Sample records for eeg current-source density

  1. Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days.

    PubMed

    Cannon, Rex L; Baldwin, Debora R; Shaw, Tiffany L; Diloreto, Dominic J; Phillips, Sherman M; Scruggs, Annie M; Riehl, Timothy C

    2012-06-14

    There is a growing interest for using quantitative EEG and LORETA current source density in clinical and research settings. Importantly, if these indices are to be employed in clinical settings then the reliability of these measures is of great concern. Neuroguide (Applied Neurosciences) is sophisticated software developed for the analyses of power, and connectivity measures of the EEG as well as LORETA current source density. To date there are relatively few data evaluating topographical EEG reliability contrasts for all 19 channels and no studies have evaluated reliability for LORETA calculations. We obtained 4 min eyes-closed and eyes-opened EEG recordings at 30-day intervals. The EEG was analyzed in Neuroguide and FFT power, coherence and phase was computed for traditional frequency bands (delta, theta, alpha and beta) and LORETA current source density was calculated in 1 Hz increments and summed for total power in eight regions of interest (ROI). In order to obtain a robust measure of reliability we utilized a random effects model with an absolute agreement definition. The results show very good reproducibility for total absolute power and coherence. Phase shows lower reliability coefficients. LORETA current source density shows very good reliability with an average 0.81 for ECB and 0.82 for EOB. Similarly, the eight regions of interest show good to very good agreement across time. Implications for future directions and use of qEEG and LORETA in clinical populations are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2012-05-01

    The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.

  3. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    PubMed

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies.

    PubMed

    Puce, Aina; Hämäläinen, Matti S

    2017-05-31

    Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.

  5. Statistical parametric mapping of LORETA using high density EEG and individual MRI: application to mismatch negativities in schizophrenia.

    PubMed

    Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob

    2002-11-01

    We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. Copyright 2002 Wiley-Liss, Inc.

  6. Intelligence and EEG current density using low-resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2007-02-01

    The purpose of this study was to compare EEG current source densities in high IQ subjects vs. low IQ subjects. Resting eyes closed EEG was recorded from 19 scalp locations with a linked ears reference from 442 subjects ages 5 to 52 years. The Wechsler Intelligence Test was administered and subjects were divided into low IQ (< or =90), middle IQ (>90 to <120) and high IQ (> or =120) groups. Low-resolution electromagnetic tomographic current densities (LORETA) from 2,394 cortical gray matter voxels were computed from 1-30 Hz based on each subject's EEG. Differences in current densities using t tests, multivariate analyses of covariance, and regression analyses were used to evaluate the relationships between IQ and current density in Brodmann area groupings of cortical gray matter voxels. Frontal, temporal, parietal, and occipital regions of interest (ROIs) consistently exhibited a direct relationship between LORETA current density and IQ. Maximal t test differences were present at 4 Hz, 9 Hz, 13 Hz, 18 Hz, and 30 Hz with different anatomical regions showing different maxima. Linear regression fits from low to high IQ groups were statistically significant (P < 0.0001). Intelligence is directly related to a general level of arousal and to the synchrony of neural populations driven by thalamo-cortical resonances. A traveling frame model of sequential microstates is hypothesized to explain the results.

  7. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators.

    PubMed

    Brankack, J; Stewart, M; Fox, S E

    1993-07-02

    Single-electrode depth profiles of the hippocampal EEG were made in urethane-anesthetized rats and rats trained in an alternating running/drinking task. Current source density (CSD) was computed from the voltage as a function of depth. A problem inherent to AC-coupled profiles was eliminated by incorporating sustained potential components of the EEG. 'AC' profiles force phasic current sinks to alternate with current sources at each lamina, changing the magnitude and even the sign of the computed membrane current. It was possible to include DC potentials in the profiles from anesthetized rats by using glass micropipettes for recording. A method of 'subtracting' profiles of the non-theta EEG from theta profiles was developed as an approach to including sustained potentials in recordings from freely-moving animals implanted with platinum electrodes. 'DC' profiles are superior to 'AC' profiles for analysis of EEG activity because 'DC'-CSD values can be considered correct in sign and more closely represent the actual membrane current magnitudes. Since hippocampal inputs are laminated, CSD analysis leads to straightforward predictions of the afferents involved. Theta-related activity in afferents from entorhinal neurons, hippocampal interneurons and ipsi- and contralateral hippocampal pyramids all appear to contribute to sources and sinks in CA1 and the dentate area. The largest theta-related generator was a sink at the fissure, having both phasic and tonic components. This sink may reflect activity in afferents from the lateral entorhinal cortex. The phase of the dentate mid-molecular sink suggests that medial entorhinal afferents drive the theta-related granule and pyramidal cell firing. The sustained components may be simply due to different average rates of firing during theta rhythm than during non-theta EEG in afferents whose firing rates are also phasically modulated.

  9. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies

    PubMed Central

    Puce, Aina; Hämäläinen, Matti S.

    2017-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed. PMID:28561761

  10. Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG.

    PubMed

    Rosenzweig, Ivana; Fogarasi, András; Johnsen, Birger; Alving, Jørgen; Fabricius, Martin Ejler; Scherg, Michael; Neufeld, Miri Y; Pressler, Ronit; Kjaer, Troels W; van Emde Boas, Walter; Beniczky, Sándor

    2014-02-01

    To investigate whether extending the 10-20 array with 6 electrodes in the inferior temporal chain and constructing computed montages increases the diagnostic value of ictal EEG activity originating in the temporal lobe. In addition, the accuracy of computer-assisted spectral source analysis was investigated. Forty EEG samples were reviewed by 7 EEG experts in various montages (longitudinal and transversal bipolar, common average, source derivation, source montage, current source density, and reference-free montages) using 2 electrode arrays (10-20 and the extended one). Spectral source analysis used source montage to calculate density spectral array, defining the earliest oscillatory onset. From this, phase maps were calculated for localization. The reference standard was the decision of the multidisciplinary epilepsy surgery team on the seizure onset zone. Clinical performance was compared with the double banana (longitudinal bipolar montage, 10-20 array). Adding the inferior temporal electrode chain, computed montages (reference free, common average, and source derivation), and voltage maps significantly increased the sensitivity. Phase maps had the highest sensitivity and identified ictal activity at earlier time-point than visual inspection. There was no significant difference concerning specificity. The findings advocate for the use of these digital EEG technology-derived analysis methods in clinical practice.

  11. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources.

    PubMed

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. EEG data were generated by simulating multiple cortical sources (2-4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms.

  12. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources

    PubMed Central

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Background Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. Methods EEG data were generated by simulating multiple cortical sources (2–4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. Results While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms. PMID:26809000

  13. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study

    PubMed Central

    Castelnovo, Anna; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Boly, Melanie; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Methods: Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Results: Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1–4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Conclusions: Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. Citation: Castelnovo A, Riedner BA, Smith RF, Tononi G, Boly M, Benca RM. Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. SLEEP 2016;39(10):1815–1825. PMID:27568805

  14. Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults.

    PubMed

    Ponomarev, Valery A; Mueller, Andreas; Candrian, Gian; Grin-Yatsenko, Vera A; Kropotov, Juri D

    2014-01-01

    To investigate the performance of the spectral analysis of resting EEG, Current Source Density (CSD) and group independent components (gIC) in diagnosing ADHD adults. Power spectra of resting EEG, CSD and gIC (19 channels, linked ears reference, eyes open/closed) from 96 ADHD and 376 healthy adults were compared between eyes open and eyes closed conditions, and between groups of subjects. Pattern of differences in gIC and CSD spectral power between conditions was approximately similar, whereas it was more widely spatially distributed for EEG. Size effect (Cohen's d) of differences in gIC and CSD spectral power between groups of subjects was considerably greater than in the case of EEG. Significant reduction of gIC and CSD spectral power depending on conditions was found in ADHD patients. Reducing power in a wide frequency range in the fronto-central areas is a common phenomenon regardless of whether the eyes were open or closed. Spectral power of local EEG activity isolated by gICA or CSD in the fronto-central areas may be a suitable marker for discrimination of ADHD and healthy adults. Spectral analysis of gIC and CSD provides better sensitivity to discriminate ADHD and healthy adults. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.

    PubMed

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2017-05-01

    Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.

  16. Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis

    PubMed Central

    Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-01-01

    Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  17. Functional connectivity analysis in EEG source space: The choice of method

    PubMed Central

    Knyazeva, Maria G.

    2017-01-01

    Functional connectivity (FC) is among the most informative features derived from EEG. However, the most straightforward sensor-space analysis of FC is unreliable owing to volume conductance effects. An alternative—source-space analysis of FC—is optimal for high- and mid-density EEG (hdEEG, mdEEG); however, it is questionable for widely used low-density EEG (ldEEG) because of inadequate surface sampling. Here, using simulations, we investigate the performance of the two source FC methods, the inverse-based source FC (ISFC) and the cortical partial coherence (CPC). To examine the effects of localization errors of the inverse method on the FC estimation, we simulated an oscillatory source with varying locations and SNRs. To compare the FC estimations by the two methods, we simulated two synchronized sources with varying between-source distance and SNR. The simulations were implemented for hdEEG, mdEEG, and ldEEG. We showed that the performance of both methods deteriorates for deep sources owing to their inaccurate localization and smoothing. The accuracy of both methods improves with the increasing between-source distance. The best ISFC performance was achieved using hd/mdEEG, while the best CPC performance was observed with ldEEG. In conclusion, with hdEEG, ISFC outperforms CPC and therefore should be the preferred method. In the studies based on ldEEG, the CPC is a method of choice. PMID:28727750

  18. EEG source localization: Sensor density and head surface coverage.

    PubMed

    Song, Jasmine; Davey, Colin; Poulsen, Catherine; Luu, Phan; Turovets, Sergei; Anderson, Erik; Li, Kai; Tucker, Don

    2015-12-30

    The accuracy of EEG source localization depends on a sufficient sampling of the surface potential field, an accurate conducting volume estimation (head model), and a suitable and well-understood inverse technique. The goal of the present study is to examine the effect of sampling density and coverage on the ability to accurately localize sources, using common linear inverse weight techniques, at different depths. Several inverse methods are examined, using the popular head conductivity. Simulation studies were employed to examine the effect of spatial sampling of the potential field at the head surface, in terms of sensor density and coverage of the inferior and superior head regions. In addition, the effects of sensor density and coverage are investigated in the source localization of epileptiform EEG. Greater sensor density improves source localization accuracy. Moreover, across all sampling density and inverse methods, adding samples on the inferior surface improves the accuracy of source estimates at all depths. More accurate source localization of EEG data can be achieved with high spatial sampling of the head surface electrodes. The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study.

    PubMed

    Castelnovo, Anna; Riedner, Brady A; Smith, Richard F; Tononi, Giulio; Boly, Melanie; Benca, Ruth M

    2016-10-01

    To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1-4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. © 2016 Associated Professional Sleep Societies, LLC.

  20. Activity of left inferior frontal gyrus related to word repetition effects: LORETA imaging with 128-channel EEG and individual MRI.

    PubMed

    Kim, Young Youn; Lee, Boreom; Shin, Yong Wook; Kwon, Jun Soo; Kim, Myung-Sun

    2006-02-01

    We investigated the brain substrate of word repetition effects on the implicit memory task using low-resolution electromagnetic tomography (LORETA) with high-density 128-channel EEG and individual MRI as a realistic head model. Thirteen right-handed, healthy subjects performed a word/non-word discrimination task, in which the words and non-words were presented visually, and some of the words appeared twice with a lag of one or five items. All of the subjects exhibited word repetition effects with respect to the behavioral data, in which a faster reaction time was observed to the repeated word (old word) than to the first presentation of the word (new word). The old words elicited more positive-going potentials than the new words, beginning at 200 ms and lasting until 500 ms post-stimulus. We conducted source reconstruction using LORETA at a latency of 400 ms with the peak mean global field potentials and used statistical parametric mapping for the statistical analysis. We found that the source elicited by the old words exhibited a statistically significant current density reduction in the left inferior frontal gyrus. This is the first study to investigate the generators of word repetition effects using voxel-by-voxel statistical mapping of the current density with individual MRI and high-density EEG.

  1. Source reconstruction via the spatiotemporal Kalman filter and LORETA from EEG time series with 32 or fewer electrodes.

    PubMed

    Hamid, Laith; Al Farawn, Ali; Merlet, Isabelle; Japaridze, Natia; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Wendling, Fabrice; Siniatchkin, Michael

    2017-07-01

    The clinical routine of non-invasive electroencephalography (EEG) is usually performed with 8-40 electrodes, especially in long-term monitoring, infants or emergency care. There is a need in clinical and scientific brain imaging to develop inverse solution methods that can reconstruct brain sources from these low-density EEG recordings. In this proof-of-principle paper we investigate the performance of the spatiotemporal Kalman filter (STKF) in EEG source reconstruction with 9-, 19- and 32- electrodes. We used simulated EEG data of epileptic spikes generated from lateral frontal and lateral temporal brain sources using state-of-the-art neuronal population models. For validation of source reconstruction, we compared STKF results to the location of the simulated source and to the results of low-resolution brain electromagnetic tomography (LORETA) standard inverse solution. STKF consistently showed less localization bias compared to LORETA, especially when the number of electrodes was decreased. The results encourage further research into the application of the STKF in source reconstruction of brain activity from low-density EEG recordings.

  2. Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.

    PubMed

    Ding, Lei; Yuan, Han

    2013-04-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance. Copyright © 2011 Wiley Periodicals, Inc.

  3. Detecting Large-Scale Brain Networks Using EEG: Impact of Electrode Density, Head Modeling and Source Localization

    PubMed Central

    Liu, Quanying; Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2018-01-01

    Resting state networks (RSNs) in the human brain were recently detected using high-density electroencephalography (hdEEG). This was done by using an advanced analysis workflow to estimate neural signals in the cortex and to assess functional connectivity (FC) between distant cortical regions. FC analyses were conducted either using temporal (tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained with sICA were very similar to RSNs retrieved with sICA from functional magnetic resonance imaging data. It still remains to be clarified, however, what technological aspects of hdEEG acquisition and analysis primarily influence this correspondence. Here we examined to what extent the detection of EEG-RSN maps by sICA depends on the electrode density, the accuracy of the head model, and the source localization algorithm employed. Our analyses revealed that the collection of EEG data using a high-density montage is crucial for RSN detection by sICA, but also the use of appropriate methods for head modeling and source localization have a substantial effect on RSN reconstruction. Overall, our results confirm the potential of hdEEG for mapping the functional architecture of the human brain, and highlight at the same time the interplay between acquisition technology and innovative solutions in data analysis. PMID:29551969

  4. Emotion processing biases and resting EEG activity in depressed adolescents

    PubMed Central

    Auerbach, Randy P.; Stewart, Jeremy G.; Stanton, Colin H.; Mueller, Erik M.; Pizzagalli, Diego A.

    2015-01-01

    Background While theorists have posited that adolescent depression is characterized by emotion processing biases (greater propensity to identify sad than happy facial expressions), findings have been mixed. Additionally, the neural correlates associated with putative emotion processing biases remain largely unknown. Our aim was to identify emotion processing biases in depressed adolescents and examine neural abnormalities related to these biases using high-density resting EEG and source localization. Methods Healthy (n = 36) and depressed (n = 23) female adolescents, aged 13–18 years, completed a facial recognition task in which they identified happy, sad, fear, and angry expressions across intensities from 10% (low) to 100% (high). Additionally, 128-channel resting (i.e., task-free) EEG was recorded and analyzed using a distributed source localization technique (LORETA). Given research implicating the dorsolateral prefrontal cortex (DLPFC) in depression and emotion processing, analyses focused on this region. Results Relative to healthy youth, depressed adolescents were more accurate for sad and less accurate for happy, particularly low-intensity happy faces. No differences emerged for fearful or angry facial expressions. Further, LORETA analyses revealed greater theta and alpha current density (i.e., reduced brain activity) in depressed versus healthy adolescents, particularly in the left DLPFC (BA9/BA46). Theta and alpha current density were positively correlated, and greater current density predicted reduced accuracy for happy faces. Conclusion Depressed female adolescents were characterized by emotion processing biases in favor of sad emotions and reduced recognition of happiness, especially when cues of happiness were subtle. Blunted recognition of happy was associated with left DLPFC resting hypoactivity. PMID:26032684

  5. Effect of Sertraline on Current-Source Distribution of the High Beta Frequency Band: Analysis of Electroencephalography under Audiovisual Erotic Stimuli in Healthy, Right-Handed Males.

