Sample records for eeg based brain-computer

  1. Design of an online EEG based neurofeedback game for enhancing attention and memory.

    PubMed

    Thomas, Kavitha P; Vinod, A P; Guan, Cuntai

    2013-01-01

    Brain-Computer Interface (BCI) is an alternative communication and control channel between brain and computer which finds applications in neuroprosthetics, brain wave controlled computer games etc. This paper proposes an Electroencephalogram (EEG) based neurofeedback computer game that allows the player to control the game with the help of attention based brain signals. The proposed game protocol requires the player to memorize a set of numbers in a matrix, and to correctly fill the matrix using his attention. The attention level of the player is quantified using sample entropy features of EEG. The statistically significant performance improvement of five healthy subjects after playing a number of game sessions demonstrates the effectiveness of the proposed game in enhancing their concentration and memory skills.

  2. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  3. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  4. Practical Designs of Brain-Computer Interfaces Based on the Modulation of EEG Rhythms

    NASA Astrophysics Data System (ADS)

    Wang, Yijun; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    A brain-computer interface (BCI) is a communication channel which does not depend on the brain's normal output pathways of peripheral nerves and muscles [1-3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low cost, convenient operation and non-invasiveness. In present-day EEG-based BCIs, the following signals have been paid much attention: visual evoked potential (VEP), sensorimotor mu/beta rhythms, P300 evoked potential, slow cortical potential (SCP), and movement-related cortical potential (MRCP). Details about these signals can be found in chapter "Brain Signals for Brain-Computer Interfaces". These systems offer some practical solutions (e.g., cursor movement and word processing) for patients with motor disabilities.

  5. Review of Sparse Representation-Based Classification Methods on EEG Signal Processing for Epilepsy Detection, Brain-Computer Interface and Cognitive Impairment

    PubMed Central

    Wen, Dong; Jia, Peilei; Lian, Qiusheng; Zhou, Yanhong; Lu, Chengbiao

    2016-01-01

    At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals. This mini review described the advantages and disadvantages of the SRC methods in the EEG signal analysis with the expectation that these methods can provide the better tools for analyzing EEG signals. PMID:27458376

  6. A Review of EEG-Based Brain-Computer Interfaces as Access Pathways for Individuals with Severe Disabilities

    ERIC Educational Resources Information Center

    Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom

    2013-01-01

    Electroencephalography (EEG) is a non-invasive method for measuring brain activity and is a strong candidate for brain-computer interface (BCI) development. While BCIs can be used as a means of communication for individuals with severe disabilities, the majority of existing studies have reported BCI evaluations by able-bodied individuals.…

  7. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  8. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    PubMed Central

    2012-01-01

    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering. PMID:22284235

  9. Estimating the mutual information of an EEG-based Brain-Computer Interface.

    PubMed

    Schlögl, A; Neuper, C; Pfurtscheller, G

    2002-01-01

    An EEG-based Brain-Computer Interface (BCI) could be used as an additional communication channel between human thoughts and the environment. The efficacy of such a BCI depends mainly on the transmitted information rate. Shannon's communication theory was used to quantify the information rate of BCI data. For this purpose, experimental EEG data from four BCI experiments was analyzed off-line. Subjects imaginated left and right hand movements during EEG recording from the sensorimotor area. Adaptive autoregressive (AAR) parameters were used as features of single trial EEG and classified with linear discriminant analysis. The intra-trial variation as well as the inter-trial variability, the signal-to-noise ratio, the entropy of information, and the information rate were estimated. The entropy difference was used as a measure of the separability of two classes of EEG patterns.

  10. Hardware enhance of brain computer interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  11. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  12. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    PubMed

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  13. Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis

    PubMed Central

    Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-01-01

    Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  14. Detection of EEG-patterns associated with real and imaginary movements using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.

    2018-02-01

    Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.

  15. Brain computer interface for operating a robot

    NASA Astrophysics Data System (ADS)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  16. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T

    2017-02-01

    Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.

  18. Data acquisition instrument for EEG based on embedded system

    NASA Astrophysics Data System (ADS)

    Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid

    2017-02-01

    An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.

  19. Quantum neural network-based EEG filtering for a brain-computer interface.

    PubMed

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  20. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography

    NASA Astrophysics Data System (ADS)

    Boudria, Yacine; Feltane, Amal; Besio, Walter

    2014-06-01

    Objective. Brain-computer interfaces (BCIs) based on electroencephalography (EEG) have been shown to accurately detect mental activities, but the acquisition of high levels of control require extensive user training. Furthermore, EEG has low signal-to-noise ratio and low spatial resolution. The objective of the present study was to compare the accuracy between two types of BCIs during the first recording session. EEG and tripolar concentric ring electrode (TCRE) EEG (tEEG) brain signals were recorded and used to control one-dimensional cursor movements. Approach. Eight human subjects were asked to imagine either ‘left’ or ‘right’ hand movement during one recording session to control the computer cursor using TCRE and disc electrodes. Main results. The obtained results show a significant improvement in accuracies using TCREs (44%-100%) compared to disc electrodes (30%-86%). Significance. This study developed the first tEEG-based BCI system for real-time one-dimensional cursor movements and showed high accuracies with little training.

  1. Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism.

    PubMed

    Bae, Youngoh; Yoo, Byeong Wook; Lee, Jung Chan; Kim, Hee Chan

    2017-05-01

    Detection and diagnosis based on extracting features and classification using electroencephalography (EEG) signals are being studied vigorously. A network analysis of time series EEG signal data is one of many techniques that could help study brain functions. In this study, we analyze EEG to diagnose alcoholism. We propose a novel methodology to estimate the differences in the status of the brain based on EEG data of normal subjects and data from alcoholics by computing many parameters stemming from effective network using Granger causality. Among many parameters, only ten parameters were chosen as final candidates. By the combination of ten graph-based parameters, our results demonstrate predictable differences between alcoholics and normal subjects. A support vector machine classifier with best performance had 90% accuracy with sensitivity of 95.3%, and specificity of 82.4% for differentiating between the two groups.

  2. Exploring differences between left and right hand motor imagery via spatio-temporal EEG microstate.

    PubMed

    Liu, Weifeng; Liu, Xiaoming; Dai, Ruomeng; Tang, Xiaoying

    2017-12-01

    EEG-based motor imagery is very useful in brain-computer interface. How to identify the imaging movement is still being researched. Electroencephalography (EEG) microstates reflect the spatial configuration of quasi-stable electrical potential topographies. Different microstates represent different brain functions. In this paper, microstate method was used to process the EEG-based motor imagery to obtain microstate. The single-trial EEG microstate sequences differences between two motor imagery tasks - imagination of left and right hand movement were investigated. The microstate parameters - duration, time coverage and occurrence per second as well as the transition probability of the microstate sequences were obtained with spatio-temporal microstate analysis. The results were shown significant differences (P < 0.05) with paired t-test between the two tasks. Then these microstate parameters were used as features and a linear support vector machine (SVM) was utilized to classify the two tasks with mean accuracy 89.17%, superior performance compared to the other methods. These indicate that the microstate can be a promising feature to improve the performance of the brain-computer interface classification.

  3. Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades

    DTIC Science & Technology

    2012-05-13

    Research Triangle Park, NC 27709-2211 Augmented brain–computer interface (ABCI);biosensor; cognitive-state monitoring; electroencephalogram( EEG ); human...biosensor; cognitive-state monitoring; electroencephalogram ( EEG ); human brain imaging Manuscript received November 28, 2011; accepted December 20...magnetic reso- nance imaging (fMRI) [1], positron emission tomography (PET) [2], electroencephalograms ( EEGs ) and optical brain imaging techniques (i.e

  4. Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks

    PubMed Central

    Hramov, Alexander E.; Maksimenko, Vladimir A.; Pchelintseva, Svetlana V.; Runnova, Anastasiya E.; Grubov, Vadim V.; Musatov, Vyacheslav Yu.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2017-01-01

    In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. PMID:29255403

  5. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    PubMed

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  6. Multi-channel linear descriptors for event-related EEG collected in brain computer interface.

    PubMed

    Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu

    2006-03-01

    By three multi-channel linear descriptors, i.e. spatial complexity (omega), field power (sigma) and frequency of field changes (phi), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of omega, sigma and phi could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors omega, sigma and phi for characterizing event-related EEG. The preliminary results show that omega, sigma together with phi have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.

  7. A New Statistical Model of Electroencephalogram Noise Spectra for Real-Time Brain-Computer Interfaces.

    PubMed

    Paris, Alan; Atia, George K; Vosoughi, Azadeh; Berman, Stephen A

    2017-08-01

    A characteristic of neurological signal processing is high levels of noise from subcellular ion channels up to whole-brain processes. In this paper, we propose a new model of electroencephalogram (EEG) background periodograms, based on a family of functions which we call generalized van der Ziel-McWhorter (GVZM) power spectral densities (PSDs). To the best of our knowledge, the GVZM PSD function is the only EEG noise model that has relatively few parameters, matches recorded EEG PSD's with high accuracy from 0 to over 30 Hz, and has approximately 1/f θ behavior in the midfrequencies without infinities. We validate this model using three approaches. First, we show how GVZM PSDs can arise in a population of ion channels at maximum entropy equilibrium. Second, we present a class of mixed autoregressive models, which simulate brain background noise and whose periodograms are asymptotic to the GVZM PSD. Third, we present two real-time estimation algorithms for steady-state visual evoked potential (SSVEP) frequencies, and analyze their performance statistically. In pairwise comparisons, the GVZM-based algorithms showed statistically significant accuracy improvement over two well-known and widely used SSVEP estimators. The GVZM noise model can be a useful and reliable technique for EEG signal processing. Understanding EEG noise is essential for EEG-based neurology and applications such as real-time brain-computer interfaces, which must make accurate control decisions from very short data epochs. The GVZM approach represents a successful new paradigm for understanding and managing this neurological noise.

  8. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    PubMed

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  9. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    PubMed

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  10. Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

    PubMed Central

    Gupta, Rishabh; Falk, Tiago H.

    2017-01-01

    Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs. PMID:29181021

  11. Use of parallel computing for analyzing big data in EEG studies of ambiguous perception

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Grubov, Vadim V.; Kirsanov, Daniil V.

    2018-02-01

    Problem of interaction between human and machine systems through the neuro-interfaces (or brain-computer interfaces) is an urgent task which requires analysis of large amount of neurophysiological EEG data. In present paper we consider the methods of parallel computing as one of the most powerful tools for processing experimental data in real-time with respect to multichannel structure of EEG. In this context we demonstrate the application of parallel computing for the estimation of the spectral properties of multichannel EEG signals, associated with the visual perception. Using CUDA C library we run wavelet-based algorithm on GPUs and show possibility for detection of specific patterns in multichannel set of EEG data in real-time.

  12. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  13. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    PubMed

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system

    NASA Astrophysics Data System (ADS)

    Robinson, Neethu; Guan, Cuntai; Vinod, A. P.

    2015-12-01

    Objective. The various parameters that define a hand movement such as its trajectory, speed, etc, are encoded in distinct brain activities. Decoding this information from neurophysiological recordings is a less explored area of brain-computer interface (BCI) research. Applying non-invasive recordings such as electroencephalography (EEG) for decoding makes the problem more challenging, as the encoding is assumed to be deep within the brain and not easily accessible by scalp recordings. Approach. EEG based BCI systems can be developed to identify the neural features underlying movement parameters that can be further utilized to provide a detailed and well defined control command set to a BCI output device. A real-time continuous control is better suited for practical BCI systems, and can be achieved by continuous adaptive reconstruction of movement trajectory than discrete brain activity classifications. In this work, we adaptively reconstruct/estimate the parameters of two-dimensional hand movement trajectory, namely movement speed and position, from multi-channel EEG recordings. The data for analysis is collected by performing an experiment that involved center-out right-hand movement tasks in four different directions at two different speeds in random order. We estimate movement trajectory using a Kalman filter that models the relation between brain activity and recorded parameters based on a set of defined predictors. We propose a method to define these predictor variables that includes spatial, spectral and temporally localized neural information and to select optimally informative variables. Main results. The proposed method yielded correlation of (0.60 ± 0.07) between recorded and estimated data. Further, incorporating the proposed predictor subset selection, the correlation achieved is (0.57 ± 0.07, p {\\lt }0.004) with significant gain in stability of the system, as well as dramatic reduction in number of predictors (76%) for the savings of computational time. Significance. The proposed system provides a real time movement control system using EEG-BCI with control over movement speed and position. These results are higher and statistically significant compared to existing techniques in EEG based systems and thus promise the applicability of the proposed method for efficient estimation of movement parameters and for continuous motor control.

  15. Robust electroencephalogram phase estimation with applications in brain-computer interface systems.

    PubMed

    Seraj, Esmaeil; Sameni, Reza

    2017-03-01

    In this study, a robust method is developed for frequency-specific electroencephalogram (EEG) phase extraction using the analytic representation of the EEG. Based on recent theoretical findings in this area, it is shown that some of the phase variations-previously associated to the brain response-are systematic side-effects of the methods used for EEG phase calculation, especially during low analytical amplitude segments of the EEG. With this insight, the proposed method generates randomized ensembles of the EEG phase using minor perturbations in the zero-pole loci of narrow-band filters, followed by phase estimation using the signal's analytical form and ensemble averaging over the randomized ensembles to obtain a robust EEG phase and frequency. This Monte Carlo estimation method is shown to be very robust to noise and minor changes of the filter parameters and reduces the effect of fake EEG phase jumps, which do not have a cerebral origin. As proof of concept, the proposed method is used for extracting EEG phase features for a brain computer interface (BCI) application. The results show significant improvement in classification rates using rather simple phase-related features and a standard K-nearest neighbors and random forest classifiers, over a standard BCI dataset. The average performance was improved between 4-7% (in absence of additive noise) and 8-12% (in presence of additive noise). The significance of these improvements was statistically confirmed by a paired sample t-test, with 0.01 and 0.03 p-values, respectively. The proposed method for EEG phase calculation is very generic and may be applied to other EEG phase-based studies.

  16. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  17. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    NASA Astrophysics Data System (ADS)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  18. A Step Towards EEG-based Brain Computer Interface for Autism Intervention*

    PubMed Central

    Fan, Jing; Wade, Joshua W.; Bian, Dayi; Key, Alexandra P.; Warren, Zachary E.; Mion, Lorraine C.; Sarkar, Nilanjan

    2017-01-01

    Autism Spectrum Disorder (ASD) is a prevalent and costly neurodevelopmental disorder. Individuals with ASD often have deficits in social communication skills as well as adaptive behavior skills related to daily activities. We have recently designed a novel virtual reality (VR) based driving simulator for driving skill training for individuals with ASD. In this paper, we explored the feasibility of detecting engagement level, emotional states, and mental workload during VR-based driving using EEG as a first step towards a potential EEG-based Brain Computer Interface (BCI) for assisting autism intervention. We used spectral features of EEG signals from a 14-channel EEG neuroheadset, together with therapist ratings of behavioral engagement, enjoyment, frustration, boredom, and difficulty to train a group of classification models. Seven classification methods were applied and compared including Bayes network, naïve Bayes, Support Vector Machine (SVM), multilayer perceptron, K-nearest neighbors (KNN), random forest, and J48. The classification results were promising, with over 80% accuracy in classifying engagement and mental workload, and over 75% accuracy in classifying emotional states. Such results may lead to an adaptive closed-loop VR-based skill training system for use in autism intervention. PMID:26737113

  19. Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention.

    PubMed

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc

    2016-10-01

    Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.

  20. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme

    PubMed Central

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI. PMID:26880873

  1. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    PubMed

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  2. Eyes-closed hybrid brain-computer interface employing frontal brain activation.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-Robert; Hwang, Han-Jeong

    2018-01-01

    Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-muscular communication channel mainly for patients with impaired motor functions. However, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI that is based on only frontal brain areas and can be operated in an eyes-closed state for end users with impaired motor and declining visual functions. In our experiment, electroencephalography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related brain activation. We then compared classification accuracies using two unimodal BCIs (EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our study shows that an eyes-closed hybrid BCI approach based on frontal areas could be applied to neurodegenerative patients who lost their motor functions, including oculomotor functions.

  3. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    PubMed

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  4. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome

    PubMed Central

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232

  5. Mission-based Scenario Research: Experimental Design And Analysis

    DTIC Science & Technology

    2012-01-01

    neurotechnologies called Brain-Computer Interaction Technologies. 15. SUBJECT TERMS neuroimaging, EEG, task loading, neurotechnologies , ground... neurotechnologies called Brain-Computer Interaction Technologies. INTRODUCTION Imagine a system that can identify operator fatigue during a long-term...BCIT), a class of neurotechnologies , that aim to improve task performance by incorporating measures of brain activity to optimize the interactions

  6. Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces

    PubMed Central

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607

  7. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.

    PubMed

    Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.

  8. A brain computer interface using electrocorticographic signals in humans

    NASA Astrophysics Data System (ADS)

    Leuthardt, Eric C.; Schalk, Gerwin; Wolpaw, Jonathan R.; Ojemann, Jeffrey G.; Moran, Daniel W.

    2004-06-01

    Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first time that electrocorticographic (ECoG) activity recorded from the surface of the brain can enable users to control a one-dimensional computer cursor rapidly and accurately. We first identified ECoG signals that were associated with different types of motor and speech imagery. Over brief training periods of 3-24 min, four patients then used these signals to master closed-loop control and to achieve success rates of 74-100% in a one-dimensional binary task. In additional open-loop experiments, we found that ECoG signals at frequencies up to 180 Hz encoded substantial information about the direction of two-dimensional joystick movements. Our results suggest that an ECoG-based BCI could provide for people with severe motor disabilities a non-muscular communication and control option that is more powerful than EEG-based BCIs and is potentially more stable and less traumatic than BCIs that use electrodes penetrating the brain. The authors declare that they have no competing financial interests.

  9. Brain-computer interface on the basis of EEG system Encephalan

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander

    2018-04-01

    We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.

  10. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    PubMed Central

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  11. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.

    PubMed

    Luo, An; Sullivan, Thomas J

    2010-04-01

    We introduce a user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system. Single-channel EEG is recorded using a low-noise dry electrode. Compared to traditional gel-based multi-sensor EEG systems, a dry sensor proves to be more convenient, comfortable and cost effective. A hardware system was built that displays four LED light panels flashing at different frequencies and synchronizes with EEG acquisition. The visual stimuli have been carefully designed such that potential risk to photosensitive people is minimized. We describe a novel stimulus-locked inter-trace correlation (SLIC) method for SSVEP classification using EEG time-locked to stimulus onsets. We studied how the performance of the algorithm is affected by different selection of parameters. Using the SLIC method, the average light detection rate is 75.8% with very low error rates (an 8.4% false positive rate and a 1.3% misclassification rate). Compared to a traditional frequency-domain-based method, the SLIC method is more robust (resulting in less annoyance to the users) and is also suitable for irregular stimulus patterns.

  12. Brain-computer interfaces in neurological rehabilitation.

    PubMed

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  13. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain

    PubMed Central

    Giacometti, Paolo; Perdue, Katherine L.; Diamond, Solomon G.

    2014-01-01

    Background Interpretation and analysis of electroencephalography (EEG) measurements relies on the correspondence of electrode scalp coordinates to structural and functional regions of the brain. New Method An algorithm is introduced for automatic calculation of the International 10–20, 10-10, and 10-5 scalp coordinates of EEG electrodes on a boundary element mesh of a human head. The EEG electrode positions are then used to generate parcellation regions of the cerebral cortex based on proximity to the EEG electrodes. Results The scalp electrode calculation method presented in this study effectively and efficiently identifies EEG locations without prior digitization of coordinates. The average of electrode proximity parcellations of the cortex were tabulated with respect to structural and functional regions of the brain in a population of 20 adult subjects. Comparison with Existing Methods Parcellations based on electrode proximity and EEG sensitivity were compared. The parcellation regions based on sensitivity and proximity were found to have 44.0 ± 11.3% agreement when demarcated by the International 10–20, 32.4 ± 12.6% by the 10-10, and 24.7 ± 16.3% by the 10-5 electrode positioning system. Conclusions The EEG positioning algorithm is a fast and easy method of locating EEG scalp coordinates without the need for digitized electrode positions. The parcellation method presented summarizes the EEG scalp locations with respect to brain regions without computation of a full EEG forward model solution. The reference table of electrode proximity versus cortical regions may be used by experimenters to select electrodes that correspond to anatomical and functional regions of interest. PMID:24769168

  14. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain.

    PubMed

    Giacometti, Paolo; Perdue, Katherine L; Diamond, Solomon G

    2014-05-30

    Interpretation and analysis of electroencephalography (EEG) measurements relies on the correspondence of electrode scalp coordinates to structural and functional regions of the brain. An algorithm is introduced for automatic calculation of the International 10-20, 10-10, and 10-5 scalp coordinates of EEG electrodes on a boundary element mesh of a human head. The EEG electrode positions are then used to generate parcellation regions of the cerebral cortex based on proximity to the EEG electrodes. The scalp electrode calculation method presented in this study effectively and efficiently identifies EEG locations without prior digitization of coordinates. The average of electrode proximity parcellations of the cortex were tabulated with respect to structural and functional regions of the brain in a population of 20 adult subjects. Parcellations based on electrode proximity and EEG sensitivity were compared. The parcellation regions based on sensitivity and proximity were found to have 44.0 ± 11.3% agreement when demarcated by the International 10-20, 32.4 ± 12.6% by the 10-10, and 24.7 ± 16.3% by the 10-5 electrode positioning system. The EEG positioning algorithm is a fast and easy method of locating EEG scalp coordinates without the need for digitized electrode positions. The parcellation method presented summarizes the EEG scalp locations with respect to brain regions without computation of a full EEG forward model solution. The reference table of electrode proximity versus cortical regions may be used by experimenters to select electrodes that correspond to anatomical and functional regions of interest. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Brain-Computer Interface Based on Generation of Visual Images

    PubMed Central

    Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander

    2011-01-01

    This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. PMID:21695206

  16. Utilizing gamma band to improve mental task based brain-computer interface design.

    PubMed

    Palaniappan, Ramaswamy

    2006-09-01

    A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.

  17. Design of a mobile brain computer interface-based smart multimedia controller.

    PubMed

    Tseng, Kevin C; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-03-06

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user's physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user's physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user's EEG feature and select music according his/her state. The relationship between the user's state and music sorted by listener's preference was also examined in this study. The experimental results show that real-time music biofeedback according a user's EEG feature may positively improve the user's attention state.

  18. Noise Reduction in Brainwaves by Using Both EEG Signals and Frontal Viewing Camera Images

    PubMed Central

    Bang, Jae Won; Choi, Jong-Suk; Park, Kang Ryoung

    2013-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have been used in various applications, including human–computer interfaces, diagnosis of brain diseases, and measurement of cognitive status. However, EEG signals can be contaminated with noise caused by user's head movements. Therefore, we propose a new method that combines an EEG acquisition device and a frontal viewing camera to isolate and exclude the sections of EEG data containing these noises. This method is novel in the following three ways. First, we compare the accuracies of detecting head movements based on the features of EEG signals in the frequency and time domains and on the motion features of images captured by the frontal viewing camera. Second, the features of EEG signals in the frequency domain and the motion features captured by the frontal viewing camera are selected as optimal ones. The dimension reduction of the features and feature selection are performed using linear discriminant analysis. Third, the combined features are used as inputs to support vector machine (SVM), which improves the accuracy in detecting head movements. The experimental results show that the proposed method can detect head movements with an average error rate of approximately 3.22%, which is smaller than that of other methods. PMID:23669713

  19. Enhanced inter-subject brain computer interface with associative sensorimotor oscillations.

    PubMed

    Saha, Simanto; Ahmed, Khawza I; Mostafa, Raqibul; Khandoker, Ahsan H; Hadjileontiadis, Leontios

    2017-02-01

    Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.

  20. Training to use a commercial brain-computer interface as access technology: a case study.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn

    2016-01-01

    This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.

  1. Brain-computer interaction research at the Computer Vision and Multimedia Laboratory, University of Geneva.

    PubMed

    Pun, Thierry; Alecu, Teodor Iulian; Chanel, Guillaume; Kronegg, Julien; Voloshynovskiy, Sviatoslav

    2006-06-01

    This paper describes the work being conducted in the domain of brain-computer interaction (BCI) at the Multimodal Interaction Group, Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland. The application focus of this work is on multimodal interaction rather than on rehabilitation, that is how to augment classical interaction by means of physiological measurements. Three main research topics are addressed. The first one concerns the more general problem of brain source activity recognition from EEGs. In contrast with classical deterministic approaches, we studied iterative robust stochastic based reconstruction procedures modeling source and noise statistics, to overcome known limitations of current techniques. We also developed procedures for optimal electroencephalogram (EEG) sensor system design in terms of placement and number of electrodes. The second topic is the study of BCI protocols and performance from an information-theoretic point of view. Various information rate measurements have been compared for assessing BCI abilities. The third research topic concerns the use of EEG and other physiological signals for assessing a user's emotional status.

  2. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    PubMed Central

    Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong

    2016-01-01

    Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267

  3. Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills.

    PubMed

    Mahmoudi, Babak; Erfanian, Abbas

    2006-11-01

    Mental imagination is the essential part of the most EEG-based communication systems. Thus, the quality of mental rehearsal, the degree of imagined effort, and mind controllability should have a major effect on the performance of electro-encephalogram (EEG) based brain-computer interface (BCI). It is now well established that mental practice using motor imagery improves motor skills. The effects of mental practice on motor skill learning are the result of practice on central motor programming. According to this view, it seems logical that mental practice should modify the neuronal activity in the primary sensorimotor areas and consequently change the performance of EEG-based BCI. For developing a practical BCI system, recognizing the resting state with eyes opened and the imagined voluntary movement is important. For this purpose, the mind should be able to focus on a single goal for a period of time, without deviation to another context. In this work, we are going to examine the role of mental practice and concentration skills on the EEG control during imaginative hand movements. The results show that the mental practice and concentration can generally improve the classification accuracy of the EEG patterns. It is found that mental training has a significant effect on the classification accuracy over the primary motor cortex and frontal area.

  4. Monitoring alert and drowsy states by modeling EEG source nonstationarity

    NASA Astrophysics Data System (ADS)

    Hsu, Sheng-Hsiou; Jung, Tzyy-Ping

    2017-10-01

    Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r  =  -0.390 with alertness models and r  =  0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to monitoring cognitive or mental states of human operators in attention-critical settings or in passive brain-computer interfaces.

  5. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  6. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    PubMed

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  7. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    PubMed

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

  8. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses—An Application in Ischemic Stroke

    PubMed Central

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about −15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization. PMID:27378836

  9. Progress in EEG-Based Brain Robot Interaction Systems

    PubMed Central

    Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe

    2017-01-01

    The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488

  10. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG.

    PubMed

    Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai

    2017-03-01

    The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver's brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.

  11. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    PubMed

    Petrov, Yury; Sridhar, Srinivas

    2013-01-01

    We introduce the notion of Electric Field Encephalography (EFEG) based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM) head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  12. Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller

    PubMed Central

    Tseng, Kevin C.; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user’s physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user’s physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user’s EEG feature and select music according his/her state. The relationship between the user’s state and music sorted by listener’s preference was also examined in this study. The experimental results show that real-time music biofeedback according a user’s EEG feature may positively improve the user’s attention state. PMID:25756862

  13. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis.

    PubMed

    Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi

    2013-01-01

    This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.

  14. Computer-aided diagnosis of alcoholism-related EEG signals.

    PubMed

    Acharya, U Rajendra; S, Vidya; Bhat, Shreya; Adeli, Hojjat; Adeli, Amir

    2014-12-01

    Alcoholism is a severe disorder that affects the functionality of neurons in the central nervous system (CNS) and alters the behavior of the affected person. Electroencephalogram (EEG) signals can be used as a diagnostic tool in the evaluation of subjects with alcoholism. The neurophysiological interpretation of EEG signals in persons with alcoholism (PWA) is based on observation and interpretation of the frequency and power in their EEGs compared to EEG signals from persons without alcoholism. This paper presents a review of the known features of EEGs obtained from PWA and proposes that the impact of alcoholism on the brain can be determined by computer-aided analysis of EEGs through extracting the minute variations in the EEG signals that can differentiate the EEGs of PWA from those of nonaffected persons. The authors advance the idea of automated computer-aided diagnosis (CAD) of alcoholism by employing the EEG signals. This is achieved through judicious combination of signal processing techniques such as wavelet, nonlinear dynamics, and chaos theory and pattern recognition and classification techniques. A CAD system is cost-effective and efficient and can be used as a decision support system by physicians in the diagnosis and treatment of alcoholism especially those who do not specialize in alcoholism or neurophysiology. It can also be of great value to rehabilitation centers to assess PWA over time and to monitor the impact of treatment aimed at minimizing or reversing the effects of the disease on the brain. A CAD system can be used to determine the extent of alcoholism-related changes in EEG signals (low, medium, high) and the effectiveness of therapeutic plans. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Bayesian learning for spatial filtering in an EEG-based brain-computer interface.

    PubMed

    Zhang, Haihong; Yang, Huijuan; Guan, Cuntai

    2013-07-01

    Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.

  16. Post-acute stroke patients use brain-computer interface to activate electrical stimulation.

    PubMed

    Tan, H G; Kong, K H; Shee, C Y; Wang, C C; Guan, C T; Ang, W T

    2010-01-01

    Through certain mental actions, our electroencephalogram (EEG) can be regulated to operate a brain-computer interface (BCI), which translates the EEG patterns into commands that can be used to operate devices such as prostheses. This allows paralyzed persons to gain direct brain control of the paretic limb, which could open up many possibilities for rehabilitative and assistive applications. When using a BCI neuroprosthesis in stroke, one question that has surfaced is whether stroke patients are able to produce a sufficient change in EEG that can be used as a control signal to operate a prosthesis.

  17. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.

    PubMed

    Geng, Tao; Gan, John Q

    2008-01-01

    EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.

  18. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.

    PubMed

    Besio, Walter G; Cao, Hongbao; Zhou, Peng

    2008-04-01

    For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.

  19. Evaluation of a Compact Hybrid Brain-Computer Interface System

    PubMed Central

    Müller, Klaus-Robert; Schmitz, Christoph H.

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation. PMID:28373984

  20. Evaluation of a Compact Hybrid Brain-Computer Interface System.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-Robert; Schmitz, Christoph H; Kim, Do-Won; Hwang, Han-Jeong

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  1. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    PubMed

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  2. [Neurophysiological Foundations and Practical Realizations of the Brain-Machine Interfaces the Technology in Neurological Rehabilitation].

    PubMed

    Kaplan, A Ya

    2016-01-01

    Technology brain-computer interface (BCI) based on the registration and interpretation of EEG has recently become one of the most popular developments in neuroscience and psychophysiology. This is due not only to the intended future use of these technologies in many areas of practical human activity, but also to the fact that IMC--is a completely new paradigm in psychophysiology, allowing test hypotheses about the possibilities of the human brain to the development of skills of interaction with the outside world without the mediation of the motor system, i.e. only with the help of voluntary modulation of EEG generators. This paper examines the theoretical and experimental basis, the current state and prospects of development of training, communicational and assisting complexes based on BCI to control them without muscular effort on the basis of mental commands detected in the EEG of patients with severely impaired speech and motor system.

  3. Multimodal 2D Brain Computer Interface.

    PubMed

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  4. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata.

    PubMed

    Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-11-08

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.

  5. Deep learning for EEG-Based preference classification

    NASA Astrophysics Data System (ADS)

    Teo, Jason; Hou, Chew Lin; Mountstephens, James

    2017-10-01

    Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.

  6. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion

    PubMed Central

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain–computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method. PMID:28558002

  7. Spatiotemporal source tuning filter bank for multiclass EEG based brain computer interfaces.

    PubMed

    Acharya, Soumyadipta; Mollazadeh, Moshen; Murari, Kartikeya; Thakor, Nitish

    2006-01-01

    Non invasive brain-computer interfaces (BCI) allow people to communicate by modulating features of their electroencephalogram (EEG). Spatiotemporal filtering has a vital role in multi-class, EEG based BCI. In this study, we used a novel combination of principle component analysis, independent component analysis and dipole source localization to design a spatiotemporal multiple source tuning (SPAMSORT) filter bank, each channel of which was tuned to the activity of an underlying dipole source. Changes in the event-related spectral perturbation (ERSP) were measured and used to train a linear support vector machine to classify between four classes of motor imagery tasks (left hand, right hand, foot and tongue) for one subject. ERSP values were significantly (p<0.01) different across tasks and better (p<0.01) than conventional spatial filtering methods (large Laplacian and common average reference). Classification resulted in an average accuracy of 82.5%. This approach could lead to promising BCI applications such as control of a prosthesis with multiple degrees of freedom.

  8. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG

    PubMed Central

    Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai

    2017-01-01

    The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver’s brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety. PMID:28257073

  9. Brain-computer interface analysis of a dynamic visuo-motor task.

    PubMed

    Logar, Vito; Belič, Aleš

    2011-01-01

    The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could, therefore, be further used for the development of a closed-loop, non-invasive, brain-computer interface. For the case of this study two types of measurements were performed, i.e., the electroencephalographic (EEG) signals and the wrist movements were measured simultaneously, during the subject's performance of a dynamic visuo-motor task. Wrist-movement predictions were computed by using the EEG data-processing methodology of double brain-rhythm filtering, double phase demodulation and double principal component analyses (PCA), each with a separate set of parameters. For the movement-prediction model a fuzzy inference system was used. The results have shown that the EEG signals measured during the dVM tasks carry enough information about the subjects' wrist movements for them to be successfully decoded using the presented methodology. Reasonably high values of the correlation coefficients suggest that the validation of the proposed approach is satisfactory. Moreover, since the causality of the rhythm filtering and the PCA transformation has been achieved, we have shown that these methods can also be used in a real-time, brain-computer interface. The study revealed that using non-causal, optimized methods yields better prediction results in comparison with the causal, non-optimized methodology; however, taking into account that the causality of these methods allows real-time processing, the minor decrease in prediction quality is acceptable. The study suggests that the methodology that was proposed in our previous studies is also valid for identifying the EEG-coded content during dVM tasks, albeit with various modifications, which allow better prediction results and real-time data processing. The results have shown that wrist movements can be predicted in simulated or real time; however, the results of the non-causal, optimized methodology (simulated) are slightly better. Nevertheless, the study has revealed that these methods should be suitable for use in the development of a non-invasive, brain-computer interface. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  11. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  12. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    PubMed Central

    Zao, John K.; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system. PMID:24917804

  13. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology.

    PubMed

    Zao, John K; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.

  14. Feature study of hysterical blindness EEG based on FastICA with combined-channel information.

    PubMed

    Qin, Xuying; Wang, Wei; Hu, Lintao; Wang, Xu; Yuan, Xiaojie

    2015-01-01

    An appropriate feature study of hysteria electroencephalograms (EEG) would provide new insights into neural mechanisms of the disease, and also make improvements in patient diagnosis and management. The objective of this paper is to provide an explanation for what causes a particular visual loss, by associating the features of hysterical blindness EEG with brain function. An idea for the novel feature extraction for hysterical blindness EEG, utilizing combined-channel information, was applied in this paper. After channels had been combined, the sliding-window-FastICA was applied to process the combined normal EEG and hysteria EEG, respectively. Kurtosis features were calculated from the processed signals. As the comparison feature, the power spectral density of normal and hysteria EEG were computed. According to the feature analysis results, a region of brain dysfunction was located at the occipital lobe, O1 and O2. Furthermore, new abnormality was found at the parietal lobe, C3, C4, P3, and P4, that provided us with a new perspective for understanding hysterical blindness. Indicated by the kurtosis results which were consistent with brain function and the clinical diagnosis, our method was found to be a useful tool to capture features in hysterical blindness EEG.

