, a significant increase in the upper and lower limit frequency of alpha band was observed in the central temporal and frontal regions following ES. These changes, however, were not correlated with improvement in tinnitus. No significant changes were observed in the beta and theta bands and in group II. Preliminary results of our research reveal a change in cortical activity after electrical

  3. Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder.

    PubMed

    Kemp, A H; Griffiths, K; Felmingham, K L; Shankman, S A; Drinkenburg, W; Arns, M; Clark, C R; Bryant, R A

    2010-10-01

    The approach-withdrawal and valence-arousal models highlight that specific brain laterality profiles may distinguish depression and anxiety. However, studies remain to be conducted in multiple clinical populations that directly test the diagnostic specificity of these hypotheses. The current study compared electroencephalographic data under resting state, eyes closed conditions in patients with major depressive disorder (MDD) (N=15) and post-traumatic stress disorder (PTSD) (N=14) relative to healthy controls (N=15) to examine the specificity of brain laterality in these disorders. Key findings included (1) reduced left-frontal activity in MDD, (2) a positive correlation between PTSD severity and right-frontal lateralisation, (3) greater activity in PTSD patients relative to MDD within the right-parietotemporal region, and (4) globally increased alpha power in MDD. Findings partially support the diagnostic applicability of the theoretical frameworks. Future studies may benefit from examining task-driven differences between groups.

  4. [Cortical Functional Connectivity during Cued vs. Implicit Modality-Specific Anticipatory Attention: EEG-Source Alpha Coherence Analysis].

    PubMed

    Machinskaya, R I; Talalay, I V; Kurgansky, A V

    2015-01-01

    The brain functional organization was studied in a group of healthy right-handed adults (N= 16, mean age = 23 ± 5.7) during preparation for visual and auditory sensory tasks in two conditions: (1) participants waited for appearance of either a visual or an auditory stimulus after being cued about its sensory modality (the cued anticipatory attention) or (2) they developed implicit anticipation of stimulus in the course of repetitive exposure to the same sequence of visual and auditory stimuli pairs. In both cases, participants were asked to discriminate the temporal order of stimuli presentation within a pair of either visual or auditory modality. The functional connectivity was assessed via alpha coherence computed in the source space for preselected regions of interests. For both visual and auditory modalities, increase of strength of functional links among cortical areas involved in the fronto-parietal attention system is found during the cued attention when compared to nonspecific sustained attention. An increase is also observed in the connection strengths between sensory-specific and associative (parietal and prefrontal) areas. In visual modality, the buildup of implicit anticipation was accompanied by the strengthening of functional links between the ventral premotor cortex and caudal (parietal and occipital) areas of the right hemisphere. In the case of auditory task, the increase of connection strengths within fronto-temporal cortical areas was observed. These areas included the rostral supplementary motor areas, ventral premotor cortices and primary auditory cortices.

  5. EEG during masturbation and ejaculation.

    PubMed

    Graber, B; Rohrbaugh, J W; Newlin, D B; Varner, J L; Ellingson, R J

    1985-12-01

    The occurrence of a distinctive EEG pattern specifically related to sexual arousal and orgasm would provide a reliable and convenient means of identifying such events in the laboratory and would also provide clues to cerebral structures involved in the processes. EEG-polygraph recordings were obtained under rigorously controlled conditions in four normal male subjects during masturbation and ejaculation. The EEG data were subjected to both impressionistic and quantitative analyses. They showed no remarkable changes during the sequence of relevant physiological responses. The sole effect was a slight depression of alpha activity, a well-known nonspecific effect associated with changes in attention and arousal. Examination of the literature shows little agreement among reported results of studies of EEG changes during orgasm. It is likely that at least some reported changes were artifactual. It is concluded that the case for the existence of EEG changes specifically related to sexual arousal and orgasm remains unproven.

  6. Estrogen receptor alpha inhibits senescence-like phenotype and facilitates transformation induced by oncogenic ras in human mammary epithelial cells

    PubMed Central

    Liu, Zhao; Wang, Long; Yang, Junhua; Bandyopadhyay, Abhik; Kaklamani, Virginia; Wang, Shui; Sun, Lu-Zhe

    2016-01-01

    Exposure to estrogen has long been associated with an increased risk of developing breast cancer. However, how estrogen signaling promotes breast carcinogenesis remains elusive. Senescence is known as an important protective response to oncogenic events. We aimed to elucidate the role of estrogen receptor alpha (ERα) on senescence in transformed human mammary epithelial cells and breast cancer cells. Our results show that ectopic expression of oncoprotein H-ras-V12 in immortalized human mammary epithelial cells (HMEC) significantly inhibited the phosphorylation of the retinoblastoma protein (Rb) and increased the activity of the senescence-associated beta-galactosidase (SA-β-Gal). These senescence-like phenotypes were reversed by ectopic expression of ERα. Similar inhibition of the H-ras-V12-induced SA-β-Gal activity by ERα was also observed in the human mammary epithelial MCF-10A cells. Co-expression of ERα and H-ras-V12 resulted in HMEC anchorage-independent growth in vitro and tumor formation in vivo. Furthermore, inhibition of ERα expression induced senescence-like phenotypes in ERα positive human breast cancer cells such as increased activity of SA-β-Gal, decreased phosphorylation of RB, and loss of mitogenic activity. Thus, the suppression of cellular senescence induced by oncogenic signals may be a major mechanism by which ERα promotes breast carcinogenesis. PMID:27259243

  7. Intravenous administration of alpha-1-proteinase inhibitor in patients of PiZ and PiM phenotype. Preliminary report

    SciTech Connect

    Moser, K.M.; Smith, R.M.; Spragg, R.G.; Tisi, G.M.

    1988-06-24

    Nine patients with moderate pulmonary emphysema, six of PiZ phenotype and three of PiM phenotype, have received a single intravenous infusion of alpha-1-proteinase inhibitor (human) (A1PI), in a dose of 60 mg/kg over a 30-minute period. They also received a tracer dose (300 microCi) of /sup 131/I-labeled A1PI. No active or passive immunization against hepatitis was given. No acute toxicity was observed. Compared with baseline data, significant elevations of serum A1PI (measured both antigenically and as anti-elastase activity) occurred, with a serum half-life approximating 110 hours. Bronchoalveolar lavage fluid, obtained 48 hours after infusion, reflected a significant increase in A1PI concentration versus baseline bronchoalveolar lavage fluid values. Serial gamma camera images of the lungs confirmed persistence of enhanced lung radioactivity for several days. Urinary desmosine excretion did not change following A1PI infusion. During the period of follow-up thus far, no patient has had chronic toxicity, results of liver function tests have been stable, and there has been no development of hepatitis B antigen or antibodies to hepatitis B surface or core antigens.

  8. ‘Normalizing' the malignant phenotype of luminal breast cancer cells via alpha(v)beta(3)-integrin

    PubMed Central

    Abu-Tayeh, Hanan; Weidenfeld, Keren; Zhilin-Roth, Alisa; Schif-Zuck, Sagi; Thaler, Sonja; Cotarelo, Cristina; Tan, Tuan Z; Thiery, Jean P; Green, Jeffrey E; Klorin, Geula; Sabo, Edmond; Sleeman, Jonathan P; Tzukerman, Maty; Barkan, Dalit

    2016-01-01

    Reestablishing tissue organization of breast cancer cells into acini was previously shown to override their malignant phenotype. In our study, we demonstrate that alpha(v)beta(3) integrin (Int-αvβ3), previously shown to play a role in cancer progression, promoted differentiation and growth arrest of organoids derived from luminal A breast cancer cells grown in their relevant three-dimensional microenvironment. These organoids differentiated into normal-like acini resembling a benign stage of breast tissue. Likewise, we demonstrate that Int-αvβ3 is selectively expressed in the epithelium of the benign stage of breast tissues, and is lost during the early stages of luminal A breast cancer progression. Notably, the organoids' reversion into normal-like acini was mediated by cancer luminal progenitor-like cells expressing both EpCAMhighCD49flowCD24+ and Int-αvβ3. Furthermore, downregulation of Notch4 expression and downstream signaling was shown to mediate Int-αvβ3-induced reversion. Intriguingly, when luminal A breast cancer cells expressing Int-αvβ3 were injected into a humanized mouse model, differentiated tumors developed when compared with that generated by control cells. Hence, our data suggest that promoting differentiation of luminal A breast cancer cells by signaling emanating from Int-αvβ3 can potentially promote ‘normalization' of their malignant phenotype and may prevent the malignant cells from progressing. PMID:27906177

  9. Pax6-induced alteration of cell fate: shape changes, expression of neuronal alpha tubulin, postmitotic phenotype, and cell migration.

    PubMed

    Cartier, Laetitia; Laforge, Terese; Feki, Anis; Arnaudeau, Serge; Dubois-Dauphin, Michel; Krause, Karl-Heinz

    2006-04-01

    The transcription factor Pax6 plays an important role in the development of the central nervous system. To understand its mechanism of action, we transduced HeLa cells with a Pax6-expressing lentiviral vector. Upon transduction, HeLa cells markedly changed shape and formed neuritelike extensions. Pax6-transduced HeLa cells expressed high levels of neuronal alpha3 tubulin, demonstrating a partial transdifferentiation towards a neuronal phenotype. Neurons are postmitotic cells. Pax6-transduced HeLa cells became postmitotic through mechanisms involving up-regulation of p53 and cyclin-dependent kinase inhibitor p21. One of the most striking effects of Pax6 was observed by time-lapse videomicroscopy: cells started to dissociate from cell clusters and displayed intense migratory activity. Migration was accompanied by dynamic and reversible shape changes. Our results identified three elements of Pax6 action: (i) expression of neuron-specific genes; (ii) establishment of a postmitotic phenotype; and (iii) involvement in the regulation of cell shape and cell migration.

  10. [Computerized EEG and personality].

    PubMed

    Ramírez Pérez, A; Martínez López-Coterilla, M; Fajardo López, A; Lardelli Claret, A

    1989-01-01

    The ordinary EEG, on only showing qualitative malfunction of abnormal graphoelements in the tracings, proves itself insufficient to go into the analysis of psychological and psycho-pathological problems. Since computerised studies of EEG permit quantitative comparisons, we tried to apply them in correlation with the characteristics of the personality classified also with quantitative criteria, such as those offered in the personality inventory 16 PF; from which have been chosen the so-called factors of the second order, and the subjectivity-objectivity factors. The test was carried out on 100 voluntary subjects from Almeria (Spain), all with High School grades, between 18 and 40 years of age, of both sexes, all right-handed, without neuro-psychiatric history, and with normal ordinary EEGs. From the statistical analysis of the results one could deduce that there are significant specific relationships from the computerised EEG, with those secondary polar values of 16 PF: high and low anxiety, extroversion-introversion. Subjects with low anxiety presented a significant increase of the alpha band opposed to the subjects with high anxiety. There is a significant differences in power of the frontal areas between extrovert and introvert subjects. The extroverted subjects have a greater power of the right side and the introverted subjects a greater power of the left.

  11. Refractory Classical Hodgkin Lymphoma Presenting with Atypical Cutaneous Involvement and Diagnosis of ZZ Phenotype Alpha-1 Antitrypsin Deficiency

    PubMed Central

    Kraus, Teresa; Cherry, Mohamad

    2014-01-01

    Cutaneous Hodgkin lymphoma is a rare condition. Specific neoplastic involvement can be primary (confined to the skin) or secondary to systemic involvement (metastatic). Cutaneous involvement by HL usually occurs late in the course and is associated with poor prognosis; however in some cases it can exhibit indolent behavior. Skin involvement with nonspecific cutaneous findings may represent a paraneoplastic syndrome. We describe a case of 46-year-old white male patient presented with rash and lymphadenopathy which led to the diagnosis of stage IVE mixed cellularity classical Hodgkin lymphoma with skin involvement. His disease was refractory to multiple lines of chemotherapy including (1) AVD (doxorubicin/bleomycin/dacarbazine), (2) brentuximab, and (3) bendamustine, he later achieved complete remission with (4) GCD (gemcitabine/carboplatin/dexamethasone) salvage regimen. Bleomycin was not given secondary to poor pulmonary function tests. His treatment was complicated after AVD with multiple pneumothoraces which unmasked the diagnosis of ZZ phenotype alpha-1 antitrypsin (ATT) deficiency. Simultaneous existence of Hodgkin lymphoma and ATT is rarely reported. PMID:24955265

  12. EEG (Electroencephalogram)

    MedlinePlus

    ... simple calculations, read a paragraph, look at a picture, breathe deeply (hyperventilate) for a few minutes, or look at a flashing light. Video is frequently recorded during the EEG. Your body motions are captured by a video camera while the ...

  13. EEG differences and cognitive style.

    PubMed

    Glass, A; Riding, R J

    1999-10-01

    Individuals differences in information processing related to cognitive style were investigated by EEG recording during cognitive tasks. Fifteen adults received the Cognitive Styles Analysis which assessed their positions on two dimensions: the wholist-analytic and the verbal-imagery. The EEG from midline, paramedial and lateral electrode clusters was recorded, while subjects viewed words presented at different rates. A button was pressed when a word was in a target conceptual category. Off-line analysis produced spectral powers for delta, theta, alpha, beta 1, beta 2 and gamma bands. For the midline, the wholists had higher output than analytics in theta and alpha, but lower in gamma. In the paramedial cluster, verbalisers had greater right power than imagers for all bands except alpha. Further, the overall power was greater on the right for imagers than verbalisers frontally, and the converse occipitally. In the lateral grouping, the wholist-verbalisers had greater overall power left antero-temporally than other sub-groups.

  14. Coupling between resting cerebral perfusion and EEG.

    PubMed

    O'Gorman, R L; Poil, S-S; Brandeis, D; Klaver, P; Bollmann, S; Ghisleni, C; Lüchinger, R; Martin, E; Shankaranarayanan, A; Alsop, D C; Michels, L

    2013-07-01

    While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21-48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2-4 Hz and theta: 4-7 Hz), middle (alpha: 8-13 Hz), and high (beta: 13-30 Hz and gamma: 30-45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation.

  15. Phenotypic consequences of deletion of the gamma 3, alpha 5, or beta 3 subunit of the type A gamma-aminobutyric acid receptor in mice.

    PubMed

    Culiat, C T; Stubbs, L J; Montgomery, C S; Russell, L B; Rinchik, E M

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the gamma 3, alpha 5, and beta 3 subunits of the type A gamma-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3 on a panel of p-locus deletions, we have determined that the order of genes within this cluster is centromere-p(D15S12h)-Gabrg3-Gabra5-Gabrb3-telom ere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors (approximately 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. We have previously suggested that deficiency of the beta 3 subunit may be responsible for the clefting defect. Most notably, however, in this report we describe mice carrying two overlapping, complementing p deletions that fail to express the gamma 3 transcript, as well as mice from another line that express neither the gamma 3 nor alpha 5 transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three (gamma 3, alpha 5, and beta 3) subunits. These mice therefore provide a whole-organism type A gamma-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the gamma 3 and/or alpha 5 subunits. The absence of an overt neurological phenotype in mice lacking the gamma 3 and/or alpha 5 subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  16. Test-retest reliability of cognitive EEG

    NASA Technical Reports Server (NTRS)

    McEvoy, L. K.; Smith, M. E.; Gevins, A.

    2000-01-01

    OBJECTIVE: Task-related EEG is sensitive to changes in cognitive state produced by increased task difficulty and by transient impairment. If task-related EEG has high test-retest reliability, it could be used as part of a clinical test to assess changes in cognitive function. The aim of this study was to determine the reliability of the EEG recorded during the performance of a working memory (WM) task and a psychomotor vigilance task (PVT). METHODS: EEG was recorded while subjects rested quietly and while they performed the tasks. Within session (test-retest interval of approximately 1 h) and between session (test-retest interval of approximately 7 days) reliability was calculated for four EEG components: frontal midline theta at Fz, posterior theta at Pz, and slow and fast alpha at Pz. RESULTS: Task-related EEG was highly reliable within and between sessions (r0.9 for all components in WM task, and r0.8 for all components in the PVT). Resting EEG also showed high reliability, although the magnitude of the correlation was somewhat smaller than that of the task-related EEG (r0.7 for all 4 components). CONCLUSIONS: These results suggest that under appropriate conditions, task-related EEG has sufficient retest reliability for use in assessing clinical changes in cognitive status.

  17. Computerized EEG: predictor of outcome in schizophrenia.

    PubMed

    Itil, T M; Marasa, J; Saletu, B; Davis, S; Mucciardi, A N

    1975-03-01

    Based on a double blind cross-over study, it was determined that schizophrenic patient who have more high frequency fast activity and a lesser degree of alpha and slow waves in computerized EEG before the treatment have a better therapeutic outcome to the major tranquilizer (neuroleptic) treatment. The correlation between pretreatment high frequency computer EEG measurements and better therapeutic outcome reached the level of statistical significance. "Therapy resistant" schizophrenic patients were characterized by a lesser degree of very fast beta activity, more alpha waves and slow waves, higher amplitudes in computer EEG, and a lesser degree of acute (florid) psychotic symptomatology but more "negative" symptoms such as motor retardation and blunted affect. One of the most striking results of the study is the finding that schizophrenic patients with certain psychopathological profiles also have similar computer EEG profiles.

  18. [EEG investigations in cognitive impairments].

    PubMed

    Szirmai, Imre; Kamondi, Anita

    2011-01-30

    The EEG is an indicator of all physiological and neuropsychological activity. The alpha rhythm was considered as a key phenomenon in research of human mentation from the discovery of EEG. Two methods are known for the estimation of cognitive deficit by the use of quantitative EEG (QEEG). The first is based on the hypothesis, that the mean values of the normal EEG from healthy volunteers can be used as reference, and deviation from the normal values of EEG parameters may suggest disease. This kind of "neurometry" was elaborated by R. E. John. The second method assesses event related (ER) transients evoked by somatosensory and mental stimuli. Quantity and localization of signals may refer to the functional state of the cortex. These reactions depend strongly on the test-paradigms. Recognition of the attention-intention cycle disclosed the physiological mechanism of ERD (event related desynchronisation) and ERS (event related synchronisation). In contrast with the classical "stimulus-reaction" model, both perception and voluntary movement are initiated by the brain itself, and not by the environment. Human behavior and conscious actions depend on the intention. QEEG analysis proved that the attention and intention localize in segregate areas of the brain. Both "static" and "dynamic" neurometric methods are able to differentiate the EEG records of demented patients from healthy controls, furthermore some dementias from each other. We conclude that with the help of sophisticated methods of QEEG analysis minimal functional deficit of the electrogenesis can be recognized, which could be helpful in the differential diagnosis Notwithstanding the EEG can not explain the evolution neither the normal or the diseased mental processes. The only "instrument" which is able to approach the human mind is the human cogitation itself with the aids of appropriate tests. The QEEG can be conclusive in the analysis of particular processes of mental activity, such as timing, state of

  19. EEG activity during estral cycle in the rat.

    PubMed

    Corsi-Cabrera, M; Juárez, J; Ponce-de-León, M; Ramos, J; Velázquez, P N

    1992-10-01

    EEG activity was recorded from right and left parietal cortex in adult female rats daily during 6 days. Immediately after EEG recording vaginal smears were taken and were microscopically analyzed to determine the estral stage. Absolute and relative powers and interhemispheric correlation of EEG activity were calculated and compared between estral stages. Interhemispheric correlation was significantly lower during diestrous as compared to proestrous and estrous. Absolute and relative powers did not show significant differences between estral stages. Absolute powers of alpha1, alpha2, beta1 and beta2 bands were significantly higher at the right parietal cortex. Comparisons of the same EEG records with estral stages randomly grouped showed no significant differences for any of the EEG parameters. EEG activity is a sensitive tool to study functional changes related to the estral cycle.

  20. Fluctuations between sleep and wakefulness: wake-like features indicated by increased EEG alpha power during different sleep stages in nightmare disorder.

    PubMed

    Simor, Péter; Horváth, Klára; Ujma, Péter P; Gombos, Ferenc; Bódizs, Róbert

    2013-12-01

    Although a growing body of research indicates that frequent nightmares are related to impaired sleep regulation, the pathophysiology of nightmare disorder is far from being fully understood. We examined the relative spectral power values for NREM and REM sleep separately in 19 individuals with nightmare disorder and 21 healthy controls, based on polysomnographic recordings of the second nights' laboratory sleep. Nightmare subjects compared to controls exhibited increased relative high alpha (10-14.5Hz) and fronto-central increases in high delta (3-4Hz) power during REM sleep, and a trend of increased fronto-central low alpha (7.75-9Hz) power in NREM sleep. These differences were independent of the confounding effects of waking emotional distress. High REM alpha and low NREM alpha powers were strongly related in nightmare but not in control subjects. The topographical distribution and spectral components of REM alpha activity suggest that nightmare disordered subjects are characterized by wake-like electroencephalographic features during REM sleep.

  1. A low-power, wireless, 8-channel EEG monitoring headset.

    PubMed

    Brown, Lindsay; van de Molengraft, Jef; Yazicioglu, Refet Firat; Torfs, Tom; Penders, Julien; Van Hoof, Chris

    2010-01-01

    Micro- and nano-technology has enabled development of smaller and smarter wearable devices for medical and lifestyle related applications. In particular, recent advances in EEG monitoring technologies pave the way for wearable, wireless EEG monitoring devices. Here, a low-power wireless EEG sensor platform that measures 8-channels of EEG, is described. The platform is integrated into a wearable headset for ambulatory monitoring of EEG. While using standard EEG electrodes without conductive gel, a first evaluation shows the wireless headset is comparable to the reference system when looking at alpha wave discrimination. This device combines low-noise, and low-power functionality into an easy-to-use wireless headset, providing a first step towards a fully integrated, fully functional wearable wireless EEG monitoring system.

  2. Electroencephalogram (EEG) (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old EEG (Electroencephalogram) KidsHealth > For Parents > EEG (Electroencephalogram) A A A What's in this article? ... Child If You Have Questions en español Electroencefalograma (EEG) What It Is An electroencephalogram (EEG) is a ...

  3. Electroencephalogram (EEG) (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old EEG (Electroencephalogram) KidsHealth > For Parents > EEG (Electroencephalogram) Print A A A What's in this ... Child If You Have Questions en español Electroencefalograma (EEG) What It Is An electroencephalogram (EEG) is a ...

  4. Longitudinal study of EEG frequency maturation and power changes in children on the Russian North.

    PubMed

    Soroko, S I; Shemyakina, N V; Nagornova, Zh V; Bekshaev, S S

    2014-11-01

    The aim of the study was to reveal longitudinal changes in electroencephalogram spectral power and frequency (percentage frequency composition of EEG and alpha peak frequency) patterns in normal children from northern Russia. Fifteen children (9 girls and 6 boys) participated in the study. The resting state (eyes closed) EEGs were recorded yearly (2005-2013) from age 8 to age 16-17 for each child. EEG frequency patterns were estimated as the percentages of waves with a 1 Hz step revealed by measuring the interval durations between points crossing zero (isoline) by a curve. EEG spectral power changes were analyzed for delta (1.5-4 Hz), theta (4-7.5 Hz), alpha-1 (7.5-9.5 Hz), alpha-2 (9.5-12.5 Hz), beta-1 (12.5-18 Hz) and beta-2 (18-30 Hz) bands. According to the frequency composition of the EEG signals fast synchronous, polymorphous synchronous, polymorphous desynchronous and slow synchronous types of children EEG were revealed. These EEG types were relatively stable during adolescence. In these EEG types, the frequency patterns and spectral power dynamics with age had several common and specific features. Slow wave percentage and spectral power in the delta band remarkably decreased with age in all groups. Starting from the theta band the EEG types were characterized by different EEG spectral power changes with age. In fast synchronous EEG type, the theta and alpha-1 EEG power decreased, and the alpha-2 power increased in the occipital and parietal areas. The polymorphous synchronous type was characterized by increased both the alpha-1 and alpha-2 power with regional peculiarities. In the polymorphous desynchronous type spectral power in all bands decreased with age, and in the slow synchronous type, the alpha-1 power massively increased with age. Obtained results suggest predictive strength of the spatial-frequency patterns in EEG for its following maturation through the years.

  5. Expression of the phenotypic abnormality of platelet-type von Willebrand disease in a recombinant glycoprotein Ib alpha fragment.

    PubMed Central

    Murata, M; Russell, S R; Ruggeri, Z M; Ware, J

    1993-01-01

    The platelet GP Ib-IX receptor supports platelet adhesion and activation by binding to vWf in the exposed subendothelial matrix. An abnormal GP Ib-IX complex exists in platelet-type or pseudo-von Willebrand disease and has a characteristic increased affinity for soluble vWf resulting in impaired hemostatic function due to the removal of larger vWf multimers from the circulation. Genetic studies within an afflicted family have demonstrated that the disease is linked to a Gly233-->Val amino acid substitution within the alpha-subunit of the oligomeric GP Ib-IX complex (Miller, J.L., D. Cunningham, V.A. Lyle, and C. L. Finch. 1991. Proc. Natl. Acad. Sci. USA. 88:4761-4765). To evaluate the functional consequences of this mutation, we constructed a recombinant analogue of the alpha-subunit of GP Ib containing Val233. Experiments comparing molecules with either Gly233 or Val233 revealed that the Val substitution generates a molecule with increased affinity for vWf. The recombinant fragment reproduces the functional abnormality of the GP Ib-IX complex in platelet-type von Willebrand disease, thus establishing the molecular basis of the bleeding disorder within this family. Moreover, it becomes apparent that structural elements responsible for the regulation of hemostasis through modulation of vWf affinity for platelets reside within the alpha-subunit of the GP Ib-IX complex. Images PMID:8486780

  6. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.

    2017-04-01

    Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We

  7. The Mozart Effect: A quantitative EEG study.

    PubMed

    Verrusio, Walter; Ettorre, Evaristo; Vicenzini, Edoardo; Vanacore, Nicola; Cacciafesta, Mauro; Mecarelli, Oriano

    2015-09-01

    The aim of this study is to investigate the influence of Mozart's music on brain activity through spectral analysis of the EEG in young healthy adults (Adults), in healthy elderly (Elderly) and in elderly with Mild Cognitive Impairment (MCI). EEG recording was performed at basal rest conditions and after listening to Mozart's K448 or "Fur Elise" Beethoven's sonatas. After listening to Mozart, an increase of alpha band and median frequency index of background alpha rhythm activity (a pattern of brain wave activity linked to memory, cognition and open mind to problem solving) was observed both in Adults and in Elderly. No changes were observed in MCI. After listening to Beethoven, no changes in EEG activity were detected. This results may be representative of the fact that said Mozart's music is able to "activate" neuronal cortical circuits related to attentive and cognitive functions.

  8. [Qualitative and quantitative EEG-findings in schizophrenia (author's transl)].

    PubMed

    Itil, T M

    1978-03-01

    The results of the qualitative but particularly the quantitative EEG-studies indicate that 1. The EEG of adult schizophrenics is characterized by an appearance of excessive fast activity along with some slow waves and the lack of alpha-activity. 2. Excessive fast activity and lack of alpha-waves have also been found in the EEGs of psychotic children and most interestingly in children whose parents (particularly the mother) are schizophrenic (high risk children). 3. Based on the studies during sleep and investigations with neuroleptics, it was established that the origin of the excess fast activity in schizophrenia cannot be the muscle potential. Particularly the excess fast activity in high risk children for schizophrenia goes against the muscle potential hypothesis. 4. The quantitative EEG changes seen in schizophrenia show similarity to those seen after hallucinogenic compounds particularly after anticholinergic hallucinogenics. 5. All neuroleptics (major tranquilizers) produce quantitative EEG alterations which are almost diametrically opposite to those seen in schizoprenia.

  9. Brain and human pain: topographic EEG amplitude and coherence mapping.

    PubMed

    Chen, A C; Rappelsberger, P

    1994-01-01

    Nineteen young healthy volunteers (8 males and 11 females) participated in an experimental ice-cube cold pressor test to study topographic changes of EEG parameters in response to painful stimulation. EEG was recorded with 19 electrodes and quantified by amplitude and coherence analyses. Mean amplitudes and values for local (between adjacent electrodes) and interhemispheric (between electrodes on homologous sites of both hemispheres) coherences were computed for six frequency bands. For the evaluation of changes between EEG at rest (baseline) and EEG during painful stimulation (right or left hand), non-parametric paired Wilcoxon tests were performed. The obtained descriptive error probabilities were presented in probability maps. In the behavioural pain tolerance and subjective pain ratings, no difference in gender or stimulation condition was observed. Under painful stimulation the results showed: (A) most pronounced decrease of Alpha amplitude in the central areas and some increase of high Beta amplitude; (B) increase of local coherence for Alpha and Beta 2 mainly in central regions and centro-frontal leads; and (C) increase of interhemispheric coherence for Alpha and Beta 2 in the central areas. The results of this study indicate clearly that peripheral painful stimulation is reflected by EEG changes. Decrease of EEG amplitude and simultaneous increase of EEG coherence in the central regions can be cortical correlates of human pain.

  10. Topographic quantitative EEG amplitude in recovered alcoholics.

    PubMed

    Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S

    1992-05-01

    Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.

  11. Phenotypic alterations in human saphenous vein culture induced by tumor necrosis factor-alpha and lipoproteins: a preliminary development of an initial atherosclerotic plaque model

    PubMed Central

    2013-01-01

    Background Atherosclerosis is a chronic progressive inflammatory disease of blood vessels particularly the arteries. The development of atherosclerotic plaques or atherogenesis is a complex process that is influenced by cardiovascular risk factors such as vascular inflammation and dyslipidemia. This study demonstrates the ability of tumor necrosis factor-alpha (TNF-α) and low density lipoproteins (LDL) to induce atherosclerotic plaque in human saphenous vein (HSV) organ culture. Methods Normal HSV segments, from male patients who had coronary bypass graft, were cultured in DMEM containing 5% heat inactivated fetal bovine serum. TNF-α (5 ng/ml) was applied in combination with native LDL (nLDL) or oxidized LDL (oxLDL) at the dose of 50 μg/ml for 14 days. The phenotypic changes of the organ cultures characteristic of initial atherosclerotic plaques were evaluated. The effect of anti-atherogenic agent, 17-β estradiol (E2), was also determined. Results Histologic, histomorphometric, and immunohistochemical examinations revealed that HSV rings stimulated with TNF-α + nLDL or TNF-α + oxLDL can exhibit the essential morphological features of atherogenesis, including fibrous cap formation, cholesterol clefts, evident thickening of the intimal layer, increased proliferation of smooth muscle cells (SMC) and migration to the subendothelial layer, significant SMC foam cell formation, and increased expression of adhesion molecules in the vascular wall. Addition of E2 (50 nM) to the culture significantly modulated the critical changes. Consistently, mRNA profiling of the HSV model revealed that 50 of 84 genes of atherosclerosis were up-regulated. Conclusions Phenotypic changes characteristic of the initial development of atherosclerotic plaques can be induced in HSV organ culture. PMID:24010774

  12. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study

    NASA Astrophysics Data System (ADS)

    Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.

    2016-08-01

    Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the

  13. Correlation of invasive EEG and scalp EEG.

    PubMed

    Ramantani, Georgia; Maillard, Louis; Koessler, Laurent

    2016-10-01

    Ever since the implementation of invasive EEG recordings in the clinical setting, it has been perceived that a considerable proportion of epileptic discharges present at a cortical level are missed by routine scalp EEG recordings. Several in vitro, in vivo, and simulation studies have been performed in the past decades aiming to clarify the interrelations of cortical sources with their scalp and invasive EEG correlates. The amplitude ratio of cortical potentials to their scalp EEG correlates, the extent of the cortical area involved in the discharge, as well as the localization of the cortical source and its geometry have been each independently linked to the recording of the cortical discharge with scalp electrodes. The need to elucidate these interrelations has been particularly imperative in the field of epilepsy surgery with its rapidly growing EEG-based localization technologies. Simultaneous multiscale EEG recordings with scalp, subdural and/or depth electrodes, applied in presurgical epilepsy workup, offer an excellent opportunity to shed some light to this fundamental issue. Whereas past studies have considered predominantly neocortical sources in the context of temporal lobe epilepsy, current investigations have included deep sources, as in mesial temporal epilepsy, as well as extratemporal sources. Novel computational tools may serve to provide surrogates for the shortcomings of EEG recording methodology and facilitate further developments in modern electrophysiology.

  14. Physiologic and prognostic significance of "alpha coma".

    PubMed Central

    Iragui, V J; McCutchen, C B

    1983-01-01

    A patient with posthypoxic "alpha coma" is described whose EEGs were recorded before coma, within two hours following the onset of coma and after recovery. The differences observed between the alpha activity during coma and that seen before and after suggest that the alpha activity during coma and the physiologic alpha rhythm are different phenomena. This case, as well as others reported, also suggests that "alpha coma" resolving in the first 24 hours following hypoxia may have a better prognosis than "alpha coma" detected after the first day, and stresses the need for EEG monitoring begun in the immediate period following hypoxia in order to assess accurately the prognostic significance of this EEG pattern in the early stages of postanoxic encephalopathy. The aetiology of "alpha coma" also affects outcome. The survival rate appears higher in patients with respiratory arrest than in those with combined cardiopulmonary arrest. PMID:6886700

  15. Mobile EEG in epilepsy.

    PubMed

    Askamp, Jessica; van Putten, Michel J A M

    2014-01-01

    The sensitivity of routine EEG recordings for interictal epileptiform discharges in epilepsy is limited. In some patients, inpatient video-EEG may be performed to increase the likelihood of finding abnormalities. Although many agree that home EEG recordings may provide a cost-effective alternative to these recordings, their use is still not introduced everywhere. We surveyed Dutch neurologists and patients and evaluated a novel mobile EEG device (Mobita, TMSi). Key specifications were compared with three other current mobile EEG devices. We shortly discuss algorithms to assist in the review process. Thirty percent (33 out of 109) of Dutch neurologists reported that home EEG recordings are used in their hospital. The majority of neurologists think that mobile EEG can have additional value in investigation of unclear paroxysms, but not in the initial diagnosis after a first seizure. Poor electrode contacts and signal quality, limited recording time and absence of software for reliable and effective assistance in the interpretation of EEGs have been important constraints for usage, but in recent devices discussed here, many of these problems have been solved. The majority of our patients were satisfied with the home EEG procedure and did not think that our EEG device was uncomfortable to wear, but they did feel uneasy wearing it in public.

  16. Review of neonatal EEG.

    PubMed

    Husain, Aatif M

    2005-03-01

    Neonatal electroencephalography (EEG) presents some of the most difficult challenges in EEG interpretation. It differs significantly in many ways from EEG of older children and adults. Technologically, acquisition of a neonatal EEG is significantly more difficult and different than an adult EEG. There are numerous features that are age-specific and change almost week-to-week in the preterm infant. Some features may be normal at one age and abnormal if they persist for several weeks. Many of these features also have different implications in neonates as compared to older individuals. These issues mandate a different approach to neonatal EEG interpretation. In this article an overview of neonatal EEG is presented. After a brief discussion of relevant technical issues, various normal EEG features encountered in neonates are discussed. This is followed by a discussion of the ontogeny of EEG, starting from the age of viability to the first few months of life. A description of various abnormalities follows. Finally, an approach to analysis of a neonatal EEG is presented.

  17. Interindividual Differences in Alpha and Theta Power Reflect Memory Performance.

    ERIC Educational Resources Information Center

    Klimesch, W.; Vogt, F.; Doppelmayr, M.

    1999-01-01

    Tested whether tonic EEG power is related to memory performance by analyzing ongoing EEG for 60 subjects in 5 experimental conditions. Subjects with good memory performance had significantly larger upper alpha power, but less theta and lower alpha power. Also discusses findings for subjects good at calculation. (SLD)

  18. Comparative EEG mapping studies in Huntington's disease patients and controls.

    PubMed

    Painold, Annamaria; Anderer, Peter; Holl, Anna K; Letmaier, Martin; Saletu-Zyhlarz, Gerda M; Saletu, Bernd; Bonelli, Raphael M

    2010-11-01

    Huntington's disease (HD) is a devastating neurodegenerative disorder with prominent motor and cognitive decline. Previous studies with small sample sizes and methodological limitations have described abnormal electroencephalograms (EEG) in this cohort. The aim of the present study was to investigate objectively and quantitatively the neurophysiological basis of the disease in HD patients as compared to normal controls, utilizing EEG mapping. In 55 HD patients and 55 healthy controls, a 3-min vigilance-controlled EEG (V-EEG) was recorded during midmorning hours. Evaluation of 36 EEG variables was carried out by spectral analysis and visualized by EEG mapping techniques. To elucidate drug interference, the analysis was performed for the total group, unmedicated patients only and between treated and untreated patients. Statistical overall analysis by the omnibus significance test demonstrated significant (p < 0.01 and p < 0.05) EEG differences between HD patients and controls. Subsequent univariate analysis revealed a general decrease in total power and absolute alpha and beta power, an increase in delta/theta power, and a slowing of the centroids of delta/theta, beta and total power. The slowing of the EEG in HD reflects a disturbed brain function in the sense of a vigilance decrement, electrophysiologically characterized by inhibited cortical areas (increased delta/theta power) and a lack of normal routine and excitatory activity (decreased alpha and beta power). The results are similar to those found in other dementing disorders. Medication did not affect the overall interpretation of the quantitative EEG analysis, but certain differences might be due to drug interaction, predominantly with antipsychotics. Spearman rank correlations revealed significant correlations between EEG mapping and cognitive and motor impairment in HD patients.

  19. Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration.

    PubMed

    Storti, Silvia Francesca; Formaggio, Emanuela; Beltramello, Alberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-03-01

    Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) identifies blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG events. In this study we used EEG-fMRI to determine the possible correlation between topographical movement related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 12 subjects during eyes-closed condition inside a three T magnetic resonance (MR) scanner using an MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used a time-frequency approach to measure time by varying the energy in a signal at a given frequency band by the convolution of the EEG signal with a wavelet family in the alpha and beta bands. The correlation between the BOLD signal associated with the EEG regressor provides that sensory motor region is a source of the EEG. We conclude that combined EEG-fMRI can be used to investigate movement-related oscillations of the human brain inside an MRI scanner and wavelet analysis adds further details on the EEG changes. The movement-related changes in the EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.

  20. EEG Correlates of Self-Referential Processing

    PubMed Central

    Knyazev, Gennady G.

    2013-01-01

    Self-referential processing has been principally investigated using functional magnetic resonance imaging (fMRI). However, understanding of the brain functioning is not possible without careful comparison of the evidence coming from different methodological domains. This paper aims to review electroencephalographic (EEG) studies of self-referential processing and to evaluate how they correspond, complement, or contradict the existing fMRI evidence. There are potentially two approaches to the study of EEG correlates of self-referential processing. Firstly, because simultaneous registration of EEG and fMRI has become possible, the degree of overlap between these two signals in brain regions related to self-referential processing could be determined. Second and more direct approach would be the study of EEG correlates of self-referential processing per se. In this review, I discuss studies, which employed both these approaches and show that in line with fMRI evidence, EEG correlates of self-referential processing are most frequently found in brain regions overlapping with the default network, particularly in the medial prefrontal cortex. In the time domain, the discrimination of self- and others-related information is mostly associated with the P300 ERP component, but sometimes is observed even earlier. In the frequency domain, different frequency oscillations have been shown to contribute to self-referential processing, with spontaneous self-referential mentation being mostly associated with the alpha frequency band. PMID:23761757

  1. EEG and Coma.

    PubMed

    Ardeshna, Nikesh I

    2016-03-01

    Coma is defined as a state of extreme unresponsiveness, in which a person exhibits no voluntary movement or behavior even to painful stimuli. The utilization of EEG for patients in coma has increased dramatically over the last few years. In fact, many institutions have set protocols for continuous EEG (cEEG) monitoring for patients in coma due to potential causes such as subarachnoid hemorrhage or cardiac arrest. Consequently, EEG plays an important role in diagnosis, managenent, and in some cases even prognosis of coma patients.

  2. Extremely high levels of estradiol and testosterone in a case of polycystic ovarian syndrome. Hormone and clinical similarities with the phenotype of the alpha estrogen receptor null mice.