    PubMed

    Lee, Seung Hyun; Hyun, Jae Seog; Kwon, Oh-Young

    2010-08-01

    The purpose of this study was to examine the cerebral changes in high beta frequency oscillations (22-30 Hz) induced by sertraline and by audiovisual erotic stimuli in healthy adult males. Scalp electroencephalographies (EEGs) were conducted twice in 11 healthy, right-handed males, once before sertraline intake and again 4 hours thereafter. The EEGs included four sessions recorded sequentially while the subjects were resting, watching a music video, resting, and watching an erotic video for 3 minutes, 5 minutes, 3 minutes, and 5 minutes, respectively. We performed frequency-domain analysis using the EEGs with a distributed model of current-source analysis. The statistical nonparametric maps were obtained from the sessions of watching erotic and music videos (p<0.05). The erotic stimuli decreased the current-source density of the high beta frequency band in the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in the baseline EEGs taken before sertraline intake (p<0.05). The erotic stimuli did not induce any changes in current-source distribution of the brain 4 hours after sertraline intake. It is speculated that erotic stimuli may decrease the function of the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in healthy adult males. This change may debase the inhibitory control of the brain against erotic stimuli. Sertraline may reduce the decrement in inhibitory control.

  6. Effect of Sertraline on Current-Source Distribution of the High Beta Frequency Band: Analysis of Electroencephalography under Audiovisual Erotic Stimuli in Healthy, Right-Handed Males

    PubMed Central

    Lee, Seung Hyun; Hyun, Jae Seog

    2010-01-01

    Purpose The purpose of this study was to examine the cerebral changes in high beta frequency oscillations (22-30 Hz) induced by sertraline and by audiovisual erotic stimuli in healthy adult males. Materials and Methods Scalp electroencephalographies (EEGs) were conducted twice in 11 healthy, right-handed males, once before sertraline intake and again 4 hours thereafter. The EEGs included four sessions recorded sequentially while the subjects were resting, watching a music video, resting, and watching an erotic video for 3 minutes, 5 minutes, 3 minutes, and 5 minutes, respectively. We performed frequency-domain analysis using the EEGs with a distributed model of current-source analysis. The statistical nonparametric maps were obtained from the sessions of watching erotic and music videos (p<0.05). Results The erotic stimuli decreased the current-source density of the high beta frequency band in the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in the baseline EEGs taken before sertraline intake (p<0.05). The erotic stimuli did not induce any changes in current-source distribution of the brain 4 hours after sertraline intake. Conclusions It is speculated that erotic stimuli may decrease the function of the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in healthy adult males. This change may debase the inhibitory control of the brain against erotic stimuli. Sertraline may reduce the decrement in inhibitory control. PMID:20733961

  7. LORETA analysis of three-dimensional distribution of δ band activity in schizophrenia: relation to negative symptoms.

    PubMed

    Itoh, Toru; Sumiyoshi, Tomiki; Higuchi, Yuko; Suzuki, Michio; Kawasaki, Yasuhiro

    2011-08-01

    We sought to determine if altered electroencephalography (EEG) activities, such as delta band activity, in specific brain regions are associated with psychotic symptoms. Data were obtained from 17 neuroleptic-naive patients with schizophrenia and age- and sex-matched 17 healthy control subjects. Low Resolution Brain Electromagnetic Tomography (LORETA) was used to generate current source density images of delta, theta, alpha, and beta activities. Localization of the difference in EEG activity between the two groups was assessed by voxel-by-voxel non-paired t-test of the LORETA images. Spearman's correlation coefficient was obtained to relate LORETA values of EEG current density in brain regions showing a significant between-group difference and psychopathology scores. Delta band activity, represented by LORETA current density, was greater for patients in the following areas; the left inferior temporal gyrus, right middle frontal gyrus, right superior frontal gyrus, right inferior frontal gyrus, and right parahippocampal gyrus. LORETA values for delta band activity in the above five brain regions were negatively correlated with negative, but not positive symptoms. The results of this study suggest the role for electrophysiological changes in some of the brain regions, e.g. prefrontal cortex, in the manifestation of negative symptoms. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Demonstrating Test-Retest Reliability of Electrophysiological Measures for Healthy Adults in a Multisite Study of Biomarkers of Antidepressant Treatment Response

    PubMed Central

    Tenke, Craig E.; Kayser, Jürgen; Pechtel, Pia; Webb, Christian A.; Dillon, Daniel G.; Goer, Franziska; Murray, Laura; Deldin, Patricia; Kurian, Benji T.; McGrath, Patrick J.; Parsey, Ramin; Trivedi, Madhukar; Fava, Maurizio; Weissman, Myrna M.; McInnis, Melvin; Abraham, Karen; Alvarenga, Jorge; Alschuler, Daniel M.; Cooper, Crystal; Pizzagalli, Diego A.; Bruder, Gerard E.

    2016-01-01

    Growing evidence suggests that loudness dependency of auditory evoked potentials (LDAEP) and resting EEG alpha and theta may be biological markers for predicting response to antidepressants. In spite of this promise, little is known about the joint reliability of these markers, and thus their clinical applicability. New, standardized procedures were developed to improve the compatibility of data acquired with different EEG platforms, and used to examine test-retest reliability for the three electrophysiological measures selected for a multisite project—Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). Thirty nine healthy controls across four clinical research sites were tested in two sessions separated by about one week. Resting EEG (eyes-open and eyes-closed conditions) was recorded and LDAEP measured using binaural tones (1000 Hz, 40 ms) at five intensities (60–100 dB SPL). Principal components analysis (PCA) of current source density (CSD) waveforms reduced volume conduction and provided reference-free measures of resting EEG alpha and N1 dipole activity to tones from auditory cortex. Low Resolution Electromagnetic Tomography (LORETA) extracted resting theta current density measures corresponding to rostral anterior cingulate (rACC), which has been implicated in treatment response. There were no significant differences in posterior alpha, N1 dipole or rACC theta across sessions. Test-retest reliability was .84 for alpha, .87 for N1 dipole, and .70 for theta rACC current density. The demonstration of good-to-excellent reliability for these measures provides a template for future EEG/ERP studies from multiple testing sites, and an important step for evaluating them as biomarkers for predicting treatment response. PMID:28000259

  9. Demonstrating test-retest reliability of electrophysiological measures for healthy adults in a multisite study of biomarkers of antidepressant treatment response.

    PubMed

    Tenke, Craig E; Kayser, Jürgen; Pechtel, Pia; Webb, Christian A; Dillon, Daniel G; Goer, Franziska; Murray, Laura; Deldin, Patricia; Kurian, Benji T; McGrath, Patrick J; Parsey, Ramin; Trivedi, Madhukar; Fava, Maurizio; Weissman, Myrna M; McInnis, Melvin; Abraham, Karen; E Alvarenga, Jorge; Alschuler, Daniel M; Cooper, Crystal; Pizzagalli, Diego A; Bruder, Gerard E

    2017-01-01

    Growing evidence suggests that loudness dependency of auditory evoked potentials (LDAEP) and resting EEG alpha and theta may be biological markers for predicting response to antidepressants. In spite of this promise, little is known about the joint reliability of these markers, and thus their clinical applicability. New standardized procedures were developed to improve the compatibility of data acquired with different EEG platforms, and used to examine test-retest reliability for the three electrophysiological measures selected for a multisite project-Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). Thirty-nine healthy controls across four clinical research sites were tested in two sessions separated by about 1 week. Resting EEG (eyes-open and eyes-closed conditions) was recorded and LDAEP measured using binaural tones (1000 Hz, 40 ms) at five intensities (60-100 dB SPL). Principal components analysis of current source density waveforms reduced volume conduction and provided reference-free measures of resting EEG alpha and N1 dipole activity to tones from auditory cortex. Low-resolution electromagnetic tomography (LORETA) extracted resting theta current density measures corresponding to rostral anterior cingulate (rACC), which has been implicated in treatment response. There were no significant differences in posterior alpha, N1 dipole, or rACC theta across sessions. Test-retest reliability was .84 for alpha, .87 for N1 dipole, and .70 for theta rACC current density. The demonstration of good-to-excellent reliability for these measures provides a template for future EEG/ERP studies from multiple testing sites, and an important step for evaluating them as biomarkers for predicting treatment response. © 2016 Society for Psychophysiological Research.

  10. Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.

    PubMed

    Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D

    2017-09-01

    We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.

  11. Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions

    PubMed Central

    Tenke, Craig E.; Kayser, Jürgen

    2012-01-01

    The topographic ambiguity and reference-dependency that has plagued EEG/ERP research throughout its history are largely attributable to volume conduction, which may be concisely described by a vector form of Ohm’s Law. This biophysical relationship is common to popular algorithms that infer neuronal generators via inverse solutions. It may be further simplified as Poisson’s source equation, which identifies underlying current generators from estimates of the second spatial derivative of the field potential (Laplacian transformation). Intracranial current source density (CSD) studies have dissected the “cortical dipole” into intracortical sources and sinks, corresponding to physiologically-meaningful patterns of neuronal activity at a sublaminar resolution, much of which is locally cancelled (i.e., closed field). By virtue of the macroscopic scale of the scalp-recorded EEG, a surface Laplacian reflects the radial projections of these underlying currents, representing a unique, unambiguous measure of neuronal activity at scalp. Although the surface Laplacian requires minimal assumptions compared to complex, model-sensitive inverses, the resulting waveform topographies faithfully summarize and simplify essential constraints that must be placed on putative generators of a scalp potential topography, even if they arise from deep or partially-closed fields. CSD methods thereby provide a global empirical and biophysical context for generator localization, spanning scales from intracortical to scalp recordings. PMID:22796039

  12. Detecting large-scale networks in the human brain using high-density electroencephalography.

    PubMed

    Liu, Quanying; Farahibozorg, Seyedehrezvan; Porcaro, Camillo; Wenderoth, Nicole; Mantini, Dante

    2017-09-01

    High-density electroencephalography (hdEEG) is an emerging brain imaging technique that can be used to investigate fast dynamics of electrical activity in the healthy and the diseased human brain. Its applications are however currently limited by a number of methodological issues, among which the difficulty in obtaining accurate source localizations. In particular, these issues have so far prevented EEG studies from reporting brain networks similar to those previously detected by functional magnetic resonance imaging (fMRI). Here, we report for the first time a robust detection of brain networks from resting state (256-channel) hdEEG recordings. Specifically, we obtained 14 networks previously described in fMRI studies by means of realistic 12-layer head models and exact low-resolution brain electromagnetic tomography (eLORETA) source localization, together with independent component analysis (ICA) for functional connectivity analysis. Our analyses revealed three important methodological aspects. First, brain network reconstruction can be improved by performing source localization using the gray matter as source space, instead of the whole brain. Second, conducting EEG connectivity analyses in individual space rather than on concatenated datasets may be preferable, as it permits to incorporate realistic information on head modeling and electrode positioning. Third, the use of a wide frequency band leads to an unbiased and generally accurate reconstruction of several network maps, whereas filtering data in a narrow frequency band may enhance the detection of specific networks and penalize that of others. We hope that our methodological work will contribute to rise of hdEEG as a powerful tool for brain research. Hum Brain Mapp 38:4631-4643, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Quantitative EEG and Current Source Density Analysis of Combined Antiepileptic Drugs and Dopaminergic Agents in Genetic Epilepsy: Two Case Studies.

    PubMed

    Emory, Hamlin; Wells, Christopher; Mizrahi, Neptune

    2015-07-01

    Two adolescent females with absence epilepsy were classified, one as attention deficit and the other as bipolar disorder. Physical and cognitive exams identified hypotension, bradycardia, and cognitive dysfunction. Their initial electroencephalograms (EEGs) were considered slightly slow, but within normal limits. Quantitative EEG (QEEG) data included relative theta excess and low alpha mean frequencies. A combined treatment of antiepileptic drugs with a catecholamine agonist/reuptake inhibitor was sequentially used. Both patients' physical and cognitive functions improved and they have remained seizure free. The clinical outcomes were correlated with statistically significant changes in QEEG measures toward normal Z-scores in both anterior and posterior regions. In addition, low resolution electromagnetic tomography (LORETA) Z-scored source correlation analyses of the initial and treated QEEG data showed normalized patterns, supporting a neuroanatomic resolution. This study presents preliminary evidence for a neurophysiologic approach to patients with absence epilepsy and comorbid disorders and may provide a method for further research. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  14. s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

    PubMed Central

    Li, Ying; Qin, Jing; Hsin, Yue-Loong; Osher, Stanley; Liu, Wentai

    2016-01-01

    EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios. PMID:27965529

  15. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    PubMed

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705-717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Reconstructing cortical current density by exploring sparseness in the transform domain

    NASA Astrophysics Data System (ADS)

    Ding, Lei

    2009-05-01

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  17. Neural Correlates of Three Promising Endophenotypes of Depression: Evidence from the EMBARC Study

    PubMed Central

    Webb, Christian A; Dillon, Daniel G; Pechtel, Pia; Goer, Franziska K; Murray, Laura; Huys, Quentin JM; Fava, Maurizio; McGrath, Patrick J; Weissman, Myrna; Parsey, Ramin; Kurian, Benji T; Adams, Phillip; Weyandt, Sarah; Trombello, Joseph M; Grannemann, Bruce; Cooper, Crystal M; Deldin, Patricia; Tenke, Craig; Trivedi, Madhukar; Bruder, Gerard; Pizzagalli, Diego A

    2016-01-01

    Major depressive disorder (MDD) is clinically, and likely pathophysiologically, heterogeneous. A potentially fruitful approach to parsing this heterogeneity is to focus on promising endophenotypes. Guided by the NIMH Research Domain Criteria initiative, we used source localization of scalp-recorded EEG resting data to examine the neural correlates of three emerging endophenotypes of depression: neuroticism, blunted reward learning, and cognitive control deficits. Data were drawn from the ongoing multi-site EMBARC study. We estimated intracranial current density for standard EEG frequency bands in 82 unmedicated adults with MDD, using Low-Resolution Brain Electromagnetic Tomography. Region-of-interest and whole-brain analyses tested associations between resting state EEG current density and endophenotypes of interest. Neuroticism was associated with increased resting gamma (36.5–44 Hz) current density in the ventral (subgenual) anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC). In contrast, reduced cognitive control correlated with decreased gamma activity in the left dorsolateral prefrontal cortex (dlPFC), decreased theta (6.5–8 Hz) and alpha2 (10.5–12 Hz) activity in the dorsal ACC, and increased alpha2 activity in the right dlPFC. Finally, blunted reward learning correlated with lower OFC and left dlPFC gamma activity. Computational modeling of trial-by-trial reinforcement learning further indicated that lower OFC gamma activity was linked to reduced reward sensitivity. Three putative endophenotypes of depression were found to have partially dissociable resting intracranial EEG correlates, reflecting different underlying neural dysfunctions. Overall, these findings highlight the need to parse the heterogeneity of MDD by focusing on promising endophenotypes linked to specific pathophysiological abnormalities. PMID:26068725

  18. Correspondence of electroencephalography and near-infrared spectroscopy sensitivities to the cerebral cortex using a high-density layout

    PubMed Central

    Giacometti, Paolo; Diamond, Solomon G.