  15. Comparison of simultaneously recorded [H2(15)O]-PET and LORETA during cognitive and pharmacological activation.

    PubMed

    Gamma, Alex; Lehmann, Dietrich; Frei, Edi; Iwata, Kazuki; Pascual-Marqui, Roberto D; Vollenweider, Franz X

    2004-06-01

    The complementary strengths and weaknesses of established functional brain imaging methods (high spatial, low temporal resolution) and EEG-based techniques (low spatial, high temporal resolution) make their combined use a promising avenue for studying brain processes at a more fine-grained level. However, this strategy requires a better understanding of the relationship between hemodynamic/metabolic and neuroelectric measures of brain activity. We investigated possible correspondences between cerebral blood flow (CBF) as measured by [H2O]-PET and intracerebral electric activity computed by Low Resolution Brain Electromagnetic Tomography (LORETA) from scalp-recorded multichannel EEG in healthy human subjects during cognitive and pharmacological stimulation. The two imaging modalities were compared by descriptive, correlational, and variance analyses, the latter carried out using statistical parametric mapping (SPM99). Descriptive visual comparison showed a partial overlap between the sets of active brain regions detected by the two modalities. A number of exclusively positive correlations of neuroelectric activity with regional CBF were found across the whole EEG frequency range, including slow wave activity, the latter finding being in contrast to most previous studies conducted in patients. Analysis of variance revealed an extensive lack of statistically significant correspondences between brain activity changes as measured by PET vs. EEG-LORETA. In general, correspondences, to the extent they were found, were dependent on experimental condition, brain region, and EEG frequency. Copyright 2004 Wiley-Liss, Inc.

  16. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be extended to any subsequent brain connectivity analyses used to construct the associated dynamic brain networks.

  17. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface

    PubMed Central

    Khan, M. Jawad; Hong, Melissa Jiyoun; Hong, Keum-Shik

    2014-01-01

    The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology. PMID:24808844

  18. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-03-05

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.

  19. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

    PubMed Central

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  20. Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces.

    PubMed

    Teli, Mohammad Nayeem; Anderson, Charles

    2009-01-01

    Patterns in electroencephalogram (EEG) signals are analyzed for a Brain Computer Interface (BCI). An important aspect of this analysis is the work on transformations of high dimensional EEG data to low dimensional spaces in which we can classify the data according to mental tasks being performed. In this research we investigate how a Neural Network (NN) in an auto-encoder with bottleneck configuration can find such a transformation. We implemented two approximate second-order methods to optimize the weights of these networks, because the more common first-order methods are very slow to converge for networks like these with more than three layers of computational units. The resulting non-linear projections of time embedded EEG signals show interesting separations that are related to tasks. The bottleneck networks do indeed discover nonlinear transformations to low-dimensional spaces that capture much of the information present in EEG signals. However, the resulting low-dimensional representations do not improve classification rates beyond what is possible using Quadratic Discriminant Analysis (QDA) on the original time-lagged EEG.

  1. Automatic epileptic seizure detection in EEGs using MF-DFA, SVM based on cloud computing.

    PubMed

    Zhang, Zhongnan; Wen, Tingxi; Huang, Wei; Wang, Meihong; Li, Chunfeng

    2017-01-01

    Epilepsy is a chronic disease with transient brain dysfunction that results from the sudden abnormal discharge of neurons in the brain. Since electroencephalogram (EEG) is a harmless and noninvasive detection method, it plays an important role in the detection of neurological diseases. However, the process of analyzing EEG to detect neurological diseases is often difficult because the brain electrical signals are random, non-stationary and nonlinear. In order to overcome such difficulty, this study aims to develop a new computer-aided scheme for automatic epileptic seizure detection in EEGs based on multi-fractal detrended fluctuation analysis (MF-DFA) and support vector machine (SVM). New scheme first extracts features from EEG by MF-DFA during the first stage. Then, the scheme applies a genetic algorithm (GA) to calculate parameters used in SVM and classify the training data according to the selected features using SVM. Finally, the trained SVM classifier is exploited to detect neurological diseases. The algorithm utilizes MLlib from library of SPARK and runs on cloud platform. Applying to a public dataset for experiment, the study results show that the new feature extraction method and scheme can detect signals with less features and the accuracy of the classification reached up to 99%. MF-DFA is a promising approach to extract features for analyzing EEG, because of its simple algorithm procedure and less parameters. The features obtained by MF-DFA can represent samples as well as traditional wavelet transform and Lyapunov exponents. GA can always find useful parameters for SVM with enough execution time. The results illustrate that the classification model can achieve comparable accuracy, which means that it is effective in epileptic seizure detection.

  2. A Comparative Study of Different EEG Reference Choices for Diagnosing Unipolar Depression.

    PubMed

    Mumtaz, Wajid; Malik, Aamir Saeed

    2018-06-02

    The choice of an electroencephalogram (EEG) reference has fundamental importance and could be critical during clinical decision-making because an impure EEG reference could falsify the clinical measurements and subsequent inferences. In this research, the suitability of three EEG references was compared while classifying depressed and healthy brains using a machine-learning (ML)-based validation method. In this research, the EEG data of 30 unipolar depressed subjects and 30 age-matched healthy controls were recorded. The EEG data were analyzed in three different EEG references, the link-ear reference (LE), average reference (AR), and reference electrode standardization technique (REST). The EEG-based functional connectivity (FC) was computed. Also, the graph-based measures, such as the distances between nodes, minimum spanning tree, and maximum flow between the nodes for each channel pair, were calculated. An ML scheme provided a mechanism to compare the performances of the extracted features that involved a general framework such as the feature extraction (graph-based theoretic measures), feature selection, classification, and validation. For comparison purposes, the performance metrics such as the classification accuracies, sensitivities, specificities, and F scores were computed. When comparing the three references, the diagnostic accuracy showed better performances during the REST, while the LE and AR showed less discrimination between the two groups. Based on the results, it can be concluded that the choice of appropriate reference is critical during the clinical scenario. The REST reference is recommended for future applications of EEG-based diagnosis of mental illnesses.

  3. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.

    PubMed

    Rutkowski, Tomasz M; Mori, Hiromu

    2015-04-15

    The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    PubMed Central

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  5. An embedded implementation based on adaptive filter bank for brain-computer interface systems.

    PubMed

    Belwafi, Kais; Romain, Olivier; Gannouni, Sofien; Ghaffari, Fakhreddine; Djemal, Ridha; Ouni, Bouraoui

    2018-07-15

    Brain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers. Therefore, there is a great interest in implementing BCI on embedded platforms to meet system specifications in terms of time response, cost effectiveness, power consumption, and accuracy. This article presents an embedded-BCI (EBCI) system based on a Stratix-IV field programmable gate array. The proposed system relays on the weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals by analyzing the event-related desynchronization/synchronization (ERD/ERS). The EEG-signals are classified, using the linear discriminant analysis algorithm, based on their spatial features. The proposed system performs fast classification within a time delay of 0.430 s/trial, achieving an average accuracy of 76.80% according to an offline approach and 80.25% using our own recording. The estimated power consumption of the prototype is approximately 0.7 W. Results show that the proposed EBCI system reduces the overall classification error rate for the three datasets of the BCI-competition by 5% compared to other similar implementations. Moreover, experiment shows that the proposed system maintains a high accuracy rate with a short processing time, a low power consumption, and a low cost. Performing dynamic filtering of EEG-signals using WOLA increases the recognition rate of ERD/ERS patterns of motor imagery brain activity. This approach allows to develop a complete prototype of a EBCI system that achieves excellent accuracy rates. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control.

    PubMed

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain-computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG-fNIRS interface.

  7. A brain-computer interface to support functional recovery.

    PubMed

    Kjaer, Troels W; Sørensen, Helge B

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating communication in the rather few patients with locked-in syndrome, much interest is now devoted to the therapeutic use of BCI in rehabilitation. For this latter group of patients, the device is not intended to be a lifelong assistive companion but rather a 'teacher' during the rehabilitation period. Copyright © 2013 S. Karger AG, Basel.

  8. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Vitiello, Nicola; Birbaumer, Niels

    2015-06-01

    The loss of hand function can result in severe physical and psychosocial impairment. Thus, compensation of a lost hand function using assistive robotics that can be operated in daily life is very desirable. However, versatile, intuitive, and reliable control of assistive robotics is still an unsolved challenge. Here, we introduce a novel brain/neural-computer interaction (BNCI) system that integrates electroencephalography (EEG) and electrooculography (EOG) to improve control of assistive robotics in daily life environments. To evaluate the applicability and performance of this hybrid approach, five healthy volunteers (HV) (four men, average age 26.5 ± 3.8 years) and a 34-year-old patient with complete finger paralysis due to a brachial plexus injury (BPI) used EEG (condition 1) and EEG/EOG (condition 2) to control grasping motions of a hand exoskeleton. All participants were able to control the BNCI system (BNCI control performance HV: 70.24 ± 16.71%, BPI: 65.93 ± 24.27%), but inclusion of EOG significantly improved performance across all participants (HV: 80.65 ± 11.28, BPI: 76.03 ± 18.32%). This suggests that hybrid BNCI systems can achieve substantially better control over assistive devices, e.g., a hand exoskeleton, than systems using brain signals alone and thus may increase applicability of brain-controlled assistive devices in daily life environments.

  9. A brain-computer interface controlled mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  10. EEG-Based Brain-Computer Interface for Decoding Motor Imagery Tasks within the Same Hand Using Choi-Williams Time-Frequency Distribution

    PubMed Central

    Alwanni, Hisham; Baslan, Yara; Alnuman, Nasim; Daoud, Mohammad I.

    2017-01-01

    This paper presents an EEG-based brain-computer interface system for classifying eleven motor imagery (MI) tasks within the same hand. The proposed system utilizes the Choi-Williams time-frequency distribution (CWD) to construct a time-frequency representation (TFR) of the EEG signals. The constructed TFR is used to extract five categories of time-frequency features (TFFs). The TFFs are processed using a hierarchical classification model to identify the MI task encapsulated within the EEG signals. To evaluate the performance of the proposed approach, EEG data were recorded for eighteen intact subjects and four amputated subjects while imagining to perform each of the eleven hand MI tasks. Two performance evaluation analyses, namely channel- and TFF-based analyses, are conducted to identify the best subset of EEG channels and the TFFs category, respectively, that enable the highest classification accuracy between the MI tasks. In each evaluation analysis, the hierarchical classification model is trained using two training procedures, namely subject-dependent and subject-independent procedures. These two training procedures quantify the capability of the proposed approach to capture both intra- and inter-personal variations in the EEG signals for different MI tasks within the same hand. The results demonstrate the efficacy of the approach for classifying the MI tasks within the same hand. In particular, the classification accuracies obtained for the intact and amputated subjects are as high as 88.8% and 90.2%, respectively, for the subject-dependent training procedure, and 80.8% and 87.8%, respectively, for the subject-independent training procedure. These results suggest the feasibility of applying the proposed approach to control dexterous prosthetic hands, which can be of great benefit for individuals suffering from hand amputations. PMID:28832513

  11. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.

    PubMed

    Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen

    2016-10-01

    This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  13. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  14. Brain-computer interface with language model-electroencephalography fusion for locked-in syndrome.

    PubMed

    Oken, Barry S; Orhan, Umut; Roark, Brian; Erdogmus, Deniz; Fowler, Andrew; Mooney, Aimee; Peters, Betts; Miller, Meghan; Fried-Oken, Melanie B

    2014-05-01

    Some noninvasive brain-computer interface (BCI) systems are currently available for locked-in syndrome (LIS) but none have incorporated a statistical language model during text generation. To begin to address the communication needs of individuals with LIS using a noninvasive BCI that involves rapid serial visual presentation (RSVP) of symbols and a unique classifier with electroencephalography (EEG) and language model fusion. The RSVP Keyboard was developed with several unique features. Individual letters are presented at 2.5 per second. Computer classification of letters as targets or nontargets based on EEG is performed using machine learning that incorporates a language model for letter prediction via Bayesian fusion enabling targets to be presented only 1 to 4 times. Nine participants with LIS and 9 healthy controls were enrolled. After screening, subjects first calibrated the system, and then completed a series of balanced word generation mastery tasks that were designed with 5 incremental levels of difficulty, which increased by selecting phrases for which the utility of the language model decreased naturally. Six participants with LIS and 9 controls completed the experiment. All LIS participants successfully mastered spelling at level 1 and one subject achieved level 5. Six of 9 control participants achieved level 5. Individuals who have incomplete LIS may benefit from an EEG-based BCI system, which relies on EEG classification and a statistical language model. Steps to further improve the system are discussed.

  15. EEG datasets for motor imagery brain-computer interface.

    PubMed

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  16. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  17. As above, so below? Towards understanding inverse models in BCI

    NASA Astrophysics Data System (ADS)

    Lindgren, Jussi T.

    2018-02-01

    Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.

  18. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

    PubMed

    Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro

    2016-12-01

    Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.

  19. Graph Theory at the Service of Electroencephalograms.

    PubMed

    Iakovidou, Nantia D

    2017-04-01

    The brain is one of the largest and most complex organs in the human body and EEG is a noninvasive electrophysiological monitoring method that is used to record the electrical activity of the brain. Lately, the functional connectivity in human brain has been regarded and studied as a complex network using EEG signals. This means that the brain is studied as a connected system where nodes, or units, represent different specialized brain regions and links, or connections, represent communication pathways between the nodes. Graph theory and theory of complex networks provide a variety of measures, methods, and tools that can be useful to efficiently model, analyze, and study EEG networks. This article is addressed to computer scientists who wish to be acquainted and deal with the study of EEG data and also to neuroscientists who would like to become familiar with graph theoretic approaches and tools to analyze EEG data.

  20. Fusion with Language Models Improves Spelling Accuracy for ERP-based Brain Computer Interface Spellers

    PubMed Central

    Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie

    2013-01-01

    Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652

  1. Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces

    NASA Astrophysics Data System (ADS)

    Gutiérrez, David

    2008-08-01

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.

  2. Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, David

    2008-08-11

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEGmore » data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.« less

  3. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.

    PubMed

    Saa, Jaime F Delgado; Çetin, Müjdat

    2012-04-01

    We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on autoregressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for the classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy.

  4. [Design and implementation of controlling smart car systems using P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie; Hu, Bei

    2013-04-01

    Using human electroencephalogram (EEG) to control external devices in order to achieve a variety of functions has been focus of the field of brain-computer interface (BCI) research. P300 is experiments which stimulate the eye to produce EEG by using letters flashing, and then identify the corresponding letters. In this paper, some improvements based on the P300 experiments were made??. Firstly, the matrix of flashing letters were modified into words which represent a certain sense. Secondly, the BCI2000 procedures were added with the corresponding source code. Thirdly, the smart car systems were designed using the radiofrequency signal. Finally it was realized that the evoked potentials were used to control the state of the smart car.

  5. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    PubMed

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.

  6. Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

    PubMed Central

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718

  7. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.

    PubMed

    Mannan, Malik M Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M Ahmad

    2016-02-19

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.

  8. New KF-PP-SVM classification method for EEG in brain-computer interfaces.

    PubMed

    Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian

    2014-01-01

    Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.

  9. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  10. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System.

    PubMed

    Gao, Qiang; Dou, Lixiang; Belkacem, Abdelkader Nasreddine; Chen, Chao

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, "teeth clenching" state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of "teeth clenching" condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word "HI" which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control.

  11. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System

    PubMed Central

    Gao, Qiang

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, “teeth clenching” state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of “teeth clenching” condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word “HI” which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control. PMID:28660211

  12. The Self-Paced Graz Brain-Computer Interface: Methods and Applications

    PubMed Central

    Scherer, Reinhold; Schloegl, Alois; Lee, Felix; Bischof, Horst; Janša, Janez; Pfurtscheller, Gert

    2007-01-01

    We present the self-paced 3-class Graz brain-computer interface (BCI) which is based on the detection of sensorimotor electroencephalogram (EEG) rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control) or not (non-control state). The presented system is able to automatically reduce electrooculogram (EOG) artifacts, to detect electromyographic (EMG) activity, and uses only three bipolar EEG channels. Two applications are presented: the freeSpace virtual environment (VE) and the Brainloop interface. The freeSpace is a computer-game-like application where subjects have to navigate through the environment and collect coins by autonomously selecting navigation commands. Three subjects participated in these feedback experiments and each learned to navigate through the VE and collect coins. Two out of the three succeeded in collecting all three coins. The Brainloop interface provides an interface between the Graz-BCI and Google Earth. PMID:18350133

  13. [Research of controlling of smart home system based on P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  14. Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.

    PubMed

    Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad

    2017-01-01

    Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

  15. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.

  16. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J

    2009-03-01

    Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.

  17. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  18. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.

    PubMed

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Brain-computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  19. An experimental model of an indigenous BCI based system to help disabled people to communicate

    NASA Astrophysics Data System (ADS)

    Kabir, Kazi Sadman; Rahman, Chowdhury M. Abid; Farayez, Araf; Ferdous, Mahbuba

    2017-12-01

    In this paper a Brain Computer Interface (BCI) system has been proposed to help patients suffering from motor disease, paralysis or locked in syndrome to communicate via eye blinking. In this proposed BCI system EEG data is fetched by NeuroSky Headset and then analyzed by the help of WPF (Windows Presentation Foundation) based serial monitor to detect the EEG signal when the eye gives a blink. This detection of eye blinking can be used to select predefined texts and those texts can be converted to speech. The experimental result shows that this system can be used as an effective and efficient tool to communicate through brain.

  20. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    NASA Astrophysics Data System (ADS)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  1. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    PubMed

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  2. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  3. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries.

  4. Application of a brain-computer interface for person authentication using EEG responses to photo stimuli.

    PubMed

    Mu, Zhendong; Yin, Jinhai; Hu, Jianfeng

    2018-01-01

    In this paper, a person authentication system that can effectively identify individuals by generating unique electroencephalogram signal features in response to self-face and non-self-face photos is presented. In order to achieve a good stability performance, the sequence of self-face photo including first-occurrence position and non-first-occurrence position are taken into account in the serial occurrence of visual stimuli. In addition, a Fisher linear classification method and event-related potential technique for feature analysis is adapted to yield remarkably better outcomes than that by most of the existing methods in the field. The results have shown that the EEG-based person authentications via brain-computer interface can be considered as a suitable approach for biometric authentication system.

  5. Characterization of electroencephalography signals for estimating saliency features in videos.

    PubMed

    Liang, Zhen; Hamada, Yasuyuki; Oba, Shigeyuki; Ishii, Shin

    2018-05-12

    Understanding the functions of the visual system has been one of the major targets in neuroscience formany years. However, the relation between spontaneous brain activities and visual saliency in natural stimuli has yet to be elucidated. In this study, we developed an optimized machine learning-based decoding model to explore the possible relationships between the electroencephalography (EEG) characteristics and visual saliency. The optimal features were extracted from the EEG signals and saliency map which was computed according to an unsupervised saliency model ( Tavakoli and Laaksonen, 2017). Subsequently, various unsupervised feature selection/extraction techniques were examined using different supervised regression models. The robustness of the presented model was fully verified by means of ten-fold or nested cross validation procedure, and promising results were achieved in the reconstruction of saliency features based on the selected EEG characteristics. Through the successful demonstration of using EEG characteristics to predict the real-time saliency distribution in natural videos, we suggest the feasibility of quantifying visual content through measuring brain activities (EEG signals) in real environments, which would facilitate the understanding of cortical involvement in the processing of natural visual stimuli and application developments motivated by human visual processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study Using a Brain-Computer Interface.

    PubMed

    Fernández-Soto, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio

    2018-06-01

    For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.

  7. A hybrid brain-computer interface-based mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  8. A Hybrid Brain-Computer Interface-Based Mail Client

    PubMed Central

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880

  9. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  10. A quantitative evaluation of dry-sensor electroencephalography

    NASA Astrophysics Data System (ADS)

    Uy, E. Timothy

    Neurologists, neuroscientists, and experimental psychologists study electrical activity within the brain by recording voltage fluctuations at the scalp. This is electroencephalography (EEG). In conventional or "wet" EEG, scalp abrasion and use of electrolytic paste are required to insure good electrical connection between sensor and skin. Repeated abrasion quickly becomes irritating to subjects, severely limiting the number and frequency of sessions. Several groups have produced "dry" EEG sensors that do not require abrasion or conductive paste. These, in addition to sidestepping the issue of abrasion, promise to reduce setup time from about 30 minutes with a technician to less than 30 seconds without one. The availability of such an instrument would (1) reduce the cost of brain-related medical care, (2) lower the barrier of entry on brain experimentation, and (3) allow individual subjects to contribute substantially more data without fear of abrasion or fatigue. Accuracy of the EEG is paramount in the medical diagnosis of epilepsy, in experimental psychology and in the burgeoning field of brain-computer interface. Without a sufficiently accurate measurement, the advantages of dry sensors remain a moot point. However, even after nearly a decade, demonstrations of dry EEG accuracy with respect to wet have been limited to visual comparison of short snippets of spontaneous EEG, averaged event-related potentials or plots of power spectrum. In this dissertation, I propose a detailed methodology based on single-trial EEG classification for comparing dry EEG sensors to their wet counterparts. Applied to a set of commercially fabricated dry sensors, this work reveals that dry sensors can perform as well their wet counterparts with careful screening and attention to the bandwidth of interest.

  11. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    PubMed

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  12. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher's Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    PubMed Central

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-01-01

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837

  13. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.

    PubMed

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-07-24

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.

  14. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.

    PubMed

    Iturrate, I; Montesano, L; Minguez, J

    2013-04-01

    A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  15. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  16. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.

    PubMed

    Foldes, Stephen T; Taylor, Dawn M

    2013-12-21

    Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.

  17. A subject-independent pattern-based Brain-Computer Interface

    PubMed Central

    Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089

  18. Reduction in time-to-sleep through EEG based brain state detection and audio stimulation.

    PubMed

    Zhuo Zhang; Cuntai Guan; Ti Eu Chan; Juanhong Yu; Aung Aung Phyo Wai; Chuanchu Wang; Haihong Zhang

    2015-08-01

    We developed an EEG- and audio-based sleep sensing and enhancing system, called iSleep (interactive Sleep enhancement apparatus). The system adopts a closed-loop approach which optimizes the audio recording selection based on user's sleep status detected through our online EEG computing algorithm. The iSleep prototype comprises two major parts: 1) a sleeping mask integrated with a single channel EEG electrode and amplifier, a pair of stereo earphones and a microcontroller with wireless circuit for control and data streaming; 2) a mobile app to receive EEG signals for online sleep monitoring and audio playback control. In this study we attempt to validate our hypothesis that appropriate audio stimulation in relation to brain state can induce faster onset of sleep and improve the quality of a nap. We conduct experiments on 28 healthy subjects, each undergoing two nap sessions - one with a quiet background and one with our audio-stimulation. We compare the time-to-sleep in both sessions between two groups of subjects, e.g., fast and slow sleep onset groups. The p-value obtained from Wilcoxon Signed Rank Test is 1.22e-04 for slow onset group, which demonstrates that iSleep can significantly reduce the time-to-sleep for people with difficulty in falling sleep.

  19. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    PubMed

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  20. Online EEG artifact removal for BCI applications by adaptive spatial filtering.

    PubMed

    Guarnieri, Roberto; Marino, Marco; Barban, Federico; Ganzetti, Marco; Mantini, Dante

    2018-06-28

    The performance of brain computer interfaces (BCIs) based on electroencephalography (EEG) data strongly depends on the effective attenuation of artifacts that are mixed in the recordings. To address this problem, we have developed a novel online EEG artifact removal method for BCI applications, which combines blind source separation (BSS) and regression (REG) analysis. The BSS-REG method relies on the availability of a calibration dataset of limited duration for the initialization of a spatial filter using BSS. Online artifact removal is implemented by dynamically adjusting the spatial filter in the actual experiment, based on a linear regression technique. Our results showed that the BSS-REG method is capable of attenuating different kinds of artifacts, including ocular and muscular, while preserving true neural activity. Thanks to its low computational requirements, BSS-REG can be applied to low-density as well as high-density EEG data. We argue that BSS-REG may enable the development of novel BCI applications requiring high-density recordings, such as source-based neurofeedback and closed-loop neuromodulation. © 2018 IOP Publishing Ltd.

  1. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.

    2018-04-01

    Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  2. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    PubMed

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  3. Predicting epileptic seizures from scalp EEG based on attractor state analysis.

    PubMed

    Chu, Hyunho; Chung, Chun Kee; Jeong, Woorim; Cho, Kwang-Hyun

    2017-05-01

    Epilepsy is the second most common disease of the brain. Epilepsy makes it difficult for patients to live a normal life because it is difficult to predict when seizures will occur. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. In this paper, we investigate a novel seizure precursor based on attractor state analysis for seizure prediction. We analyze the transition process from normal to seizure attractor state and investigate a precursor phenomenon seen before reaching the seizure attractor state. From the result of an analysis, we define a quantified spectral measure in scalp EEG for seizure prediction. From scalp EEG recordings, the Fourier coefficients of six EEG frequency bands are extracted, and the defined spectral measure is computed based on the coefficients for each half-overlapped 20-second-long window. The computed spectral measure is applied to seizure prediction using a low-complexity methodology. Within scalp EEG, we identified an early-warning indicator before an epileptic seizure occurs. Getting closer to the bifurcation point that triggers the transition from normal to seizure state, the power spectral density of low frequency bands of the perturbation of an attractor in the EEG, showed a relative increase. A low-complexity seizure prediction algorithm using this feature was evaluated, using ∼583h of scalp EEG in which 143 seizures in 16 patients were recorded. With the test dataset, the proposed method showed high sensitivity (86.67%) with a false prediction rate of 0.367h -1 and average prediction time of 45.3min. A novel seizure prediction method using scalp EEG, based on attractor state analysis, shows potential for application with real epilepsy patients. This is the first study in which the seizure-precursor phenomenon of an epileptic seizure is investigated based on attractor-based analysis of the macroscopic dynamics of the brain. With the scalp EEG, we first propose use of a spectral feature identified for seizure prediction, in which the dynamics of an attractor are excluded, and only the perturbation dynamics from the attractor are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.

    PubMed

    Siuly; Li, Yan; Paul Wen, Peng

    2014-03-01

    Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Double-blind, placebo-controlled, multiple-ascending-dose study on the pharmacodynamics of ABIO-08/01, a new CNS drug with potential anxiolytic activity. 2. EEG-tomography findings based on LORETA (low-resolution brain electromagnetic tomography).

    PubMed

    Saletu, Bernd; Anderer, Peter; Wolzt, Michael; Nosiska, Dorothea; Assandri, Alessandro; Noseda, Emanuele; Nannipieri, Fabrizio; Saletu-Zyhlarz, Gerda M

    2009-01-01

    Effects of ABIO-08/01, a new potentially anxiolytic isoxazoline, on regional electrical brain generators were investigated by 3-dimensional EEG tomography. In a double- blind, placebo-controlled, multiple-ascending-dose study, 16 healthy males (30.2 +/- 5.7 years) received 3 oral drug doses (10, 20, 40 mg) and placebo for 7 days (8-day wash-out) in a randomized non-balanced design for phase-1 studies. A 3-min vigilance-controlled (V) EEG, a 4-min resting (R) EEG with eyes closed, a 1-min eyes-open (EO) EEG and psychometric tests were performed 0, 1 and 6 h after taking the drug on days 1 and 5. Low-resolution brain electromagnetic tomography (LORETA) was computed from the spectrally analyzed EEG data, and differences between drug and placebo were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux Human Brain Atlas available as a digitized MRI. An overall omnibus significance test followed by a voxel-by-voxel t test demonstrated significant regional EEG changes after ABIO-08/01 versus placebo, dependent on recording condition, dose and time. While in the EO-EEG specifically the lowest dose of ABIO-08/01 induced pronounced sedative effects (delta/theta and beta increase) 1 h after acute and slightly less so after superimposed administration, in the 6th hour a decrease in alpha and beta activity signaled less sedative and more relaxant action. In the V-EEG these changes were less pronounced, in the R-EEG partly opposite. Hemisphere-specific changes were observed, suggesting increases in LORETA power over the left temporal, parietal, superior frontal regions and decreases over the right prefrontal, temporal pole and occipital regions. These LORETA changes are discussed in the light of neuroimaging findings on anxiety and anxiolytics. 2009 S. Karger AG, Basel.

  6. Model-free and model-based reward prediction errors in EEG.

    PubMed

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  8. Mechanisms of Neurofeedback: A Computation-theoretic Approach.

    PubMed

    Davelaar, Eddy J

    2018-05-15

    Neurofeedback training is a form of brain training in which information about a neural measure is fed back to the trainee who is instructed to increase or decrease the value of that particular measure. This paper focuses on electroencephalography (EEG) neurofeedback in which the neural measures of interest are the brain oscillations. To date, the neural mechanisms that underlie successful neurofeedback training are still unexplained. Such an understanding would benefit researchers, funding agencies, clinicians, regulatory bodies, and insurance firms. Based on recent empirical work, an emerging theory couched firmly within computational neuroscience is proposed that advocates a critical role of the striatum in modulating EEG frequencies. The theory is implemented as a computer simulation of peak alpha upregulation, but in principle any frequency band at one or more electrode sites could be addressed. The simulation successfully learns to increase its peak alpha frequency and demonstrates the influence of threshold setting - the threshold that determines whether positive or negative feedback is provided. Analyses of the model suggest that neurofeedback can be likened to a search process that uses importance sampling to estimate the posterior probability distribution over striatal representational space, with each representation being associated with a distribution of values of the target EEG band. The model provides an important proof of concept to address pertinent methodological questions about how to understand and improve EEG neurofeedback success. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Hybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal

    PubMed Central

    Mannan, Malik M. Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M. Ahmad

    2016-01-01

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data. PMID:26907276

  10. Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features

    PubMed Central

    Song, Le; Epps, Julien

    2007-01-01

    Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986

  11. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  12. Brain Network Regional Synchrony Analysis in Deafness

    PubMed Central

    Xu, Lei; Liang, Mao-Jin

    2018-01-01

    Deafness, the most common auditory disease, has greatly affected people for a long time. The major treatment for deafness is cochlear implantation (CI). However, till today, there is still a lack of objective and precise indicator serving as evaluation of the effectiveness of the cochlear implantation. The goal of this EEG-based study is to effectively distinguish CI children from those prelingual deafened children without cochlear implantation. The proposed method is based on the functional connectivity analysis, which focuses on the brain network regional synchrony. Specifically, we compute the functional connectivity between each channel pair first. Then, we quantify the brain network synchrony among regions of interests (ROIs), where both intraregional synchrony and interregional synchrony are computed. And finally the synchrony values are concatenated to form the feature vector for the SVM classifier. What is more, we develop a new ROI partition method of 128-channel EEG recording system. That is, both the existing ROI partition method and the proposed ROI partition method are used in the experiments. Compared with the existing EEG signal classification methods, our proposed method has achieved significant improvements as large as 87.20% and 86.30% when the existing ROI partition method and the proposed ROI partition method are used, respectively. It further demonstrates that the new ROI partition method is comparable to the existing ROI partition method. PMID:29854776

  13. Concurrent EEG And NIRS Tomographic Imaging Based on Wearable Electro-Optodes

    DTIC Science & Technology

    2014-04-13

    Interfaces   ( BCIs ),   and   other   systems   in   the   same   computational   framework.   Figure   11   below   shows...Improving  Brain-­‐Computer   Interfaces  Using   Independent  Component   Analysis,  In:  Towards  Future   BCIs ,  2012

  14. Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization.

    PubMed

    Lehmann, Dietrich; Faber, Pascal L; Gianotti, Lorena R R; Kochi, Kieko; Pascual-Marqui, Roberto D

    2006-01-01

    Brain electric mechanisms of temporary, functional binding between brain regions are studied using computation of scalp EEG coherence and phase locking, sensitive to time differences of few milliseconds. However, such results if computed from scalp data are ambiguous since electric sources are spatially oriented. Non-ambiguous results can be obtained using calculated time series of strength of intracerebral model sources. This is illustrated applying LORETA modeling to EEG during resting and meditation. During meditation, time series of LORETA model sources revealed a tendency to decreased left-right intracerebral coherence in the delta band, and to increased anterior-posterior intracerebral coherence in the theta band. An alternate conceptualization of functional binding is based on the observation that brain electric activity is discontinuous, i.e., that it occurs in chunks of up to about 100 ms duration that are detectable as quasi-stable scalp field configurations of brain electric activity, called microstates. Their functional significance is illustrated in spontaneous and event-related paradigms, where microstates associated with imagery- versus abstract-type mentation, or while reading positive versus negative emotion words showed clearly different regions of cortical activation in LORETA tomography. These data support the concept that complete brain functions of higher order such as a momentary thought might be incorporated in temporal chunks of processing in the range of tens to about 100 ms as quasi-stable brain states; during these time windows, subprocesses would be accepted as members of the ongoing chunk of processing.

  15. BCIs in the Laboratory and at Home: The Wadsworth Research Program

    NASA Astrophysics Data System (ADS)

    Sellers, Eric W.; McFarland, Dennis J.; Vaughan, Theresa M.; Wolpaw, Jonathan R.

    Many people with severe motor disabilities lack the muscle control that would allow them to rely on conventional methods of augmentative communication and control. Numerous studies over the past two decades have indicated that scalp-recorded electroencephalographic (EEG) activity can be the basis for non-muscular communication and control systems, commonly called brain-computer interfaces (BCIs) [55]. EEG-based BCI systems measure specific features of EEG activity and translate these features into device commands. The most commonly used features are rhythms produced by the sensorimotor cortex [38, 55, 56, 59], slow cortical potentials [4, 5, 23], and the P300 event-related potential [12, 17, 46]. Systems based on sensorimotor rhythms or slow cortical potentials use oscillations or transient signals that are spontaneous in the sense that they are not dependent on specific sensory events. Systems based on the P300 response use transient signals in the EEG that are elicited by specific stimuli.

  16. Near-Infrared Spectroscopy – Electroencephalography-Based Brain-State-Dependent Electrotherapy: A Computational Approach Based on Excitation–Inhibition Balance Hypothesis

    PubMed Central

    Dagar, Snigdha; Chowdhury, Shubhajit Roy; Bapi, Raju Surampudi; Dutta, Anirban; Roy, Dipanjan

    2016-01-01

    Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The poststroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we propose a computational approach based on excitation–inhibition (E–I) balance hypothesis to objectively quantify the poststroke individual brain state using online fNIRS–EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local E–I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using a computational pipeline that includes individual “forward models” to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons, which can be captured with E–I-based brain models. Furthermore, E–I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing, which can then be implicated in changes in function. We first review the evidence that shows how this local imbalance between E–I leading to functional dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosensory cortex) resulting in large-scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Second, we show evidence how BSDE based on E–I balance hypothesis may target a specific brain site or network as an adjuvant treatment. Hence, computational neural mass model-based integration of neurostimulation with online neuroimaging systems may provide less ambiguous, robust optimization of NIBS, and its application in neurological conditions and disorders across individual patients. PMID:27551273

  17. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  18. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface.

    PubMed

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1). Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  19. The impact of loss of control on movement BCIs.