    PubMed

    Bartolone, L; Smedile, G; Arcoraci, V; Trimarchi, F; Benvenga, S

    2000-01-01

    A 19-year-old nulliparous hirsute woman was evaluated for the very high serum levels of testosterone (T) and estradiol (E2) measured in an outside laboratory. Menarche had occurred at 11 years and was followed by regular menses. We confirmed the high levels of T (9-16 ng/ml, nv 0.2-0.8) and E2 (>1,000 pg/ml, nv 30-120). LH and FSH were consistently high (73-118 mU/l and 18-29 mU/l, respectively; LH/FSH ratio=4.1-4.7) and responsive to iv GnRH (LH baseline=118 mU/I, 30 min=290; FSH baseline=25 mU/l, 30 min=46). The unstimulated values contrasted with those (LH=12, FSH=8 mU/I) measured in the outside laboratory, suggesting antigenically anomalous gonadotropins. 17-OH-progesterone was normal (0.5 ng/ml). After 1 mg dexamethasone, serum cortisol was normally suppressed (24-->0.4 microg/dl), T declined minimally (9-->8.6 ng/ml) and E2 remained high (>1,000 pg/ml). An exploratory laparotomy was performed, and two enlarged ovaries with multiple cysts as in a typical polycystic ovarian syndrome (PCOS) were seen. Before the wedge resection of the ovaries, hormones were assayed in the ovary veins (right ovary: T=30 ng/ml, Pg=17 ng/ml, E2=>5,000 pg/ml; left: T=14 ng/ml, Pg=14 ng/ml, E2=>5,000 pg/ml). Histologically, the follicle cysts showed luteinization of the theca interna; there was no evidence for ovary tumor in either ovary. After 21 days of 35 microg ethynyl-E2+2 mg cyproterone acetate (CA), E2=3,000 pg/ml, T=1.4 ng/ml, LH=10.5 mU/l and FSH=4.1 mU/I. After three cycles of the said therapy (but with 50 mg CA in the first 10 days of each cycle), E2 was 1,600 pg/ml, T 1.7 ng/ml, LH 7.1 and FSH 4.6 mU/I. Based on similarities with the phenotype of the alpha estrogen receptor knockout female mice (alphaERKO), one possible explanation for the puzzling clinical and biochemical picture of our patient is resistance of (alphaER to estrogens. This is the first case of PCOS with extremely high E2 and T. Thus, the differential diagnosis of high levels of E2 +/- T should include

  3. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    PubMed

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  4. EEG Multiresolution Analysis Using Wavelet Transform

    DTIC Science & Technology

    2007-11-02

    Wavelet transform (WT) is a new multiresolution time-frequency analysis method. WT possesses well localization feature both in tine and frequency...plays a key role in the diagnosing diseases and is useful for both physiological research and medical applications. Using the dyadic wavelet ... transform the EEG signals are successfully decomposed to the alpha rhythm (8-13Hz) beta rhythm (14-30Hz) theta rhythm (4-7Hz) and delta rhythm (0.3-3Hz) and

  5. EEG correlates of multimodal ganzfeld induced hallucinatory imagery.

    PubMed

    Pütz, Peter; Braeunig, Matthias; Wackermann, Jirí

    2006-08-01

    Multimodal ganzfeld (MMGF) frequently induces dreamlike, pseudo-hallucinatory imagery. The aim of the study was to explore EEG correlates of MMGF-induced imagery. In a screening phase, seven 'high-responders' were selected by frequency and quality of their reported hallucinatory experience in MMGF. Each of these subjects then participated in three MMGF sessions (45 min) with simultaneous 19 channel EEG recordings and indicated occurrences of imagery by pressing a button. Relative spectral power changes during percept formation (30 s preceding subjects' reports) with respect to intra-individual baselines (no-imagery EEG) were analysed. At the beginning of the 30-s 'image formation' period alpha was slightly reduced than in the 'no-imagery' periods. This was followed by increased power in the higher alpha frequency band (10-12 Hz) which then declined in a monotonic fashion. This decline in higher alpha power was accompanied by increased power in the beta frequency bands. Throughout the image formation period there was a steady decline in power of low frequency alpha (8-10 Hz). Correlations between descriptors of subjective experience and EEG power changes were evaluated in terms of their global average magnitude and variability in time. Results indicate that the acceleration of alpha activity is a nonspecific effect of MMGF. In contrast, the tri-phasic profile of faster alpha activity seems to be a specific correlate of the retrieval and transformation of memory content in ganzfeld imagery.

  6. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  7. An EEG-Based Fatigue Detection and Mitigation System.

    PubMed

    Huang, Kuan-Chih; Huang, Teng-Yi; Chuang, Chun-Hsiang; King, Jung-Tai; Wang, Yu-Kai; Lin, Chin-Teng; Jung, Tzyy-Ping

    2016-06-01

    Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an individual's internal state, which is then manifested physiologically. This study explores neurophysiological changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility of an online closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue detection and mitigation between the EEG-based and a nonEEG-based random method. Twelve healthy subjects participated in a sustained-attention driving experiment. Each participant's EEG signal was monitored continuously and a warning was delivered in real-time to participants once the EEG signature of fatigue was detected. Study results indicate suppression of the alpha- and theta-power of an occipital component and improved behavioral performance following a warning signal; these findings are in line with those in previous studies. However, study results also showed reduced warning efficacy (i.e. increased response times (RTs) to lane deviations) accompanied by increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and nonEEG-based random approaches clearly demonstrated the necessity of adaptive fatigue-mitigation systems, based on a subject's cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the efficacy of this online closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive lapses that may lead to catastrophic incidents in countless operational environments.

  8. Pharmaco-EEG profiles of antidepressants

    PubMed Central

    Saletu, B.; Grünberger, J.; Rajna, P.

    1983-01-01

    1 Antidepressant drugs produce significant changes in human brain function as reflected in the quantitatively analysed EEG. Two main types of pharmaco-EEG profiles may be differentiated: a thymeretic (desipramine-like) profile characterised mainly by an alpha increase suggesting activating properties and a thymoleptic (imipramine- or amitriptyline-like) profile showing a concomitant increase of slow and fast activities and a decrease in alpha activity indicating also sedative qualities. A small number of compounds exhibit still different profiles. 2 Aside from determining the type of EEG changes, the pharmaco-EEG method seems to be of value in determining time and dose efficacy relations at the target organ, the human brain. Moreover, the relationships between pharmacodynamics and pharmacokinetics may be determined. 3 Fluvoxamine, a selective 5-hydroxytryptamine (5-HT) re-uptake inhibitor from the new class of 2-aminoethyloximethers of aralkylketones, produced a typical thymoleptic pharmaco-EEG profile after oral doses of 75 mg in a double-blind placebo-controlled study involving 10 healthy volunteers. Fluvoxamine (75 mg) induced less augmentation of slow activity than 75 mg imipramine, indicating less sedative properties of fluvoxamine than imipramine. 4 After 75 mg fluvoxamine psychometric tests demonstrated a tendency towards an improvement in attention, concentration, psychomotor activity, after-effect and mood and a significant increase in critical flicker fusion frequency as compared with placebo. Comparison with the reference drug, 75 mg imipramine, revealed a significant superiority of fluvoxamine regarding concentration, psychomotor activity, tapping, reaction time, mood and affectivity. 5 Side-effects (mostly tiredness) were seen in five out of 10 subjects after 75 mg fluvoxamine and in eight out of 10 subjects after 75 mg imipramine. There were no clinically relevant changes in pulse, systolic and diastolic blood pressure. PMID:6407499

  9. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes

    PubMed Central

    Yin, Jiani; Chen, Wu; Yang, Hongxing; Xue, Mingshan; Schaaf, Christian P.

    2017-01-01

    The alpha7 nicotinic acetylcholine receptor, encoded by the CHRNA7 gene, has been implicated in various psychiatric and behavioral disorders, including schizophrenia, bipolar disorder, epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease, and is considered a potential target for therapeutic intervention. 15q13.3 microdeletion syndrome is a rare genetic disorder, caused by submicroscopic deletions on chromosome 15q. CHRNA7 is the only gene in this locus that has been deleted entirely in cases involving the smallest microdeletions. Affected individuals manifest variable neurological and behavioral phenotypes, which commonly include developmental delay/intellectual disability, epilepsy, and autism spectrum disorder. Subsets of patients have short attention spans, aggressive behaviors, mood disorders, or schizophrenia. Previous behavioral studies suggested that Chrna7 deficient mice had attention deficits, but were normal in baseline behavioral responses, learning, memory, and sensorimotor gating. Given a growing interest in CHRNA7-related diseases and a better appreciation of its associated human phenotypes, an in-depth behavioral characterization of the Chrna7 deficient mouse model appeared prudent. This study was designed to investigate whether Chrna7 deficient mice manifest phenotypes related to those seen in human individuals, using an array of 12 behavioral assessments and electroencephalogram (EEG) recordings on freely-moving mice. Examined phenotypes included social interaction, compulsive behaviors, aggression, hyperactivity, anxiety, depression, and somatosensory gating. Our data suggests that mouse behavior and EEG recordings are not sensitive to decreased Chrna7 copy number. PMID:28045139

  10. Event-related EEG time-frequency analysis and the Orienting Reflex to auditory stimuli.

    PubMed

    Barry, Robert J; Steiner, Genevieve Z; De Blasio, Frances M

    2012-06-01

    Sokolov's classic works discussed electroencephalogram (EEG) alpha desynchronization as a measure of the Orienting Reflex (OR). Early studies confirmed that this reduced with repeated auditory stimulation, but without reliable stimulus-significance effects. We presented an auditory habituation series with counterbalanced indifferent and significant (counting) instructions. Time-frequency analysis of electrooculogram (EOG)-corrected EEG was used to explore prestimulus levels and the timing and amplitude of event-related increases and decreases in 4 classic EEG bands. Decrement over trials and response recovery were substantial for the transient increase (in delta, theta, and alpha) and subsequent desynchronization (in theta, alpha, and beta). There was little evidence of dishabituation and few effects of counting. Expected effects in stimulus-induced alpha desynchronization were confirmed. Two EEG response patterns over trials and conditions, distinct from the full OR pattern, warrant further research.

  11. Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome

    ERIC Educational Resources Information Center

    Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona

    2012-01-01

    Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…

  12. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Avesani, Mirko; Cerini, Roberto; Milanese, Franco; Gasparini, Anna; Acler, Michele; Pozzi Mucelli, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2008-12-01

    Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) may be used to identify blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG event. In this study we used EEG-fMRI to determine the possible correlation between topographical movement-related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI-BOLD cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 9 subjects during eyes-open condition inside a 1.5 T magnetic resonance (MR) scanner using a MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used the event-related-synchronization/desynchronization (ERS/ERD) approach to investigate where movement-related decreases in alpha and beta power are located. For image statistical analysis we used a general linear model (GLM) approach. There was a significant correlation between the positive-negative ratio of BOLD signal peaks and ERD values in the electrodes over the region of activation. We conclude that combined EEG-fMRI may be used to investigate movement-related oscillations of the human brain inside an MRI scanner and the movement-related changes in the EMG or EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.

  13. From EEG to BOLD: brain mapping and estimating transfer functions in simultaneous EEG-fMRI acquisitions.

    PubMed

    Sato, João R; Rondinoni, Carlo; Sturzbecher, Marcio; de Araujo, Draulio B; Amaro, Edson

    2010-05-01

    Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic's homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements.

  14. EEG coherence: topography and frequency structure.

    PubMed

    Chorlian, David Balin; Rangaswamy, Madhavi; Porjesz, Bernice

    2009-09-01

    Topographical patterns of bipolar EEG coherence are frequency specific, indicating the presence of diverse neuroanatomical and neurophysiological factors in EEG production. Bipolar EEG coherence values were calculated at 50 frequency bins ranging from 3 to 28 Hz for 39 coherence pairs. Data were derived from 4.25 min of resting EEG obtained from 106 healthy adult male subjects and analyzed in 0.5 Hz bins by Fourier transform methods. Frequency bands were clearly separated at 8.5 and 13 Hz, with a less distinct separations at 6 and 20 Hz. Within pair (non-topographic) and across pair (topographic), measures gave similar patterns of separation. Significant pathways were primarily anterior-posterior interhemispheric or perpendicular to the anterior-posterior axis. There was little difference between left and right for comparable pairs. Theta band coherent activity involves distinct midline and temporal sources, with temporal sources showing anterior/posterior differentiation. In contrast, alpha activity has a distinct posterior focus, while beta activity shows no clear global structure. A spatially homogeneous model based on characteristics of thalamocortical connectivity accounts for much of the data, but departures from the model indicate the contribution of other neural factors to coherence.

  15. EEG correlates of social interaction at distance

    PubMed Central

    Giroldini, William; Pederzoli, Luciano; Bilucaglia, Marco; Caini, Patrizio; Ferrini, Alessandro; Melloni, Simone; Prati, Elena; Tressoldi, Patrizio

    2016-01-01

    This study investigated EEG correlates of social interaction at distance between twenty-five pairs of participants who were not connected by any traditional channels of communication. Each session involved the application of 128 stimulations separated by intervals of random duration ranging from 4 to 6 seconds. One of the pair received a one-second stimulation from a light signal produced by an arrangement of red LEDs, and a simultaneous 500 Hz sinusoidal audio signal of the same length. The other member of the pair sat in an isolated sound-proof room, such that any sensory interaction between the pair was impossible. An analysis of the Event-Related Potentials associated with sensory stimulation using traditional averaging methods showed a distinct peak at approximately 300 ms, but only in the EEG activity of subjects who were directly stimulated. However, when a new algorithm was applied to the EEG activity based on the correlation between signals from all active electrodes, a weak but robust response was also detected in the EEG activity of the passive member of the pair, particularly within 9 – 10 Hz in the Alpha range. Using the Bootstrap method and the Monte Carlo emulation, this signal was found to be statistically significant. PMID:26966513

  16. EEG source imaging during two Qigong meditations.

    PubMed

    Faber, Pascal L; Lehmann, Dietrich; Tei, Shisei; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Kochi, Kieko

    2012-08-01

    Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.

  17. EEG and ERP assessment of normal aging.

    PubMed

    Polich, J

    1997-05-01

    EEG was recorded from 120 normal adult subjects who ranged in age from 20 to 80+ years in separate eyes open/closed conditions. The P3(00) event-related brain potential (ERP) was elicited with auditory and visual stimuli in separate conditions in the same subjects. Spectral analysis indicated that overall EEG power decreased as subject age increased. P3 amplitude decreased and peak latency increased for both the auditory and visual stimulus conditions as subject age increased. Few age-related differences were observed for the N1, P2, or N2 components. Spectral power from the delta, theta, and alpha bands correlated positively with P3 amplitude across subject age, but mean band frequency demonstrated only weak associations with P3 latency. No strong relationships were found between EEG and the other ERP component variables. The results suggest that age contributes to EEG power shifts, and that such changes significantly affect age-related variability of the P3 ERP component.

  18. Individualising EEG frequency bands for sleep deprivation studies.

    PubMed

    Henelius, Andreas; Korpela, Jussi; Huotilainen, Minna

    2011-01-01

    A method for determining individualised frequency bands from electroencephalographic (EEG) power spectral density (PSD) plots is presented. EEG was collected during the performance of a computerised multitask test from 21 healthy male subjects, of which an experimental group of 14 subjects underwent sleep deprivation and 7 subjects formed the control group. EEG PSD plots were compared between the groups and were used to determine individual theta, alpha and beta bands for the subjects by studying the points of intersection between the individual subjects' normalised spectra and the normalised average spectrum of the control group. The results show that the frontal and occipital locations are best suited for the determination of individualised frequency bands. The proposed method can be used to enhance EEG spectral analysis of task-induced cognitive effort during sleep deprivation.

  19. Qualitative and quantitative EEG in psychotic children.

    PubMed

    Itil, T M; Simeon, J; Coffin, C

    1976-05-01

    The EEGs of hospitalized psychotic boys were analyzed quantitatively by means of visual evaluation, analog frequency analysis, and digital computer period analysis and were compared with those of age- and sex-matched normals. Visual evaluation of the records demonstrated that psychotic children have significantly more beta activity as well as fewer alpha bursts than normal controls. EEG analog frequency analysis showed that psychotic children have a greater percentage of total voltage in the 3-5 cps and 13-33 cps bands, while they show less voltage in the 6-12 cps bands as compared with normal controls. Digital computer period analysis demonstrated more slow, less alpha, and more fast activity, as well as a greater average frequency and frequency deviation in both the primary wave and first derivative measurements in psychotic children than normals, while normals showed a trend towards higher amplitude and amplitude variability. The similarity of the EEG differences between psychotic and normal children to those differences observed between adult chronic schizophrenics and normals, as well as to those between children of "high risk" for becoming schizophrenic and controls, suggests that the above described findings are characteristic for the pathophysiology of schizophrenia.

  20. EEG Power Spectrum Analysis in Children with ADHD

    PubMed Central

    Kamida, Akira; Shimabayashi, Kenta; Oguri, Masayoshi; Takamori, Toshihiro; Ueda, Naoyuki; Koyanagi, Yuki; Sannomiya, Naoko; Nagira, Haruki; Ikunishi, Saeko; Hattori, Yuiko; Sato, Kengo; Fukuda, Chisako; Hirooka, Yasuaki; Maegaki, Yoshihiro

    2016-01-01

    Background Attention deficit disorder/hyperactivity disorder (ADHD) is a pathological condition that is not fully understood. In this study, we investigated electroencephalographic (EEG) power differences between children with ADHD and healthy control children. Methods EEGs were recorded as part of routine medical care received by 80 children with ADHD aged 4–15 years at the Department of Pediatric Neurology in Tottori University Hospital. Additionally, we recorded in 59 control children aged 4–15 years after obtaining informed consent. Specifically, awake EEG signals were recorded from each child using the international 10–20 system, and we used ten 3-s epochs on the EEG power spectrum to calculate the powers of individual EEG frequency bands. Results The powers of different EEG bands were significantly higher in the frontal brain region of those in the ADHD group compared with the control group. In addition, the power of the beta band in the ADHD group was significantly higher in all brain regions, except for the occipital region, compared with control children. With regard to developmental changes, the power of the alpha band in the occipital region showed an age-dependent decrease in both groups, with slightly lower power in the ADHD group. Additionally, the intergroup difference decreased in children aged 11 years or older. As with the alpha band in the occipital region, the beta band in the frontal region showed an age-dependent decrease in both groups. Unlike the alpha band, the power of the beta band was higher in the ADHD group than in the control group for children of all ages. Conclusion The observed intergroup differences in EEG power may provide insight into the brain function of children with ADHD. PMID:27493489

  1. Transient ischemic attacks: electrophysiological (conventional and topographic EEG) and radiological (CCT) evaluation.

    PubMed

    Madkour, O; Elwan, O; Hamdy, H; Elwan, H; Abbas, A; Taher, M; Abdel-Kader, A

    1993-10-01

    The value of electrophysiological tests: conventional electroencephalography (EEG), topographic EEG analysis as well as computerized tomography (CT) in the diagnosis and evaluation of 25 patients with manifestations of transient ischemic attacks (TIA) in the domain of the carotid system was assessed. Normal CT was the rule in TIA patients except in 8% of the cases, where nonspecific changes of brain atrophy were described. Conventional EEG, topographic EEG and spectral analysis could detect abnormalities in 48%, 80% and 64% of TIA cases respectively. None of the abnormal EEG records could be missed by topographic EEG analysis. 32% of the records were diagnosed as abnormal by topographic EEG, while conventional EEG failed to detect abnormalities. Spectral analysis of the EEG results revealed a significant decrease regarding mean high limit alpha percent power, and a significant increase regarding mean low and high limit theta percent power, as well as a significant increase of the mean high limit of the slow activities (delta + theta)/fast activities (alpha + beta) percent power ratio in the TIA group as compared to the normal control group.

  2. EEG manifestations of nondual experiences in meditators.

    PubMed

    Berman, Amanda E; Stevens, Larry

    2015-01-01

    The holistic experiential benefits of meditation among a widely ranging population have been well established within the empirical literature. What remain less clear are the underlying mechanisms of the meditative process. A large impediment to this clarity is attributable to the lack of a unified and comprehensive taxonomy, as well as to the absence of clear differentiation within the literature between method of practice and resulting state. The present study discusses and then attempts to identify within our sample a theoretically universal culminating meditative state known as Nondual Awareness, which is differentiated from the method or practice state. Participants completed an in-lab meditation, during which neurological patterns were analyzed using electroencephalography (EEG). Analyses indicated significantly higher EEG power among slower wave frequencies (delta, theta, alpha) during the reported nondual events. These events appear neurologically distinct from meditation sessions as a whole, which interestingly demonstrated significant elevation within the gamma range.

  3. Atypical Alpha Asymmetry in Adults with ADHD

    ERIC Educational Resources Information Center

    Hale, T. Sigi; Smalley, Susan L.; Hanada, Grant; Macion, James; McCracken, James T.; McGough, James J.; Loo, Sandra K.

    2009-01-01

    Introduction: A growing body of literature suggests atypical cerebral asymmetry and interhemispheric interaction in ADHD. A common means of assessing lateralized brain function in clinical populations has been to examine the relative proportion of EEG alpha activity (8-12 Hz) in each hemisphere (i.e., alpha asymmetry). Increased rightward alpha…

  4. In search of biomarkers in psychiatry: EEG-based measures of brain function.

    PubMed

    McLoughlin, Gráinne; Makeig, Scott; Tsuang, Ming T

    2014-03-01

    Current clinical parameters used for diagnosis and phenotypic definitions of psychopathology are both highly variable and subjective. Intensive research efforts for specific and sensitive biological markers, or biomarkers, for psychopathology as objective alternatives to the current paradigm are ongoing. While biomarker research in psychiatry has focused largely on functional neuroimaging methods for identifying the neural functions that associate with psychopathology, scalp electroencephalography (EEG) has been viewed, historically, as offering little specific brain source information, as scalp appearance is only loosely correlated to its brain source dynamics. However, ongoing advances in signal processing of EEG data can now deliver functional EEG brain-imaging with distinctly improved spatial, as well as fine temporal, resolution. One computational approach proving particularly useful for EEG cortical brain imaging is independent component analysis (ICA). ICA decomposition can be used to identify distinct cortical source activities that are sensitive and specific to the pathophysiology of psychiatric disorders. Given its practical research advantages, relatively low cost, and ease of use, EEG-imaging is now both feasible and attractive, in particular for studies involving the large samples required by genetically informative designs to characterize causal pathways to psychopathology. The completely non-invasive nature of EEG data acquisition, coupled with ongoing advances in dry, wireless, and wearable EEG technology, makes EEG-imaging increasingly attractive and appropriate for psychiatric research, including the study of developmentally young samples. Applied to large genetically and developmentally informative samples, EEG imaging can advance the search for robust diagnostic biomarkers and phenotypes in psychiatry.

  5. Signal Quality Assessment Model for Wearable EEG Sensor on Prediction of Mental Stress.

    PubMed

    Hu, Bin; Peng, Hong; Zhao, Qinglin; Hu, Bo; Majoe, Dennis; Zheng, Fang; Moore, Philip

    2015-07-01

    Electroencephalogram (EEG) plays an important role in E-healthcare systems, especially in the mental healthcare area, where constant and unobtrusive monitoring is desirable. In the context of OPTIMI project, a novel, low cost, and light weight wearable EEG sensor has been designed and produced. In order to improve the performance and reliability of EEG sensors in real-life settings, we propose a method to evaluate the quality of EEG signals, based on which users can easily adjust the connection between electrodes and their skin. Our method helps to filter invalid EEG data from personal trials in both domestic and office settings. We then apply an algorithm based on Discrete Wavelet Transformation (DWT) and Adaptive Noise Cancellation (ANC) which has been designed to remove ocular artifacts (OA) from the EEG signal. DWT is applied to obtain a reconstructed OA signal as a reference while ANC, based on recursive least squares, is used to remove the OA from the original EEG data. The newly produced sensors were tested and deployed within the OPTIMI framework for chronic stress detection. EEG nonlinear dynamics features and frontal asymmetry of theta, alpha, and beta bands have been selected as biological indicators for chronic stress, showing relative greater right anterior EEG data activity in stressful individuals. Evaluation results demonstrate that our EEG sensor and data processing algorithms have successfully addressed the requirements and challenges of a portable system for patient monitoring, as envisioned by the EU OPTIMI project.

  6. Invasive EEG explorations.

    PubMed

    Taussig, D; Montavont, A; Isnard, J

    2015-03-01

    The Wada test was adapted from the procedure described by Wada in 1964. It still has a role in the prognostic evaluation of memory disorders after mesial temporal lobectomy. The test consists of injecting a short-acting anesthetic into one hemisphere, under continuous EEG monitoring and during carotid catheterization, to verify the function of contralateral structures. Intracranial EEG recordings deliver signals with few artifacts, and which are quite specific of the zone explored. Three types of electrodes are in common use: (a) foramen ovale (FO) electrodes: electrodes can be inserted directly, without any stereotactic procedure, to provide easy and comparative EEG recordings of the lower and middle portions of the temporal lobe close to the hippocampus. These allow validation of the temporal lobe origin of seizures using FO electrodes recording coupled with scalp EEG; (b): subdural strip or grip electrodes. This relatively aggressive technique carries infectious and hemorrhagic risks and does not allow the exploration of deep cortical structures. However, it permits precise functional cortical mapping via electrical stimulation because of dense and regular positioning of electrodes over the cortical convexity; (c) stereotactically implanted depth electrodes (stereo-electroencephalography [SEEG]). Electrodes are individually planned and inserted within the brain parenchyma through small burr holes. This technique is less aggressive than subdural grid exploration. However it offers relatively limited spatial sampling that may be less well adapted to precise functional evaluation. It allows recording from deep cortical structures and can be argued to be the gold standard of presurgical EEG exploration.

  7. EEG activity during the performance of complex mental problems.

    PubMed

    Jausovec, N; Jausovec, K

    2000-04-01

    This study investigated differences in cognitive processes related to problem complexity. It was assumed that these differences would be reflected in respondents' EEG activity--spectral power and coherence. A second issue of the study was to compare differences between the lower (alpha(1) = 7.9-10.0 Hz), and upper alpha band (alpha(2) = 10.1-12.9 Hz). In the first experiment two well-defined problems with two levels of complexity were used. Only minor differences in EEG power and coherence measures related to problem complexity were observed. In the second experiment divergent production problems resembling tasks on creativity tests were compared with dialectic problems calling for creative solutions. Differences in EEG power measures were mainly related to the form of problem presentation (figural/verbal). In contrast, coherence was related to the level of creativity needed to solve a problem. Noticeable increased intra- and interhemispheric cooperation between mainly the far distant brain regions was observed in the EEG activity of respondents while solving the dialectic problems. These results are explained by the more intense involvement of the long cortico-cortical fiber system in creative thinking. Differences between the lower and upper alpha band were significant for the power and coherence measures. In Experiment 2, fewer differences were observed in power measures in the upper alpha band than in the lower alpha band. A reverse pattern was observed for the coherence measures. These results hint to a functional independence of the two alpha bands, however, they do not allow to draw firm conclusions about their functional meanings. The study showed that it is unlikely that individuals solve well- and ill-defined problems by employing similar cognitive strategies.

  8. Maternal dexamethasone and EEG hyperactivity in preterm fetal sheep

    PubMed Central

    Davidson, Joanne O; Quaedackers, Josine S L T; George, Sherly A; Gunn, Alistair Jan; Bennet, Laura

    2011-01-01

    Abstract Maternal treatment with synthetic corticosteroids such as dexamethasone (DEX) significantly reduces neonatal morbidity and mortality, but its effects on the fetal brain remain unclear. In this study we evaluated the effects of DEX on EEG activity in preterm fetal sheep. Ewes at 103 days gestation received two intramuscular injections of DEX (12 mg, n = 8) or saline vehicle (n = 7) 24 h apart. Fetal EEG activity was recorded from 6 h before until 120 h after the first injection (DEX-1). DEX-1 was associated with a marked transient rise in total EEG power, maximal at 12 h (P < 0.001), with a relative increase in delta and reduced theta, alpha and beta activity, resolving by 24 h. Continuous EEG records showed a shift to larger but less frequent transient waveforms (P < 0.001). Unexpectedly, evolving epileptiform activity, consistent with electrographic and clinical seizures, developed from 178 ± 44 min after DEX-1. Similar but smaller changes were seen after the second injection. Following the injections, total power returned to control values, but the proportion of alpha activity progressively increased vs. controls (P < 0.001), with reduced interburst interval duration and number (P < 0.001). No histological neural injury or microglial activation was seen. In summary, exposure to maternal dexamethasone was associated with dramatic, evolving low-frequency hyperactivity on fetal cortical EEG recordings, followed by sustained changes consistent with maturation of fetal sleep architecture. We postulate that these effects may contribute to improved neonatal outcomes. PMID:21646408

  9. Role of CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-beta.

    PubMed

    Bertran, Esther; Caja, Laia; Navarro, Estanis; Sancho, Patricia; Mainez, Jèssica; Murillo, Miguel M; Vinyals, Antonia; Fabra, Angels; Fabregat, Isabel

    2009-11-01

    Treatment of FaO rat hepatoma cells with TGF-beta selects cells that survive to its apoptotic effect and undergo epithelial-mesenchymal transitions (EMT). We have established a cell line (T beta T-FaO, from TGF-beta-treated FaO) that shows a mesenchymal, de-differentiated, phenotype in the presence of TGF-beta and is refractory to its suppressor effects. In the absence of this cytokine, cells revert to an epithelial phenotype in 3-4 weeks and recover the response to TGF-beta. T beta T-FaO show higher capacity to migrate than that observed in the parental FaO cells. We found that FaO cells express low levels of CXCR4 and do not respond to SDF-1 alpha. However, TGF-beta up-regulates CXCR4, through a NF kappaB-dependent mechanism, and T beta T-FaO cells show elevated levels of CXCR4, which is located in the presumptive migration front. A specific CXCR4 antagonist (AMD3100) attenuates the migratory capacity of T beta T-FaO cells on collagen gels. Extracellular SDF-1 alpha activates the ERKs pathway in T beta T-FaO, but not in FaO cells, increasing cell scattering and protecting cells from apoptosis induced by serum deprivation. Targeted knock-down of CXCR4 with specific siRNA blocks the T beta T-FaO response to SDF-1 alpha. Thus, the SDF-1/CXCR4 axis might play an important role in mediating cell migration and survival after a TGF-beta-induced EMT in hepatoma cells.

  10. Long-term EEG in adults: sleep-deprived EEG (SDE), ambulatory EEG (Amb-EEG) and long-term video-EEG recording (LTVER).

    PubMed

    Michel, V; Mazzola, L; Lemesle, M; Vercueil, L

    2015-03-01

    Long-term EEG in adults includes three modalities: sleep deprived-EEG lasting 1 to 3 hours, 24 hours ambulatory-EEG and continuous prolonged video-EEG lasting from several hours to several days. The main indications of long-term EEG are: syndromic classification of epilepsy; search for interictal discharges when epilepsy is suspected or for the purpose of therapeutic evaluation; positive diagnosis of paroxysmal clinical events; and pre-surgical evaluation of drug-resistant epilepsy. Sleep deprived-EEG and ambulatory-EEG are indicated to detect interictal discharges in order to validate a syndromic classification of epilepsy when standard EEG is negative. These exams can help in evaluating treatment efficacy, especially when clinical evaluation is difficult. Long-term video EEG is indicated for drug-resistant epilepsy, to analyze electro-clinical correlations in a pre-surgical evaluation context, and to refine a positive diagnosis when paroxysmal clinical events are frequent.

  11. Anatomical Substrate and Scalp EEG Markers are Correlated in Subjects with Cognitive Impairment and Alzheimer's Disease.

    PubMed

    Moretti, Davide V; Frisoni, Giovanni B; Binetti, Giuliano; Zanetti, Orazio

    2011-01-01

    Dementia is a syndromic diagnosis, encompassing various stage of severity and different anatomo-physiological substrates. The hippocampus is one of the first and most affected brain regions affected by both Alzheimer's disease (AD) and mild cognitive impairment (MCI). Moreover, chronic cerebrovascular disease (CVD) is one of the major risk factor for developing dementia. Recent studies have demonstrated different relationship between the anatomical substrate and scalp electroencephalography (EEG) markers. Indeed, modifications of EEG rhythmicity is not proportional to the hippocampal atrophy, whereas changes in EEG activity are directly proportional to the load of subcortical CVD. The computation of the EEG spectral power and the analysis of the functional coupling of brain areas, through linear coherence, are two of the most known processing methods in EEG research. Two specific EEG markers, theta/gamma and alpha3/alpha2 frequency ratio have been reliable associated to the atrophy of amygdalo-hippocampal complex. Moreover, theta/gamma ratio has been related to MCI conversion in dementia and alpha3/alpha2 ratio has been specifically related to MCI conversion in AD. The functional coupling of brain areas is also modulated by hippocampal atrophy. In the MCI subjects, hippocampal atrophy is linked to an increase of interhemispheric coherence seen on frontal and temporal regions whereas subcortical CVD is linked to a decrease of coherence in fronto-parietal regions. In the present study the most significant results of recent studies on correlation between scalp EEG, cognitive decline, and anatomical substrate have been reviewed, with particular attention to the relationships between EEG changes and hippocampal atrophy. The following review is not intended to provide a comprehensive summary of the literature. Rather it identifies and discusses selected studies that are designed to find the specific correlation between scalp EEG markers and anatomo-pathological substrate

  12. Exon-intron structure of the human neuronal nicotinic acetylcholine receptor {alpha}4 subunit (CHRNA4)

    SciTech Connect

    Steinlein, O.; Weiland, S.; Stoodt, J.; Propping, P.

    1996-03-01

    The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set of primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.

  13. Treatment Effects on Neonatal EEG.

    PubMed

    Obeid, Rawad; Tsuchida, Tammy N

    2016-10-01

    Conventional EEG and amplitude-integrated electroencephalography are used in neonates to assess prognosis and significant changes in brain activity. Neuroactive medications and hypothermia can influence brain activity and therefore alter EEG interpretation. There are limited studies on the effect of these therapies on neonatal EEG background activity. Medication effects on the EEG or amplitude-integrated electroencephalography include increased interburst interval duration, voltage suppression, and sleep disruption. The effect is transient in term newborns but can be persistent in premature newborns. Although therapeutic hypothermia does not produce significant changes in EEG activity, it does change the time point at which EEG can accurately predict neurodevelopmental outcome. It is important to account for these effects on the EEG to avoid inaccurate interpretation that may affect prognostication.

  14. Flexible electroencephalogram (EEG) headband

    NASA Technical Reports Server (NTRS)

    Raggio, L. J.

    1973-01-01

    Headband incorporates sensors which are embedded in sponges and are exposed only on surface that touches skin. Electrode sponge system is continually fed electrolyte through forced feed vacuum system. Headband may be used for EEG testing in hospitals, clinical laboratories, rest homes, and law enforcement agencies.

  15. Field dependence, laterality and the EEG.

    PubMed

    O'Connor, K P; Shaw, J C

    1978-03-01

    There is evidence that an individual's 'cognitive style' is related to lateralization of function in the brain, and that this in turn is associated with characteristic EEG coherence spectra. We tested the hypothesis that field dependence (a measure of cognitive organization) and hand preference (a measure of functional organisation) relate to EEG coherence measures in a specific way. The predicted associations were based on the proposal that right preferent individuals have a more specific, and left preferents a more diffuse, system of functional units in the cortex. The association between alpha band resting EEG coherence (sampled on two occasions for both hemispheres from 12 right and 12 left preferent individuals), field dependence (Nyborg's criterion of frame dependence on a rod and frame test), and laterality scores (questionnaire and manual performance), was measured by Kendall's coefficient of concordance (W). Significant associations support the proposed model except for coherence within the left preferents' right hemisphere. It is argued that the right hemisphere is more specifically organised in strong sinistrals than the general model would predict. These and other results support the use of EEC coherence measures in the study of cerebral functional organisation.

  16. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  17. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study.

    PubMed

    Yu, Qingbao; Wu, Lei; Bridwell, David A; Erhardt, Erik B; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

  18. Topographic mapping of quantitative EEG variables in chronic heavy marihuana users: empirical findings with psychiatric patients.

    PubMed

    Struve, F A; Straumanis, J J; Patrick, G; Price, L

    1989-01-01

    EEG studies of marihuana use dating back to 1945 were reviewed. The earlier studies depended upon visual analysis of the tracing, and while some minor frequency and amplitude variations occurred in some subjects, there was no consistent THC induced change noticeable across subjects. Quantitative EEG studies of acute exposure to THC came later and produced reliable findings of a placebo controlled dose dependent THC induced increase in relative power of alpha, combined with decreased alpha frequency and a reduction of beta activity. These findings were reported for data collected from central-occipital derivations only. In our present investigation, we report that chronic heavy THC users have EEGs characterized by (1) increased absolute power of all frequencies over all cortical areas (2) hyperfrontality of elevated relative and absolute power and coherence values of alpha activity, and (3) a decrease in relative power of all non-alpha frequencies. Methodological issues were discussed and some suggestions were made for continuing research in this area.

  19. Involvement of caspase-3, lipid peroxidation and TNF-alpha in causing apoptosis of macrophages by coordinately expressed Salmonella phenotype under stress conditions.

    PubMed

    Chanana, Vishal; Majumdar, Siddharth; Rishi, Praveen

    2007-03-01

    Invasive Salmonella has been reported to induce apoptosis of macrophages as a part of its infection process, which may allow it to avoid detection by the innate immune system. However, the bacterial components capable of inducing apoptosis, particularly under the environments offered by the host have not been fully identified. Therefore, in the present study, attempts were made to evaluate the apoptotic potential of Salmonella enterica serovar Typhi (S. typhi) outer membrane protein expressed under stress conditions like iron, oxidative and anaerobic simulating the in vivo situations encountered by the pathogen. Analysis of data revealed that a coordinately expressed 69kDa outer membrane protein (OMP) expressed with enhanced intensity under iron, oxidative and anaerobic stress conditions caused apoptotic cell death in 51% of macrophages, whereas OMPs of S. typhi extracted under normal conditions accounted for apoptotic cell death in only 31% of macrophages. A significantly enhanced activity of caspase-3 was observed during macrophage-apoptosis induced by this protein. A significant increase in the extent of lipid peroxidation (levels of oxidant) and decrease in the activities of antioxidants was also observed which correlated with the increased generation of tumor necrosis factor-alpha, interleukine-1alpha and interleukine-6. These results suggest that caspase-3 and tumor necrosis factor-alpha in conjunction with other cytokines may induce apoptotic cell death through the up-regulation of oxidants and down-regulation of antioxidants. These findings may be relevant for the better understanding of the disease pathophysiology and for the future developments of diagnostic and preventive strategies during the host-pathogen interactions.

  20. The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study.

    PubMed

    Neuner, Irene; Arrubla, Jorge; Werner, Cornelius J; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an "electrophysiological signature" of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the "status quo" in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed "ongoing activity" during "resting state" in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific

  1. The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study

    PubMed Central

    Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific

  2. Investigations of human EEG response to viewing fractal patterns.

    PubMed

    Hagerhall, Caroline M; Laike, Thorbjörn; Taylor, Richard P; Küller, Marianne; Küller, Rikard; Martin, Theodore P

    2008-01-01

    Owing to the prevalence of fractal patterns in natural scenery and their growing impact on cultures around the world, fractals constitute a common feature of our daily visual experiences, raising an important question: what responses do fractals induce in the observer? We monitored subjects' EEG while they were viewing fractals with different fractal dimensions, and the results show that significant effects could be found in the EEG even by employing relatively simple silhouette images. Patterns with a fractal dimension of 1.3 elicited the most interesting EEG, with the highest alpha in the frontal lobes but also the highest beta in the parietal area, pointing to a complicated interplay between different parts of the brain when experiencing this pattern.

  3. Electroencephalograph (EEG) study of brain bistable illusion

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Bistable illusion reflects two different kinds of interpretations for a single image, which is currently known as a competition between two groups of antagonism of neurons. Recent research indicates that these two groups of antagonism of neurons express different comprehension, while one group is emitting a pulse, the other group will be restrained. On the other hand, when this inhibition mechanism becomes weaker, the other antagonism neurons group will take over the interpretation. Since attention plays key roles controlling cognition, is highly interesting to find the location and frequency band used by brain (with either top-down or bottom-up control) to reach deterministic visual perceptions. In our study, we used a 16-channel EEG system to record brain signals from subjects while conducting bistable illusion testing. An extra channel of the EEG system was used for temporal marking. The moment when subjects reach a perception switch, they click the channel and mark the time. The recorded data were presented in form of brain electrical activity map (BEAM) with different frequency bands for analysis. It was found that the visual cortex in the on the right side between parietal and occipital areas was controlling the switching of perception. In the periods with stable perception, we can constantly observe all the delta, theta, alpha and beta waves. While the period perception is switching, almost all theta, alpha, and beta waves were suppressed by delta waves. This result suggests that delta wave may control the processing of perception switching.