    2014-01-01

    Abstract. This study investigates the correspondence of the cortical sensitivity of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). EEG forward model sensitivity to the cerebral cortex was calculated for 329 EEG electrodes following the 10-5 EEG positioning system using a segmented structural magnetic resonance imaging scan of a human subject. NIRS forward model sensitivity was calculated for the same subject using 156 NIRS source-detector pairs selected from 32 source and 32 detector optodes positioned on the scalp using a subset of the 10-5 EEG positioning system. Sensitivity correlations between colocalized NIRS source-detector pair groups and EEG channels yielded R=0.46±0.08. Groups of NIRS source-detector pairs with maximum correlations to EEG electrode sensitivities are tabulated. The mean correlation between the point spread functions for EEG and NIRS regions of interest (ROI) was R=0.43±0.07. Spherical ROIs with radii of 26 mm yielded the maximum correlation between EEG and NIRS averaged across all cortical mesh nodes. These sensitivity correlations between EEG and NIRS should be taken into account when designing multimodal studies of neurovascular coupling and when using NIRS as a statistical prior for EEG source localization. PMID:25558462

  19. Estimation of the EEG power spectrum using MRI T(2) relaxation time in traumatic brain injury.

    PubMed

    Thatcher, R W; Biver, C; Gomez, J F; North, D; Curtin, R; Walker, R A; Salazar, A

    2001-09-01

    To study the relationship between magnetic resonance imaging (MRI) T(2) relaxation time and the power spectrum of the electroencephalogram (EEG) in long-term follow up of traumatic brain injury. Nineteen channel quantitative electroencephalograms or qEEG, tests of cognitive function and quantitative MRI T(2) relaxation times (qMRI) were measured in 18 mild to severe closed head injured outpatients 2 months to 4.6 years after injury and 11 normal controls. MRI T(2) and the Laplacian of T(2) were then correlated with the power spectrum of the scalp electrical potentials and current source densities of the qEEG. qEEG and qMRI T(2) were related by a frequency tuning with maxima in the alpha (8-12Hz) and the lower EEG frequencies (0.5-5Hz), which varied as a function of spatial location. The Laplacian of T(2) acted like a spatial-temporal "lens" by increasing the spatial-temporal resolution of correlation between 3-dimensional T(2) and the ear referenced alert but resting spontaneous qEEG. The severity of traumatic brain injury can be modeled by a linear transfer function that relates the molecular qMRI to qEEG resonant frequencies.

  20. LORETA imaging of P300 in schizophrenia with individual MRI and 128-channel EEG.

    PubMed

    Pae, Ji Soo; Kwon, Jun Soo; Youn, Tak; Park, Hae-Jeong; Kim, Myung Sun; Lee, Boreom; Park, Kwang Suk

    2003-11-01

    We investigated the characteristics of P300 generators in schizophrenics by using voxel-based statistical parametric mapping of current density images. P300 generators, produced by a rare target tone of 1500 Hz (15%) under a frequent nontarget tone of 1000 Hz (85%), were measured in 20 right-handed schizophrenics and 21 controls. Low-resolution electromagnetic tomography (LORETA), using a realistic head model of the boundary element method based on individual MRI, was applied to the 128-channel EEG. Three-dimensional current density images were reconstructed from the LORETA intensity maps that covered the whole cortical gray matter. Spatial normalization and intensity normalization of the smoothed current density images were used to reduce anatomical variance and subject-specific global activity and statistical parametric mapping (SPM) was applied for the statistical analysis. We found that the sources of P300 were consistently localized at the left superior parietal area in normal subjects, while those of schizophrenics were diversely distributed. Upon statistical comparison, schizophrenics, with globally reduced current densities, showed a significant P300 current density reduction in the left medial temporal area and in the left inferior parietal area, while both left prefrontal and right orbitofrontal areas were relatively activated. The left parietotemporal area was found to correlate negatively with Positive and Negative Syndrome Scale total scores of schizophrenic patients. In conclusion, the reduced and increased areas of current density in schizophrenic patients suggest that the medial temporal and frontal areas contribute to the pathophysiology of schizophrenia, the frontotemporal circuitry abnormality.

  1. EEG source imaging during two Qigong meditations.

    PubMed

    Faber, Pascal L; Lehmann, Dietrich; Tei, Shisei; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Kochi, Kieko

    2012-08-01

    Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.

  2. Increased Intra-Participant Variability in Children with Autistic Spectrum Disorders: Evidence from Single-Trial Analysis of Evoked EEG

    PubMed Central

    Milne, Elizabeth

    2011-01-01

    Intra-participant variability in clinical conditions such as autistic spectrum disorder (ASD) is an important indicator of pathophysiological processing. The data reported here illustrate that trial-by-trial variability can be reliably measured from EEG, and that intra-participant EEG variability is significantly greater in those with ASD than in neuro-typical matched controls. EEG recorded at the scalp is a linear mixture of activity arising from muscle artifacts and numerous concurrent brain processes. To minimize these additional sources of variability, EEG data were subjected to two different methods of spatial filtering. (i) The data were decomposed using infomax independent component analysis, a method of blind source separation which un-mixes the EEG signal into components with maximally independent time-courses, and (ii) a surface Laplacian transform was performed (current source density interpolation) in order to reduce the effects of volume conduction. Data are presented from 13 high functioning adolescents with ASD without co-morbid ADHD, and 12 neuro-typical age-, IQ-, and gender-matched controls. Comparison of variability between the ASD and neuro-typical groups indicated that intra-participant variability of P1 latency and P1 amplitude was greater in the participants with ASD, and inter-trial α-band phase coherence was lower in the participants with ASD. These data support the suggestion that individuals with ASD are less able to synchronize the activity of stimulus-related cell assemblies than neuro-typical individuals, and provide empirical evidence in support of theories of increased neural noise in ASD. PMID:21716921

  3. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Correlate With Electroencephalography Parameters Assessed by Exact Low-Resolution Electromagnetic Tomography (eLORETA).

    PubMed

    Hata, Masahiro; Tanaka, Toshihisa; Kazui, Hiroaki; Ishii, Ryouhei; Canuet, Leonides; Pascual-Marqui, Roberto D; Aoki, Yasunori; Ikeda, Shunichiro; Sato, Shunsuke; Suzuki, Yukiko; Kanemoto, Hideki; Yoshiyama, Kenji; Iwase, Masao

    2017-09-01

    Recently, cerebrospinal fluid (CSF) biomarkers related to Alzheimer's disease (AD) have garnered a lot of clinical attention. To explore neurophysiological traits of AD and parameters for its clinical diagnosis, we examined the association between CSF biomarkers and electroencephalography (EEG) parameters in 14 probable AD patients. Using exact low-resolution electromagnetic tomography (eLORETA), artifact-free 40-sesond EEG data were estimated with current source density (CSD) and lagged phase synchronization (LPS) as the EEG parameters. Correlations between CSF biomarkers and the EEG parameters were assessed. Patients with AD showed significant negative correlation between CSF beta-amyloid (Aβ)-42 concentration and the logarithms of CSD over the right temporal area in the theta band. Total tau concentration was negatively correlated with the LPS between the left frontal eye field and the right auditory area in the alpha-2 band in patients with AD. Our study results suggest that AD biomarkers, in particular CSF Aβ42 and total tau concentrations are associated with the EEG parameters CSD and LPS, respectively. Our results could yield more insights into the complicated pathology of AD.

  4. Effects of sertraline on brain current source of the high beta frequency band: analysis of electroencephalography during audiovisual erotic stimulation in males with premature ejaculation.

    PubMed

    Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S

    2011-01-01

    To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.

  5. Online EEG artifact removal for BCI applications by adaptive spatial filtering.

    PubMed

    Guarnieri, Roberto; Marino, Marco; Barban, Federico; Ganzetti, Marco; Mantini, Dante

    2018-06-28

    The performance of brain computer interfaces (BCIs) based on electroencephalography (EEG) data strongly depends on the effective attenuation of artifacts that are mixed in the recordings. To address this problem, we have developed a novel online EEG artifact removal method for BCI applications, which combines blind source separation (BSS) and regression (REG) analysis. The BSS-REG method relies on the availability of a calibration dataset of limited duration for the initialization of a spatial filter using BSS. Online artifact removal is implemented by dynamically adjusting the spatial filter in the actual experiment, based on a linear regression technique. Our results showed that the BSS-REG method is capable of attenuating different kinds of artifacts, including ocular and muscular, while preserving true neural activity. Thanks to its low computational requirements, BSS-REG can be applied to low-density as well as high-density EEG data. We argue that BSS-REG may enable the development of novel BCI applications requiring high-density recordings, such as source-based neurofeedback and closed-loop neuromodulation. © 2018 IOP Publishing Ltd.

  6. Estimation of Symptom Severity Scores for Patients with Schizophrenia Using ERP Source Activations during a Facial Affect Discrimination Task.

    PubMed

    Kim, Do-Won; Lee, Seung-Hwan; Shim, Miseon; Im, Chang-Hwan

    2017-01-01

    Precise diagnosis of psychiatric diseases and a comprehensive assessment of a patient's symptom severity are important in order to establish a successful treatment strategy for each patient. Although great efforts have been devoted to searching for diagnostic biomarkers of schizophrenia over the past several decades, no study has yet investigated how accurately these biomarkers are able to estimate an individual patient's symptom severity. In this study, we applied electrophysiological biomarkers obtained from electroencephalography (EEG) analyses to an estimation of symptom severity scores of patients with schizophrenia. EEG signals were recorded from 23 patients while they performed a facial affect discrimination task. Based on the source current density analysis results, we extracted voxels that showed a strong correlation between source activity and symptom scores. We then built a prediction model to estimate the symptom severity scores of each patient using the source activations of the selected voxels. The symptom scores of the Positive and Negative Syndrome Scale (PANSS) were estimated using the linear prediction model. The results of leave-one-out cross validation (LOOCV) showed that the mean errors of the estimated symptom scores were 3.34 ± 2.40 and 3.90 ± 3.01 for the Positive and Negative PANSS scores, respectively. The current pilot study is the first attempt to estimate symptom severity scores in schizophrenia using quantitative EEG features. It is expected that the present method can be extended to other cognitive paradigms or other psychological illnesses.

  7. Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging.

    PubMed

    Januszko, Piotr; Niemcewicz, Szymon; Gajda, Tomasz; Wołyńczyk-Gmaj, Dorota; Piotrowska, Anna Justyna; Gmaj, Bartłomiej; Piotrowski, Tadeusz; Szelenberger, Waldemar

    2016-01-01

    To investigate local arousal fluctuations in adults who received ICSD-2 diagnosis of somnambulism. EEG neuroimaging (eLORETA) was utilized to compare current density distribution for 4s epochs immediately preceding sleepwalking episode (from -4.0 s to 0 s) to the distribution during earlier 4s epochs (from -8.0 s to -4.0 s) in 20 EEG segments from 15 patients. Comparisons between eLORETA images revealed significant (t>4.52; p<0.05) brain activations before onset of sleepwalking, with greater current density within beta 3 frequency range (24-30 Hz) in Brodmann areas 33 and 24. Sleepwalking motor events are associated with arousal-related activation of cingulate motor area. These results support the notion of blurred boundaries between wakefulness and NREM sleep in sleepwalking. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Source localization of intermittent rhythmic delta activity in a patient with acute confusional migraine: cross-spectral analysis using standardized low-resolution brain electromagnetic tomography (sLORETA).

    PubMed

    Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min

    2016-01-01

    Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.

  9. Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG

    PubMed Central

    Mullen, Tim R.; Kothe, Christian A.E.; Chi, Mike; Ojeda, Alejandro; Kerth, Trevor; Makeig, Scott; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2015-01-01

    Goal We present and evaluate a wearable high-density dry electrode EEG system and an open-source software framework for online neuroimaging and state classification. Methods The system integrates a 64-channel dry EEG form-factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in 9 subjects using the dry EEG system. Results Simulations yielded high accuracy (AUC=0.97±0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity (sdDTF) was significantly above chance with similar performance (AUC) for cLORETA (0.74±0.09) and LCMV (0.72±0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74±0.16) but significantly better for LCMV (0.82±0.12). Conclusion We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. Significance This paper is the first validated application of these methods to 64-channel dry EEG. The work addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes. PMID:26415149

  10. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation.

    PubMed

    Eytan, Danny; Pang, Elizabeth W; Doesburg, Sam M; Nenadovic, Vera; Gavrilovic, Bojan; Laussen, Peter; Guerguerian, Anne-Marie

    2016-01-01

    Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG) for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory), and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage critically-ill children and adults, and potentially patients not suited for magnetic resonance imaging technologies.

  11. High density scalp EEG in frontal lobe epilepsy.

    PubMed

    Feyissa, Anteneh M; Britton, Jeffrey W; Van Gompel, Jamie; Lagerlund, Terrance L; So, Elson; Wong-Kisiel, Lilly C; Cascino, Gregory C; Brinkman, Benjamin H; Nelson, Cindy L; Watson, Robert; Worrell, Gregory A

    2017-01-01

    Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (p<0.01) and SISCOM 3/12 (p<0.01). hdEEG correctly lateralized seizure onset in 14/14 cases, compared to 9/14 (p=0.04) cases with conventional EEG. Seven patients underwent surgical resection, of whom five were seizure free. hdEEG monitoring should be considered in patients with suspected frontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization. Published by Elsevier B.V.

  12. Decoding of Ankle Flexion and Extension from Cortical Current Sources Estimated from Non-invasive Brain Activity Recording Methods.

    PubMed

    Mejia Tobar, Alejandra; Hyoudou, Rikiya; Kita, Kahori; Nakamura, Tatsuhiro; Kambara, Hiroyuki; Ogata, Yousuke; Hanakawa, Takashi; Koike, Yasuharu; Yoshimura, Natsue

    2017-01-01

    The classification of ankle movements from non-invasive brain recordings can be applied to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional electrical stimulators for the benefit of patients with walking impairments. In this research, ankle flexion and extension tasks at two force levels in both legs, were classified from cortical current sources estimated by a hierarchical variational Bayesian method, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The hierarchical prior for the current source estimation from EEG was obtained from activated brain areas and their intensities from an fMRI group (second-level) analysis. The fMRI group analysis was performed on regions of interest defined over the primary motor cortex, the supplementary motor area, and the somatosensory area, which are well-known to contribute to movement control. A sparse logistic regression method was applied for a nine-class classification (eight active tasks and a resting control task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated from the EEG and the fMRI signals using a variational Bayesian method, and a mean accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals, with a chance level of 11.11%. The higher classification accuracy of current sources, when compared to EEG classification accuracy, was attributed to the high number of sources and the different signal patterns obtained in the same vertex for different motor tasks. Since the inverse filter estimation for current sources can be done offline with the present method, the present method is applicable to real-time BCIs. Finally, due to the highly enhanced spatial distribution of current sources over the brain cortex, this method has the potential to identify activation patterns to design BCIs for the control of an affected limb in patients with stroke, or BCIs from motor imagery in patients with spinal cord injury.

  13. Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis

    PubMed Central

    Aydin, Ümit; Vorwerk, Johannes; Dümpelmann, Matthias; Küpper, Philipp; Kugel, Harald; Heers, Marcel; Wellmer, Jörg; Kellinghaus, Christoph; Haueisen, Jens; Rampp, Stefan; Stefan, Hermann; Wolters, Carsten H.

    2015-01-01

    We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1) sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2) still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes) or MEG (275-gradiometers) and especially on the benefits of combined EEG/MEG (EMEG) source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG) (167-contacts) and low-density EEG (ldEEG) (21-electrodes). To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset), i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply. PMID:25761059

  14. Recording event-related activity under hostile magnetic resonance environment: Is multimodal EEG/ERP-MRI recording possible?