    PubMed

    Reuderink, Boris; Poel, Mannes; Nijholt, Anton

    2011-12-01

    Brain-computer interfaces (BCIs) are known to suffer from spontaneous changes in the brain activity. If changes in the mental state of the user are reflected in the brain signals used for control, the behavior of a BCI is directly influenced by these states. We investigate the influence of a state of loss of control in a variant of Pacman on the performance of BCIs based on motor control. To study the effect a temporal loss of control has on the BCI performance, BCI classifiers were trained on electroencephalography (EEG) recorded during the normal control condition, and the classification performance on segments of EEG from the normal and loss of control condition was compared. Classifiers based on event-related desynchronization unexpectedly performed significantly better during the loss of control condition; for the event-related potential classifiers there was no significant difference in performance.

  20. Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening.

    PubMed

    Lin, Yuan-Pin; Yang, Yi-Hsuan; Jung, Tzyy-Ping

    2014-01-01

    Electroencephalography (EEG)-based emotion classification during music listening has gained increasing attention nowadays due to its promise of potential applications such as musical affective brain-computer interface (ABCI), neuromarketing, music therapy, and implicit multimedia tagging and triggering. However, music is an ecologically valid and complex stimulus that conveys certain emotions to listeners through compositions of musical elements. Using solely EEG signals to distinguish emotions remained challenging. This study aimed to assess the applicability of a multimodal approach by leveraging the EEG dynamics and acoustic characteristics of musical contents for the classification of emotional valence and arousal. To this end, this study adopted machine-learning methods to systematically elucidate the roles of the EEG and music modalities in the emotion modeling. The empirical results suggested that when whole-head EEG signals were available, the inclusion of musical contents did not improve the classification performance. The obtained performance of 74~76% using solely EEG modality was statistically comparable to that using the multimodality approach. However, if EEG dynamics were only available from a small set of electrodes (likely the case in real-life applications), the music modality would play a complementary role and augment the EEG results from around 61-67% in valence classification and from around 58-67% in arousal classification. The musical timber appeared to replace less-discriminative EEG features and led to improvements in both valence and arousal classification, whereas musical loudness was contributed specifically to the arousal classification. The present study not only provided principles for constructing an EEG-based multimodal approach, but also revealed the fundamental insights into the interplay of the brain activity and musical contents in emotion modeling.

  1. Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening

    PubMed Central

    Lin, Yuan-Pin; Yang, Yi-Hsuan; Jung, Tzyy-Ping

    2014-01-01

    Electroencephalography (EEG)-based emotion classification during music listening has gained increasing attention nowadays due to its promise of potential applications such as musical affective brain-computer interface (ABCI), neuromarketing, music therapy, and implicit multimedia tagging and triggering. However, music is an ecologically valid and complex stimulus that conveys certain emotions to listeners through compositions of musical elements. Using solely EEG signals to distinguish emotions remained challenging. This study aimed to assess the applicability of a multimodal approach by leveraging the EEG dynamics and acoustic characteristics of musical contents for the classification of emotional valence and arousal. To this end, this study adopted machine-learning methods to systematically elucidate the roles of the EEG and music modalities in the emotion modeling. The empirical results suggested that when whole-head EEG signals were available, the inclusion of musical contents did not improve the classification performance. The obtained performance of 74~76% using solely EEG modality was statistically comparable to that using the multimodality approach. However, if EEG dynamics were only available from a small set of electrodes (likely the case in real-life applications), the music modality would play a complementary role and augment the EEG results from around 61–67% in valence classification and from around 58–67% in arousal classification. The musical timber appeared to replace less-discriminative EEG features and led to improvements in both valence and arousal classification, whereas musical loudness was contributed specifically to the arousal classification. The present study not only provided principles for constructing an EEG-based multimodal approach, but also revealed the fundamental insights into the interplay of the brain activity and musical contents in emotion modeling. PMID:24822035

  2. Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel

    2013-01-01

    This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…

  3. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy.

    PubMed

    Leamy, Darren J; Kocijan, Juš; Domijan, Katarina; Duffin, Joseph; Roche, Richard Ap; Commins, Sean; Collins, Ronan; Ward, Tomas E

    2014-01-28

    Brain-Computer Interfaces (BCI) can potentially be used to aid in the recovery of lost motor control in a limb following stroke. BCIs are typically used by subjects with no damage to the brain therefore relatively little is known about the technical requirements for the design of a rehabilitative BCI for stroke. 32-channel electroencephalogram (EEG) was recorded during a finger-tapping task from 10 healthy subjects for one session and 5 stroke patients for two sessions approximately 6 months apart. An off-line BCI design based on Filter Bank Common Spatial Patterns (FBCSP) was implemented to test and compare the efficacy and accuracy of training a rehabilitative BCI with both stroke-affected and healthy data. Stroke-affected EEG datasets have lower 10-fold cross validation results than healthy EEG datasets. When training a BCI with healthy EEG, average classification accuracy of stroke-affected EEG is lower than the average for healthy EEG. Classification accuracy of the late session stroke EEG is improved by training the BCI on the corresponding early stroke EEG dataset. This exploratory study illustrates that stroke and the accompanying neuroplastic changes associated with the recovery process can cause significant inter-subject changes in the EEG features suitable for mapping as part of a neurofeedback therapy, even when individuals have scored largely similar with conventional behavioural measures. It appears such measures can mask this individual variability in cortical reorganization. Consequently we believe motor retraining BCI should initially be tailored to individual patients.

  4. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  5. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.

    PubMed

    Shin, Jaeyoung; Kim, Do-Won; Müller, Klaus-Robert; Hwang, Han-Jeong

    2018-06-05

    Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive neuroimaging methods that record the electrical and metabolic activity of the brain, respectively. Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS information to enhance BCI performance have recently emerged to overcome the limitations of existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related brain activation, a relatively long trial length (≥10 s) is selected owing to the inherent hemodynamic delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation, we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA) and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this experiment, EEG and NIRS data were simultaneously recorded while participants performed MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently, a classification was performed to discriminate MA-related or WC-related brain activations from BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification accuracies of 90.0 ± 7.1/85.5 ± 8.1% and 85.8 ± 8.6/79.5 ± 13.4% for MA vs. BL and WC vs. BL, respectively, were achieved. These were significantly higher than those of the unimodal EEG- or NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively, compared to those reported in previous studies. The suitability of implementing a more practical hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was validated when compared to previous studies.

  6. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia.

    PubMed

    Blokland, Yvonne; Spyrou, Loukianos; Thijssen, Dick; Eijsvogels, Thijs; Colier, Willy; Floor-Westerdijk, Marianne; Vlek, Rutger; Bruhn, Jorgen; Farquhar, Jason

    2014-03-01

    Combining electrophysiological and hemodynamic features is a novel approach for improving current performance of brain switches based on sensorimotor rhythms (SMR). This study was conducted with a dual purpose: to test the feasibility of using a combined electroencephalogram/functional near-infrared spectroscopy (EEG-fNIRS) SMR-based brain switch in patients with tetraplegia, and to examine the performance difference between motor imagery and motor attempt for this user group. A general improvement was found when using both EEG and fNIRS features for classification as compared to using the single-modality EEG classifier, with average classification rates of 79% for attempted movement and 70% for imagined movement. For the control group, rates of 87% and 79% were obtained, respectively, where the "attempted movement" condition was replaced with "actual movement." A combined EEG-fNIRS system might be especially beneficial for users who lack sufficient control of current EEG-based brain switches. The average classification performance in the patient group for attempted movement was significantly higher than for imagined movement using the EEG-only as well as the combined classifier, arguing for the case of a paradigm shift in current brain switch research.

  7. Permanency analysis on human electroencephalogram signals for pervasive Brain-Computer Interface systems.

    PubMed

    Sadeghi, Koosha; Junghyo Lee; Banerjee, Ayan; Sohankar, Javad; Gupta, Sandeep K S

    2017-07-01

    Brain-Computer Interface (BCI) systems use some permanent features of brain signals to recognize their corresponding cognitive states with high accuracy. However, these features are not perfectly permanent, and BCI system should be continuously trained over time, which is tedious and time consuming. Thus, analyzing the permanency of signal features is essential in determining how often to repeat training. In this paper, we monitor electroencephalogram (EEG) signals, and analyze their behavior through continuous and relatively long period of time. In our experiment, we record EEG signals corresponding to rest state (eyes open and closed) from one subject everyday, for three and a half months. The results show that signal features such as auto-regression coefficients remain permanent through time, while others such as power spectral density specifically in 5-7 Hz frequency band are not permanent. In addition, eyes open EEG data shows more permanency than eyes closed data.

  8. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    NASA Astrophysics Data System (ADS)

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  9. "Enheduanna-A Manifesto of Falling" Live Brain-Computer Cinema Performance: Performer and Audience Participation, Cognition and Emotional Engagement Using Multi-Brain BCI Interaction.

    PubMed

    Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian

    2018-01-01

    The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate "Enheduanna-A Manifesto of Falling," a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators of attention and emotional engagement. Also, the results obtained from the performer's data analysis are consistent with the recall of working memory representations and the increase of cognitive load. Thus, these results prove the efficiency of the interaction design, as well as the importance of the directing strategy, dramaturgy and narrative structure on the audience's perception, cognitive state, and engagement.

  10. “Enheduanna—A Manifesto of Falling” Live Brain-Computer Cinema Performance: Performer and Audience Participation, Cognition and Emotional Engagement Using Multi-Brain BCI Interaction

    PubMed Central

    Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian

    2018-01-01

    The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate “Enheduanna—A Manifesto of Falling,” a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators of attention and emotional engagement. Also, the results obtained from the performer's data analysis are consistent with the recall of working memory representations and the increase of cognitive load. Thus, these results prove the efficiency of the interaction design, as well as the importance of the directing strategy, dramaturgy and narrative structure on the audience's perception, cognitive state, and engagement. PMID:29666566

  11. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study

    PubMed Central

    Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph

    2014-01-01

    A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509

  12. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions

    PubMed Central

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression. PMID:25206321

  13. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    PubMed

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression.

  14. A Novel Method of Building Functional Brain Network Using Deep Learning Algorithm with Application in Proficiency Detection.

    PubMed

    Hua, Chengcheng; Wang, Hong; Wang, Hong; Lu, Shaowen; Liu, Chong; Khalid, Syed Madiha

    2018-04-11

    Functional brain network (FBN) has become very popular to analyze the interaction between cortical regions in the last decade. But researchers always spend a long time to search the best way to compute FBN for their specific studies. The purpose of this study is to detect the proficiency of operators during their mineral grinding process controlling based on FBN. To save the search time, a novel semi-data-driven method of computing functional brain connection based on stacked autoencoder (BCSAE) is proposed in this paper. This method uses stacked autoencoder (SAE) to encode the multi-channel EEG data into codes and then computes the dissimilarity between the codes from every pair of electrodes to build FBN. The highlight of this method is that the SAE has a multi-layered structure and is semi-supervised, which means it can dig deeper information and generate better features. Then an experiment was performed, the EEG of the operators were collected while they were operating and analyzed to detect their proficiency. The results show that the BCSAE method generated more number of separable features with less redundancy, and the average accuracy of classification (96.18%) is higher than that of the control methods: PLV (92.19%) and PLI (78.39%).

  15. A high performance sensorimotor beta rhythm-based brain computer interface associated with human natural motor behavior

    NASA Astrophysics Data System (ADS)

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Floeter, Mary Kay; Hattori, Noriaki; Hallett, Mark

    2008-03-01

    To explore the reliability of a high performance brain-computer interface (BCI) using non-invasive EEG signals associated with human natural motor behavior does not require extensive training. We propose a new BCI method, where users perform either sustaining or stopping a motor task with time locking to a predefined time window. Nine healthy volunteers, one stroke survivor with right-sided hemiparesis and one patient with amyotrophic lateral sclerosis (ALS) participated in this study. Subjects did not receive BCI training before participating in this study. We investigated tasks of both physical movement and motor imagery. The surface Laplacian derivation was used for enhancing EEG spatial resolution. A model-free threshold setting method was used for the classification of motor intentions. The performance of the proposed BCI was validated by an online sequential binary-cursor-control game for two-dimensional cursor movement. Event-related desynchronization and synchronization were observed when subjects sustained or stopped either motor execution or motor imagery. Feature analysis showed that EEG beta band activity over sensorimotor area provided the largest discrimination. With simple model-free classification of beta band EEG activity from a single electrode (with surface Laplacian derivation), the online classifications of the EEG activity with motor execution/motor imagery were: >90%/~80% for six healthy volunteers, >80%/~80% for the stroke patient and ~90%/~80% for the ALS patient. The EEG activities of the other three healthy volunteers were not classifiable. The sensorimotor beta rhythm of EEG associated with human natural motor behavior can be used for a reliable and high performance BCI for both healthy subjects and patients with neurological disorders. Significance: The proposed new non-invasive BCI method highlights a practical BCI for clinical applications, where the user does not require extensive training.

  16. A Within-subjects Experimental Protocol to Assess the Effects of Social Input on Infant EEG.

    PubMed

    St John, Ashley M; Kao, Katie; Chita-Tegmark, Meia; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R

    2017-05-03

    Despite the importance of social interactions for infant brain development, little research has assessed functional neural activation while infants socially interact. Electroencephalography (EEG) power is an advantageous technique to assess infant functional neural activation. However, many studies record infant EEG only during one baseline condition. This protocol describes a paradigm that is designed to comprehensively assess infant EEG activity in both social and nonsocial contexts as well as tease apart how different types of social inputs differentially relate to infant EEG. The within-subjects paradigm includes four controlled conditions. In the nonsocial condition, infants view objects on computer screens. The joint attention condition involves an experimenter directing the infant's attention to pictures. The joint attention condition includes three types of social input: language, face-to-face interaction, and the presence of joint attention. Differences in infant EEG between the nonsocial and joint attention conditions could be due to any of these three types of input. Therefore, two additional conditions (one with language input while the experimenter is hidden behind a screen and one with face-to-face interaction) were included to assess the driving contextual factors in patterns of infant neural activation. Representative results demonstrate that infant EEG power varied by condition, both overall and differentially by brain region, supporting the functional nature of infant EEG power. This technique is advantageous in that it includes conditions that are clearly social or nonsocial and allows for examination of how specific types of social input relate to EEG power. This paradigm can be used to assess how individual differences in age, affect, socioeconomic status, and parent-infant interaction quality relate to the development of the social brain. Based on the demonstrated functional nature of infant EEG power, future studies should consider the role of EEG recording context and design conditions that are clearly social or nonsocial.

  17. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.

    PubMed

    Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu

    2015-05-01

    Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  19. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition.

    PubMed

    Zhang, Jianhai; Chen, Ming; Zhao, Shaokai; Hu, Sanqing; Shi, Zhiguo; Cao, Yu

    2016-09-22

    Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels' weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the realization of a practical EEG-based emotion recognition system.

  20. The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals

    PubMed Central

    Trujillo, Logan T.; Stanfield, Candice T.; Vela, Ruben D.

    2017-01-01

    Converging evidence suggests that human cognition and behavior emerge from functional brain networks interacting on local and global scales. We investigated two information-theoretic measures of functional brain segregation and integration—interaction complexity CI(X), and integration I(X)—as applied to electroencephalographic (EEG) signals and how these measures are affected by choice of EEG reference. CI(X) is a statistical measure of the system entropy accounted for by interactions among its elements, whereas I(X) indexes the overall deviation from statistical independence of the individual elements of a system. We recorded 72 channels of scalp EEG from human participants who sat in a wakeful resting state (interleaved counterbalanced eyes-open and eyes-closed blocks). CI(X) and I(X) of the EEG signals were computed using four different EEG references: linked-mastoids (LM) reference, average (AVG) reference, a Laplacian (LAP) “reference-free” transformation, and an infinity (INF) reference estimated via the Reference Electrode Standardization Technique (REST). Fourier-based power spectral density (PSD), a standard measure of resting state activity, was computed for comparison and as a check of data integrity and quality. We also performed dipole source modeling in order to assess the accuracy of neural source CI(X) and I(X) estimates obtained from scalp-level EEG signals. CI(X) was largest for the LAP transformation, smallest for the LM reference, and at intermediate values for the AVG and INF references. I(X) was smallest for the LAP transformation, largest for the LM reference, and at intermediate values for the AVG and INF references. Furthermore, across all references, CI(X) and I(X) reliably distinguished between resting-state conditions (larger values for eyes-open vs. eyes-closed). These findings occurred in the context of the overall expected pattern of resting state PSD. Dipole modeling showed that simulated scalp EEG-level CI(X) and I(X) reflected changes in underlying neural source dependencies, but only for higher levels of integration and with highest accuracy for the LAP transformation. Our observations suggest that the Laplacian-transformation should be preferred for the computation of scalp-level CI(X) and I(X) due to its positive impact on EEG signal quality and statistics, reduction of volume-conduction, and the higher accuracy this provides when estimating scalp-level EEG complexity and integration. PMID:28790884

  1. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  2. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  3. Data acquisition system of 16-channel EEG based on ATSAM3X8E ARM Cortex-M3 32-bit microcontroller and ADS1299

    NASA Astrophysics Data System (ADS)

    Toresano, L. O. H. Z.; Wijaya, S. K.; Prawito, Sudarmaji, A.; Badri, C.

    2017-07-01

    The prototype of the EEG (electroencephalogram) instrumentation systems has been developed based on 32-bit microcontrollers of Cortex-M3 ATSAM3X8E and Analog Front-End (AFE) ADS1299 (Texas Instruments, USA), and also consists of 16-channel dry-electrodes in the form of EEG head-caps. The ADS1299-AFE has been designed in a double-layer format PCB (Print Circuit Board) with daisy-chain configuration. The communication protocol of the prototype was based on SPI (Serial Peripheral Interface) and tested using USB SPI-Logic Analyzer Hantek4032L (Qingdao Hantek Electronic, China). The acquired data of the 16-channel from this prototype has been successfully transferred to a PC (Personal Computer) with accuracy greater than 91 %. The data acquisition system has been visualized with time-domain format in the multi-graph plotter, the frequency-domain based on FFT (Fast Fourier Transform) calculation, and also brain-mapping display of 16-channel. The GUI (Graphical User Interface) has been developed based on OpenBCI (Brain Computer Interface) using Java Processing and also can be stored of data in the *.txt format. Instrumentation systems have been tested in the frequency range of 1-50 Hz using MiniSim 330 EEG Simulator (NETECH, USA). The validation process has been done with different frequency of 0.1 Hz, 2 Hz, 5 Hz, and 50 Hz, and difference voltage amplitudes of 10 µV, 30 µV, 50 µV, 100 µV, 500 µV, 1 mV, 2 mV and 2.5 mV. However, the acquisition system was not optimal at a frequency of 0.1 Hz and for amplitude potentials of over 1 mV had differences of the order 10 µV.

  4. Brain-computer interface for alertness estimation and improving

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  5. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (Δt) & more accurate (ΔA) decision making, which applies to individual, as well as team brain dynamics. Following Nobel Laureate Daniel Kahnmen's novel "Thinking fast and slow", through the brainwave biofeedback we can first identify an individual's "anchored cognitive bias sources". This is done in order to remove the biases by means of individually tailored pre-processing. Then the training effectiveness can be maximized by the collective product Δt * ΔA. For Area #1, we compute a spatiotemporally windowed EEG in vitro average using adaptive time-window sampling. The sampling rate depends on the type of neuronal responses, which is what we seek. The averaged traditional EEG measurements and are further improved by BSS decomposition into finer stimulus-response source mixing matrix [A] having finer & faster spatial grids with rapid temporal updates. Then, the functional EEG is the second order co-variance matrix defined as the electrode-pair fluctuation correlation function C(s~, s~') of independent thermodynamic source components. (1) We define a 1-D Space filling curve as a spiral curve without origin. This pattern is historically known as the Peano-Hilbert arc length a. By taking the most significant bits of the Cartesian product a≡ O(x * y * z), it represents the arc length in the numerical size with values that map the 3-D neighborhood proximity into a 1-D neighborhood arc length representation. (2) 1-D Fourier coefficients spectrum have no spurious high frequency contents, which typically arise in lexicographical (zig-zag scanning) discontinuity [Hsu & Szu, "Peano-Hilbert curve," SPIE 2014]. A simple Fourier spectrum histogram fits nicely with the Compressive Sensing CRDT Mathematics. (3) Stationary power spectral density is a reasonable approximation of EEG responses in striate layers in resonance feedback loops capable of producing a 100, 000 neuronal collective Impulse Response Function (IRF). The striate brain layer architecture represents an ensemble

  6. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain computer interface

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Bin

    2004-03-01

    The recognition of mental states during motor imagery tasks is crucial for EEG-based brain computer interface research. We have developed a new algorithm by means of frequency decomposition and weighting synthesis strategy for recognizing imagined right- and left-hand movements. A frequency range from 5 to 25 Hz was divided into 20 band bins for each trial, and the corresponding envelopes of filtered EEG signals for each trial were extracted as a measure of instantaneous power at each frequency band. The dimensionality of the feature space was reduced from 200 (corresponding to 2 s) to 3 by down-sampling of envelopes of the feature signals, and subsequently applying principal component analysis. The linear discriminate analysis algorithm was then used to classify the features, due to its generalization capability. Each frequency band bin was weighted by a function determined according to the classification accuracy during the training process. The present classification algorithm was applied to a dataset of nine human subjects, and achieved a success rate of classification of 90% in training and 77% in testing. The present promising results suggest that the present classification algorithm can be used in initiating a general-purpose mental state recognition based on motor imagery tasks.

  7. Prognostic value of electroencephalography (EEG) for brain injury after cardiopulmonary resuscitation.

    PubMed

    Feng, Guibo; Jiang, Guohui; Li, Zhiwei; Wang, Xuefeng

    2016-06-01

    Cardiac arrest (CA) patients can experience neurological sequelae or even death after successful cardiopulmonary resuscitation (CPR) due to cerebral hypoxia- and ischemia-reperfusion-mediated brain injury. Thus, it is important to perform early prognostic evaluations in CA patients. Electroencephalography (EEG) is an important tool for determining the prognosis of hypoxic-ischemic encephalopathy due to its real-time measurement of brain function. Based on EEG, burst suppression, a burst suppression ratio >0.239, periodic discharges, status epilepticus, stimulus-induced rhythmic, periodic or ictal discharges, non-reactive EEG, and the BIS value based on quantitative EEG may be associated with the prognosis of CA after successful CPR. As measures of neural network integrity, the values of small-world characteristics of the neural network derived from EEG patterns have potential applications.

  8. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    PubMed

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  9. Wedge MUSIC: a novel approach to examine experimental differences of brain source connectivity patterns from EEG/MEG data.

    PubMed

    Ewald, Arne; Avarvand, Forooz Shahbazi; Nolte, Guido

    2014-11-01

    We introduce a novel method to estimate bivariate synchronization, i.e. interacting brain sources at a specific frequency or band, from MEG or EEG data robust to artifacts of volume conduction. The data driven calculation is solely based on the imaginary part of the cross-spectrum as opposed to the imaginary part of coherency. In principle, the method quantifies how strong a synchronization between a distinct pair of brain sources is present in the data. As an input of the method all pairs of pre-defined locations inside the brain can be used which is computationally exhaustive. In contrast to that, reference sources can be used that have been identified by any source reconstruction technique in a prior analysis step. We introduce different variants of the method and evaluate the performance in simulations. As a particular advantage of the proposed methodology, we demonstrate that the novel approach is capable of investigating differences in brain source interactions between experimental conditions or with respect to a certain baseline. For measured data, we first show the application on resting state MEG data where we find locally synchronized sources in the motor-cortex based on the sensorimotor idle rhythms. Finally, we show an example on EEG motor imagery data where we contrast hand and foot movements. Here, we also find local interactions in the expected brain areas. Copyright © 2014. Published by Elsevier Inc.

  10. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  11. Comparison of Sensor Selection Mechanisms for an ERP-Based Brain-Computer Interface

    PubMed Central

    Metzen, Jan H.

    2013-01-01

    A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review several selection approaches and propose one additional selection criterion based on the evaluation of the performance of a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is designed to detect a P300 event-related potential and compare the performance of the methods against randomly generated sensor constellations. For a realistic estimation of the reduced system's performance we transfer sensor constellations found on one experimental session to a different session for evaluation. We identified notable (and unanticipated) differences among the methods and could demonstrate that the best method in our setup is able to reduce the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and evaluation schemes can be transferred to any binary classification task on sensor arrays. PMID:23844021

  12. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  13. The Brain Computer Interface Future: Time for a Strategy

    DTIC Science & Technology

    2013-02-14

    electrophysiological activity can be measured by electroencepholography ( EEG ), electrocorticography (ECoG), magnetoencephalography (MEG), or signal activity...magnetic resonance imaging (MRI) or near infrared spectroscopy. Currently EEG is most the most widely used BCI interface due to high temporal...resolution, less user risk, and lower costs.12 EEG technology has been widely available for many decades but has significantly expanded as researchers

  14. Multifractal analysis of real and imaginary movements: EEG study

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.

    2018-04-01

    We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.

  15. Classifying High-noise EEG in Complex Environments for Brain-computer Interaction Technologies

    DTIC Science & Technology

    2012-02-01

    differentiation in the brain signal that our classification approach seeks to identify despite the noise in the recorded EEG signal and the complexity of...performed two offline classifications , one using BCILab (1), the other using LibSVM (2). Distinct classifiers were trained for each individual in...order to improve individual classifier performance (3). The highest classification performance results were obtained using individual frequency bands

  16. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    PubMed

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  17. Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications

    PubMed Central

    2013-01-01

    Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109

  18. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle artifact is controlled via adaptive normalization of the SSVEP. Training of the classifier requires about three minutes. We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 seconds for movement initiation and turning.

  19. Electroencephalographic profiles for differentiation of disorders of consciousness

    PubMed Central

    2013-01-01

    Background Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. Methods Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. Results Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients’ behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. Conclusions Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). PMID:24143892

  20. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    PubMed

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  1. Analysis of the features of untrained human movements based on the multichannel EEG for controlling anthropomorphic robotic arm

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir; Runnova, Anastasia; Pchelintseva, Svetlana; Efremova, Tatiana; Zhuravlev, Maksim; Pisarchik, Alexander

    2018-04-01

    We have considered time-frequency and spatio-temporal structure of electrical brain activity, associated with real and imaginary movements based on the multichannel EEG recordings. We have found that along with wellknown effects of event-related desynchronization (ERD) in α/μ - rhythms and β - rhythm, these types of activity are accompanied by the either ERS (for real movement) or ERD (for imaginary movement) in low-frequency δ - band, located mostly in frontal lobe. This may be caused by the associated processes of decision making, which take place when subject is deciding either perform the movement or imagine it. Obtained features have been found in untrained subject which it its turn gives the possibility to use our results in the development of brain-computer interfaces for controlling anthropomorphic robotic arm.

  2. Online EEG Classification of Covert Speech for Brain-Computer Interfacing.

    PubMed

    Sereshkeh, Alborz Rezazadeh; Trott, Robert; Bricout, Aurélien; Chau, Tom

    2017-12-01

    Brain-computer interfaces (BCIs) for communication can be nonintuitive, often requiring the performance of hand motor imagery or some other conversation-irrelevant task. In this paper, electroencephalography (EEG) was used to develop two intuitive online BCIs based solely on covert speech. The goal of the first BCI was to differentiate between 10[Formula: see text]s of mental repetitions of the word "no" and an equivalent duration of unconstrained rest. The second BCI was designed to discern between 10[Formula: see text]s each of covert repetition of the words "yes" and "no". Twelve participants used these two BCIs to answer yes or no questions. Each participant completed four sessions, comprising two offline training sessions and two online sessions, one for testing each of the BCIs. With a support vector machine and a combination of spectral and time-frequency features, an average accuracy of [Formula: see text] was reached across participants in the online classification of no versus rest, with 10 out of 12 participants surpassing the chance level (60.0% for [Formula: see text]). The online classification of yes versus no yielded an average accuracy of [Formula: see text], with eight participants exceeding the chance level. Task-specific changes in EEG beta and gamma power in language-related brain areas tended to provide discriminatory information. To our knowledge, this is the first report of online EEG classification of covert speech. Our findings support further study of covert speech as a BCI activation task, potentially leading to the development of more intuitive BCIs for communication.

  3. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Designing a hands-on brain computer interface laboratory course.

    PubMed

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  5. Characterization of EEG signals revealing covert cognition in the injured brain.

    PubMed

    Curley, William H; Forgacs, Peter B; Voss, Henning U; Conte, Mary M; Schiff, Nicholas D

    2018-05-01

    See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.

  6. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng; Atal, Kiran; Xie, Sheng-Quan; Liu, Quan

    2017-08-01

    Objective. Accurate and efficient detection of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG) is essential for the related brain-computer interface (BCI) applications. Approach. Although the canonical correlation analysis (CCA) has been applied extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts that often occur during data recording can deteriorate the recognition performance. Therefore, it is meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of unrelated brain activity and artifacts. This paper presents an improved method to detect the frequency component associated with SSVEP using multivariate empirical mode decomposition (MEMD) and CCA (MEMD-CCA). EEG signals from nine healthy volunteers were recorded to evaluate the performance of the proposed method for SSVEP recognition. Main results. We compared our method with CCA and temporally local multivariate synchronization index (TMSI). The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and wavelet decomposition (WT) based CCA for SSVEP recognition. Significance. The results demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based BCI.

  7. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    PubMed Central

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID:25374520

  8. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  9. An EEG blind source separation algorithm based on a weak exclusion principle.

    PubMed

    Lan Ma; Blu, Thierry; Wang, William S-Y

    2016-08-01

    The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.

  10. Deep learning with convolutional neural networks for EEG decoding and visualization.

    PubMed

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  11. Improving the Accuracy and Training Speed of Motor Imagery Brain-Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors.

    PubMed

    Lee, David; Park, Sang-Hoon; Lee, Sang-Goog

    2017-10-07

    In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain-computer interfaces. The proposed method is configured as follows: first, wavelet transforms are applied to extract the feature vectors for identification of motor imagery electroencephalography (EEG) and principal component analyses are used to reduce the dimensionality of the feature vectors and linearly combine them. Subsequently, the GMM universal background model is trained by the expectation-maximization (EM) algorithm to purify the training data and reduce its size. Finally, a purified and reduced GMM-supervector is used to train the support vector machine classifier. The performance of the proposed method was evaluated for three different motor imagery datasets in terms of accuracy, kappa, mutual information, and computation time, and compared with the state-of-the-art algorithms. The results from the study indicate that the proposed method achieves high accuracy with a small amount of training data compared with the state-of-the-art algorithms in motor imagery EEG classification.

  12. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces

    PubMed Central

    2014-01-01

    Background The fatigue that users suffer when using steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can cause a number of serious problems such as signal quality degradation and system performance deterioration, users’ discomfort and even risk of photosensitive epileptic seizures, posing heavy restrictions on the applications of SSVEP-based BCIs. Towards alleviating the fatigue, a fundamental step is to measure and evaluate it but most existing works adopt self-reported questionnaire methods which are subjective, offline and memory dependent. This paper proposes an objective and real-time approach based on electroencephalography (EEG) spectral analysis to evaluate the fatigue in SSVEP-based BCIs. Methods How the EEG indices (amplitudes in δ, θ, α and β frequency bands), the selected ratio indices (θ/α and (θ + α)/β), and SSVEP properties (amplitude and signal-to-noise ratio (SNR)) changes with the increasing fatigue level are investigated through two elaborate SSVEP-based BCI experiments, one validates mainly the effectiveness and another considers more practical situations. Meanwhile, a self-reported fatigue questionnaire is used to provide a subjective reference. ANOVA is employed to test the significance of the difference between the alert state and the fatigue state for each index. Results Consistent results are obtained in two experiments: the significant increases in α and (θ + α)/β, as well as the decrease in θ/α are found associated with the increasing fatigue level, indicating that EEG spectral analysis can provide robust objective evaluation of the fatigue in SSVEP-based BCIs. Moreover, the results show that the amplitude and SNR of the elicited SSVEP are significantly affected by users’ fatigue. Conclusions The experiment results demonstrate the feasibility and effectiveness of the proposed method as an objective and real-time evaluation of the fatigue in SSVEP-based BCIs. This method would be helpful in understanding the fatigue problem and optimizing the system design to alleviate the fatigue in SSVEP-based BCIs. PMID:24621009

  13. Write, read and answer emails with a dry 'n' wireless brain-computer interface system.

    PubMed

    Pinegger, Andreas; Deckert, Lisa; Halder, Sebastian; Barry, Norbert; Faller, Josef; Käthner, Ivo; Hintermüller, Christoph; Wriessnegger, Selina C; Kübler, Andrea; Müller-Putz, Gernot R

    2014-01-01

    Brain-computer interface (BCI) users can control very complex applications such as multimedia players or even web browsers. Therefore, different biosignal acquisition systems are available to noninvasively measure the electrical activity of the brain, the electroencephalogram (EEG). To make BCIs more practical, hardware and software are nowadays designed more user centered and user friendly. In this paper we evaluated one of the latest innovations in the area of BCI: A wireless EEG amplifier with dry electrode technology combined with a web browser which enables BCI users to use standard webmail. With this system ten volunteers performed a daily life task: Write, read and answer an email. Experimental results of this study demonstrate the power of the introduced BCI system.

  14. Unlocking the Secrets of the Brain, Part II: A Continuing Look at Techniques for Exploring the Brain.

    ERIC Educational Resources Information Center

    Powledge, Tabitha M.

    1997-01-01

    Describes techniques for delving into the brain including positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalogram (EEG), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and low-tech indirect studies. (JRH)

  15. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  16. EEG Subspace Analysis and Classification Using Principal Angles for Brain-Computer Interfaces

    NASA Astrophysics Data System (ADS)

    Ashari, Rehab Bahaaddin

    Brain-Computer Interfaces (BCIs) help paralyzed people who have lost some or all of their ability to communicate and control the outside environment from loss of voluntary muscle control. Most BCIs are based on the classification of multichannel electroencephalography (EEG) signals recorded from users as they respond to external stimuli or perform various mental activities. The classification process is fraught with difficulties caused by electrical noise, signal artifacts, and nonstationarity. One approach to reducing the effects of similar difficulties in other domains is the use of principal angles between subspaces, which has been applied mostly to video sequences. This dissertation studies and examines different ideas using principal angles and subspaces concepts. It introduces a novel mathematical approach for comparing sets of EEG signals for use in new BCI technology. The success of the presented results show that principal angles are also a useful approach to the classification of EEG signals that are recorded during a BCI typing application. In this application, the appearance of a subject's desired letter is detected by identifying a P300-wave within a one-second window of EEG following the flash of a letter. Smoothing the signals before using them is the only preprocessing step that was implemented in this study. The smoothing process based on minimizing the second derivative in time is implemented to increase the classification accuracy instead of using the bandpass filter that relies on assumptions on the frequency content of EEG. This study examines four different ways of removing outliers that are based on the principal angles and shows that the outlier removal methods did not help in the presented situations. One of the concepts that this dissertation focused on is the effect of the number of trials on the classification accuracies. The achievement of the good classification results by using a small number of trials starting from two trials only, should make this approach more appropriate for online BCI applications. In order to understand and test how EEG signals are different from one subject to another, different users are tested in this dissertation, some with motor impairments. Furthermore, the concept of transferring information between subjects is examined by training the approach on one subject and testing it on the other subject using the training subject's EEG subspaces to classify the testing subject's trials.