  4. Tobacco Smoking and the Resting Maternal Brain: A Preliminary Study of Frontal EEG

    PubMed Central

    Wilbanks, Haley E.; Von Mohr, Mariana; Potenza, Marc N.; Mayes, Linda C.; Rutherford, Helena J.V.

    2016-01-01

    Tobacco smoking has been attributed to a wide range of detrimental health consequences for both women and their children. In addition to its known physical health effects, smoking may also impact maternal neural responses and subsequent caregiving behavior. To begin investigating this issue, we employed electroencephalography (EEG) to examine resting neural oscillations of tobacco-smoking mothers (n = 35) and non-smoking mothers (n = 35). We examined seven EEG frequency bands recorded from frontal electrode sites (delta, theta, alpha, alpha1, alpha2, beta, and gamma). While no between-group differences were present in high-frequency bands (alpha2, beta, gamma), smokers showed greater spectral power in low-frequency bands (delta, theta, alpha, alpha1) compared to non-smokers. This increased power in low-frequency bands of tobacco-smoking mothers is consistent with a less aroused state and may be one mechanism through which smoking might affect the maternal brain and caregiving behavior. PMID:27354838

  5. EEG analyses with SOBI.

    SciTech Connect

    Glickman, Matthew R.; Tang, Akaysha

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  6. EEG of Chronic Marijuana Users during Abstinence: Relationship to Years of Marijuana Use, Cerebral Blood Flow and Thyroid Function

    PubMed Central

    Herning, Ronald I.; Better, Warren; Cadet, Jean L.

    2008-01-01

    Objective Marijuana abuse is associated with neurological changes including increases in frontal EEG alpha during abstinence. Research is needed to assess to what extent these EEG patterns are indicative of cerebral perfusion deficits. Methods We recorded the resting eyes closed EEG of 75 abstinent marijuana users and 33 control subjects. Fifty-six marijuana users used marijuana for less than eight years and 19 used for eight years or more. The EEG evaluation occurred within 72 hours of admission to an inpatient unit. Fifty-nine marijuana users remained abstinent for a month and were tested twice. Supplemental psychological and physiological data were also collected. Results Log alpha2 and beta2 power at posterior sites were significantly lower for the marijuana abusers that used eight years or more than the other marijuana abusers and the control subjects. These EEG changes continued for the month of abstinence. The marijuana users who used marijuana for more than eight years, also, had lower heart rates and thyroid function (T4) compared to the other marijuana users and the control subjects. Conclusions Chronic marijuana use was also associated with reduced EEG power in alpha and beta bands at posterior sites. These reductions in EEG power appear to be related to cerebral perfusion deficits and/or thyroid function in marijuana abusers. Significance Our results suggest EEG, cerebral blood flow velocity, cardiovascular and thyroid function alterations in marijuana abuser with an extended period of use. These alterations reflect under arousal in these systems. PMID:18065267

  7. Prediction of subjective ratings of emotional pictures by EEG features

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Parvaz, Muhammad A.; Sarnacki, William A.; Goldstein, Rita Z.; Wolpaw, Jonathan R.

    2017-02-01

    Objective. Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. Approach. To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. Main results. Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. Significance. The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.

  8. A 6.4MB duplication of the alpha-synuclein locus causing fronto-temporal dementia and parkinsonism - phenotype-genotype correlations

    PubMed Central

    Kara, Eleanna; Kiely, Aoife P; Proukakis, Christos; Giffin, Nicola; Love, Seth; Hehir, Jason; Rantell, Khadija; Pandraud, Amelie; Hernandez, Dena G; Nacheva, Elizabeth; Pittman, Alan M; Nalls, Mike A; Singleton, Andrew B; Revesz, Tamas; Bhatia, Kailash P; Quinn, Niall; Hardy, John; Holton, Janice L; Houlden, Henry

    2015-01-01

    Importance SNCA locus duplications are associated with variable clinical features and reduced penetrance but the reasons underlying this variability are unknown. Objective 1) To report a novel family carrying a heterozygous 6.4Mb duplication of the SNCA locus with an atypical clinical presentation strongly reminiscent of frontotemporal dementia (FTD) and late-onset pallidopyramidal syndromes. 2) To study phenotype-genotype correlations in SNCA locus duplications. Design, Setting, Participants and Data sources We report the clinical and neuropathologic features of a family carrying a 6.4Mb duplication of the SNCA locus. To identify candidate disease modifiers, we undertake a genetic analysis in the family and conduct statistical analysis on previously published cases carrying SNCA locus duplication using regression modelling with robust standard errors to account for clustering at the family level. Main outcome measures To assess whether length of the SNCA locus duplication influences disease penetrance and severity, and whether extra-duplication factors have a disease-modifying role. Results We identified a large 6.4Mb duplication of the SNCA locus in this family. Neuropathological analysis showed extensive α-synuclein pathology with minimal phospho-tau pathology. Genetic analysis showed an increased burden of PD-related risk factors and the disease-predisposing H1/H1 MAPT haplotype. Statistical analysis of previously published cases suggested that there is a trend towards increasing disease severity and disease penetrance with increasing duplication size. The corresponding odds ratios (95% CI) from the univariate analyses were 1.17 (0.81 to 1.68) and 1.34 (0.78 to 2.31) respectively. Gender was significantly associated with both disease risk and severity; males compared to females had increased disease risk and severity and the corresponding odds ratios (95% CI) from the univariate analyses were 8.36 (1.97 to 35.42) and 5.55 (1.39 to 22.22) respectively

  9. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance

    PubMed Central

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362

  10. Spectral EEG Features of a Short Psycho-physiological Relaxation

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Krakovská, Anna; Špajdel, Marián

    2014-08-01

    Short-lasting psycho-physiological relaxation was investigated through an analysis of its bipolar electroencephalographic (EEG) characteristics. In 8 subjects, 6-channel EEG data of 3-minute duration were recorded during 88 relaxation sessions. Time course of spectral EEG features was examined. Alpha powers were decreasing during resting conditions of 3-minute sessions in lying position with eyes closed. This was followed by a decrease of total power in centro-parietal cortex regions and an increase of beta power in fronto-central areas. Represented by EEG coherences the interhemispheric communication between the parieto-occipital regions was enhanced within a frequency range of 2-10 Hz. In order to discern between higher and lower levels of relaxation distinguished according to self-rated satisfaction, EEG features were assessed and discriminating parameters were identified. Successful relaxation was determined mainly by the presence of decreased delta-1 power across the cortex. Potential applications for these findings include the clinical, pharmacological, and stress management fields.

  11. The characteristics of EEG power spectra changes after ACL rupture

    PubMed Central

    Miao, Xin; Huang, Hongshi; Hu, Xiaoqing; Li, Dai; Yu, Yuanyuan; Ao, Yingfang

    2017-01-01

    Background Reestablishing knee stability is the core of the treatment of ACL (Anterior Cruciate Ligament) injury. Some patients still have a feeling of instability of the knee after ACL injury treatment. This unstable feeling may be caused by central nervous system changes after ACL rupture. Methods To identify the central changes after ACL rupture, EEG spectra were recorded to compare ACL patients and healthy controls when they were walking, jogging, and landing. Results There was a significant increase in delta, theta, alpha and beta band power during walking, jogging and landing in ACL patients. We also found an asymmetry phenomenon of EEG only in the ACL patients, mainly in the frontal area and central-parietal area. The asymmetry of beta band power extended to the frontal and the central area during jogging and landing task. Conclusions There were significant differences in EEG power spectra between the ACL patients and healthy people. ACL patients showed high EEG band power activities and an asymmetry phenomenon. EEG power changes were affected by movements, the asymmetry extended when performing more complicated movements. PMID:28182627

  12. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.

    PubMed

    Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E

    2016-03-01

    This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings.

  13. Studying the default mode and its mindfulness-induced changes using EEG functional connectivity.

    PubMed

    Berkovich-Ohana, Aviva; Glicksohn, Joseph; Goldstein, Abraham

    2014-10-01

    The default mode network (DMN) has been largely studied by imaging, but not yet by neurodynamics, using electroencephalography (EEG) functional connectivity (FC). mindfulness meditation (MM), a receptive, non-elaborative training is theorized to lower DMN activity. We explored: (i) the usefulness of EEG-FC for investigating the DMN and (ii) the MM-induced EEG-FC effects. To this end, three MM groups were compared with controls, employing EEG-FC (-MPC, mean phase coherence). Our results show that: (i) DMN activity was identified as reduced overall inter-hemispheric gamma MPC during the transition from resting state to a time production task and (ii) MM-induced a state increase in alpha MPC as well as a trait decrease in EEG-FC. The MM-induced EEG-FC decrease was irrespective of expertise or band. Specifically, there was a relative reduction in right theta MPC, and left alpha and gamma MPC. The left gamma MPC was negatively correlated with MM expertise, possibly related to lower internal verbalization. The trait lower gamma MPC supports the notion of MM-induced reduction in DMN activity, related with self-reference and mind-wandering. This report emphasizes the possibility of studying the DMN using EEG-FC as well as the importance of studying meditation in relation to it.

  14. The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps.

    PubMed

    Bridwell, David A; Wu, Lei; Eichele, Tom; Calhoun, Vince D

    2013-04-01

    Different imaging modalities capture different aspects of brain activity. Functional magnetic resonance imaging (fMRI) reveals intrinsic networks whose BOLD signals have periods from 100 s (0.01 Hz) to about 10s (0.1 Hz). Electroencephalographic (EEG) recordings, in contrast, commonly reflect cortical electrical fluctuations with periods up to 20 ms (50 Hz) or above. We examined the correspondence between intrinsic fMRI and EEG network activity at rest in order to characterize brain networks both spatially (with fMRI) and spectrally (with EEG). Brain networks were separately identified within the concurrently recorded fMRI and EEG at the aggregate group level with group independent component analysis and the association between spatial fMRI and frequency by spatial EEG sources was examined by deconvolving their component time courses. The two modalities are considered linked if the estimated impulse response function (IRF) is significantly non-zero at biologically plausible delays. We found that negative associations were primarily present within two of five alpha components, which highlights the importance of considering multiple alpha sources in EEG-fMRI. Positive associations were primarily present within the lower (e.g. delta and theta) and higher (e.g. upper beta and lower gamma) spectral regions, sometimes within the same fMRI components. Collectively, the results demonstrate a promising approach to characterize brain networks spatially and spectrally, and reveal that positive and negative associations appear within partially distinct regions of the EEG spectrum.

  15. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling.

    PubMed

    Ferrante, Christopher James; Pinhal-Enfield, Grace; Elson, Genie; Cronstein, Bruce Neil; Hasko, Gyorgy; Outram, Shalini; Leibovich, Samuel Joseph

    2013-08-01

    Murine macrophages are activated by interferon-γ (IFN-γ) and/or Toll-like receptor (TLR) agonists such as bacterial endotoxin (lipopolysaccharide [LPS]) to express an inflammatory (M1) phenotype characterized by the expression of nitric oxide synthase-2 (iNOS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-12. In contrast, Th2 cytokines IL-4 and IL-13 activate macrophages by inducing the expression of arginase-1 and the anti-inflammatory cytokine IL-10 in an IL-4 receptor-α (IL-4Rα)-dependent manner. Macrophages activated in this way are designated as "alternatively activated" (M2a) macrophages. We have shown previously that adenosine A2A receptor (A(2A)R) agonists act synergistically with TLR2, TLR4, TLR7, and TLR9 agonists to switch macrophages into an "M2-like" phenotype that we have termed "M2d." Adenosine signaling suppresses the TLR-dependent expression of TNF-α, IL-12, IFN-γ, and several other inflammatory cytokines by macrophages and induces the expression of vascular endothelial growth factor (VEGF) and IL-10. We show here using mice lacking a functional IL-4Rα gene (IL-4Rα(-/-) mice) that this adenosine-mediated switch does not require IL-4Rα-dependent signaling. M2d macrophages express high levels of VEGF, IL-10, and iNOS, low levels of TNF-α and IL-12, and mildly elevated levels of arginase-1. In contrast, M2d macrophages do not express Ym1, Fizz1 (RELM-α), or CD206 at levels greater than those induced by LPS, and dectin-1 expression is suppressed. The use of these markers in vivo to identify "M2" macrophages thus provides an incomplete picture of macrophage functional status and should be viewed with caution.

  16. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies

    PubMed Central

    Ferreira, Susana; Ortiz, Alberto; Germain, Dominique P.; Viana-Baptista, Miguel; Gomes, António Caldeira; Camprecios, Marta; Fenollar-Cortés, Maria; Gallegos-Villalobos, Ángel; Garcia, Diego; García-Robles, José Antonio; Egido, Jesús; Gutiérrez-Rivas, Eduardo; Herrero, José Antonio; Mas, Sebastián; Oancea, Raluca; Péres, Paloma; Salazar-Martín, Luis Manuel; Solera-Garcia, Jesús; Alves, Helena; Garman, Scott C.; Oliveira, João Paulo

    2015-01-01

    Summary Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue – GLA p.(Arg118Cys) –, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands’ close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease, since the allelic frequency in stroke patients was 0.0087 (p=0.0185 vs the general population). The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for “rare” condition. PMID:25468652

  17. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies.

    PubMed

    Ferreira, Susana; Ortiz, Alberto; Germain, Dominique P; Viana-Baptista, Miguel; Caldeira-Gomes, António; Camprecios, Marta; Fenollar-Cortés, Maria; Gallegos-Villalobos, Ángel; Garcia, Diego; García-Robles, José Antonio; Egido, Jesús; Gutiérrez-Rivas, Eduardo; Herrero, José Antonio; Mas, Sebastián; Oancea, Raluca; Péres, Paloma; Salazar-Martín, Luis Manuel; Solera-Garcia, Jesús; Alves, Helena; Garman, Scott C; Oliveira, João Paulo

    2015-02-01

    Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue - GLA p.(Arg118Cys) -, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands' close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease. The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for "rare" condition.

  18. Classification of Single Normal and Alzheimer's Disease Individuals from Cortical Sources of Resting State EEG Rhythms

    PubMed Central

    Babiloni, Claudio; Triggiani, Antonio I.; Lizio, Roberta; Cordone, Susanna; Tattoli, Giacomo; Bevilacqua, Vitoantonio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Millán-Calenti, José C.; Buján, Ana; Tortelli, Rosanna; Cardinali, Valentina; Barulli, Maria Rosaria; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Frisoni, Giovanni B.; del Percio, Claudio

    2016-01-01

    Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer's disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e., 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%. PMID:26941594

  19. Altered resting-state EEG source functional connectivity in schizophrenia: the effect of illness duration

    PubMed Central

    Di Lorenzo, Giorgio; Daverio, Andrea; Ferrentino, Fabiola; Santarnecchi, Emiliano; Ciabattini, Fabio; Monaco, Leonardo; Lisi, Giulia; Barone, Ylenia; Di Lorenzo, Cherubino; Niolu, Cinzia; Seri, Stefano; Siracusano, Alberto

    2015-01-01

    Despite the increasing body of evidence supporting the hypothesis of schizophrenia as a disconnection syndrome, studies of resting-state EEG Source Functional Connectivity (EEG-SFC) in people affected by schizophrenia are sparse. The aim of the present study was to investigate resting-state EEG-SFC in 77 stable, medicated patients with schizophrenia (SCZ) compared to 78 healthy volunteers (HV). In order to study the effect of illness duration, SCZ were divided in those with a short duration of disease (SDD; n = 25) and those with a long duration of disease (LDD; n = 52). Resting-state EEG recordings in eyes closed condition were analyzed and lagged phase synchronization (LPS) indices were calculated for each ROI pair in the source-space EEG data. In delta and theta bands, SCZ had greater EEG-SFC than HV; a higher theta band connectivity in frontal regions was observed in LDD compared with SDD. In the alpha band, SCZ showed lower frontal EEG-SFC compared with HV whereas no differences were found between LDD and SDD. In the beta1 band, SCZ had greater EEG-SFC compared with HVs and in the beta2 band, LDD presented lower frontal and parieto-temporal EEG-SFC compared with HV. In the gamma band, SDD had greater connectivity values compared with LDD and HV. This study suggests that resting state brain network connectivity is abnormally organized in schizophrenia, with different patterns for the different EEG frequency components and that EEG can be a powerful tool to further elucidate the complexity of such disordered connectivity. PMID:25999835

  20. Cross-correlation of EEG frequency bands and heart rate variability for sleep apnoea classification.

    PubMed

    Abdullah, Haslaile; Maddage, Namunu C; Cosic, Irena; Cvetkovic, Dean

    2010-12-01

    Sleep apnoea is a sleep breathing disorder which causes changes in cardiac and neuronal activity and discontinuities in sleep pattern when observed via electrocardiogram (ECG) and electroencephalogram (EEG). Using both statistical analysis and Gaussian discriminative modelling approaches, this paper presents a pilot study of assessing the cross-correlation between EEG frequency bands and heart rate variability (HRV) in normal and sleep apnoea clinical patients. For the study we used EEG (delta, theta, alpha, sigma and beta) and HRV (LF(nu), HF(nu) and LF/HF) features from the spectral analysis. The statistical analysis in different sleep stages highlighted that in sleep apnoea patients, the EEG delta, sigma and beta bands exhibited a strong correlation with HRV features. Then the correlation between EEG frequency bands and HRV features were examined for sleep apnoea classification using univariate and multivariate Gaussian models (UGs and MGs). The MG outperformed the UG in the classification. When EEG and HRV features were combined and modelled with MG, we achieved 64% correct classification accuracy, which is 2 or 8% improvement with respect to using only EEG or ECG features. When delta and acceleration coefficients of the EEG features were incorporated, then the overall accuracy improved to 71%.

  1. EEG from a single-channel dry-sensor recording device.

    PubMed

    Johnstone, Stuart J; Blackman, Russell; Bruggemann, Jason M

    2012-04-01

    While a laboratory setting and research-grade electroencephalogram (EEG) equipment allow control of variables and high-quality multiple-channel EEG recording, there are situations and populations for which this is not suitable. The present studies examined the validity of a new method of single-channel EEG measurement that is portable and uses dry-sensor technology. In study 1, EEG was recorded simultaneously from the portable device and 4 standard EEG electrodes from a research system, during eyes open (EO) and eyes closed (EC) resting conditions, with 20 adult participants. Average correlations with the research system frequency spectra were highest at site F3 for portable device data processed onboard of the device (r = .90), and for device data processed in a standard manner (r = .89). Further, predictable variations in EO versus EC comparisons were observed. In study 2, twenty-three healthy children had EEGs recorded from the portable device during EO and EC resting conditions, and 3 EO active conditions (ie, relaxation, attention, and cognitive load). Absolute and relative EEG band power differed between conditions in predicted ways, including a reduction in relative theta power and an increase in relative alpha power in EC compared to EO resting conditions. Overall, the results suggest that, while limited in terms of scalp recording locations, the portable device has potential utility in certain EEG recording situations where ease of use is a priority.

  2. EEG Studies with Young Children.

    ERIC Educational Resources Information Center

    Flohr, John W.; Miller, Daniel C.; deBeus, Roger

    2000-01-01

    Describes how electroencephalogram (EEG) data are collected and how brain function is measured. Discusses studies on the effects of music experiences with adult subjects and studies focusing on the effects of music training on EEG activity of children and adolescents. Considers the implications of the studies and the future directions of this…

  3. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients.

  4. Hypoxia-inducible factor 1 alpha is required for the tumourigenic and aggressive phenotype associated with Rab25 expression in ovarian cancer

    PubMed Central

    Gomez-Roman, Natividad; Sahasrabudhe, Neha Mohan; McGregor, Fiona; Chalmers, Anthony J.; Cassidy, Jim; Plumb, Jane

    2016-01-01

    The small GTPase Rab25 has been functionally linked to tumour progression and aggressiveness in ovarian cancer and promotes invasion in three-dimensional environments. This type of migration has been shown to require the expression of the hypoxia-inducible factor 1 alpha (HIF-1α). In this report we demonstrate that Rab25 regulates HIF-1α protein expression in an oxygen independent manner in a panel of cancer cell lines. Regulation of HIF-1α protein expression by Rab25 did not require transcriptional upregulation, but was dependent on de novo protein synthesis through the Erbb2/ERK1/2 and p70S6K/mTOR pathways. Rab25 expression induced HIF-1 transcriptional activity, increased cisplatin resistance, and conferred intraperitoneal growth to the A2780 cell line in immunocompromised mice. Targeting HIF1 activity by silencing HIF-1β re-sensitised cells to cisplatin in vitro and reduced tumour formation of A2780-Rab25 expressing cells in vivo in a mouse ovarian peritoneal carcinomatosis model. Similar effects on cisplatin resistance in vitro and intraperitoneal tumourigenesis in vivo were obtained after HIF1b knockdown in the ovarian cancer cell line SKOV3, which expresses endogenous Rab25 and HIF-1α at atmospheric oxygen concentrations. Our results suggest that Rab25 tumourigenic potential and chemoresistance relies on HIF1 activity in aggressive and metastatic ovarian cancer. Targeting HIF-1 activity may potentially be effective either alone or in combination with standard chemotherapy for aggressive metastatic ovarian cancer. PMID:26967059

  5. Frontal alpha asymmetry and sexually motivated states.

    PubMed

    Prause, Nicole; Staley, Cameron; Roberts, Verena

    2014-03-01

    Anterior alpha asymmetry of electroencephalographic (EEG) signals has been suggested to index state approach (or avoidance) motivation. This model has not yet been extended to high approach-motivation sexual stimuli, which may represent an important model of reward system function. Sixty-five participants viewed a neutral and a sexually motivating film while their EEG was recorded, and reported their sexual feelings after each film. Greater alpha power in the left hemisphere during sexually motivated states was evident. A positive relationship between self-reported mental sexual arousal and alpha asymmetry was identified, where coherence between these indicators was higher in women. Notably, coherence was stronger when mental versus physical sexual arousal was rated. Alpha asymmetry appears to offer a new method for further examining this novel coherence pattern across men and women.

  6. Acquisition of resistance towards HYD1 correlates with a reduction in cleaved alpha 4 integrin expression and a compromised CAM-DR phenotype

    PubMed Central

    Emmons, Michael F.; Gebhard, Anthony W.; Nair, Rajesh R.; Baz, Rachid; McLaughlin, Mark; Cress, Anne E.; Hazlehurst, Lori A.

    2011-01-01

    We recently reported that the β1 integrin antagonist referred to as HYD1 induces necrotic cell death in myeloma cell lines as a single agent using in vitro and in vivo models. In this report we sought to delineate the determinants of sensitivity and resistance towards HYD1 induced cell death. To this end, we developed a HYD1 isogenic resistant myeloma cell line by chronically exposing H929 meyloma cells to increasing concentrations of HYD1. Our data indicate that the acquisition of resistance towards HYD1 correlates with reduced levels of the cleaved α4 integrin subunit. Consistent with reduced VLA-4 (α4β1) expression, the resistant variant showed ablated functional binding to fibronectin, VCAM-1 and the bone marrow stroma cell line HS-5. The reduction in binding of the resistant cell line to HS-5 cells translated to a compromised CAM-DR phenotype as demonstrated by increased sensitivity to melphalan and bortezomib induced cell death in the bone marrow stroma co-culture model of drug resistance. Importantly, we show that HYD1 is more potent in relapsed myeloma specimens compared to newly diagnosed patients, a finding which correlated with α4 integrin expression. Collectively, these data indicate that this novel D-amino acid peptide may represent a good candidate for pursing clinical trials in relapsed myeloma and in particular patients with high levels of α4 integrin. Moreover, our data provide further rationale for continued pre-clinical development of HYD1 and analogs of HYD1 for the treatment of multiple myeloma and potentially other tumors which home and/or metastasize to the bone. PMID:21980133

  7. Variability of model-free and model-based quantitative measures of EEG.

    PubMed

    Van Albada, Sacha J; Rennie, Christopher J; Robinson, Peter A

    2007-06-01

    Variable contributions of state and trait to the electroencephalographic (EEG) signal affect the stability over time of EEG measures, quite apart from other experimental uncertainties. The extent of intraindividual and interindividual variability is an important factor in determining the statistical, and hence possibly clinical significance of observed differences in the EEG. This study investigates the changes in classical quantitative EEG (qEEG) measures, as well as of parameters obtained by fitting frequency spectra to an existing continuum model of brain electrical activity. These parameters may have extra variability due to model selection and fitting. Besides estimating the levels of intraindividual and interindividual variability, we determined approximate time scales for change in qEEG measures and model parameters. This provides an estimate of the recording length needed to capture a given percentage of the total intraindividual variability. Also, if more precise time scales can be obtained in future, these may aid the characterization of physiological processes underlying various EEG measures. Heterogeneity of the subject group was constrained by testing only healthy males in a narrow age range (mean = 22.3 years, sd = 2.7). Eyes-closed EEGs of 32 subjects were recorded at weekly intervals over an approximately six-week period, of which 13 subjects were followed for a year. QEEG measures, computed from Cz spectra, were powers in five frequency bands, alpha peak frequency, and spectral entropy. Of these, theta, alpha, and beta band powers were most reproducible. Of the nine model parameters obtained by fitting model predictions to experiment, the most reproducible ones quantified the total power and the time delay between cortex and thalamus. About 95% of the maximum change in spectral parameters was reached within minutes of recording time, implying that repeat recordings are not necessary to capture the bulk of the variability in EEG spectra.

  8. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice

    PubMed Central

    Huang, Hu; Liu, Ying; Wang, Lei; Li, Wen

    2017-01-01

    The role of chemokine receptor in age-related macular degeneration (AMD) remains elusive. The objective of this study is to investigate the role of chemokine receptor Cxcr5 in the pathogenesis of AMD. Cxcr5 gene expression levels (mRNA and protein) are higher in the retina and retinal pigment epithelium (RPE) of aged C57BL/6 wild type mice than younger ones. Vascular and glial cells express Cxcr5 and its ligand Cxcl13 in mouse retina. Aged Cxcr5 knockout (-/-) mice develop both early and late AMD-like pathological features. White and yellow spots, which look like drusen in humans, were identified with fundscopic examination. Drusen-like sub-RPE deposits with dome-shaped morphology were characterized on the sections. RPE vacuolization, swelling, and sub-RPE basal deposits were illustrated with light and transmission electron microscope (TEM). TEM further illustrated degenerated and disorganized RPE basal infoldings, phagosomes and melanosomes inside RPE, as well as abnormal photoreceptor outer segments. Lipofuscin granules and lipid droplets in the subretinal space, RPE, and choroid were revealed with fluorescence microscope and oil-red-O staining. Increased IgG in RPE/choroid were determined with Western blots (WB). WB and immunofluorescence staining determined RPE zona occuldens (ZO)-1 protein reduction and abnormal subcellular localization. TUNEL staining, outer nuclear layer (ONL) measurement and electroretinogram (ERG) recording indicated that photoreceptors underwent apoptosis, degeneration, and functional impairment. Additionally, spontaneous neovascularization (NV)-like lesions develop in the subretinal space of aged Cxcr5-/- mice. The underlying mechanisms are associated with increased subretinal F4/80+ immune cells, some of which contain RPE marker RPE65, and up-regulation of the multifunctional cytokine tumor necrosis factor-alpha (TNF-α) in RPE/choroid and retina. These findings suggest that Cxcr5 itself may be involved in the protection of RPE and

  9. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice.

    PubMed

    Huang, Hu; Liu, Ying; Wang, Lei; Li, Wen

    2017-01-01

    The role of chemokine receptor in age-related macular degeneration (AMD) remains elusive. The objective of this study is to investigate the role of chemokine receptor Cxcr5 in the pathogenesis of AMD. Cxcr5 gene expression levels (mRNA and protein) are higher in the retina and retinal pigment epithelium (RPE) of aged C57BL/6 wild type mice than younger ones. Vascular and glial cells express Cxcr5 and its ligand Cxcl13 in mouse retina. Aged Cxcr5 knockout (-/-) mice develop both early and late AMD-like pathological features. White and yellow spots, which look like drusen in humans, were identified with fundscopic examination. Drusen-like sub-RPE deposits with dome-shaped morphology were characterized on the sections. RPE vacuolization, swelling, and sub-RPE basal deposits were illustrated with light and transmission electron microscope (TEM). TEM further illustrated degenerated and disorganized RPE basal infoldings, phagosomes and melanosomes inside RPE, as well as abnormal photoreceptor outer segments. Lipofuscin granules and lipid droplets in the subretinal space, RPE, and choroid were revealed with fluorescence microscope and oil-red-O staining. Increased IgG in RPE/choroid were determined with Western blots (WB). WB and immunofluorescence staining determined RPE zona occuldens (ZO)-1 protein reduction and abnormal subcellular localization. TUNEL staining, outer nuclear layer (ONL) measurement and electroretinogram (ERG) recording indicated that photoreceptors underwent apoptosis, degeneration, and functional impairment. Additionally, spontaneous neovascularization (NV)-like lesions develop in the subretinal space of aged Cxcr5-/- mice. The underlying mechanisms are associated with increased subretinal F4/80+ immune cells, some of which contain RPE marker RPE65, and up-regulation of the multifunctional cytokine tumor necrosis factor-alpha (TNF-α) in RPE/choroid and retina. These findings suggest that Cxcr5 itself may be involved in the protection of RPE and

  10. Dry EEG Electrodes

    PubMed Central

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  11. Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks

    PubMed Central

    Triggiani, Antonio I.; Bevilacqua, Vitoantonio; Brunetti, Antonio; Lizio, Roberta; Tattoli, Giacomo; Cassano, Fabio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Barulli, Maria R.; Tortelli, Rosanna; Cardinali, Valentina; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Stocchi, Fabrizio; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Lacidogna, Giordano; Orzi, Francesco; Buttinelli, Carla; Giubilei, Franco; Del Percio, Claudio; Frisoni, Giovanni B.; Babiloni, Claudio

    2017-01-01

    Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2–4 Hz), theta (4–8 Hz Hz), alpha1 (8–10.5 Hz), and alpha2 (10.5–13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification. PMID:28184183

  12. Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks.

    PubMed

    Triggiani, Antonio I; Bevilacqua, Vitoantonio; Brunetti, Antonio; Lizio, Roberta; Tattoli, Giacomo; Cassano, Fabio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Barulli, Maria R; Tortelli, Rosanna; Cardinali, Valentina; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Stocchi, Fabrizio; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Lacidogna, Giordano; Orzi, Francesco; Buttinelli, Carla; Giubilei, Franco; Del Percio, Claudio; Frisoni, Giovanni B; Babiloni, Claudio

    2016-01-01

    Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2-4 Hz), theta (4-8 Hz Hz), alpha1 (8-10.5 Hz), and alpha2 (10.5-13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification.

  13. Modulation of the COMT Val(158)Met polymorphism on resting-state EEG power.

    PubMed

    Solís-Ortiz, Silvia; Pérez-Luque, Elva; Gutiérrez-Muñoz, Mayra

    2015-01-01

    The catechol-O-methyltransferase (COMT) Val(158)Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val(158)Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women.

  14. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals

    NASA Astrophysics Data System (ADS)

    Lee, Seung Min; Kim, Jeong Hun; Byeon, Hang Jin; Choi, Yoon Young; Park, Kwang Suk; Lee, Sang-Hoon

    2013-06-01

    Objective. Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring. Approach. We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential. Main results. We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear. Significance. These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.

  15. EEG source imaging of brain states using spatiotemporal regression.

    PubMed

    Custo, Anna; Vulliemoz, Serge; Grouiller, Frederic; Van De Ville, Dimitri; Michel, Christoph

    2014-08-01

    Relating measures of electroencephalography (EEG) back to the underlying sources is a long-standing inverse problem. Here we propose a new method to estimate the EEG sources of identified electrophysiological states that represent spontaneous activity, or are evoked by a stimulus, or caused by disease or disorder. Our method has the unique advantage of seamlessly integrating a statistical significance of the source estimate while efficiently eliminating artifacts (e.g., due to eye blinks, eye movements, bad electrodes). After determining the electrophysiological states in terms of stable topographies using established methods (e.g.: ICA, PCA, k-means, epoch average), we propose to estimate these states' time courses through spatial regression of a General Linear Model (GLM). These time courses are then used to find EEG sources that have a similar time-course (using temporal regression of a second GLM). We validate our method using both simulated and experimental data. Simulated data allows us to assess the difference between source maps obtained by the proposed method and those obtained by applying conventional source imaging of the state topographies. Moreover, we use data from 7 epileptic patients (9 distinct epileptic foci localized by intracranial EEG) and 2 healthy subjects performing an eyes-open/eyes-closed task to elicit activity in the alpha frequency range. Our results indicate that the proposed EEG source imaging method accurately localizes the sources for each of the electrical brain states. Furthermore, our method is particularly suited for estimating the sources of EEG resting states or otherwise weak spontaneous activity states, a problem not adequately solved before.

  16. EEG Signatures of Dynamic Functional Network Connectivity States.

    PubMed

    Allen, E A; Damaraju, E; Eichele, T; Wu, L; Calhoun, V D

    2017-02-22

    The human brain operates by dynamically modulating different neural populations to enable goal directed behavior. The synchrony or lack thereof between different brain regions is thought to correspond to observed functional connectivity dynamics in resting state brain imaging data. In a large sample of healthy human adult subjects and utilizing a sliding windowed correlation method on functional imaging data, earlier we demonstrated the presence of seven distinct functional connectivity states/patterns between different brain networks that reliably occur across time and subjects. Whether these connectivity states correspond to meaningful electrophysiological signatures was not clear. In this study, using a dataset with concurrent EEG and resting state functional imaging data acquired during eyes open and eyes closed states, we demonstrate the replicability of previous findings in an independent sample, and identify EEG spectral signatures associated with these functional network connectivity changes. Eyes open and eyes closed conditions show common and different connectivity patterns that are associated with distinct EEG spectral signatures. Certain connectivity states are more prevalent in the eyes open case and some occur only in eyes closed state. Both conditions exhibit a state of increased thalamocortical anticorrelation associated with reduced EEG spectral alpha power and increased delta and theta power possibly reflecting drowsiness. This state occurs more frequently in the eyes closed state. In summary, we find a link between dynamic connectivity in fMRI data and concurrently collected EEG data, including a large effect of vigilance on functional connectivity. As demonstrated with EEG and fMRI, the stationarity of connectivity cannot be assumed, even for relatively short periods.

  17. EEG Recording and Analysis for Sleep Research

    PubMed Central

    Campbell, Ian G.

    2010-01-01

    The electroencephalogram (EEG) is the most common tool used in sleep research. This unit describes the methods for recording and analyzing the EEG. Detailed protocols describe recorder calibration, electrode application, EEG recording, and computer EEG analysis with power spectral analysis. Computer digitization of an analog EEG signal is discussed, along with EEG filtering and the parameters of fast Fourier transform (FFT) power spectral analysis. Sample data are provided for a typical night's analysis of EEG during NREM (non-REM) and REM sleep. PMID:19802813

  18. Monitoring kidney patients by syntactometric EEG analysis.

    PubMed

    Hernández Sande, C; Arias Rodríguez, J E

    1985-10-01

    The EEG of seriously ill kidney patients reflects changes in their condition which can be measured quantitatively by a syntactic pattern recognition technique. 128 s of an EEG were sampled at 100 Hz and segmented into 4 sec blocks, each of which was labelled D (or d), T (or t), N (or n), S (or s), or B (or b) depending on the position of its main peak in the power spectrum: delta band (0-4 Hz), theta band (4-8 Hz), alpha band (8-12 Hz), sigma band (12-14 Hz) or beta band (over 14 Hz). The use of capital or small letters depends on the size of the peak A refinement of the method also takes into account the second largest peak. The distance of the resulting 32-character 'sentences' from a pattern is calculated using a string-to-string metric based on weighted insertions, deletions and substitutions (insertions and deletions are included to allow for artefacts detected in the signal). Elementary weights have been assigned on empirical medical grounds taking into account the neurological significance of the various spectral bands and their correlation with the levels of creatinine and urea in the bloodstream.

  19. Ballistocardiogram Artifact Removal with a Reference Layer and Standard EEG Cap

    PubMed Central

    Luo, Qingfei; Huang, Xiaoshan; Glover, Gary H.

    2014-01-01

    Background In simultaneous EEG-fMRI, the EEG recordings are severely contaminated by ballistocardiogram (BCG) artifacts, which are caused by cardiac pulsations. To reconstruct and remove the BCG artifacts, one promising method is to measure the artifacts in the absence of EEG signal by placing a group of electrodes (BCG electrodes) on a conductive layer (reference layer) insulated from the scalp. However, current BCG reference layer (BRL) methods either use a customized EEG cap composed of electrode pairs, or need to construct the custom reference layer through additional model-building experiments for each EEG-fMRI experiment. These requirements have limited the versatility and efficiency of BRL. The aim of this study is to propose a more practical and efficient BRL method and compare its performance with the most popular BCG removal method, the optimal basis sets (OBS) algorithm. New Method By designing the reference layer as a permanent and reusable cap, the new BRL method is able to be used with a standard EEG cap, and no extra experiments and preparations are needed to use the BRL in an EEG-fMRI experiment. Results The BRL method effectively removed the BCG artifacts from both oscillatory and evoked potential scalp recordings and recovered the EEG signal. Comparison with Existing Method Compared to the OBS, this new BRL method improved the contrast-to-noise ratios of the alpha-wave, visual, and auditory evoked potential signals by 101%, 76%, and 75% respectively, employing 160 BCG electrodes. Using only 20 BCG electrodes, the BRL improved the EEG signal by 74%/26%/41% respectively. Conclusion The proposed method can substantially improve the EEG signal quality compared with traditional methods. PMID:24960423

  20. Differences in hepatitis C virus (HCV)-specific CD8 T-cell phenotype during pegylated alpha interferon and ribavirin treatment are related to response to antiviral therapy in patients chronically infected with HCV.

    PubMed

    Caetano, Joana; Martinho, António; Paiva, Artur; Pais, Beatriz; Valente, Cristina; Luxo, Cristina

    2008-08-01

    CD8 T cells play a major role in antiviral immune responses. Their importance for progression to chronic hepatitis C and response to treatment are still unclear. To address these issues, hepatitis C virus (HCV)-specific CD8 T-cell responses were monitored, at the single-cell level, using HLA class I pentamers specific for HCV core and HCV NS3 epitopes, in 23 chronically infected patients during treatment with pegylated alpha interferon and ribavirin. Patients who presented a sustained-response to therapy had stronger HCV-specific CD8 T-cell responses at all time points studied. Moreover, there were clear differences in the phenotypes of these cells during therapy: in responder patients, terminally differentiated effector cells increased more rapidly, and their frequency was always higher than in nonresponder patients. Sustained-responder patients also showed a higher frequency of HCV-specific CD8 T cells producing cytotoxic factors. Overall, a late and inefficient differentiation process of HCV-specific CD8 T cells might be associated with lack of response to treatment. A better knowledge of the mechanisms underlying this impairment may be important for the development of new therapeutic strategies to maintain, restore, or increase CD8 T-cell effectiveness in chronic HCV infection.

  1. The EEG of tropical encephalopathies.

    PubMed

    Mallewa, Macpherson; Birbeck, Gretchen L

    2013-10-01

    In addition to encountering most of the conditions treated by clinicians in the West, clinicians in the tropics are faced with unique tropical encephalopathies. These are largely but not entirely infectious in nature. Despite the relatively low cost of EEG technology, it remains unavailable in many low-income tropical settings even at the tertiary care level. Where available, the EEG recordings and interpretation are often of unacceptable quality. Nonetheless, there are existing data on the EEG patterns seen in malaria and a number of tropical viral, bacterial, and parasitic infestations.

  2. Envelope responses in single-trial EEG indicate attended speaker in a ‘cocktail party’

    NASA Astrophysics Data System (ADS)

    Horton, Cort; Srinivasan, Ramesh; D'Zmura, Michael

    2014-08-01

    Objective. Recent studies have shown that auditory cortex better encodes the envelope of attended speech than that of unattended speech during multi-speaker (‘cocktail party’) situations. We investigated whether these differences were sufficiently robust within single-trial electroencephalographic (EEG) data to accurately determine where subjects attended. Additionally, we compared this measure to other established EEG markers of attention. Approach. High-resolution EEG was recorded while subjects engaged in a two-speaker ‘cocktail party’ task. Cortical responses to speech envelopes were extracted by cross-correlating the envelopes with each EEG channel. We also measured steady-state responses (elicited via high-frequency amplitude modulation of the speech) and alpha-band power, both of which have been sensitive to attention in previous studies. Using linear classifiers, we then examined how well each of these features could be used to predict the subjects’ side of attention at various epoch lengths. Main results. We found that the attended speaker could be determined reliably from the envelope responses calculated from short periods of EEG, with accuracy improving as a function of sample length. Furthermore, envelope responses were far better indicators of attention than changes in either alpha power or steady-state responses. Significance. These results suggest that envelope-related signals recorded in EEG data can be used to form robust auditory BCI’s that do not require artificial manipulation (e.g., amplitude modulation) of stimuli to function.