    PubMed

    Karakaş, H M; Karakaş, S; Ozkan Ceylan, A; Tali, E T

    2009-08-01

    Event-related potentials (ERPs) have high temporal resolution, but insufficient spatial resolution; the converse is true for the functional imaging techniques. The purpose of the study was to test the utility of a multimodal EEG/ERP-MRI technique which combines electroencephalography (EEG) and magnetic resonance imaging (MRI) for a simultaneously high temporal and spatial resolution. The sample consisted of 32 healthy young adults of both sexes. Auditory stimuli were delivered according to the active and passive oddball paradigms in the MRI environment (MRI-e) and in the standard conditions of the electrophysiology laboratory environment (Lab-e). Tasks were presented in a fixed order. Participants were exposed to the recording environments in a counterbalanced order. EEG data were preprocessed for MRI-related artifacts. Source localization was made using a current density reconstruction technique. The ERP waveforms for the MRI-e were morphologically similar to those for the Lab-e. The effect of the recording environment, experimental paradigm and electrode location were analyzed using a 2x2x3 analysis of variance for repeated measures. The ERP components in the two environments showed parametric variations and characteristic topographical distributions. The calculated sources were in line with the related literature. The findings indicated effortful cognitive processing in MRI-e. The study provided preliminary data on the feasibility of the multimodal EEG/ERP-MRI technique. It also indicated lines of research that are to be pursued for a decisive testing of this technique and its implementation to clinical practice.

  15. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  16. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle

    PubMed Central

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints. PMID:27303311

  17. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle.

    PubMed

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints.

  18. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  19. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

    PubMed Central

    Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030

  20. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.

    PubMed

    Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T

    2014-11-01

    Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.

  1. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  2. Comparison of imaging modalities and source-localization algorithms in locating the induced activity during deep brain stimulation of the STN.

    PubMed

    Mideksa, K G; Singh, A; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Schmidt, G; Muthuraman, M

    2016-08-01

    One of the most commonly used therapy to treat patients with Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Identifying the most optimal target area for the placement of the DBS electrodes have become one of the intensive research area. In this study, the first aim is to investigate the capabilities of different source-analysis techniques in detecting deep sources located at the sub-cortical level and validating it using the a-priori information about the location of the source, that is, the STN. Secondly, we aim at an investigation of whether EEG or MEG is best suited in mapping the DBS-induced brain activity. To do this, simultaneous EEG and MEG measurement were used to record the DBS-induced electromagnetic potentials and fields. The boundary-element method (BEM) have been used to solve the forward problem. The position of the DBS electrodes was then estimated using the dipole (moving, rotating, and fixed MUSIC), and current-density-reconstruction (CDR) (minimum-norm and sLORETA) approaches. The source-localization results from the dipole approaches demonstrated that the fixed MUSIC algorithm best localizes deep focal sources, whereas the moving dipole detects not only the region of interest but also neighboring regions that are affected by stimulating the STN. The results from the CDR approaches validated the capability of sLORETA in detecting the STN compared to minimum-norm. Moreover, the source-localization results using the EEG modality outperformed that of the MEG by locating the DBS-induced activity in the STN.

  3. Association of posterior EEG alpha with prioritization of religion or spirituality: a replication and extension at 20-year follow-up

    PubMed Central

    Tenke, Craig E.; Kayser, Jürgen; Svob, Connie; Miller, Lisa; Alvarenga, Jorge E.; Abraham, Karen; Warner, Virginia; Wickramaratne, Priya; Weissman, Myrna M.; Bruder, Gerard E.

    2017-01-01

    A prior report (Tenke et al. 2013 Biol. Psychol. 94:426–432) found that participants who rated religion or spirituality (R/S) highly important had greater posterior alpha after 10 years compared to those who did not. Participants who subsequently lowered their rating also had prominent alpha, while those who increased their rating did not. Here we report EEG findings 20 years after initial assessment. Clinical evaluations and R/S ratings were obtained from 73 (52 new) participants in a longitudinal study of family risk for depression. Frequency PCA of current source density transformed EEG concisely quantified posterior alpha. Those who initially rated R/S as highly important had greater alpha compared to those who did not, even if their R/S rating later increased. Furthermore, changes in religious denomination were associated with decreased alpha. Results suggest the possibility of a critical stage in the ontogenesis of R/S that is linked to posterior resting alpha. PMID:28119066

  4. The standardized EEG electrode array of the IFCN.

    PubMed

    Seeck, Margitta; Koessler, Laurent; Bast, Thomas; Leijten, Frans; Michel, Christoph; Baumgartner, Christoph; He, Bin; Beniczky, Sándor

    2017-10-01

    Standardized EEG electrode positions are essential for both clinical applications and research. The aim of this guideline is to update and expand the unifying nomenclature and standardized positioning for EEG scalp electrodes. Electrode positions were based on 20% and 10% of standardized measurements from anatomical landmarks on the skull. However, standard recordings do not cover the anterior and basal temporal lobes, which is the most frequent source of epileptogenic activity. Here, we propose a basic array of 25 electrodes including the inferior temporal chain, which should be used for all standard clinical recordings. The nomenclature in the basic array is consistent with the 10-10-system. High-density scalp EEG arrays (64-256 electrodes) allow source imaging with even sub-lobar precision. This supplementary exam should be requested whenever necessary, e.g. search for epileptogenic activity in negative standard EEG or for presurgical evaluation. In the near future, nomenclature for high density electrodes arrays beyond the 10-10 system needs to be defined, to allow comparison and standardized recordings across centers. Contrary to the established belief that smaller heads needs less electrodes, in young children at least as many electrodes as in adults should be applied due to smaller skull thickness and the risk of spatial aliasing. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Simultaneous head tissue conductivity and EEG source location estimation.

    PubMed

    Akalin Acar, Zeynep; Acar, Can E; Makeig, Scott

    2016-01-01

    Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm(2)-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm(2)-scale accurate 3-D functional cortical imaging modality. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Simultaneous head tissue conductivity and EEG source location estimation

    PubMed Central

    Acar, Can E.; Makeig, Scott

    2015-01-01

    Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3 cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15 cm2-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical imaging modality. PMID:26302675

  7. Correlation of invasive EEG and scalp EEG.

    PubMed

    Ramantani, Georgia; Maillard, Louis; Koessler, Laurent

    2016-10-01

    Ever since the implementation of invasive EEG recordings in the clinical setting, it has been perceived that a considerable proportion of epileptic discharges present at a cortical level are missed by routine scalp EEG recordings. Several in vitro, in vivo, and simulation studies have been performed in the past decades aiming to clarify the interrelations of cortical sources with their scalp and invasive EEG correlates. The amplitude ratio of cortical potentials to their scalp EEG correlates, the extent of the cortical area involved in the discharge, as well as the localization of the cortical source and its geometry have been each independently linked to the recording of the cortical discharge with scalp electrodes. The need to elucidate these interrelations has been particularly imperative in the field of epilepsy surgery with its rapidly growing EEG-based localization technologies. Simultaneous multiscale EEG recordings with scalp, subdural and/or depth electrodes, applied in presurgical epilepsy workup, offer an excellent opportunity to shed some light to this fundamental issue. Whereas past studies have considered predominantly neocortical sources in the context of temporal lobe epilepsy, current investigations have included deep sources, as in mesial temporal epilepsy, as well as extratemporal sources. Novel computational tools may serve to provide surrogates for the shortcomings of EEG recording methodology and facilitate further developments in modern electrophysiology. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  8. Change in Mean Frequency of Resting-State Electroencephalography after Transcranial Direct Current Stimulation

    PubMed Central

    Boonstra, Tjeerd W.; Nikolin, Stevan; Meisener, Ann-Christin; Martin, Donel M.; Loo, Colleen K.

    2016-01-01

    Transcranial direct current stimulation (tDCS) is proposed as a tool to investigate cognitive functioning in healthy people and as a treatment for various neuropathological disorders. However, the underlying cortical mechanisms remain poorly understood. We aim to investigate whether resting-state electroencephalography (EEG) can be used to monitor the effects of tDCS on cortical activity. To this end we tested whether the spectral content of ongoing EEG activity is significantly different after a single session of active tDCS compared to sham stimulation. Twenty participants were tested in a sham-controlled, randomized, crossover design. Resting-state EEG was acquired before, during and after active tDCS to the left dorsolateral prefrontal cortex (15 min of 2 mA tDCS) and sham stimulation. Electrodes with a diameter of 3.14 cm2 were used for EEG and tDCS. Partial least squares (PLS) analysis was used to examine differences in power spectral density (PSD) and the EEG mean frequency to quantify the slowing of EEG activity after stimulation. PLS revealed a significant increase in spectral power at frequencies below 15 Hz and a decrease at frequencies above 15 Hz after active tDCS (P = 0.001). The EEG mean frequency was significantly reduced after both active tDCS (P < 0.0005) and sham tDCS (P = 0.001), though the decrease in mean frequency was smaller after sham tDCS than after active tDCS (P = 0.073). Anodal tDCS of the left DLPFC using a high current density bi-frontal electrode montage resulted in general slowing of resting-state EEG. The similar findings observed following sham stimulation question whether the standard sham protocol is an appropriate control condition for tDCS. PMID:27375462

  9. Household wireless electroencephalogram hat

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  10. LORETA EEG phase reset of the default mode network.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2014-01-01

    The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300-350 ms and (2) 350-450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a "shutter" that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations.

  11. Rheoencephalographic and electroencephalographic measures of cognitive workload: analytical procedures.

    PubMed

    Montgomery, L D; Montgomery, R W; Guisado, R

    1995-05-01

    This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.

  12. Rheoencephalographic and electroencephalographic measures of cognitive workload: analytical procedures

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Montgomery, R. W.; Guisado, R.

    1995-01-01

    This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.

  13. A mesostate-space model for EEG and MEG.

    PubMed

    Daunizeau, Jean; Friston, Karl J

    2007-10-15

    We present a multi-scale generative model for EEG, that entails a minimum number of assumptions about evoked brain responses, namely: (1) bioelectric activity is generated by a set of distributed sources, (2) the dynamics of these sources can be modelled as random fluctuations about a small number of mesostates, (3) mesostates evolve in a temporal structured way and are functionally connected (i.e. influence each other), and (4) the number of mesostates engaged by a cognitive task is small (e.g. between one and a few). A Variational Bayesian learning scheme is described that furnishes the posterior density on the models parameters and its evidence. Since the number of meso-sources specifies the model, the model evidence can be used to compare models and find the optimum number of meso-sources. In addition to estimating the dynamics at each cortical dipole, the mesostate-space model and its inversion provide a description of brain activity at the level of the mesostates (i.e. in terms of the dynamics of meso-sources that are distributed over dipoles). The inclusion of a mesostate level allows one to compute posterior probability maps of each dipole being active (i.e. belonging to an active mesostate). Critically, this model accommodates constraints on the number of meso-sources, while retaining the flexibility of distributed source models in explaining data. In short, it bridges the gap between standard distributed and equivalent current dipole models. Furthermore, because it is explicitly spatiotemporal, the model can embed any stochastic dynamical causal model (e.g. a neural mass model) as a Markov process prior on the mesostate dynamics. The approach is evaluated and compared to standard inverse EEG techniques, using synthetic data and real data. The results demonstrate the added-value of the mesostate-space model and its variational inversion.

  14. The Importance of the Numerical Resolution of the Laplace Equation in the optimization of a Neuronal Stimulation Technique

    NASA Astrophysics Data System (ADS)

    Faria, Paula

    2010-09-01

    For the past few years, the potential of transcranial direct current stimulation (tDCS) for the treatment of several pathologies has been investigated. Knowledge of the current density distribution is an important factor in optimizing such applications of tDCS. For this goal, we used the finite element method to solve the Laplace equation in a spherical head model in order to investigate the three dimensional distribution of the current density and the variation of its intensity with depth using different electrodes montages: the traditional one with two sponge electrodes and new electrode montages: with sponge and EEG electrodes and with EEG electrodes varying the numbers of electrodes. The simulation results confirm the effectiveness of the mixed system which may allow the use of tDCS and EEG recording concomitantly and may help to optimize this neuronal stimulation technique. The numerical results were used in a promising application of tDCS in epilepsy.

  15. Effects of A 60 Hz Magnetic Field of Up to 50 milliTesla on Human Tremor and EEG: A Pilot Study.

    PubMed

    Davarpanah Jazi, Shirin; Modolo, Julien; Baker, Cadence; Villard, Sebastien; Legros, Alexandre

    2017-11-24

    Humans are surrounded by sources of daily exposure to power-frequency (60 Hz in North America) magnetic fields (MFs). Such time-varying MFs induce electric fields and currents in living structures which possibly lead to biological effects. The present pilot study examined possible extremely low frequency (ELF) MF effects on human neuromotor control in general, and physiological postural tremor and electroencephalography (EEG) in particular. Since the EEG cortical mu-rhythm (8-12 Hz) from the primary motor cortex and physiological tremor are related, it was hypothesized that a 60 Hz MF exposure focused on this cortical region could acutely modulate human physiological tremor. Ten healthy volunteers (age: 23.8 ± 4 SD) were fitted with a MRI-compatible EEG cap while exposed to 11 MF conditions (60 Hz, 0 to 50 mT rms , 5 mT rms increments). Simultaneously, physiological tremor (recorded from the contralateral index finger) and EEG (from associated motor and somatosensory brain regions) were measured. Results showed no significant main effect of MF exposure conditions on any of the analyzed physiological tremor characteristics. In terms of EEG, no significant effects of the MF were observed for C1, C3, C5 and CP1 electrodes. However, a significant main effect was found for CP3 and CP5 electrodes, both suggesting a decreased mu-rhythm spectral power with increasing MF flux density. This is however not confirmed by Bonferroni corrected pairwise comparisons. Considering both EEG and tremor findings, no effect of the MF exposure on human motor control was observed. However, MF exposure had a subtle effect on the mu-rhythm amplitude in the brain region involved in tactile perception. Current findings are to be considered with caution due to the small size of this pilot work, but they provide preliminary insights to international agencies establishing guidelines regarding electromagnetic field exposure with new experimental data acquired in humans exposed to high mT-range MFs.

  16. Measure Projection Analysis: A Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference

    PubMed Central

    Bigdely-Shamlo, Nima; Mullen, Tim; Kreutz-Delgado, Kenneth; Makeig, Scott

    2013-01-01

    A crucial question for the analysis of multi-subject and/or multi-session electroencephalographic (EEG) data is how to combine information across multiple recordings from different subjects and/or sessions, each associated with its own set of source processes and scalp projections. Here we introduce a novel statistical method for characterizing the spatial consistency of EEG dynamics across a set of data records. Measure Projection Analysis (MPA) first finds voxels in a common template brain space at which a given dynamic measure is consistent across nearby source locations, then computes local-mean EEG measure values for this voxel subspace using a statistical model of source localization error and between-subject anatomical variation. Finally, clustering the mean measure voxel values in this locally consistent brain subspace finds brain spatial domains exhibiting distinguishable measure features and provides 3-D maps plus statistical significance estimates for each EEG measure of interest. Applied to sufficient high-quality data, the scalp projections of many maximally independent component (IC) processes contributing to recorded high-density EEG data closely match the projection of a single equivalent dipole located in or near brain cortex. We demonstrate the application of MPA to a multi-subject EEG study decomposed using independent component analysis (ICA), compare the results to k-means IC clustering in EEGLAB (sccn.ucsd.edu/eeglab), and use surrogate data to test MPA robustness. A Measure Projection Toolbox (MPT) plug-in for EEGLAB is available for download (sccn.ucsd.edu/wiki/MPT). Together, MPA and ICA allow use of EEG as a 3-D cortical imaging modality with near-cm scale spatial resolution. PMID:23370059

  17. EEG background activity is abnormal in the temporal and inferior parietal cortex in benign rolandic epilepsy of childhood: a LORETA study.