  17. Cortical connectivity modulation during sleep onset: A study via graph theory on EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Gorgoni, Maurizio; Ferrara, Michele; Iberite, Francesco; Bramanti, Placido; De Gennaro, Luigi; Rossini, Paolo Maria

    2017-11-01

    Sleep onset is characterized by a specific and orchestrated pattern of frequency and topographical EEG changes. Conventional power analyses of electroencephalographic (EEG) and computational assessments of network dynamics have described an earlier synchronization of the centrofrontal areas rhythms and a spread of synchronizing signals from associative prefrontal to posterior areas. Here, we assess how "small world" characteristics of the brain networks, as reflected in the EEG rhythms, are modified in the wakefulness-sleep transition comparing the pre- and post-sleep onset epochs. The results show that sleep onset is characterized by a less ordered brain network (as reflected by the higher value of small world) in the sigma band for the frontal lobes indicating stronger connectivity, and a more ordered brain network in the low frequency delta and theta bands indicating disconnection on the remaining brain areas. Our results depict the timing and topography of the specific mechanisms for the maintenance of functional connectivity of frontal brain regions at the sleep onset, also providing a possible explanation for the prevalence of the frontal-to-posterior information flow directionality previously observed after sleep onset. Hum Brain Mapp 38:5456-5464, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. [Are subcortical signs in the EEG a reliable indication of brain stem displacement and impaction processes by intracranial space-occupying processes? A comparative computer tomography-electroencephalography study].

    PubMed

    Zettler, H; Järisch, M; Leonhard, T

    1985-01-01

    Within the scope of an elektroencephalographic-computertomographic comperative study carried out in 430 patients, the concurrence of secondary brain stem damage due to mass displacement and herniation processes and parroxysmal generalised slow activity in the EEG ("intermittant frontal delta rhythms", "projected discharges", "subcortical signs") in intracranial space-occupying processes were studied among others. The occurrence of the EEG pattern was independent of the presence of brain stem displacements in about 20 and 25 per cent, respectively, of the 152 patients with supratentorial space occupations. The absence of the characteristics on 80 per cent of the patients with clear CT criteria for a secondary brain stem impairment shows that it is not suitable as a warning sign of an imminent intracranial decompensation and that in particular from the non-occurrence in the EEG no contribution to the operative risk and to the choice of the time of the operation can be derived. A relation between the occurrence of paroxysmal slow activity and the acuity of the course of the disease or the degree of malignity of cerebral tumours could not be verified. Possible causes of the inconstant occurrence of this EEG pattern in brain stem alterations are discussed.

  19. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.

    PubMed

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark

    2007-12-01

    To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

  20. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Schombs, Andrew; Cramer, Steven C; Nenadic, Zoran

    2012-01-01

    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients.

  1. Using robust principal component analysis to alleviate day-to-day variability in EEG based emotion classification.

    PubMed

    Ping-Keng Jao; Yuan-Pin Lin; Yi-Hsuan Yang; Tzyy-Ping Jung

    2015-08-01

    An emerging challenge for emotion classification using electroencephalography (EEG) is how to effectively alleviate day-to-day variability in raw data. This study employed the robust principal component analysis (RPCA) to address the problem with a posed hypothesis that background or emotion-irrelevant EEG perturbations lead to certain variability across days and somehow submerge emotion-related EEG dynamics. The empirical results of this study evidently validated our hypothesis and demonstrated the RPCA's feasibility through the analysis of a five-day dataset of 12 subjects. The RPCA allowed tackling the sparse emotion-relevant EEG dynamics from the accompanied background perturbations across days. Sequentially, leveraging the RPCA-purified EEG trials from more days appeared to improve the emotion-classification performance steadily, which was not found in the case using the raw EEG features. Therefore, incorporating the RPCA with existing emotion-aware machine-learning frameworks on a longitudinal dataset of each individual may shed light on the development of a robust affective brain-computer interface (ABCI) that can alleviate ecological inter-day variability.

  2. Statistical significance of task related deep brain EEG dynamic changes in the time-frequency domain.

    PubMed

    Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P

    2013-01-01

    We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas.

  3. Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces.

    PubMed

    Uehara, Takashi; Sartori, Matteo; Tanaka, Toshihisa; Fiori, Simone

    2017-06-01

    The estimation of covariance matrices is of prime importance to analyze the distribution of multivariate signals. In motor imagery-based brain-computer interfaces (MI-BCI), covariance matrices play a central role in the extraction of features from recorded electroencephalograms (EEGs); therefore, correctly estimating covariance is crucial for EEG classification. This letter discusses algorithms to average sample covariance matrices (SCMs) for the selection of the reference matrix in tangent space mapping (TSM)-based MI-BCI. Tangent space mapping is a powerful method of feature extraction and strongly depends on the selection of a reference covariance matrix. In general, the observed signals may include outliers; therefore, taking the geometric mean of SCMs as the reference matrix may not be the best choice. In order to deal with the effects of outliers, robust estimators have to be used. In particular, we discuss and test the use of geometric medians and trimmed averages (defined on the basis of several metrics) as robust estimators. The main idea behind trimmed averages is to eliminate data that exhibit the largest distance from the average covariance calculated on the basis of all available data. The results of the experiments show that while the geometric medians show little differences from conventional methods in terms of classification accuracy in the classification of electroencephalographic recordings, the trimmed averages show significant improvement for all subjects.

  4. Decoding English Alphabet Letters Using EEG Phase Information

    PubMed Central

    Wang, YiYan; Wang, Pingxiao; Yu, Yuguo

    2018-01-01

    Increasing evidence indicates that the phase pattern and power of the low frequency oscillations of brain electroencephalograms (EEG) contain significant information during the human cognition of sensory signals such as auditory and visual stimuli. Here, we investigate whether and how the letters of the alphabet can be directly decoded from EEG phase and power data. In addition, we investigate how different band oscillations contribute to the classification and determine the critical time periods. An English letter recognition task was assigned, and statistical analyses were conducted to decode the EEG signal corresponding to each letter visualized on a computer screen. We applied support vector machine (SVM) with gradient descent method to learn the potential features for classification. It was observed that the EEG phase signals have a higher decoding accuracy than the oscillation power information. Low-frequency theta and alpha oscillations have phase information with higher accuracy than do other bands. The decoding performance was best when the analysis period began from 180 to 380 ms after stimulus presentation, especially in the lateral occipital and posterior temporal scalp regions (PO7 and PO8). These results may provide a new approach for brain-computer interface techniques (BCI) and may deepen our understanding of EEG oscillations in cognition. PMID:29467615

  5. Improving Generalization Based on l1-Norm Regularization for EEG-Based Motor Imagery Classification

    PubMed Central

    Zhao, Yuwei; Han, Jiuqi; Chen, Yushu; Sun, Hongji; Chen, Jiayun; Ke, Ang; Han, Yao; Zhang, Peng; Zhang, Yi; Zhou, Jin; Wang, Changyong

    2018-01-01

    Multichannel electroencephalography (EEG) is widely used in typical brain-computer interface (BCI) systems. In general, a number of parameters are essential for a EEG classification algorithm due to redundant features involved in EEG signals. However, the generalization of the EEG method is often adversely affected by the model complexity, considerably coherent with its number of undetermined parameters, further leading to heavy overfitting. To decrease the complexity and improve the generalization of EEG method, we present a novel l1-norm-based approach to combine the decision value obtained from each EEG channel directly. By extracting the information from different channels on independent frequency bands (FB) with l1-norm regularization, the method proposed fits the training data with much less parameters compared to common spatial pattern (CSP) methods in order to reduce overfitting. Moreover, an effective and efficient solution to minimize the optimization object is proposed. The experimental results on dataset IVa of BCI competition III and dataset I of BCI competition IV show that, the proposed method contributes to high classification accuracy and increases generalization performance for the classification of MI EEG. As the training set ratio decreases from 80 to 20%, the average classification accuracy on the two datasets changes from 85.86 and 86.13% to 84.81 and 76.59%, respectively. The classification performance and generalization of the proposed method contribute to the practical application of MI based BCI systems. PMID:29867307

  6. Corrected Four-Sphere Head Model for EEG Signals.

    PubMed

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  7. Corrected Four-Sphere Head Model for EEG Signals

    PubMed Central

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V.; Dale, Anders M.; Einevoll, Gaute T.; Wójcik, Daniel K.

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations. PMID:29093671

  8. BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection

    PubMed Central

    Zhang, Haihong; Guan, Cuntai; Ang, Kai Keng; Wang, Chuanchu

    2012-01-01

    Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper presents a self-paced BCI based on a robust learning mechanism that extracts and selects spatio-spectral features for differentiating multiple EEG classes. It also employs a non-linear regression and post-processing technique for predicting the time-series of class labels from the spatio-spectral features. The method was validated in the BCI Competition IV on Dataset I where it produced the lowest prediction error of class labels continuously. This report also presents and discusses analysis of the method using the competition data set. PMID:22347153

  9. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.

    1989-06-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits.

  10. Designing a Hands-On Brain Computer Interface Laboratory Course

    PubMed Central

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2017-01-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946

  11. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    PubMed

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  12. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    PubMed Central

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-01-01

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver’s vigilance level . Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model. PMID:26907278

  13. Dynamics of convulsive seizure termination and postictal generalized EEG suppression

    PubMed Central

    Bauer, Prisca R.; Thijs, Roland D.; Lamberts, Robert J.; Velis, Demetrios N.; Visser, Gerhard H.; Tolner, Else A.; Sander, Josemir W.; Lopes da Silva, Fernando H.; Kalitzin, Stiliyan N.

    2017-01-01

    Abstract It is not fully understood how seizures terminate and why some seizures are followed by a period of complete brain activity suppression, postictal generalized EEG suppression. This is clinically relevant as there is a potential association between postictal generalized EEG suppression, cardiorespiratory arrest and sudden death following a seizure. We combined human encephalographic seizure data with data of a computational model of seizures to elucidate the neuronal network dynamics underlying seizure termination and the postictal generalized EEG suppression state. A multi-unit computational neural mass model of epileptic seizure termination and postictal recovery was developed. The model provided three predictions that were validated in EEG recordings of 48 convulsive seizures from 48 subjects with refractory focal epilepsy (20 females, age range 15–61 years). The duration of ictal and postictal generalized EEG suppression periods in human EEG followed a gamma probability distribution indicative of a deterministic process (shape parameter 2.6 and 1.5, respectively) as predicted by the model. In the model and in humans, the time between two clonic bursts increased exponentially from the start of the clonic phase of the seizure. The terminal interclonic interval, calculated using the projected terminal value of the log-linear fit of the clonic frequency decrease was correlated with the presence and duration of postictal suppression. The projected terminal interclonic interval explained 41% of the variation in postictal generalized EEG suppression duration (P < 0.02). Conversely, postictal generalized EEG suppression duration explained 34% of the variation in the last interclonic interval duration. Our findings suggest that postictal generalized EEG suppression is a separate brain state and that seizure termination is a plastic and autonomous process, reflected in increased duration of interclonic intervals that determine the duration of postictal generalized EEG suppression. PMID:28073789

  14. Multichannel Brain-Signal-Amplifying and Digitizing System

    NASA Technical Reports Server (NTRS)

    Gevins, Alan

    2005-01-01

    An apparatus has been developed for use in acquiring multichannel electroencephalographic (EEG) data from a human subject. EEG apparatuses with many channels in use heretofore have been too heavy and bulky to be worn, and have been limited in dynamic range to no more than 18 bits. The present apparatus is small and light enough to be worn by the subject. It is capable of amplifying EEG signals and digitizing them to 22 bits in as many as 150 channels. The apparatus is controlled by software and is plugged into the USB port of a personal computer. This apparatus makes it possible, for the first time, to obtain high-resolution functional EEG images of a thinking brain in a real-life, ambulatory setting outside a research laboratory or hospital.

  15. A Collaborative Brain-Computer Interface for Improving Human Performance

    PubMed Central

    Wang, Yijun; Jung, Tzyy-Ping

    2011-01-01

    Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1) Event-related potentials (ERP) averaging, (2) Feature concatenating, and (3) Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right) was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100–250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC), which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior. PMID:21655253

  16. [Digital electroencephalography in brain death diagnostics : Technical requirements and results of a survey on the compatibility with medical guidelines of digital EEG systems from providers in Germany].

    PubMed

    Walter, U; Noachtar, S; Hinrichs, H

    2018-02-01

    The guidelines of the German Medical Association and the German Society for Clinical Neurophysiology and Functional Imaging (DGKN) require a high procedural and technical standard for electroencephalography (EEG) as an ancillary method for diagnosing the irreversible cessation of brain function (brain death). Nowadays, digital EEG systems are increasingly being applied in hospitals. So far it is unclear to what extent the digital EEG systems currently marketed in Germany meet the guidelines for diagnosing brain death. In the present article, the technical und safety-related requirements for digital EEG systems and the EEG documentation for diagnosing brain death are described in detail. On behalf of the DGKN, the authors sent out a questionnaire to all identified distributors of digital EEG systems in Germany with respect to the following technical demands: repeated recording of the calibration signals during an ongoing EEG recording, repeated recording of all electrode impedances during an ongoing EEG recording, assessability of intrasystem noise and galvanic isolation of measurement earthing from earthing conductor (floating input). For 15 of the identified 20 different digital EEG systems the specifications were provided by the distributors (among them all distributors based in Germany). All of these EEG systems are provided with a galvanic isolation (floating input). The internal noise can be tested with all systems; however, some systems do not allow repeated recording of the calibration signals and/or the electrode impedances during an ongoing EEG recording. The majority but not all of the currently available digital EEG systems offered for clinical use are eligible for use in brain death diagnostics as per German guidelines.

  17. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    PubMed

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  18. Hybrid ICA-Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals.

    PubMed

    Mannan, Malik M Naeem; Jeong, Myung Y; Kamran, Muhammad A

    2016-01-01

    Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG.

  19. Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals

    PubMed Central

    Mannan, Malik M. Naeem; Jeong, Myung Y.; Kamran, Muhammad A.

    2016-01-01

    Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG. PMID:27199714

  20. Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Objective. Brain–computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. Approach. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. Main results. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. Significance. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  1. NeuroPlace: Categorizing urban places according to mental states

    PubMed Central

    2017-01-01

    Urban spaces have a great impact on how people’s emotion and behaviour. There are number of factors that impact our brain responses to a space. This paper presents a novel urban place recommendation approach, that is based on modelling in-situ EEG data. The research investigations leverages on newly affordable Electroencephalogram (EEG) headsets, which has the capability to sense mental states such as meditation and attention levels. These emerging devices have been utilized in understanding how human brains are affected by the surrounding built environments and natural spaces. In this paper, mobile EEG headsets have been used to detect mental states at different types of urban places. By analysing and modelling brain activity data, we were able to classify three different places according to the mental state signature of the users, and create an association map to guide and recommend people to therapeutic places that lessen brain fatigue and increase mental rejuvenation. Our mental states classifier has achieved accuracy of (%90.8). NeuroPlace breaks new ground not only as a mobile ubiquitous brain monitoring system for urban computing, but also as a system that can advise urban planners on the impact of specific urban planning policies and structures. We present and discuss the challenges in making our initial prototype more practical, robust, and reliable as part of our on-going research. In addition, we present some enabling applications using the proposed architecture. PMID:28898244

  2. Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns

    PubMed Central

    Lee, You-Yun; Hsieh, Shulan

    2014-01-01

    This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695

  3. Classification and evaluation of the pharmacodynamics of psychotropic drugs by single-lead pharmaco-EEG, EEG mapping and tomography (LORETA).

    PubMed

    Saletu, B; Anderer, P; Saletu-Zyhlarz, G M; Arnold, O; Pascual-Marqui, R D

    2002-01-01

    Utilizing computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (EEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ: the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG profiles and maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described in this paper. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects, therapeutic efficacy and pharmacokinetic and pharmacodynamic data will be discussed. In recent times, imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be demonstrated for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently.

  4. Functional brain networks in healthy subjects under acupuncture stimulation: An EEG study based on nonlinear synchronization likelihood analysis

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Liu, Jing; Cai, Lihui; Wang, Jiang; Cao, Yibin; Hao, Chongqing

    2017-02-01

    Electroencephalogram (EEG) signal evoked by acupuncture stimulation at "Zusanli" acupoint is analyzed to investigate the modulatory effect of manual acupuncture on the functional brain activity. Power spectral density of EEG signal is first calculated based on the autoregressive Burg method. It is shown that the EEG power is significantly increased during and after acupuncture in delta and theta bands, but decreased in alpha band. Furthermore, synchronization likelihood is used to estimate the nonlinear correlation between each pairwise EEG signals. By applying a threshold to resulting synchronization matrices, functional networks for each band are reconstructed and further quantitatively analyzed to study the impact of acupuncture on network structure. Graph theoretical analysis demonstrates that the functional connectivity of the brain undergoes obvious change under different conditions: pre-acupuncture, acupuncture, and post-acupuncture. The minimum path length is largely decreased and the clustering coefficient keeps increasing during and after acupuncture in delta and theta bands. It is indicated that acupuncture can significantly modulate the functional activity of the brain, and facilitate the information transmission within different brain areas. The obtained results may facilitate our understanding of the long-lasting effect of acupuncture on the brain function.

  5. Brain Functional Connectivity in MS: An EEG-NIRS Study

    DTIC Science & Technology

    2015-10-01

    electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling

  6. Automatic identification and removal of ocular artifacts in EEG--improved adaptive predictor filtering for portable applications.

    PubMed

    Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong

    2014-06-01

    Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices.

  7. Optimal design of a bank of spatio-temporal filters for EEG signal classification.

    PubMed

    Higashi, Hiroshi; Tanaka, Toshihisa

    2011-01-01

    The spatial weights for electrodes called common spatial pattern (CSP) are known to be effective in EEG signal classification for motor imagery based brain computer interfaces (MI-BCI). To achieve accurate classification in CSP, the frequency filter should be properly designed. To this end, several methods for designing the filter have been proposed. However, the existing methods cannot consider plural brain activities described with different frequency bands and different spatial patterns such as activities of mu and beta rhythms. In order to efficiently extract these brain activities, we propose a method to design plural filters and spatial weights which extract desired brain activity. The proposed method designs finite impulse response (FIR) filters and the associated spatial weights by optimization of an objective function which is a natural extension of CSP. Moreover, we show by a classification experiment that the bank of FIR filters which are designed by introducing an orthogonality into the objective function can extract good discriminative features. Moreover, the experiment result suggests that the proposed method can automatically detect and extract brain activities related to motor imagery.

  8. Brain-computer interface design using alpha wave

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng

    2010-01-01

    A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.

  9. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed

    Wenzel, Markus A; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  10. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.

    PubMed

    Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer

    2013-02-01

    Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Source analysis of MEG activities during sleep (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iramina, K.

    1991-04-01

    The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.

  12. A small, portable, battery-powered brain-computer interface system for motor rehabilitation.

    PubMed

    McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (<;$200) BCI system has been developed using a custom electroencephalographic (EEG) amplifier array, and a commercial microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.

  13. Towards deep brain monitoring with superficial EEG sensors plus neuromodulatory focused ultrasound

    PubMed Central

    Darvas, F; Mehić, E; Caler, CJ; Ojemann, JG; Mourad, PD

    2017-01-01

    Noninvasive recordings of electrophysiological activity have limited anatomical specificity and depth. We hypothesized that spatially tagging a small volume of brain with a unique electroencephalogram (EEG) signal induced by pulsed focused ultrasound (pFU) could overcome those limitations. As a first step towards testing this hypothesis, we applied transcranial ultrasound (2 MHz, 200 microsecond-long pulses applied at 1050 Hz for one second at a spatial peak temporal average intensity of 1.4 W/cm2) to the brains of anesthetized rats while simultaneously recording EEG signals. We observed a significant 1050 Hz electrophysiological signal only when ultrasound was applied to living brain. Moreover, amplitude demodulation of the EEG signal at 1050 Hz yielded measurement of gamma band (>30 Hz) brain activity consistent with direct measurements of that activity. These results represent preliminary support for use of pFU as a spatial tagging mechanism for non-invasive EEG-based mapping of deep brain activity with high spatial resolution. PMID:27181686

  14. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.

    PubMed

    Trejo, Leonard J; Rosipal, Roman; Matthews, Bryan

    2006-06-01

    We have developed and tested two electroencephalogram (EEG)-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KPLS classifier to map power spectra of 62-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject's average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: 1) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal electrooculograms (EOG) signals, 2) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from 12 electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle artifact is controlled via adaptive normalization of the SSVEP. Training of the classifier requires about 3 min. We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 s for movement initiation and turning. We have also developed a realistic demonstration of our system for control of a moving map display (http://ti.arc.nasa.gov/).

  15. Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns

    PubMed Central

    Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske

    2013-01-01

    A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851

  16. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form.

    PubMed

    Martínez-Rodrigo, Arturo; Fernández-Sotos, Alicia; Latorre, José Miguel; Moncho-Bogani, José; Fernández-Caballero, Antonio

    2017-01-01

    This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  17. High-resolution EEG techniques for brain-computer interface applications.

    PubMed

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Astolfi, Laura; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Gao, Shangkai; Millan, Jose; Babiloni, Fabio

    2008-01-15

    High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a setup phase (which includes most of the computational burden) and the actual EEG processing phase, which was limited to a single matrix multiplication. This separation allowed to make the procedure suitable for on-line utilization, and a pilot experiment was performed. Results show that lateralization of electrical activity, which is expected to be contralateral to the imagined movement, is more evident on the estimated CCDs than in the scalp potentials. CCDs produce a pattern of relevant spectral features that is more spatially focused, and has a higher statistical significance (EEG: 0.20+/-0.114 S.D.; CCD: 0.55+/-0.16 S.D.; p=10(-5)). A pilot experiment showed that a trained subject could utilize voluntary modulation of estimated CCDs for accurate (eight targets) on-line control of a cursor. This study showed that it is practically feasible to utilize HREEG techniques for on-line operation of a BCI system; off-line analysis suggests that accuracy of BCI control is enhanced by the proposed method.

  18. A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan

    2013-02-01

    As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.

  19. Regularized Filters for L1-Norm-Based Common Spatial Patterns.

    PubMed

    Wang, Haixian; Li, Xiaomeng

    2016-02-01

    The l1 -norm-based common spatial patterns (CSP-L1) approach is a recently developed technique for optimizing spatial filters in the field of electroencephalogram (EEG)-based brain computer interfaces. The l1 -norm-based expression of dispersion in CSP-L1 alleviates the negative impact of outliers. In this paper, we further improve the robustness of CSP-L1 by taking into account noise which does not necessarily have as large a deviation as with outliers. The noise modelling is formulated by using the waveform length of the EEG time course. With the noise modelling, we then regularize the objective function of CSP-L1, in which the l1-norm is used in two folds: one is the dispersion and the other is the waveform length. An iterative algorithm is designed to resolve the optimization problem of the regularized objective function. A toy illustration and the experiments of classification on real EEG data sets show the effectiveness of the proposed method.

  20. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.

    PubMed

    Lee, Po-Lei; Sie, Jyun-Jie; Liu, Yu-Ju; Wu, Chi-Hsun; Lee, Ming-Huan; Shu, Chih-Hung; Li, Po-Hung; Sun, Chia-Wei; Shyu, Kuo-Kai

    2010-07-01

    This study presents a new steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI). SSVEPs, induced by phase-tagged flashes in eight light emitting diodes (LEDs), were used to control four cursor movements (up, right, down, and left) and four button functions (on, off, right-, and left-clicks) on a screen menu. EEG signals were measured by one EEG electrode placed at Oz position, referring to the international EEG 10-20 system. Since SSVEPs are time-locked and phase-locked to the onsets of SSVEP flashes, EEG signals were bandpass-filtered and segmented into epochs, and then averaged across a number of epochs to sharpen the recorded SSVEPs. Phase lags between the measured SSVEPs and a reference SSVEP were measured, and targets were recognized based on these phase lags. The current design used eight LEDs to flicker at 31.25 Hz with 45 degrees phase margin between any two adjacent SSVEP flickers. The SSVEP responses were filtered within 29.25-33.25 Hz and then averaged over 60 epochs. Owing to the utilization of high-frequency flickers, the induced SSVEPs were away from low-frequency noises, 60 Hz electricity noise, and eye movement artifacts. As a consequence, we achieved a simple architecture that did not require eye movement monitoring or other artifact detection and removal. The high-frequency design also achieved a flicker fusion effect for better visualization. Seven subjects were recruited in this study to sequentially input a command sequence, consisting of a sequence of eight cursor functions, repeated three times. The accuracy and information transfer rate (mean +/- SD) over the seven subjects were 93.14 +/- 5.73% and 28.29 +/- 12.19 bits/min, respectively. The proposed system can provide a reliable channel for severely disabled patients to communicate with external environments.

  1. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty

    NASA Astrophysics Data System (ADS)

    Ušćumlić, Marija; Blankertz, Benjamin

    2016-02-01

    Objective. State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-stationarity of our natural visual environment, we investigated the electroencephalography (EEG) correlates of visual recognition while participants overtly performed visual search in non-stationary scenes. We hypothesized that visual effects (such as those typically used in human-computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of cognition-related EEG activity in an active search task and therefore require novel techniques for single-trial detection. Approach. We addressed fixation-related EEG activity in an active search task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli, our experimental study embraces two composite appearance styles based on fading-in, enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the pop-up experimental setting can be exploited to boost the EEG-based intention-decoding performance when facing transitional changes of visual content. Main results. The results confirmed our initial hypothesis that the dynamic of visual content can increase temporal uncertainty of the cognition-related EEG activity in active search with respect to fixation onset. This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on knowledge transfer between the different experimental settings gave a promising performance. Significance. Our study demonstrates that the non-stationarity of visual scenes is an important factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e., dwell time and fixation duration) in an active search task. In addition, our method to improve single-trial detection performance in this adverse scenario is an important step in making brain-computer interfacing technology available for human-computer interaction applications.

  2. [Research on the methods for multi-class kernel CSP-based feature extraction].

    PubMed

    Wang, Jinjia; Zhang, Lingzhi; Hu, Bei

    2012-04-01

    To relax the presumption of strictly linear patterns in the common spatial patterns (CSP), we studied the kernel CSP (KCSP). A new multi-class KCSP (MKCSP) approach was proposed in this paper, which combines the kernel approach with multi-class CSP technique. In this approach, we used kernel spatial patterns for each class against all others, and extracted signal components specific to one condition from EEG data sets of multiple conditions. Then we performed classification using the Logistic linear classifier. Brain computer interface (BCI) competition III_3a was used in the experiment. Through the experiment, it can be proved that this approach could decompose the raw EEG singles into spatial patterns extracted from multi-class of single trial EEG, and could obtain good classification results.

  3. EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington's disease.

    PubMed

    Painold, Annamaria; Anderer, Peter; Holl, Anna K; Letmaier, Martin; Saletu-Zyhlarz, Gerda M; Saletu, Bernd; Bonelli, Raphael M

    2011-05-01

    Previous studies have shown abnormal electroencephalography (EEG) in Huntington's disease (HD). The aim of the present investigation was to compare quantitatively analyzed EEGs of HD patients and controls by means of low-resolution brain electromagnetic tomography (LORETA). Further aims were to delineate the sensitivity and utility of EEG LORETA in the progression of HD, and to correlate parameters of cognitive and motor impairment with neurophysiological variables. In 55 HD patients and 55 controls a 3-min vigilance-controlled EEG (V-EEG) was recorded during midmorning hours. Power spectra and intracortical tomography were computed by LORETA in seven frequency bands and compared between groups. Spearman rank correlations were based on V-EEG and psychometric data. Statistical overall analysis by means of the omnibus significance test demonstrated significant (p < 0.01) differences between HD patients and controls. LORETA theta, alpha and beta power were decreased from early to late stages of the disease. Only advanced disease stages showed a significant increase in delta power, mainly in the right orbitofrontal cortex. Correlation analyses revealed that a decrease of alpha and theta power correlated significantly with increasing cognitive and motor decline. LORETA proved to be a sensitive instrument for detecting progressive electrophysiological changes in HD. Reduced alpha power seems to be a trait marker of HD, whereas increased prefrontal delta power seems to reflect worsening of the disease. Motor function and cognitive function deteriorate together with a decrease in alpha and theta power. This data set, so far the largest in HD research, helps to elucidate remaining uncertainties about electrophysiological abnormalities in HD.

  4. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.

    PubMed

    Lu, Na; Li, Tengfei; Ren, Xiaodong; Miao, Hongyu

    2017-06-01

    Motor imagery classification is an important topic in brain-computer interface (BCI) research that enables the recognition of a subject's intension to, e.g., implement prosthesis control. The brain dynamics of motor imagery are usually measured by electroencephalography (EEG) as nonstationary time series of low signal-to-noise ratio. Although a variety of methods have been previously developed to learn EEG signal features, the deep learning idea has rarely been explored to generate new representation of EEG features and achieve further performance improvement for motor imagery classification. In this study, a novel deep learning scheme based on restricted Boltzmann machine (RBM) is proposed. Specifically, frequency domain representations of EEG signals obtained via fast Fourier transform (FFT) and wavelet package decomposition (WPD) are obtained to train three RBMs. These RBMs are then stacked up with an extra output layer to form a four-layer neural network, which is named the frequential deep belief network (FDBN). The output layer employs the softmax regression to accomplish the classification task. Also, the conjugate gradient method and backpropagation are used to fine tune the FDBN. Extensive and systematic experiments have been performed on public benchmark datasets, and the results show that the performance improvement of FDBN over other selected state-of-the-art methods is statistically significant. Also, several findings that may be of significant interest to the BCI community are presented in this article.

  5. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    PubMed

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  6. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  7. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  8. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.

    PubMed

    Kiran Kumar, G R; Reddy, M Ramasubba

    2018-06-08

    Traditional Spatial filters used for steady-state visual evoked potential (SSVEP) extraction such as minimum energy combination (MEC) require the estimation of the background electroencephalogram (EEG) noise components. Even though this leads to improved performance in low signal to noise ratio (SNR) conditions, it makes such algorithms slow compared to the standard detection methods like canonical correlation analysis (CCA) due to the additional computational cost. In this paper, Periodic component analysis (πCA) is presented as an alternative spatial filtering approach to extract the SSVEP component effectively without involving extensive modelling of the noise. The πCA can separate out components corresponding to a given frequency of interest from the background electroencephalogram (EEG) by capturing the temporal information and does not generalize SSVEP based on rigid templates. Data from ten test subjects were used to evaluate the proposed method and the results demonstrate that the periodic component analysis acts as a reliable spatial filter for SSVEP extraction. Statistical tests were performed to validate the results. The experimental results show that πCA provides significant improvement in accuracy compared to standard CCA and MEC in low SNR conditions. The results demonstrate that πCA provides better detection accuracy compared to CCA and on par with that of MEC at a lower computational cost. Hence πCA is a reliable and efficient alternative detection algorithm for SSVEP based brain-computer interface (BCI). Copyright © 2018. Published by Elsevier B.V.

  9. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data

    NASA Astrophysics Data System (ADS)

    Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria

    2017-08-01

    Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.

  10. Measure Projection Analysis: A Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference

    PubMed Central

    Bigdely-Shamlo, Nima; Mullen, Tim; Kreutz-Delgado, Kenneth; Makeig, Scott

    2013-01-01

    A crucial question for the analysis of multi-subject and/or multi-session electroencephalographic (EEG) data is how to combine information across multiple recordings from different subjects and/or sessions, each associated with its own set of source processes and scalp projections. Here we introduce a novel statistical method for characterizing the spatial consistency of EEG dynamics across a set of data records. Measure Projection Analysis (MPA) first finds voxels in a common template brain space at which a given dynamic measure is consistent across nearby source locations, then computes local-mean EEG measure values for this voxel subspace using a statistical model of source localization error and between-subject anatomical variation. Finally, clustering the mean measure voxel values in this locally consistent brain subspace finds brain spatial domains exhibiting distinguishable measure features and provides 3-D maps plus statistical significance estimates for each EEG measure of interest. Applied to sufficient high-quality data, the scalp projections of many maximally independent component (IC) processes contributing to recorded high-density EEG data closely match the projection of a single equivalent dipole located in or near brain cortex. We demonstrate the application of MPA to a multi-subject EEG study decomposed using independent component analysis (ICA), compare the results to k-means IC clustering in EEGLAB (sccn.ucsd.edu/eeglab), and use surrogate data to test MPA robustness. A Measure Projection Toolbox (MPT) plug-in for EEGLAB is available for download (sccn.ucsd.edu/wiki/MPT). Together, MPA and ICA allow use of EEG as a 3-D cortical imaging modality with near-cm scale spatial resolution. PMID:23370059

  11. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  12. Real-time EEG-based detection of fatigue driving danger for accident prediction.

    PubMed

    Wang, Hong; Zhang, Chi; Shi, Tianwei; Wang, Fuwang; Ma, Shujun

    2015-03-01

    This paper proposes a real-time electroencephalogram (EEG)-based detection method of the potential danger during fatigue driving. To determine driver fatigue in real time, wavelet entropy with a sliding window and pulse coupled neural network (PCNN) were used to process the EEG signals in the visual area (the main information input route). To detect the fatigue danger, the neural mechanism of driver fatigue was analyzed. The functional brain networks were employed to track the fatigue impact on processing capacity of brain. The results show the overall functional connectivity of the subjects is weakened after long time driving tasks. The regularity is summarized as the fatigue convergence phenomenon. Based on the fatigue convergence phenomenon, we combined both the input and global synchronizations of brain together to calculate the residual amount of the information processing capacity of brain to obtain the dangerous points in real time. Finally, the danger detection system of the driver fatigue based on the neural mechanism was validated using accident EEG. The time distributions of the output danger points of the system have a good agreement with those of the real accident points.

  13. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.

    PubMed

    Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan

    2016-06-01

    Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate helpless sub-bands for each subject and make remaining fewer sub-bands keep better separability by fisher distance, which leads to a higher classification accuracy than WPD-CSP method. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Automated diagnosis of autism: in search of a mathematical marker.

    PubMed

    Bhat, Shreya; Acharya, U Rajendra; Adeli, Hojjat; Bairy, G Muralidhar; Adeli, Amir

    2014-01-01

    Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (EEG). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-the-art review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEG-based diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder.

  16. Evolutionary computing based approach for the removal of ECG artifact from the corrupted EEG signal.

    PubMed

    Priyadharsini, S Suja; Rajan, S Edward

    2014-01-01

    Electroencephalogram (EEG) is an important tool for clinical diagnosis of brain-related disorders and problems. However, it is corrupted by various biological artifacts, of which ECG is one among them that reduces the clinical importance of EEG especially for epileptic patients and patients with short neck. To remove the ECG artifact from the measured EEG signal using an evolutionary computing approach based on the concept of Hybrid Adaptive Neuro-Fuzzy Inference System, which helps the Neurologists in the diagnosis and follow-up of encephalopathy. The proposed hybrid learning methods are ANFIS-MA and ANFIS-GA, which uses Memetic Algorithm (MA) and Genetic algorithm (GA) for tuning the antecedent and consequent part of the ANFIS structure individually. The performances of the proposed methods are compared with that of ANFIS and adaptive Recursive Least Squares (RLS) filtering algorithm. The proposed methods are experimentally validated by applying it to the simulated data sets, subjected to non-linearity condition and real polysomonograph data sets. Performance metrics such as sensitivity, specificity and accuracy of the proposed method ANFIS-MA, in terms of correction rate are found to be 93.8%, 100% and 99% respectively, which is better than current state-of-the-art approaches. The evaluation process used and demonstrated effectiveness of the proposed method proves that ANFIS-MA is more effective in suppressing ECG artifacts from the corrupted EEG signals than ANFIS-GA, ANFIS and RLS algorithm.