  3. An EEG Finger-Print of fMRI deep regional activation.

    PubMed

    Meir-Hasson, Yehudit; Kinreich, Sivan; Podlipsky, Ilana; Hendler, Talma; Intrator, Nathan

    2014-11-15

    This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode.

  4. Study on EEG power and coherence in patients with mild cognitive impairment during working memory task.

    PubMed

    Jiang, Zheng-yan

    2005-12-01

    To investigate the features of electroencephalography (EEG) power and coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Thirty-five patients (17 males, 18 females; 52-71 years old) and 34 sex- and age-matched controls (17 males, 17 females; 51-63 years old) were recruited in the present study. Mini-Mental State Examination (MMSE) of 35 patients with MCI and 34 normal controls revealed that the scores of MCI patients did not differ significantly from those of normal controls (P>0.05). Then, EEGs at rest and during working memory task with three levels of working memory load were recorded. The EEG power was computed over 10 channels: right and left frontal (F3, F4), central (C3, C4), parietal (P3, P4), temporal (T5, T6) and occipital (O1, O2); inter-hemispheric coherences were computed from five electrode pairs of F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 for delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha-1 (8.0-10.0 Hz), alpha-2 (10.5 -13.0 Hz), beta-1 (13.5-18.0 Hz) and beta-2 (18.5-30.0 Hz) frequency bands. All values of the EEG power of MCI patients were found to be higher than those of normal controls at rest and during working memory tasks. Furthermore, the values of EEG power in the theta, alpha-1, alpha-2 and beta-1 bands of patients with MCI were significantly high (P<0.05) in comparison with those of normal controls. Correlation analysis indicated a significant negative correlation between the EEG powers and MMSE scores. In addition, during working memory tasks, the EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P<0.05). However, there was no significant difference in EEG coherences between two groups at rest. These findings comprise evidence that MCI patients have higher EEG power at rest, and higher EEG power and coherence during working conditions. It suggests that MCI may be associated with compensatory processes at rest and during working

  5. Effect of diazepam on EEG power and coherent activity: sex differences.

    PubMed

    Romano-Torres, M; Borja-Lascurain, E; Chao-Rebolledo, C; del-Río-Portilla, Y; Corsi-Cabrera, M

    2002-10-01

    Benzodiazepine-steroid interactions and sex differences in brain and circulating levels of gonadal steroids, lead to hypothesized differential effects of DZ on EEG in women and men. Coherent activity has been shown to be relevant for binding information into global percepts therefore diazepam effects on EEG correlation and sex differences were assessed in a double-blind crossover study. Healthy males (9) and females (9) received a single-dose (5 mg) of diazepam or placebo. EEG was recorded with eyes open (FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2) before and 2 h after drug administration in two counterbalanced sessions. DZ selectively increased delta and theta EEG correlation among frontal regions and decreased it between right parieto-occipital (theta) and fronto-central regions (alpha2) in addition to an increase in beta2 interhemispheric correlation in men and women. Men showed increased beta1 interhemispheric correlation, decreased alpha1 and increased beta power; women showed in addition, decreased theta and alpha2 power. theta rhythm was more sensitive to DZ in women, whereas interhemispheric correlation was more affected in men. DZ had a sexually dimorphic effect on waking EEG and a disrupting effect on coherent activity, increasing balance among frontal regions and decreasing temporal coupling between anterior-posterior regions. These sex differences might be related to differences in brain organization and activational effects of female gonadal steroids which are higher in women than in men.

  6. Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample.

    PubMed

    Smit, Christine M; Wright, Margaret J; Hansell, Narelle K; Geffen, Gina M; Martin, Nicholas G

    2006-08-01

    To further clarify the mode of genetic transmission on individual alpha frequency (IAF) and alpha power, the extent to which individual differences in these alpha indices are influenced by genetic factors were examined in a large sample of adolescent twins (237 MZ, 282 DZ pairs; aged 16). EEG was measured at rest (eyes closed) from the right occipital site, and a second EEG recording for 50 twin pairs obtained approximately 3 months after the initial collection, enabled an estimation of measurement error. Analyses confirmed a strong genetic influence on both IAF (h(2)=0.81) and alpha power (h(2)=0.82), and there was little support for non-additive genetic (dominance) variance. A small but significant negative correlation (-0.18) was found between IAF and alpha power, but genetic influences on IAF and alpha power were largely independent. All non-genetic variance was due to unreliability, with no significant variance attributed to unique environmental factors. Relationships between the alpha and IQ indices were also explored but were generally either non-significant or very low. The findings confirm the high heritability for both IAF and alpha power, they further suggest that the mode of genetic transmission is due to additive genetic factors, that genetic influences on the underlying neural mechanisms of alpha frequency and power are largely specific, and that individual differences in alpha activity are influenced little by developmental plasticity and individual experiences.

  7. Different Resting State EEG Features in Children from Switzerland and Saudi Arabia

    PubMed Central

    Alahmadi, Nsreen; Evdokimov, Sergey A.; Kropotov, Yury (Juri); Müller, Andreas M.; Jäncke, Lutz

    2016-01-01

    Background: Cultural neuroscience is an emerging research field concerned with studying the influences of different cultures on brain anatomy and function. In this study, we examined whether different cultural or genetic influences might influence the resting state electroencephalogram (EEG) in young children (mean age 10 years) from Switzerland and Saudi Arabia. Methods: Resting state EEG recordings were obtained from relatively large groups of healthy children (95 healthy Swiss children and 102 Saudi Arabian children). These EEG data were analyzed using group independent components analyses (gICA) and conventional analyses of spectral data, together with estimations of the underlying intracortical sources, using LORETA software. Results: We identified many similarities, but also some substantial differences with respect to the resting state EEG data. For Swiss children, we found stronger delta band power values in mesial frontal areas and stronger power values in three out of four frequency bands in occipital areas. For Saudi Arabian children, we uncovered stronger alpha band power over the sensorimotor cortex. The additionally measured theta/beta ratio (TBR) was similar for Swiss and Saudi Arabian children. Conclusions: The different EEG resting state features identified, are discussed in the context of different cultural experiences and possible genetic influences. In addition, we emphasize the importance of using appropriate EEG databases when comparing resting state EEG features between groups. PMID:27853430

  8. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording

    NASA Astrophysics Data System (ADS)

    Lee, Joong Hoon; Lee, Seung Min; Byeon, Hang Jin; Hong, Joung Sook; Park, Kwang Suk; Lee, Sang-Hoon

    2014-08-01

    Objective. Current electroencephalogram (EEG) monitoring systems typically require cumbersome electrodes that must be pasted on a scalp, making a private recording of an EEG in a public place difficult. We have developed a small, user friendly, biocompatible electrode with a good appearance for inconspicuous EEG monitoring. Approach. We fabricated carbon nanotube polydimethylsiloxane (CNT/PDMS)-based canal-type ear electrodes (CEE) for EEG recording. These electrodes have an additional function, triggering sound stimulation like earphones and recording EEG simultaneously for auditory brain-computer interface (BCI). The electrode performance was evaluated by a standard EEG measurement paradigm, including the detection of alpha rhythms and measurements of N100 auditory evoked potential (AEP), steady-state visual evoked potential (SSVEP) and auditory steady-state response (ASSR). Furthermore, the bio- and skin-compatibility of CNT/PDMS were tested. Main results. All feasibility studies were successfully recorded with the fabricated electrodes, and the biocompatibility of CNT/PDMS was also proved. Significance. These electrodes could be used to monitor EEG clinically, in ubiquitous health care and in brain-computer interfaces.

  9. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications

    NASA Astrophysics Data System (ADS)

    Grozea, Cristian; Voinescu, Catalin D.; Fazli, Siamac

    2011-04-01

    In this paper, we present a new, low-cost dry electrode for EEG that is made of flexible metal-coated polymer bristles. We examine various standard EEG paradigms, such as capturing occipital alpha rhythms, testing for event-related potentials in an auditory oddball paradigm and performing a sensory motor rhythm-based event-related (de-) synchronization paradigm to validate the performance of the novel electrodes in terms of signal quality. Our findings suggest that the dry electrodes that we developed result in high-quality EEG recordings and are thus suitable for a wide range of EEG studies and BCI applications. Furthermore, due to the flexibility of the novel electrodes, greater comfort is achieved in some subjects, this being essential for long-term use.

  10. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications.

    PubMed

    Grozea, Cristian; Voinescu, Catalin D; Fazli, Siamac

    2011-04-01

    In this paper, we present a new, low-cost dry electrode for EEG that is made of flexible metal-coated polymer bristles. We examine various standard EEG paradigms, such as capturing occipital alpha rhythms, testing for event-related potentials in an auditory oddball paradigm and performing a sensory motor rhythm-based event-related (de-) synchronization paradigm to validate the performance of the novel electrodes in terms of signal quality. Our findings suggest that the dry electrodes that we developed result in high-quality EEG recordings and are thus suitable for a wide range of EEG studies and BCI applications. Furthermore, due to the flexibility of the novel electrodes, greater comfort is achieved in some subjects, this being essential for long-term use.

  11. Autonomic and EEG correlates of emotional imagery in subjects with different hypnotic susceptibility.

    PubMed

    Sebastiani, L; Simoni, A; Gemignani, A; Ghelarducci, B; Santarcangelo, E L

    2003-04-15

    The autonomic and EEG correlates of the response to a cognitive unpleasant stimulation (US) verbally administered to awake hypnotizable and non hypnotizable subjects were studied. They were compared with the values obtained during a resting condition immediately preceding the stimulus and with those produced by a cognitive neutral stimulation (NS), also administered after a basal resting period. Results showed hypnotic trait effects on skin resistance, heart and respiratory rate as well as on EEG theta, alpha, beta and gamma relative power changes. The autonomic and EEG patterns observed indicated different strategies in the task execution for hypnotizable and non hypnotizable subjects and a discrepancy between the autonomic and EEG changes associated to the US in susceptible subjects. Results support dissociation theories of hypnosis and suggest for hypnotizable persons an active mechanism of protection against cardiac hazard.

  12. Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.

    2001-01-01

    Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.

  13. [Correlation between EEG and neuroimaging].

    PubMed

    Tobimatsu, Shozo

    2012-01-01

    The present state of knowledge of physiological mechanisms underlying nonepileptiform EEG abnormalities is reviewed to clarify the correlation between EEG and neuroimaging. Focal and widespread slow waves, background abnormalities, and bursts of rhythmic slow activity are discussed. EEG phenomena were correlated with lesion size, location, type (white matter vs. gray matter, high density vs. low density), and mass effect. Clinical and experimental accumulated over the past five decades suggest that polymorphic slow activity is generated in cerebral cortex by layers of pyramidal cells and is probably due to partial deafferentation from subcortical areas. Unilateral background activity changes are probably thalamic dysfunction, and bilateral paroxysmal slow activity is due to abnormal thalamocortical circuits combined with cortical pathology. Paroxysmal discharges indicate the presence of epilepsy with possible brain lesion(s). The EEG is a functional test and provides us complementary information to neuroimaging studies.

  14. Identifying Objective EEG Based Markers of Linear Vection in Depth

    PubMed Central

    Palmisano, Stephen; Barry, Robert J.; De Blasio, Frances M.; Fogarty, Jack S.

    2016-01-01

    This proof-of-concept study investigated whether a time-frequency EEG approach could be used to examine vection (i.e., illusions of self-motion). In the main experiment, we compared the event-related spectral perturbation (ERSP) data of 10 observers during and directly after repeated exposures to two different types of optic flow display (each was 35° wide by 29° high and provided 20 s of motion stimulation). Displays consisted of either a vection display (which simulated constant velocity forward self-motion in depth) or a control display (a spatially scrambled version of the vection display). ERSP data were decomposed using time-frequency Principal Components Analysis (t–f PCA). We found an increase in 10 Hz alpha activity, peaking some 14 s after display motion commenced, which was positively associated with stronger vection ratings. This followed decreases in beta activity, and was also followed by a decrease in delta activity; these decreases in EEG amplitudes were negatively related to the intensity of the vection experience. After display motion ceased, a series of increases in the alpha band also correlated with vection intensity, and appear to reflect vection- and/or motion-aftereffects, as well as later cognitive preparation for reporting the strength of the vection experience. Overall, these findings provide support for the notion that EEG can be used to provide objective markers of changes in both vection status (i.e., “vection/no vection”) and vection strength. PMID:27559328

  15. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults

    PubMed Central

    Johannesen, Jason K.; Bi, Jinbo; Jiang, Ruhua; Kenney, Joshua G.; Chen, Chi-Ming A.

    2016-01-01

    Background With millisecond-level resolution, electroencephalographic (EEG) recording provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG features used to answer experimental questions is typically determined a priori. The utility of machine learning was investigated as a computational framework for extracting the most relevant features from EEG data empirically. Methods Schizophrenia (SZ; n = 40) and healthy community (HC; n = 12) subjects completed a Sternberg Working Memory Task (SWMT) during EEG recording. EEG was analyzed to extract 5 frequency components (theta1, theta2, alpha, beta, gamma) at 4 processing stages (baseline, encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital-Oz) separately for correctly and incorrectly answered trials. The 1-norm support vector machine (SVM) method was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; Model 1) and diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in relation to neuropsychological test performance and diagnostic classification using conventional regression-based analyses. Results SWMT performance was significantly reduced in SZ (p < .001). Model 1 correctly classified trial accuracy at 84 % in HC, and at 74 % when cross-validated in SZ data. Frontal gamma at encoding and central theta at retention provided highest weightings, accounting for 76 % of variance in SWMT scores and 42 % variance in neuropsychological test performance across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as primary classifiers of diagnosis, providing 87 % classification accuracy as a discriminant function. Conclusions EEG features derived by SVM are consistent with literature reports of gamma’s role in memory encoding, engagement of theta during memory retention, and elevated resting low-frequency activity in schizophrenia. Tests of model performance and cross

  16. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    PubMed

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition.

  17. Topographic quantitative EEG sequelae of chronic marihuana use: a replication using medically and psychiatrically screened normal subjects.

    PubMed

    Struve, F A; Straumanis, J J; Patrick, G; Leavitt, J; Manno, J E; Manno, B R

    1999-10-01

    In two previous studies it was reported that chronic marihuana (THC) use was associated with unique quantitative EEG features which were present in the non-intoxicated state. THC users, as contrasted with controls, had significant elevations of Absolute Power, Relative Power, and Coherence of alpha activity over the bilateral frontal cortex. Furthermore, a quantitative EEG discriminant function analyses permitted a 95% correct user versus non-user classification. However, because all of the THC users and 58% of the non-user controls were psychiatric inpatients, diagnostic and medication effects, if any, were uncontrolled. In the present study the same quantitative EEG methods were used to study daily THC users and non-user controls who underwent a rigorous screening process to insure that they were medically and psychiatrically healthy. The results of previous studies were replicated and an additional EEG correlate of chronic THC exposure (reduced alpha frequency) was identified.

  18. EEG default mode network in the human brain: spectral regional field powers.

    PubMed

    Chen, Andrew C N; Feng, Weijia; Zhao, Huixuan; Yin, Yanling; Wang, Peipei

    2008-06-01

    Eyes-closed (EC) and eyes-open (EO) are essential behaviors in mammalians, including man. At resting EC-EO state, brain activity in the default mode devoid of task-demand has recently been established in fMRI. However, the corresponding comprehensive electrophysiological conditions are little known even though EEG has been recorded in humans for nearly 80 years. In this study, we examined the spatial characteristics of spectral distribution in EEG field powers, i.e., sitting quietly with an EC and EO resting state of 3 min each, measured with high-density 128-ch EEG recording and FFT signal analyses in 15 right-handed healthy college females. Region of interest was set at a threshold at 90% of the spectral effective value to delimit the dominant spatial field power of effective energy in brain activity. Low-frequency delta (0.5-3.5 Hz) EEG field power was distributed at the prefrontal area with great expansion of spatial field and enhancement of field power (t=-2.72, p<0.02) from the EC to the EO state. Theta (4-7 Hz) EEG field power was distributed over the fronto-central area and leaned forward from EC to the EO state but with drastic reduction in field power (t=4.04, p<0.01). The middle-frequency alpha-1 (7.5-9.5 Hz) and alpha-2 (10-12 Hz) EEG powers exhibited bilateral distribution over the posterior areas with an anterior field in lower alpha-1. Both showed significantly reduction of field powers (respectively, W=120, p<0.001 for alpha-1; t=4.12, p<0.001 for alpha-2) from EC to the EO state. Beta-1 (13-23 Hz) exhibited a similar spatial region over the posterior area as in alpha-2 and showed reduction of field power (t=4.42, p<0.001) from EC to the EO state. In contrast, high-frequency beta-2 and gamma band exhibited similar, mainly prefrontal distribution in field power, and exhibited no change from EC to the EO state. Corresponding correlation analyses indicated significant group association between EC and EO only in the field powers of delta (r=0.95, p<0

  19. Changes in the waking EEG as a consequence of sleep and sleep deprivation.

    PubMed

    Corsi-Cabrera, M; Ramos, J; Arce, C; Guevara, M A; Ponce-de León, M; Lorenzo, I

    1992-12-01

    Electroencephalographic (EEG) activity was monopolarly recorded during resting wakefulness in 10 volunteers under the following conditions: at night before going to sleep, at night before total sleep deprivation, in the morning after waking, in the morning after sleep deprivation and at night after having slept during the day. Absolute and relative power and inter- and intrahemispheric correlation were established. After diurnal and nocturnal sleep as compared to sleep deprivation, we obtained the following significant results: interhemispheric correlations were higher; intrahemispheric correlations were lower; absolute power of alpha 2, beta 1 and beta 2 was lower; and relative power of alpha 2 and beta 2 was lower. EEG changes as a consequence of sleep or lack of sleep are dependent on prior sleep and/or wakefulness and not on circadian phase. EEG activity during wakefulness is a sensitive parameter and a useful tool to assess the consequences of sleep on brain functional organization.

  20. Electroencephalograph (EEG) study on self-contemplating image formation

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2016-05-01

    Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.

  1. Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia.

    PubMed

    Kam, Julia W Y; Bolbecker, Amanda R; O'Donnell, Brian F; Hetrick, William P; Brenner, Colleen A

    2013-12-01

    Resting state electroencephalogram (EEG) abnormalities in schizophrenia and bipolar disorder patients suggest alterations in neural oscillatory activity. However, few studies directly compare these anomalies between patient groups, and none have examined EEG coherence. Therefore, this study investigated whether these electrophysiological characteristics differentiate clinical populations from one another, and from non-psychiatric controls. To address this question, resting EEG power and coherence were assessed in 76 bipolar patients (BP), 132 schizophrenia patients (SZ), and 136 non-psychiatric controls (NC). We conducted separate repeated-measures ANOVAs to examine group differences within seven frequency bands across several brain regions. BP showed significantly greater power relative to SZ at higher frequencies including Beta and Gamma across all regions. In terms of intra-hemispheric coherence, while SZ generally exhibited higher coherence at Delta compared to NC and BP, both SZ and BP showed higher coherence at Alpha1 and Alpha2. In contrast, BP and HC showed higher coherence within hemispheres compared to SZ at Beta 1. In terms of inter-hemispheric coherence, SZ displayed higher coherence compared to NC at temporal sites at both Alpha1 and Alpha2. Taken together, BP exhibited increased high frequency power with few disruptions in neural synchronization. In contrast, SZ generally exhibited enhanced synchronization within and across hemispheres. These findings suggest that resting EEG can be a sensitive measure for differentiating between clinical disorders.

  2. Lateralization of Auditory Language: An EEG Study of Bilingual Crow Indian Adolescents.

    ERIC Educational Resources Information Center

    Vocate, Donna R.

    A study was undertaken to learn whether involvement of the brain's right hemisphere in auditory language processing, a phenomenon found in a previous study of Crow-English bilinguals, was language-specific. Alpha blocking response as measured by electroencephalography (EEG) was used as an indicator of brain activity. It was predicted that (1)…

  3. Low-cost EEG-based sleep detection.

    PubMed

    Van Hal, Bryan; Rhodes, Samhita; Dunne, Bruce; Bossemeyer, Robert

    2014-01-01

    A real-time stage 1 sleep detection system using a low-cost single dry-sensor EEG headset is described. This device issues an auditory warning at the onset of stage 1 sleep using the "NeuroSky Mindset," an inexpensive commercial entertainment-based headset. The EEG signal is filtered into low/high alpha and low/high beta frequency bands which are analyzed to indicate the onset of sleep. Preliminary results indicate an 81% effective rate of detecting sleep with all failures being false positives of sleep onset. This device was able to predict and respond to the onset of drowsiness preceding stage 1 sleep allowing for earlier warnings with the result of fewer sleep-related accidents.

  4. Individual musical tempo preference correlates with EEG beta rhythm.

    PubMed

    Bauer, Anna-Katharina R; Kreutz, Gunter; Herrmann, Christoph S

    2015-04-01

    Every individual has a preferred musical tempo, which peaks slightly above 120 beats per minute and is subject to interindividual variation. The preferred tempo is believed to be associated with rhythmic body movements as well as motor cortex activity. However, a long-standing question is whether preferred tempo is determined biologically. To uncover the neural correlates of preferred tempo, we first determined an individual's preferred tempo using a multistep procedure. Subsequently, we correlated the preferred tempo with a general EEG timing parameter as well as perceptual and motor EEG correlates-namely, individual alpha frequency, auditory evoked gamma band response, and motor beta activity. Results showed a significant relation between preferred tempo and the frequency of motor beta activity. These findings suggest that individual tempo preferences result from neural activity in the motor cortex, explaining the interindividual variation.

  5. [Post-radiation effect on the interhemispheric asymmetry in EEG and thermography characteristics].

    PubMed

    Zhavoronkova, L A; Gabova, A V; Kuznetsova, G D; Sel'skiĭ, A G; Pasechnik, V I; Kholodova, N B; Ianovich, A V

    2003-01-01

    Complex analysis of EEG and thermographic parameters carried out in 10 healthy subjects and 34 patients, Chernobyl clean-up participants revealed a correlation between EEG and brain temperature changes in the baseline state and during mental arithmetic. During cognitive activity the maximal increase in the average EEG coherence and temperature shifts in healthy subjects were observed in the left frontotemporal and right parietotemporal areas. In patients changes in both parameters under study were most pronounced, the interhemispheric relations were impaired. The visual analysis revealed "flat" and "hypersynchronous" EEG types in patients. The dominant pathologic activity in the betal range indicative of mediobasal and oral brainstem lesions was characteristic of the flat EEG. This type of activity was observed in 60% of patients. In these cases, a general decrease in EEG coherence and temperature was most pronounced in the left hemisphere. The hypersynchronou EEG type (40% patients) was characterized by paroxysmal activity in the theta and alpha ranges suggesting diencephalic brain lesions. In these cases, EEG coherence and temperature were more variable; changes in the right hemisphere were significant, be it increase or decrease. Our complex approach to investigation of brain activity in different aspects seems to be promising in estimation of the brain functional state both in healthy persons and patients in remote terms after exposure to radiation. The specific hemispheric temperature changes revealed in Chernobyl patients especially during cognitive activity can be the sequels of postradiation disorders of vascular neuro-circulation. The EEG findings suggest subcortical disorders at different levels (diencephalic or brainstem) and functional failure of the right or left hemispheres in remote terms after exposure to radiation.

  6. Prestimulus EEG amplitude determinants of ERP responses in a habituation paradigm.

    PubMed

    De Blasio, Frances M; Barry, Robert J; Steiner, Genevieve Z

    2013-09-01

    Evidence for the nature and extent of the prestimulus EEG contributions to ERP determination has been mounting, and we have recently mapped these within an equiprobable auditory Go/NoGo task. Here we examined if the pattern of relationships in the Go/NoGo would generalise to an auditory habituation paradigm. Count and No-task conditions were assessed, and we predicted broadly corresponding effects between Go and Count, and NoGo and No-task conditions. Single-trial data were obtained at the midline sites (Fz, Cz, Pz). Prestimulus EEG in each of the traditional bands was quantified using a sliding FFT window, and five ERP components were manually identified. The corresponding EEG and ERP data were then correlated across subjects, sites, and trials, separately for each ERP component measure (amplitude, latency), task condition (Count, No-task), and EEG band (delta, theta, alpha, beta). Despite the substantial paradigm and methodological differences, 10 of the 17 expected prestimulus EEG-ERP directional relationships (i.e., direct or inverse effects) were confirmed across the traditional bands and ERP components, and only one was in the opposite direction. Importantly, 18 additional relationships reached significance here; these occurred across the EEG bands, and ERP components. Together these findings confirm the significant contributions of prestimulus EEG to subsequent ERP responses. These appear to be at least partially independent of the paradigm and EEG methodology employed, suggesting that there is merit in mapping these contributions further. Our findings also indicate the improved sensitivity of the statistical approach used here in detecting such EEG-ERP relationships.

  7. Neuroelectric assessment of HIV: EEG, ERP, and viral load.

    PubMed

    Polich, J; Ilan, A; Poceta, J S; Mitler, M M; Darko, D F

    2000-10-01

    The effects of the human immunodeficiency virus (HIV) infection on the central nervous system function were studied with electroencephalographic (EEG) and auditory event-related brain potentials (EPRs) in patients infected with HIV and unaffected young adult control subjects (n=10/group). All subjects were assessed once every 15 min for four trial blocks at the same time of day to assess EEG/ERP changes with time on task-induced fatigue. Spectral analysis was applied to the pre- and post-stimulus EEG segments. ERP values were evaluated with respect to group differences for component amplitude and latency measures. Spectral analysis demonstrated that HIV patients evinced greater pre-stimulus delta power over frontal areas compared to control subjects, and less post-stimulus spectral power for the delta, theta, and alpha bands over the central/parietal areas. P300 amplitude was smaller, and latency was marginally longer for the HIV patients compared to control subjects. P300 latency correlated positively with increases in the patient HIV viral load. Time-on-task generally did not affect EEG or ERP measures for either group other than contributing to an overall decrease in neuroelectric responsivity. Group spectral power effects were consistent with differences in arousal/fatigue level. P300 group differences were consistent with declines in cognitive capability, and P300 latency increased with increased viral load. HIV infection negatively affected central nervous system function as measured by EEG and cognitive ERPs in a manner that suggests decreased arousal and increased fatigue in HIV patients.

  8. [EEG and ischemic stroke in full-term newborns].

    PubMed

    Selton, D; André, M; Hascoët, J M

    2003-06-01

    The aims of this study were to describe EEG anomalies in unilateral neonatal ischemic stroke without hypoxic-ischemic encephalopathy, and to determine possible links between these abnormalities and long-term outcome. In 6 full-term newborns without severe fetal distress ischemic stroke was confirmed by computed tomography and/or magnetic resonance imaging. Twenty EEGs were recorded during the neonatal period, 5 in acute stage and 15 later. The duration of the follow-up ranged from 3 to 9 years. All newborns developed unilateral clonic seizures, right-sided (5 cases) or left-sided (1 case); seizures began between 14 and 48 h of life. At follow-up, 3 children were normal at 2 and 6 years of age, while the 3 others had sequelae: epilepsy at 9 years of age in one, and unilateral mild cerebral palsy in the 2 others (3 and 4 years of age), with behavioral problems in one of them. Critical EEG discharges, rhythmic sharp waves and/or slow waves were recorded on the injured side. Abnormalities of interictal activity were excess of alpha or theta rhythms, transitory EEG discontinuity or low voltage. The 2 children with cerebral palsy had numerous unilateral post-ictal positive rolandic slow sharp waves (PRSSWs), which were similar to the positive rolandic sharp waves of premature infants; the child with behavioral problems had numerous positive left-sided temporal fast sharp waves. PRSSWs could be associated with contralateral motor sequelae, while positive left temporal fast sharp waves were associated with long term behavioral problems. These findings may be used for future prospective studies aimed at specifying the relation between EEG abnormalities and long-term outcome.

  9. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2.

    PubMed

    Zorick, Todd; Mandelkern, Mark A

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness.

  10. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2

    PubMed Central

    Zorick, Todd; Mandelkern, Mark A.

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness. PMID:26696860

  11. EEG, temporal correlations, and avalanches.

    PubMed

    Benayoun, Marc; Kohrman, Michael; Cowan, Jack; van Drongelen, Wim

    2010-12-01

    Epileptiform activity in the EEG is frequently characterized by rhythmic, correlated patterns or synchronized bursts. Long-range temporal correlations (LRTC) are described by power law scaling of the autocorrelation function and have been observed in scalp and intracranial EEG recordings. Synchronous large-amplitude bursts (also called neuronal avalanches) have been observed in local field potentials both in vitro and in vivo. This article explores the presence of neuronal avalanches in scalp and intracranial EEG in the context of LRTC. Results indicate that both scalp and intracranial EEG show LRTC, with larger scaling exponents in scalp recordings than intracranial. A subset of analyzed recordings also show avalanche behavior, indicating that avalanches may be associated with LRTC. Artificial test signals reveal a linear relationship between the scaling exponent measured by detrended fluctuation analysis and the exponent of the avalanche size distribution. Analysis and evaluation of simulated data reveal that preprocessing of EEG (squaring the signal or applying a filter) affect the ability of detrended fluctuation analysis to reliably measure LRTC.

  12. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  13. Detection of EEG-resting state independent networks by eLORETA-ICA method.

    PubMed

    Aoki, Yasunori; Ishii, Ryouhei; Pascual-Marqui, Roberto D; Canuet, Leonides; Ikeda, Shunichiro; Hata, Masahiro; Imajo, Kaoru; Matsuzaki, Haruyasu; Musha, Toshimitsu; Asada, Takashi; Iwase, Masao; Takeda, Masatoshi

    2015-01-01

    Recent functional magnetic resonance imaging (fMRI) studies have shown that functional networks can be extracted even from resting state data, the so called "Resting State independent Networks" (RS-independent-Ns) by applying independent component analysis (ICA). However, compared to fMRI, electroencephalography (EEG) and magnetoencephalography (MEG) have much higher temporal resolution and provide a direct estimation of cortical activity. To date, MEG studies have applied ICA for separate frequency bands only, disregarding cross-frequency couplings. In this study, we aimed to detect EEG-RS-independent-Ns and their interactions in all frequency bands. We applied exact low resolution brain electromagnetic tomography-ICA (eLORETA-ICA) to resting-state EEG data in 80 healthy subjects using five frequency bands (delta, theta, alpha, beta and gamma band) and found five RS-independent-Ns in alpha, beta and gamma frequency bands. Next, taking into account previous neuroimaging findings, five RS-independent-Ns were identified: (1) the visual network in alpha frequency band, (2) dual-process of visual perception network, characterized by a negative correlation between the right ventral visual pathway (VVP) in alpha and beta frequency bands and left posterior dorsal visual pathway (DVP) in alpha frequency band, (3) self-referential processing network, characterized by a negative correlation between the medial prefrontal cortex (mPFC) in beta frequency band and right temporoparietal junction (TPJ) in alpha frequency band, (4) dual-process of memory perception network, functionally related to a negative correlation between the left VVP and the precuneus in alpha frequency band; and (5) sensorimotor network in beta and gamma frequency bands. We selected eLORETA-ICA which has many advantages over the other network visualization methods and overall findings indicate that eLORETA-ICA with EEG data can identify five RS-independent-Ns in their intrinsic frequency bands, and correct

  14. White matter vascular lesions are related to parietal-to-frontal coupling of EEG rhythms in mild cognitive impairment.

    PubMed

    Babiloni, Claudio; Frisoni, Giovanni B; Pievani, Michela; Vecchio, Fabrizio; Infarinato, Francesco; Geroldi, Cristina; Salinari, Serenella; Ferri, Raffaele; Fracassi, Claudia; Eusebi, Fabrizio; Rossini, Paolo M

    2008-12-01

    Do cerebrovascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI) as a putative preclinical stage of AD? Here we tested the hypothesis that directionality of fronto-parietal functional coupling of electroencephalographic (EEG) rhythms is relatively preserved in amnesic MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold) and 78 amnesic MCI. In the MCI subjects, white-matter vascular load was quantified based on magnetic resonance images (0-30 visual rating scale). EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). Directionality of fronto-parietal functional coupling of EEG rhythms was estimated by directed transfer function software. As main results, (i) fronto-parietal functional coupling of EEG rhythms was higher in magnitude in the Nold than in the MCI subjects; (ii) more interestingly, that coupling was higher at theta, alpha1, alpha2, and beta1 in MCI V+ (high vascular load; N = 42; MMSE = 26) than in MCI V- group (low vascular load; N = 36; MMSE= 26.7). These results are interpreted as supporting the additive model according to which MCI state would result from the combination of cerebrovascular and neurodegenerative lesions.

  15. Default Mode Network alterations in alexithymia: an EEG power spectra and connectivity study

    PubMed Central

    Imperatori, Claudio; Della Marca, Giacomo; Brunetti, Riccardo; Carbone, Giuseppe Alessio; Massullo, Chiara; Valenti, Enrico Maria; Amoroso, Noemi; Maestoso, Giulia; Contardi, Anna; Farina, Benedetto

    2016-01-01

    Recent neuroimaging studies have shown that alexithymia is characterized by functional alterations in different brain areas [e.g., posterior cingulate cortex (PCC)], during emotional/social tasks. However, only few data are available about alexithymic cortical networking features during resting state (RS). We have investigated the modifications of electroencephalographic (EEG) power spectra and EEG functional connectivity in the default mode network (DMN) in subjects with alexithymia. Eighteen subjects with alexithymia and eighteen subjects without alexithymia matched for age and gender were enrolled. EEG was recorded during 5 min of RS. EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to controls, alexithymic subjects showed a decrease of alpha power in the right PCC. In the connectivity analysis, compared to controls, alexithymic subjects showed a decrease of alpha connectivity between: (i) right anterior cingulate cortex and right PCC, (ii) right frontal lobe and right PCC, and (iii) right parietal lobe and right temporal lobe. Finally, mediation models showed that the association between alexithymia and EEG connectivity values was directed and was not mediated by psychopathology severity. Taken together, our results could reflect the neurophysiological substrate of some core features of alexithymia, such as the impairment in emotional awareness. PMID:27845326

  16. The EEG as an index of neuromodulator balance in memory and mental illness

    PubMed Central

    Vakalopoulos, Costa

    2014-01-01

    There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep. PMID:24782698

  17. Maturational changes in automated EEG spectral power analysis in preterm infants.

    PubMed

    Niemarkt, Hendrik J; Jennekens, Ward; Pasman, Jaco W; Katgert, Titia; Van Pul, Carola; Gavilanes, Antonio W D; Kramer, Boris W; Zimmermann, Luc J; Bambang Oetomo, Sidarto; Andriessen, Peter

    2011-11-01

    Our study aimed at automated power spectral analysis of the EEG in preterm infants to identify changes of spectral measures with maturation. Weekly (10-20 montage) 4-h EEG recordings were performed in 18 preterm infants with GA <32 wk and normal neurological follow-up at 2 y, resulting in 79 recordings studied from 27(+4) to 36(+3) wk of postmenstrual age (PMA, GA + postnatal age). Automated spectral analysis was performed on 4-h EEG recordings. The frequency spectrum was divided in delta 1 (0.5-1 Hz), delta 2 (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) band. Absolute and relative power of each frequency band and spectral edge frequency were calculated. Maturational changes in spectral measures were observed most clearly in the centrotemporal channels. With advancing PMA, absolute powers of delta 1 to 2 and theta decreased. With advancing PMA, relative power of delta 1 decreased and relative powers of alpha and beta increased, respectively. In conclusion, with maturation, spectral analysis of the EEG showed a significant shift from the lower to the higher frequencies. Computer analysis of EEG will allow an objective and reproducible analysis for long-term prognosis and/or stratification of clinical treatment.

  18. Mental stress assessment using simultaneous measurement of EEG and fNIRS.

    PubMed

    Al-Shargie, Fares; Kiguchi, Masashi; Badruddin, Nasreen; Dass, Sarat C; Hani, Ahmad Fadzil Mohammad; Tang, Tong Boon

    2016-10-01

    Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively.

  19. Mental stress assessment using simultaneous measurement of EEG and fNIRS

    PubMed Central

    Al-Shargie, Fares; Kiguchi, Masashi; Badruddin, Nasreen; Dass, Sarat C.; Hani, Ahmad Fadzil Mohammad; Tang, Tong Boon

    2016-01-01

    Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively. PMID:27867700

  20. [Comparative EEG study in normal and autistic children].

    PubMed

    Lushchekina, E A; Podreznaia, E D; Lushchekin, V S; Strelets, V B

    2010-01-01

    The work represents the results of a comparative study of spectral power as well as averaged coherence in alpha, beta and gamma EEG bands in 5-to-7-year-old autistic and healthy boys in the state of rest and under cognitive load (mental calculation). The mean age of the examined children was 6 years 4 months. In both healthy and autistic children, there was a clear-cut baseline frontal-occipital gradient of the alpha activity. Performance of the cognitive task led to enhancement of spectral power in the alpha1 band and shifting its maximum to the left hemisphere, did not change the activity in the alpha2 band, and considerably increased the spectral power in the alpha3 band. In healthy children, the spectral power and average coherence of the fast rhythms increased in the central and frontal areas of the left hemisphere. The right-side dominance of the spectral power of the alpha band was revealed in autistic children both in the baseline and during cognitive task. The spectral power of the gamma band was higher in autistic children than in healthy children in the baseline. The cognitive task did not change this fast activity in autistic children.

  1. Predictability of EEG interictal spikes.

    PubMed Central

    Scott, D A; Schiff, S J

    1995-01-01

    To determine whether EEG spikes are predictable, time series of EEG spike intervals were generated from subdural and depth electrode recordings from four patients. The intervals between EEG spikes were hand edited to ensure high accuracy and eliminate false positive and negative spikes. Spike rates (per minute) were generated from longer time series, but for these data hand editing was usually not feasible. Linear and nonlinear models were fit to both types of data. One patient had no linear or nonlinear predictability, two had predictability that could be well accounted for with a linear stochastic model, and one had a degree of nonlinear predictability for both interval and rate data that no linear model could adequately account for. PMID:8580318

  2. EEG signal analysis: a survey.

    PubMed

    Subha, D Puthankattil; Joseph, Paul K; Acharya U, Rajendra; Lim, Choo Min

    2010-04-01

    The EEG (Electroencephalogram) signal indicates the electrical activity of the brain. They are highly random in nature and may contain useful information about the brain state. However, it is very difficult to get useful information from these signals directly in the time domain just by observing them. They are basically non-linear and nonstationary in nature. Hence, important features can be extracted for the diagnosis of different diseases using advanced signal processing techniques. In this paper the effect of different events on the EEG signal, and different signal processing methods used to extract the hidden information from the signal are discussed in detail. Linear, Frequency domain, time - frequency and non-linear techniques like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H), different entropies, fractal dimension(FD), Higher Order Spectra (HOS), phase space plots and recurrence plots are discussed in detail using a typical normal EEG signal.

  3. Complex dynamics of epileptic EEG.

    PubMed

    Kannathal, N; Puthusserypady, Sadasivan K; Choo Min, Lim

    2004-01-01

    Electroencephalogram (EEG) - the recorded representation of electrical activity of the brain contain useful information about the state of the brain. Recent studies indicate that nonlinear methods can extract valuable information from neuronal dynamics. We compare the dynamical properties of EEG signals of healthy subjects with epileptic subjects using nonlinear time series analysis techniques. Chaotic invariants like correlation dimension (D2) , largest Lyapunov exponent (lambda1), Hurst exponent (H) and Kolmogorov entropy (K) are used to characterize the signal. Our study showed clear differences in dynamical properties of brain electrical activity of the normal and epileptic subjects with a confidence level of more than 90%. Furthermore to support this claim fractal dimension (FD) analysis is performed. The results indicate reduction in value of FD for epileptic EEG indicating reduction in system complexity.