    PubMed

    Besenyei, M; Varga, E; Fekete, I; Puskás, S; Hollódy, K; Fogarasi, A; Emri, M; Opposits, G; Kis, S A; Clemens, B

    2012-01-01

    Benign rolandic epilepsy of childhood (BERS) is an epilepsy syndrome with presumably genetic-developmental etiology. The pathological basis of this syndrome is completely unknown. We postulated that a developmental abnormality presumably results in abnormal EEG background activity findings. 20 children with typical BERS and an age- and sex-matched group of healthy control children underwent EEG recording and analysis. 60×2 s epochs of waking EEG background activity (without epileptiform potentials and artifacts) were analyzed in the 1-25 Hz frequency range, in very narrow bands (VNB, 1 Hz bandwidth). LORETA (Low Resolution Electromagnetic Tomography) localized multiple distributed sources of EEG background activity in the Talairach space. LORETA activity (current source density) was computed for 2394 voxels and 25 VNBs. Normalized LORETA data were processed to voxel-wise comparison between the BERS and control groups. Bonferroni-corrected p<0.05 Student's t-values were accepted as statistically significant. Increased LORETA activity was found in the BERS group (as compared to the controls) in the left and right temporal lobes (fusiform gyri, posterior parts of the superior, middle and inferior temporal gyri) and in the angular gyri in the parietal lobes, in the 4-6 Hz VNBs, mainly at 5 Hz. (1) Areas of abnormal LORETA activity exactly correspond to the temporal and parietal cortical areas that are major components of the Mirsky attention model and also the perisylvian speech network. Thus the LORETA findings may correspond to impaired attention and speech in BERS patients. (2) The LORETA findings may contribute to delineating the epileptic network in BERS. The novel findings may contribute to investigating neuropsychological disturbances and organization of the epileptic network in BERS. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Association of posterior EEG alpha with prioritization of religion or spirituality: A replication and extension at 20-year follow-up.

    PubMed

    Tenke, Craig E; Kayser, Jürgen; Svob, Connie; Miller, Lisa; Alvarenga, Jorge E; Abraham, Karen; Warner, Virginia; Wickramaratne, Priya; Weissman, Myrna M; Bruder, Gerard E

    2017-03-01

    A prior report (Tenke et al., 2013 Biol. Psychol. 94:426-432) found that participants who rated religion or spirituality (R/S) highly important had greater posterior alpha after 10 years compared to those who did not. Participants who subsequently lowered their rating also had prominent alpha, while those who increased their rating did not. Here we report EEG findings 20 years after initial assessment. Clinical evaluations and R/S ratings were obtained from 73 (52 new) participants in a longitudinal study of family risk for depression. Frequency PCA of current source density transformed EEG concisely quantified posterior alpha. Those who initially rated R/S as highly important had greater alpha compared to those who did not, even if their R/S rating later increased. Furthermore, changes in religious denomination were associated with decreased alpha. Results suggest the possibility of a critical stage in the ontogenesis of R/S that is linked to posterior resting alpha. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    PubMed

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation

    PubMed Central

    Dmochowski, Jacek P.; Koessler, Laurent; Norcia, Anthony M.; Bikson, Marom; Parra, Lucas C.

    2018-01-01

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4–7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. PMID:28578130

  1. Automated MRI Segmentation for Individualized Modeling of Current Flow in the Human Head

    PubMed Central

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-01-01

    Objective High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography (HD-EEG) require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images (MRI) requires labor-intensive manual segmentation, even when leveraging available automated segmentation tools. Also, accurate placement of many high-density electrodes on individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach A fully automated segmentation technique based on Statical Parametric Mapping 8 (SPM8), including an improved tissue probability map (TPM) and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on 4 healthy subjects and 7 stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. Main results The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view (FOV) extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Significance Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials. PMID:24099977

  2. LORETA EEG phase reset of the default mode network

    PubMed Central

    Thatcher, Robert W.; North, Duane M.; Biver, Carl J.

    2014-01-01

    Objectives: The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). Methods: The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Results: Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300–350 ms and (2) 350–450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. Conclusions: The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a “shutter” that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations. PMID:25100976

  3. A simple method for EEG guided transcranial electrical stimulation without models.

    PubMed

    Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q; Dmochowski, Jacek; Bikson, Marom

    2016-06-01

    There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a 'gold standard' numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.

  4. A simple method for EEG guided transcranial electrical stimulation without models

    NASA Astrophysics Data System (ADS)

    Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q.; Dmochowski, Jacek; Bikson, Marom

    2016-06-01

    Objective. There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. Approach. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a ‘gold standard’ numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Main results. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Significance. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.

  5. Computational Electromagnetic Analysis in a Human Head Model with EEG Electrodes and Leads Exposed to RF-Field Sources at 915 MHz and 1748 MHz

    PubMed Central

    Angelone, Leonardo M.; Bit-Babik, Giorgi; Chou, Chung-Kwang

    2010-01-01

    An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm3 MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10–20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads. PMID:20681803

  6. Source analysis of MEG activities during sleep (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iramina, K.

    1991-04-01

    The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.

  7. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods.

    PubMed

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-04-07

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell's equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions that have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called minimum norm estimates (MNE), promote source estimates with a small ℓ₂ norm. Here, we consider a more general class of priors based on mixed norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as mixed-norm estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ₁/ℓ₂ mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ₁/ℓ₂ norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furthermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data.

  8. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods

    PubMed Central

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-01-01

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell’s equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions than have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called Minimum Norm Estimates (MNE), promote source estimates with a small ℓ2 norm. Here, we consider a more general class of priors based on mixed-norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as Mixed-Norm Estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ1/ℓ2 mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ1/ℓ2 norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furhermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data. PMID:22421459

  9. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.

    PubMed

    Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C

    2016-02-15

    Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  11. Evaluation of multiple comparison correction procedures in drug assessment studies using LORETA maps.

    PubMed

    Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miguel Ángel; Rojas, Mónica; Riba, Jordi; Barbanoj, Manel José

    2015-10-01

    The identification of the brain regions involved in the neuropharmacological action is a potential procedure for drug development. These regions are commonly determined by the voxels showing significant statistical differences after comparing placebo-induced effects with drug-elicited effects. LORETA is an electroencephalography (EEG) source imaging technique frequently used to identify brain structures affected by the drug. The aim of the present study was to evaluate different methods for the correction of multiple comparisons in the LORETA maps. These methods which have been commonly used in neuroimaging and also simulated studies have been applied on a real case of pharmaco-EEG study where the effects of increasing benzodiazepine doses on the central nervous system measured by LORETA were investigated. Data consisted of EEG recordings obtained from nine volunteers who received single oral doses of alprazolam 0.25, 0.5, and 1 mg, and placebo in a randomized crossover double-blind design. The identification of active regions was highly dependent on the selected multiple test correction procedure. The combined criteria approach known as cluster mass was useful to reveal that increasing drug doses led to higher intensity and spread of the pharmacologically induced changes in intracerebral current density.

  12. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    PubMed

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/3611671-11$15.00/0.

  13. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance.

    PubMed

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  14. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance

    PubMed Central

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362

  15. Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module.

    PubMed

    Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T

    2015-08-01

    An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).

  16. The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy.

    PubMed

    Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van

    2016-07-01

    We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.

  17. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software.

    PubMed

    Rogasch, Nigel C; Sullivan, Caley; Thomson, Richard H; Rose, Nathan S; Bailey, Neil W; Fitzgerald, Paul B; Farzan, Faranak; Hernandez-Pavon, Julio C

    2017-02-15

    The concurrent use of transcranial magnetic stimulation with electroencephalography (TMS-EEG) is growing in popularity as a method for assessing various cortical properties such as excitability, oscillations and connectivity. However, this combination of methods is technically challenging, resulting in artifacts both during recording and following typical EEG analysis methods, which can distort the underlying neural signal. In this article, we review the causes of artifacts in EEG recordings resulting from TMS, as well as artifacts introduced during analysis (e.g. as the result of filtering over high-frequency, large amplitude artifacts). We then discuss methods for removing artifacts, and ways of designing pipelines to minimise analysis-related artifacts. Finally, we introduce the TMS-EEG signal analyser (TESA), an open-source extension for EEGLAB, which includes functions that are specific for TMS-EEG analysis, such as removing and interpolating the TMS pulse artifact, removing and minimising TMS-evoked muscle activity, and analysing TMS-evoked potentials. The aims of TESA are to provide users with easy access to current TMS-EEG analysis methods and to encourage direct comparisons of these methods and pipelines. It is hoped that providing open-source functions will aid in both improving and standardising analysis across the field of TMS-EEG research. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    PubMed

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  19. Comparative analysis of background EEG activity in childhood absence epilepsy during valproate treatment: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study.

    PubMed

    Shin, Jung-Hyun; Eom, Tae-Hoon; Kim, Young-Hoon; Chung, Seung-Yun; Lee, In-Goo; Kim, Jung-Min

    2017-07-01

    Valproate (VPA) is an antiepileptic drug (AED) used for initial monotherapy in treating childhood absence epilepsy (CAE). EEG might be an alternative approach to explore the effects of AEDs on the central nervous system. We performed a comparative analysis of background EEG activity during VPA treatment by using standardized, low-resolution, brain electromagnetic tomography (sLORETA) to explore the effect of VPA in patients with CAE. In 17 children with CAE, non-parametric statistical analyses using sLORETA were performed to compare the current density distribution of four frequency bands (delta, theta, alpha, and beta) between the untreated and treated condition. Maximum differences in current density were found in the left inferior frontal gyrus for the delta frequency band (log-F-ratio = -1.390, P > 0.05), the left medial frontal gyrus for the theta frequency band (log-F-ratio = -0.940, P > 0.05), the left inferior frontal gyrus for the alpha frequency band (log-F-ratio = -0.590, P > 0.05), and the left anterior cingulate for the beta frequency band (log-F-ratio = -1.318, P > 0.05). However, none of these differences were significant (threshold log-F-ratio = ±1.888, P < 0.01; threshold log-F-ratio = ±1.722, P < 0.05). Because EEG background is accepted as normal in CAE, VPA would not be expected to significantly change abnormal thalamocortical oscillations on a normal EEG background. Therefore, our results agree with currently accepted concepts but are not consistent with findings in some previous studies.

  20. EEG current source density and the phenomenology of the default network.

    PubMed

    Cannon, Rex L; Baldwin, Debora R

    2012-10-01

    In recent years, there has been an increasing line of research dedicated to the investigation of the default mode network (DMN) of the brain and resting state networks. However, the mental activity of the DMN has not been rigorously assessed to date. The specific aims of the current study were 2-fold: First, we sought to determine whether the current source density (CSD) levels in the DMN would correspond to other neuroimaging techniques. Second, we sought to understand the subjective mental activity of the DMN during baseline recordings. This study was conducted with 63 nonclinical participants, 34 female and 29 males with a mean age of 19.2 years (standard deviation = 2.0). The participants were recorded in 8 conditions. First, 4-minute eyes-closed baseline (ECB) and eyes-opened baseline (EOB) were obtained. The participants then completed 3 assessment instruments and 3 image conditions while the electroencephalography (EEG) was continuously recorded. Participants completed subjective reports for baselines and image conditions. These were rated by 3 independent raters and compared for reliability using a random effects model with an absolute agreement definition. The mean CSD between all conditions differed significantly, in many but not all regions of interest in the DMN. Interestingly, as suggested by other studies, the DMN appears preferential to self-relevant, self-specific, or self-perceptive processes. The reliability analyses show α for interrater agreement for ECB at .95 and EOB at .96. The subjective reports obtained from the participants regarding the mental activities employed during baseline recordings correspond to attentional and self-regulatory processes, which may also implicate the resting state or DMN as playing a direct role in the maintenance of a complex behavior (eg, being still, attending, and self-regulating). Thus, attention and self-regulation constitute the phenomenology of the resting state (DMN) in this study. The results also demonstrate that EEG CSD is a useful method to examine the DMN during concept-specific tasks to elucidate the neural activity associated with these concepts. Standardized low-resolution electromagnetic tomography (sLORETA) can localize to 5 mm(3), which is comparable to the findings in functional magnetic resonance imaging (fMRI). However, sLORETA can provide data about the difference in activity between groups, individuals, or populations which in many cases fMRI cannot provide.

  1. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study.

    PubMed

    Riedner, Brady A; Goldstein, Michael R; Plante, David T; Rumble, Meredith E; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M

    2016-04-01

    To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4-8 Hz) and alpha (8-12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. © 2016 Associated Professional Sleep Societies, LLC.

  2. A realistic multimodal modeling approach for the evaluation of distributed source analysis: application to sLORETA.

    PubMed

    Cosandier-Rimélé, D; Ramantani, G; Zentner, J; Schulze-Bonhage, A; Dümpelmann, M

    2017-10-01

    Electrical source localization (ESL) deriving from scalp EEG and, in recent years, from intracranial EEG (iEEG), is an established method in epilepsy surgery workup. We aimed to validate the distributed ESL derived from scalp EEG and iEEG, particularly regarding the spatial extent of the source, using a realistic epileptic spike activity simulator. ESL was applied to the averaged scalp EEG and iEEG spikes of two patients with drug-resistant structural epilepsy. The ESL results for both patients were used to outline the location and extent of epileptic cortical patches, which served as the basis for designing a spatiotemporal source model. EEG signals for both modalities were then generated for different anatomic locations and spatial extents. ESL was subsequently performed on simulated signals with sLORETA, a commonly used distributed algorithm. ESL accuracy was quantitatively assessed for iEEG and scalp EEG. The source volume was overestimated by sLORETA at both EEG scales, with the error increasing with source size, particularly for iEEG. For larger sources, ESL accuracy drastically decreased, and reconstruction volumes shifted to the center of the head for iEEG, while remaining stable for scalp EEG. Overall, the mislocalization of the reconstructed source was more pronounced for iEEG. We present a novel multiscale framework for the evaluation of distributed ESL, based on realistic multiscale EEG simulations. Our findings support that reconstruction results for scalp EEG are often more accurate than for iEEG, owing to the superior 3D coverage of the head. Particularly the iEEG-derived reconstruction results for larger, widespread generators should be treated with caution.

  3. A realistic multimodal modeling approach for the evaluation of distributed source analysis: application to sLORETA

    NASA Astrophysics Data System (ADS)

    Cosandier-Rimélé, D.; Ramantani, G.; Zentner, J.; Schulze-Bonhage, A.; Dümpelmann, M.

    2017-10-01

    Objective. Electrical source localization (ESL) deriving from scalp EEG and, in recent years, from intracranial EEG (iEEG), is an established method in epilepsy surgery workup. We aimed to validate the distributed ESL derived from scalp EEG and iEEG, particularly regarding the spatial extent of the source, using a realistic epileptic spike activity simulator. Approach. ESL was applied to the averaged scalp EEG and iEEG spikes of two patients with drug-resistant structural epilepsy. The ESL results for both patients were used to outline the location and extent of epileptic cortical patches, which served as the basis for designing a spatiotemporal source model. EEG signals for both modalities were then generated for different anatomic locations and spatial extents. ESL was subsequently performed on simulated signals with sLORETA, a commonly used distributed algorithm. ESL accuracy was quantitatively assessed for iEEG and scalp EEG. Main results. The source volume was overestimated by sLORETA at both EEG scales, with the error increasing with source size, particularly for iEEG. For larger sources, ESL accuracy drastically decreased, and reconstruction volumes shifted to the center of the head for iEEG, while remaining stable for scalp EEG. Overall, the mislocalization of the reconstructed source was more pronounced for iEEG. Significance. We present a novel multiscale framework for the evaluation of distributed ESL, based on realistic multiscale EEG simulations. Our findings support that reconstruction results for scalp EEG are often more accurate than for iEEG, owing to the superior 3D coverage of the head. Particularly the iEEG-derived reconstruction results for larger, widespread generators should be treated with caution.

  4. High-resolution EEG techniques for brain-computer interface applications.

    PubMed

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Astolfi, Laura; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Gao, Shangkai; Millan, Jose; Babiloni, Fabio

    2008-01-15

    High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a setup phase (which includes most of the computational burden) and the actual EEG processing phase, which was limited to a single matrix multiplication. This separation allowed to make the procedure suitable for on-line utilization, and a pilot experiment was performed. Results show that lateralization of electrical activity, which is expected to be contralateral to the imagined movement, is more evident on the estimated CCDs than in the scalp potentials. CCDs produce a pattern of relevant spectral features that is more spatially focused, and has a higher statistical significance (EEG: 0.20+/-0.114 S.D.; CCD: 0.55+/-0.16 S.D.; p=10(-5)). A pilot experiment showed that a trained subject could utilize voluntary modulation of estimated CCDs for accurate (eight targets) on-line control of a cursor. This study showed that it is practically feasible to utilize HREEG techniques for on-line operation of a BCI system; off-line analysis suggests that accuracy of BCI control is enhanced by the proposed method.