  17. Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma

    PubMed Central

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669

  18. Thought-based row-column scanning communication board for individuals with cerebral palsy.

    PubMed

    Scherer, Reinhold; Billinger, Martin; Wagner, Johanna; Schwarz, Andreas; Hettich, Dirk Tassilo; Bolinger, Elaina; Lloria Garcia, Mariano; Navarro, Juan; Müller-Putz, Gernot

    2015-02-01

    Impairment of an individual's ability to communicate is a major hurdle for active participation in education and social life. A lot of individuals with cerebral palsy (CP) have normal intelligence, however, due to their inability to communicate, they fall behind. Non-invasive electroencephalogram (EEG) based brain-computer interfaces (BCIs) have been proposed as potential assistive devices for individuals with CP. BCIs translate brain signals directly into action. Motor activity is no longer required. However, translation of EEG signals may be unreliable and requires months of training. Moreover, individuals with CP may exhibit high levels of spontaneous and uncontrolled movement, which has a large impact on EEG signal quality and results in incorrect translations. We introduce a novel thought-based row-column scanning communication board that was developed following user-centered design principles. Key features include an automatic online artifact reduction method and an evidence accumulation procedure for decision making. The latter allows robust decision making with unreliable BCI input. Fourteen users with CP participated in a supporting online study and helped to evaluate the performance of the developed system. Users were asked to select target items with the row-column scanning communication board. The results suggest that seven among eleven remaining users performed better than chance and were consequently able to communicate by using the developed system. Three users were excluded because of insufficient EEG signal quality. These results are very encouraging and represent a good foundation for the development of real-world BCI-based communication devices for users with CP. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Improving mental task classification by adding high frequency band information.

    PubMed

    Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping

    2010-02-01

    Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.

  1. EEG-based recognition of video-induced emotions: selecting subject-independent feature set.

    PubMed

    Kortelainen, Jukka; Seppänen, Tapio

    2013-01-01

    Emotions are fundamental for everyday life affecting our communication, learning, perception, and decision making. Including emotions into the human-computer interaction (HCI) could be seen as a significant step forward offering a great potential for developing advanced future technologies. While the electrical activity of the brain is affected by emotions, offers electroencephalogram (EEG) an interesting channel to improve the HCI. In this paper, the selection of subject-independent feature set for EEG-based emotion recognition is studied. We investigate the effect of different feature sets in classifying person's arousal and valence while watching videos with emotional content. The classification performance is optimized by applying a sequential forward floating search algorithm for feature selection. The best classification rate (65.1% for arousal and 63.0% for valence) is obtained with a feature set containing power spectral features from the frequency band of 1-32 Hz. The proposed approach substantially improves the classification rate reported in the literature. In future, further analysis of the video-induced EEG changes including the topographical differences in the spectral features is needed.

  2. MNE software for processing MEG and EEG data

    PubMed Central

    Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.

    2013-01-01

    Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute cortically-constrained minimum-norm current estimates from M/EEG data, is a software package that provides comprehensive analysis tools and workflows including preprocessing, source estimation, time–frequency analysis, statistical analysis, and several methods to estimate functional connectivity between distributed brain regions. The present paper gives detailed information about the MNE package and describes typical use cases while also warning about potential caveats in analysis. The MNE package is a collaborative effort of multiple institutes striving to implement and share best methods and to facilitate distribution of analysis pipelines to advance reproducibility of research. Full documentation is available at http://martinos.org/mne. PMID:24161808

  3. Wearable ear EEG for brain interfacing

    NASA Astrophysics Data System (ADS)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  4. Fast attainment of computer cursor control with noninvasively acquired brain signals

    NASA Astrophysics Data System (ADS)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  5. Altered Brain Microstate Dynamics in Adolescents with Narcolepsy

    PubMed Central

    Drissi, Natasha M.; Szakács, Attila; Witt, Suzanne T.; Wretman, Anna; Ulander, Martin; Ståhlbrandt, Henriettae; Darin, Niklas; Hallböök, Tove; Landtblom, Anne-Marie; Engström, Maria

    2016-01-01

    Narcolepsy is a chronic sleep disorder caused by a loss of hypocretin-1 producing neurons in the hypothalamus. Previous neuroimaging studies have investigated brain function in narcolepsy during rest using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In addition to hypothalamic and thalamic dysfunction they showed aberrant prefrontal perfusion and glucose metabolism in narcolepsy. Given these findings in brain structure and metabolism in narcolepsy, we anticipated that changes in functional magnetic resonance imaging (fMRI) resting state network (RSN) dynamics might also be apparent in patients with narcolepsy. The objective of this study was to investigate and describe brain microstate activity in adolescents with narcolepsy and correlate these to RSNs using simultaneous fMRI and electroencephalography (EEG). Sixteen adolescents (ages 13–20) with a confirmed diagnosis of narcolepsy were recruited and compared to age-matched healthy controls. Simultaneous EEG and fMRI data were collected during 10 min of wakeful rest. EEG data were analyzed for microstates, which are discrete epochs of stable global brain states obtained from topographical EEG analysis. Functional MRI data were analyzed for RSNs. Data showed that narcolepsy patients were less likely than controls to spend time in a microstate which we found to be related to the default mode network and may suggest a disruption of this network that is disease specific. We concluded that adolescents with narcolepsy have altered resting state brain dynamics. PMID:27536225

  6. Neurofeedback: One of today's techniques in psychiatry?

    PubMed

    Arns, M; Batail, J-M; Bioulac, S; Congedo, M; Daudet, C; Drapier, D; Fovet, T; Jardri, R; Le-Van-Quyen, M; Lotte, F; Mehler, D; Micoulaud-Franchi, J-A; Purper-Ouakil, D; Vialatte, F

    2017-04-01

    Neurofeedback is a technique that aims to teach a subject to regulate a brain parameter measured by a technical interface to modulate his/her related brain and cognitive activities. However, the use of neurofeedback as a therapeutic tool for psychiatric disorders remains controversial. The aim of this review is to summarize and to comment the level of evidence of electroencephalogram (EEG) neurofeedback and real-time functional magnetic resonance imaging (fMRI) neurofeedback for therapeutic application in psychiatry. Literature on neurofeedback and mental disorders but also on brain computer interfaces (BCI) used in the field of neurocognitive science has been considered by the group of expert of the Neurofeedback evaluation & training (NExT) section of the French Association of biological psychiatry and neuropsychopharmacology (AFPBN). Results show a potential efficacy of EEG-neurofeedback in the treatment of attentional-deficit/hyperactivity disorder (ADHD) in children, even if this is still debated. For other mental disorders, there is too limited research to warrant the use of EEG-neurofeedback in clinical practice. Regarding fMRI neurofeedback, the level of evidence remains too weak, for now, to justify clinical use. The literature review highlights various unclear points, such as indications (psychiatric disorders, pathophysiologic rationale), protocols (brain signals targeted, learning characteristics) and techniques (EEG, fMRI, signal processing). The field of neurofeedback involves psychiatrists, neurophysiologists and researchers in the field of brain computer interfaces. Future studies should determine the criteria for optimizing neurofeedback sessions. A better understanding of the learning processes underpinning neurofeedback could be a key element to develop the use of this technique in clinical practice. Copyright © 2016 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  7. Computational Electromagnetic Analysis in a Human Head Model with EEG Electrodes and Leads Exposed to RF-Field Sources at 915 MHz and 1748 MHz

    PubMed Central

    Angelone, Leonardo M.; Bit-Babik, Giorgi; Chou, Chung-Kwang

    2010-01-01

    An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm3 MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10–20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads. PMID:20681803

  8. Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking.

    PubMed

    Lee, Jun-Hak; Lim, Jeong-Hwan; Hwang, Han-Jeong; Im, Chang-Hwan

    2013-01-01

    The main goal of this study was to develop a hybrid mental spelling system combining a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) technology and a webcam-based eye-tracker, which utilizes information from the brain electrical activity and eye gaze direction at the same time. In the hybrid mental spelling system, a character decoded using SSVEP was not typed if the position of the selected character was not matched with the eye direction information ('left' or 'right') obtained from the eye-tracker. Thus, the users did not need to correct a misspelled character using a 'BACKSPACE' key. To verify the feasibility of the developed hybrid mental spelling system, we conducted online experiments with ten healthy participants. Each participant was asked to type 15 English words consisting of 68 characters. As a result, 16.6 typing errors could be prevented on average, demonstrating that the implemented hybrid mental spelling system could enhance the practicality of our mental spelling system.

  9. Human brain distinctiveness based on EEG spectral coherence connectivity.

    PubMed

    Rocca, D La; Campisi, P; Vegso, B; Cserti, P; Kozmann, G; Babiloni, F; Fallani, F De Vico

    2014-09-01

    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of the current analyses rely on the extraction of features characterizing the activity of single brain regions, like power spectrum estimation, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherence-based connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N = 108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performance shows that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.5% is obtained in EC (96.26% in EO) when fusing power spectrum information from parieto-occipital (centro-parietal in EO) regions. Taken together, these results suggest that the functional connectivity patterns represent effective features for improving EEG-based biometric systems.

  10. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface

    PubMed Central

    Kamrunnahar, M.; Schiff, S. J.

    2017-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799

  11. [Non-linear research of alertness levels under sleep deprivation].

    PubMed

    Xue, Ranting; Zhou, Peng; Gao, Xiang; Dong, Xinming; Wang, Xiaolu; Ming, Dong; Qi, Hongzhi; Wang, Xuemin

    2014-06-01

    We applied Lempel-Ziv complexity (LZC) combined with brain electrical activity mapping (BEAM) to study the change of alertness under sleep deprivation in our research. Ten subjects were involved in 36 hours sleep deprivation (SD), during which spontaneous electroencephalogram (EEG) experiments and auditory evoked EEG experiments-Oddball were recorded once every 6 hours. Spontaneous and evoked EEG data were calculated and BEAMs were structured. Results showed that during the 36 hours of SD, alertness could be divided into three stages, i. e. the first 12 hours as the high stage, the middle 12 hours as the rapid decline stage and the last 12 hours as the low stage. During the period SD, LZC of Spontaneous EEG decreased over the whole brain to some extent, but remained consistent with the subjective scales. By BEAMs of event related potential, LZC on frontal cortex decreased, but kept consistent with the behavioral responses. Therefore, LZC can be effective to reflect the change of brain alertness. At the same time LZC could be used as a practical index to monitor real-time alertness because of its simple computation and fast calculation.

  12. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    PubMed Central

    Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.

    2017-01-01

    Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070

  13. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone.

    PubMed

    Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G

    2017-01-01

    Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.

  14. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips

    PubMed Central

    Clerico, Andrea; Tiwari, Abhishek; Gupta, Rishabh; Jayaraman, Srinivasan; Falk, Tiago H.

    2018-01-01

    The quantity of music content is rapidly increasing and automated affective tagging of music video clips can enable the development of intelligent retrieval, music recommendation, automatic playlist generators, and music browsing interfaces tuned to the users' current desires, preferences, or affective states. To achieve this goal, the field of affective computing has emerged, in particular the development of so-called affective brain-computer interfaces, which measure the user's affective state directly from measured brain waves using non-invasive tools, such as electroencephalography (EEG). Typically, conventional features extracted from the EEG signal have been used, such as frequency subband powers and/or inter-hemispheric power asymmetry indices. More recently, the coupling between EEG and peripheral physiological signals, such as the galvanic skin response (GSR), have also been proposed. Here, we show the importance of EEG amplitude modulations and propose several new features that measure the amplitude-amplitude cross-frequency coupling per EEG electrode, as well as linear and non-linear connections between multiple electrode pairs. When tested on a publicly available dataset of music video clips tagged with subjective affective ratings, support vector classifiers trained on the proposed features were shown to outperform those trained on conventional benchmark EEG features by as much as 6, 20, 8, and 7% for arousal, valence, dominance and liking, respectively. Moreover, fusion of the proposed features with EEG-GSR coupling features showed to be particularly useful for arousal (feature-level fusion) and liking (decision-level fusion) prediction. Together, these findings show the importance of the proposed features to characterize human affective states during music clip watching. PMID:29367844

  15. Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.

    PubMed

    Ding, Lei; Yuan, Han

    2013-04-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance. Copyright © 2011 Wiley Periodicals, Inc.

  16. The Brainarium: An Interactive Immersive Tool for Brain Education, Art, and Neurotherapy

    PubMed Central

    2016-01-01

    Recent theoretical and technological advances in neuroimaging techniques now allow brain electrical activity to be recorded using affordable and user-friendly equipment for nonscientist end-users. An increasing number of educators and artists have begun using electroencephalogram (EEG) to control multimedia and live artistic contents. In this paper, we introduce a new concept based on brain computer interface (BCI) technologies: the Brainarium. The Brainarium is a new pedagogical and artistic tool, which can deliver and illustrate scientific knowledge, as well as a new framework for scientific exploration. The Brainarium consists of a portable planetarium device that is being used as brain metaphor. This is done by projecting multimedia content on the planetarium dome and displaying EEG data recorded from a subject in real time using Brain Machine Interface (BMI) technologies. The system has been demonstrated through several performances involving an interaction between the subject controlling the BMI, a musician, and the audience during series of exhibitions and workshops in schools. We report here feedback from 134 participants who filled questionnaires to rate their experiences. Our results show improved subjective learning compared to conventional methods, improved entertainment value, improved absorption into the material being presented, and little discomfort. PMID:27698660

  17. The Brainarium: An Interactive Immersive Tool for Brain Education, Art, and Neurotherapy.

    PubMed

    Grandchamp, Romain; Delorme, Arnaud

    2016-01-01

    Recent theoretical and technological advances in neuroimaging techniques now allow brain electrical activity to be recorded using affordable and user-friendly equipment for nonscientist end-users. An increasing number of educators and artists have begun using electroencephalogram (EEG) to control multimedia and live artistic contents. In this paper, we introduce a new concept based on brain computer interface (BCI) technologies: the Brainarium. The Brainarium is a new pedagogical and artistic tool, which can deliver and illustrate scientific knowledge, as well as a new framework for scientific exploration. The Brainarium consists of a portable planetarium device that is being used as brain metaphor. This is done by projecting multimedia content on the planetarium dome and displaying EEG data recorded from a subject in real time using Brain Machine Interface (BMI) technologies. The system has been demonstrated through several performances involving an interaction between the subject controlling the BMI, a musician, and the audience during series of exhibitions and workshops in schools. We report here feedback from 134 participants who filled questionnaires to rate their experiences. Our results show improved subjective learning compared to conventional methods, improved entertainment value, improved absorption into the material being presented, and little discomfort.

  18. EEG Negativity in Fixations Used for Gaze-Based Control: Toward Converting Intentions into Actions with an Eye-Brain-Computer Interface

    PubMed Central

    Shishkin, Sergei L.; Nuzhdin, Yuri O.; Svirin, Evgeny P.; Trofimov, Alexander G.; Fedorova, Anastasia A.; Kozyrskiy, Bogdan L.; Velichkovsky, Boris M.

    2016-01-01

    We usually look at an object when we are going to manipulate it. Thus, eye tracking can be used to communicate intended actions. An effective human-machine interface, however, should be able to differentiate intentional and spontaneous eye movements. We report an electroencephalogram (EEG) marker that differentiates gaze fixations used for control from spontaneous fixations involved in visual exploration. Eight healthy participants played a game with their eye movements only. Their gaze-synchronized EEG data (fixation-related potentials, FRPs) were collected during game's control-on and control-off conditions. A slow negative wave with a maximum in the parietooccipital region was present in each participant's averaged FRPs in the control-on conditions and was absent or had much lower amplitude in the control-off condition. This wave was similar but not identical to stimulus-preceding negativity, a slow negative wave that can be observed during feedback expectation. Classification of intentional vs. spontaneous fixations was based on amplitude features from 13 EEG channels using 300 ms length segments free from electrooculogram contamination (200–500 ms relative to the fixation onset). For the first fixations in the fixation triplets required to make moves in the game, classified against control-off data, a committee of greedy classifiers provided 0.90 ± 0.07 specificity and 0.38 ± 0.14 sensitivity. Similar (slightly lower) results were obtained for the shrinkage Linear Discriminate Analysis (LDA) classifier. The second and third fixations in the triplets were classified at lower rate. We expect that, with improved feature sets and classifiers, a hybrid dwell-based Eye-Brain-Computer Interface (EBCI) can be built using the FRP difference between the intended and spontaneous fixations. If this direction of BCI development will be successful, such a multimodal interface may improve the fluency of interaction and can possibly become the basis for a new input device for paralyzed and healthy users, the EBCI “Wish Mouse.” PMID:27917105

  19. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.

    PubMed

    Fu, Yunfa; Xiong, Xin; Jiang, Changhao; Xu, Baolei; Li, Yongcheng; Li, Hongyi

    2017-09-01

    Simultaneous acquisition of brain activity signals from the sensorimotor area using NIRS combined with EEG, imagined hand clenching force and speed modulation of brain activity, as well as 6-class classification of these imagined motor parameters by NIRS-EEG were explored. Near infrared probes were aligned with C3 and C4, and EEG electrodes were placed midway between the NIRS probes. NIRS and EEG signals were acquired from six healthy subjects during six imagined hand clenching force and speed tasks involving the right hand. The results showed that NIRS combined with EEG is effective for simultaneously measuring brain activity of the sensorimotor area. The study also showed that in the duration of (0, 10) s for imagined force and speed of hand clenching, HbO first exhibited a negative variation trend, which was followed by a negative peak. After the negative peak, it exhibited a positive variation trend with a positive peak about 6-8 s after termination of imagined movement. During (-2, 1) s, the EEG may have indicated neural processing during the preparation, execution, and monitoring of a given imagined force and speed of hand clenching. The instantaneous phase, frequency, and amplitude feature of the EEG were calculated by Hilbert transform; HbO and the difference between HbO and Hb concentrations were extracted. The features of NIRS and EEG were combined to classify three levels of imagined force [at 20/50/80% MVGF (maximum voluntary grip force)] and speed (at 0.5/1/2 Hz) of hand clenching by SVM. The average classification accuracy of the NIRS-EEG fusion feature was 0.74 ± 0.02. These results may provide increased control commands of force and speed for a brain-controlled robot based on NIRS-EEG.

  20. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following.

    PubMed

    Forgacs, Peter B; Conte, Mary M; Fridman, Esteban A; Voss, Henning U; Victor, Jonathan D; Schiff, Nicholas D

    2014-12-01

    Standard clinical characterization of patients with disorders of consciousness (DOC) relies on observation of motor output and may therefore lead to the misdiagnosis of vegetative state or minimally conscious state in patients with preserved cognition. We used conventional electroencephalographic (EEG) measures to assess a cohort of DOC patients with and without functional magnetic resonance imaging (fMRI)-based evidence of command-following, and correlated the findings with standard clinical behavioral evaluation and brain metabolic activity. We enrolled 44 patients with severe brain injury. Behavioral diagnosis was established using standardized clinical assessments. Long-term EEG recordings were analyzed to determine wakeful background organization and presence of elements of sleep architecture. A subset of patients had fMRI testing of command-following using motor imagery paradigms (26 patients) and resting brain metabolism measurement using (18) fluorodeoxyglucose positron emission tomography (31 patients). All 4 patients with fMRI evidence of covert command-following consistently demonstrated well-organized EEG background during wakefulness, spindling activity during sleep, and relative preservation of cortical metabolic activity. In the entire cohort, EEG organization and overall brain metabolism showed no significant association with bedside behavioral testing, except in a few cases when EEG was severely abnormal. These findings suggest that conventional EEG is a simple strategy that complements behavioral and imaging characterization of DOC patients. Preservation of specific EEG features may be used to assess the likelihood of unrecognized cognitive abilities in severely brain-injured patients with very limited or no motor responses. © 2014 American Neurological Association.

  1. EEG-based "serious" games and monitoring tools for pain management.

    PubMed

    Sourina, Olga; Wang, Qiang; Nguyen, Minh Khoa

    2011-01-01

    EEG-based "serious games" for medical applications attracted recently more attention from the research community and industry as wireless EEG reading devices became easily available on the market. EEG-based technology has been applied in anesthesiology, psychology, etc. In this paper, we proposed and developed EEG-based "serious" games and doctor's monitoring tools that could be used for pain management. As EEG signal is considered to have a fractal nature, we proposed and develop a novel spatio-temporal fractal based algorithm for brain state quantification. The algorithm is implemented with blobby visualization tools for patient monitoring and in EEG-based "serious" games. Such games could be used by patient even at home convenience for pain management as an alternative to traditional drug treatment.

  2. Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Li, Xiaoqin; Bian, Yan

    2018-04-01

    Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.

  3. Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver's drowsiness detection and warning.

    PubMed

    Lin, Chin-Teng; Chen, Yu-Chieh; Huang, Teng-Yi; Chiu, Tien-Ting; Ko, Li-Wei; Liang, Sheng-Fu; Hsieh, Hung-Yi; Hsu, Shang-Hwa; Duann, Jeng-Ren

    2008-05-01

    Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire and analyze electroencephalogram (EEG) signals in real-time to monitor human physiological as well as cognitive states, and, in turn, provide warning signals to the users when needed. The BCI system consists of a four-channel biosignal acquisition/amplification module, a wireless transmission module, a dual-core signal processing unit, and a host system for display and storage. The embedded dual-core processing system with multitask scheduling capability was proposed to acquire and process the input EEG signals in real time. In addition, the wireless transmission module, which eliminates the inconvenience of wiring, can be switched between radio frequency (RF) and Bluetooth according to the transmission distance. Finally, the real-time EEG-based drowsiness monitoring and warning algorithms were implemented and integrated into the system to close the loop of the BCI system. The practical online testing demonstrates the feasibility of using the proposed system with the ability of real-time processing, automatic analysis, and online warning feedback in real-world operation and living environments.

  4. Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG

    PubMed Central

    Mullen, Tim R.; Kothe, Christian A.E.; Chi, Mike; Ojeda, Alejandro; Kerth, Trevor; Makeig, Scott; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2015-01-01

    Goal We present and evaluate a wearable high-density dry electrode EEG system and an open-source software framework for online neuroimaging and state classification. Methods The system integrates a 64-channel dry EEG form-factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in 9 subjects using the dry EEG system. Results Simulations yielded high accuracy (AUC=0.97±0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity (sdDTF) was significantly above chance with similar performance (AUC) for cLORETA (0.74±0.09) and LCMV (0.72±0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74±0.16) but significantly better for LCMV (0.82±0.12). Conclusion We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. Significance This paper is the first validated application of these methods to 64-channel dry EEG. The work addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes. PMID:26415149

  5. EEG topography and tomography (LORETA) in the classification and evaluation of the pharmacodynamics of psychotropic drugs.

    PubMed

    Saletu, Bernd; Anderer, Peter; Saletu-Zyhlarz, Gerda M

    2006-04-01

    By multi-lead computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (QEEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping or topography), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ, the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects and therapeutic efficacy will be discussed. Imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be shown for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently. By considering these differences between psychotropic drugs and placebo in normal subjects, as well as between mental disorder patients and normal controls, it may be possible to choose the optimum drug for a specific patient according to a key-lock principle, since the drug should normalize the deviant brain function. Thus, pharmaco-EEG topography and tomography are valuable methods in human neuropsychopharmacology, clinical psychiatry and neurology.

  6. Household wireless electroencephalogram hat

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  7. s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

    PubMed Central

    Li, Ying; Qin, Jing; Hsin, Yue-Loong; Osher, Stanley; Liu, Wentai

    2016-01-01

    EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios. PMID:27965529

  8. Neural correlates of mathematical problem solving.

    PubMed

    Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping

    2015-03-01

    This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.

  9. Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering

    PubMed Central

    Huang, Chih-Sheng; Yang, Wen-Yu; Chuang, Chun-Hsiang; Wang, Yu-Kai

    2018-01-01

    Electroencephalogram (EEG) signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA), feature extraction, and the Gaussian mixture model (GMM) to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research. PMID:29599950

  10. Design and implementation of a P300-based brain-computer interface for controlling an internet browser.

    PubMed

    Mugler, Emily M; Ruf, Carolin A; Halder, Sebastian; Bensch, Michael; Kubler, Andrea

    2010-12-01

    An electroencephalographic (EEG) brain-computer interface (BCI) internet browser was designed and evaluated with 10 healthy volunteers and three individuals with advanced amyotrophic lateral sclerosis (ALS), all of whom were given tasks to execute on the internet using the browser. Participants with ALS achieved an average accuracy of 73% and a subsequent information transfer rate (ITR) of 8.6 bits/min and healthy participants with no prior BCI experience over 90% accuracy and an ITR of 14.4 bits/min. We define additional criteria for unrestricted internet access for evaluation of the presented and future internet browsers, and we provide a review of the existing browsers in the literature. The P300-based browser provides unrestricted access and enables free web surfing for individuals with paralysis.

  11. Single-Trial Classification of Multi-User P300-Based Brain-Computer Interface Using Riemannian Geometry.

    PubMed

    Korczowski, L; Congedo, M; Jutten, C

    2015-08-01

    The classification of electroencephalographic (EEG) data recorded from multiple users simultaneously is an important challenge in the field of Brain-Computer Interface (BCI). In this paper we compare different approaches for classification of single-trials Event-Related Potential (ERP) on two subjects playing a collaborative BCI game. The minimum distance to mean (MDM) classifier in a Riemannian framework is extended to use the diversity of the inter-subjects spatio-temporal statistics (MDM-hyper) or to merge multiple classifiers (MDM-multi). We show that both these classifiers outperform significantly the mean performance of the two users and analogous classifiers based on the step-wise linear discriminant analysis. More importantly, the MDM-multi outperforms the performance of the best player within the pair.

  12. The neural code of thoughts and feelings. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    NASA Astrophysics Data System (ADS)

    Jaušovec, Norbert

    2017-07-01

    Recently the number of theories trying to explain the brain - cognition - behavior relation has been increased. Promoted on the one hand by the development of sophisticated brain imaging techniques, such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and on the other, by complex computational models based on chaos and graph theory. But has this really advanced our understanding of the brain-behavior relation beyond Descartes's dualistic mind body division? One could critically argue that replacing the pineal body with extracellular electric fields represented in the electroencephalogram (EEG) as rapid transitional processes (RTS), combined with algebraic topology and dubbed brain topodynamics [1] is just putting lipstick on an outmoded evergreen.

  13. Connectivity Measures in EEG Microstructural Sleep Elements.

    PubMed

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease.

  14. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease. PMID:26924980

  15. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

    PubMed

    Sai, Chong Yeh; Mokhtar, Norrima; Arof, Hamzah; Cumming, Paul; Iwahashi, Masahiro

    2018-05-01

    Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

  16. A simple method for EEG guided transcranial electrical stimulation without models.

    PubMed

    Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q; Dmochowski, Jacek; Bikson, Marom

    2016-06-01

    There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a 'gold standard' numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.

  17. A simple method for EEG guided transcranial electrical stimulation without models

    NASA Astrophysics Data System (ADS)

    Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q.; Dmochowski, Jacek; Bikson, Marom

    2016-06-01

    Objective. There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. Approach. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a ‘gold standard’ numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Main results. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Significance. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.

  18. Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.

    2001-01-01

    Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.

  19. Electric field encephalography for brain activity monitoring.

    PubMed

    Versek, Craig William; Frasca, Tyler; Zhou, Jianlin; Chowdhury, Kaushik; Sridhar, Srinivas

    2018-05-11

    Objective - We describe an early-stage prototype of a new wireless electrophysiological sensor system, called NeuroDot, which can measure neuroelectric potentials and fields at the scalp in a new modality called Electric Field Encephalography (EFEG). We aim to establish the physical validity of the EFEG modality, and examine some of its properties and relative merits compared to EEG. Approach - We designed a wireless neuroelectric measurement device based on the Texas Instrument ADS1299 Analog Front End platform and a sensor montage, using custom electrodes, to simultaneously measure EFEG and spatially averaged EEG over a localized patch of the scalp (2cm x 2cm). The signal properties of each modality were compared across tests of noise floor, Berger effect, steady-state Visually Evoked Potential (ssVEP), signal-to-noise ratio (SNR), and others. In order to compare EFEG to EEG modalities in the frequency domain, we use a novel technique to compute spectral power densities and derive narrow-band SNR estimates for ssVEP signals. A simple binary choice brain-computer-interface (BCI) concept based on ssVEP is evaluated. Also, we present examples of high quality recording of transient Visually Evoked Potentials and Fields (tVEPF) that could be used for neurological studies. Main results - We demonstrate the capability of the NeuroDot system to record high quality EEG signals comparable to some recent clinical and research grade systems on the market. We show that the locally-referenced EFEG metric is resistant to certain types of movement artifacts. In some ssVEP based measurements, the EFEG modality shows promising results, demonstrating superior signal to noise ratios than the same recording processed as an analogous EEG signal. We show that by using EFEG based ssVEP SNR estimates to perform a binary classification in a model BCI, the optimal information transfer rate (ITR) can be raised from 15 to 30 bits per minute - though these preliminary results are likely sensitive to inter-subject variations and choice of scalp locations, so require further investigation. Significance - Enhancement of ssVEP SNR using EFEG has the potential to improve visually based BCIs and diagnostic paradigms. The time domain analysis of tVEPF signals shows robust features in the electric field components that might have clinical relevance beyond classical VEP approaches. . © 2018 IOP Publishing Ltd.

  20. Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans

    PubMed Central

    Kim, Hyoungkyu; Hudetz, Anthony G.; Lee, Joseph; Mashour, George A.; Lee, UnCheol; Avidan, Michael S.

    2018-01-01

    The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain. PMID:29503611

  1. Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans.

    PubMed

    Kim, Hyoungkyu; Hudetz, Anthony G; Lee, Joseph; Mashour, George A; Lee, UnCheol

    2018-01-01

    The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain.

  2. Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis.

    PubMed

    Xinyang Li; Cuntai Guan; Haihong Zhang; Kai Keng Ang

    2017-08-01

    Electrooculogram (EOG) artifact contamination is a common critical issue in general electroencephalogram (EEG) studies as well as in brain-computer interface (BCI) research. It is especially challenging when dedicated EOG channels are unavailable or when there are very few EEG channels available for independent component analysis based ocular artifact removal. It is even more challenging to avoid loss of the signal of interest during the artifact correction process, where the signal of interest can be multiple magnitudes weaker than the artifact. To address these issues, we propose a novel discriminative ocular artifact correction approach for feature learning in EEG analysis. Without extra ocular movement measurements, the artifact is extracted from raw EEG data, which is totally automatic and requires no visual inspection of artifacts. Then, artifact correction is optimized jointly with feature extraction by maximizing oscillatory correlations between trials from the same class and minimizing them between trials from different classes. We evaluate this approach on a real-world EEG dataset comprising 68 subjects performing cognitive tasks. The results showed that the approach is capable of not only suppressing the artifact components but also improving the discriminative power of a classifier with statistical significance. We also demonstrate that the proposed method addresses the confounding issues induced by ocular movements in cognitive EEG study.

  3. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    PubMed

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  4. Integrating EEG and fMRI in epilepsy.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Bertoldo, Alessandra; Manganotti, Paolo; Fiaschi, Antonio; Toffolo, Gianna Maria

    2011-02-14

    Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear interictal spikes. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface

    PubMed Central

    Lee, Wonhye; Kim, Suji; Kim, Byeongnam; Lee, Chungki; Chung, Yong An; Kim, Laehyun; Yoo, Seung-Schik

    2017-01-01

    We present non-invasive means that detect unilateral hand motor brain activity from one individual and subsequently stimulate the somatosensory area of another individual, thus, enabling the remote hemispheric link between each brain hemisphere in humans. Healthy participants were paired as a sender and a receiver. A sender performed a motor imagery task of either right or left hand, and associated changes in the electroencephalogram (EEG) mu rhythm (8–10 Hz) originating from either hemisphere were programmed to move a computer cursor to a target that appeared in either left or right of the computer screen. When the cursor reaches its target, the outcome was transmitted to another computer over the internet, and actuated the focused ultrasound (FUS) devices that selectively and non-invasively stimulated either the right or left hand somatosensory area of the receiver. Small FUS transducers effectively allowed for the independent administration of stimulatory ultrasonic waves to somatosensory areas. The stimulation elicited unilateral tactile sensation of the hand from the receiver, thus establishing the hemispheric brain-to-brain interface (BBI). Although there was a degree of variability in task accuracy, six pairs of volunteers performed the BBI task in high accuracy, transferring approximately eight commands per minute. Linkage between the hemispheric brain activities among individuals suggests the possibility for expansion of the information bandwidth in the context of BBI. PMID:28598972

  6. The choice of the source space and the Laplacian matrix in LORETA and the spatio-temporal Kalman filter EEG inverse methods.

    PubMed

    Habboush, Nawar; Hamid, Laith; Japaridze, Natia; Wiegand, Gert; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Siniatchkin, Michael

    2015-08-01

    The discretization of the brain and the definition of the Laplacian matrix influence the results of methods based on spatial and spatio-temporal smoothness, since the Laplacian operator is used to define the smoothness based on the neighborhood of each grid point. In this paper, the results of low resolution electromagnetic tomography (LORETA) and the spatiotemporal Kalman filter (STKF) are computed using, first, a greymatter source space with the standard definition of the Laplacian matrix and, second, using a whole-brain source space and a modified definition of the Laplacian matrix. Electroencephalographic (EEG) source imaging results of five inter-ictal spikes from a pre-surgical patient with epilepsy are used to validate the two aforementioned approaches. The results using the whole-brain source space and the modified definition of the Laplacian matrix were concentrated in a single source activation, stable, and concordant with the location of the focal cortical dysplasia (FCD) in the patient's brain compared with the results which use a grey-matter grid and the classical definition of the Laplacian matrix. This proof-of-concept study demonstrates a substantial improvement of source localization with both LORETA and STKF and constitutes a basis for further research in a large population of patients with epilepsy.

  7. On the feasibility of concurrent human TMS-EEG-fMRI measurements

    PubMed Central

    Reithler, Joel; Schuhmann, Teresa; de Graaf, Tom; Uludağ, Kâmil; Goebel, Rainer; Sack, Alexander T.