  4. Engagement Assessment Using EEG Signals

    NASA Technical Reports Server (NTRS)

    Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean

    2012-01-01

    In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.

  5. Subject position affects EEG magnitudes.

    PubMed

    Rice, Justin K; Rorden, Christopher; Little, Jessica S; Parra, Lucas C

    2013-01-01

    EEG (electroencephalography) has been used for decades in thousands of research studies and is today a routine clinical tool despite the small magnitude of measured scalp potentials. It is widely accepted that the currents originating in the brain are strongly influenced by the high resistivity of skull bone, but it is less well known that the thin layer of CSF (cerebrospinal fluid) has perhaps an even more important effect on EEG scalp magnitude by spatially blurring the signals. Here it is shown that brain shift and the resulting small changes in CSF layer thickness, induced by changing the subject's position, have a significant effect on EEG signal magnitudes in several standard visual paradigms. For spatially incoherent high-frequency activity the effect produced by switching from prone to supine can be dramatic, increasing occipital signal power by several times for some subjects (on average 80%). MRI measurements showed that the occipital CSF layer between the brain and skull decreases by approximately 30% in thickness when a subject moves from prone to supine position. A multiple dipole model demonstrated that this can indeed lead to occipital EEG signal power increases in the same direction and order of magnitude as those observed here. These results suggest that future EEG studies should control for subjects' posture, and that some studies may consider placing their subjects into the most favorable position for the experiment. These findings also imply that special consideration should be given to EEG measurements from subjects with brain atrophy due to normal aging or neurodegenerative diseases, since the resulting increase in CSF layer thickness could profoundly decrease scalp potential measurements.

  6. Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI.

    PubMed

    Schwab, Simon; Koenig, Thomas; Morishima, Yosuke; Dierks, Thomas; Federspiel, Andrea; Jann, Kay

    2015-09-01

    Microstates (MS), the fingerprints of the momentarily and time-varying states of the brain derived from electroencephalography (EEG), are associated with the resting state networks (RSNs). However, using MS fluctuations along different EEG frequency bands to model the functional MRI (fMRI) signal has not been investigated so far, or elucidated the role of the thalamus as a fundamental gateway and a putative key structure in cortical functional networks. Therefore, in the current study, we used MS predictors in standard frequency bands to predict blood oxygenation level dependent (BOLD) signal fluctuations. We discovered that multivariate modeling of BOLD-fMRI using six EEG-MS classes in eight frequency bands strongly correlated with thalamic areas and large-scale cortical networks. Thalamic nuclei exhibited distinct patterns of correlations for individual MS that were associated with specific EEG frequency bands. Anterior and ventral thalamic nuclei were sensitive to the beta frequency band, medial nuclei were sensitive to both alpha and beta frequency bands, and posterior nuclei such as the pulvinar were sensitive to delta and theta frequency bands. These results demonstrate that EEG-MS informed fMRI can elucidate thalamic activity not directly observable by EEG, which may be highly relevant to understand the rapid formation of thalamocortical networks.

  7. Complexity of resting-state EEG activity in the patients with early-stage Parkinson's disease.

    PubMed

    Yi, Guo-Sheng; Wang, Jiang; Deng, Bin; Wei, Xi-Le

    2017-04-01

    To investigate the abnormal brain activities in the early stage of Parkinson's disease (PD), the electroencephalogram (EEG) signals were recorded with 20 channels from non-dementia PD patients (18 patients, 8 females) and age matched healthy controls (18 subjects, 8 females) during the resting state. Two methods based on the ordinal patterns of the recorded series, i.e., permutation entropy (PE) and order index (OI), were introduced to characterize the complexity of the cortical activities for two groups. It was observed that the resting-state EEG of PD patients showed lower PE and higher OI than healthy controls, which indicated that the early-stage PD caused the reduced complexity of EEG. We further applied two methods to determine the complexity of EEG rhythms in five sub-bands. The results showed that the gamma, beta and alpha rhythms of PD patients were characterized by lower PE and higher OI, i.e., reduced complexity, than healthy subjects. No significant differences were observed in theta or delta rhythms between two groups. The findings suggested that PE and OI were promising methods to detect the abnormal changes in the dynamics of EEG signals associated with early-stage PD. Further, such changes in EEG complexity may be the early markers of the cortical or subcortical dysfunction caused by PD.

  8. BLINKER: Automated Extraction of Ocular Indices from EEG Enabling Large-Scale Analysis.

    PubMed

    Kleifges, Kelly; Bigdely-Shamlo, Nima; Kerick, Scott E; Robbins, Kay A

    2017-01-01

    Electroencephalography (EEG) offers a platform for studying the relationships between behavioral measures, such as blink rate and duration, with neural correlates of fatigue and attention, such as theta and alpha band power. Further, the existence of EEG studies covering a variety of subjects and tasks provides opportunities for the community to better characterize variability of these measures across tasks and subjects. We have implemented an automated pipeline (BLINKER) for extracting ocular indices such as blink rate, blink duration, and blink velocity-amplitude ratios from EEG channels, EOG channels, and/or independent components (ICs). To illustrate the use of our approach, we have applied the pipeline to a large corpus of EEG data (comprising more than 2000 datasets acquired at eight different laboratories) in order to characterize variability of certain ocular indicators across subjects. We also investigate dependence of ocular indices on task in a shooter study. We have implemented our algorithms in a freely available MATLAB toolbox called BLINKER. The toolbox, which is easy to use and can be applied to collections of data without user intervention, can automatically discover which channels or ICs capture blinks. The tools extract blinks, calculate common ocular indices, generate a report for each dataset, dump labeled images of the individual blinks, and provide summary statistics across collections. Users can run BLINKER as a script or as a plugin for EEGLAB. The toolbox is available at https://github.com/VisLab/EEG-Blinks. User documentation and examples appear at http://vislab.github.io/EEG-Blinks/.

  9. Can arousing feedback rectify lapses in driving? Prediction from EEG power spectra

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Teng; Huang, Kuan-Chih; Chuang, Chun-Hsiang; Ko, Li-Wei; Jung, Tzyy-Ping

    2013-10-01

    Objective. This study explores the neurophysiological changes, measured using an electroencephalogram (EEG), in response to an arousing warning signal delivered to drowsy drivers, and predicts the efficacy of the feedback based on changes in the EEG. Approach. Eleven healthy subjects participated in sustained-attention driving experiments. The driving task required participants to maintain their cruising position and compensate for randomly induced lane deviations using the steering wheel, while their EEG and driving performance were continuously monitored. The arousing warning signal was delivered to participants who experienced momentary behavioral lapses, failing to respond rapidly to lane-departure events (specifically the reaction time exceeded three times the alert reaction time). Main results. The results of our previous studies revealed that arousing feedback immediately reversed deteriorating driving performance, which was accompanied by concurrent EEG theta- and alpha-power suppression in the bilateral occipital areas. This study further proposes a feedback efficacy assessment system to accurately estimate the efficacy of arousing warning signals delivered to drowsy participants by monitoring the changes in their EEG power spectra immediately thereafter. The classification accuracy was up 77.8% for determining the need for triggering additional warning signals. Significance. The findings of this study, in conjunction with previous studies on EEG correlates of behavioral lapses, might lead to a practical closed-loop system to predict, monitor and rectify behavioral lapses of human operators in attention-critical settings.

  10. BLINKER: Automated Extraction of Ocular Indices from EEG Enabling Large-Scale Analysis

    PubMed Central

    Kleifges, Kelly; Bigdely-Shamlo, Nima; Kerick, Scott E.; Robbins, Kay A.

    2017-01-01

    Electroencephalography (EEG) offers a platform for studying the relationships between behavioral measures, such as blink rate and duration, with neural correlates of fatigue and attention, such as theta and alpha band power. Further, the existence of EEG studies covering a variety of subjects and tasks provides opportunities for the community to better characterize variability of these measures across tasks and subjects. We have implemented an automated pipeline (BLINKER) for extracting ocular indices such as blink rate, blink duration, and blink velocity-amplitude ratios from EEG channels, EOG channels, and/or independent components (ICs). To illustrate the use of our approach, we have applied the pipeline to a large corpus of EEG data (comprising more than 2000 datasets acquired at eight different laboratories) in order to characterize variability of certain ocular indicators across subjects. We also investigate dependence of ocular indices on task in a shooter study. We have implemented our algorithms in a freely available MATLAB toolbox called BLINKER. The toolbox, which is easy to use and can be applied to collections of data without user intervention, can automatically discover which channels or ICs capture blinks. The tools extract blinks, calculate common ocular indices, generate a report for each dataset, dump labeled images of the individual blinks, and provide summary statistics across collections. Users can run BLINKER as a script or as a plugin for EEGLAB. The toolbox is available at https://github.com/VisLab/EEG-Blinks. User documentation and examples appear at http://vislab.github.io/EEG-Blinks/. PMID:28217081

  11. The effects of Dalmane /flurazepam hydrochloride/ on human EEG characteristics.

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Carrie, J. R. G.; Borda, R. P.; Kellaway, P.

    1973-01-01

    Evaluation of the changes in the waking EEGs of six healthy male subjects who received 30 mg daily oral doses of flurazepam hydrochloride for two weeks. A placebo was then substituted for flurazepam for another two weeks. An increase in beta activity with a maximum in fronto-central leads was observed during the test period. A small increase in the mean wavelength of the alpha and theta activities in the central-occipital derivations was also apparent in the subjects during the period.

  12. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response.

  13. Effects of manual lymph drainage of the neck on EEG in subjects with psychological stress.

    PubMed

    Shim, Jung-Myo; Kim, Sung-Joong

    2014-01-01

    [Purpose] The present study investigated the effect of manual lymph drainage (MLD) of the neck on electroencephalography (EEG) in subjects with psychological stress. [Methods] Twenty-six subjects were randomly allocated to receive one 15-min session of either MLD or resting on a bed (control). [Results] Analysis of EEG in the MLD group showed a significant increase in relaxation, manifested as an increase in average absolute and relative delta and alpha activity. [Conclusion] It is suggested that MLD provides acute neural effects that increase relaxation in subjects with psychological stress.

  14. Nonlinear dynamics and quantitative EEG analysis.

    PubMed

    Jansen, B H

    1996-01-01

    Quantitative, computerized electroencephalogram (EEG) analysis appears to be based on a phenomenological approach to EEG interpretation, and is primarily rooted in linear systems theory. A fundamentally different approach to computerized EEG analysis, however, is making its way into the laboratories. The basic idea, inspired by recent advances in the area of nonlinear dynamics and chaos theory, is to view an EEG as the output of a deterministic system of relatively simple complexity, but containing nonlinearities. This suggests that studying the geometrical dynamics of EEGs, and the development of neurophysiologically realistic models of EEG generation may produce more successful automated EEG analysis techniques than the classical, stochastic methods. A review of the fundamentals of chaos theory is provided. Evidence supporting the nonlinear dynamics paradigm to EEG interpretation is presented, and the kind of new information that can be extracted from the EEG is discussed. A case is made that a nonlinear dynamic systems viewpoint to EEG generation will profoundly affect the way EEG interpretation is currently done.

  15. Stroboscopic artifact in digital video-EEG.

    PubMed

    Quigg, Mark; Taft, William

    2004-01-01

    Combined digital video-EEG (DV-EEG) systems eliminate many familiar technical artifacts of older analog recorders; however, new and unanticipated technical issues are becoming evident. In this report, a case is described that identifies one of these technical limitations that could represent a pitfall to accurate data interpretation. An EEG was recorded on an 18-year-old man with history of photically sensitive generalized tonic-clonic seizures, revealing photoparoxysmal responses that appeared to outlast photic stimulation. However, in an attempted video-EEG correlation, the digital video recording showed variable appearance or absence of photic bursts that did not correlate with EEG photic tick marks, initially suggesting desynchronization between video and EEG signals. However, the absence of flashes seen on the video record resulted from stroboscopic artifact caused by mismatch between strobe frequency, video sampling rate, and video display characteristics. Stroboscopic aliasing is a DV-EEG specific artifact that can complicate accurate interpretation of photoparoxysmal responses.

  16. Resting State EEG Hemispheric Power Asymmetry in Children with Dyslexia

    PubMed Central

    Papagiannopoulou, Eleni A.; Lagopoulos, Jim

    2016-01-01

    Dyslexia is a neurodevelopmental disorder estimated to affect between 4 and 7% of the population. It is often referred to as a learning disability and is characterized by deficits in the linguistic system. To better understand the neural underpinnings of dyslexia, we examined the electroencephalography (EEG) power spectra between pre-adolescents with dyslexia and neurotypical control children during eyes closed state. We reported the differences in spontaneous oscillatory activity of each major EEG band (delta, theta, alpha, and beta) adopting a global as well as in a region-by-region and hemispheric approach to elucidate whether there are changes in asymmetry in children with dyslexia compared to controls. We also examined the relationship between EEG power spectra and clinical variables. The findings of our study confirm the presence of an atypical linguistic network, evident in children with dyslexia. This abnormal network hallmarked by a dominance of theta activity suggests that these abnormalities are present prior to these children learning to read, thus implicating delayed maturation and abnormal hypoarousal mechanisms. PMID:26942169

  17. EEG-microstate dependent emergence of perceptual awareness

    PubMed Central

    Britz, Juliane; Díaz Hernàndez, Laura; Ro, Tony; Michel, Christoph M.

    2014-01-01

    We investigated whether the differences in perceptual awareness for stimuli at the threshold of awareness can arise from different global brain states before stimulus onset indexed by the EEG microstate. We used a metacontrast backward masking paradigm in which subjects had to discriminate between two weak stimuli and obtained measures of accuracy and awareness while their EEG was recorded from 256 channels. Comparing targets that were correctly identified with and without awareness allowed us to contrast differences in awareness while keeping performance constant for identical physical stimuli. Two distinct pre-stimulus scalp potential fields (microstate maps) dissociated correct identification with and without awareness, and their estimated intracranial generators were stronger in primary visual cortex before correct identification without awareness. This difference in activity cannot be explained by differences in alpha power or phase which were less reliably linked with differential pre-stimulus activation of primary visual cortex. Our results shed a new light on the function of pre-stimulus activity in early visual cortex in visual awareness and emphasize the importance of trial-by-trials analysis of the spatial configuration of the scalp potential field identified with multichannel EEG. PMID:24860450

  18. [Gender differences in resting EEG related to Eysenk's Personality Traits].

    PubMed

    Razumnikova, O M

    2004-01-01

    EEG mapping was used to study gender differences in hemispheric organization related to personality (40 male and 42 female subjects, the students 17-20 ages). The results showed, that each clearly defined personality trait (neuroticism, extraversion, psychoticizm and social conformity) characterized by special EEG pattern differenced on men and women groups. At the same time, more close interaction of gender and neuroticism was observed, but gender and extraversion were less connected. Neuroticism related patterns of coherence in the alpha2- and beta2-bands were associated with an activity changes in anterior cortex in men but posterior--in women, at that the positive correlations were observed in the beta2-band in the former case and negative ones in the second. There are two opposing tendencies of the interaction between extraversion and gender in a modulation of the resting theta-rhythm: an increase of cortex connections in men and decrease ones in women. The specificity of spatial-temporal EEG patterns in men associated mostly with a psychoticizm value but in women--with a social conformism. In either case these personality traits related to activity of frontal cortex in the left hemisphere.

  19. Resting State EEG Hemispheric Power Asymmetry in Children with Dyslexia.

    PubMed

    Papagiannopoulou, Eleni A; Lagopoulos, Jim

    2016-01-01

    Dyslexia is a neurodevelopmental disorder estimated to affect between 4 and 7% of the population. It is often referred to as a learning disability and is characterized by deficits in the linguistic system. To better understand the neural underpinnings of dyslexia, we examined the electroencephalography (EEG) power spectra between pre-adolescents with dyslexia and neurotypical control children during eyes closed state. We reported the differences in spontaneous oscillatory activity of each major EEG band (delta, theta, alpha, and beta) adopting a global as well as in a region-by-region and hemispheric approach to elucidate whether there are changes in asymmetry in children with dyslexia compared to controls. We also examined the relationship between EEG power spectra and clinical variables. The findings of our study confirm the presence of an atypical linguistic network, evident in children with dyslexia. This abnormal network hallmarked by a dominance of theta activity suggests that these abnormalities are present prior to these children learning to read, thus implicating delayed maturation and abnormal hypoarousal mechanisms.

  20. Effects of nootropics on the EEG in conscious rats and their modification by glutamatergic inhibitors.

    PubMed

    Vorobyov, Vasily; Kaptsov, Vladimir; Kovalev, Georgy; Sengpiel, Frank

    2011-05-30

    To study the effects of acute and repeated injections of nootropics and to learn how glutamate receptors might be involved in their mediation, the frequency spectra of cortical and hippocampal electroencephalogram (EEG) were analyzed in non-narcotized rats subcutaneously injected repeatedly with Piracetam (400mg/kg) or its analogue, Noopept (0.2mg/kg), after intracerebroventricular infusions of saline (5 μl) or the antagonists of NMDA and quisqualate/AMPA receptors: CPP (0.1 nmol) and GDEE (1 μmol), respectively. Piracetam increased alpha/beta1 EEG activity in the left frontal cortex, and alpha activity in both the right cortex and hippocampus, with a 10-min latency and 40-min duration. Noopept increased alpha/beta1 activity, with 30-min latency and 40-min duration in all brain areas. CPP pretreatment eliminated Piracetam EEG effects; reduced Noopept effects in the cortex and completely suppressed them in the hippocampus. After four injections of Piracetam, EEG effects were very small in the cortex, and completely lacking in the hippocampus, while GDEE pretreatment partially recovered them. The effect of Noopept in the alpha/beta1 ranges was replaced by increased beta2 activity after the eighth injection, while no effects were observed after the ninth one. GDEE pretreatment restored the effect of Noopept in the beta2 frequency range. These results demonstrate similarities in EEG effects and their mediatory mechanisms for Piracetam and its much more effective analogue, Noopept. Activation of NMDA receptors is involved in the effects of a single injection of the nootropics, whereas activation of quisqualate/AMPA receptors is associated with the decrease in their efficacy after repeated use.

  1. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network.

    PubMed

    Muthuraman, Muthuraman; Moliadze, Vera; Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general

  2. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    PubMed Central

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general

  3. The role of TNF-alpha in amygdala kindled rats.

    PubMed

    Shandra, A A; Godlevsky, L S; Vastyanov, R S; Oleinik, A A; Konovalenko, V L; Rapoport, E N; Korobka, N N

    2002-02-01

    In the present study, the interaction between epileptogenesis and the immune system were studied in a kindling model. First, the effects of a single administration of TNF-alpha (5.0 microg/kg, i.p.) on seizure and EEG activity were investigated in amygdala-kindled rats. TNF-alpha treated rats showed more prolonged epileptiformic discharges than control rats. TNF-alpha also induced a decrease in the power of delta band and an increase in theta and alpha activity. In addition, a marked increase in the power of beta and gamma band was observed. The EEG changes were most numerous in the frontal cortex and amygdala. All effects were registered 24 h after TNF-alpha administration. Finally, electrical stimulation enhanced the level of TNF-alpha in blood serum from 1.9 +/- 1.5 to 12.7 +/- 3.8 pg/ml and in brain tissue 56.8 +/- 6.0 to 109.2 +/- 6.0 pg/mg, as was determined via the ELISA method. It can be concluded that there is a mutual facilitative interaction of both epileptogenic and cytokine-derived mechanisms on this type of seizure. The changes in the power spectrum of the EEG after TNF-alpha might contribute to intensify thalamic-derived facilitation of epileptic discharge in cortical structures.

  4. PyEEG: an open source Python module for EEG/MEG feature extraction.

    PubMed

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

  5. Brain vascular damage of cholinergic pathways and EEG markers in mild cognitive impairment.

    PubMed

    Moretti, Davide Vito; Pievani, Michela; Fracassi, Claudia; Geroldi, Cristina; Calabria, Marco; De Carli, Charles S; Rossini, Paolo Maria; Frisoni, Giovanni Battista

    2008-11-01

    We evaluated changes of brain rhythmicity correlating with the cerebrovascular damage of long-range (capsular tract) and short-range (medial and perisylvian tracts) cholinergic pathways in subjects with mild cognitive impairment (MCI). Ninety-four MCI subjects underwent electroencephalographic (EEG) recordings and magnetic resonance imaging (MRI). The EEG relative power spectrum was computed in delta, theta, alpha1, alpha2, alpha3, beta1, beta2, gamma frequency bands. White matter hyperintensities along each cholinergic tract was segmented on MRI. Three MCI subgroups were identified based on increasing damage. A significant increase of delta and theta power band was found in patients with the highest total cholinergic burden as well as in patients with highest capsular pathway damage; total load of cholinergic damage was also associated with decreased gamma power band. Alpha frequency was differentially affected: decrease of alpha3 power band was associated with the greatest damage of the capsular pathway whereas increase of alpha3 power band was associated with the greatest damage of the perisylvian pathway. Multiple regression linear analysis showed independent association of cholinergic damage with delta, theta and gamma frequency, not with alpha frequency. In conclusion, the damage of long-range and short range cholinergic tracts has possible different implications for cognitive functions in MCI subjects.

  6. Sodium valproate interactions with the HPNS: EEG and behavioral observations.

    PubMed

    Pearce, P C; Clarke, D; Doré, C J; Halsey, M J; Luff, N P; Maclean, C J

    1989-03-01

    A new baboon model was used to investigate the therapuetic effect of sodium valproate on the high pressure neurologic syndrome (HPNS). A hyperbaric chamber was used to achieve environmental pressures of 61 ATA, over a 5-h period. Eight animals underwent two compressions, a control and a valproate-treated compression (half the animals had valproate on the first compression). Mild signs of HPNS (e.g., paw and limb tremor) were first observed at approximately 20 ATA. More severe signs (e.g., whole body tremor, myoclonus, and vomiting) were observed above 40 ATA. Sodium valproate was administered during the compression phase and for 2 wk previously. It was effective at the higher pressures above 41 ATA in reducing the severity of the signs of HPNS. The major effect of pressure on the EEG was to increase alpha and theta wave amplitude in a linear manner. Alpha wave amplitude was reduced by sodium valproate.

  7. Regularized Linear Discriminant Analysis of EEG Features in Dementia Patients.

    PubMed

    Neto, Emanuel; Biessmann, Felix; Aurlien, Harald; Nordby, Helge; Eichele, Tom

    2016-01-01

    The present study explores if EEG spectral parameters can discriminate between healthy elderly controls (HC), Alzheimer's disease (AD) and vascular dementia (VaD) using. We considered EEG data recorded during normal clinical routine with 114 healthy controls (HC), 114 AD, and 114 VaD patients. The spectral features extracted from the EEG were the absolute delta power, decay from lower to higher frequencies, amplitude, center and dispersion of the alpha power and baseline power of the entire frequency spectrum. For discrimination, we submitted these EEG features to regularized linear discriminant analysis algorithm with a 10-fold cross-validation. To check the consistency of the results obtained by our classifiers, we applied bootstrap statistics. Four binary classifiers were used to discriminate HC from AD, HC from VaD, AD from VaD, and HC from dementia patients (AD or VaD). For each model, we measured the discrimination performance using the area under curve (AUC) and the accuracy of the cross-validation (cv-ACC). We applied this procedure using two different sets of predictors. The first set considered all the features extracted from the 22 channels. For the second set of features, we automatically rejected features poorly correlated with their labels. Fairly good results were obtained when discriminating HC from dementia patients with AD or VaD (AUC = 0.84). We also obtained AUC = 0.74 for discrimination of AD from HC, AUC = 0.77 for discrimination of VaD from HC, and finally AUC = 0.61 for discrimination of AD from VaD. Our models were able to separate HC from dementia patients, and also and to discriminate AD from VaD above chance. Our results suggest that these features may be relevant for the clinical assessment of patients with dementia.

  8. Regularized Linear Discriminant Analysis of EEG Features in Dementia Patients

    PubMed Central

    Neto, Emanuel; Biessmann, Felix; Aurlien, Harald; Nordby, Helge; Eichele, Tom

    2016-01-01

    The present study explores if EEG spectral parameters can discriminate between healthy elderly controls (HC), Alzheimer’s disease (AD) and vascular dementia (VaD) using. We considered EEG data recorded during normal clinical routine with 114 healthy controls (HC), 114 AD, and 114 VaD patients. The spectral features extracted from the EEG were the absolute delta power, decay from lower to higher frequencies, amplitude, center and dispersion of the alpha power and baseline power of the entire frequency spectrum. For discrimination, we submitted these EEG features to regularized linear discriminant analysis algorithm with a 10-fold cross-validation. To check the consistency of the results obtained by our classifiers, we applied bootstrap statistics. Four binary classifiers were used to discriminate HC from AD, HC from VaD, AD from VaD, and HC from dementia patients (AD or VaD). For each model, we measured the discrimination performance using the area under curve (AUC) and the accuracy of the cross-validation (cv-ACC). We applied this procedure using two different sets of predictors. The first set considered all the features extracted from the 22 channels. For the second set of features, we automatically rejected features poorly correlated with their labels. Fairly good results were obtained when discriminating HC from dementia patients with AD or VaD (AUC = 0.84). We also obtained AUC = 0.74 for discrimination of AD from HC, AUC = 0.77 for discrimination of VaD from HC, and finally AUC = 0.61 for discrimination of AD from VaD. Our models were able to separate HC from dementia patients, and also and to discriminate AD from VaD above chance. Our results suggest that these features may be relevant for the clinical assessment of patients with dementia. PMID:27965568

  9. Sleep misperception, EEG characteristics and autonomic nervous system activity in primary insomnia: a retrospective study on polysomnographic data.

    PubMed

    Maes, J; Verbraecken, J; Willemen, M; De Volder, I; van Gastel, A; Michiels, N; Verbeek, I; Vandekerckhove, M; Wuyts, J; Haex, B; Willemen, T; Exadaktylos, V; Bulckaert, A; Cluydts, R

    2014-03-01

    Misperception of Sleep Onset Latency, often found in Primary Insomnia, has been cited to be influenced by hyperarousal, reflected in EEG- and ECG-related indices. The aim of this retrospective study was to examine the association between Central Nervous System (i.e. EEG) and Autonomic Nervous System activity in the Sleep Onset Period and the first NREM sleep cycle in Primary Insomnia (n=17) and healthy controls (n=11). Furthermore, the study examined the influence of elevated EEG and Autonomic Nervous System activity on Stage2 sleep-protective mechanisms (K-complexes and sleep spindles). Confirming previous findings, the Primary Insomnia-group overestimated Sleep Onset Latency and this overestimation was correlated with elevated EEG activity. A higher amount of beta EEG activity during the Sleep Onset Period was correlated with the appearance of K-complexes immediately followed by a sleep spindle in the Primary Insomnia-group. This can be interpreted as an extra attempt to protect sleep continuity or as a failure of the sleep-protective role of the K-complex by fast EEG frequencies following within one second. The strong association found between K-alpha (K-complex within one second followed by 8-12 Hz EEG activity) in Stage2 sleep and a lower parasympathetic Autonomic Nervous System dominance (less high frequency HR) in Slow-wave sleep, further assumes a state of hyperarousal continuing through sleep in Primary Insomnia.

  10. Effects of neural synchrony on surface EEG.

    PubMed

    Musall, Simon; von Pföstl, Veronika; Rauch, Alexander; Logothetis, Nikos K; Whittingstall, Kevin

    2014-04-01

    It has long been assumed that the surface electroencephalography (EEG) signal depends on both the amplitude and spatial synchronization of underlying neural activity, though isolating their respective contribution remains elusive. To address this, we made simultaneous surface EEG measurements along with intracortical recordings of local field potentials (LFPs) in the primary visual cortex of behaving nonhuman primates. We found that trial-by-trial fluctuations in EEG power could be explained by a linear combination of LFP power and interelectrode temporal synchrony. This effect was observed in both stimulus and stimulus-free conditions and was particularly strong in the gamma range (30-100 Hz). Subsequently, we used pharmacological manipulations to show that neural synchrony can produce a positively modulated EEG signal even when the LFP signal is negatively modulated. Taken together, our results demonstrate that neural synchrony can modulate EEG signals independently of amplitude changes in neural activity. This finding has strong implications for the interpretation of EEG in basic and clinical research, and helps reconcile EEG response discrepancies observed in different modalities (e.g., EEG vs. functional magnetic resonance imaging) and different spatial scales (e.g., EEG vs. intracranial EEG).

  11. [The response of EEG activation in different neurohumoral conditions].

    PubMed

    Bazanova, O M; Kuz'minova, O I; Nikolenko, E D; Petrova, S Iu

    2014-01-01

    In order to examine under what neurohumoral condition response to the usual opening of the eyes is an incentive for the activation, electroencephalographic, electrocardiographic and electromyographic characteristics of the eyes open reaction in relation to the psychometric indicators of emotional stress and cognitive performance were recorded in 59 healthy women aged 18-27 every 2-3 days for 1-2 menstrual cycles, established in accordance with the morning levels of progesterone. For excluding NOVELTY factor influence one 29 women started monitoring at menstrual phase and other 30--at luteal phase of menstrual cycle. 30 women participated in a one-time monitoring, in which the relationship of these parameters with the current level of progesterone and cortisol in saliva was studied. Two factors ANOVA showed that the depth of the power suppression and the width of the individually determined low frequency alpha EEG range on follicular is more than on the luteal phase of the menstrual cycle of women and are influenced the NOVELTY. "Berger effect" indices of the upper alpha range are not changed depending on the neurohumoral status. Depth of the amplitude decrease and width of merely low-frequency alpha band could predict the activation in the eyes open response due to unidirectional changes and relationship to vegetative and hormonal characteristics of the activation. It was firstly established that eyes opening is an incentive factor to the activaition only when neurohumoral state corresponds to the follicular phase of the women mensrual cycle. This study reviles the dependence of the neuronal and vegetative activation mechanisms of the individual alpha frequency profile EEG and neurohumoral status.

  12. Combination of frequency bands in EEG for feature reduction in mental task classification.

    PubMed

    Abdollahi, Farnaz; Motie-Nasrabadi, Ali

    2006-01-01

    Brain-computer interfaces require online processing of electroencephalogram (EEG) measurements. Therefore, speed of signal processing is of great importance in BCI systems. We present a method of feature reduction by combining frequency band powers of EEG, in order to speed up processing and meanwhile avoid classifier overfitting. As a result a linear combination of power spectrum of EEG frequency bands (alpha, beta, gamma, delta & theta) was found that reduces the dimension of feature vector by a factor of 5. This method gives a total correct classification rate of 91.71% comparing to 87.96% achieved from direct use of frequency band powers and 85.54% achieved from PCA feature reduction method applied to the same feature vector with 14 components.

  13. Analysis of propagation of multi-channel EEG in the test of sustained attention.

    PubMed

    Nan, Yan; Wang, Jue; Xue, Steve An; Sheng, Hengsong; Jiao, Yongfen; Wang, Jing

    2010-01-01

    the psychological construct 'sustained attention' describes a basic component of attention characterized by the subject's readiness to detect rarely and unpredictably occurring signals over prolonged periods of time. In this study, six healthy volunteers underwent a sustained attention to response task (SART), while their electroencephalographic (EEG) were recorded contemporarily. Directed Transfer Function (DTF) was used as estimator for direction of propagation of EEG function coupling. The results of DTF showed that the information flux within EEG functional coupling changed when attention condition changed from inattention state to sustained attention state, principally at alpha and beta rhythms. The DTF could be used to evaluate sustained attention condition and they might be used for research on damage of attention mechanisms of ADHD and TBI diseases in future.

  14. Improvements in quantitative EEG following consumption of a natural citicoline-enhanced beverage.

    PubMed

    Bruce, Steven E

    2012-06-01

    The present study examined the impact of a taurine-free drink enhanced with citicoline and other natural ingredients on electrophysiological markers of mental alertness. Ten healthy adult participants enrolled in a double-blind, placebo-controlled crossover study and were randomized to receive either placebo or the citicoline supplement on the first visit. Measures of electrical brain activity using electroencephalogram (EEG) were collected 30 min after consuming the beverage. Seven days after the initial assessment participants completed the alternative condition (placebo or citicoline beverage). Compared to placebo, significant improvements were found in frontal alpha EEG and N100 event related potentials (ERP) associated with the citicoline-enhanced supplement. These preliminary findings suggest that a novel brain drink containing compounds known to increase choline in the brain significantly improved attention as measured by ERP and EEG. These findings suggest that a viable and alternative brain supplement without potential compounds such as taurine may augment attentional mechanisms in healthy individuals.

  15. Eye contact reveals a relationship between Neuroticism and anterior EEG asymmetry.

    PubMed

    Uusberg, Helen; Allik, Jüri; Hietanen, Jari K

    2015-07-01

    Although anterior functional brain asymmetry has been linked to individual differences in affect and motivation, its relations with the Five Factor Model personality traits remain unclear. We investigated anterior EEG alpha-activity asymmetry in response to variable degrees of social contact induced by different gaze directions of a "live" model. Neuroticism was negatively related to the anterior EEG asymmetry scores in response to direct gaze, indicating that higher levels of Neuroticism were associated with avoidance-related, relative right-sided functional brain asymmetry. Neuroticism was also related to behavioral direct gaze avoidance and subjective averted gaze preference. These relationships arose primarily from the Withdrawal aspect factor, suggesting that two subdomains of Neuroticism may be differentially related to approach-avoidance tendencies. These findings demonstrate that experimental manipulations of social contact can reveal personality related differences in anterior EEG asymmetry responsiveness, offering a motivationally salient alternative to resting state measures.

  16. Attenuated asymmetry of functional connectivity in schizophrenia: a high-resolution EEG study.

    PubMed

    Jalili, Mahdi; Meuli, Reto; Do, Kim Q; Hasler, Martin; Crow, Timothy J; Knyazeva, Maria G

    2010-07-01

    The interhemispheric asymmetries that originate from connectivity-related structuring of the cortex are compromised in schizophrenia (SZ). Under the assumption that such abnormalities affect functional connectivity, we analyzed its correlate-EEG synchronization-in SZ patients and matched controls. We applied multivariate synchronization measures based on Laplacian EEG and tuned to various spatial scales. Compared to the controls who had rightward asymmetry at a local level (EEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (1st and 2nd order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization in the alpha and beta bands. The abnormalities of asymmetry increased with the duration of the disease and correlated with the negative symptoms. We discuss the tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern, in normal subjects and SZ patients.

  17. Estimating brain load from the EEG.

    PubMed

    Holm, Anu; Lukander, Kristian; Korpela, Jussi; Sallinen, Mikael; Müller, Kiti M I

    2009-07-14

    Modern work requires cognitively demanding multitasking and the need for sustained vigilance, which may result in work-related stress and may increase the possibility of human error. Objective methods for estimating cognitive overload and mental fatigue of the brain on-line, during work performance, are needed. We present a two-channel electroencephalography (EEG)-based index, theta Fz/alpha Pz ratio, potentially implementable into a compact wearable device. The index reacts to both acute external and cumulative internal load. The index increased with the number of tasks to be performed concurrently (p = 0.004) and with increased time awake, both after normal sleep (p = 0.002) and sleep restriction (p = 0.004). Moreover, the increase of the index was more pronounced in the afternoon after sleep restriction (p = 0.006). As a measure of brain state and its dynamics, the index can be considered equivalent to the heartbeat, an indicator of the cardiovascular state, thus inspiring the name "brainbeat".

  18. Multimodal EEG Recordings, Psychometrics and Behavioural Analysis.

    PubMed

    Boeijinga, Peter H

    2015-01-01

    High spatial and temporal resolution measurements of neuronal activity are preferably combined. In an overview on how this approach can take shape, multimodal electroencephalography (EEG) is treated in 2 main parts: by experiments without a task and in the experimentally cued working brain. It concentrates first on the alpha rhythm properties and next on data-driven search for patterns such as the default mode network. The high-resolution volumic distributions of neuronal metabolic indices result in distributed cortical regions and possibly relate to numerous nuclei, observable in a non-invasive manner in the central nervous system of humans. The second part deals with paradigms in which nowadays assessment of target-related networks can align level-dependent blood oxygenation, electrical responses and behaviour, taking the temporal resolution advantages of event-related potentials. Evidence-based electrical propagation in serial tasks during performance is now to a large extent attributed to interconnected pathways, particularly chronometry-dependent ones, throughout a chain including a dorsal stream, next ventral cortical areas taking the flow of information towards inferior temporal domains. The influence of aging is documented, and results of the first multimodal studies in neuropharmacology are consistent. Finally a scope on implementation of advanced clinical applications and personalized marker strategies in neuropsychiatry is indicated.

  19. Aesthetic preference recognition of 3D shapes using EEG.

    PubMed

    Chew, Lin Hou; Teo, Jason; Mountstephens, James

    2016-04-01

    Recognition and identification of aesthetic preference is indispensable in industrial design. Humans tend to pursue products with aesthetic values and make buying decisions based on their aesthetic preferences. The existence of neuromarketing is to understand consumer responses toward marketing stimuli by using imaging techniques and recognition of physiological parameters. Numerous studies have been done to understand the relationship between human, art and aesthetics. In this paper, we present a novel preference-based measurement of user aesthetics using electroencephalogram (EEG) signals for virtual 3D shapes with motion. The 3D shapes are designed to appear like bracelets, which is generated by using the Gielis superformula. EEG signals were collected by using a medical grade device, the B-Alert X10 from advance brain monitoring, with a sampling frequency of 256 Hz and resolution of 16 bits. The signals obtained when viewing 3D bracelet shapes were decomposed into alpha, beta, theta, gamma and delta rhythm by using time-frequency analysis, then classified into two classes, namely like and dislike by using support vector machines and K-nearest neighbors (KNN) classifiers respectively. Classification accuracy of up to 80 % was obtained by using KNN with the alpha, theta and delta rhythms as the features extracted from frontal channels, Fz, F3 and F4 to classify two classes, like and dislike.

  20. Creativity as a distinct trainable mental state: An EEG study of musical improvisation.

    PubMed

    Lopata, Joel A; Nowicki, Elizabeth A; Joanisse, Marc F

    2017-03-18

    Alpha-band EEG was used to index how creative mental states relate to the creation of artistic works in skilled musicians. We contrasted differences in frontal upper alpha-band activity between tasks with high and low creativity demands by recording EEGs while skilled musicians listened to, played back, and improvised jazz melodies. Neural responses were compared for skilled musicians with training in musical improvisation versus those who had no formal improvisation training. Consistent with our hypotheses, individuals showed increased frontal upper alpha-band activity during more creative tasks (i.e., improvisation) compared to during less creative tasks (i.e., rote playback). Moreover, this effect was greatest for musicians with formal improvisation training. The strength of this effect also appeared to modulate the quality of these improvisations, as evidenced by significant correlations between upper alpha EEG power and objective post-hoc ratings of individuals' performances. These findings support a conceptualization of creativity as a distinct mental state and suggest spontaneous processing capacity is better nurtured through formal institutional training than informal.

  1. Age effects on EEG correlates of the Wisconsin Card Sorting Test

    PubMed Central

    Dias, Nuno S; Ferreira, Daniela; Reis, Joana; Jacinto, Luís R; Fernandes, Luís; Pinho, Francisco; Festa, Joana; Pereira, Mariana; Afonso, Nuno; Santos, Nadine C; Cerqueira, João J; Sousa, Nuno

    2015-01-01

    Body and brain undergo several changes with aging. One of the domains in which these changes are more remarkable relates with cognitive performance. In the present work, electroencephalogram (EEG) markers (power spectral density and spectral coherence) of age-related cognitive decline were sought whilst the subjects performed the Wisconsin Card Sorting Test (WCST). Considering the expected age-related cognitive deficits, WCST was applied to young, mid-age and elderly participants, and the theta and alpha frequency bands were analyzed. From the results herein presented, higher theta and alpha power were found to be associated with a good performance in the WCST of younger subjects. Additionally, higher theta and alpha coherence were also associated with good performance and were shown to decline with age and a decrease in alpha peak frequency seems to be associated with aging. Additionally, inter-hemispheric long-range coherences and parietal theta power were identified as age-independent EEG correlates of cognitive performance. In summary, these data reveals age-dependent as well as age-independent EEG correlates of cognitive performance that contribute to the understanding of brain aging and related cognitive deficits. PMID:26216431

  2. Estimation of the propagation direction and spectral properties of the EEG signals registered during sevoflurane anaesthesia using Directed Transfer Function method

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Kaminski, Maciej; Marciniak, Radoslaw; Byrczek, Tomasz; Stasiowski, Michal; Jalowiecki, Przemyslaw; Sobieszek, Aleksander; Zmyslowski, Wojciech

    2011-01-01

    The aim of this study was to estimate spectral properties and propagation of the EEG signals registered during sevoflurane anaesthesia between individual EEG recording channels. The intensities of activity flows were calculated for delta, theta, alpha and beta waves using the Directed Transfer Function integration procedure. It was found that delta waves played the dominant role in the EEG signal propagation during anesthesia and it was suggested that theta and alpha waves propagation could be related to the processes participating in the wakefulness control. Data obtained with DTF method were compared with data received from the analysis of cerebral blood flow with the use of PET in other laboratory. This study showed that analysis of the EEG signal propagation is useful for better understanding and thus safer induction of anaesthesia procedure.