  5. The smartphone brain scanner: a portable real-time neuroimaging system.

    PubMed

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system--Smartphone Brain Scanner--combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings.

  6. Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers.

    PubMed

    Pastena, Lucio; Formaggio, Emanuela; Faralli, Fabio; Melucci, Massimo; Rossi, Marco; Gagliardi, Riccardo; Ricciardi, Lucio; Storti, Silvia F

    2015-07-01

    Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

  7. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (Δt) & more accurate (ΔA) decision making, which applies to individual, as well as team brain dynamics. Following Nobel Laureate Daniel Kahnmen's novel "Thinking fast and slow", through the brainwave biofeedback we can first identify an individual's "anchored cognitive bias sources". This is done in order to remove the biases by means of individually tailored pre-processing. Then the training effectiveness can be maximized by the collective product Δt * ΔA. For Area #1, we compute a spatiotemporally windowed EEG in vitro average using adaptive time-window sampling. The sampling rate depends on the type of neuronal responses, which is what we seek. The averaged traditional EEG measurements and are further improved by BSS decomposition into finer stimulus-response source mixing matrix [A] having finer & faster spatial grids with rapid temporal updates. Then, the functional EEG is the second order co-variance matrix defined as the electrode-pair fluctuation correlation function C(s~, s~') of independent thermodynamic source components. (1) We define a 1-D Space filling curve as a spiral curve without origin. This pattern is historically known as the Peano-Hilbert arc length a. By taking the most significant bits of the Cartesian product a≡ O(x * y * z), it represents the arc length in the numerical size with values that map the 3-D neighborhood proximity into a 1-D neighborhood arc length representation. (2) 1-D Fourier coefficients spectrum have no spurious high frequency contents, which typically arise in lexicographical (zig-zag scanning) discontinuity [Hsu & Szu, "Peano-Hilbert curve," SPIE 2014]. A simple Fourier spectrum histogram fits nicely with the Compressive Sensing CRDT Mathematics. (3) Stationary power spectral density is a reasonable approximation of EEG responses in striate layers in resonance feedback loops capable of producing a 100, 000 neuronal collective Impulse Response Function (IRF). The striate brain layer architecture represents an ensemble

  8. Conforming discretizations of boundary element solutions to the electroencephalography forward problem

    NASA Astrophysics Data System (ADS)

    Rahmouni, Lyes; Adrian, Simon B.; Cools, Kristof; Andriulli, Francesco P.

    2018-01-01

    In this paper, we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages, in several real case scenarios, in terms of numerical stability and effectiveness when compared with other differential equation based techniques. Unfortunately, however, it is widely reported in literature that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required, for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly and classically discretized EEG forward problem operators, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several standardly used discretizations of these formulations are consistent only with an L2-framework, requiring the expansion term to be a square integrable function (i.e., in a Petrov-Galerkin scheme with expansion and testing functions). Instead, those techniques are not consistent when a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. Such a mapping allows the expansion function term to be a less regular function, thus sensibly reducing the need for mesh refinements and low-precisions handling strategies that are currently required. These more favorable mappings, however, require a different and conforming discretization, which must be suitably adapted to them. In order to appropriately fulfill this requirement, we adopt a mixed discretization based on dual boundary elements residing on a suitably defined dual mesh. We devote also a particular attention to implementation-oriented details of our new technique that will allow the rapid incorporation of our finding in one's own EEG forward solution technology. We conclude by showing how the resulting forward EEG problems show favorable properties with respect to previously proposed schemes, and we show their applicability to real-case modeling scenarios obtained from Magnetic Resonance Imaging (MRI) data. xml:lang="fr" Malheureusement, il est également reconnu dans la littérature que leur précision diminue particulièrement lorsque la source de courant est dipolaire et se situe près de la surface du cerveau. Ce défaut constitue une importante limitation, étant donné qu'au cours d'une session d'imagerie EEG à haute résolution, plusieurs solutions du problème direct EEG sont requises, pour lesquelles les sources de courant sont proches ou sur la surface de cerveau. Ce travail présente d'abord une analyse des opérateurs intervenant dans le problème direct et leur discrétisation. Nous montrons que plusieurs discrétisations couramment utilisées ne conviennent que dans un cadre L2, nécessitant que le terme d'expansion soit une fonction de carré intégrable. Dès lors, ces techniques ne sont pas cohérentes avec les propriétés spectrales des opérateurs en termes d'espaces de Sobolev d'ordre fractionnaire. Nous développons ensuite une nouvelle stratégie de discrétisation conforme aux espaces de Sobolev avec des fonctions d'expansion moins régulières, donnant lieu à une nouvelle formulation intégrale. Le solveur résultant présente des propriétés favorables par rapport aux méthodes existantes et réduit sensiblement le recours à un maillage adaptatif et autres stratégies actuellement requises pour améliorer la précision du calcul. Les résultats numériques présentés corroborent les développements théoriques et mettent en évidence l'impact positif de la nouvelle approche.

  9. Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

    PubMed

    Grova, Christophe; Aiguabella, Maria; Zelmann, Rina; Lina, Jean-Marc; Hall, Jeffery A; Kobayashi, Eliane

    2016-05-01

    Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Tracking the Effect of Cathodal Transcranial Direct Current Stimulation on Cortical Excitability and Connectivity by Means of TMS-EEG

    PubMed Central

    Varoli, Erica; Pisoni, Alberto; Mattavelli, Giulia C.; Vergallito, Alessandra; Gallucci, Alessia; Mauro, Lilia D.; Rosanova, Mario; Bolognini, Nadia; Vallar, Giuseppe; Romero Lauro, Leonor J.

    2018-01-01

    Transcranial direct current stimulation (tDCS) is increasingly used in both research and therapeutic settings, but its precise mechanisms remain largely unknown. At a neuronal level, tDCS modulates cortical excitability by shifting the resting membrane potential in a polarity-dependent way: anodal stimulation increases the spontaneous firing rate, while cathodal decreases it. However, the neurophysiological underpinnings of anodal/cathodal tDCS seem to be different, as well as their behavioral effect, in particular when high order areas are involved, compared to when motor or sensory brain areas are targeted. Previously, we investigated the effect of anodal tDCS on cortical excitability, by means of a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Results showed a diffuse rise of cortical excitability in a bilateral fronto-parietal network. In the present study, we tested, with the same paradigm, the effect of cathodal tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 10 min of cathodal or sham tDCS over the right PPC, while recording HD-EEG. Indexes of global and local cortical excitability were obtained both at sensors and cortical sources level. At sensors, global and local mean field power (GMFP and LMFP) were computed for three temporal windows (0–50, 50–100, and 100–150 ms), on all channels (GMFP), and in four different clusters of electrodes (LMFP, left and right, in frontal and parietal regions). After source reconstruction, Significant Current Density was computed at the global level, and for four Broadmann's areas (left/right BA 6 and 7). Both sensors and cortical sources results converge in showing no differences during and after cathodal tDCS compared to pre-stimulation sessions, both at global and local level. The same holds for sham tDCS. These data highlight an asymmetric impact of anodal and cathodal stimulation on cortical excitability, with a diffuse effect of anodal and no effect of cathodal tDCS over the parietal cortex. These results are consistent with the current literature: while anodal-excitatory and cathodal-inhibitory effects are well-established in the sensory and motor domains, both at physiological and behavioral levels, results for cathodal stimulation are more controversial for modulation of exitability of higher order areas. PMID:29867330

  11. The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals

    PubMed Central

    Trujillo, Logan T.; Stanfield, Candice T.; Vela, Ruben D.

    2017-01-01

    Converging evidence suggests that human cognition and behavior emerge from functional brain networks interacting on local and global scales. We investigated two information-theoretic measures of functional brain segregation and integration—interaction complexity CI(X), and integration I(X)—as applied to electroencephalographic (EEG) signals and how these measures are affected by choice of EEG reference. CI(X) is a statistical measure of the system entropy accounted for by interactions among its elements, whereas I(X) indexes the overall deviation from statistical independence of the individual elements of a system. We recorded 72 channels of scalp EEG from human participants who sat in a wakeful resting state (interleaved counterbalanced eyes-open and eyes-closed blocks). CI(X) and I(X) of the EEG signals were computed using four different EEG references: linked-mastoids (LM) reference, average (AVG) reference, a Laplacian (LAP) “reference-free” transformation, and an infinity (INF) reference estimated via the Reference Electrode Standardization Technique (REST). Fourier-based power spectral density (PSD), a standard measure of resting state activity, was computed for comparison and as a check of data integrity and quality. We also performed dipole source modeling in order to assess the accuracy of neural source CI(X) and I(X) estimates obtained from scalp-level EEG signals. CI(X) was largest for the LAP transformation, smallest for the LM reference, and at intermediate values for the AVG and INF references. I(X) was smallest for the LAP transformation, largest for the LM reference, and at intermediate values for the AVG and INF references. Furthermore, across all references, CI(X) and I(X) reliably distinguished between resting-state conditions (larger values for eyes-open vs. eyes-closed). These findings occurred in the context of the overall expected pattern of resting state PSD. Dipole modeling showed that simulated scalp EEG-level CI(X) and I(X) reflected changes in underlying neural source dependencies, but only for higher levels of integration and with highest accuracy for the LAP transformation. Our observations suggest that the Laplacian-transformation should be preferred for the computation of scalp-level CI(X) and I(X) due to its positive impact on EEG signal quality and statistics, reduction of volume-conduction, and the higher accuracy this provides when estimating scalp-level EEG complexity and integration. PMID:28790884

  12. Influence of Intracranial Electrode Density and Spatial Configuration on Interictal Spike Localization: A Case Study.

    PubMed

    Lie, Octavian V; Papanastassiou, Alexander M; Cavazos, José E; Szabó, Ákos C

    2015-10-01

    Poor seizure outcomes after epilepsy surgery often reflect an incorrect localization of the epileptic sources by standard intracranial EEG interpretation because of limited electrode coverage of the epileptogenic zone. This study investigates whether, in such conditions, source modeling is able to provide more accurate source localization than the standard clinical method that can be used prospectively to improve surgical resection planning. Suboptimal epileptogenic zone sampling is simulated by subsets of the electrode configuration used to record intracranial EEG in a patient rendered seizure free after surgery. sLORETA and the clinical method solutions are applied to interictal spikes sampled with these electrode subsets and are compared for colocalization with the resection volume and displacement due to electrode downsampling. sLORETA provides often congruent and at times more accurate source localization when compared with the standard clinical method. However, with electrode downsampling, individual sLORETA solution locations can vary considerably and shift consistently toward the remaining electrodes. sLORETA application can improve source localization based on the clinical method but does not reliably compensate for suboptimal electrode placement. Incorporating sLORETA solutions based on intracranial EEG in surgical planning should proceed cautiously in cases where electrode repositioning is planned on clinical grounds.

  13. ERP denoising in multichannel EEG data using contrasts between signal and noise subspaces.

    PubMed

    Ivannikov, Andriy; Kalyakin, Igor; Hämäläinen, Jarmo; Leppänen, Paavo H T; Ristaniemi, Tapani; Lyytinen, Heikki; Kärkkäinen, Tommi

    2009-06-15

    In this paper, a new method intended for ERP denoising in multichannel EEG data is discussed. The denoising is done by separating ERP/noise subspaces in multidimensional EEG data by a linear transformation and the following dimension reduction by ignoring noise components during inverse transformation. The separation matrix is found based on the assumption that ERP sources are deterministic for all repetitions of the same type of stimulus within the experiment, while the other noise sources do not obey the determinancy property. A detailed derivation of the technique is given together with the analysis of the results of its application to a real high-density EEG data set. The interpretation of the results and the performance of the proposed method under conditions, when the basic assumptions are violated - e.g. the problem is underdetermined - are also discussed. Moreover, we study how the factors of the number of channels and trials used by the method influence the effectiveness of ERP/noise subspaces separation. In addition, we explore also the impact of different data resampling strategies on the performance of the considered algorithm. The results can help in determining the optimal parameters of the equipment/methods used to elicit and reliably estimate ERPs.

  14. Direction of Magnetoencephalography Sources Associated with Feedback and Feedforward Contributions in a Visual Object Recognition Task

    PubMed Central

    Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe

    2014-01-01

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356

  15. Automated detection and labeling of high-density EEG electrodes from structural MR images.

    PubMed

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high-density EEG as a brain-imaging tool.

  16. Automated detection and labeling of high-density EEG electrodes from structural MR images

    NASA Astrophysics Data System (ADS)

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Objective. Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Approach. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Main results. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. Significance. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high-density EEG as a brain-imaging tool.

  17. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be extended to any subsequent brain connectivity analyses used to construct the associated dynamic brain networks.

  18. Paying attention to attention in recognition memory: insights from models and electrophysiology.

    PubMed

    Dubé, Chad; Payne, Lisa; Sekuler, Robert; Rotello, Caren M

    2013-12-01

    Reliance on remembered facts or events requires memory for their sources, that is, the contexts in which those facts or events were embedded. Understanding of source retrieval has been stymied by the fact that uncontrolled fluctuations of attention during encoding can cloud results of key importance to theoretical development. To address this issue, we combined electrophysiology (high-density electroencephalogram, EEG, recordings) with computational modeling of behavioral results. We manipulated subjects' attention to an auditory attribute, whether the source of individual study words was a male or female speaker. Posterior alpha-band (8-14 Hz) power in subjects' EEG increased after a cue to ignore the voice of the person who was about to speak. Receiver-operating-characteristic analysis validated our interpretation of oscillatory dynamics as a marker of attention to source information. With attention under experimental control, computational modeling showed unequivocally that memory for source (male or female speaker) reflected a continuous signal detection process rather than a threshold recollection process.

  19. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    PubMed Central

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings. PMID:24505263

  20. sLORETA current source density analysis of evoked potentials for spatial updating in a virtual navigation task

    PubMed Central

    Nguyen, Hai M.; Matsumoto, Jumpei; Tran, Anh H.; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    Previous studies have reported that multiple brain regions are activated during spatial navigation. However, it is unclear whether these activated brain regions are specifically associated with spatial updating or whether some regions are recruited for parallel cognitive processes. The present study aimed to localize current sources of event related potentials (ERPs) associated with spatial updating specifically. In the control phase of the experiment, electroencephalograms (EEGs) were recorded while subjects sequentially traced 10 blue checkpoints on the streets of a virtual town, which were sequentially connected by a green line, by manipulating a joystick. In the test phase of the experiment, the checkpoints and green line were not indicated. Instead, a tone was presented when the subjects entered the reference points where they were then required to trace the 10 invisible spatial reference points corresponding to the checkpoints. The vertex-positive ERPs with latencies of approximately 340 ms from the moment when the subjects entered the unmarked reference points were significantly larger in the test than in the control phases. Current source density analysis of the ERPs by standardized low-resolution brain electromagnetic tomography (sLORETA) indicated activation of brain regions in the test phase that are associated with place and landmark recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial cortices, fusiform, and lingual gyri), detecting self-motion (posterior cingulate and posterior insular cortices), motor planning (superior frontal gyrus, including the medial frontal cortex), and regions that process spatial attention (inferior parietal lobule). The present results provide the first identification of the current sources of ERPs associated with spatial updating, and suggest that multiple systems are active in parallel during spatial updating. PMID:24624067

  1. Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention.

    PubMed

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc

    2016-10-01

    Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.

  2. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    PubMed

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  3. Psychogenic seizures and frontal disconnection: EEG synchronisation study.