    2013-01-01

    Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value of such multimodal imaging approaches. Whereas concurrent EEG-fMRI enables monitoring of brain-wide network dynamics with high temporal and spatial resolution, the combination with TMS provides insights in causal interactions within these networks. Thus the simultaneous use of all three methods would allow studying fast, spatially accurate, and distributed causal interactions in the perturbed system and its functional relevance for intact behavior. Concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI experiments are already technically challenging, and the three-way combination of TMS-EEG-fMRI might yield additional difficulties in terms of hardware strain or signal quality. The present study explored the feasibility of concurrent TMS-EEG-fMRI studies by performing safety and quality assurance tests based on phantom and human data combining existing commercially available hardware. Results revealed that combined TMS-EEG-fMRI measurements were technically feasible, safe in terms of induced temperature changes, allowed functional MRI acquisition with comparable image quality as during concurrent EEG-fMRI or TMS-fMRI, and provided artifact-free EEG before and from 300 ms after TMS pulse application. Based on these empirical findings, we discuss the conceptual benefits of this novel complementary approach to investigate the working human brain and list a number of precautions and caveats to be heeded when setting up such multimodal imaging facilities with current hardware. PMID:23221407

  8. Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

    NASA Astrophysics Data System (ADS)

    Fomina, Tatiana; Lohmann, Gabriele; Erb, Michael; Ethofer, Thomas; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2016-12-01

    Objective. Electroencephalographic (EEG) brain-computer interfaces (BCIs) hold promise in restoring communication for patients with completely locked-in stage amyotrophic lateral sclerosis (ALS). However, these patients cannot use existing EEG-based BCIs, arguably because such systems rely on brain processes that are impaired in the late stages of ALS. In this work, we introduce a novel BCI designed for patients in late stages of ALS based on high-level cognitive processes that are less likely to be affected by ALS. Approach. We trained two ALS patients via EEG-based neurofeedback to use self-regulation of theta or gamma oscillations in the precuneus for basic communication. Because there is a tight connection between the precuneus and consciousness, precuneus oscillations are arguably generated by high-level cognitive processes, which are less likely to be affected by ALS than processes linked to the peripheral nervous system. Main results. Both patients learned to self-regulate their precuneus oscillations and achieved stable online decoding accuracy over the course of disease progression. One patient achieved a mean online decoding accuracy in a binary decision task of 70.55% across 26 training sessions, and the other patient achieved 59.44% across 16 training sessions. We provide empirical evidence that these oscillations were cortical in nature and originated from the intersection of the precuneus, cuneus, and posterior cingulate. Significance. Our results establish that ALS patients can employ self-regulation of precuneus oscillations for communication. Such a BCI is likely to be available to ALS patients as long as their consciousness supports communication.

  9. EEG complexity as a biomarker for autism spectrum disorder risk

    PubMed Central

    2011-01-01

    Background Complex neurodevelopmental disorders may be characterized by subtle brain function signatures early in life before behavioral symptoms are apparent. Such endophenotypes may be measurable biomarkers for later cognitive impairments. The nonlinear complexity of electroencephalography (EEG) signals is believed to contain information about the architecture of the neural networks in the brain on many scales. Early detection of abnormalities in EEG signals may be an early biomarker for developmental cognitive disorders. The goal of this paper is to demonstrate that the modified multiscale entropy (mMSE) computed on the basis of resting state EEG data can be used as a biomarker of normal brain development and distinguish typically developing children from a group of infants at high risk for autism spectrum disorder (ASD), defined on the basis of an older sibling with ASD. Methods Using mMSE as a feature vector, a multiclass support vector machine algorithm was used to classify typically developing and high-risk groups. Classification was computed separately within each age group from 6 to 24 months. Results Multiscale entropy appears to go through a different developmental trajectory in infants at high risk for autism (HRA) than it does in typically developing controls. Differences appear to be greatest at ages 9 to 12 months. Using several machine learning algorithms with mMSE as a feature vector, infants were classified with over 80% accuracy into control and HRA groups at age 9 months. Classification accuracy for boys was close to 100% at age 9 months and remains high (70% to 90%) at ages 12 and 18 months. For girls, classification accuracy was highest at age 6 months, but declines thereafter. Conclusions This proof-of-principle study suggests that mMSE computed from resting state EEG signals may be a useful biomarker for early detection of risk for ASD and abnormalities in cognitive development in infants. To our knowledge, this is the first demonstration of an information theoretic analysis of EEG data for biomarkers in infants at risk for a complex neurodevelopmental disorder. PMID:21342500

  10. Affective Pacman: A Frustrating Game for Brain-Computer Interface Experiments

    NASA Astrophysics Data System (ADS)

    Reuderink, Boris; Nijholt, Anton; Poel, Mannes

    We present the design and development of Affective Pacman, a game that induces frustration to study the effect of user state changes on the EEG signal. Affective Pacman is designed to induce frustration for short periods, and allows the synchronous recording of a wide range of sensors, such as physiological sensors and EEG in addition to the game state. A self-assessment is integrated in the game to track changes in user state. Preliminary results indicate a significant effect of the frustration induction on the EEG.

  11. EEG-based classification of imaginary left and right foot movements using beta rebound.

    PubMed

    Hashimoto, Yasunari; Ushiba, Junichi

    2013-11-01

    The purpose of this study was to investigate cortical lateralization of event-related (de)synchronization during left and right foot motor imagery tasks and to determine classification accuracy of the two imaginary movements in a brain-computer interface (BCI) paradigm. We recorded 31-channel scalp electroencephalograms (EEGs) from nine healthy subjects during brisk imagery tasks of left and right foot movements. EEG was analyzed with time-frequency maps and topographies, and the accuracy rate of classification between left and right foot movements was calculated. Beta rebound at the end of imagination (increase of EEG beta rhythm amplitude) was identified from the two EEGs derived from the right-shift and left-shift bipolar pairs at the vertex. This process enabled discrimination between right or left foot imagery at a high accuracy rate (maximum 81.6% in single trial analysis). These data suggest that foot motor imagery has potential to elicit left-right differences in EEG, while BCI using the unilateral foot imagery can achieve high classification accuracy, similar to ordinary BCI, based on hand motor imagery. By combining conventional discrimination techniques, the left-right discrimination of unilateral foot motor imagery provides a novel BCI system that could control a foot neuroprosthesis or a robotic foot. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Spatio-Temporal EEG Models for Brain Interfaces

    PubMed Central

    Gonzalez-Navarro, P.; Moghadamfalahi, M.; Akcakaya, M.; Erdogmus, D.

    2016-01-01

    Multichannel electroencephalography (EEG) is widely used in non-invasive brain computer interfaces (BCIs) for user intent inference. EEG can be assumed to be a Gaussian process with unknown mean and autocovariance, and the estimation of parameters is required for BCI inference. However, the relatively high dimensionality of the EEG feature vectors with respect to the number of labeled observations lead to rank deficient covariance matrix estimates. In this manuscript, to overcome ill-conditioned covariance estimation, we propose a structure for the covariance matrices of the multichannel EEG signals. Specifically, we assume that these covariances can be modeled as a Kronecker product of temporal and spatial covariances. Our results over the experimental data collected from the users of a letter-by-letter typing BCI show that with less number of parameter estimations, the system can achieve higher classification accuracies compared to a method that uses full unstructured covariance estimation. Moreover, in order to illustrate that the proposed Kronecker product structure could enable shortening the BCI calibration data collection sessions, using Cramer-Rao bound analysis on simulated data, we demonstrate that a model with structured covariance matrices will achieve the same estimation error as a model with no covariance structure using fewer labeled EEG observations. PMID:27713590

  13. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.

    PubMed

    Lee, Seung Min; Kim, Jeong Hun; Park, Cheolsoo; Hwang, Ji-Young; Hong, Joung Sook; Lee, Kwang Ho; Lee, Sang Hoon

    2016-01-01

    We fabricated a carbon nanotube (CNT)/adhesive polydimethylsiloxane (aPDMS) composite-based dry electroencephalograph (EEG) electrode for capacitive measuring of EEG signals. As research related to brain-computer interface applications has advanced, the presence of hairs on a patient's scalp has continued to present an obstacle to recorder EEG signals using dry electrodes. The CNT/aPDMS electrode developed here is elastic, highly conductive, self-adhesive, and capable of making conformal contact with and attaching to a hairy scalp. Onto the conductive disk, hundreds of conductive pillars coated with Parylene C insulation layer were fabricated. A CNT/aPDMS layer was attached on the disk to transmit biosignals to the pillar. The top of disk was designed to be solderable, which enables the electrode to connect with a variety of commercial EEG acquisition systems. The mechanical and electrical characteristics of the electrode were tested, and the performances of the electrodes were evaluated by recording EEGs, including alpha rhythms, auditory-evoked potentials, and steady-state visually-evoked potentials. The results revealed that the electrode provided a high signal-to-noise ratio with good tolerance for motion. Almost no leakage current was observed. Although preamplifiers with ultrahigh input impedance have been essential for previous capacitive electrodes, the EEGs were recorded here by directly connecting a commercially available EEG acquisition system to the electrode to yield high-quality signals comparable to those obtained using conventional wet electrodes.

  14. Toward an Attention-Based Diagnostic Tool for Patients With Locked-in Syndrome.

    PubMed

    Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Soddu, Andrea; Laureys, Steven; Noirhomme, Quentin

    2018-03-01

    Electroencephalography (EEG) has been proposed as a supplemental tool for reducing clinical misdiagnosis in severely brain-injured populations helping to distinguish conscious from unconscious patients. We studied the use of spectral entropy as a measure of focal attention in order to develop a motor-independent, portable, and objective diagnostic tool for patients with locked-in syndrome (LIS), answering the issues of accuracy and training requirement. Data from 20 healthy volunteers, 6 LIS patients, and 10 patients with a vegetative state/unresponsive wakefulness syndrome (VS/UWS) were included. Spectral entropy was computed during a gaze-independent 2-class (attention vs rest) paradigm, and compared with EEG rhythms (delta, theta, alpha, and beta) classification. Spectral entropy classification during the attention-rest paradigm showed 93% and 91% accuracy in healthy volunteers and LIS patients respectively. VS/UWS patients were at chance level. EEG rhythms classification reached a lower accuracy than spectral entropy. Resting-state EEG spectral entropy could not distinguish individual VS/UWS patients from LIS patients. The present study provides evidence that an EEG-based measure of attention could detect command-following in patients with severe motor disabilities. The entropy system could detect a response to command in all healthy subjects and LIS patients, while none of the VS/UWS patients showed a response to command using this system.

  15. Classification of binary intentions for individuals with impaired oculomotor function: ‘eyes-closed’ SSVEP-based brain-computer interface (BCI)

    NASA Astrophysics Data System (ADS)

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Objective. Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. Approach. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Main results. Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min-1. A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. Significance. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our ‘eyes-closed’ SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.

  16. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).

    PubMed

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min(-1). A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our 'eyes-closed' SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.

  17. Family nurture intervention in preterm infants increases early development of cortical activity and independence of regional power trajectories.

    PubMed

    Welch, Martha G; Stark, Raymond I; Grieve, Philip G; Ludwig, Robert J; Isler, Joseph R; Barone, Joseph L; Myers, Michael M

    2017-12-01

    Premature delivery and maternal separation during hospitalisation increase infant neurodevelopmental risk. Previously, a randomised controlled trial of Family Nurture Intervention (FNI) in the neonatal intensive care unit demonstrated improvement across multiple mother and infant domains including increased electroencephalographic (EEG) power in the frontal polar region at term age. New aims were to quantify developmental changes in EEG power in all brain regions and frequencies and correlate developmental changes in EEG power among regions. EEG (128 electrodes) was obtained at 34-44 weeks postmenstrual age from preterm infants born 26-34 weeks. Forty-four infants were treated with Standard Care and 53 with FNI. EEG power was computed in 10 frequency bands (1-48 Hz) in 10 brain regions and in active and quiet sleep. Percent change/week in EEG power was increased in FNI in 132/200 tests (p < 0.05), 117 tests passed a 5% False Discovery Rate threshold. In addition, FNI demonstrated greater regional independence in those developmental rates of change. This study strengthens the conclusion that FNI promotes cerebral cortical development of preterm infants. The findings indicate that developmental changes in EEG may provide biomarkers for risk in preterm infants as well as proximal markers of effects of FNI. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  18. EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach.

    PubMed

    Bosl, William J; Tager-Flusberg, Helen; Nelson, Charles A

    2018-05-01

    Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, diagnosed on the basis of behavioral symptoms during the second year of life or later. Finding scalable biomarkers for early detection is challenging because of the variability in presentation of the disorder and the need for simple measurements that could be implemented routinely during well-baby checkups. EEG is a relatively easy-to-use, low cost brain measurement tool that is being increasingly explored as a potential clinical tool for monitoring atypical brain development. EEG measurements were collected from 99 infants with an older sibling diagnosed with ASD, and 89 low risk controls, beginning at 3 months of age and continuing until 36 months of age. Nonlinear features were computed from EEG signals and used as input to statistical learning methods. Prediction of the clinical diagnostic outcome of ASD or not ASD was highly accurate when using EEG measurements from as early as 3 months of age. Specificity, sensitivity and PPV were high, exceeding 95% at some ages. Prediction of ADOS calibrated severity scores for all infants in the study using only EEG data taken as early as 3 months of age was strongly correlated with the actual measured scores. This suggests that useful digital biomarkers might be extracted from EEG measurements.

  19. A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects.

    PubMed

    Doborjeh, Maryam Gholami; Wang, Grace Y; Kasabov, Nikola K; Kydd, Robert; Russell, Bruce

    2016-09-01

    This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, those undergoing methadone maintenance treatment (MMT) for opiate dependence and a healthy control group. the method is based on an SNN architecture called NeuCube, trained on spatiotemporal EEG data. NeuCube was used to classify EEG data across subject groups and across GO versus NOGO trials, but also facilitated a deeper comparative analysis of the dynamic brain processes. This analysis results in a better understanding of human brain functioning across subject groups when performing a cognitive task. In terms of the EEG data classification, a NeuCube model obtained better results (the maximum obtained accuracy: 90.91%) when compared with traditional statistical and artificial intelligence methods (the maximum obtained accuracy: 50.55%). more importantly, new information about the effects of MMT on cognitive brain functions is revealed through the analysis of the SNN model connectivity and its dynamics. this paper presented a new method for EEG data modeling and revealed new knowledge on brain functions associated with mental activity which is different from the brain activity observed in a resting state of the same subjects.

  20. Information-Theoretical Analysis of EEG Microstate Sequences in Python.

    PubMed

    von Wegner, Frederic; Laufs, Helmut

    2018-01-01

    We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG) measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A-D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  1. SSVEP recognition using common feature analysis in brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-04-15

    Canonical correlation analysis (CCA) has been successfully applied to steady-state visual evoked potential (SSVEP) recognition for brain-computer interface (BCI) application. Although the CCA method outperforms the traditional power spectral density analysis through multi-channel detection, it requires additionally pre-constructed reference signals of sine-cosine waves. It is likely to encounter overfitting in using a short time window since the reference signals include no features from training data. We consider that a group of electroencephalogram (EEG) data trials recorded at a certain stimulus frequency on a same subject should share some common features that may bear the real SSVEP characteristics. This study therefore proposes a common feature analysis (CFA)-based method to exploit the latent common features as natural reference signals in using correlation analysis for SSVEP recognition. Good performance of the CFA method for SSVEP recognition is validated with EEG data recorded from ten healthy subjects, in contrast to CCA and a multiway extension of CCA (MCCA). Experimental results indicate that the CFA method significantly outperformed the CCA and the MCCA methods for SSVEP recognition in using a short time window (i.e., less than 1s). The superiority of the proposed CFA method suggests it is promising for the development of a real-time SSVEP-based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Use of phase-locking value in sensorimotor rhythm-based brain-computer interface: zero-phase coupling and effects of spatial filters.

    PubMed

    Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J

    2017-11-01

    Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain-computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV. Therefore, the goal of this study was to explore whether zero-phase PLV is meaningful and how it is affected by spatial filtering. Both amplitude and PLV feature were extracted in the frequency band of 10-15 Hz by classical methods using archival EEG data of 18 subjects trained on a two-target BCI task. The results show that with right ear-referenced data, there is meaningful long-range zero-phase synchronization likely involving the primary motor area and the supplementary motor area that cannot be explained by volume conduction. Another novel finding is that the large Laplacian spatial filter enhances the amplitude feature but eliminates most of the phase information seen in ear-referenced data. A bipolar channel using phase-coupled areas also includes both phase and amplitude information and has a significant practical advantage since fewer channels required.

  3. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    PubMed

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.

  4. Brain waves-based index for workload estimation and mental effort engagement recognition

    NASA Astrophysics Data System (ADS)

    Zammouri, A.; Chraa-Mesbahi, S.; Ait Moussa, A.; Zerouali, S.; Sahnoun, M.; Tairi, H.; Mahraz, A. M.

    2017-10-01

    The advent of the communication systems and considering the complexity that some impose in their use, it is necessary to incorporate and equip these systems with a certain intelligence which takes into account the cognitive and mental capacities of the human operator. In this work, we address the issue of estimating the mental effort of an operator according to the cognitive tasks difficulty levels. Based on the Electroencephalogram (EEG) measurements, the proposed approach analyzes the user’s brain activity from different brain regions while performing cognitive tasks with several levels of difficulty. At a first time, we propose a variances comparison-based classifier (VCC) that makes use of the Power Spectral Density (PSD) of the EEG signal. The aim of using such a classifier is to highlight the brain regions that enter into interaction according to the cognitive task difficulty. In a second time, we present and describe a new EEG-based index for the estimation of mental efforts. The designed index is based on information recorded from two EEG channels. Results from the VCC demonstrate that powers of the Theta [4-7 Hz] (θ) and Alpha [8-12 Hz] (α) oscillations decrease while increasing the cognitive task difficulty. These decreases are mainly located in parietal and temporal brain regions. Based on the Kappa coefficients, decisions of the introduced index are compared to those obtained from an existing index. This performance assessment method revealed strong agreements. Hence the efficiency of the introduced index.

  5. Preictal dynamics of EEG complexity in intracranially recorded epileptic seizure: a case report.

    PubMed

    Bob, Petr; Roman, Robert; Svetlak, Miroslav; Kukleta, Miloslav; Chladek, Jan; Brazdil, Milan

    2014-11-01

    Recent findings suggest that neural complexity reflecting a number of independent processes in the brain may characterize typical changes during epileptic seizures and may enable to describe preictal dynamics. With respect to previously reported findings suggesting specific changes in neural complexity during preictal period, we have used measure of pointwise correlation dimension (PD2) as a sensitive indicator of nonstationary changes in complexity of the electroencephalogram (EEG) signal. Although this measure of complexity in epileptic patients was previously reported by Feucht et al (Applications of correlation dimension and pointwise dimension for non-linear topographical analysis of focal onset seizures. Med Biol Comput. 1999;37:208-217), it was not used to study changes in preictal dynamics. With this aim to study preictal changes of EEG complexity, we have examined signals from 11 multicontact depth (intracerebral) EEG electrodes located in 108 cortical and subcortical brain sites, and from 3 scalp EEG electrodes in a patient with intractable epilepsy, who underwent preoperative evaluation before epilepsy surgery. From those 108 EEG contacts, records related to 44 electrode contacts implanted into lesional structures and white matter were not included into the experimental analysis.The results show that in comparison to interictal period (at about 8-6 minutes before seizure onset), there was a statistically significant decrease in PD2 complexity in the preictal period at about 2 minutes before seizure onset in all 64 intracranial channels localized in various brain sites that were included into the analysis and in 3 scalp EEG channels as well. Presented results suggest that using PD2 in EEG analysis may have significant implications for research of preictal dynamics and prediction of epileptic seizures.

  6. A natural basis for efficient brain-actuated control

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Enghoff, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.

  7. A variational Bayes spatiotemporal model for electromagnetic brain mapping.

    PubMed

    Nathoo, F S; Babul, A; Moiseev, A; Virji-Babul, N; Beg, M F

    2014-03-01

    In this article, we present a new variational Bayes approach for solving the neuroelectromagnetic inverse problem arising in studies involving electroencephalography (EEG) and magnetoencephalography (MEG). This high-dimensional spatiotemporal estimation problem involves the recovery of time-varying neural activity at a large number of locations within the brain, from electromagnetic signals recorded at a relatively small number of external locations on or near the scalp. Framing this problem within the context of spatial variable selection for an underdetermined functional linear model, we propose a spatial mixture formulation where the profile of electrical activity within the brain is represented through location-specific spike-and-slab priors based on a spatial logistic specification. The prior specification accommodates spatial clustering in brain activation, while also allowing for the inclusion of auxiliary information derived from alternative imaging modalities, such as functional magnetic resonance imaging (fMRI). We develop a variational Bayes approach for computing estimates of neural source activity, and incorporate a nonparametric bootstrap for interval estimation. The proposed methodology is compared with several alternative approaches through simulation studies, and is applied to the analysis of a multimodal neuroimaging study examining the neural response to face perception using EEG, MEG, and fMRI. © 2013, The International Biometric Society.

  8. EEG-based emotion recognition in music listening.

    PubMed

    Lin, Yuan-Pin; Wang, Chi-Hong; Jung, Tzyy-Ping; Wu, Tien-Lin; Jeng, Shyh-Kang; Duann, Jeng-Ren; Chen, Jyh-Horng

    2010-07-01

    Ongoing brain activity can be recorded as electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study applied machine-learning algorithms to categorize EEG dynamics according to subject self-reported emotional states during music listening. A framework was proposed to optimize EEG-based emotion recognition by systematically 1) seeking emotion-specific EEG features and 2) exploring the efficacy of the classifiers. Support vector machine was employed to classify four emotional states (joy, anger, sadness, and pleasure) and obtained an averaged classification accuracy of 82.29% +/- 3.06% across 26 subjects. Further, this study identified 30 subject-independent features that were most relevant to emotional processing across subjects and explored the feasibility of using fewer electrodes to characterize the EEG dynamics during music listening. The identified features were primarily derived from electrodes placed near the frontal and the parietal lobes, consistent with many of the findings in the literature. This study might lead to a practical system for noninvasive assessment of the emotional states in practical or clinical applications.

  9. A fresh look at functional link neural network for motor imagery-based brain-computer interface.

    PubMed

    Hettiarachchi, Imali T; Babaei, Toktam; Nguyen, Thanh; Lim, Chee P; Nahavandi, Saeid

    2018-05-04

    Artificial neural networks (ANNs) are one of the widely used classifiers in the brain-computer interface (BCI) systems-based on noninvasive electroencephalography (EEG) signals. Among the different ANN architectures, the most commonly applied for BCI classifiers is the multilayer perceptron (MLP). When appropriately designed with optimal number of neuron layers and number of neurons per layer, the ANN can act as a universal approximator. However, due to the low signal-to-noise ratio of EEG signal data, overtraining problem may become an inherent issue, causing these universal approximators to fail in real-time applications. In this study we introduce a higher order neural network, namely the functional link neural network (FLNN) as a classifier for motor imagery (MI)-based BCI systems, to remedy the drawbacks in MLP. We compare the proposed method with competing classifiers such as linear decomposition analysis, naïve Bayes, k-nearest neighbours, support vector machine and three MLP architectures. Two multi-class benchmark datasets from the BCI competitions are used. Common spatial pattern algorithm is utilized for feature extraction to build classification models. FLNN reports the highest average Kappa value over multiple subjects for both the BCI competition datasets, under similarly preprocessed data and extracted features. Further, statistical comparison results over multiple subjects show that the proposed FLNN classification method yields the best performance among the competing classifiers. Findings from this study imply that the proposed method, which has less computational complexity compared to the MLP, can be implemented effectively in practical MI-based BCI systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers

    PubMed Central

    Aliyari, Hamed; Kazemi, Masoomeh; Tekieh, Elaheh; Salehi, Maryam; Sahraei, Hedayat; Daliri, Mohammad Reza; Agaei, Hassan; Minaei-Bidgoli, Behrouz; Lashgari, Reza; Srahian, Nahid; Hadipour, Mohammad Mehdi; Salehi, Mostafa; Ranjbar Aghdam, Asghar

    2015-01-01

    Introduction: Computer games have attracted remarkable attentions in general publics with different cultures and their effects are subject of research by cognitive neuroscientists. In the present study, possible effects of the game Fifa 2015 on cognitive performance, hormonal levels, and electroencephalographic (EEG) signals were evaluated in young male volunteers. Methods: Thirty two subjects aged 20 years on average participated mutually in playing computer game Fifa 2015. Identification information and general knowledge about the game were collected. Saliva samples from the contestants were obtained before and after the competition. Perceptive and cognitive performance including the general cognitive health, response delay, attention maintenance, and mental fatigue were measured using PASAT test. EEG were recorded during the play using EEG device and analyzed later using QEEG. Simultaneously, the players’ behavior were recorded using a video camera. Saliva cortisol levels were assessed by ELISA kit. Data were analyzed by SPSS program. Results: The impact of playing computer games on cortisol concentration of saliva before and after the game showed that the amount of saliva plasma after playing the game has dropped significantly. Also the impact of playing computer games on mental health, before and after the game indicated that the number of correct answers has not changed significantly. This indicates that sustained attention has increased in participants after the game in comparison with before that. Also it is shown that mental fatigue measured by PASAT test, did not changed significantly after the game in comparison to before that. The impact of game on changes in brain waves showed that the subjects in high activity state during playing the game had higher power of the EEG signals in most of the channels in lower frequency bands in compared to normal state. Discussion: The present study showed that computer games can positively affect the stress system and the perceptual-cognitive system. Even though this impact was not significant in most cases, the changes in cognitive and hormonal test and also in brain waves were visible. Hence, due to the importance of this matter, it is necessary to create control systems in selecting the types of games for playing. PMID:26904177

  11. The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers.

    PubMed

    Aliyari, Hamed; Kazemi, Masoomeh; Tekieh, Elaheh; Salehi, Maryam; Sahraei, Hedayat; Daliri, Mohammad Reza; Agaei, Hassan; Minaei-Bidgoli, Behrouz; Lashgari, Reza; Srahian, Nahid; Hadipour, Mohammad Mehdi; Salehi, Mostafa; Ranjbar Aghdam, Asghar

    2015-07-01

    Computer games have attracted remarkable attentions in general publics with different cultures and their effects are subject of research by cognitive neuroscientists. In the present study, possible effects of the game Fifa 2015 on cognitive performance, hormonal levels, and electroencephalographic (EEG) signals were evaluated in young male volunteers. Thirty two subjects aged 20 years on average participated mutually in playing computer game Fifa 2015. Identification information and general knowledge about the game were collected. Saliva samples from the contestants were obtained before and after the competition. Perceptive and cognitive performance including the general cognitive health, response delay, attention maintenance, and mental fatigue were measured using PASAT test. EEG were recorded during the play using EEG device and analyzed later using QEEG. Simultaneously, the players' behavior were recorded using a video camera. Saliva cortisol levels were assessed by ELISA kit. Data were analyzed by SPSS program. The impact of playing computer games on cortisol concentration of saliva before and after the game showed that the amount of saliva plasma after playing the game has dropped significantly. Also the impact of playing computer games on mental health, before and after the game indicated that the number of correct answers has not changed significantly. This indicates that sustained attention has increased in participants after the game in comparison with before that. Also it is shown that mental fatigue measured by PASAT test, did not changed significantly after the game in comparison to before that. The impact of game on changes in brain waves showed that the subjects in high activity state during playing the game had higher power of the EEG signals in most of the channels in lower frequency bands in compared to normal state. The present study showed that computer games can positively affect the stress system and the perceptual-cognitive system. Even though this impact was not significant in most cases, the changes in cognitive and hormonal test and also in brain waves were visible. Hence, due to the importance of this matter, it is necessary to create control systems in selecting the types of games for playing.

  12. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    PubMed Central

    Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan

    2017-01-01

    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909

  13. EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients

    NASA Astrophysics Data System (ADS)

    Tan, Hock Guan; Shee, Cheng Yap; Kong, Keng He; Guan, Cuntai; Ang, Wei Tech

    2011-03-01

    This paper describes the Brain Computer Interface (BCI) system and the experiments to allow post-acute (<3 months) stroke patients to use electroencephalogram (EEG) to trigger neuromuscular electrical stimulation (NMES)-assisted extension of the wrist/fingers, which are essential pre-requisites for useful hand function. EEG was recorded while subjects performed motor imagery of their paretic limb, and then analyzed to determine the optimal frequency range within the mu-rhythm, with the greatest attenuation. Aided by visual feedback, subjects then trained to regulate their mu-rhythm EEG to operate the BCI to trigger NMES of the wrist/finger. 6 post-acute stroke patients successfully completed the training, with 4 able to learn to control and use the BCI to initiate NMES. This result is consistent with the reported BCI literacy rate of healthy subjects. Thereafter, without the loss of generality, the controller of the NMES is developed and is based on a model of the upper limb muscle (biceps/triceps) groups to determine the intensity of NMES required to flex or extend the forearm by a specific angle. The muscle model is based on a phenomenological approach, with parameters that are easily measured and conveniently implemented.

  14. Emergency Department Triage of Traumatic Head Injury Using a Brain Electrical Activity Biomarker: A Multisite Prospective Observational Validation Trial.

    PubMed

    Hanley, Daniel; Prichep, Leslie S; Bazarian, Jeffrey; Huff, J Stephen; Naunheim, Rosanne; Garrett, John; Jones, Elizabeth B; Wright, David W; O'Neill, John; Badjatia, Neeraj; Gandhi, Dheeraj; Curley, Kenneth C; Chiacchierini, Richard; O'Neil, Brian; Hack, Dallas C

    2017-05-01

    A brain electrical activity biomarker for identifying traumatic brain injury (TBI) in emergency department (ED) patients presenting with high Glasgow Coma Scale (GCS) after sustaining a head injury has shown promise for objective, rapid triage. The main objective of this study was to prospectively evaluate the efficacy of an automated classification algorithm to determine the likelihood of being computed tomography (CT) positive, in high-functioning TBI patients in the acute state. Adult patients admitted to the ED for evaluation within 72 hours of sustaining a closed head injury with GCS 12 to 15 were candidates for study. A total of 720 patients (18-85 years) meeting inclusion/exclusion criteria were enrolled in this observational, prospective validation trial, at 11 U.S. EDs. GCS was 15 in 97%, with the first and third quartiles being 15 (interquartile range = 0) in the study population at the time of the evaluation. Standard clinical evaluations were conducted and 5 to 10 minutes of electroencephalogram (EEG) was acquired from frontal and frontal-temporal scalp locations. Using an a priori derived EEG-based classification algorithm developed on an independent population and applied to this validation population prospectively, the likelihood of each subject being CT+ was determined, and performance metrics were computed relative to adjudicated CT findings. Sensitivity of the binary classifier (likely CT+ or CT-) was 92.3% (95% confidence interval [CI] = 87.8%-95.5%) for detection of any intracranial injury visible on CT (CT+), with specificity of 51.6% (95% CI = 48.1%-55.1%) and negative predictive value (NPV) of 96.0% (95% CI = 93.2%-97.9%). Using ternary classification (likely CT+, equivocal, likely CT-) demonstrated enhanced sensitivity to traumatic hematomas (≥1 mL of blood), 98.6% (95% CI = 92.6%-100.0%), and NPV of 98.2% (95% CI = 95.5%-99.5%). Using an EEG-based biomarker high accuracy of predicting the likelihood of being CT+ was obtained, with high NPV and sensitivity to any traumatic bleeding and to hematomas. Specificity was significantly higher than standard CT decision rules. The short time to acquire results and the ease of use in the ED environment suggests that EEG-based classifier algorithms have potential to impact triage and clinical management of head-injured patients. © 2017 by the Society for Academic Emergency Medicine.

  15. Deep learning with convolutional neural networks for EEG decoding and visualization

    PubMed Central

    Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-01-01

    Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865

  16. Towards the utilization of EEG as a brain imaging tool.

    PubMed

    Michel, Christoph M; Murray, Micah M

    2012-06-01

    Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A Modular Framework for EEG Web Based Binary Brain Computer Interfaces to Recover Communication Abilities in Impaired People.

    PubMed

    Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela

    2016-01-01

    A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.

  18. Comparison of quantitative EEG characteristics of quiet and active sleep in newborns.

    PubMed

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2003-11-01

    The aim of the present study was to verify whether the proposed method of computer-supported EEG analysis is able to differentiate the EEG activity in quiet sleep (QS) from that in active sleep (AS) in newborns. A quantitative description of the neonatal EEG may contribute to a more exact evaluation of the functional state of the brain, as well as to a refinement of diagnostics of brain dysfunction manifesting itself frequently as 'dysrhythmia' or 'dysmaturity'. Twenty-one healthy newborns (10 full-term and 11 pre-term) were examined polygraphically (EEG-eight channels, respiration, ECG, EOG and EMG) in the course of sleep. From each EEG record, two 5-min samples (one from QS and one from AS) were subject to an off-line computerized analysis. The obtained data were averaged with respect to the sleep state and to the conceptional age. The number of variables was reduced by means of factor analysis. All factors identified by factor analysis were highly significantly influenced by sleep states in both developmental periods. Likewise, a comparison of the measured variables between QS and AS revealed many statistically significant differences. The variables describing (a) the number and length of quasi-stationary segments, (b) voltage and (c) power in delta and theta bands contributed to the greatest degree to the differentiation of EEGs between both sleep states. The presented method of the computerized EEG analysis which has good discriminative potential is adequately sensitive and describes the neonatal EEG with convenient accuracy.

  19. Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior

    PubMed Central

    Bridwell, David A.; Cavanagh, James F.; Collins, Anne G. E.; Nunez, Michael D.; Srinivasan, Ramesh; Stober, Sebastian; Calhoun, Vince D.

    2018-01-01

    Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or “components” derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function. PMID:29632480

  20. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  1. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  2. A Novel EEG Based Spectral Analysis of Persistent Brain Function Alteration in Athletes with Concussion History.

    PubMed

    Munia, Tamanna T K; Haider, Ali; Schneider, Charles; Romanick, Mark; Fazel-Rezai, Reza

    2017-12-08

    The neurocognitive sequelae of a sport-related concussion and its management are poorly defined. Detecting deficits are vital in making a decision about the treatment plan as it can persist one year or more following a brain injury. The reliability of traditional cognitive assessment tools is debatable, and thus attention has turned to assessments based on electroencephalogram (EEG) to evaluate subtle post-concussive alterations. In this study, we calculated neurocognitive deficits combining EEG analysis with three standard post-concussive assessment tools. Data were collected for all testing modalities from 21 adolescent athletes (seven concussive and fourteen healthy) in three different trials. For EEG assessment, along with linear frequency-based features, we introduced a set of time-frequency (Hjorth Parameters) and nonlinear features (approximate entropy and Hurst exponent) for the first time to explore post-concussive deficits. Besides traditional frequency-band analysis, we also presented a new individual frequency-based approach for EEG assessment. While EEG analysis exhibited significant discrepancies between the groups, none of the cognitive assessment resulted in significant deficits. Therefore, the evidence from the study highlights that our proposed EEG analysis and markers are more efficient at deciphering post-concussion residual neurocognitive deficits and thus has a potential clinical utility of proper concussion assessment and management.

  3. Electroencephalographic characteristics of Iranian schizophrenia patients.

    PubMed

    Chaychi, Irman; Foroughipour, Mohsen; Haghir, Hossein; Talaei, Ali; Chaichi, Ashkan

    2015-12-01

    Schizophrenia is a prevalent psychiatric disease with heterogeneous causes that is diagnosed based on history and mental status examination. Applied electrophysiology is a non-invasive method to investigate the function of the involved brain areas. In a previously understudied population, we examined acute phase electroencephalography (EEG) records along with pertinent Positive and Negative Syndrome Scale (PANSS) and Mini Mental State Examination (MMSE) scores for each patient. Sixty-four hospitalized patients diagnosed to have schizophrenia in Ebn-e-Sina Hospital were included in this study. PANSS and MMSE were completed and EEG tracings for every patient were recorded. Also, EEG tracings were recorded for 64 matched individuals of the control group. Although the predominant wave pattern in both patients and controls was alpha, theta waves were almost exclusively found in eight (12.5 %) patients with schizophrenia. Pathological waves in schizophrenia patients were exclusively found in the frontal brain region, while identified pathological waves in controls were limited to the temporal region. No specific EEG finding supported laterality in schizophrenia patients. PANSS and MMSE scores were significantly correlated with specific EEG parameters (all P values <0.04). Patients with schizophrenia demonstrate specific EEG patterns and show a clear correlation between EEG parameters and PANSS and MMSE scores. These characteristics are not observed in all patients, which imply that despite an acceptable specificity, they are not applicable for the majority of schizophrenia patients. Any deduction drawn based on EEG and scoring systems is in need of larger studies incorporating more patients and using better functional imaging techniques for the brain.