  3. Applying support vector machine on hybrid fNIRS/EEG signal to classify driver's conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien; Ahn, Sangtae; Jang, Hyojung; Jun, Sung C.; Kim, Jae G.

    2016-03-01

    Driver's condition plays a critical role in driving safety. The fact that about 20 percent of automobile accidents occurred due to driver fatigue leads to a demand for developing a method to monitor driver's status. In this study, we acquired brain signals such as oxy- and deoxyhemoglobin and neuronal electrical activity by a hybrid fNIRS/EEG system. Experiments were conducted with 11 subjects under two conditions: Normal condition, when subjects had enough sleep, and sleep deprivation condition, when subject did not sleep previous night. During experiment, subject performed a driving task with a car simulation system for 30 minutes. After experiment, oxy-hemoglobin and deoxy-hemoglobin changes were derived from fNIRS data, while beta and alpha band relative power were calculated from EEG data. Decrement of oxy-hemoglobin, beta band power, and increment of alpha band power were found in sleep deprivation condition compare to normal condition. These features were then applied to classify two conditions by Fisher's linear discriminant analysis (FLDA). The ratio of alpha-beta relative power showed classification accuracy with a range between 62% and 99% depending on a subject. However, utilization of both EEG and fNIRS features increased accuracy in the range between 68% and 100%. The highest increase of accuracy is from 63% using EEG to 99% using both EEG and fNIRS features. In conclusion, the enhancement of classification accuracy is shown by adding a feature from fNIRS to the feature from EEG using FLDA which provides the need of developing a hybrid fNIRS/EEG system.

  4. From Oscillatory Transcranial Current Stimulation to Scalp EEG Changes: A Biophysical and Physiological Modeling Study

    PubMed Central

    Merlet, Isabelle; Birot, Gwénaël; Salvador, Ricardo; Molaee-Ardekani, Behnam; Mekonnen, Abeye; Soria-Frish, Aureli; Ruffini, Giulio; Miranda, Pedro C.; Wendling, Fabrice

    2013-01-01

    Both biophysical and neurophysiological aspects need to be considered to assess the impact of electric fields induced by transcranial current stimulation (tCS) on the cerebral cortex and the subsequent effects occurring on scalp EEG. The objective of this work was to elaborate a global model allowing for the simulation of scalp EEG signals under tCS. In our integrated modeling approach, realistic meshes of the head tissues and of the stimulation electrodes were first built to map the generated electric field distribution on the cortical surface. Secondly, source activities at various cortical macro-regions were generated by means of a computational model of neuronal populations. The model parameters were adjusted so that populations generated an oscillating activity around 10 Hz resembling typical EEG alpha activity. In order to account for tCS effects and following current biophysical models, the calculated component of the electric field normal to the cortex was used to locally influence the activity of neuronal populations. Lastly, EEG under both spontaneous and tACS-stimulated (transcranial sinunoidal tCS from 4 to 16 Hz) brain activity was simulated at the level of scalp electrodes by solving the forward problem in the aforementioned realistic head model. Under the 10 Hz-tACS condition, a significant increase in alpha power occurred in simulated scalp EEG signals as compared to the no-stimulation condition. This increase involved most channels bilaterally, was more pronounced on posterior electrodes and was only significant for tACS frequencies from 8 to 12 Hz. The immediate effects of tACS in the model agreed with the post-tACS results previously reported in real subjects. Moreover, additional information was also brought by the model at other electrode positions or stimulation frequency. This suggests that our modeling approach can be used to compare, interpret and predict changes occurring on EEG with respect to parameters used in specific stimulation

  5. Resting State EEG in Children With Learning Disabilities: An Independent Component Analysis Approach.

    PubMed

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-01-01

    In this study, the neurophysiological underpinnings of learning disabilities (LD) in children are examined using resting state EEG. We were particularly interested in the neurophysiological differences between children with learning disabilities not otherwise specified (LD-NOS), learning disabilities with verbal disabilities (LD-Verbal), and healthy control (HC) children. We applied 2 different approaches to examine the differences between the different groups. First, we calculated theta/beta and theta/alpha ratios in order to quantify the relationship between slow and fast EEG oscillations. Second, we used a recently developed method for analyzing spectral EEG, namely the group independent component analysis (gICA) model. Using these measures, we identified substantial differences between LD and HC children and between LD-NOS and LD-Verbal children in terms of their spectral EEG profiles. We obtained the following findings: (a) theta/beta and theta/alpha ratios were substantially larger in LD than in HC children, with no difference between LD-NOS and LD-Verbal children; (b) there was substantial slowing of EEG oscillations, especially for gICs located in frontal scalp positions, with LD-NOS children demonstrating the strongest slowing; (c) the estimated intracortical sources of these gICs were mostly located in brain areas involved in the control of executive functions, attention, planning, and language; and (d) the LD-Verbal children demonstrated substantial differences in EEG oscillations compared with LD-NOS children, and these differences were localized in language-related brain areas. The general pattern of atypical neurophysiological activation found in LD children suggests that they suffer from neurophysiological dysfunction in brain areas involved with the control of attention, executive functions, planning, and language functions. LD-Verbal children also demonstrate atypical activation, especially in language-related brain areas. These atypical

  6. [Topographic-quantitative EEG-analysis of the paradoxical arousal reaction. EEG changes during urologic surgery using isoflurane/ N2O anesthesia].

    PubMed

    Bischoff, P; Kochs, E; Droese, D; Meyer-Moldenhauer, W H; Schulte am Esch, J

    1993-03-01

    Increases in slow-wave (delta) activity in the EEG may reflect increased depth of anaesthesia provided that hypoxia, haemodynamic instability and drug overdose have been excluded. In contrast, similar intraoperative EEG responses have been described as paradoxical arousal reactions. The aim of this study was to assess the effects of surgical stimulation on spatial EEG changes during anaesthesia with 0.6% isoflurane/66% nitrous oxide. METHODS. The present study investigated changes in EEG power and frequencies in 20 patients (mean age 36 +/- 8 years; ASA I or II) scheduled for elective urological surgery during steady-state anaesthesia with 0.6% isoflurane and 66% nitrous oxide. The following variables were measured: heart rate (HR), mean arterial blood pressure (MAP), end-tidal isoflurane (PetISO) and carbon dioxide concentrations (PetCO2), arterial oxygen saturation (SaO2%) and body temperature (degree C). Patients were randomly assigned to one of two groups: group 1 (n = 10; without surgery) and group 2 (n = 10; with surgical procedure). The EEG was recorded over 20 min. The first 5 min were taken as baseline. In group 2 surgical stimulation (skin incision with subsequent surgical preparation) was started 1-2 min after recording of baseline values. Topographical distribution of EEG output was recorded from 17 electrodes (international 10-20 system), digitized and stored on disk (CATEEM) after establishment of steady-state anaesthesia (PetISO: 0.6%; PetCO2: 35-37 mmHg). Data are given as medium (microV2/Hz) and relative changes (%) +/- SD with respect to baseline. Statistical significance was tested for F4 versus C4 for the delta- and alpha-1-frequency bands using Wilcoxon's test (P < 0.05). RESULTS. In group 1 (without surgical stimulation) all parameters did not change over time. EEG slowing with an increase in power (> 100%) was noted in 8 patients of group 2 (n = 10; during surgical stimulation). By visual inspection of the original EEG tracings paradoxical

  7. Alpha Asymmetry in Infants at Risk for Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Gabard-Durnam, Laurel; Tierney, Adrienne L.; Vogel-Farley, Vanessa; Tager-Flusberg, Helen; Nelson, Charles A.

    2015-01-01

    An emerging focus of research on autism spectrum disorder (ASD) targets the identification of early-developing ASD endophenotypes using infant siblings of affected children. One potential neural endophenotype is resting frontal electroencephalogram (EEG) alpha asymmetry, a metric of hemispheric organization. Here, we examined the development of…

  8. Radiofrequency signal affects alpha band in resting electroencephalogram

    PubMed Central

    Ghosn, Rania; Yahia-Cherif, Lydia; Hugueville, Laurent; Ducorps, Antoine; Lemaréchal, Jean-Didier; Thuróczy, György; de Seze, René

    2015-01-01

    The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8–12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant (P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session (P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG. PMID:25695646

  9. Use of EEG to Diagnose ADHD

    PubMed Central

    Lenartowicz, Agatha; Loo, Sandra K.

    2015-01-01

    Electroencephalography (EEG) has, historically, played a focal role in the assessment of neural function in children with attention deficit hyperactivity disorder (ADHD). We review here the most recent developments in the utility of EEG in the diagnosis of ADHD, with emphasis on the most commonly used and emerging EEG metrics and their reliability in diagnostic classification. Considering the clinical heterogeneity of ADHD and the complexity of information available from the EEG signals, we suggest that considerable benefits are to be gained from multivariate analyses and a focus towards understanding of the neural generators of EEG. We conclude that while EEG cannot currently be used as a diagnostic tool, vast developments in analytical and technological tools in its domain anticipate future progress in its utility in the clinical setting. PMID:25234074

  10. EEG correlates of virtual reality hypnosis.

    PubMed

    White, David; Ciorciari, Joseph; Carbis, Colin; Liley, David

    2009-01-01

    The study investigated hypnosis-related electroencephalographic (EEG) coherence and power spectra changes in high and low hypnotizables (Stanford Hypnotic Clinical Scale) induced by a virtual reality hypnosis (VRH) induction system. In this study, the EEG from 17 participants (Mean age = 21.35, SD = 1.58) were compared based on their hypnotizability score. The EEG recording associated with a 2-minute, eyes-closed baseline state was compared to the EEG during a hypnosis-related state. This novel induction system was able to produce EEG findings consistent with previous hypnosis literature. Interactions of significance were found with EEG beta coherence. The high susceptibility group (n = 7) showed decreased coherence, while the low susceptibility group (n = 10) demonstrated an increase in coherence between medial frontal and lateral left prefrontal sites. Methodological and efficacy issues are discussed.

  11. Quantitative analysis of EEG effects following experimental marginal magnesium and boron deprivation.

    PubMed

    Penland, J G

    1995-12-01

    Magnesium (115 and 315 mg/d) and boron (0.23 and 3.23 mg/d) were fed in a double-blind Latin squares design to 13 healthy postmenopausal women (aged 50-78 years) living on a metabolic unit. An eight-channel electroencephalogram (EEG) was recorded during the last week of each of four 6-week dietary periods. Power and coherence measures were determined for each of four EEG frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-18 Hz). Compared to high dietary magnesium, the low magnesium intake increased total power in the frontal regions and right temporal and parietal regions and resulted in frequency-specific increases in left occipital delta power, theta power in all but the left temporal region, alpha power in the right frontal and right temporal regions, and beta power in the frontal regions. The proportion of theta to total power in the parietal regions also increased with the low magnesium intake. While magnesium effects were observed primarily during eyes-closed conditions, effects of dietary boron on EEG power were found only during eyes-open conditions. Relative to high dietary boron, the low boron intake increased delta power in the left parietal and left occipital regions, increased the proportion of delta to total power in the frontal regions, and decreased relative right frontal theta, right frontal alpha, and left frontal beta power. Additional magnesium and boron effects were evident in the measures of EEG coherence. Thus relatively short periods of marginal magnesium and boron deprivation can affect brain function in healthy older women. The findings extend previous qualitative observations of increased CNS activity following severe magnesium deprivation and deficiency to cases of experimentally induced marginal magnesium deficiency, and verify CNS hyperexcitability by quantitative analysis of the EEG.

  12. Test-retest reliability of a single-channel, wireless EEG system.

    PubMed

    Rogers, Jeffrey M; Johnstone, Stuart J; Aminov, Anna; Donnelly, James; Wilson, Peter H

    2016-08-01

    Recording systems to acquire electroencephalogram (EEG) data are traditionally lab-based. However, there are shortcomings to this method, and the ease of use and portability of emerging wireless EEG technologies offer a promising alternative. A previous validity study demonstrated data derived from a single-channel, wireless system (NeuroSky ThinkGear, San Jose, California) is comparable to EEG recorded from conventional lab-based equipment. The current study evaluated the reliability of this portable system using test-retest and reliable change analyses. Relative power (RP) of delta, theta, alpha, and beta frequency bands was derived from EEG data obtained from a single electrode over FP1 in 19 healthy youth (10-17years old), 21 healthy adults (18-28years old), and 19 healthy older adults (55-79years old), during eyes-open, eyes-closed, auditory oddball, and visual n-back conditions. Intra-class correlations (ICCs) and Coefficients of Repeatability (CRs) were calculated from RP data re-collected one-day, one-week, and one-month later. Participants' levels of mood and attention were consistent across sessions. Eyes-closed resting EEG measurements using the portable device were reproducible (ICCs 0.76-0.85) at short and longer retest intervals in all three participant age groups. While still of at least fair reliability (ICCs 0.57-0.85), EEG obtained during eyes-open paradigms was less stable, and any change observed over time during these testing conditions can be interpreted utilizing the CR values provided. Combined with existing validity data, these findings encourage application of the portable EEG system for the study of brain function.

  13. Neural Correlates of Action Observation and Execution in 14-Month-Old Infants: An Event-Related EEG Desynchronization Study

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Young, Thomas; Meltzoff, Andrew N.

    2011-01-01

    There is increasing interest in neurobiological methods for investigating the shared representation of action perception and production in early development. We explored the extent and regional specificity of EEG desynchronization in the infant alpha frequency range (6-9 Hz) during action observation and execution in 14-month-old infants.…

  14. Effect of total sleep deprivation on reaction time and waking EEG activity in man.

    PubMed

    Lorenzo, I; Ramos, J; Arce, C; Guevara, M A; Corsi-Cabrera, M

    1995-06-01

    Nine paid volunteers were sleep deprived over a period of 40 hours. Every 2 hours during total sleep deprivation (TSD) and after recovery sleep, oral temperature (OT), reaction time (RT) in a vigilance task and electroencephalogram (EEG) with eyes open and closed (C3, C4, T3 and T4) were recorded. Ten artifact-free samples from each condition were Fourier transformed. Absolute power was calculated for six bands. Analyses of variance with deprivation and time of day as factors showed the following significant results: 1) TSD induced an increase in RT, of theta power in all derivations, of beta power in both centrals and a decrease of alpha power with eyes closed; OT was not affected. 2) All bands showed a peak of power at 1800 hours, 2 hours in advance of the OT acrophase at 2000 hours. All variables recovered baseline values after 1 night of sleep. Significant linear correlations of hours of wakefulness with EEG and RT, and of EEG power with OT and RT, were observed. The present findings show a linear increase in EEG power and RT with TSD, and a diurnal oscillation of EEG power, which is independent of TSD.

  15. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Khalsa, S. B.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    1999-01-01

    The aim of this study was to quantify the associations between slow eye movements (SEMs), eye blink rate, waking electroencephalogram (EEG) power density, neurobehavioral performance, and the circadian rhythm of plasma melatonin in a cohort of 10 healthy men during up to 32 h of sustained wakefulness. The time course of neurobehavioral performance was characterized by fairly stable levels throughout the first 16 h of wakefulness followed by deterioration during the phase of melatonin secretion. This deterioration was closely associated with an increase in SEMs. Frontal low-frequency EEG activity (1-7 Hz) exhibited a prominent increase with time awake and little circadian modulation. EEG alpha activity exhibited circadian modulation. The dynamics of SEMs and EEG activity were phase locked to changes in neurobehavioral performance and lagged the plasma melatonin rhythm. The data indicate that frontal areas of the brain are more susceptible to sleep loss than occipital areas. Frontal EEG activity and ocular parameters may be used to monitor and predict changes in neurobehavioral performance associated with sleep loss and circadian misalignment.

  16. Atypical EEG Power Correlates With Indiscriminately Friendly Behavior in Internationally Adopted Children

    PubMed Central

    Tarullo, Amanda R.; Garvin, Melissa C.; Gunnar, Megan R.

    2012-01-01

    While effects of institutional care on behavioral development have been studied extensively, effects on neural systems underlying these socioemotional and attention deficits are only beginning to be examined. The current study assessed electroencephalogram (EEG) power in 18-month-old internationally adopted, post-institutionalized children (n = 37) and comparison groups of non-adopted children (n = 47) and children internationally adopted from foster care (n = 39). For their age, post-institutionalized children had an atypical EEG power distribution, with relative power concentrated in lower frequency bands compared to non-adopted children. Both internationally adopted groups had lower absolute alpha power than non-adopted children. EEG power was not related to growth at adoption or to global cognitive ability. Atypical EEG power distribution at 18 months predicted indiscriminate friendliness and poorer inhibitory control at 36 months. Both post-institutionalized and foster care children were more likely than non-adopted children to exhibit indiscriminate friendliness. Results are consistent with a cortical hypoactivation model of the effects of early deprivation on neural development and provide initial evidence associating this atypical EEG pattern with indiscriminate friendliness. Outcomes observed in the foster care children raise questions about the specificity of institutional rearing as a risk factor and emphasize the need for broader consideration of the effects of early deprivation and disruptions in care. PMID:21171750

  17. Long-range EEG synchronization during word encoding correlates with successful memory performance.

    PubMed

    Weiss, S; Rappelsberger, P

    2000-06-01

    Distinct cortical activity during memory encoding of words, which were either recalled or not, was reported by a number of studies. This activity was mainly found at frontal and temporal/parietal brain regions. However, it was not clear if these regions interact with each other or work independently. In order to get a functional measure of the degree of neuronal large-scale cooperation, we calculated EEG coherence, which provides a statistical measure of synchronization between two EEG signals per frequency band. Therefore, coherence enables us to assess the functional interaction between cell assemblies of distant brain regions. The purpose of our study was to investigate if successfully recalled words show enhanced cortical synchronization compared with not recalled ones. Additionally, the influence of stimulus modality and the way different EEG frequencies participate in this process was examined. The EEG of 25 participants was recorded during memory encoding of concrete German nouns, either presented auditorily or visually and stimuli were separated according to the participant's memory performance. Recalled nouns exhibited overall enhanced synchronization but showed typical patterns, especially between anterior and posterior brain regions in all frequency bands except the alpha-1 band (8-10 Hz). Recalling nouns was accompanied by increased synchronization between more distant electrodes in relation to an increase of synchronization between adjacent electrodes. Moreover, the degree of intrahemispheric synchronization was higher for recalled nouns. The pattern of EEG coherence and amplitude changes during verbal memory encoding allowed us to assess the probability that nouns would be recalled or not.

  18. Tele-transmission of EEG recordings.

    PubMed

    Lemesle, M; Kubis, N; Sauleau, P; N'Guyen The Tich, S; Touzery-de Villepin, A

    2015-03-01

    EEG recordings can be sent for remote interpretation. This article aims to define the tele-EEG procedures and technical guidelines. Tele-EEG is a complete medical act that needs to be carried out with the same quality requirements as a local one in terms of indications, formulation of the medical request and medical interpretation. It adheres to the same quality requirements for its human resources and materials. It must be part of a medical organization (technical and medical network) and follow all rules and guidelines of good medical practices. The financial model of this organization must include costs related to performing the EEG recording, operating and maintenance of the tele-EEG network and medical fees of the physician interpreting the EEG recording. Implementing this organization must be detailed in a convention between all parties involved: physicians, management of the healthcare structure, and the company providing the tele-EEG service. This convention will set rules for network operation and finance, and also the continuous training of all staff members. The tele-EEG system must respect all rules for safety and confidentiality, and ensure the traceability and storing of all requests and reports. Under these conditions, tele-EEG can optimize the use of human resources and competencies in its zone of utilization and enhance the organization of care management.

  19. Measurement of neural signals from inexpensive, wireless and dry EEG systems.

    PubMed

    Grummett, T S; Leibbrandt, R E; Lewis, T W; DeLosAngeles, D; Powers, D M W; Willoughby, J O; Pope, K J; Fitzgibbon, S P

    2015-07-01

    Electroencephalography (EEG) is challenged by high cost, immobility of equipment and the use of inconvenient conductive gels. We compared EEG recordings obtained from three systems that are inexpensive, wireless, and/or dry (no gel), against recordings made with a traditional, research-grade EEG system, in order to investigate the ability of these 'non-traditional' systems to produce recordings of comparable quality to a research-grade system. The systems compared were: Emotiv EPOC (inexpensive and wireless), B-Alert (wireless), g.Sahara (dry) and g.HIamp (research-grade). We compared the ability of the systems to demonstrate five well-studied neural phenomena: (1) enhanced alpha activity with eyes closed versus open; (2) visual steady-state response (VSSR); (3) mismatch negativity; (4) P300; and (5) event-related desynchronization/synchronization. All systems measured significant alpha augmentation with eye closure, and were able to measure VSSRs (although these were smaller with g.Sahara). The B-Alert and g.Sahara were able to measure the three time-locked phenomena equivalently to the g.HIamp. The Emotiv EPOC did not have suitably located electrodes for two of the tasks and synchronization considerations meant that data from the time-locked tasks were not assessed. The results show that inexpensive, wireless, or dry systems may be suitable for experimental studies using EEG, depending on the research paradigm, and within the constraints imposed by their limited electrode placement and number.

  20. EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation.

    PubMed

    Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel

    2015-01-01

    The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings.

  1. Changes in human EEG caused by low level modulated microwave stimulation.

    PubMed

    Hinrikus, Hiie; Parts, Maie; Lass, Jaanus; Tuulik, Viiu

    2004-09-01

    This study focuses on the effect of low level microwave radiation on human EEG alpha and theta rhythms. During the experiment, 20 healthy volunteers were exposed to a 450 MHz microwaves with 7 Hz on-off modulation. The field power density at the scalp was 0.16 mW/cm2. Signals from the following EEG channels were used: FP1, FP2, P3, P4, T3, T4, O1, and O2. The experimental protocol consisted of one cycle of short term photic and ten cycles of the repetitive microwave stimulation. The changes caused by photic as well as microwave stimulation were more regular on the alpha rhythm. In the majority of cases, photic stimulation caused changes in the EEG energy level in the occipital and microwave stimulation in the frontal region. Our experimental results demonstrated that microwave stimulation effects became apparent, starting from the third stimulation cycle. Changes varied strongly from subject to subject. Therefore, photic and microwave exposure did not cause statistically significant changes in the EEG activity level for the whole group. For some subjects, clear tendencies of changes in microwave on-off cycles were noticeable.

  2. Test-retest reliability of regional electroencephalogram (EEG) and cardiovascular measures in social anxiety disorder (SAD).

    PubMed

    Schmidt, Louis A; Santesso, Diane L; Miskovic, Vladimir; Mathewson, Karen J; McCabe, Randi E; Antony, Martin M; Moscovitch, David A

    2012-04-01

    Although the search for psychophysiological manifestations of social anxiety has a rich history, there appear to be no published reports examining the reliability of continuous electrocortical measures that putatively index stress vulnerability and stress reactivity in socially anxious individuals. We examined the 1-week test-retest reliability of regional electroencephalogram (EEG) alpha asymmetry and power, respiratory sinus arrhythmia (RSA), heart period, and heart period variability measures at rest and during anticipation of an impromptu speech in 26 adults diagnosed with social anxiety disorder (SAD). Across the 1-week time period, we found medium-to-large correlations for regional EEG asymmetry and large correlations for regional EEG alpha power, RSA, heart period, and heart period variability measures at rest and during speech anticipation, before and after accounting for age and medication status. These results are similar to patterns observed in nonclinical samples and appear to provide the first documented evidence of test-retest reliability of psychophysiological measures that index central nervous system activity in socially anxious individuals. These findings also provide support for the notion that resting frontal EEG asymmetry and RSA constitute relatively stable individual differences in this clinical population.

  3. EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation

    PubMed Central

    Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel

    2015-01-01

    The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings. PMID:26053854

  4. EEG recovery enhanced by acute aerobic exercise after performing mental task with listening to unpleasant sound.

    PubMed

    Nishifuji, Seiji

    2011-01-01

    The present paper investigated response of electroencephalogram (EEG) to aerobic exercise with low intensity after performing mental task with listening to acoustic stimuli in order to measure a recovery effect of the acute exercise on the EEG. The mean amplitude of the alpha wave (8-13 Hz) was significantly reduced during performing mental arithmetic and/or listening to 5 KHz unpleasant tone. In particular, the mean reduction rate of the amplitude was more than 20 % in the low-frequency range of the alpha wave (8-10 Hz) under both stressors. On the other hand, the alpha wave was fixed after an acute exercise of 20 min; the mean amplitude of the alpha wave exceeded 30 % of spontaneous level prior to stressed conditions in the low-frequency range but unchanged in the high-frequency range. Response of the theta wave was similar to the low-alpha wave, while beta and gamma waves showed no significant change in response to the stressors and exercise. The observation indicates that the acute exercise with low intensity may be responsible for the rapid recovery and enhancement of the alpha wave in the low-frequency range and theta wave.

  5. Your eyes give you away: prestimulus changes in pupil diameter correlate with poststimulus task-related EEG dynamics.

    PubMed

    Hong, Linbi; Walz, Jennifer M; Sajda, Paul

    2014-01-01

    Pupillary measures have been linked to arousal and attention as well as activity in the brainstem's locus coeruleus norepinephrine (LC-NE) system. Similarly, there is evidence that evoked EEG responses, such as the P3, might have LC-NE activity as their basis. Since it is not feasible to record electrophysiological data directly from the LC in humans due to its location in the brainstem, an open question has been whether pupillary measures and EEG variability can be linked in a meaningful way to shed light on the nature of the LC-NE role in attention and arousal. We used an auditory oddball task with a data-driven approach to learn task-relevant projections of the EEG, for windows of data spanning the entire trial. We investigated linear and quadratic relationships between the evoked EEG along these projections and both prestimulus (baseline) and poststimulus (evoked dilation) pupil diameter measurements. We found that baseline pupil diameter correlates with early (175-200 ms) and late (350-400 ms) EEG component variability, suggesting a linear relationship between baseline (tonic) LC-NE activity and evoked EEG. We found no relationships between evoked EEG and evoked pupil dilation, which is often associated with evoked (phasic) LC activity. After regressing out reaction time (RT), the correlation between EEG variability and baseline pupil diameter remained, suggesting that such correlation is not explainable by RT variability. We also investigated the relationship between these pupil measures and prestimulus EEG alpha activity, which has been reported as a marker of attentional state, and found a negative linear relationship with evoked pupil dilation. In summary, our results demonstrate significant relationships between prestimulus and poststimulus neural and pupillary measures, and they provide further evidence for tight coupling between attentional state and evoked neural activity and for the role of cortical and subcortical networks underlying the process of

  6. Topographic distribution of homing receptors on B and T cells in human gut-associated lymphoid tissue: relation of L-selectin and integrin alpha 4 beta 7 to naive and memory phenotypes.

    PubMed Central

    Farstad, I. N.; Halstensen, T. S.; Kvale, D.; Fausa, O.; Brandtzaeg, P.

    1997-01-01

    In mice, integrin alpha 4 beta 7 is the main receptor used by lymphocytes that home to the Peyer's patches, although L-selectin contributes to the initial interaction with high endothelial venules. Less is known about the expression and function of these adhesion molecules in humans. The distribution of L-selectin and alpha 4 beta 7 on various B- and T-cell subsets was examined in human Peyer's patches (n = 8) and appendix (n = 4), collectively called gut-associated lymphoid tissue. Multicolor immunophenotyping was performed on cryosections, and dispersed cells were examined by flow cytometry. In cryosections, CD45RA+ T cells around and within interfollicular high endothelial venules, as well as surface (s)IgD+ B lymphocytes in the follicle mantles, often expressed abundant L-selectin but only intermediate levels of alpha 4 beta 7. CD45RO+ T cells and sIgD- B cells expressed higher levels of alpha 4 beta 7 and were often located near putative efferent lymphatics; only a small fraction (< 20%) of such memory cells expressed L-selectin. By flow cytometry, considerably more T than B lymphocytes co-expressed L-selectin and alpha 4 beta 7 (40% versus 25% and 67% versus 39%, respectively). In samples with many L-selectin+ cells (> 30%), more of these lymphocytes co-expressed alpha 4 beta 7 than in samples with few L-selectin+ cells. Because L-selectin and alpha 4 beta 7 were co-expressed on lymphocytes located near high endothelial venules, and because such co-expression was relatively common when many L-selectin+ cells were present, both of these molecules might participate in homing to human gut-associated lymphoid tissue. Such homing is probably most pronounced for T lymphocytes that were found to express L-selectin and alpha 4 beta 7 more often than B lymphocytes. The selective and relatively high expression of alpha 4 beta 7 on memory cells located near efferent lymphatics indicated a different migratory capacity; after exit from gut-associated lymphoid tissue, such

  7. Event-related EEG time-frequency PCA and the orienting reflex to auditory stimuli.

    PubMed

    Barry, Robert J; De Blasio, Frances M; Bernat, Edward M; Steiner, Genevieve Z

    2015-04-01

    We recently reported an auditory habituation series with counterbalanced indifferent and significant (counting) instructions. Time-frequency (t-f) analysis of electrooculogram-corrected EEG was used to explore event-related synchronization (ERS)/desynchronization (ERD) in four EEG bands using arbitrarily selected time epochs and traditional frequency ranges. ERS in delta, theta, and alpha, and subsequent ERD in theta, alpha, and beta, showed substantial decrement over trials, yet effects of stimulus significance (count vs. no-task) were minimal. Here, we used principal components analysis (PCA) of the t-f data to investigate the natural frequency and time combinations involved in such stimulus processing. We identified four ERS and four ERD t-f components: six showed decrement over trials, four showed count > no-task effects, and six showed Significance × Trial interactions. This increased sensitivity argues for the wider use of our data-driven t-f PCA approach.

  8. Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements.

    PubMed

    Vecchiato, Giovanni; Toppi, Jlenia; Astolfi, Laura; De Vico Fallani, Fabrizio; Cincotti, Febo; Mattia, Donatella; Bez, Francesco; Babiloni, Fabio

    2011-05-01

    The aim of this research is to analyze the changes in the EEG frontal activity during the observation of commercial videoclips. In particular, we aimed to investigate the existence of EEG frontal asymmetries in the distribution of the signals' power spectra related to experienced pleasantness of the video, as explicitly rated by the eleven experimental subjects investigated. In the analyzed population, maps of Power spectral density (PSD) showed an asymmetrical increase of theta and alpha activity related to the observation of pleasant (unpleasant) advertisements in the left (right) hemisphere. A correlation analysis revealed that the increase of PSD at left frontal sites is negatively correlated with the degree of pleasantness perceived. Conversely, the de-synchronization of left alpha frontal activity is positively correlated with judgments of high pleasantness. Moreover, our data presented an increase of PSD related to the observation of unpleasant commercials, which resulted higher with respect to the one elicited by pleasant advertisements.

  9. The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness.

    PubMed

    Ben-Simon, Eti; Podlipsky, Ilana; Okon-Singer, Hadas; Gruberger, Michal; Cvetkovic, Dean; Intrator, Nathan; Hendler, Talma

    2013-03-01

    The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input.

  10. Preterm EEG: a multimodal neurophysiological protocol.

    PubMed

    Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa

    2012-02-18

    Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.

  11. EEG Abnormalities Are Associated With Poorer Depressive Symptom Outcomes With Escitalopram and Venlafaxine-XR, but Not Sertraline: Results From the Multicenter Randomized iSPOT-D Study.

    PubMed

    Arns, Martijn; Gordon, Evian; Boutros, Nash N

    2017-01-01

    Rationale Limited research is available on electrophysiological abnormalities such as epileptiform EEG or EEG slowing in depression and its association with antidepressant treatment response. Objectives We investigated the association between EEG abnormalities and antidepressant treatment response in the international Study to Predict Optimized Treatment in Depression (iSPOT-D). Methods Of 1008 participants with major depressive disorder randomized to escitalopram, sertraline, or venlafaxine-XR, 622 completed 8 weeks of treatment per protocol. The study also recruited 336 healthy controls. Treatment response was established after 8 weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed. EEG abnormalities including epileptiform activity, EEG slowing, and alpha peak frequency (APF) were scored for all subjects, blind to treatment outcome. Results Patients and controls did not differ in the occurrence of EEG abnormalities. Furthermore, in the per protocol sample the occurrence of epileptiform EEG and EEG slowing (as a combined marker) were associated with a reduced likelihood of responding to escitalopram (P = .019; odds ratio [OR] = 3.56) and venlafaxine-XR (P = .043; OR = 2.76), but not sertraline (OR = 0.73). The response rates for this "any EEG abnormality" groups versus the "no-abnormality" group were 33% and 64% for escitalopram and 41% and 66% for venlafaxine-XR, respectively. A slow APF was associated with treatment response only in the sertraline group (P = .21; d = .027). Conclusions EEG abnormalities are associated with nonresponse to escitalopram and venlafaxine-XR, but not sertraline, whereas a slow APF is associated to response for sertraline only.

  12. EEG Spectral Features Discriminate between Alzheimer’s and Vascular Dementia

    PubMed Central

    Neto, Emanuel; Allen, Elena A.; Aurlien, Harald; Nordby, Helge; Eichele, Tom

    2015-01-01

    Alzheimer’s disease (AD) and vascular dementia (VaD) present with similar clinical symptoms of cognitive decline, but the underlying pathophysiological mechanisms differ. To determine whether clinical electroencephalography (EEG) can provide information relevant to discriminate between these diagnoses, we used quantitative EEG analysis to compare the spectra between non-medicated patients with AD (n = 77) and VaD (n = 77) and healthy elderly normal controls (NC) (n = 77). We use curve-fitting with a combination of a power loss and Gaussian function to model the averaged resting-state spectra of each EEG channel extracting six parameters. We assessed the performance of our model and tested the extracted parameters for group differentiation. We performed regression analysis in a multivariate analysis of covariance with group, age, gender, and number of epochs as predictors and further explored the topographical group differences with pair-wise contrasts. Significant topographical differences between the groups were found in several of the extracted features. Both AD and VaD groups showed increased delta power when compared to NC, whereas the AD patients showed a decrease in alpha power for occipital and temporal regions when compared with NC. The VaD patients had higher alpha power than NC and AD. The AD and VaD groups showed slowing of the alpha rhythm. Variability of the alpha frequency was wider for both AD and VaD groups. There was a general decrease in beta power for both AD and VaD. The proposed model is useful to parameterize spectra, which allowed extracting relevant clinical EEG key features that move toward simple and interpretable diagnostic criteria. PMID:25762978

  13. EEG frontal asymmetry related to pleasantness of music perception in healthy children and cochlear implanted users.

    PubMed

    Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Di Francesco, G; Vitiello, S; Colosimo, A; Babiloni, Fabio

    2012-01-01

    Interestingly, the international debate about the quality of music fruition for cochlear implanted users does not take into account the hypothesis that bilateral users could perceive music in a more pleasant way with respect to monolateral users. In this scenario, the aim of the present study was to investigate if cerebral signs of pleasantness during music perception in healthy child are similar to those observed in monolateral and in bilateral cochlear implanted users. In fact, previous observations in literature on healthy subjects have indicated that variations of the frontal EEG alpha activity are correlated with the perceived pleasantness of the sensory stimulation received (approach-withdrawal theory). In particular, here we described differences between cortical activities estimated in the alpha frequency band for a healthy child and in patients having a monolateral or a bilateral cochlear implant during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns observed in a healthy child and that of a bilateral cochlear implanted patient are congruent with the approach-withdrawal theory. Conversely, the scalp topographic distribution of EEG power spectra in the alpha band resulting from the monolateral cochlear user presents a different EEG pattern from the normal and bilateral implanted patients. Such differences could be explained at the light of the approach-withdrawal theory. In fact, the present findings support the hypothesis that a monolateral cochlear implanted user could perceive the music in a less pleasant way when compared to a healthy subject or to a bilateral cochlear user.

  14. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis

    PubMed Central

    Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C.; Hardiman, Orla

    2015-01-01

    Background Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. Methods 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Results Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05). Discussion There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS. PMID:26091258

  15. Alpha Blockers

    MedlinePlus

    ... conditions such as high blood pressure and benign prostatic hyperplasia. Find out more about this class of medication. ... these conditions: High blood pressure Enlarged prostate (benign prostatic hyperplasia) Though alpha blockers are commonly used to treat ...

  16. Alpha fetoprotein

    MedlinePlus

    ... Alpha fetoprotein - series References Cunningham FG, Leveno KJ, Bloom SL, et al. Prenatal diagnosis and fetal therapy. In: Cunningham FG, Leveno KJ, Bloom SL, et al, eds. Williams Obstetrics . 23rd ed. ...

  17. Alpha Thalassemia

    MedlinePlus

    ... an apparently normal individual has a child with hemoglobin H disease or alpha thalassemia minor. It can ... gene on one chromosome 25% 25% 25% 25% hemoglobin H disease there is a 25% chance with ...

  18. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.

    PubMed

    Jorge, João; Grouiller, Frédéric; Ipek, Özlem; Stoermer, Robert; Michel, Christoph M; Figueiredo, Patrícia; van der Zwaag, Wietske; Gruetter, Rolf

    2015-01-15

    The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although

  19. Analysis of EEG Related Saccadic Eye Movement

    NASA Astrophysics Data System (ADS)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  20. Spectral features of EEG in depression.

    PubMed

    Hinrikus, Hiie; Suhhova, Anna; Bachmann, Maie; Aadamsoo, Kaire; Võhma, Ulle; Pehlak, Hannes; Lass, Jaanus

    2010-06-01

    The aim of this study was to find distinctions of the EEG signal in female depression. Experiments were carried out on two groups of 18 female volunteers each: a group of patients with depressive disorder who were not on medication and a group of control subjects. Patients who had Hamilton depression rating scores higher than 14 were selected. Resting EEG was recorded for the duration of 30 min. Spectral asymmetry (SA) of the EEG spectrum was estimated as relative difference in the selected higher and lower EEG frequency band power. Calculated SA values were positive for depressive and negative for healthy subjects (except for 2-3 subjects). The values behaved similarly in all EEG channels and brain hemispheres. Differences in SA between depressive and control groups were significant in all EEG channels. Dependence of SA on EGG signal length appeared not to be identical for depressive and healthy subjects. Our results suggest that SA based on balance between the powers of the higher and the lower EEG frequency bands seems to enable characterization of the EEG in depression.

  1. Correlation of Visuospatial Ability and EEG Slowing in Patients with Parkinson's Disease

    PubMed Central

    Meyer, Antonia; Chaturvedi, Menorca; Hatz, Florian; Gschwandtner, Ute

    2017-01-01

    Background. Visuospatial dysfunction is among the first cognitive symptoms in Parkinson's disease (PD) and is often predictive for PD-dementia. Furthermore, cognitive status in PD-patients correlates with quantitative EEG. This cross-sectional study aimed to investigate the correlation between EEG slowing and visuospatial ability in nondemented PD-patients. Methods. Fifty-seven nondemented PD-patients (17 females/40 males) were evaluated with a comprehensive neuropsychological test battery and a high-resolution 256-channel EEG was recorded. A median split was performed for each cognitive test dividing the patients sample into either a normal or lower performance group. The electrodes were split into five areas: frontal, central, temporal, parietal, and occipital. A linear mixed effects model (LME) was used for correlational analyses and to control for confounding factors. Results. Subsequently, for the lower performance, LME analysis showed a significant positive correlation between ROCF score and parietal alpha/theta ratio (b = .59, p = .012) and occipital alpha/theta ratio (b = 0.50, p = .030). No correlations were found in the group of patients with normal visuospatial abilities. Conclusion. We conclude that a reduction of the parietal alpha/theta ratio is related to visuospatial impairments in PD-patients. These findings indicate that visuospatial impairment in PD-patients could be influenced by parietal dysfunction. PMID:28348918

  2. Wearable EEG via lossless compression.

    PubMed

    Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2016-08-01

    This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.

  3. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  4. EEG based image encryption via quantum walks.