    PubMed

    Knyazeva, Maria G; Jalili, Mahdi; Frackowiak, Richard S; Rossetti, Andrea O

    2011-05-01

    Psychogenic non-epileptic seizures (PNES) are paroxysmal events that, in contrast to epileptic seizures, are related to psychological causes without the presence of epileptiform EEG changes. Recent models suggest a multifactorial basis for PNES. A potentially paramount, but currently poorly understood factor is the interplay between psychiatric features and a specific vulnerability of the brain leading to a clinical picture that resembles epilepsy. Hypothesising that functional cerebral network abnormalities may predispose to the clinical phenotype, the authors undertook a characterisation of the functional connectivity in PNES patients. The authors analysed the whole-head surface topography of multivariate phase synchronisation (MPS) in interictal high-density EEG of 13 PNES patients as compared with 13 age- and sex-matched controls. MPS mapping reduces the wealth of dynamic data obtained from high-density EEG to easily readable synchronisation maps, which provide an unbiased overview of any changes in functional connectivity associated with distributed cortical abnormalities. The authors computed MPS maps for both Laplacian and common-average-reference EEGs. In a between-group comparison, only patchy, non-uniform changes in MPS survived conservative statistical testing. However, against the background of these unimpressive group results, the authors found widespread inverse correlations between individual PNES frequency and MPS within the prefrontal and parietal cortices. PNES appears to be associated with decreased prefrontal and parietal synchronisation, possibly reflecting dysfunction of networks within these regions.

  4. Low-resolution electromagnetic brain tomography (LORETA) of monozygotic twins discordant for chronic fatigue syndrome.

    PubMed

    Sherlin, Leslie; Budzynski, Thomas; Kogan Budzynski, Helen; Congedo, Marco; Fischer, Mary E; Buchwald, Dedra

    2007-02-15

    Previous work using quantified EEG has suggested that brain activity in individuals with chronic fatigue syndrome (CFS) and normal persons differs. Our objective was to investigate if specific frequency band-pass regions and spatial locations are associated with CFS using low-resolution electromagnetic brain tomography (LORETA). We conducted a co-twin control study of 17 pairs of monozygotic twins where 1 twin met criteria for CFS and the co-twin was healthy. Twins underwent an extensive battery of tests including a structured psychiatric interview and a quantified EEG. Eyes closed EEG frequency-domain analysis was computed and the entire brain volume was compared of the CFS and healthy twins using a multiple comparison procedure. Compared with their healthy co-twins, twins with CFS differed in current source density. The CFS twins had higher delta in the left uncus and parahippocampal gyrus and higher theta in the cingulate gyrus and right superior frontal gyrus. These findings suggest that neurophysiological activity in specific areas of the brain may differentiate individuals with CFS from those in good health. The study corroborates that slowing of the deeper structures of the limbic system is associated with affect. It also supports the neurobiological model that the right forebrain is associated with sympathetic activity and the left forebrain with the effective management of energy. These preliminary findings await replication.

  5. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study

    PubMed Central

    Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465

  6. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    PubMed

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan

    2017-01-01

    Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI.

  7. Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays.

    PubMed

    Hindriks, Rikkert; Schmiedt, Joscha; Arsiwalla, Xerxes D; Peter, Alina; Verschure, Paul F M J; Fries, Pascal; Schmid, Michael C; Deco, Gustavo

    2017-01-01

    Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires "inverting" Poisson's equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to "invert" a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.

  8. Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays

    PubMed Central

    Schmiedt, Joscha; Arsiwalla, Xerxes D.; Peter, Alina; Verschure, Paul F. M. J.; Fries, Pascal; Schmid, Michael C.; Deco, Gustavo

    2017-01-01

    Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires “inverting” Poisson’s equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to “invert” a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task. PMID:29253006

  9. PyEEG: an open source Python module for EEG/MEG feature extraction.

    PubMed

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

  10. PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

    PubMed Central

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582

  11. Electroencephalography (EEG) forward modeling via H(div) finite element sources with focal interpolation.

    PubMed

    Pursiainen, S; Vorwerk, J; Wolters, C H

    2016-12-21

    The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.

  12. Age-induced differences in brain neural activation elicited by visual emotional stimuli: A high-density EEG study.

    PubMed

    Tsolaki, Anthoula C; Kosmidou, Vasiliki E; Kompatsiaris, Ioannis Yiannis; Papadaniil, Chrysa; Hadjileontiadis, Leontios; Tsolaki, Magda

    2017-01-06

    Identifying the brain sources of neural activation during processing of emotional information remains a very challenging task. In this work, we investigated the response to different emotional stimuli and the effect of age on the neuronal activation. Two negative emotion conditions, i.e., 'anger' and 'fear' faces were presented to 22 adult female participants (11 young and 11 elderly) while acquiring high-density electroencephalogram (EEG) data of 256 channels. Brain source localization was utilized to study the modulations in the early N170 event-related-potential component. The results revealed alterations in the amplitude of N170 and the localization of areas with maximum neural activation. Furthermore, age-induced differences are shown in the topographic maps and the neural activation for both emotional stimuli. Overall, aging appeared to affect the limbic area and its implication to emotional processing. These findings can serve as a step toward the understanding of the way the brain functions and evolves with age which is a significant element in the design of assistive environments. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. ICA-Derived EEG Correlates to Mental Fatigue, Effort, and Workload in a Realistically Simulated Air Traffic Control Task.

    PubMed

    Dasari, Deepika; Shou, Guofa; Ding, Lei

    2017-01-01

    Electroencephalograph (EEG) has been increasingly studied to identify distinct mental factors when persons perform cognitively demanding tasks. However, most of these studies examined EEG correlates at channel domain, which suffers the limitation that EEG signals are the mixture of multiple underlying neuronal sources due to the volume conduction effect. Moreover, few studies have been conducted in real-world tasks. To precisely probe EEG correlates with specific neural substrates to mental factors in real-world tasks, the present study examined EEG correlates to three mental factors, i.e., mental fatigue [also known as time-on-task (TOT) effect], workload and effort, in EEG component signals, which were obtained using an independent component analysis (ICA) on high-density EEG data. EEG data were recorded when subjects performed a realistically simulated air traffic control (ATC) task for 2 h. Five EEG independent component (IC) signals that were associated with specific neural substrates (i.e., the frontal, central medial, motor, parietal, occipital areas) were identified. Their spectral powers at their corresponding dominant bands, i.e., the theta power of the frontal IC and the alpha power of the other four ICs, were detected to be correlated to mental workload and effort levels, measured by behavioral metrics. Meanwhile, a linear regression analysis indicated that spectral powers at five ICs significantly increased with TOT. These findings indicated that different levels of mental factors can be sensitively reflected in EEG signals associated with various brain functions, including visual perception, cognitive processing, and motor outputs, in real-world tasks. These results can potentially aid in the development of efficient operational interfaces to ensure productivity and safety in ATC and beyond.

  14. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    PubMed

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    PubMed Central

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan

    2017-01-01

    Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. Conclusion This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI. PMID:28552957

  16. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.

    PubMed

    Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J

    2016-07-01

    Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used.

  17. EEG-Informed fMRI: A Review of Data Analysis Methods

    PubMed Central

    Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia

    2018-01-01

    The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634

  18. Multimodal effective connectivity analysis reveals seizure focus and propagation in musicogenic epilepsy.

    PubMed

    Klamer, Silke; Rona, Sabine; Elshahabi, Adham; Lerche, Holger; Braun, Christoph; Honegger, Jürgen; Erb, Michael; Focke, Niels K

    2015-06-01

    Dynamic causal modeling (DCM) is a method to non-invasively assess effective connectivity between brain regions. 'Musicogenic epilepsy' is a rare reflex epilepsy syndrome in which seizures can be elicited by musical stimuli and thus represents a unique possibility to investigate complex human brain networks and test connectivity analysis tools. We investigated effective connectivity in a case of musicogenic epilepsy using DCM for fMRI, high-density (hd-) EEG and MEG and validated results with intracranial EEG recordings. A patient with musicogenic seizures was examined using hd-EEG/fMRI and simultaneous '256-channel hd-EEG'/'whole head MEG' to characterize the epileptogenic focus and propagation effects using source analysis techniques and DCM. Results were validated with invasive EEG recordings. We recorded one seizure with hd-EEG/fMRI and four auras with hd-EEG/MEG. During the seizures, increases of activity could be observed in the right mesial temporal region as well as bilateral mesial frontal regions. Effective connectivity analysis of fMRI and hd-EEG/MEG indicated that right mesial temporal neuronal activity drives changes in the frontal areas consistently in all three modalities, which was confirmed by the results of invasive EEG recordings. Seizures thus seem to originate in the right mesial temporal lobe and propagate to mesial frontal regions. Using DCM for fMRI, hd-EEG and MEG we were able to correctly localize focus and propagation of epileptic activity and thereby characterize the underlying epileptic network in a patient with musicogenic epilepsy. The concordance between all three functional modalities validated by invasive monitoring is noteworthy, both for epileptic activity spread as well as for effective connectivity analysis in general. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications

    NASA Astrophysics Data System (ADS)

    Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten

    2015-08-01

    Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.

  20. Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG.

    PubMed

    Hauk, O; Keil, A; Elbert, T; Müller, M M

    2002-01-30

    We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The performance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.

  1. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy.

    PubMed

    Vulliemoz, S; Rodionov, R; Carmichael, D W; Thornton, R; Guye, M; Lhatoo, S D; Michel, C M; Duncan, J S; Lemieux, L

    2010-02-15

    EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional < event-related > designs based solely on the visual identification of IED. Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Hemifield-dependent N1 and event-related theta/delta oscillations: An unbiased comparison of surface Laplacian and common EEG reference choices

    PubMed Central

    Kayser, Jürgen; Tenke, Craig E.

    2015-01-01

    Surface Laplacian methodology has been used to reduce the impact of volume conduction and arbitrary choice of EEG recording reference for the analysis of surface potentials. However, the empirical implications of employing these different transformations to the same EEG data remain obscure. This study directly compared the statistical effects of four commonly-used (nose, linked mastoids, average) or recommended (reference electrode standardization technique [REST]) references and their spherical spline current source density (CSD) transformation for a large data set stemming from a well-understood experimental manipulation. ERPs (72 sites) recorded from 130 individuals during a visual half-field paradigm with highly-controlled emotional stimuli were characterized by mid-parietooccipital N1 (125 ms peak latency) and event-related synchronization (ERS) of theta/delta (160 ms), which were most robust over the contralateral hemisphere. All five data transformations were rescaled to the same covariance and submitted to a single temporal or time-frequency PCA (Varimax) to yield simplified estimates of N1 or theta/delta ERS. Unbiased nonparametric permutation tests revealed that these hemifield-dependent asymmetries were by far most focal and prominent for CSD data, despite all transformations showing maximum effects at mid-parietooccipital sites. Employing smaller subsamples (signal-to-noise) or window-based ERP/ERS amplitudes did not affect these comparisons. Furthermore, correlations between N1 and theta/delta ERS at these sites were strongest for CSD and weakest for nose-referenced data. Contrary to the common notion that the spatial high pass filter properties of a surface Laplacian reduce important contributions of neuronal generators to the EEG signal, the present findings demonstrate that instead volume conduction inherent in surface potentials weakens the representation of neuronal activation patterns at scalp that directly reflect regional brain activity. PMID:25562833

  3. Early Prefrontal Brain Responses to the Hedonic Quality of Emotional Words – A Simultaneous EEG and MEG Study

    PubMed Central

    Keuper, Kati; Zwitserlood, Pienie; Rehbein, Maimu A.; Eden, Annuschka S.; Laeger, Inga; Junghöfer, Markus; Zwanzger, Peter; Dobel, Christian

    2013-01-01

    The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density reconstructions for the P1 (80–120 ms), P2 (150–190 ms) and EPN component (200–300 ms) were computed using realistic individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast, negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal networks are active when positive versus negative words are processed. We account for these effects in terms of an “emotional tagging” of word forms during language acquisition. These tags then give rise to different processing strategies, including enhanced lexical processing of positive words and a very fast language-independent alert response to negative words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and withdrawal-related stimuli, be they acquired or biological. PMID:23940642

  4. Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording

    PubMed Central

    2013-01-01

    Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957

  5. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter

    NASA Astrophysics Data System (ADS)

    Somers, Ben; Francart, Tom; Bertrand, Alexander

    2018-06-01

    Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.

  6. A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components.

    PubMed

    Dharmaprani, Dhani; Nguyen, Hoang K; Lewis, Trent W; DeLosAngeles, Dylan; Willoughby, John O; Pope, Kenneth J

    2016-08-01

    Independent Component Analysis (ICA) is a powerful statistical tool capable of separating multivariate scalp electrical signals into their additive independent or source components, specifically EEG or electroencephalogram and artifacts. Although ICA is a widely accepted EEG signal processing technique, classification of the recovered independent components (ICs) is still flawed, as current practice still requires subjective human decisions. Here we build on the results from Fitzgibbon et al. [1] to compare three measures and three ICA algorithms. Using EEG data acquired during neuromuscular paralysis, we tested the ability of the measures (spectral slope, peripherality and spatial smoothness) and algorithms (FastICA, Infomax and JADE) to identify components containing EMG. Spatial smoothness showed differentiation between paralysis and pre-paralysis ICs comparable to spectral slope, whereas peripherality showed less differentiation. A combination of the measures showed better differentiation than any measure alone. Furthermore, FastICA provided the best discrimination between muscle-free and muscle-contaminated recordings in the shortest time, suggesting it may be the most suited to EEG applications of the considered algorithms. Spatial smoothness results suggest that a significant number of ICs are mixed, i.e. contain signals from more than one biological source, and so the development of an ICA algorithm that is optimised to produce ICs that are easily classifiable is warranted.

  7. A comparison between EEG source localization and fMRI during the processing of emotional visual stimuli

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang

    2007-03-01

    The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.

  8. Source analysis of alpha rhythm reactivity using LORETA imaging with 64-channel EEG and individual MRI.

    PubMed

    Cuspineda, E R; Machado, C; Virues, T; Martínez-Montes, E; Ojeda, A; Valdés, P A; Bosch, J; Valdes, L

    2009-07-01

    Conventional EEG and quantitative EEG visual stimuli (close-open eyes) reactivity analysis have shown their usefulness in clinical practice; however studies at the level of EEG generators are limited. The focus of the study was visual reactivity of cortical resources in healthy subjects and in a stroke patient. The 64 channel EEG and T1 magnetic resonance imaging (MRI) studies were obtained from 32 healthy subjects and a middle cerebral artery stroke patient. Low Resolution Electromagnetic Tomography (LORETA) was used to estimate EEG sources for both close eyes (CE) vs. open eyes (OE) conditions using individual MRI. The t-test was performed between source spectra of the two conditions. Thresholds for statistically significant t values were estimated by the local false discovery rate (lfdr) method. The Z transform was used to quantify the differences in cortical reactivity between the patient and healthy subjects. Closed-open eyes alpha reactivity sources were found mainly in posterior regions (occipito-parietal zones), extended in some cases to anterior and thalamic regions. Significant cortical reactivity sources were found in frequencies different from alpha (lower t-values). Significant changes at EEG reactivity sources were evident in the damaged brain hemisphere. Reactivity changes were also found in the "healthy" hemisphere when compared with the normal population. In conclusion, our study of brain sources of EEG alpha reactivity provides information that is not evident in the usual topographic analysis.

  9. MNE software for processing MEG and EEG data

    PubMed Central

    Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.

    2013-01-01

    Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute cortically-constrained minimum-norm current estimates from M/EEG data, is a software package that provides comprehensive analysis tools and workflows including preprocessing, source estimation, time–frequency analysis, statistical analysis, and several methods to estimate functional connectivity between distributed brain regions. The present paper gives detailed information about the MNE package and describes typical use cases while also warning about potential caveats in analysis. The MNE package is a collaborative effort of multiple institutes striving to implement and share best methods and to facilitate distribution of analysis pipelines to advance reproducibility of research. Full documentation is available at http://martinos.org/mne. PMID:24161808

  10. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording

    NASA Astrophysics Data System (ADS)

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Objective. Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Approach. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. Main results. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Significance. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  11. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.

    PubMed

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  12. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence.

    PubMed

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice

    2012-05-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.