  4. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    PubMed

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  5. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  6. Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications.

    PubMed

    Karimi, Fatemeh; Kofman, Jonathan; Mrachacz-Kersting, Natalie; Farina, Dario; Jiang, Ning

    2017-01-01

    The movement related cortical potential (MRCP), a slow cortical potential from the scalp electroencephalogram (EEG), has been used in real-time brain-computer-interface (BCI) systems designed for neurorehabilitation. Detecting MPCPs in real time with high accuracy and low latency is essential in these applications. In this study, we propose a new MRCP detection method based on constrained independent component analysis (cICA). The method was tested for MRCP detection during executed and imagined ankle dorsiflexion of 24 healthy participants, and compared with four commonly used spatial filters for MRCP detection in an offline experiment. The effect of cICA and the compared spatial filters on the morphology of the extracted MRCP was evaluated by two indices quantifying the signal-to-noise ratio and variability of the extracted MRCP. The performance of the filters for detection was then directly compared for accuracy and latency. The latency obtained with cICA (-34 ± 29 ms motor execution (ME) and 28 ± 16 ms for motor imagery (MI) dataset) was significantly smaller than with all other spatial filters. Moreover, cICA resulted in greater true positive rates (87.11 ± 11.73 for ME and 86.66 ± 6.96 for MI dataset) and lower false positive rates (20.69 ± 13.68 for ME and 19.31 ± 12.60 for MI dataset) compared to the other methods. These results confirm the superiority of cICA in MRCP detection with respect to previously proposed EEG filtering approaches.

  7. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children

    NASA Astrophysics Data System (ADS)

    Kinney-Lang, E.; Auyeung, B.; Escudero, J.

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered from the systematic literature search, i.e. neurorehabilitation in children via BCI for autism spectrum disorder, provide insight into translating motor rehabilitation BCI applications to children. • Translating BCI applications to children is a relevant, important area of research which is relatively barren.

  8. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children.

    PubMed

    Kinney-Lang, E; Auyeung, B; Escudero, J

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. •  BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. •  A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. •  Indirect studies discovered from the systematic literature search, i.e. neurorehabilitation in children via BCI for autism spectrum disorder, provide insight into translating motor rehabilitation BCI applications to children. •  Translating BCI applications to children is a relevant, important area of research which is relatively barren.

  9. Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance

    NASA Astrophysics Data System (ADS)

    Omurtag, Ahmet; Aghajani, Haleh; Onur Keles, Hasan

    2017-12-01

    Objective. Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system’s ability to decode mental states and compare it with its unimodal components. Approach. We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data. Main results. EEG+fNIRS’s decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data. Significance. Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics.

  10. Vibrotactile Feedback for Brain-Computer Interface Operation

    PubMed Central

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734

  11. Attention-level transitory response: a novel hybrid BCI approach

    NASA Astrophysics Data System (ADS)

    Diez, Pablo F.; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    Objective. People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the ‘Midas touch effect’, i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Approach. Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. Main results. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min-1 are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. Significance. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  12. Attention-level transitory response: a novel hybrid BCI approach.

    PubMed

    Diez, Pablo F; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the 'Midas touch effect', i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min(-1) are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  13. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment

    PubMed Central

    Irimia, Andrei; Goh, S.-Y. Matthew; Torgerson, Carinna M.; Stein, Nathan R.; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.

    2013-01-01

    Objective To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Methods Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. Results We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Conclusion Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. PMID:24011495

  14. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment.

    PubMed

    Irimia, Andrei; Goh, S-Y Matthew; Torgerson, Carinna M; Stein, Nathan R; Chambers, Micah C; Vespa, Paul M; Van Horn, John D

    2013-10-01

    To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. Published by Elsevier B.V.

  15. Composing only by thought: Novel application of the P300 brain-computer interface.

    PubMed

    Pinegger, Andreas; Hiebel, Hannah; Wriessnegger, Selina C; Müller-Putz, Gernot R

    2017-01-01

    The P300 event-related potential is a well-known pattern in the electroencephalogram (EEG). This kind of brain signal is used for many different brain-computer interface (BCI) applications, e.g., spellers, environmental controllers, web browsers, or for painting. In recent times, BCI systems are mature enough to leave the laboratories to be used by the end-users, namely severely disabled people. Therefore, new challenges arise and the systems should be implemented and evaluated according to user-centered design (USD) guidelines. We developed and implemented a new system that utilizes the P300 pattern to compose music. Our Brain Composing system consists of three parts: the EEG acquisition device, the P300-based BCI, and the music composing software. Seventeen musical participants and one professional composer performed a copy-spelling, a copy-composing, and a free-composing task with the system. According to the USD guidelines, we investigated the efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frustration, and attractiveness. The musical participants group achieved high average accuracies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing). The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62% (copy-composing), and 98.20% (free-composing). General results regarding the subjective criteria evaluation were that the participants enjoyed the usage of the Brain Composing system and were highly satisfied with the system. Showing very positive results with healthy people in this study, this was the first step towards a music composing system for severely disabled people.

  16. Composing only by thought: Novel application of the P300 brain-computer interface

    PubMed Central

    Hiebel, Hannah; Wriessnegger, Selina C.; Müller-Putz, Gernot R.

    2017-01-01

    The P300 event-related potential is a well-known pattern in the electroencephalogram (EEG). This kind of brain signal is used for many different brain-computer interface (BCI) applications, e.g., spellers, environmental controllers, web browsers, or for painting. In recent times, BCI systems are mature enough to leave the laboratories to be used by the end-users, namely severely disabled people. Therefore, new challenges arise and the systems should be implemented and evaluated according to user-centered design (USD) guidelines. We developed and implemented a new system that utilizes the P300 pattern to compose music. Our Brain Composing system consists of three parts: the EEG acquisition device, the P300-based BCI, and the music composing software. Seventeen musical participants and one professional composer performed a copy-spelling, a copy-composing, and a free-composing task with the system. According to the USD guidelines, we investigated the efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frustration, and attractiveness. The musical participants group achieved high average accuracies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing). The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62% (copy-composing), and 98.20% (free-composing). General results regarding the subjective criteria evaluation were that the participants enjoyed the usage of the Brain Composing system and were highly satisfied with the system. Showing very positive results with healthy people in this study, this was the first step towards a music composing system for severely disabled people. PMID:28877175

  17. Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving

    PubMed Central

    Zander, Thorsten O.; Andreessen, Lena M.; Berg, Angela; Bleuel, Maurice; Pawlitzki, Juliane; Zawallich, Lars; Krol, Laurens R.; Gramann, Klaus

    2017-01-01

    We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort. PMID:28293184

  18. Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving.

    PubMed

    Zander, Thorsten O; Andreessen, Lena M; Berg, Angela; Bleuel, Maurice; Pawlitzki, Juliane; Zawallich, Lars; Krol, Laurens R; Gramann, Klaus

    2017-01-01

    We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort.

  19. The portable P300 dialing system based on tablet and Emotiv Epoc headset.

    PubMed

    Tong Jijun; Zhang Peng; Xiao Ran; Ding Lei

    2015-08-01

    A Brain-computer interface (BCI) is a novel communication system that translates brain signals into a control signal. Now with the appearance of the commercial EEG headsets and mobile smart platforms (tablet, smartphone), it is possible to develop the mobile BCI system, which can greatly improve the life quality of patients suffering from motor disease, such as amyotrophic lateral scleroses (ALS), multiple sclerosis, cerebral palsy and head trauma. This study adopted a 14-channel Emotiv EPOC headset and Microsoft surface pro 3 to realize a dialing system, which was represented by 4×3 matrices of alphanumeric characters. The performance of the online portable dialing system based on P300 is satisfying. The average classification accuracy reaches 88.75±10.57% in lab and 73.75±16.94% in metro, while the information transfer rate (ITR) reaches 7.17±1.80 and 5.05±2.17 bits/min respectively. This means the commercial EEG headset and tablet has good prospect in developing real time BCI system in realistic environments.

  20. Programming an offline-analyzer of motor imagery signals via python language.

    PubMed

    Alonso-Valerdi, Luz María; Sepulveda, Francisco

    2011-01-01

    Brain Computer Interface (BCI) systems control the user's environment via his/her brain signals. Brain signals related to motor imagery (MI) have become a widespread method employed by the BCI community. Despite the large number of references describing the MI signal treatment, there is not enough information related to the available programming languages that could be suitable to develop a specific-purpose MI-based BCI. The present paper describes the development of an offline-analysis system based on MI-EEG signals via open-source programming languages, and the assessment of the system using electrical activity recorded from three subjects. The analyzer recognized at least 63% of the MI signals corresponding to three classes. The results of the offline analysis showed a promising performance considering that the subjects have never undergone MI trainings.

  1. An EEG-based machine learning method to screen alcohol use disorder.

    PubMed

    Mumtaz, Wajid; Vuong, Pham Lam; Xia, Likun; Malik, Aamir Saeed; Rashid, Rusdi Bin Abd

    2017-04-01

    Screening alcohol use disorder (AUD) patients has been challenging due to the subjectivity involved in the process. Hence, robust and objective methods are needed to automate the screening of AUD patients. In this paper, a machine learning method is proposed that utilized resting-state electroencephalography (EEG)-derived features as input data to classify the AUD patients and healthy controls and to perform automatic screening of AUD patients. In this context, the EEG data were recorded during 5 min of eyes closed and 5 min of eyes open conditions. For this purpose, 30 AUD patients and 15 aged-matched healthy controls were recruited. After preprocessing the EEG data, EEG features such as inter-hemispheric coherences and spectral power for EEG delta, theta, alpha, beta and gamma bands were computed involving 19 scalp locations. The selection of most discriminant features was performed with a rank-based feature selection method assigning a weight value to each feature according to a criterion, i.e., receiver operating characteristics curve. For example, a feature with large weight was considered more relevant to the target labels than a feature with less weight. Therefore, a reduced set of most discriminant features was identified and further be utilized during classification of AUD patients and healthy controls. As results, the inter-hemispheric coherences between the brain regions were found significantly different between the study groups and provided high classification efficiency ( Accuracy  = 80.8, sensitivity  = 82.5, and specificity  = 80, F - Measure  = 0.78). In addition, the power computed in different EEG bands were found significant and provided an overall classification efficiency as ( Accuracy  = 86.6, sensitivity  = 95, specificity  = 82.5, and F - Measure  = 0.88). Further, the integration of these EEG feature resulted into even higher results ( Accuracy  = 89.3 %, sensitivity  = 88.5 %, specificity  = 91 %, and F - Measure  = 0.90). Based on the results, it is concluded that the EEG data (integration of the theta, beta, and gamma power and inter-hemispheric coherence) could be utilized as objective markers to screen the AUD patients and healthy controls.

  2. P300 brain computer interface: current challenges and emerging trends

    PubMed Central

    Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea

    2012-01-01

    A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397

  3. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition].

    PubMed

    Wang, Jinjia; Liu, Yuan

    2015-04-01

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

  4. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier

    NASA Astrophysics Data System (ADS)

    De Vos, Maarten; Kroesen, Markus; Emkes, Reiner; Debener, Stefan

    2014-06-01

    Objective. In a previous study, we presented a low-cost, small and wireless EEG system enabling the recording of single-trial P300 amplitudes in a truly mobile, outdoor walking condition (Debener et al (2012 Psychophysiology 49 1449-53)). Small and wireless mobile EEG systems have substantial practical advantages as they allow for brain activity recordings in natural environments, but these systems may compromise the EEG signal quality. In this study, we aim to evaluate the EEG signal quality that can be obtained with the mobile system. Approach. We compared our mobile 14-channel EEG system with a state-of-the-art wired laboratory EEG system in a popular brain-computer interface (BCI) application. N = 13 individuals repeatedly performed a 6 × 6 matrix P300 spelling task. Between conditions, only the amplifier was changed, while electrode placement and electrode preparation, recording conditions, experimental stimulation and signal processing were identical. Main results. Analysis of training and testing accuracies and information transfer rate (ITR) revealed that the wireless mobile EEG amplifier performed as good as the wired laboratory EEG system. A very high correlation for testing ITR between both amplifiers was evident (r = 0.92). Moreover the P300 topographies and amplitudes were very similar for both devices, as reflected by high degrees of association (r > = 0.77). Significance. We conclude that efficient P300 spelling with a small, lightweight and quick to set up mobile EEG amplifier is possible. This technology facilitates the transfer of BCI applications from the laboratory to natural daily life environments, one of the key challenges in current BCI research.

  5. EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN

    PubMed Central

    AlSharabi, Khalil; Ibrahim, Sutrisno; Alsuwailem, Abdullah

    2017-01-01

    Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism ‎based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN). DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC) curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia. PMID:28484720

  6. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response

    PubMed Central

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2016-01-01

    The influence of fragrances such as perfumes and room fresheners on the psychophysiological activities of humans has been known for a long time, and its significance is gradually increasing in the medicinal and cosmetic industries. A fragrance consists of volatile chemicals with a molecular weight of less than 300 Da that humans perceive through the olfactory system. In humans, about 300 active olfactory receptor genes are devoted to detecting thousands of different fragrance molecules through a large family of olfactory receptors of a diverse protein sequence. The sense of smell plays an important role in the physiological effects of mood, stress, and working capacity. Electrophysiological studies have revealed that various fragrances affected spontaneous brain activities and cognitive functions, which are measured by an electroencephalograph (EEG). The EEG is a good temporal measure of responses in the central nervous system and it provides information about the physiological state of the brain both in health and disease. The EEG power spectrum is classified into different frequency bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz), and each band is correlated with different features of brain states. A quantitative EEG uses computer software to provide the topographic mapping of the brain activity in frontal, temporal, parietal and occipital brain regions. It is well known that decreases of alpha and beta activities and increases of delta and theta activities are associated with brain pathology and general cognitive decline. In the last few decades, many scientific studies were conducted to investigate the effect of inhalation of aroma on human brain functions. The studies have suggested a significant role for olfactory stimulation in the alteration of cognition, mood, and social behavior. This review aims to evaluate the available literature regarding the influence of fragrances on the psychophysiological activities of humans with special reference to EEG changes. PMID:27916830

  7. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.

    PubMed

    Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K

    2013-04-01

    In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.

  8. Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.

    PubMed

    Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter

    2017-01-15

    Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Correlation between disease severity and brain electric LORETA tomography in Alzheimer's disease.

    PubMed

    Gianotti, Lorena R R; Künig, Gabriella; Lehmann, Dietrich; Faber, Pascal L; Pascual-Marqui, Roberto D; Kochi, Kieko; Schreiter-Gasser, Ursula

    2007-01-01

    To compare EEG power spectra and LORETA-computed intracortical activity between Alzheimer's disease (AD) patients and healthy controls, and to correlate the results with cognitive performance in the AD group. Nineteen channel resting EEG was recorded in 21 mild to moderate AD patients and in 23 controls. Power spectra and intracortical LORETA tomography were computed in seven frequency bands and compared between groups. In the AD patients, the EEG results were correlated with cognitive performance (Mini Mental State Examination, MMSE). AD patients showed increased power in EEG delta and theta frequency bands, and decreased power in alpha2, beta1, beta2 and beta3. LORETA specified that increases and decreases of power affected different cortical areas while largely sparing prefrontal cortex. Delta power correlated negatively and alpha1 power positively with the AD patients' MMSE scores; LORETA tomography localized these correlations in left temporo-parietal cortex. The non-invasive EEG method of LORETA localized pathological cortical activity in our mild to moderate AD patients in agreement with the literature, and yielded striking correlations between EEG delta and alpha1 activity and MMSE scores in left temporo-parietal cortex. The present data support the hypothesis of an asymmetrical progression of the Alzheimer's disease.

  10. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.

    PubMed

    Engemann, Denis A; Gramfort, Alexandre

    2015-03-01

    Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Control of a visual keyboard using an electrocorticographic brain-computer interface.

    PubMed

    Krusienski, Dean J; Shih, Jerry J

    2011-05-01

    Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.

  12. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.

    PubMed

    Emami, Zahra; Chau, Tom

    2018-06-01

    Brain-computer interfaces (BCIs) allow users to operate a device or application by means of cognitive activity. This technology will ultimately be used in real-world environments which include the presence of distractors. The purpose of the study was to determine the effect of visual distractors on BCI performance. Sixteen able-bodied participants underwent neurofeedback training to achieve motor imagery-guided BCI control in an online paradigm using electroencephalography (EEG) to measure neural signals. Participants then completed two sessions of the motor imagery EEG-BCI protocol in the presence of infrequent, small visual distractors. BCI performance was determined based on classification accuracy. The presence of distractors was found to affect motor imagery-specific patterns in mu and beta power. However, the distractors did not significantly affect the BCI classification accuracy; across participants, the mean classification accuracy was 81.5 ± 14% for non-distractor trials, and 78.3 ± 17% for distractor trials. This minimal consequence suggests that the BCI was robust to distractor effects, despite motor imagery-related brain activity being attenuated amid distractors. A BCI system that mitigates distraction-related effects may improve the ease of its use and ultimately facilitate the effective translation of the technology from the lab to the home. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces.

    PubMed

    Lu, Jun; McFarland, Dennis J; Wolpaw, Jonathan R

    2013-02-01

    Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an 'adaptive Laplacian (ALAP) filter', can provide better performance for SMR-based BCIs. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  14. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  15. Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.

    PubMed

    Lin, Yuan-Pin; Wang, Yijun; Jung, Tzyy-Ping

    2014-08-09

    Bridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking. This study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment. Despite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s). SSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications.

  16. A Pharmacokinetics-Neural Mass Model (PK-NMM) for the Simulation of EEG Activity during Propofol Anesthesia

    PubMed Central

    Liang, Zhenhu; Duan, Xuejing; Su, Cui; Voss, Logan; Sleigh, Jamie; Li, Xiaoli

    2015-01-01

    Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding anesthesia mechanisms. The aim of this study was to set up a combined model to relate actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthesia. We proposed a new combined theoretical model based on a pharmacokinetics (PK) model and a neural mass model (NMM), which we termed PK-NMM—with the aim of simulating electroencephalogram (EEG) activity during propofol-induced general anesthesia. The PK model was used to derive propofol effect-site drug concentrations (C eff) based on the actual drug infusion regimen. The NMM model took C eff as the control parameter to produce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG (rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment. To see how well the sEEG could describe the dynamic changes of neural activity during anesthesia, the rEEG data and the sEEG data were compared with respect to: power-frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFastSlow (SFS) parameters. We found that the PK-NMM model was able to reproduce anesthesia EEG-like signals based on the estimated drug concentration and patients’ condition. The frequency spectrum indicated that the frequency power peak of the sEEG moved towards the low frequency band as anesthesia deepened. Different anesthetic states could be differentiated by the PE index. The correlation coefficient of PE was 0.80±0.13 (mean±standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a correlation coefficient of 0.77±0.13. The PK-NMM model could simulate EEG activity and might be a useful tool for understanding the action of propofol on brain activity. PMID:26720495

  17. Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis

    PubMed Central

    Wang, Yijun; Wang, Yu-Te; Jung, Tzyy-Ping

    2012-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters. PMID:22666377

  18. Towards Development of a 3-State Self-Paced Brain-Computer Interface

    PubMed Central

    Bashashati, Ali; Ward, Rabab K.; Birch, Gary E.

    2007-01-01

    Most existing brain-computer interfaces (BCIs) detect specific mental activity in a so-called synchronous paradigm. Unlike synchronous systems which are operational at specific system-defined periods, self-paced (asynchronous) interfaces have the advantage of being operational at all times. The low-frequency asynchronous switch design (LF-ASD) is a 2-state self-paced BCI that detects the presence of a specific finger movement in the ongoing EEG. Recent evaluations of the 2-state LF-ASD show an average true positive rate of 41% at the fixed false positive rate of 1%. This paper proposes two designs for a 3-state self-paced BCI that is capable of handling idle brain state. The two proposed designs aim at detecting right- and left-hand extensions from the ongoing EEG. They are formed of two consecutive detectors. The first detects the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement). It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1%) in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1%) in the context of a 2-state self-paced BCI. PMID:18288260

  19. Self-paced brain-computer interface control of ambulation in a virtual reality environment.

    PubMed

    Wang, Po T; King, Christine E; Chui, Luis A; Do, An H; Nenadic, Zoran

    2012-10-01

    Spinal cord injury (SCI) often leaves affected individuals unable to ambulate. Electroencephalogram (EEG) based brain-computer interface (BCI) controlled lower extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its feasibility, the authors developed and tested a novel EEG-based, data-driven BCI system for intuitive and self-paced control of the ambulation of an avatar within a virtual reality environment (VRE). Eight able-bodied subjects and one with SCI underwent the following 10-min training session: subjects alternated between idling and walking kinaesthetic motor imageries (KMI) while their EEG were recorded and analysed to generate subject-specific decoding models. Subjects then performed a goal-oriented online task, repeated over five sessions, in which they utilized the KMI to control the linear ambulation of an avatar and make ten sequential stops at designated points within the VRE. The average offline training performance across subjects was 77.2 ± 11.0%, ranging from 64.3% (p = 0.001 76) to 94.5% (p = 6.26 × 10(-23)), with chance performance being 50%. The average online performance was 8.5 ± 1.1 (out of 10) successful stops and 303 ± 53 s completion time (perfect = 211 s). All subjects achieved performances significantly different than those of random walk (p < 0.05) in 44 of the 45 online sessions. By using a data-driven machine learning approach to decode users' KMI, this BCI-VRE system enabled intuitive and purposeful self-paced control of ambulation after only 10 minutes training. The ability to achieve such BCI control with minimal training indicates that the implementation of future BCI-lower extremity prosthesis systems may be feasible.

  20. FFT transformed quantitative EEG analysis of short term memory load.

    PubMed

    Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana

    2015-07-01

    The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.

  1. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research

    PubMed Central

    Krigolson, Olave E.; Williams, Chad C.; Norton, Angela; Hassall, Cameron D.; Colino, Francisco L.

    2017-01-01

    In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system—one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t-tests of component existence (all p's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts. PMID:28344546

  2. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research.

    PubMed

    Krigolson, Olave E; Williams, Chad C; Norton, Angela; Hassall, Cameron D; Colino, Francisco L

    2017-01-01

    In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system-one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t -tests of component existence (all p 's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts.

  3. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    PubMed Central

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters. PMID:23956786

  4. Discovering the Neural Nature of Moral Cognition? Empirical, Theoretical, and Practical Challenges in Bioethical Research with Electroencephalography (EEG).

    PubMed

    Wagner, Nils-Frederic; Chaves, Pedro; Wolff, Annemarie

    2017-06-01

    In this article we critically review the neural mechanisms of moral cognition that have recently been studied via electroencephalography (EEG). Such studies promise to shed new light on traditional moral questions by helping us to understand how effective moral cognition is embodied in the brain. It has been argued that conflicting normative ethical theories require different cognitive features and can, accordingly, in a broadly conceived naturalistic attempt, be associated with different brain processes that are rooted in different brain networks and regions. This potentially morally relevant brain activity has been empirically investigated through EEG-based studies on moral cognition. From neuroscientific evidence gathered in these studies, a variety of normative conclusions have been drawn and bioethical applications have been suggested. We discuss methodological and theoretical merits and demerits of the attempt to use EEG techniques in a morally significant way, point to legal challenges and policy implications, indicate the potential to reveal biomarkers of psychopathological conditions, and consider issues that might inform future bioethical work.

  5. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior.

    PubMed

    Hansen, Sofie Therese; Hansen, Lars Kai

    2017-03-01

    Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging connections exist in the brain than long ranging, arguing for spatially focal sources. Additionally, recent work (Delorme et al., 2012) argues that EEG can be decomposed into components having sparse source distributions. On the temporal side both short and long term stationarity of brain activation are seen. We summarize these insights in an inverse solver, the so-called "Variational Garrote" (Kappen and Gómez, 2013). Using a Markov prior we can incorporate flexible degrees of temporal stationarity. Through spatial basis functions spatially smooth distributions are obtained. Sparsity of these are inherent to the Variational Garrote solver. We name our method the MarkoVG and demonstrate its ability to adapt to the temporal smoothness and spatial sparsity in simulated EEG data. Finally a benchmark EEG dataset is used to demonstrate MarkoVG's ability to recover non-stationary brain dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  7. Algorithm based on the short-term Rényi entropy and IF estimation for noisy EEG signals analysis.

    PubMed

    Lerga, Jonatan; Saulig, Nicoletta; Mozetič, Vladimir

    2017-01-01

    Stochastic electroencephalogram (EEG) signals are known to be nonstationary and often multicomponential. Detecting and extracting their components may help clinicians to localize brain neurological dysfunctionalities for patients with motor control disorders due to the fact that movement-related cortical activities are reflected in spectral EEG changes. A new algorithm for EEG signal components detection from its time-frequency distribution (TFD) has been proposed in this paper. The algorithm utilizes the modification of the Rényi entropy-based technique for number of components estimation, called short-term Rényi entropy (STRE), and upgraded by an iterative algorithm which was shown to enhance existing approaches. Combined with instantaneous frequency (IF) estimation, the proposed method was applied to EEG signal analysis both in noise-free and noisy environments for limb movements EEG signals, and was shown to be an efficient technique providing spectral description of brain activities at each electrode location up to moderate additive noise levels. Furthermore, the obtained information concerning the number of EEG signal components and their IFs show potentials to enhance diagnostics and treatment of neurological disorders for patients with motor control illnesses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI).

    PubMed

    Dimitriadis, Stavros I; Salis, Christos I

    2017-01-01

    The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs). Resting state electroencephalography (rs-EEG) is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates) and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG) that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM). The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI) extracted from resting-state data ( N = 94 subjects) with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index), the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM) classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically, our results revealed a very high prediction of age for eyes-open ( R 2 = 0.60; y = 0.79x + 8.03) and lower for eyes-closed ( R 2 = 0.48; y = 0.71x + 10.91) while we succeeded to correctly classify young vs. middle-age group with 97.8% accuracy in eyes-open and 87.2% for eyes-closed. Our results were reproduced also in a second dataset for further external validation of the whole analysis. The proposed methodology proved valuable for the characterization of the intrinsic properties of dynamic functional connectivity through the age untangling developmental differences using EEG resting-state recordings.

  9. Automatic classification of artifactual ICA-components for artifact removal in EEG signals.

    PubMed

    Winkler, Irene; Haufe, Stefan; Tangermann, Michael

    2011-08-02

    Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.

  10. Stress assessment based on EEG univariate features and functional connectivity measures.

    PubMed

    Alonso, J F; Romero, S; Ballester, M R; Antonijoan, R M; Mañanas, M A

    2015-07-01

    The biological response to stress originates in the brain but involves different biochemical and physiological effects. Many common clinical methods to assess stress are based on the presence of specific hormones and on features extracted from different signals, including electrocardiogram, blood pressure, skin temperature, or galvanic skin response. The aim of this paper was to assess stress using EEG-based variables obtained from univariate analysis and functional connectivity evaluation. Two different stressors, the Stroop test and sleep deprivation, were applied to 30 volunteers to find common EEG patterns related to stress effects. Results showed a decrease of the high alpha power (11 to 12 Hz), an increase in the high beta band (23 to 36 Hz, considered a busy brain indicator), and a decrease in the approximate entropy. Moreover, connectivity showed that the high beta coherence and the interhemispheric nonlinear couplings, measured by the cross mutual information function, increased significantly for both stressors, suggesting that useful stress indexes may be obtained from EEG-based features.

  11. EEG potentials associated with artificial grammar learning in the primate brain.

    PubMed

    Attaheri, Adam; Kikuchi, Yukiko; Milne, Alice E; Wilson, Benjamin; Alter, Kai; Petkov, Christopher I

    2015-09-01

    Electroencephalography (EEG) has identified human brain potentials elicited by Artificial Grammar (AG) learning paradigms, which present participants with rule-based sequences of stimuli. Nonhuman animals are sensitive to certain AGs; therefore, evaluating which EEG Event Related Potentials (ERPs) are associated with AG learning in nonhuman animals could identify evolutionarily conserved processes. We recorded EEG potentials during an auditory AG learning experiment in two Rhesus macaques. The animals were first exposed to sequences of nonsense words generated by the AG. Then surface-based ERPs were recorded in response to sequences that were 'consistent' with the AG and 'violation' sequences containing illegal transitions. The AG violations strongly modulated an early component, potentially homologous to the Mismatch Negativity (mMMN), a P200 and a late frontal positivity (P500). The macaque P500 is similar in polarity and time of occurrence to a late EEG positivity reported in human AG learning studies but might differ in functional role. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A brain-machine interface for control of medically-induced coma.

    PubMed

    Shanechi, Maryam M; Chemali, Jessica J; Liberman, Max; Solt, Ken; Brown, Emery N

    2013-10-01

    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95% Bayesian credibility interval of [0.87, 1.0]). A BMI can maintain reliable and accurate real-time control of medically-induced coma in a rodent model suggesting this strategy could be applied in patient care.

  13. A random forest model based classification scheme for neonatal amplitude-integrated EEG.

    PubMed

    Chen, Weiting; Wang, Yu; Cao, Guitao; Chen, Guoqiang; Gu, Qiufang

    2014-01-01

    Modern medical advances have greatly increased the survival rate of infants, while they remain in the higher risk group for neurological problems later in life. For the infants with encephalopathy or seizures, identification of the extent of brain injury is clinically challenging. Continuous amplitude-integrated electroencephalography (aEEG) monitoring offers a possibility to directly monitor the brain functional state of the newborns over hours, and has seen an increasing application in neonatal intensive care units (NICUs). This paper presents a novel combined feature set of aEEG and applies random forest (RF) method to classify aEEG tracings. To that end, a series of experiments were conducted on 282 aEEG tracing cases (209 normal and 73 abnormal ones). Basic features, statistic features and segmentation features were extracted from both the tracing as a whole and the segmented recordings, and then form a combined feature set. All the features were sent to a classifier afterwards. The significance of feature, the data segmentation, the optimization of RF parameters, and the problem of imbalanced datasets were examined through experiments. Experiments were also done to evaluate the performance of RF on aEEG signal classifying, compared with several other widely used classifiers including SVM-Linear, SVM-RBF, ANN, Decision Tree (DT), Logistic Regression(LR), ML, and LDA. The combined feature set can better characterize aEEG signals, compared with basic features, statistic features and segmentation features respectively. With the combined feature set, the proposed RF-based aEEG classification system achieved a correct rate of 92.52% and a high F1-score of 95.26%. Among all of the seven classifiers examined in our work, the RF method got the highest correct rate, sensitivity, specificity, and F1-score, which means that RF outperforms all of the other classifiers considered here. The results show that the proposed RF-based aEEG classification system with the combined feature set is efficient and helpful to better detect the brain disorders in newborns.

  14. Neuroelectrical Decomposition of Spontaneous Brain Activity Measured with Functional Magnetic Resonance Imaging

    PubMed Central

    Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.

    2014-01-01

    Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947

  15. Standardized Computer-based Organized Reporting of EEG: SCORE

    PubMed Central

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make possible the build-up of a multinational database, and it will help in training young neurophysiologists. PMID:23506075

  16. Feasibility of an EEG-based brain-computer interface in the intensive care unit.

    PubMed

    Chatelle, Camille; Spencer, Camille A; Cash, Sydney S; Hochberg, Leigh R; Edlow, Brian L

    2018-05-09

    We tested the feasibility of deploying a commercially available EEG-based brain-computer interface (BCI) in the intensive care unit (ICU) to detect consciousness in patients with acute disorders of consciousness (DoC) or locked-in syndrome (LIS). Ten patients (9 DoC, 1 LIS) and 10 healthy subjects (HS) were enrolled. The BCI utilized oddball auditory evoked potentials, vibrotactile evoked potentials (VTP) and motor imagery (MoI) to assess consciousness. We recorded the assessment completion rate and the time required for assessment, and we calculated the sensitivity and specificity of each paradigm for detecting behavioral signs of consciousness. All 10 patients completed the assessment, 9 of whom required less than 1 h. The LIS patient reported fatigue before the end of the session. The HS and LIS patient showed more consistent BCI responses than DoC patients, but overall there was no association between BCI responses and behavioral signs of consciousness. The system is feasible to deploy in the ICU and may confirm consciousness in acute LIS, but it was unreliable in acute DoC. The accuracy of the paradigms for detecting consciousness must be improved and the duration of the protocol should be shortened before this commercially available BCI is ready for clinical implementation in the ICU in patients with acute DoC. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    PubMed

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  18. Beyond Epilepsy: How Can Quantitative Electroencephalography Improve Conventional Electroencephalography Findings? A Systematic Review of Comparative EEG Studies.

    PubMed

    Martins, Cassio Henrique Taques; Assunção, Catarina De Marchi

    2018-01-01

    It is a fundamental element in both research and clinical applications of electroencephalography to know the frequency composition of brain electrical activity. The quantitative analysis of brain electrical activity uses computer resources to evaluate the electroencephalography and allows quantification of the data. The contribution of the quantitative perspective is unique, since conventional electroencephalography based on the visual examination of the tracing is not as objective. A systematic review was performed on the MEDLINE database in October 2017. The authors independently analyzed the studies, by title and abstract, and selected articles that met the inclusion criteria: comparative studies, not older than 30 years, that compared the use of conventional electroencephalogram (EEG) with the use of quantitative electroencephalogram (QEEG) in the English language. One hundred twelve articles were automatically selected by the MEDLINE search engine, but only six met the above criteria. The review found that given a 95% confidence interval, QEEG had no statistically higher sensitivity than EEG in four of the six studies reviewed. However, these results must be viewed with appropriate caution, particularly as groups in between studies were not matched on important variables such as gender, age, type of illness, recovery stage, and treatment. The authors' findings in this systematic review are suggestive of the importance of QEEG as an auxiliary tool to traditional EEG, and as such, justifying further refinement, standardization, and eventually the future execution of a head-to-head prospective study on comparing the two methods.

  19. Non-invasive brain-computer interface system: towards its application as assistive technology.

    PubMed

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2008-04-15

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain-computer interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI.

  20. Non invasive Brain-Computer Interface system: towards its application as assistive technology

    PubMed Central

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2010-01-01

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain Computer Interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI. PMID:18394526

  1. An online semi-supervised brain-computer interface.

    PubMed

    Gu, Zhenghui; Yu, Zhuliang; Shen, Zhifang; Li, Yuanqing

    2013-09-01

    Practical brain-computer interface (BCI) systems should require only low training effort for the user, and the algorithms used to classify the intent of the user should be computationally efficient. However, due to inter- and intra-subject variations in EEG signal, intermittent training/calibration is often unavoidable. In this paper, we present an online semi-supervised P300 BCI speller system. After a short initial training (around or less than 1 min in our experiments), the system is switched to a mode where the user can input characters through selective attention. In this mode, a self-training least squares support vector machine (LS-SVM) classifier is gradually enhanced in back end with the unlabeled EEG data collected online after every character input. In this way, the classifier is gradually enhanced. Even though the user may experience some errors in input at the beginning due to the small initial training dataset, the accuracy approaches that of fully supervised method in a few minutes. The algorithm based on LS-SVM and its sequential update has low computational complexity; thus, it is suitable for online applications. The effectiveness of the algorithm has been validated through data analysis on BCI Competition III dataset II (P300 speller BCI data). The performance of the online system was evaluated through experimental results on eight healthy subjects, where all of them achieved the spelling accuracy of 85 % or above within an average online semi-supervised learning time of around 3 min.