    PubMed

    Rawat, N; Shin, Y; Balasingham, I

    2016-08-01

    An electroencephalogram (EEG) based image encryption combined with Quantum walks (QW) is encoded in Fresnel domain. The computational version of EEG randomizes the original plaintext whereas QW can serve as an excellent key generator due to its inherent nonlinear chaotic dynamic behavior. First, a spatially coherent monochromatic laser beam passes through an SLM, which introduces an arbitrary EEG phase-only mask. The modified beam is collected by a CCD. Further, the intensity is multiply with the QW digitally. EEG shows high sensitivity to system parameters and capable of encrypting and transmitting the data whereas QW has unpredictability, stability and non-periodicity. Only applying the correct keys, the original image can be retrieved successfully. Simulations and comparisons show the proposed method to be secure enough for image encryption and outperforms prior works. The proposed method opens the door towards introducing EEG and quantum computation into image encryption and promotes the convergence between our approach and image processing.

  5. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Severe heart failure (HF) is characterized by profound alterations in cardiac metabolic phenotype, with down-regulation of the free fatty acid (FFA) oxidative pathway and marked increase in glucose oxidation. We tested whether fenofibrate, a pharmacological agonist of peroxisome proliferator-activat...

  6. Wake and Sleep EEG in Patients With Huntington Disease: An eLORETA Study and Review of the Literature.

    PubMed

    Piano, Carla; Mazzucchi, Edoardo; Bentivoglio, Anna Rita; Losurdo, Anna; Calandra Buonaura, Giovanna; Imperatori, Claudio; Cortelli, Pietro; Della Marca, Giacomo

    2017-01-01

    The aim of the study was to evaluate the EEG modifications in patients with Huntington disease (HD) compared with controls, by means of the exact LOw REsolution Tomography (eLORETA) software. We evaluated EEG changes during wake, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Moreover, we reviewed the literature concerning EEG modifications in HD. Twenty-three consecutive adult patients affected by HD were enrolled, 14 women and 9 men, mean age was 57.0 ± 12.4 years. Control subjects were healthy volunteers (mean age 58.2 ± 14.6 years). EEG and polygraphic recordings were performed during wake (before sleep) and during sleep. Sources of EEG activities were determined using the eLORETA software. In wake EEG, significant differences between patients and controls were detected in the delta frequency band (threshold T = ±4.606; P < .01) in the Brodmann areas (BAs) 3, 4, and 6 bilaterally. In NREM sleep, HD patients showed increased alpha power (T = ±4.516; P < .01) in BAs 4 and 6 bilaterally; decreased theta power (T = ±4.516; P < .01) in the BAs 23, 29, and 30; and decreased beta power (T = ±4.516; P < .01) in the left BA 30. During REM, HD patients presented decreased theta and alpha power (threshold T = ±4.640; P < .01) in the BAs 23, 29, 30, and 31 bilaterally. In conclusion, EEG data suggest a motor cortex dysfunction during wake and sleep in HD patients, which correlates with the clinical and polysomnographic evidence of increased motor activity during wake and NREM, and nearly absent motor abnormalities in REM.

  7. Pre-stimulus alpha power affects vertex N2-P2 potentials evoked by noxious stimuli.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Brancucci, Alfredo; Capotosto, Paolo; Le Pera, Domenica; Marzano, Nicola; Valeriani, Massimiliano; Romani, Gian Luca; Arendt-Nielsen, Lars; Rossini, Paolo Maria

    2008-03-28

    It is well known that scalp potentials evoked by nonpainful visual and auditory stimuli are enhanced in amplitude when preceded by pre-stimulus low-amplitude alpha rhythms. This study tested the hypothesis that the same holds for the amplitude of vertex N2-P2 potentials evoked by brief noxious laser stimuli, an issue of interest for clinical perspective. EEG data were recorded in 10 subjects from 30 electrodes during laser noxious stimulation. The artifact-free vertex N2-P2 complex was spatially enhanced by surface Laplacian transformation. Pre-stimulus alpha power was computed at three alpha sub-bands according to subject's individual alpha frequency peak (i.e. about 6-8Hz for alpha 1, 8-10Hz for alpha 2 and 10-12Hz for alpha 3 sub-band). Individual EEG single trials were divided in two sub-groups. The strong-alpha sub-group (high band power) included halfway of all EEG single trials, namely those having the highest pre-stimulus alpha power. Weak-alpha sub-group (low band power) included the remaining trials. Averaging procedure provided laser evoked potentials for both trial sub-groups. No significant effect was found for alpha 1 and alpha 2 sub-bands. Conversely, compared to strong-alpha 3 sub-group, weak-alpha 3 sub-group showed vertex N2-P2 potentials having significantly higher amplitude (p<0.05). These results extend to the later phases of pain processing systems the notion that generation mechanisms of pre-stimulus alpha rhythms and (laser) evoked potentials are intrinsically related and subjected to fluctuating "noise". That "noise" could explain the trial-by-trial variability of laser evoked potentials and perception.

  8. Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections--A validation of a real-time simultaneous EEG/fMRI correction method.

    PubMed

    van der Meer, Johan N; Pampel, André; Van Someren, Eus J W; Ramautar, Jennifer R; van der Werf, Ysbrand D; Gomez-Herrero, German; Lepsien, Jöran; Hellrung, Lydia; Hinrichs, Hermann; Möller, Harald E; Walter, Martin

    2016-01-15

    Simultaneous EEG-fMRI combines two powerful neuroimaging techniques, but the EEG signal suffers from severe artifacts in the MRI environment that are difficult to remove. These are the MR scanning artifact and the blood-pulsation artifact--strategies to remove them are a topic of ongoing research. Additionally large, unsystematic artifacts are produced across the full frequency spectrum by the magnet's helium pump (and ventilator) systems which are notoriously hard to remove. As a consequence, experimenters routinely deactivate the helium pump during simultaneous EEG-fMRI acquisitions which potentially risks damaging the MRI system and necessitates more frequent and expensive helium refills. We present a novel correction method addressing both helium pump and ballisto-cardiac (BCG) artifacts, consisting of carbon-wire loops (CWL) as additional sensors to accurately track unpredictable artifacts related to subtle movements in the scanner, and an EEGLAB plugin to perform artifact correction. We compare signal-to-noise metrics of EEG data, corrected with CWL and three conventional correction methods, for helium pump off and on measurements. Because the CWL setup records signals in real-time, it fits requirements of applications where immediate correction is necessary, such as neuro-feedback applications or stimulation time-locked to specific sleep oscillations. The comparison metrics in this paper relate to: (1) the EEG signal itself, (2) the "eyes open vs. eyes closed" effect, and (3) an assessment of how the artifact corrections impacts the ability to perform meaningful correlations between EEG alpha power and the BOLD signal. Results show that the CWL correction corrects for He pump artifact and also produces EEG data more comparable to EEG obtained outside the magnet than conventional post-processing methods.

  9. Spectral characteristics and linear-nonlinear synchronization changes of different EEG frequency bands during the CNV.

    PubMed

    Molnár, Márk; Csuhaj, Roland; Gaál, Zsófia Anna; Czigler, Balázs; Ulbert, István; Boha, Roland; Kondákor, István

    2008-05-01

    During the CNV recorded in a simple auditory working memory task, task-specific decrease of the relative delta band and a transient increase of the absolute theta band were seen, accompanied by an increase of the absolute alpha1 and alpha2 bands in the posterior region. The decreased delta power probably corresponds to increased task-evoked arousal, whereas the transient theta power increase corresponds to working memory demand and possibly to the orienting response. The increased alpha1 and alpha2 power may be a manifestation of a top-down mechanism revealing control over the execution of a response. The area-specific, task-related, and frequency-dependent changes of EEG complexity measures indicate frontally increasing complexity during the early part of the CNV in the beta frequency bands, which underscores the importance of this region in the mechanisms of anticipatory behavior.

  10. Neural network model of cortical EEG response to olfactory stimuli

    NASA Astrophysics Data System (ADS)

    Dunbar, George L.; Van Toller, Steve

    1995-04-01

    We describe three experiments attempting to model differences in cortical EEG following stimulation with different odors. The data used in these experiments was obtained in previous studies, described briefly here. Subjects sit in an environmentally stabilized low odor cubicle. Twenty-eight electrodes are placed on the scalp and connect the subject to a neurosciences brain imager, which digitizes cortical EEG response. In a given trial, a specific odor is introduced, and the response recorded. In the first experiment, alpha wave data from a subset of ten electrodes and a single subject was used. In the original experiment, the subject was presented with a number of odors and the resulting brain electrical activity was resolved into 16 time slices (5 preceding presentation, 4 during presentation and 7 following presentation). Only data from frames 6, 7 and 8 (during presentation) was used here. A model was constructed to discriminate morning from afternoon responses. The network used measurements from 10 electrodes as input, and backpropagation was used for training. During training, the network was presented with responses to just one odor. Generalization was demonstrated for five other odors. The weights in the network have been analyzed and indicate a role for a specific group of electrode sites in this discrimination. The second experiment involved constructing a network to discriminate cortical EEG responses to two odors. In the original experiment from which we drew our data, fourteen subjects were presented with each odor once. Data from only the frame at first presentation of the odor were used here. Data from three subjects (chosen pseudo-randomly) was selected for use in the generalization phase and dropped from the training set. Output targets were constructed that took account of subjective ratings of `pleasantness.' A feed-forward network with twenty-eight input units was trained using data from the eleven remaining subjects, using conjugate gradient

  11. Survey of the participants of EEG teaching courses provided by Japanese Society of Neurology: current state and gradual evolution for EEG teaching in the last 5 years.

    PubMed

    Tanioka, Kosuke; Hitomi, Takefumi; Matsumoto, Riki; Takahashi, Ryosuke; Tobimatsu, Shozo; Inuzuka, Takashi; Kira, Jun-Ichi; Kusunoki, Susumu; Ikeda, Akio

    2017-02-22

    We collected and analyzed the questionnaires from the participants in the annual EEG hands-on (5 times) and the regional EEG seminar (6 times). The board-certified neurologists among participants in the regional EEG seminar were always more than those in the annual EEG hands-on. Participants in the regional EEG seminar were more involved in EEGs than those in the annual EEG hands-on. The highly satisfactory lectures in the annual EEG hands-on were "normal EEG" and those in the regional EEG seminar were "EEG of epilepsy". The highly requested lectures in the annual EEG hands-on were "how to read EEG" and those in the regional EEG seminar were "EEG of epilepsy". By taking the needs of the participants into account, we only could provide more efficient teaching seminars to improve EEG reading skills of neurologists.

  12. [EEG changes during sedation with gamma-hydroxybutyric acid].

    PubMed

    Entholzner, E; Mielke, L; Pichlmeier, R; Weber, F; Schneck, H

    1995-05-01

    min) had been recorded. Patients receiving long-term sedation were studied daily for an additional 15-min period. Corresponding well to the clinical findings, EEG pattern changed to a slow delta-theta or delta-only rhythm within 10 min of the start of injection. Alpha and beta power decreased, while delta activity exhibited an increase. All changes were most obvious in frontal and central areas of the brain. In about one out of three patients, a burst--suppression pattern developed. Since automatic processing of EEG may fail to detect special patterns like the looked-for 3/s spikes and waves, the raw EEG was analysed visually by an expert neurologist. Both processed and conventionally analysed EEG were free of any seizure-like electrical activity. CONCLUSION. We conclude that animal data may not apply to the use of GHB in humans, provided the dose is limited to the clinical needs. GHB is used in clinical practice in doses twice as high, or even higher, than the one we use for induction, without obvious side effects. However, the suppression of theta rhythm we observed in about half of the patients studied may indicate that even less than 50 mg/kg BW might be sufficient for adequate sedation.

  13. [EEG spectral characteristics at different stages of the unconscious visual set in two motivation conditions].

    PubMed

    Kurova, N S; Cheremushkin, E A; Ashkinazi, M L

    2002-01-01

    Multichannel EEG were recorded in young healthy subjects in two series of experiments during formation, actualization, and extinction of the visual unconscious set to the perception of unequal circles under conditions of increased motivation of subjects to the result of their performance. In the first series of experiments, subjects were promised to be rewarded (a small money price) for each correct response (the "general" rise of motivation). In the second series, subjects were promised to be rewarded for correct responses only in cases when one of the circles was larger than the other one (the "directed" rise of motivation). The dynamics of the EEG spectral power derived under these two conditions was compared with similar indices obtained earlier during formation of the same set without any special motivation of subjects (control). In all experimental conditions, before the presentation of the stimuli the EEG power in the alpha range was higher in subjects with the stable set. The dynamics of changes in the alpha power at set stages was principally similar in all conditions. In all the experimental conditions, in subjects with unstable set the EEG power in the delta range was highest at the stage of set actualization. The most pronounced generalized changes in the EEG power in the theta-range during the "general" rise of motivation in subjects with stable and unstable forms of set and greater variability of the reaction time to the probe stimulus suggest that the task performance under these conditions required greater tension than under conditions of the "directed" rise of motivation.

  14. Differences in the perceived music pleasantness between monolateral cochlear implanted and normal hearing children assessed by EEG.

    PubMed

    Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Graziani, I; Cherubino, P; Astolfi, L; Marsella, P; Colosimo, A; Babiloni, Fabio

    2013-01-01

    The perception of the music in cochlear implanted (CI) patients is an important aspect of their quality of life. In fact, the pleasantness of the music perception by such CI patients can be analyzed through a particular analysis of EEG rhythms. Studies on healthy subjects show that exists a particular frontal asymmetry of the EEG alpha rhythm which can be correlated with pleasantness of the perceived stimuli (approach-withdrawal theory). In particular, here we describe differences between EEG activities estimated in the alpha frequency band for a monolateral CI group of children and a normal hearing one during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns related to the normal hearing group refers to a higher pleasantness perception when compared to the cerebral activity of the monolateral CI patients. In fact, the present results support the statement that a monolateral CI group could perceive the music in a less pleasant way when compared to normal hearing children.

  15. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  16. A multimodal approach to estimating vigilance using EEG and forehead EOG

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-Long; Lu, Bao-Liang

    2017-04-01

    Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.

  17. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  18. Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease.

    PubMed

    Yuvaraj, R; Murugappan, M; Ibrahim, Norlinah Mohamed; Sundaraj, Kenneth; Omar, Mohd Iqbal; Mohamad, Khairiyah; Palaniappan, R

    2014-12-01

    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.

  19. Brain Networks Responsible for Sense of Agency: An EEG Study

    PubMed Central

    Shim, Miseon; Nahab, Fatta B.; Park, Jihye; Kim, Do-Won; Kakareka, John; Miletta, Nathanial; Hallett, Mark

    2015-01-01

    Background Self-agency (SA) is a person’s feeling that his action was generated by himself. The neural substrates of SA have been investigated in many neuroimaging studies, but the functional connectivity of identified regions has rarely been investigated. The goal of this study is to investigate the neural network related to SA. Methods SA of hand movements was modulated with virtual reality. We examined the cortical network relating to SA modulation with electroencephalography (EEG) power spectrum and phase coherence of alpha, beta, and gamma frequency bands in 16 right-handed, healthy volunteers. Results In the alpha band, significant relative power changes and phase coherence of alpha band were associated with SA modulation. The relative power decrease over the central, bilateral parietal, and right temporal regions (C4, Pz, P3, P4, T6) became larger as participants more effectively controlled the virtual hand movements. The phase coherence of the alpha band within frontal areas (F7-FP2, F7-Fz) was directly related to changes in SA. The functional connectivity was lower as the participants felt that they could control their virtual hand. In the other frequency bands, significant phase coherences were observed in the frontal (or central) to parietal, temporal, and occipital regions during SA modulation (Fz-O1, F3-O1, Cz-O1, C3-T4L in beta band; FP1-T6, FP1-O2, F7-T4L, F8-Cz in gamma band). Conclusions Our study suggests that alpha band activity may be the main neural oscillation of SA, which suggests that the neural network within the anterior frontal area may be important in the generation of SA. PMID:26270552

  20. Making the case for mobile cognition: EEG and sports performance.

    PubMed

    Park, Joanne L; Fairweather, Malcolm M; Donaldson, David I

    2015-05-01

    In the high stakes world of International sport even the smallest change in performance can make the difference between success and failure, leading sports professionals to become increasingly interested in the potential benefits of neuroimaging. Here we describe evidence from EEG studies that either identify neural signals associated with expertise in sport, or employ neurofeedback to improve performance. Evidence for the validity of neurofeedback as a technique for enhancing sports performance remains limited. By contrast, progress in characterizing the neural correlates of sporting behavior is clear: frequency domain studies link expert performance to changes in alpha rhythms, whilst time-domain studies link expertise in response evaluation and motor output with modulations of P300 effects and readiness potentials. Despite early promise, however, findings have had relatively little impact for sports professionals, at least in part because there has been a mismatch between lab tasks and real sporting activity. After selectively reviewing existing findings and outlining limitations, we highlight developments in mobile EEG technology that offer new opportunities for sports neuroscience.

  1. Graph theoretical analysis of EEG functional connectivity during music perception.

    PubMed

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations.

  2. The phase of ongoing EEG oscillations predicts visual perception.

    PubMed

    Busch, Niko A; Dubois, Julien; VanRullen, Rufin

    2009-06-17

    Oscillations are ubiquitous in electrical recordings of brain activity. While the amplitude of ongoing oscillatory activity is known to correlate with various aspects of perception, the influence of oscillatory phase on perception remains unknown. In particular, since phase varies on a much faster timescale than the more sluggish amplitude fluctuations, phase effects could reveal the fine-grained neural mechanisms underlying perception. We presented brief flashes of light at the individual luminance threshold while EEG was recorded. Although the stimulus on each trial was identical, subjects detected approximately half of the flashes (hits) and entirely missed the other half (misses). Phase distributions across trials were compared between hits and misses. We found that shortly before stimulus onset, each of the two distributions exhibited significant phase concentration, but at different phase angles. This effect was strongest in the theta and alpha frequency bands. In this time-frequency range, oscillatory phase accounted for at least 16% of variability in detection performance and allowed the prediction of performance on the single-trial level. This finding indicates that the visual detection threshold fluctuates over time along with the phase of ongoing EEG activity. The results support the notion that ongoing oscillations shape our perception, possibly by providing a temporal reference frame for neural codes that rely on precise spike timing.

  3. Brain Areas Responsible for Vigilance: An EEG Source Imaging Study.

    PubMed

    Kim, Jung-Hoon; Kim, Do-Won; Im, Chang-Hwan

    2017-01-04

    Vigilance, sometimes referred to as sustained attention, is an important type of human attention as it is closely associated with cognitive activities required in various daily-life situations. Although many researchers have investigated which brain areas control the maintenance of vigilance, findings have been inconsistent. We hypothesized that this inconsistency might be due to the use of different experimental paradigms in the various studies. We found that most of the previous studies used paradigms that included specific cognitive tasks requiring a high cognitive load, which could complicate identification of brain areas associated only with vigilance. To minimize the influence of cognitive processes other than vigilance on the analysis results, we adopted the d2-test of attention, which is a well-known neuropsychological test of attention that does not require high cognitive load, and searched for brain areas at which EEG source activities were temporally correlated with fluctuation of vigilance over a prolonged period of time. EEG experiments conducted with 31 young adults showed that left prefrontal cortex activity was significantly correlated with vigilance variation in the delta, beta1, beta2, and gamma frequency bands, but not the theta and alpha frequency bands. Our study results suggest that the left prefrontal cortex plays a key role in vigilance modulation, and can therefore be used to monitor individual vigilance changes over time or serve as a potential target of noninvasive brain stimulation.

  4. Scalp EEG does not predict hemispherectomy outcome

    PubMed Central

    Greiner, Hansel M.; Park, Yong D.; Holland, Katherine; Horn, Paul S.; Byars, Anna W.; Mangano, Francesco T.; Smith, Joseph R.; Lee, Mark R.; Lee, Ki-Hyeong

    2012-01-01

    Background Functional hemispherectomy is effective in carefully selected patients, resulting in a reduction of seizure burden up to complete resolution, improvement of intellectual development, and developmental benefit despite possible additional neurological deficit. Despite apparent hemispheric pathology on brain magnetic resonance imaging (MRI) or other imaging tests, scalp electroencephalography (EEG) could be suggestive of bilateral ictal onset or even ictal onset contralateral to the dominant imaging abnormality. We aimed to investigate the role of scalp EEG lateralization pre-operatively in predicting outcome. Methods We retrospectively reviewed 54 patients who underwent hemispherectomy between 1991 and 2009 at Medical College of Georgia (1991–2006) and Cincinnati Children’s Hospital Medical Center (2006–2009) and had at least one year post-operative follow-up. All preoperative EEGs were reviewed, and classified as either lateralizing or nonlateralizing, for both ictal and interictal EEG recordings. Results Of 54 patients, 42 (78%) became seizure free. Twenty-four (44%) of 54 had a nonlateralizing ictal or interictal EEG. Further analysis was based on etiology of epilepsy, including malformation of cortical development (MCD), Rasmussen syndrome (RS), and stroke (CVA). EEG nonlateralization did not predict poor outcome in any of the etiology groups evaluated. Conclusion Scalp EEG abnormalities in contralateral or bilateral hemispheres do not, in isolation, predict a poor outcome from hemispherectomy. Results of other non-invasive and invasive evaluations should be used to determine candidacy. PMID:21813300

  5. Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions.

    PubMed

    Aftanas, Ljubomir; Golosheykin, Semen

    2005-06-01

    The main objective of the present investigation was to examine how long-term meditation practice is manifested in EEG activity under conditions of non-emotional arousal (eyes-closed and eyes-open periods, viewing emotionally neutral movie clip) and while experiencing experimentally induced negative emotions (viewing aversive movie clip). The 62-channel EEG was recorded in age-matched control individuals (n=25) and Sahaja Yoga meditators (SYM, n=25). Findings from the non-emotional continuum show that at the lowest level of arousal (eyes closed) SYM manifested larger power values in theta-1 (4-6 Hz), theta-2 (6-8 Hz) and alpha-1 (8-10 Hz) frequency bands. Although increasing arousal desynchronized activity in these bands in both groups, the theta-2 and alpha-1 power in the eyes-open period and alpha-1 power while viewing the neutral clip remained still higher in the SYM. During eyes-closed and eyes-open periods the controls were marked by larger right than left hemisphere power, indexing relatively more active left hemisphere parieto-temporal cortex whereas meditators manifested no hemisphere asymmetry. When contrasted with the neutral, the aversive movie clip yielded significant alpha desynchronization in both groups, reflecting arousing nature of emotional induction. In the control group along with alpha desynchronization affective movie clip synchronized gamma power over anterior cortical sites. This was not seen in the SYM. Overall, the presented report emphasizes that the revealed changes in the electrical brain activity associated with regular meditation practice are dynamical by nature and depend on arousal level. The EEG power findings also provide the first empirical proof of a theoretical assumption that meditators have better capabilities to moderate intensity of emotional arousal.

  6. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us.

    PubMed

    Jackson, Alice F; Bolger, Donald J

    2014-11-01

    A thorough understanding of the EEG signal and its measurement is necessary to produce high quality data and to draw accurate conclusions from those data. However, publications that discuss relevant topics are written for divergent audiences with specific levels of expertise: explanations are either at an abstract level that leaves readers with a fuzzy understanding of the electrophysiology involved, or are at a technical level that requires mastery of the relevant physics to understand. A clear, comprehensive review of the origin and measurement of EEG that bridges these high and low levels of explanation fills a critical gap in the literature and is necessary for promoting better research practices and peer review. The present paper addresses the neurophysiological source of EEG, propagation of the EEG signal, technical aspects of EEG measurement, and implications for interpretation of EEG data.

  7. Enabling computer decisions based on EEG input

    NASA Technical Reports Server (NTRS)

    Culpepper, Benjamin J.; Keller, Robert M.

    2003-01-01

    Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.

  8. Challenges in pediatric video-EEG monitoring.

    PubMed

    Sullivan, Joseph E; Corcoran-Donnelly, Maureen; Dlugos, Dennis J

    2007-06-01

    Video-EEG (VEEG) monitoring is now commonly used in children. When designing a pediatric video-EEG monitoring unit, there are many issues that need to be considered to take full advantage of this technology. Topics such as the physical layout of the VEEG unit, VEEG equipment, networking, staffing, and lines of communication regarding referrals and VEEG interpretation must be considered. Only after careful consideration of these issues, can video-EEG monitoring be successful and provide safe, state of the art clinical care in an efficient manner.

  9. Changes in EEG pre and post awakening.

    PubMed

    Voss, Ursula

    2010-01-01

    This chapter is concerned with behavioral and electrophysiologic evidence of awakenings. Awakenings are understood here as a state change from sleeping to waking. We will discuss the methodological issues and the problem of properly defining an awakening. With regard to phenomena preceding an awakening, we will look at arousals and compare background to event-related activity in the electroencephalography (EEG). As arousability varies between and within species, the relevant EEG correlates of this variability are described. Concerning EEG changes following an awakening, the discussion focuses on sleep inertia effects.

  10. A review of the effects of hypoxia, sleep deprivation and transcranial magnetic stimulation on EEG activity in humans: challenges for drug discovery for Alzheimer's disease.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Lizio, Roberta; Infarinato, Francesco; Blin, Olivier; Bartres-Faz, David; Dix, Sophie L; Bentivoglio, Marina; Soricelli, Andrea; Bordet, Regis; Rossini, Paolo M; Richardson, Jill C

    2014-01-01

    Different kinds of challenge can alter cognitive process and electroencephalographic (EEG) rhythms in humans. This can provide an alternative paradigms to evaluate treatment effects in drug discovery. Here, we report recent findings on the effects of challenges represented by sleep deprivation (SD), transient hypoxia, and transcranial magnetic stimulation (TMS) in healthy volunteers on cognitive processes and EEG rhythms to build a knowledge platform for novel research for drug discovery in AD Alzheimer's disease (AD). Sleep pressure enhanced frontal delta rhythms (< 4 Hz) during the night, while SD increased slow rhythms in the theta range (4-7 Hz), and reduced resting state alpha rhythms (8-12 Hz) after the following day. Furthermore, SD transiently affected cognitive performance. In contrast, transient experimental hypoxia induced abnormal posterior resting state delta and alpha rhythms in healthy volunteers that resemble the abnormal EEG rhythms typically recorded in AD patients. However, the relationship between the cognitive and EEG effects of such challenges is poorly understood. TMS reversibly interfered with higher brain functions during EEG recordings, but few studies have investigated the relationship between the cognitive and EEG effects of TMS. In conclusion, SD is the most mature challenge model for testing new drugs for AD. Future investigation is needed to better understand the opportunities offered by TMS and hypoxia challenges.

  11. Reduced mind wandering in experienced meditators and associated EEG correlates.

    PubMed

    Brandmeyer, Tracy; Delorme, Arnaud

    2016-11-04

    One outstanding question in the contemplative science literature relates to the direct impact of meditation experience on the monitoring of internal states and its respective correspondence with neural activity. In particular, to what extent does meditation influence the awareness, duration and frequency of the tendency of the mind to wander. To assess the relation between mind wandering and meditation, we tested 2 groups of meditators, one with a moderate level of experience (non-expert) and those who are well advanced in their practice (expert). We designed a novel paradigm using self-reports of internal mental states based on an experiential sampling probe paradigm presented during ~1 h of seated concentration meditation to gain insight into the dynamic measures of electroencephalography (EEG) during absorption in meditation as compared to reported mind wandering episodes. Our results show that expert meditation practitioners report a greater depth and frequency of sustained meditation, whereas non-expert practitioners report a greater depth and frequency of mind wandering episodes. This is one of the first direct behavioral indices of meditation expertise and its associated impact on the reduced frequency of mind wandering, with corresponding EEG activations showing increased frontal midline theta and somatosensory alpha rhythms during meditation as compared to mind wandering in expert practitioners. Frontal midline theta and somatosensory alpha rhythms are often observed during executive functioning, cognitive control and the active monitoring of sensory information. Our study thus provides additional new evidence to support the hypothesis that the maintenance of both internal and external orientations of attention may be maintained by similar neural mechanisms and that these mechanisms may be modulated by meditation training.

  12. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    PubMed Central

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  13. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression.

    PubMed

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D; Feldner, Matthew T; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  14. Relationship between speed and EEG activity during imagined and executed hand movements

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Perdoni, Christopher; He, Bin

    2010-04-01

    The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

  15. EEG gamma coherence and other correlates of subjective reports during ayahuasca experiences.

    PubMed

    Stuckey, David E; Lawson, Robert; Luna, Luis Eduardo

    2005-06-01

    The current study examined QEEG power and coherence of ayahuasca experiences with two experienced participants in a Brazilian jungle setting. An exploratory case series design was adopted for naturalistic field research. EEGs recorded during visual imagery was compared to eyes-closed baselines. The most important findings were increases in global EEG coherence in the 36-44 Hz and 50-64 Hz frequency bands for both subjects. Widely distributed cortical hyper-coherence seems reasonable given the intense synesthesia during ayahuasca experiences. Other findings include increased modal EEG alpha frequency and global power decreases across the cortex in most frequency bands, which concur with the EEG of psychedelics literature. Exploratory analysis revealed the usefulness of analyzing single Hz bins over the standard wide-band analysis. The discovery-oriented naturalistic approach developed for this study resulted in potentially important findings. We believe that finding increases in global gamma coherence during peak psychedelic experiences might contribute to the discussion of binding theory. Also, in light of recent research with gamma coherence during advanced meditative conditions, our findings might further the comparison of shamanic psychedelic practices with meditation.

  16. Functional organization of different brain areas during convergent and divergent thinking: an EEG investigation.

    PubMed

    Razoumnikova, O M

    2000-09-01

    This study examined the task-related changes in EEG patterns during the experimental condition of convergent and divergent thinking in 36 healthy male subjects. EEG was recorded from 16 sites (10/20 system). After FFT a power was calculated for all 16 loci, and a coherence was estimated for all 120 electrode pairs in six frequency bands (4-30 Hz). Different patterns of the significant changes for the obtained EEG parameters were found during the two thinking types. When compared with the rest, both mental experiences produced the significant desynchronization of alpha1,2 rhythms. At the same time, the convergent thinking induced coherence increases in the θ1 band that were more caudal and right-sided, whereas divergent thinking showed mainly amplitude decreases in the caudal regions of the cortex in theta1,2 bands and the massive increases of a amplitude and coherence in the beta2 indicating a close interaction between both hemispheres. Distinct task-related discrepancies of EEG pattern in the beta2 band between the subjects divided into groups of good and bad performers of divergent thinking are also found. Good performance is related to the special organization of the cerebral areas in the beta2 band: (i) increased functional connectivity of central-parietal areas of both hemispheres; and (ii) greater ipsilateral connections between the cortex regions of the right hemisphere.

  17. Mal-Adaptation of Event-Related EEG Responses Preceding Performance Errors

    PubMed Central

    Eichele, Heike; Juvodden, Hilde T.; Ullsperger, Markus; Eichele, Tom

    2010-01-01

    Recent EEG and fMRI evidence suggests that behavioral errors are foreshadowed by systematic changes in brain activity preceding the outcome by seconds. In order to further characterize this type of error precursor activity, we investigated single-trial event-related EEG activity from 70 participants performing a modified Eriksen flanker task, in particular focusing on the trial-by-trial dynamics of a fronto-central independent component that previously has been associated with error and feedback processing. The stimulus-locked peaks in the N2 and P3 latency range in the event-related averages showed expected compatibility and error-related modulations. In addition, a small pre-stimulus negative slow wave was present at erroneous trials. Significant error-preceding activity was found in local stimulus sequences with decreased conflict in the form of less negativity at the N2 latency (310–350 ms) accumulating across five trials before errors; concomitantly response times were speeding across trials. These results illustrate that error-preceding activity in event-related EEG is associated with the performance monitoring system and we conclude that the dynamics of performance monitoring contribute to the generation of error-prone states in addition to the more remote and indirect effects in ongoing activity such as posterior alpha power in EEG and default mode drifts in fMRI. PMID:20740080

  18. [EEG coherence during unconscious visual set under conditions of increased motivation of subjects].

    PubMed

    Kurova, N S; Cheremushkin, E A; Ashkinazi, M L

    2003-01-01

    Prestimulus EEG was recorded in the state of "operative rest" after the instruction and at the stages of formation, actualization, and extinction of unconscious visual set to perception of unequal circles. Two motivation conditions were used: (1) subjects were promised to be rewarded with a small money price for each correct response (a "general" rise of motivation) and (2) only correct assessments of stimuli of a certain kind were rewarded (a "selective" rise of motivation). In both conditions, additional motivation of subjects to the results of their performance led to an increase in EEG coherence most pronounced in the theta and alpha 1 frequency ranges in the left temporal area of the cortex. During the "general" rise of motivation the EEG coherence (as compared to the control group) was higher in a greater number of derivation pairs than during the "selective" rise. EEG coherence in "motivated" subjects was increased already at the stage of operative rest. Later on, at the set stages, no significant changes were revealed. Thus, the realized set formed by the verbal instruction, which increased motivation of subjects to the results of their performance, produced substantially more prominent changes in coherence of cortical potentials than the unconscious set formed during perception of visual stimuli.

  19. Autoregressive and bispectral analysis techniques: EEG applications.

    PubMed

    Ning, T; Bronzino, J D

    1990-01-01

    Some basic properties of autoregressive (AR) modeling and bispectral analysis are reviewed, and examples of their application in electroencephalography (EEG) research are provided. A second-order AR model was used to score cortical EEGs in order. In tests performed on five adult rats to distinguish between different vigilance states such a quiet-waking (QW), rapid-eye-movement (REM), and slow-wave sleep (SWS), SWS activity was correctly identified over 96% of the time, and a 95% agreement rate was achieved in recognizing the REM sleep stage. In a bispectral analysis of the rat EEG, third-order cumulant (TOC) sequences of 32 epochs belonging to the same vigilance state were estimated and then averaged. Preliminary results have shown that bispectra of hippocampal EEGs during REM Sleep exhibit significant quadratic phase couplings between frequencies in the 6-8-Hz range, associated with the theta rhythm.

  20. EEG and Eye Tracking Demonstrate Vigilance Enhancement with Challenge Integration

    PubMed Central

    Bodala, Indu P.; Li, Junhua; Thakor, Nitish V.; Al-Nashash, Hasan

    2016-01-01

    Maintaining vigilance is possibly the first requirement for surveillance tasks where personnel are faced with monotonous yet intensive monitoring tasks. Decrement in vigilance in such situations could result in dangerous consequences such as accidents, loss of life and system failure. In this paper, we investigate the possibility to enhance vigilance or sustained attention using “challenge integration,” a strategy that integrates a primary task with challenging stimuli. A primary surveillance task (identifying an intruder in a simulated factory environment) and a challenge stimulus (periods of rain obscuring the surveillance scene) were employed to test the changes in vigilance levels. The effect of integrating challenging events (resulting from artificially simulated rain) into the task were compared to the initial monotonous phase. EEG and eye tracking data is collected and analyzed for n = 12 subjects. Frontal midline theta power and frontal theta to parietal alpha power ratio which are used as measures of engagement and attention allocation show an increase due to challenge integration (p < 0.05 in each case). Relative delta band power of EEG also shows statistically significant suppression on the frontoparietal and occipital cortices due to challenge integration (p < 0.05). Saccade amplitude, saccade velocity and blink rate obtained from eye tracking data exhibit statistically significant changes during the challenge phase of the experiment (p < 0.05 in each case). From the correlation analysis between the statistically significant measures of eye tracking and EEG, we infer that saccade amplitude and saccade velocity decrease with vigilance decrement along with frontal midline theta and frontal theta to parietal alpha ratio. Conversely, blink rate and relative delta power increase with vigilance decrement. However, these measures exhibit a reverse trend when challenge stimulus appears in the task suggesting vigilance enhancement. Moreover, the mean

  1. Discrete-time model to test links between EEG power and pupil diameter measured by infrared cameras

    NASA Astrophysics Data System (ADS)

    Keegan, Andrew P.; Merritt, S. L.

    1995-08-01

    Using infrared sensitive cameras and on-line image processing, pupil diameters of awake, eyes-open subjects were measured. Concurrently, electroencephalography (EEG) was monitored and power in the delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), sigma (12-16Hz), beta1 (16-26Hz), and beta2 (26-50Hz) bands were calculated. Pupil diameter and EEG power measured were found to be significantly correlated. Other EEG measures including relative beta (defined here as [power of 16-50Hz]/[power of 4-50Hz]) and centroid frequency of the 4-50Hz band were also found to be significantly related to pupil diameter.

  2. EEG Biofeedback as a Treatment for Substance Use Disorders: Review, Rating of Efficacy, and Recommendations for Further Research

    PubMed Central

    Cannon, Rex L.; Trudeau, David L.

    2008-01-01

    Electroencephalographic (EEG) biofeedback has been employed in substance use disorder (SUD) over the last three decades. The SUD is a complex series of disorders with frequent comorbidities and EEG abnormalities of several types. EEG biofeedback has been employed in conjunction with other therapies and may be useful in enhancing certain outcomes of therapy. Based on published clinical studies and employing efficacy criteria adapted by the Association for Applied Psychophysiology and Biofeedback and the International Society for Neurofeedback and Research, alpha theta training—either alone for alcoholism or in combination with beta training for stimulant and mixed substance abuse and combined with residential treatment programs, is probably efficacious. Considerations of further research design taking these factors into account are discussed and descriptions of contemporary research are given. PMID:18214670

  3. An EEG-based machine learning method to screen alcohol use disorder.

    PubMed

    Mumtaz, Wajid; Vuong, Pham Lam; Xia, Likun; Malik, Aamir Saeed; Rashid, Rusdi Bin Abd

    2017-04-01

    Screening alcohol use disorder (AUD) patients has been challenging due to the subjectivity involved in the process. Hence, robust and objective methods are needed to automate the screening of AUD patients. In this paper, a machine learning method is proposed that utilized resting-state electroencephalography (EEG)-derived features as input data to classify the AUD patients and healthy controls and to perform automatic screening of AUD patients. In this context, the EEG data were recorded during 5 min of eyes closed and 5 min of eyes open conditions. For this purpose, 30 AUD patients and 15 aged-matched healthy controls were recruited. After preprocessing the EEG data, EEG features such as inter-hemispheric coherences and spectral power for EEG delta, theta, alpha, beta and gamma bands were computed involving 19 scalp locations. The selection of most discriminant features was performed with a rank-based feature selection method assigning a weight value to each feature according to a criterion, i.e., receiver operating characteristics curve. For example, a feature with large weight was considered more relevant to the target labels than a feature with less weight. Therefore, a reduced set of most discriminant features was identified and further be utilized during classification of AUD patients and healthy controls. As results, the inter-hemispheric coherences between the brain regions were found significantly different between the study groups and provided high classification efficiency (Accuracy = 80.8, sensitivity = 82.5, and specificity = 80, F-Measure = 0.78). In addition, the power computed in different EEG bands were found significant and provided an overall classification efficiency as (Accuracy = 86.6, sensitivity = 95, specificity = 82.5, and F-Measure = 0.88). Further, the integration of these EEG feature resulted into even higher results (Accuracy = 89.3 %, sensitivity = 88.5 %, specificity = 91 %, and F-Measure = 0.90). Based

  4. Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data

    PubMed Central

    Jenson, David; Bowers, Andrew L.; Harkrider, Ashley W.; Thornton, David; Cuellar, Megan; Saltuklaroglu, Tim

    2014-01-01

    Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to (1) identify clusters of μ components common to all conditions and (2) examine real-time event-related spectral perturbations (ERSP) within alpha and beta bands. 17 and 15 out of 20 participants produced left and right μ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS) prior to and during stimulus presentation and later alpha event-related desynchronization (ERD) following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that μ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert attentional/motor processes. μ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while μ-alpha ERD may index sensory feedback during speech rehearsal and production. PMID:25071633

  5. Relation between Resting State Front-Parietal EEG Coherence and Executive Function in Parkinson's Disease

    PubMed Central

    Teramoto, Hiroko; Akimoto, Takayoshi; Shiota, Hiroshi; Kamei, Satoshi

    2016-01-01

    Objective. To assess the relation between executive dysfunction (ED) in Parkinson's disease (PD) and resting state functional connectivity evaluated using electroencephalography (EEG) coherence. Methods. Sixty-eight nondemented sporadic PD patients were assessed using the Behavioural Assessment of the Dysexecutive Syndrome (BADS) to evaluate executive function. EEG coherence in the left frontoparietal electrode pair (F3-P3) and the right frontoparietal electrode pair (F4-P4) was analyzed in the alpha and theta range. The BADS scores were compared across the coherence groups, and the multiple logistic regression analysis was performed to assess the contribution of confounders. Results. The standardized BADS score was significantly lower in the low F3-P3 coherence group in the alpha range (Mann-Whitney U test, p = 0.032), though there was no difference between F4-P4 coherence group in the alpha range, F3-P3, and F4-P4 coherence groups in the theta range and the standardized BADS score. The multiple logistic regression analysis revealed the significant relation between the F3-P3 coherence group in alpha range and age-controlled standardized BADS score (p = 0.039, 95% CI = 1.002–1.062). Conclusion. The decrease in resting state functional connectivity between the frontal and parietal cortices especially in the left side is related to ED in PD. PMID:27433473

  6. Change in the characteristics of EEG color noise in Alzheimer's disease.

    PubMed

    Vysata, Oldrich; Procházka, Ales; Mares, Jan; Rusina, Robert; Pazdera, Ladislav; Valis, Martin; Kukal, Jaromír

    2014-07-01

    Neurophysiological experiments support the hypothesis of the presence of critical dynamics of brain activity. This is also manifested by power law of electroencephalography (EEG) power spectra, which can be described by the relation 1/f(alpha). This dependence is a result of internal interactions between parts of the brain and is probably required for optimal processing of information. In Alzheimer's disease, changes in the functional organization of the brain occur, which may be manifested by changes in the alpha coefficient. We compared the average values of alpha for 19 electrodes in the resting EEG record in 110 patients with moderate to severe Alzheimer's disease (Mini-Mental State Examination [MMSE] score = 10-19) with 110 healthy controls. Statistically, the most significant differences are present in the prefrontal areas. In addition to the prefrontal and frontal areas, the largest separation value in the evaluation of receiver operating characteristic (ROC) curves was recorded in the temporal area. The coefficient alpha has few false-positive results in the optimal operating point of the ROC curve, and is thereby highly specific for Alzheimer's disease.