  2. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.

    PubMed

    Park, Sang-Hoon; Lee, David; Lee, Sang-Goog

    2018-02-01

    For the last few years, many feature extraction methods have been proposed based on biological signals. Among these, the brain signals have the advantage that they can be obtained, even by people with peripheral nervous system damage. Motor imagery electroencephalograms (EEG) are inexpensive to measure, offer a high temporal resolution, and are intuitive. Therefore, these have received a significant amount of attention in various fields, including signal processing, cognitive science, and medicine. The common spatial pattern (CSP) algorithm is a useful method for feature extraction from motor imagery EEG. However, performance degradation occurs in a small-sample setting (SSS), because the CSP depends on sample-based covariance. Since the active frequency range is different for each subject, it is also inconvenient to set the frequency range to be different every time. In this paper, we propose the feature extraction method based on a filter bank to solve these problems. The proposed method consists of five steps. First, motor imagery EEG is divided by a using filter bank. Second, the regularized CSP (R-CSP) is applied to the divided EEG. Third, we select the features according to mutual information based on the individual feature algorithm. Fourth, parameter sets are selected for the ensemble. Finally, we classify using ensemble based on features. The brain-computer interface competition III data set IVa is used to evaluate the performance of the proposed method. The proposed method improves the mean classification accuracy by 12.34%, 11.57%, 9%, 4.95%, and 4.47% compared with CSP, SR-CSP, R-CSP, filter bank CSP (FBCSP), and SR-FBCSP. Compared with the filter bank R-CSP ( , ), which is a parameter selection version of the proposed method, the classification accuracy is improved by 3.49%. In particular, the proposed method shows a large improvement in performance in the SSS.

  3. Scale-Free Music of the Brain

    PubMed Central

    Wu, Dan; Li, Chao-Yi; Yao, De-Zhong

    2009-01-01

    Background There is growing interest in the relation between the brain and music. The appealing similarity between brainwaves and the rhythms of music has motivated many scientists to seek a connection between them. A variety of transferring rules has been utilized to convert the brainwaves into music; and most of them are mainly based on spectra feature of EEG. Methodology/Principal Findings In this study, audibly recognizable scale-free music was deduced from individual Electroencephalogram (EEG) waveforms. The translation rules include the direct mapping from the period of an EEG waveform to the duration of a note, the logarithmic mapping of the change of average power of EEG to music intensity according to the Fechner's law, and a scale-free based mapping from the amplitude of EEG to music pitch according to the power law. To show the actual effect, we applied the deduced sonification rules to EEG segments recorded during rapid-eye movement sleep (REM) and slow-wave sleep (SWS). The resulting music is vivid and different between the two mental states; the melody during REM sleep sounds fast and lively, whereas that in SWS sleep is slow and tranquil. 60 volunteers evaluated 25 music pieces, 10 from REM, 10 from SWS and 5 from white noise (WN), 74.3% experienced a happy emotion from REM and felt boring and drowsy when listening to SWS, and the average accuracy for all the music pieces identification is 86.8%(κ = 0.800, P<0.001). We also applied the method to the EEG data from eyes closed, eyes open and epileptic EEG, and the results showed these mental states can be identified by listeners. Conclusions/Significance The sonification rules may identify the mental states of the brain, which provide a real-time strategy for monitoring brain activities and are potentially useful to neurofeedback therapy. PMID:19526057

  4. Quantitative electroencephalography in a swine model of blast-induced brain injury.

    PubMed

    Chen, Chaoyang; Zhou, Chengpeng; Cavanaugh, John M; Kallakuri, Srinivasu; Desai, Alok; Zhang, Liying; King, Albert I

    2017-01-01

    Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.

  5. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.

    PubMed

    Royer, Audrey S; He, Bin

    2009-02-01

    In a brain-computer interface (BCI) utilizing a process control strategy, the signal from the cortex is used to control the fine motor details normally handled by other parts of the brain. In a BCI utilizing a goal selection strategy, the signal from the cortex is used to determine the overall end goal of the user, and the BCI controls the fine motor details. A BCI based on goal selection may be an easier and more natural system than one based on process control. Although goal selection in theory may surpass process control, the two have never been directly compared, as we are reporting here. Eight young healthy human subjects participated in the present study, three trained and five naïve in BCI usage. Scalp-recorded electroencephalograms (EEG) were used to control a computer cursor during five different paradigms. The paradigms were similar in their underlying signal processing and used the same control signal. However, three were based on goal selection, and two on process control. For both the trained and naïve populations, goal selection had more hits per run, was faster, more accurate (for seven out of eight subjects) and had a higher information transfer rate than process control. Goal selection outperformed process control in every measure studied in the present investigation.

  6. Application of Tsallis Entropy to EEG: Quantifying the Presence of Burst Suppression After Asphyxial Cardiac Arrest in Rats

    PubMed Central

    Zhang, Dandan; Jia, Xiaofeng; Ding, Haiyan; Ye, Datian; Thakor, Nitish V.

    2011-01-01

    Burst suppression (BS) activity in EEG is clinically accepted as a marker of brain dysfunction or injury. Experimental studies in a rodent model of brain injury following asphyxial cardiac arrest (CA) show evidence of BS soon after resuscitation, appearing as a transitional recovery pattern between isoelectricity and continuous EEG. The EEG trends in such experiments suggest varying levels of uncertainty or randomness in the signals. To quantify the EEG data, Shannon entropy and Tsallis entropy (TsEn) are examined. More specifically, an entropy-based measure named TsEn area (TsEnA) is proposed to reveal the presence and the extent of development of BS following brain injury. The methodology of TsEnA and the selection of its parameter are elucidated in detail. To test the validity of this measure, 15 rats were subjected to 7 or 9 min of asphyxial CA. EEG recordings immediately after resuscitation from CA were investigated and characterized by TsEnA. The results show that TsEnA correlates well with the outcome assessed by evaluating the rodents after the experiments using a well-established neurological deficit score (Pearson correlation = 0.86, p ⪡ 0.01). This research shows that TsEnA reliably quantifies the complex dynamics in BS EEG, and may be useful as an experimental or clinical tool for objective estimation of the gravity of brain damage after CA. PMID:19695982

  7. Fast mental states decoding in mixed reality.

    PubMed

    De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F M J; Birbaumer, Niels; Caria, Andrea

    2014-01-01

    The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR.

  8. Fast mental states decoding in mixed reality

    PubMed Central

    De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F. M. J.; Birbaumer, Niels; Caria, Andrea

    2014-01-01

    The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR. PMID:25505878

  9. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    PubMed

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/3611671-11$15.00/0.

  10. Brain-computer interface using wavelet transformation and naïve bayes classifier.

    PubMed

    Bassani, Thiago; Nievola, Julio Cesar

    2010-01-01

    The main purpose of this work is to establish an exploratory approach using electroencephalographic (EEG) signal, analyzing the patterns in the time-frequency plane. This work also aims to optimize the EEG signal analysis through the improvement of classifiers and, eventually, of the BCI performance. In this paper a novel exploratory approach for data mining of EEG signal based on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis is introduced and applied. The CWT allows the representation of time-frequency patterns of the signal's information content by WC qualiatative analysis. Results suggest that the proposed methodology is capable of identifying regions in time-frequency spectrum during the specified task of BCI. Furthermore, an example of a region is identified, and the patterns are classified using a Naïve Bayes Classifier (NBC). This innovative characteristic of the process justifies the feasibility of the proposed approach to other data mining applications. It can open new physiologic researches in this field and on non stationary time series analysis.

  11. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training.

    PubMed

    Saggar, Manish; Zanesco, Anthony P; King, Brandon G; Bridwell, David A; MacLean, Katherine A; Aichele, Stephen R; Jacobs, Tonya L; Wallace, B Alan; Saron, Clifford D; Miikkulainen, Risto

    2015-07-01

    Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian

    2018-09-01

    Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.

  13. Cross-conditional entropy and coherence analysis of pharmaco-EEG changes induced by alprazolam.

    PubMed

    Alonso, J F; Mañanas, M A; Romero, S; Rojas-Martínez, M; Riba, J

    2012-06-01

    Quantitative analysis of electroencephalographic signals (EEG) and their interpretation constitute a helpful tool in the assessment of the bioavailability of psychoactive drugs in the brain. Furthermore, psychotropic drug groups have typical signatures which relate biochemical mechanisms with specific EEG changes. To analyze the pharmacological effect of a dose of alprazolam on the connectivity of the brain during wakefulness by means of linear and nonlinear approaches. EEG signals were recorded after alprazolam administration in a placebo-controlled crossover clinical trial. Nonlinear couplings assessed by means of corrected cross-conditional entropy were compared to linear couplings measured with the classical magnitude squared coherence. Linear variables evidenced a statistically significant drug-induced decrease, whereas nonlinear variables showed significant increases. All changes were highly correlated to drug plasma concentrations. The spatial distribution of the observed connectivity changes clearly differed from a previous study: changes before and after the maximum drug effect were mainly observed over the anterior half of the scalp. Additionally, a new variable with very low computational cost was defined to evaluate nonlinear coupling. This is particularly interesting when all pairs of EEG channels are assessed as in this study. Results showed that alprazolam induced changes in terms of uncoupling between regions of the scalp, with opposite trends depending on the variables: decrease in linear ones and increase in nonlinear features. Maps provided consistent information about the way brain changed in terms of connectivity being definitely necessary to evaluate separately linear and nonlinear interactions.

  14. Use of Electroencephalography Brain-Computer Interface Systems as a Rehabilitative Approach for Upper Limb Function After a Stroke: A Systematic Review.

    PubMed

    Monge-Pereira, Esther; Ibañez-Pereda, Jaime; Alguacil-Diego, Isabel M; Serrano, Jose I; Spottorno-Rubio, María P; Molina-Rueda, Francisco

    2017-09-01

    Brain-computer interface (BCI) systems have been suggested as a promising tool for neurorehabilitation. However, to date, there is a lack of homogeneous findings. Furthermore, no systematic reviews have analyzed the degree of validation of these interventions for upper limb (UL) motor rehabilitation poststroke. The study aims were to compile all available studies that assess an UL intervention based on an electroencephalography (EEG) BCI system in stroke; to analyze the methodological quality of the studies retrieved; and to determine the effects of these interventions on the improvement of motor abilities. TYPE: This was a systematic review. Searches were conducted in PubMed, PEDro, Embase, Cumulative Index to Nursing and Allied Health, Web of Science, and Cochrane Central Register of Controlled Trial from inception to September 30, 2015. This systematic review compiles all available studies that assess UL intervention based on an EEG-BCI system in patients with stroke, analyzing their methodological quality using the Critical Review Form for Quantitative Studies, and determining the grade of recommendation of these interventions for improving motor abilities as established by the Oxford Centre for Evidence-based Medicine. The articles were selected according to the following criteria: studies evaluating an EEG-based BCI intervention; studies including patients with a stroke and hemiplegia, regardless of lesion origin or temporal evolution; interventions using an EEG-based BCI to restore functional abilities of the affected UL, regardless of the interface used or its combination with other therapies; and studies using validated tools to evaluate motor function. After the literature search, 13 articles were included in this review: 4 studies were randomized controlled trials; 1 study was a controlled study; 4 studies were case series studies; and 4 studies were case reports. The methodological quality of the included papers ranged from 6 to 15, and the level of evidence varied from 1b to 5. The articles included in this review involved a total of 141 stroke patients. This systematic review suggests that BCI interventions may be a promising rehabilitation approach in subjects with stroke. II. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression

    PubMed Central

    Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.

    2016-01-01

    Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100

  16. A Ternary Brain-Computer Interface Based on Single-Trial Readiness Potentials of Self-initiated Fine Movements: A Diversified Classification Scheme

    PubMed Central

    Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Schultz, Benjamin; Chau, Tom

    2017-01-01

    In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have mainly attempted binary single-trial classification of RP. An RP-based BCI with three or more states would expand the options for functional control. Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst an idle state, a left hand and a right hand self-initiated fine movement. A pipeline of spatio-temporal filtering with per participant parameter optimization was used for feature extraction. The ternary classification was decomposed into binary classifications using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG structure, an ordered diversified classifier system (ODCS-DDAG) was used to select the best among various classification algorithms or to combine the results of different classification algorithms. Using EEG data from 14 participants performing self-initiated left or right key presses, punctuated with rest periods, we compared the performance of ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods using only a single classification algorithm. ODCS-DDAG had the highest performance (0.769 Cohen's Kappa score) and was significantly better than the ternary classifier and two of the four multiclass decomposition methods. Our work supports further study of RP-based BCI for intuitive asynchronous environmental control or augmentative communication. PMID:28596725

  17. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Qi, Hongzhi; Jung, Tzyy-Ping; Ming, Dong

    2016-12-01

    Objective. Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-independent brain-computer interfaces (BCIs), which might be the only communication approach for severely disabled patients who cannot move their eyes. Although previous studies had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features to control a BCI system, the communication speed remains very low. This study aims to improve the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state visual evoked potential (SSVEP). Approach. A new paradigm was designed to code the left and right CVSA with the N2pc and SSVEP features, which were then decoded by a classification strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an offline experiment in this study. Temporal waves, amplitudes, and topographies for brain responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG features (SSVEP or N2pc). Main results. The N2pc could be significantly enhanced under certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a data length of 400 ms after the attention shift. Moreover, the average accuracy reached ˜80% (peak values above 90%) when using 2 s long data. Significance. The results indicate that the combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method could be a promising approach for implementing a gaze-independent BCI.

  18. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods.

    PubMed

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-04-07

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell's equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions that have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called minimum norm estimates (MNE), promote source estimates with a small ℓ₂ norm. Here, we consider a more general class of priors based on mixed norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as mixed-norm estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ₁/ℓ₂ mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ₁/ℓ₂ norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furthermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data.

  19. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods

    PubMed Central

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-01-01

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell’s equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions than have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called Minimum Norm Estimates (MNE), promote source estimates with a small ℓ2 norm. Here, we consider a more general class of priors based on mixed-norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as Mixed-Norm Estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ1/ℓ2 mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ1/ℓ2 norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furhermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data. PMID:22421459

  20. NeuroRex: A Clinical Neural Interface Roadmap for EEG-based Brain Machine Interfaces to a Lower Body Robotic Exoskeleton*

    PubMed Central

    Contreras-Vidal, Jose L.; Grossman, Robert G.

    2013-01-01

    In this communication, a translational clinical brain-machine interface (BMI) roadmap for an EEG-based BMI to a robotic exoskeleton (NeuroRex) is presented. This multi-faceted project addresses important engineering and clinical challenges: It addresses the validation of an intelligent, self-balancing, robotic lower-body and trunk exoskeleton (Rex) augmented with EEG-based BMI capabilities to interpret user intent to assist a mobility-impaired person to walk independently. The goal is to improve the quality of life and health status of wheelchair-bounded persons by enabling standing and sitting, walking and backing, turning, ascending and descending stairs/curbs, and navigating sloping surfaces in a variety of conditions without the need for additional support or crutches. PMID:24110003

  1. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized.

  2. A Comparative Study on the Detection of Covert Attention in Event-Related EEG and MEG Signals to Control a BCI

    PubMed Central

    Reichert, Christoph; Dürschmid, Stefan; Heinze, Hans-Jochen; Hinrichs, Hermann

    2017-01-01

    In brain-computer interface (BCI) applications the detection of neural processing as revealed by event-related potentials (ERPs) is a frequently used approach to regain communication for people unable to interact through any peripheral muscle control. However, the commonly used electroencephalography (EEG) provides signals of low signal-to-noise ratio, making the systems slow and inaccurate. As an alternative noninvasive recording technique, the magnetoencephalography (MEG) could provide more advantageous electrophysiological signals due to a higher number of sensors and the magnetic fields not being influenced by volume conduction. We investigated whether MEG provides higher accuracy in detecting event-related fields (ERFs) compared to detecting ERPs in simultaneously recorded EEG, both evoked by a covert attention task, and whether a combination of the modalities is advantageous. In our approach, a detection algorithm based on spatial filtering is used to identify ERP/ERF components in a data-driven manner. We found that MEG achieves higher decoding accuracy (DA) compared to EEG and that the combination of both further improves the performance significantly. However, MEG data showed poor performance in cross-subject classification, indicating that the algorithm's ability for transfer learning across subjects is better in EEG. Here we show that BCI control by covert attention is feasible with EEG and MEG using a data-driven spatial filter approach with a clear advantage of the MEG regarding DA but with a better transfer learning in EEG. PMID:29085279

  3. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.

    PubMed

    Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed

    2018-01-01

    The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Estimating the Intended Sound Direction of the User: Toward an Auditory Brain-Computer Interface Using Out-of-Head Sound Localization

    PubMed Central

    Nambu, Isao; Ebisawa, Masashi; Kogure, Masumi; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro

    2013-01-01

    The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue, auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-performance and loudspeaker-less portable BCI system. PMID:23437338

  5. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.

    PubMed

    Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung

    2017-06-14

    Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP-CSP feature and the SVM classifier with only several trials, and this level of accuracy seems to become stable as more trials (i.e., <7 trials) are used. These findings therefore suggest that the proposed method has a great potential for developing an efficient (required only a few 6-s EEG signals from the 8 electrodes over the temporal) and effective (~80% classification accuracy) EEG-based brain-computer interface (BCI) system which may, in the future, help psychiatrists provide individualized and effective treatments for MDD patients.

  6. Prediction of subjective ratings of emotional pictures by EEG features

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Parvaz, Muhammad A.; Sarnacki, William A.; Goldstein, Rita Z.; Wolpaw, Jonathan R.

    2017-02-01

    Objective. Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. Approach. To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. Main results. Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. Significance. The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.

  7. Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2012-05-01

    The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.

  8. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.

    PubMed

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat

    2017-09-27

    An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. EEG Event-Related Desynchronization of patients with stroke during motor imagery of hand movement

    NASA Astrophysics Data System (ADS)

    Tabernig, Carolina B.; Carrere, Lucía C.; Lopez, Camila A.; Ballario, Carlos

    2016-04-01

    Brain Computer Interfaces (BCI) can be used for therapeutic purposes to improve voluntary motor control that has been affected post stroke. For this purpose, desynchronization of sensorimotor rhythms of the electroencephalographic signal (EEG) can be used. But it is necessary to study what happens in the affected motor cortex of this people. In this article, we analyse EEG recordings of hemiplegic stroke patients to determine if it is possible to detect desynchronization in the affected motor cortex during the imagination of movements of the affected hand. Six patients were included in the study; four evidenced desynchronization in the affected hemisphere, one of them showed no results and the EEG recordings of the last patient presented high noise level. These results suggest that we could use the desynchronization of sensorimotor rhythms of the EEG signal as a BCI paradigm in a rehabilitation programme.

  10. Mushu, a free- and open source BCI signal acquisition, written in Python.

    PubMed

    Venthur, Bastian; Blankertz, Benjamin

    2012-01-01

    The following paper describes Mushu, a signal acquisition software for retrieval and online streaming of Electroencephalography (EEG) data. It is written, but not limited, to the needs of Brain Computer Interfacing (BCI). It's main goal is to provide a unified interface to EEG data regardless of the amplifiers used. It runs under all major operating systems, like Windows, Mac OS and Linux, is written in Python and is free- and open source software licensed under the terms of the GNU General Public License.

  11. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  12. COSBID-M3: a platform for multimodal monitoring, data collection, and research in neurocritical care.

    PubMed

    Wilson, J Adam; Shutter, Lori A; Hartings, Jed A

    2013-01-01

    Neuromonitoring in patients with severe brain trauma and stroke is often limited to intracranial pressure (ICP); advanced neuroscience intensive care units may also monitor brain oxygenation (partial pressure of brain tissue oxygen, P(bt)O(2)), electroencephalogram (EEG), cerebral blood flow (CBF), or neurochemistry. For example, cortical spreading depolarizations (CSDs) recorded by electrocorticography (ECoG) are associated with delayed cerebral ischemia after subarachnoid hemorrhage and are an attractive target for novel therapeutic approaches. However, to better understand pathophysiologic relations and realize the potential of multimodal monitoring, a common platform for data collection and integration is needed. We have developed a multimodal system that integrates clinical, research, and imaging data into a single research and development (R&D) platform. Our system is adapted from the widely used BCI2000, a brain-computer interface tool which is written in the C++ language and supports over 20 data acquisition systems. It is optimized for real-time analysis of multimodal data using advanced time and frequency domain analyses and is extensible for research development using a combination of C++, MATLAB, and Python languages. Continuous streams of raw and processed data, including BP (blood pressure), ICP, PtiO2, CBF, ECoG, EEG, and patient video are stored in an open binary data format. Selected events identified in raw (e.g., ICP) or processed (e.g., CSD) measures are displayed graphically, can trigger alarms, or can be sent to researchers or clinicians via text message. For instance, algorithms for automated detection of CSD have been incorporated, and processed ECoG signals are projected onto three-dimensional (3D) brain models based on patient magnetic resonance imaging (MRI) and computed tomographic (CT) scans, allowing real-time correlation of pathoanatomy and cortical function. This platform will provide clinicians and researchers with an advanced tool to investigate pathophysiologic relationships and novel measures of cerebral status, as well as implement treatment algorithms based on such multimodal measures.

  13. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    PubMed

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705-717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Defining and quantifying users' mental Imagery-based BCI skills: a first step.

    PubMed

    Lotte, Fabien; Jeunet, Camille

    2018-05-17

    While promising for many applications, Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) are still scarcely used outside laboratories, due to a poor reliability. It is thus necessary to study and fix this reliability issue. Doing so requires the use of appropriate reliability metrics to quantify both the classification algorithm and the BCI user's performances. So far, Classification Accuracy (CA) is the typical metric used for both aspects. However, we argue in this paper that CA is a poor metric to study BCI users' skills. Here, we propose a definition and new metrics to quantify such BCI skills for Mental Imagery (MI) BCIs, independently of any classification algorithm. Approach: We first show in this paper that CA is notably unspecific, discrete, training data and classifier dependent, and as such may not always reflect successful self-modulation of EEG patterns by the user. We then propose a definition of MI-BCI skills that reflects how well the user can self-modulate EEG patterns, and thus how well he could control an MI-BCI. Finally, we propose new performance metrics, classDis, restDist and classStab that specifically measure how distinct and stable the EEG patterns produced by the user are, independently of any classifier. Main results: By re-analyzing EEG data sets with such new metrics, we indeed confirmed that CA may hide some increase in MI-BCI skills or hide the user inability to self-modulate a given EEG pattern. On the other hand, our new metrics could reveal such skill improvements as well as identify when a mental task performed by a user was no different than rest EEG. Significance: Our results showed that when studying MI-BCI users' skills, CA should be used with care, and complemented with metrics such as the new ones proposed. Our results also stressed the need to redefine BCI user training by considering the different BCI subskills and their measures. To promote the complementary use of our new metrics, we provide the Matlab code to compute them for free and open-source. © 2018 IOP Publishing Ltd.

  15. Improved Accuracy Using Recursive Bayesian Estimation Based Language Model Fusion in ERP-Based BCI Typing Systems

    PubMed Central

    Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.

    2013-01-01

    RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432

  16. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  17. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.

    PubMed

    Kondo, Toshiyuki; Saeki, Midori; Hayashi, Yoshikatsu; Nakayashiki, Kosei; Takata, Yohei

    2015-10-01

    Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI neurofeedback training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography.

    PubMed

    Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M D; Rotenberg, Alexander; Daskalakis, Zafiris J; Pascual-Leone, Alvaro

    2016-01-01

    The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.

  19. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography

    PubMed Central

    Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M. D.; Rotenberg, Alexander; Daskalakis, Zafiris J.; Pascual-Leone, Alvaro

    2016-01-01

    The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research. PMID:27713691

  20. Cross multivariate correlation coefficients as screening tool for analysis of concurrent EEG-fMRI recordings.

    PubMed

    Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas

    2018-02-06

    Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  1. The study of evolution and depression of the alpha-rhythm in the human brain EEG by means of wavelet-based methods

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.

    2017-04-01

    We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.

  2. Investigating social cognition in infants and adults using dense array electroencephalography ((d)EEG).

    PubMed

    Akano, Adekemi J; Haley, David W; Dudek, Joanna

    2011-06-27

    Dense array electroencephalography ((d)EEG), which provides a non-invasive window for measuring brain activity and a temporal resolution unsurpassed by any other current brain imaging technology¹, ² is being used increasingly in the study of social cognitive functioning in infants and adults. While (d)EEG is enabling researchers to examine brain activity patterns with unprecedented levels of sensitivity, conventional EEG recording systems continue to face certain limitations, including 1) poor spatial resolution and source localization³,⁴2) the physical discomfort for test subjects of enduring the individual application of numerous electrodes to the surface of the scalp, and 3) the complexity for researchers of learning to use multiple software packages to collect and process data. Here we present an overview of an established methodology that represents a significant improvement on conventional methodologies for studying EEG in infants and adults. Although several analytical software techniques can be used to establish indirect indices of source localization to improve the spatial resolution of (d)EEG, the HydroCel Geodesic Sensor Net (HCGSN) by Electrical Geodesics, Inc. (EGI), a dense sensory array that maintains equal distances among adjacent recording electrodes on all surfaces of the scalp, further enhances spatial resolution⁴,⁵(,)⁶ compared to standard (d)EEG systems. The sponge-based HCGSN can be applied rapidly and without scalp abrasion, making it ideal for use with adults⁷,⁸ children⁹,¹⁰, ¹¹,¹² and infants¹², in both research and clinical ⁴,⁵,⁶,¹³,¹⁴,¹⁵settings. This feature allows for considerable cost and time savings by decreasing the average net application time compared to other (d)EEG systems. Moreover, the HCGSN includes unified, seamless software applications for all phases of data, greatly simplifying the collection, processing, and analysis of (d)EEG data. The HCGSN features a low-profile electrode pedestal, which, when filled with electrolyte solution, creates a sealed microenvironment and an electrode-scalp interface. In all Geodesic (d;)EEG systems, EEG sensors detect changes in voltage originating from the participant's scalp, along with a small amount of electrical noise originating from the room environment. Electrical signals from all sensors of the Geodesic sensor net are received simultaneously by the amplifier, where they are automatically processed, packaged, and sent to the data-acquisition computer (DAC). Once received by the DAC, scalp electrical activity can be isolated from artifacts for analysis using the filtering and artifact detection tools included in the EGI software. Typically, the HCGSN can be used continuously for only up to two hours because the electrolyte solution dries out over time, gradually decreasing the quality of the scalp-electrode interface. In the Parent-Infant Research Lab at the University of Toronto, we are using (d)EEG to study social cognitive processes including memory, emotion, goals, intentionality, anticipation, and executive functioning in both adult and infant participants.

  3. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI

    PubMed Central

    Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum. PMID:27114897

  4. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.

    PubMed

    Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.

  5. Study of heart-brain interactions through EEG, ECG, and emotions

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2017-04-01

    Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomenon. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modality of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.

  6. Inverse scattering approach to improving pattern recognition

    NASA Astrophysics Data System (ADS)

    Chapline, George; Fu, Chi-Yung

    2005-05-01

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  7. Inverse Scattering Approach to Improving Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G; Fu, C

    2005-02-15

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less

  8. 3D Printed Dry EEG Electrodes

    PubMed Central

    Krachunov, Sammy; Casson, Alexander J.

    2016-01-01

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise. PMID:27706094

  9. 3D Printed Dry EEG Electrodes.

    PubMed

    Krachunov, Sammy; Casson, Alexander J

    2016-10-02

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  10. Design of a Wireless EEG System for Point-of-Care Applications.

    PubMed

    Jia, Wenyan; Bai, Yicheng; Sun, Mingui; Sclabassi, Robert J

    2013-04-01

    This study aims to develop a wireless EEG system to provide critical point-of-care information about brain electrical activity. A novel dry electrode, which can be installed rapidly, is used to acquire EEG from the scalp. A wireless data link between the electrode and a data port (i.e., a smartphone) is established based on the Bluetooth technology. A prototype of this system has been implemented and its performance in acquiring EEG has been evaluated.

  11. Continuous electroencephalogram monitoring in the intensive care unit.

    PubMed

    Friedman, Daniel; Claassen, Jan; Hirsch, Lawrence J

    2009-08-01

    Because of recent technical advances, it is now possible to record and monitor the continuous digital electroencephalogram (EEG) of many critically ill patients simultaneously. Continuous EEG monitoring (cEEG) provides dynamic information about brain function that permits early detection of changes in neurologic status, which is especially useful when the clinical examination is limited. Nonconvulsive seizures are common in comatose critically ill patients and can have multiple negative effects on the injured brain. The majority of seizures in these patients cannot be detected without cEEG. cEEG monitoring is most commonly used to detect and guide treatment of nonconvulsive seizures, including after convulsive status epilepticus. In addition, cEEG is used to guide management of pharmacological coma for treatment of increased intracranial pressure. An emerging application for cEEG is to detect new or worsening brain ischemia in patients at high risk, especially those with subarachnoid hemorrhage. Improving quantitative EEG software is helping to make it feasible for cEEG (using full scalp coverage) to provide continuous information about changes in brain function in real time at the bedside and to alert clinicians to any acute brain event, including seizures, ischemia, increasing intracranial pressure, hemorrhage, and even systemic abnormalities affecting the brain, such as hypoxia, hypotension, acidosis, and others. Monitoring using only a few electrodes or using full scalp coverage, but without expert review of the raw EEG, must be done with extreme caution as false positives and false negatives are common. Intracranial EEG recording is being performed in a few centers to better detect seizures, ischemia, and peri-injury depolarizations, all of which may contribute to secondary injury. When cEEG is combined with individualized, physiologically driven decision making via multimodality brain monitoring, intensivists can identify when the brain is at risk for injury or when neuronal injury is already occurring and intervene before there is permanent damage. The exact role and cost-effectiveness of cEEG at the current time remains unclear, but we believe it has significant potential to improve neurologic outcomes in a variety of settings.

  12. Asynchronous detection of kinesthetic attention during mobilization of lower limbs using EEG measurements.

    PubMed

    Melinscak, Filip; Montesano, Luis; Minguez, Javier

    2016-02-01

    Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement-from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.

  13. Asynchronous detection of kinesthetic attention during mobilization of lower limbs using EEG measurements

    NASA Astrophysics Data System (ADS)

    Melinscak, Filip; Montesano, Luis; Minguez, Javier

    2016-02-01

    Objective. Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. Approach. A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement—from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. Main results. EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. Significance. This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.

  14. Mental Task Classification Scheme Utilizing Correlation Coefficient Extracted from Interchannel Intrinsic Mode Function.

    PubMed

    Rahman, Md Mostafizur; Fattah, Shaikh Anowarul

    2017-01-01

    In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.

  15. A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm.

    PubMed

    Mayaud, L; Congedo, M; Van Laghenhove, A; Orlikowski, D; Figère, M; Azabou, E; Cheliout-Heraut, F

    2013-10-01

    A brain-computer interface aims at restoring communication and control in severely disabled people by identification and classification of EEG features such as event-related potentials (ERPs). The aim of this study is to compare different modalities of EEG recording for extraction of ERPs. The first comparison evaluates the performance of six disc electrodes with that of the EMOTIV headset, while the second evaluates three different electrode types (disc, needle, and large squared electrode). Ten healthy volunteers gave informed consent and were randomized to try the traditional EEG system (six disc electrodes with gel and skin preparation) or the EMOTIV Headset first. Together with the six disc electrodes, a needle and a square electrode of larger surface were simultaneously recording near lead Cz. Each modality was evaluated over three sessions of auditory P300 separated by one hour. No statically significant effect was found for the electrode type, nor was the interaction between electrode type and session number. There was no statistically significant difference of performance between the EMOTIV and the six traditional EEG disc electrodes, although there was a trend showing worse performance of the EMOTIV headset. However, the modality-session interaction was highly significant (P<0.001) showing that, while the performance of the six disc electrodes stay constant over sessions, the performance of the EMOTIV headset drops dramatically between 2 and 3h of use. Finally, the evaluation of comfort by participants revealed an increasing discomfort with the EMOTIV headset starting with the second hour of use. Our study does not recommend the use of one modality over another based on performance but suggests the choice should be made on more practical considerations such as the expected length of use, the availability of skilled labor for system setup and above all, the patient comfort. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar

    NASA Astrophysics Data System (ADS)

    Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-06-01

    Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  17. A computer-based information system for epilepsy and electroencephalography.

    PubMed

    Finnerup, N B; Fuglsang-Frederiksen, A; Røssel, P; Jennum, P

    1999-08-01

    This paper describes a standardised computer-based information system for electroencephalography (EEG) focusing on epilepsy. The system was developed using a prototyping approach. It is based on international recommendations for EEG examination, interpretation and terminology, international guidelines for epidemiological studies on epilepsy and classification of epileptic seizures and syndromes and international classification of diseases. It is divided into: (1) clinical information and epilepsy relevant data; and (2) EEG data, which is hierarchically structured including description and interpretation of EEG. Data is coded but is supplemented with unrestricted text. The resulting patient database can be integrated with other clinical databases and with the patient record system and may facilitate clinical and epidemiological research and development of standards and guidelines for EEG description and interpretation. The system is currently used for teleconsultation between Gentofte and Lisbon.

  18. Preterm EEG: a multimodal neurophysiological protocol.

    PubMed

    Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa

    2012-02-18

    Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.

  19. EEG in connection with coma.

    PubMed

    Wilson, John A; Nordal, Helge J

    2013-01-08

    Coma is a dynamic condition that may have various causes. Important changes may take place rapidly, often with consequences for treatment. The purpose of this article is to provide a brief overview of EEG patterns in comas with various causes, and indicate how EEG contributes in an assessment of the prognosis for coma patients. The article is based on many years of clinical and research-based experience of EEG used for patients in coma. A self-built reference database was supplemented by searches for relevant articles in PubMed. EEG reveals immediate changes in coma, and can provide early information on cause and prognosis. It is the only diagnostic tool for detecting a non-convulsive epileptic status. Locked-in- syndrome may be overseen without EEG. Repeated EEG scans increase diagnostic certainty and make it possible to monitor the development of coma. EEG reflects brain function continuously and therefore holds a key place in the assessment and treatment of coma.

  20. Analysis of connectivity in NeuCube spiking neural network models trained on EEG data for the understanding of functional changes in the brain: A case study on opiate dependence treatment.

    PubMed

    Capecci, Elisa; Kasabov, Nikola; Wang, Grace Y

    2015-08-01

    The paper presents a methodology for the analysis of functional changes in brain activity across different conditions and different groups of subjects. This analysis is based on the recently proposed NeuCube spiking neural network (SNN) framework and more specifically on the analysis of the connectivity of a NeuCube model trained with electroencephalography (EEG) data. The case study data used to illustrate this method is EEG data collected from three groups-subjects with opiate addiction, patients undertaking methadone maintenance treatment, and non-drug users/healthy control group. The proposed method classifies more accurately the EEG data than traditional statistical and artificial intelligence (AI) methods and can be used to predict response to treatment and dose-related drug effect. But more importantly, the method can be used to compare functional brain activities of different subjects and the changes of these activities as a result of treatment, which is a step towards a better understanding of both the EEG data and the brain processes that generated it. The method can also be used for a wide range of applications, such as a better understanding of disease progression or aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top