  7. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals

    NASA Astrophysics Data System (ADS)

    Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha

    2016-02-01

    Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.

  8. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  9. Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task.

    PubMed

    Wang, Ying; Cao, Liu; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Chen, Fei; Zheng, Dingchang

    2017-04-04

    The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90 degrees away from the body) with three different loads (0kg, 1kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10s recording for each load was regarded as non-fatigue status and the last 10s before the subject was exhausted as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the five-minute resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1kg and 3kg force loads, the power of alpha band was significantly smaller than that from 0kg for both non-fatigue and fatigue periods (all p<0.05). However, no significant difference of the power in alpha between 1 kg and 3kg was observed (p>0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p<0.01 for all the force loads except 3kg force from C4-EEG). With magnetic stimulation, the powers of alpha from C3-EEG and C4-EEG were significantly decreased than without stimulation (all p<0

  10. Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex.

    PubMed

    Cambiaghi, Marco; Cursi, Marco; Magri, Laura; Castoldi, Valerio; Comi, Giancarlo; Minicucci, Fabio; Galli, Rossella; Leocani, Letizia

    2013-04-01

    Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder caused by mutation in either Tsc1 or Tsc2 genes that leads to the hyper activation of the mTOR pathway, a key signalling pathway for synaptic plasticity. TSC is characterized by benign tumors arising in different organs and severe neuropsychiatric symptoms, such as epilepsy, intellectual disability, autism, anxiety and depressive behaviour. Rapamycin is a potent inhibitor of mTOR and its efficacy in treating epilepsy and neurological symptoms remains elusive. In a mouse model in which Tsc1 has been deleted in embryonic telencephalic neural stem cells, we analyzed anxiety- and depression-like behaviour by elevated-plus maze (EPM), open-field test (OFT), forced-swim test (FST) and tail-suspension test (TST), after chronic administration of rapamycin. In addition, spectral analysis of background EEG was performed. Rapamycin-treated mutant mice displayed a reduction in anxiety- and depression-like phenotype, as shown by the EPM/OFT and FST, respectively. These results were inline with EEG power spectra outcomes. The same effects of rapamycin were observed in wild-type mice. Notably, in heterozygous animals we did not observe any EEG and/or behavioural variation after rapamycin treatment. Together these results suggest that both TSC1 deletion and chronic rapamycin treatment might have a role in modulating behaviour and brain activity, and point out to the potential usefulness of background EEG analysis in tracking brain dysfunction in parallel with behavioural testing.

  11. Effect of spatial ability and sex on EEG power in high school students.

    PubMed

    Arce, C; Ramos, J; Guevara, M A; Corsi-Cabrera, M

    1995-06-01

    Performance at eight cognitive tests and EEG spectral power at rest was computed in 2 groups of men and women, between 17 and 21 years of age, with extreme degrees of spatial ability (SA) evaluated by the spatial relations subtest of the DAT: a low spatial ability group (10 men, 10 women) with scores below percentile 30 and a high spatial ability group (10 men, 10 women) with scores above percentile 80. Ten EEG artifact free samples, 4.096 sec each, were analyzed and absolute (AP) and relative power (RP) were obtained for 5 frequency bands using an FFT. EEG was submitted to principal component analysis and two way ANOVAs. High SA showed lower AP in the entire spectrum with eyes open and closed, and lower alpha 1 RP with eyes open than low SA group regardless of sex. The difference between low and high SA was better explained by high alpha AP at all derivations and high theta AP at right derivations and at left central and occipital regions. Women showed higher beta 1 and beta 2 AP at all derivations except at temporal regions than men regardless of SA scores.

  12. Pre- and post-stimulus EEG patterns associated with the touch-induced illusory flash.

    PubMed

    van Erp, Jan B F; Philippi, Tom G; de Winkel, Ksander N; Werkhoven, Peter

    2014-03-06

    Pairing two brief auditory beeps with a single flash can evoke the percept of a second, illusory, flash. Investigations of the underlying neural mechanisms are limited to post-stimulus effects of this sound-induced illusory flash. We investigated whether touch modulates the visual evoked potential in a similar vein, and also looked at pre-stimulus activity. Electroencephalogram (EEG) was recorded over occipital and parieto-occipital areas of 12 observers. We compared bimodal EEG to its unimodal constituents (i.e., the difference waves) and found significant positive deflections around 110 ms and 200 ms and negative deflections around 330 ms and 390 ms from stimulus onset. These results are similar to those reported for the sound-induced illusion, albeit somewhat later. Furthermore, comparison of the EEG activity between those trials in which the illusion was perceived and those in which it was absent revealed that the phase of pre-stimulus alpha was linked to perceiving the illusion or not. We conclude that touch can modulate activity in the visual cortex and that similar neural mechanisms underlie perception of the sound- and touch-induced illusory flash and that the phase of the alpha wave at the moment of presentation that affects perception.

  13. Asynchronous detection of kinesthetic attention during mobilization of lower limbs using EEG measurements

    NASA Astrophysics Data System (ADS)

    Melinscak, Filip; Montesano, Luis; Minguez, Javier

    2016-02-01

    Objective. Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. Approach. A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement—from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. Main results. EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. Significance. This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.

  14. Short-Term EEG Spectral Pattern as a Single Event in EEG Phenomenology

    PubMed Central

    Fingelkurts, Al. A; Fingelkurts, An. A

    2010-01-01

    Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state

  15. Short-term EEG spectral pattern as a single event in EEG phenomenology.

    PubMed

    Fingelkurts, Al A; Fingelkurts, An A

    2010-09-08

    Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a "static" picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state

  16. Characterizing the EEG correlates of exploratory behavior.

    PubMed

    Bourdaud, Nicolas; Chavarriaga, Ricardo; Galan, Ferran; Millan, José Del R

    2008-12-01

    This study aims to characterize the electroencephalography (EEG) correlates of exploratory behavior. Decision making in an uncertain environment raises a conflict between two opposing needs: gathering information about the environment and exploiting this knowledge in order to optimize the decision. Exploratory behavior has already been studied using functional magnetic resonance imaging (fMRI). Based on a usual paradigm in reinforcement learning, this study has shown bilateral activation in the frontal and parietal cortex. To our knowledge, no previous study has been done on it using EEG. The study of the exploratory behavior using EEG signals raises two difficulties. First, the labels of trial as exploitation or exploration cannot be directly derived from the subject action. In order to access this information, a model of how the subject makes his decision must be built. The exploration related information can be then derived from it. Second, because of the complexity of the task, its EEG correlates are not necessarily time locked with the action. So the EEG processing methods used should be designed in order to handle signals that shift in time across trials. Using the same experimental protocol as the fMRI study, results show that the bilateral frontal and parietal areas are also the most discriminant. This strongly suggests that the EEG signal also conveys information about the exploratory behavior.

  17. EEG in Sarcoidosis Patients Without Neurological Findings.

    PubMed

    Bilgin Topçuoğlu, Özgür; Kavas, Murat; Öztaş, Selahattin; Arınç, Sibel; Afşar, Gülgün; Saraç, Sema; Midi, İpek

    2017-01-01

    Sarcoidosis is a multisystem granulomatous disease affecting nervous system in 5% to 10% of patients. Magnetic resonance imaging (MRI) is accepted as the most sensitive method for detecting neurosarcoidosis. However, the most common findings in MRI are the nonspecific white matter lesions, which may be unrelated to sarcoidosis and can occur because of hypertension, diabetes mellitus, smoking, and other inflammatory or infectious disorders, as well. Autopsy studies report more frequent neurological involvement than the ante mortem studies. The aim of this study is to assess electroencephalography (EEG) in sarcoidosis patients without neurological findings in order to display asymptomatic neurological dysfunction. We performed EEG on 30 sarcoidosis patients without diagnosis of neurosarcoidosis or prior neurological comorbidities. Fourteen patients (46.7%) showed intermittant focal and/or generalized slowings while awake and not mentally activated. Seven (50%) of these 14 patients with EEG slowings had nonspecific white matter changes while the other half showed EEG slowings in the absence of MRI changes. We conclude that EEG slowings, when normal variants (psychomotor variant, temporal theta of elderly, frontal theta waves) are eliminated, may be an indicator of dysfunction in brain activity even in the absence of MRI findings. Hence, EEG may contribute toward detecting asymptomatic neurological dysfunction or probable future neurological involvement in sarcoidosis patients.

  18. Time course of EEG oscillations during repeated listening of a well-known aria

    PubMed Central

    Jäncke, Lutz; Kühnis, Jürg; Rogenmoser, Lars; Elmer, Stefan

    2015-01-01

    While previous studies have analyzed mean neurophysiological responses to musical stimuli, the current study aimed to identify specific time courses of electroencephalography (EEG) oscillations, which are associated with dynamic changes in the acoustic features of the musical stimulus. In addition, we were interested in whether these time courses change during a repeated presentation of the same musical piece. A total of 16 subjects repeatedly listened to the well-known aria “Nessun dorma,” sung by Paul Potts, while continuous 128-channel EEG and heart rate, as well as electrodermal responses, were recorded. The time courses for the EEG oscillations were calculated using a time resolution of 1 second for several frequency bands, on the basis of individual alpha-peak frequencies (theta, low alpha-1, low alpha-2, upper alpha, and beta). For all frequency bands, we identified a more or less continuous increase in power relative to a baseline period, indicating strong event-related synchronization (ERS) during music listening. The ERS time courses, however, did not correlate strongly with the time courses of the acoustic features of the aria. In addition, we did not observe changes in EEG oscillations after repeated presentation of the same musical piece. Aside from this distinctive feature, we identified a remarkable variability in EEG oscillations, both within and between the repeated presentations of the aria. We interpret the continuous increase in ERS observed in all frequency bands during music listening as an indicator of a particular neurophysiological and psychological state evoked by music listening. We suggest that this state is characterized by increased internal attention (accompanied by reduced external attention), increased inhibition of brain networks not involved in the generation of this internal state, the maintenance of a particular level of general alertness, and a type of brain state that can be described as “mind wandering.” The overall

  19. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  20. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization.

    PubMed

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-19

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  1. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    PubMed Central

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-01-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628

  2. Alpha oscillatory correlates of motor inhibition in the aged brain

    PubMed Central

    Bönstrup, Marlene; Hagemann, Julian; Gerloff, Christian; Sauseng, Paul; Hummel, Friedhelm C.

    2015-01-01

    Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time—early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains. PMID:26528179

  3. Slow EEG-power spectra correlate with haemodynamic changes during laryngoscopy and intubation following induction with fentanyl or sufentanil.

    PubMed

    Freye, E; Dehnen-Seipel, H; Latasch, L; Behler, M; Wilder-Smith, O H

    1999-01-01

    We studied nociception-associated arousal following laryngoscopy and intubation in patients scheduled for elective open heart surgery, using EEG power spectra and hemodynamics. Either fentanyl (7 micrograms/kg; n = 30) or sufentanil (1 microgram/kg; n = 30) were given in a randomized fashion to induce anesthesia in heavily premedicated patients, followed by pancuronium bromide (100 micrograms/kg). EEG-power spectra (delta, theta, alpha, beta) as well as mean arterial blood pressure (MAP) and heart rate (HF) were measured at the following end-points: before the induction of anesthesia (control), 1 and 10 minutes after laryngoscopy and intubation (L & I). Linear regression analysis was computed to determine which of the EEG power spectra was most sensitive to detect insufficient blockade of nociceptive-related arousal when correlated with haemodynamics. In the fentanyl group the change in HF closely correlated with the decrease of power in the slow delta- and theta-domain (r2 = 0.98 and r2 = 0.89 respectively) of the EEG. The change in MAP also closely correlated with a decrease in the slow delta- and theta-domain (r2 = 0.97 and r2 = 0.99 respectively). There was little correlation in regard to spectral edge frequency (SEF) and HF and MAP changes (r2 = 0.36 and r2 = 0.12 respectively). In the sufentanil group the change in HF correlated closely with an increase of power in the fast alpha and a decrease in the slow theta-domain (r2 = 0.91 and r2 = 0.98 respectively) of the EEG. The changes in MAP closely correlated with an increase in the fast alpha-band a decrease in the slow theta-domain (r2 = 0.98 and r2 = 0.73 respectively). Also there was little correlation of SEF with HF and MAP changes (r2 = 0.09 and r2 = 0.02 respectively). Among the EEG-spectra, reduction of power in the slow delta- and theta-bands are the most sensitive parameters to determine insufficient antinociception of opioids commonly used for the induction in cardiac anesthesia. Increase of power in

  4. [Gender differences in EEG coherence changes during figural creative thinking: the efficacy coupling].

    PubMed

    Vol'f, N V; Tarasova, I V; Razumnikova, O M

    2009-01-01

    The study was aimed to explore the features of interaction between cortical areas during figural creative task performance in high- and low-creative men and women. We divided the participants into two groups with high and low creativity by the median of originality score. EEG was recorded at rest and during task performance (Torrance Tests of Creative Thinking "Incomplete figures"). The EEG coherence was computed in six frequency bands from theta1 to beta2. We analyzed the total values of coherence for each of 16 sites, calculated separately for intrahemispheric and interhemispheric connections. In the theta2, alphal, and alpha2 bands, coherence values decreased in task performance as compared to baseline in subjects with lower originality scores, whereas in subjects with higher scores, they increased in the theta2 and alpha1 bands. The decrease in the alpha2 band in the higher-creativity group was significantly lower in comparison with the decrease in the lower-score group. In the alpha2 band, the interaction of gender, creativity, laterality, and electrode position factors was also found during analysis of task-induced coherence changes. Further examination of the interaction showed the similarity of EEG coherence patterns in men and women with opposite creative abilities and higher values of task-induced coherence changes in the anterior regions of the left hemisphere and posterior regions of the right hemisphere in high-creative in comparison with low-creative men. The findings are discussed in terms of different cognitive strategies used by men and women that may have the same results in creative problem solving.

  5. Music therapy modulates fronto-temporal activity in rest-EEG in depressed clients.

    PubMed

    Fachner, Jörg; Gold, Christian; Erkkilä, Jaakko

    2013-04-01

    Fronto-temporal areas process shared elements of speech and music. Improvisational psychodynamic music therapy (MT) utilizes verbal and musical reflection on emotions and images arising from clinical improvisation. Music listening is shifting frontal alpha asymmetries (FAA) in depression, and increases frontal midline theta (FMT). In a two-armed randomized controlled trial (RCT) with 79 depressed clients (with comorbid anxiety), we compared standard care (SC) versus MT added to SC at intake and after 3 months. We found that MT significantly reduced depression and anxiety symptoms. The purpose of this study is to test whether or not MT has an impact on anterior fronto-temporal resting state alpha and theta oscillations. Correlations between anterior EEG, Montgomery-Åsberg Depression Rating Scale (MADRS) and the Hospital Anxiety and Depression Scale-Anxiety Subscale (HADS-A), power spectral analysis (topography, means, asymmetry) and normative EEG database comparisons were explored. After 3 month of MT, lasting changes in resting EEG were observed, i.e., significant absolute power increases at left fronto-temporal alpha, but most distinct for theta (also at left fronto-central and right temporoparietal leads). MT differed to SC at F7-F8 (z scored FAA, p < .03) and T3-T4 (theta, p < .005) asymmetry scores, pointing towards decreased relative left-sided brain activity after MT; pre/post increased FMT and decreased HADS-A scores (r = .42, p < .05) indicate reduced anxiety after MT. Verbal reflection and improvising on emotions in MT may induce neural reorganization in fronto-temporal areas. Alpha and theta changes in fronto-temporal and temporoparietal areas indicate MT action and treatment effects on cortical activity in depression, suggesting an impact of MT on anxiety reduction.

  6. Cortical Alpha Oscillations Predict Speech Intelligibility

    PubMed Central

    Dimitrijevic, Andrew; Smith, Michael L.; Kadis, Darren S.; Moore, David R.

    2017-01-01

    Understanding speech in noise (SiN) is a complex task involving sensory encoding and cognitive resources including working memory and attention. Previous work has shown that brain oscillations, particularly alpha rhythms (8–12 Hz) play important roles in sensory processes involving working memory and attention. However, no previous study has examined brain oscillations during performance of a continuous speech perception test. The aim of this study was to measure cortical alpha during attentive listening in a commonly used SiN task (digits-in-noise, DiN) to better understand the neural processes associated with “top-down” cognitive processing in adverse listening environments. We recruited 14 normal hearing (NH) young adults. DiN speech reception threshold (SRT) was measured in an initial behavioral experiment. EEG activity was then collected: (i) while performing the DiN near SRT; and (ii) while attending to a silent, close-caption video during presentation of identical digit stimuli that the participant was instructed to ignore. Three main results were obtained: (1) during attentive (“active”) listening to the DiN, a number of distinct neural oscillations were observed (mainly alpha with some beta; 15–30 Hz). No oscillations were observed during attention to the video (“passive” listening); (2) overall, alpha event-related synchronization (ERS) of central/parietal sources were observed during active listening when data were grand averaged across all participants. In some participants, a smaller magnitude alpha event-related desynchronization (ERD), originating in temporal regions, was observed; and (3) when individual EEG trials were sorted according to correct and incorrect digit identification, the temporal alpha ERD was consistently greater on correctly identified trials. No such consistency was observed with the central/parietal alpha ERS. These data demonstrate that changes in alpha activity are specific to listening conditions. To our

  7. Cortical Alpha Oscillations Predict Speech Intelligibility.

    PubMed

    Dimitrijevic, Andrew; Smith, Michael L; Kadis, Darren S; Moore, David R

    2017-01-01

    Understanding speech in noise (SiN) is a complex task involving sensory encoding and cognitive resources including working memory and attention. Previous work has shown that brain oscillations, particularly alpha rhythms (8-12 Hz) play important roles in sensory processes involving working memory and attention. However, no previous study has examined brain oscillations during performance of a continuous speech perception test. The aim of this study was to measure cortical alpha during attentive listening in a commonly used SiN task (digits-in-noise, DiN) to better understand the neural processes associated with "top-down" cognitive processing in adverse listening environments. We recruited 14 normal hearing (NH) young adults. DiN speech reception threshold (SRT) was measured in an initial behavioral experiment. EEG activity was then collected: (i) while performing the DiN near SRT; and (ii) while attending to a silent, close-caption video during presentation of identical digit stimuli that the participant was instructed to ignore. Three main results were obtained: (1) during attentive ("active") listening to the DiN, a number of distinct neural oscillations were observed (mainly alpha with some beta; 15-30 Hz). No oscillations were observed during attention to the video ("passive" listening); (2) overall, alpha event-related synchronization (ERS) of central/parietal sources were observed during active listening when data were grand averaged across all participants. In some participants, a smaller magnitude alpha event-related desynchronization (ERD), originating in temporal regions, was observed; and (3) when individual EEG trials were sorted according to correct and incorrect digit identification, the temporal alpha ERD was consistently greater on correctly identified trials. No such consistency was observed with the central/parietal alpha ERS. These data demonstrate that changes in alpha activity are specific to listening conditions. To our knowledge, this is the

  8. Pitfalls in ictal EEG interpretation: critical care and intracranial recordings.

    PubMed

    Gaspard, Nicolas; Hirsch, Lawrence J

    2013-01-01

    EEG is the cornerstone examination for seizure diagnosis, especially nonconvulsive seizures in the critically ill, but is still subject to many errors that can lead to a wrong diagnosis and unnecessary or inadequate treatment. Many of these pitfalls to EEG interpretation are avoidable. This article reviews common errors in EEG interpretation, focusing on ictal or potentially ictal recordings obtained in critically ill patients. Issues discussed include artifacts, nonepileptic events, equivocal EEG patterns seen in comatose patients, and quantitative EEG artifacts. This review also covers some difficulties encountered with intracranial EEG recordings in patients undergoing epilepsy surgery, including issues related to display resolution.

  9. Sex differences between the combined and inattentive types of attention-deficit/hyperactivity disorder: an EEG perspective.

    PubMed

    Dupuy, Franca E; Barry, Robert J; Clarke, Adam R; McCarthy, Rory; Selikowitz, Mark

    2013-09-01

    This study investigated sex differences between the EEGs of Combined and Inattentive types of attention-deficit/hyperactivity disorder (AD/HD) within boys and girls aged 8-12 years. Subject groups included 80 AD/HD Combined type (40 boys and 40 girls), 80 AD/HD Inattentive type (40 boys and 40 girls) and 80 controls (40 boys and 40 girls). An eyes-closed resting EEG was recorded and Fourier transformed to provide estimates for absolute and relative power in the delta, theta, alpha and beta frequency bands, as well as total power and the theta/beta ratio. The boy AD/HD groups, compared with boy controls, had greater absolute and relative theta, greater theta/beta ratio, reduced absolute and relative alpha, and reduced absolute and relative beta. The girl AD/HD groups, compared with girl controls, had greater absolute delta, greater absolute and relative theta, greater theta/beta ratio, greater total power, and reduced relative delta and relative beta. Between AD/HD types, Combined type boys had globally greater absolute and relative theta, greater theta/beta ratio, and less relative alpha than Inattentive type boys. While topographical differences emerged, there were no significant global differences between AD/HD types in girls. That is, EEG differences between AD/HD types are dissimilar in boys and girls. Different EEG maturational patterns between boys and girls also obscure AD/HD-related EEG abnormalities. These results have important implications for our understanding of AD/HD in girls. Ignoring such sex differences may have compromised the value of previous AD/HD investigations, and these sex differences should be recognised in future research.

  10. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-01-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  11. Neurofeedback training aimed to improve focused attention and alertness in children with ADHD: a study of relative power of EEG rhythms using custom-made software application.

    PubMed

    Hillard, Brent; El-Baz, Ayman S; Sears, Lonnie; Tasman, Allan; Sokhadze, Estate M

    2013-07-01

    Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.

  12. Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Rummel, C.; Abela, E.; Hauf, M.; Wiest, R.; Schindler, K.

    2013-06-01

    Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.

  13. Effects and after-effects of chewing gum on vigilance, heart rate, EEG and mood.

    PubMed

    Allen, Andrew P; Jacob, Tim J C; Smith, Andrew P

    2014-06-22

    Research has shown that chewing gum improves attention, although the mechanism for this effect remains unclear. This study investigated the effects and after-effects of chewing gum on vigilance, mood, heart rate and EEG. Participants completed a vigilance task four times; at baseline, with or without chewing gum, and twice post-chewing. EEG alpha and beta power at left frontal and temporal lobes, subjective mood and heart rate were assessed. Chewing gum shortened reaction time and increased the rate of hits, although hits fell during the second post-chewing task. Chewing gum heightened heart rate, but only during chewing. Gum also increased beta power at F7 and T3 immediately post-chewing, but not following the post-chewing tasks. The findings show that chewing gum affects several different indicators of alertness.

  14. Automated sleep EEG analysis applied to the evaluation of drugs: illustration by study of clorazepate dipotassium.

    PubMed

    Smith, J R; Karacan, I; Keane, B P; Yang, M

    1976-12-01

    An automated sleep EEG analysis system was used to evaluate the effects of clorazepate dipotassium in normal subjects. Ten young-adult men slept 18 consecutive nights in the laboratory. On days 8-15 clorazepate (7.5 mg) was administered three times daily; on days 5-7 and 16-18 a placebo was administered in a similar fashion. The drug reduced amounts of alpha and delta activity and increased the amount of beta activity and the number of spindles. These effects generally persisted through the 3 day placebo recovery period. Our results suggest that sleep EEG waveform descriptors are sensitive indicators of drug activity and that beta activity in particular may be useful in the detailed description of various drug effects.

  15. Effect of immobilization on the EEG of the baboon. Comparison with telemetry results from unrestricted animals

    NASA Technical Reports Server (NTRS)

    Bert, J.; Collomb, H.

    1980-01-01

    The EEG of the baboon was studied under two very different sets of conditions: 37 were totally immobolized while 12 were studied in their free movements with 4 channel telemetry. For the immobilzed, 3 stages were described: (1) activation, record desynchronized; (2) rest with 13-15 cm/sec rhythm, like the human alpha rhythm stage but with eyes open or closed; (3)relaxation with a decrease in 13-15 rhythm and the appearance of 5-7 cm/sec theta waves, eyelids closed, animal apparently sleeping. For the free animals the rest stage appeared when the animal's attention was not directed anywhere and there was no relaxation stage. It is concluded that the EEG pattern of the immobilized animal that was described as the "relaxation" stage really represents a special functional state which one must distinguish clearly from the physiological stages of sleep.

  16. Preliminary Study on Quantitative Sleep EEG Characteristics in Patients with Schizophrenia

    PubMed Central

    Oh, Seong Min; Kim, Jong Won; Choi, Jae Won; Jeong, Do-Un

    2017-01-01

    We used quantitative electroencephalography (EEG) spectral analysis to compare activity in the bilateral frontal, central, and occipital areas in nine patients with schizophrenia and ten healthy control subjects during standard nocturnal polysomnography. Patients with schizophrenia had longer sleep latency than controls. In N2 sleep, the patients had significantly lower 0.5–1 Hz power and higher theta power in the left frontal region, and higher beta power in the left occipital region than did control subjects. In N3 sleep, the patients with schizophrenia had significantly higher alpha power in the left occipital region than did controls. These findings show distinctive EEG sleep patterns in patients with schizophrenia, which may reflect brain dysfunction or medication effects. PMID:28326122

  17. Manual lymph drainage attenuates frontal EEG asymmetry in subjects with psychological stress: a preliminary study.

    PubMed

    Shim, Jung-Myo; Kim, Sung-Joong

    2014-04-01

    [Purpose] The purpose of this preliminary study was to investigate the effect of manual lymph drainage (MLD) of the neck on frontal electroencephalogram (EEG) asymmetry in subjects with psychological stress. [Subjects] Thirteen subjects with psychological stress participated in the study. [Methods] Subjects received MLD of the neck for 15 min. [Results] Analysis of the frontal asymmetry index showed that the energy shift in the alpha frequency band from the left hemisphere to the right hemisphere after MLD resulted in greater left-side activation (positive asymmetry values), which could be related to the positive emotional state observed particularly in the F7-F8 area. [Conclusion] These preliminary findings suggest that frontal EEG asymmetry was significantly attenuated after MLD.

  18. Resting state EEG power, intra-hemisphere and inter-hemisphere coherence in bipolar disorder

    NASA Astrophysics Data System (ADS)

    Handayani, Nita; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, Warsito P.

    2017-02-01

    This paper examines the differences of EEG power and coherence between bipolar disorder patients and healthy subjects in the resting state. Observations are focused on the prefrontal cortex area by calculating intra-hemisphere and inter-hemisphere coherence. EEG data acquisition are conducted by using wireless Emotiv Epoc on AF3, AF4, FC5, FC6, F7 and F8 channels. The power spectral analysis shows that in bipolar disoder there is an increase of power in the delta, theta and beta frequencies, and power decrease in the alpha frequency. The coherence test results show that both intra-hemisphere and inter-hemisphere coherence in bipolar disorder patients are lower than healthy subjects. This shows the lack of brain synchronization in bipolar disorder patients.

  19. [Time-organization of EEG patterns' structure in anxiety and phobic disorders].

    PubMed

    Sviatogor, I A; Mokhovikova, I A

    2005-01-01

    Thirty-five patients, aged 19-48 years (mean age 38 years) with anxiety and phobic disorders were examined. According to ICD-10 criteria--social phobia (F40.1), panic disorder (F41.0), somatoform autonomic dysfunction (F45.3) were diagnosed. Using electroencephalography data, qualitative and quantitative characteristics of the time- and spatial-organization of brain EEG activity in anxiety and phobic disorders of different severity were established. It were determined 4 types of wave interactions between EEG components, which reflected a different extent of the regulatory mechanisms lesions: 2 structures with one core component (alpha or beta), a structure with two core components and a non-organized structure.

  20. Top-down Modulation of Neural Activity in Anticipatory Visual Attention: Control Mechanisms Revealed by Simultaneous EEG-fMRI.

    PubMed

    Liu, Yuelu; Bengson, Jesse; Huang, Haiqing; Mangun, George R; Ding, Mingzhou

    2016-02-01

    In covert visual attention, frontoparietal attention control areas are thought to issue signals to selectively bias sensory neurons to facilitate behaviorally relevant information and suppress distraction. We investigated the relationship between activity in attention control areas and attention-related modulation of posterior alpha activity using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging in humans during cued visual-spatial attention. Correlating single-trial EEG alpha power with blood-oxygen-level dependent (BOLD) activity, we found that BOLD in the intraparietal sulcus (IPS) and left middle frontal gyrus was inversely correlated with occipital alpha power. Importantly, in IPS, inverse correlations were stronger for alpha within the hemisphere contralateral to the attended hemifield, implicating the IPS in the enhancement of task-relevant sensory areas. Positive BOLD-alpha correlations were observed in sensorimotor cortices and the default mode network, suggesting a mechanism of active suppression over task-irrelevant areas. The magnitude of cue-induced alpha lateralization was positively correlated with BOLD in dorsal anterior cingulate cortex and dorsolateral prefrontal cortex, implicating a role of executive control in attention. These results show that IPS and frontal executive areas are the main sources of biasing influences on task-relevant visual cortex, whereas task-irrelevant default mode network and sensorimotor cortex are inhibited during visual attention.

  1. Instantaneous frequency based newborn EEG seizure characterisation

    NASA Astrophysics Data System (ADS)

    Mesbah, Mostefa; O'Toole, John M.; Colditz, Paul B.; Boashash, Boualem

    2012-12-01

    The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures are better represented in the joint time-frequency domain than in either the time domain or the frequency domain. Characterising newborn EEG seizure nonstationarities helps to better understand their time-varying nature and, therefore, allow developing efficient signal processing methods for both modelling and seizure detection and classification. In this article, we used the instantaneous frequency (IF) extracted from a time-frequency distribution to characterise newborn EEG seizures. We fitted four frequency modulated (FM) models to the extracted IFs, namely a linear FM, a piecewise-linear FM, a sinusoidal FM, and a hyperbolic FM. Using a database of 30-s EEG seizure epochs acquired from 35 newborns, we were able to show that, depending on EEG channel, the sinusoidal and piecewise-linear FM models best fitted 80-98% of seizure epochs. To further characterise the EEG seizures, we calculated the mean frequency and frequency span of the extracted IFs. We showed that in the majority of the cases (>95%), the mean frequency resides in the 0.6-3 Hz band with a frequency span of 0.2-1 Hz. In terms of the frequency of occurrence of the four seizure models, the statistical analysis showed that there is no significant difference( p = 0.332) between the two hemispheres. The results also indicate that there is no significant differences between the two hemispheres in terms of the mean frequency ( p = 0.186) and the frequency span ( p = 0.302).

  2. Characterizing Population EEG Dynamics throughout Adulthood

    PubMed Central

    Mathewson, Karen J.; Aimone, Chris; Bennett, Patrick J.; Schmidt, Louis A.; Sekuler, Allison B.

    2016-01-01

    Abstract For decades, electroencephalography (EEG) has been a useful tool for investigating the neural mechanisms underlying human psychological processes. However, the amount of time needed to gather EEG data means that most laboratory studies use relatively small sample sizes. Using the Muse, a portable and wireless four-channel EEG headband, we obtained EEG recordings from 6029 subjects 18–88 years in age while they completed a category exemplar task followed by a meditation exercise. Here, we report age-related changes in EEG power at a fine chronological scale for δ, θ, α, and β bands, as well as peak α frequency and α asymmetry measures for both frontal and temporoparietal sites. We found that EEG power changed as a function of age, and that the age-related changes depended on sex and frequency band. We found an overall age-related shift in band power from lower to higher frequencies, especially for females. We also found a gradual, year-by-year slowing of the peak α frequency with increasing age. Finally, our analysis of α asymmetry revealed greater relative right frontal activity. Our results replicate several previous age- and sex-related findings and show how some previously observed changes during childhood extend throughout the lifespan. Unlike previous age-related EEG studies that were limited by sample size and restricted age ranges, our work highlights the advantage of using large, representative samples to address questions about developmental brain changes. We discuss our findings in terms of their relevance to attentional processes and brain-based models of emotional well-being and aging. PMID:27957533

  3. Time-varying bispectral analysis of visually evoked multi-channel EEG

    NASA Astrophysics Data System (ADS)

    Chandran, Vinod

    2012-12-01

    Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

  4. Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State

    PubMed Central

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick

    2015-01-01

    Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP < 1.0 predicted sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125

  5. Estimation of Eye Closure Degree Using EEG Sensors and Its Application in Driver Drowsiness Detection

    PubMed Central

    Li, Gang; Chung, Wan-Young

    2014-01-01

    Currently, driver drowsiness detectors using video based technology is being widely studied. Eyelid closure degree (ECD) is the main measure of the video-based methods, however, drawbacks such as brightness limitations and practical hurdles such as distraction of the drivers limits its success. This study presents a way to compute the ECD using EEG sensors instead of video-based methods. The premise is that the ECD exhibits a linear relationship with changes of the occipital EEG. A total of 30 subjects are included in this study: ten of them participated in a simple proof-of-concept experiment to verify the linear relationship between ECD and EEG, and then twenty participated in a monotonous highway driving experiment in a driving simulator environment to test the robustness of the linear relationship in real-life applications. Taking the video-based method as a reference, the Alpha power percentage from the O2 channel is found to be the best input feature for linear regression estimation of the ECD. The best overall squared correlation coefficient (SCC, denoted by r2) and mean squared error (MSE) validated by linear support vector regression model and leave one subject out method is r2 = 0.930 and MSE = 0.013. The proposed linear EEG-ECD model can achieve 87.5% and 70.0% accuracy for male and female subjects, respectively, for a driver drowsiness application, percentage eyelid closure over the pupil over time (PERCLOS). This new ECD estimation method not only addresses the video-based method drawbacks, but also makes ECD estimation more computationally efficient and easier to implement in EEG sensors in a real time way. PMID:25237899

  6. Intelligent sensing of EEG signals

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khalid J.; Collins, Leslie E.; Fitzpatrick, Dennis; Hendricks, Shelton; Hay, D. Robert; Suen, Ching Y.

    1990-11-01

    Although physician observation is usually the most sensitive method for diagnosing and monitoring a patient''s medical condition human observation cannot be conducted continuously and consistently. It can be helpful therefore to employ specialized automated techniques for the continuous reliable and noninvasive monitoring of those parameters useful for the enhancement of physicians'' diagnostic capabilities. Signal processing systems are among the most powerful of those techniques currently available for noninvasively examining the internal structure of living biological systems. Nonetheless the capability of these systems can be substantially enhanced if supplemented with automated classification and interpretation precedures. An intelligent EEG signal sensing and interpretation system using typical signal processing techniques supplemented with heuristics and identification techniques has been designed. The system is comprised of five major components namely: the fact gathering system the knowledge/rule base the knowledge organization/learning phase the inference engine and the expert/user interface. The fact gathering system collects raw waveforms preprocesses these for noise elimination and extracts the pertinent information from the waveforms. The knowledge/rule base is an information and knowledge bank wherein the appropriate knowledge parameters useful for the decision making process are stored. The knowledge organization/learning phase structures the knowledge In the order determined by the association among pattern classes and trains the Inference engine. The structure of the inference engine is based on a hierarchical pattern classifier which categorizes the unknown signals using a layered decision making strategy

  7. EEG correlates of fatigue during administration of a neuropsychological test battery

    PubMed Central

    Barwick, Fiona; Arnett, Peter; Slobounov, Semyon

    2011-01-01

    Objective Mental fatigue, a poorly understood symptom of sports-related concussion, ideally requires assessment across multiple modalities. Our study aimed to examine mental fatigue effects among ten neurologically normal, athletically active students undergoing typical concussion testing. It is our intention to ultimately address the question whether fatigue effects due to mild traumatic brain injury (mTBI) may become confounded with fatigue effects due to testing effort. Methods Fourteen athletically active and neurologically normal volunteers were initially recruited from Penn State University. Self-reported fatigue, neuropsychological performance, and electroencephalographic (EEG) activity were measured throughout the whole testing duration. EEG measures in frequency domain (e.g., relative power of theta, alpha & beta bands) were examined over the course of neuropsychological (NP) test administration. Results Predicted fatigue effects over the course of testing included: (a) increased self-reported fatigue; (b) increased errors on the Stroop Interference Test; (c) significantly increased relative power of theta activity during the Stroop Interference Test in frontal-central and parietal regions; and (d) migration of alpha activation from the occipital to anterior (left parietal and pre-central) regions during the Stroop Interference task administered at the beginning compared with the end of testing. Conclusions Results supported predictions related to subjective fatigue and cognitive performance and offered partial support for predictions related to EEG activation patterns over the course of administering the NP testing. Significance Neurologically intact and athletically active college students demonstrate effects related to fatigue after undergoing a typical sports concussion assessment battery, including an increase in subjectively experienced fatigue, a decrease in cognitive task performance accuracy and associated modulations in EEG activity. This finding

  8. Preferred pre-stimulus EEG states affect cognitive event-related potentials.

    PubMed

    Barry, Robert J

    2013-01-01

    Current views of the genesis of the event-related potential (ERP) emphasize the contribution of ongoing oscillations - the ongoing electroencephalogram (EEG) is recognized as much more than "background noise" to be removed by response averaging to find the ERP. Early work from Başar's group noted that repetitive stimuli led to selective phase re-ordering of activity in the delta and alpha bands, such that enhanced brain negativity occurred at the time of the regular stimulus. Other work related negativity in alpha activity at stimulus onset to improved reaction times and ERP enhancements. These findings led us to begin a program of brain dynamics studies exploring pre-stimulus EEG phase states, their preferential occurrence in paradigms with regularly presented stimuli, and their relation to ERP outcomes. In particular, with very narrow EEG bands, we have repeatedly found that certain phase states preferentially occur at stimulus onset, implying ongoing phase re-ordering driven by stimulus occurrence. Effects are weakened with slightly varying inter-stimulus intervals, but still occur reliably. Further, these preferential phase states are functionally effective in relation to the ERP correlates of efficient stimulus processing. Preferential phase occurrence and their effects were originally reported in auditory oddball tasks, using narrow EEG bands derived by digital filtering. A recent study is presented illustrating generalization of the phenomenon in the auditory Go/NoGo task, using narrow bands derived by FFT techniques. Our current work is extending this research in normal children (to provide a comparative context for research in children with AD/HD), and well-functioning elderly (to provide a context for future work in relation to Alzheimer's disease).

  9. Affective attitudes to face images associated with intracerebral EEG source location before face viewing.

    PubMed

    Pizzagalli, D; Koenig, T; Regard, M; Lehmann, D

    1999-01-01

    We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning.

  10. Reduction in event-related alpha attenuation during performance of an auditory