  13. Topography, Power and Current Source Density of Theta Oscillations during Reward Processing as Markers for Alcohol Dependence

    PubMed Central

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B.; Pandey, Ashwini K.; Roopesh, Bangalore N.; Porjesz, Bernice

    2013-01-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task which involved outcomes of either loss or gain of an amount (10¢ or 50¢) that was bet. Event-related theta band (3.0–7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200–500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current Source Density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition as compared to controls who manifested stronger and focused midline sources. Further, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. PMID:21520344

  14. Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval.

    PubMed

    Clemens, Béla; Bánk, József; Piros, Pálma; Bessenyei, Mónika; Veto, Sára; Tóth, Márton; Kondákor, István

    2008-09-01

    Investigating the brain of migraine patients in the pain-free interval may shed light on the basic cerebral abnormality of migraine, in other words, the liability of the brain to generate migraine attacks from time to time. Twenty unmedicated "migraine without aura" patients and a matched group of healthy controls were investigated in this explorative study. 19-channel EEG was recorded against the linked ears reference and was on-line digitized. 60 x 2-s epochs of eyes-closed, waking-relaxed activity were subjected to spectral analysis and a source localization method, low resolution electromagnetic tomography (LORETA). Absolute power was computed for 19 electrodes and four frequency bands (delta: 1.5-3.5 Hz, theta: 4.0-7.5 Hz, alpha: 8.0-12.5 Hz, beta: 13.0-25.0 Hz). LORETA "activity" (=current source density, ampers/meters squared) was computed for 2394 voxels and the above specified frequency bands. Group comparison was carried out for the specified quantitative EEG variables. Activity in the two groups was compared on a voxel-by-voxel basis for each frequency band. Statistically significant (uncorrected P < 0.01) group differences were projected to cortical anatomy. Spectral findings: there was a tendency for more alpha power in the migraine that in the control group in all but two (F4, C3) derivations. However, statistically significant (P < 0.01, Bonferroni-corrected) spectral difference was only found in the right occipital region. The main LORETA-finding was that voxels with P < 0.01 differences were crowded in anatomically contiguous cortical areas. Increased alpha activity was found in a cortical area including part of the precuneus, and the posterior part of the middle temporal gyrus in the right hemisphere. Decreased alpha activity was found bilaterally in medial parts of the frontal cortex including the anterior cingulate and the superior and medial frontal gyri. Neither spectral analysis, nor LORETA revealed statistically significant differences in the delta, theta, and beta bands. LORETA revealed the anatomical distribution of the cortical sources (generators) of the EEG abnormalities in migraine. The findings characterize the state of the cerebral cortex in the pain-free interval and might be suitable for planning forthcoming investigations.

  15. Removal of EOG Artifacts from EEG Recordings Using Stationary Subspace Analysis

    PubMed Central

    Zeng, Hong; Song, Aiguo

    2014-01-01

    An effective approach is proposed in this paper to remove ocular artifacts from the raw EEG recording. The proposed approach first conducts the blind source separation on the raw EEG recording by the stationary subspace analysis (SSA) algorithm. Unlike the classic blind source separation algorithms, SSA is explicitly tailored to the understanding of distribution changes, where both the mean and the covariance matrix are taken into account. In addition, neither independency nor uncorrelation is required among the sources by SSA. Thereby, it can concentrate artifacts in fewer components than the representative blind source separation methods. Next, the components that are determined to be related to the ocular artifacts are projected back to be subtracted from EEG signals, producing the clean EEG data eventually. The experimental results on both the artificially contaminated EEG data and real EEG data have demonstrated the effectiveness of the proposed method, in particular for the cases where limited number of electrodes are used for the recording, as well as when the artifact contaminated signal is highly nonstationary and the underlying sources cannot be assumed to be independent or uncorrelated. PMID:24550696

  16. EEG-distributed inverse solutions for a spherical head model

    NASA Astrophysics Data System (ADS)

    Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.

    1998-08-01

    The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.

  17. Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

    PubMed

    Heers, Marcel; Chowdhury, Rasheda A; Hedrich, Tanguy; Dubeau, François; Hall, Jeffery A; Lina, Jean-Marc; Grova, Christophe; Kobayashi, Eliane

    2016-01-01

    Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean (cMEM), hierarchical Bayesian implementations of independent identically distributed sources (IID, minimum norm prior) and spatially coherent sources (COH, spatial smoothness prior). Source maxima (i.e., the vertex with the maximum source amplitude) of IEDs in 14 EEG and 19 MEG studies from 15 patients with focal epilepsy were analyzed. We visually compared their concordance with intracranial EEG (iEEG) based on 17 cortical regions of interest and their spatial dispersion around source maxima. Magnetic source imaging (MSI) maxima from cMEM were most often confirmed by iEEG (cMEM: 14/19, COH: 9/19, IID: 8/19 studies). COH electric source imaging (ESI) maxima co-localized best with iEEG (cMEM: 8/14, COH: 11/14, IID: 10/14 studies). In addition, cMEM was less spatially spread than COH and IID for ESI and MSI (p < 0.001 Bonferroni-corrected post hoc t test). Highest positive predictive values for cortical regions with IEDs in iEEG could be obtained with cMEM for MSI and with COH for ESI. Additional realistic EEG/MEG simulations confirmed our findings. Accurate spatially extended sources, as found in cMEM (ESI and MSI) and COH (ESI) are desirable for source imaging of IEDs because this might influence surgical decision. Our simulations suggest that COH and IID overestimate the spatial extent of the generators compared to cMEM.

  18. A Wearable EEG-HEG-HRV Multimodal System With Simultaneous Monitoring of tES for Mental Health Management.

    PubMed

    Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun

    2015-12-01

    A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.

  19. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm.

    PubMed

    Stropahl, Maren; Bauer, Anna-Katharina R; Debener, Stefan; Bleichner, Martin G

    2018-01-01

    Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.

  20. Automated MRI segmentation for individualized modeling of current flow in the human head.

    PubMed

    Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C

    2013-12-01

    High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  1. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    NASA Astrophysics Data System (ADS)

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  2. Pulse Wave Amplitude Drops during Sleep are Reliable Surrogate Markers of Changes in Cortical Activity

    PubMed Central

    Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael

    2010-01-01

    Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131

  3. Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements.

    PubMed

    Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan

    2014-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2-4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG.

  4. Beamformer Source Analysis and Connectivity on Concurrent EEG and MEG Data during Voluntary Movements

    PubMed Central

    Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan

    2014-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2–4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG. PMID:24618596

  5. A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal.

    PubMed

    Oosugi, Naoya; Kitajo, Keiichi; Hasegawa, Naomi; Nagasaka, Yasuo; Okanoya, Kazuo; Fujii, Naotaka

    2017-09-01

    Blind source separation (BSS) algorithms extract neural signals from electroencephalography (EEG) data. However, it is difficult to quantify source separation performance because there is no criterion to dissociate neural signals and noise in EEG signals. This study develops a method for evaluating BSS performance. The idea is neural signals in EEG can be estimated by comparison with simultaneously measured electrocorticography (ECoG). Because the ECoG electrodes cover the majority of the lateral cortical surface and should capture most of the original neural sources in the EEG signals. We measured real EEG and ECoG data and developed an algorithm for evaluating BSS performance. First, EEG signals are separated into EEG components using the BSS algorithm. Second, the EEG components are ranked using the correlation coefficients of the ECoG regression and the components are grouped into subsets based on their ranks. Third, canonical correlation analysis estimates how much information is shared between the subsets of the EEG components and the ECoG signals. We used our algorithm to compare the performance of BSS algorithms (PCA, AMUSE, SOBI, JADE, fastICA) via the EEG and ECoG data of anesthetized nonhuman primates. The results (Best case >JADE = fastICA >AMUSE = SOBI ≥ PCA >random separation) were common to the two subjects. To encourage the further development of better BSS algorithms, our EEG and ECoG data are available on our Web site (http://neurotycho.org/) as a common testing platform. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations.

    PubMed

    Kometer, Michael; Pokorny, Thomas; Seifritz, Erich; Volleinweider, Franz X

    2015-10-01

    During the last years, considerable progress has been made toward understanding the neuronal basis of consciousness by using sophisticated behavioral tasks, brain-imaging techniques, and various psychoactive drugs. Nevertheless, the neuronal mechanisms underlying some of the most intriguing states of consciousness, including spiritual experiences, remain unknown. To elucidate state of consciousness-related neuronal mechanisms, human subjects were given psilocybin, a naturally occurring serotonergic agonist and hallucinogen that has been used for centuries to induce spiritual experiences in religious and medical rituals. In this double-blind, placebo-controlled study, 50 healthy human volunteers received a moderate dose of psilocybin, while high-density electroencephalogram (EEG) recordings were taken during eyes-open and eyes-closed resting states. The current source density and the lagged phase synchronization of neuronal oscillations across distributed brain regions were computed and correlated with psilocybin-induced altered states of consciousness. Psilocybin decreased the current source density of neuronal oscillations at 1.5-20 Hz within a neural network comprising the anterior and posterior cingulate cortices and the parahippocampal regions. Most intriguingly, the intensity levels of psilocybin-induced spiritual experience and insightfulness correlated with the lagged phase synchronization of delta oscillations (1.5-4 Hz) between the retrosplenial cortex, the parahippocampus, and the lateral orbitofrontal area. These results provide systematic evidence for the direct association of a specific spatiotemporal neuronal mechanism with spiritual experiences and enhanced insight into life and existence. The identified mechanism may constitute a pathway for modulating mental health, as spiritual experiences can promote sustained well-being and psychological resilience.

  7. EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation--a stroke case series.

    PubMed

    Dutta, Anirban; Jacob, Athira; Chowdhury, Shubhajit Roy; Das, Abhijit; Nitsche, Michael A

    2015-04-01

    A method for electroencephalography (EEG) - near-infrared spectroscopy (NIRS) based assessment of neurovascular coupling (NVC) during anodal transcranial direct current stimulation (tDCS). Anodal tDCS modulates cortical neural activity leading to a hemodynamic response, which was used to identify impaired NVC functionality. In this study, the hemodynamic response was estimated with NIRS. NIRS recorded changes in oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) concentrations during anodal tDCS-induced activation of the cortical region located under the electrode and in-between the light sources and detectors. Anodal tDCS-induced alterations in the underlying neuronal current generators were also captured with EEG. Then, a method for the assessment of NVC underlying the site of anodal tDCS was proposed that leverages the Hilbert-Huang Transform. The case series including four chronic (>6 months) ischemic stroke survivors (3 males, 1 female from age 31 to 76) showed non-stationary effects of anodal tDCS on EEG that correlated with the HbO2 response. Here, the initial dip in HbO2 at the beginning of anodal tDCS corresponded with an increase in the log-transformed mean-power of EEG within 0.5Hz-11.25Hz frequency band. The cross-correlation coefficient changed signs but was comparable across subjects during and after anodal tDCS. The log-transformed mean-power of EEG lagged HbO2 response during tDCS but then led post-tDCS. This case series demonstrated changes in the degree of neurovascular coupling to a 0.526 A/m(2) square-pulse (0-30 s) of anodal tDCS. The initial dip in HbO2 needs to be carefully investigated in a larger cohort, for example in patients with small vessel disease.

  8. MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy.

    PubMed

    Chowdhury, Rasheda Arman; Zerouali, Younes; Hedrich, Tanguy; Heers, Marcel; Kobayashi, Eliane; Lina, Jean-Marc; Grova, Christophe

    2015-11-01

    The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges (IEDs). The key element in this study is the integration of the complementary information from EEG and MEG data within the MEM framework. MEEG was compared with EEG and MEG when localizing single transient IEDs. The fusion approach was evaluated using realistic simulation models involving one or two spatially extended sources mimicking propagation patterns of IEDs. We also assessed the impact of the number of EEG electrodes required for an efficient EEG-MEG fusion. MEM was compared with minimum norm estimate, dynamic statistical parametric mapping, and standardized low-resolution electromagnetic tomography. The fusion approach was finally assessed on real epileptic data recorded from two patients showing IEDs simultaneously in EEG and MEG. Overall the localization of MEEG data using MEM provided better recovery of the source spatial extent, more sensitivity to the source depth and more accurate detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was more accurate than the other methods. MEEG proved more robust than EEG and MEG for single IED localization in low signal-to-noise ratio conditions. We also showed that only few EEG electrodes are required to bring additional relevant information to MEG during MEM fusion.

  9. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    PubMed

    Petrov, Yury; Sridhar, Srinivas

    2013-01-01

    We introduce the notion of Electric Field Encephalography (EFEG) based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM) head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  10. Neuroelectrical imaging study of music perception by children with unilateral and bilateral cochlear implants.

    PubMed

    Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Colosimo, Alfredo; Maglione, Anton Giulio; Babiloni, Fabio

    2014-05-01

    To investigate by means of non-invasive neuroelectrical imaging the differences in the perceived pleasantness of music between children with cochlear implants (CI) and normal-hearing (NH) children. 5 NH children and 5 children who received a sequential bilateral CI were assessed by means of High-Resolution EEG with Source Reconstruction as they watched a musical cartoon. Implanted children were tested before and after the second implant. For each subject the scalp Power Spectral Density was calculated in order to investigate the EEG alpha asymmetry. The scalp topographic distribution of the EEG power spectrum in the alpha band was different in children using one CI as compared to NH children (see figure). With two CIs the cortical activation pattern changed significantly, becoming more similar to the one observed in NH children. The findings support the hypothesis that bilateral CI users have a closer-to-normal perception of the pleasantness of music than unilaterally implanted children.

  11. Review on solving the forward problem in EEG source analysis

    PubMed Central

    Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace

    2007-01-01

    Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144

  12. Attention-Induced Deactivations in Very Low Frequency EEG Oscillations: Differential Localisation According to ADHD Symptom Status

    PubMed Central

    Broyd, Samantha J.; Helps, Suzannah K.; Sonuga-Barke, Edmund J. S.

    2011-01-01

    Background The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. Methodology/Principal Findings DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. Conclusions/Significance Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes. PMID:21408092

  13. Length matters: Improved high field EEG-fMRI recordings using shorter EEG cables.

    PubMed

    Assecondi, Sara; Lavallee, Christina; Ferrari, Paolo; Jovicich, Jorge

    2016-08-30

    The use of concurrent EEG-fMRI recordings has increased in recent years, allowing new avenues of medical and cognitive neuroscience research; however, currently used setups present problems with data quality and reproducibility. We propose a compact experimental setup for concurrent EEG-fMRI at 4T and compare it to a more standard reference setup. The compact setup uses short EEG cables connecting to the amplifiers, which are placed right at the back of the head RF coil on a form-fitting extension force-locked to the patient MR bed. We compare the two setups in terms of sensitivity to MR-room environmental noise, interferences between measuring devices (EEG or fMRI), and sensitivity to functional responses in a visual stimulation paradigm. The compact setup reduces the system sensitivity to both external noise and MR-induced artefacts by at least 60%, with negligible EEG noise induced from the mechanical vibrations of the cryogenic cooling compression pump. The compact setup improved EEG data quality and the overall performance of MR-artifact correction techniques. Both setups were similar in terms of the fMRI data, with higher reproducibility for cable placement within the scanner in the compact setup. This improved compact setup may be relevant to MR laboratories interested in reducing the sensitivity of their EEG-fMRI experimental setup to external noise sources, setting up an EEG-fMRI workplace for the first time, or for creating a more reproducible configuration of equipment and cables. Implications for safety and ergonomics are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    PubMed Central

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful. PMID:26509448

  15. EEG source analysis of data from paralysed subjects

    NASA Astrophysics Data System (ADS)

    Carabali, Carmen A.; Willoughby, John O.; Fitzgibbon, Sean P.; Grummett, Tyler; Lewis, Trent; DeLosAngeles, Dylan; Pope, Kenneth J.

    2015-12-01

    One of the limitations of Encephalography (EEG) data is its quality, as it is usually contaminated with electric signal from muscle. This research intends to study results of two EEG source analysis methods applied to scalp recordings taken in paralysis and in normal conditions during the performance of a cognitive task. The aim is to determinate which types of analysis are appropriate for dealing with EEG data containing myogenic components. The data used are the scalp recordings of six subjects in normal conditions and during paralysis while performing different cognitive tasks including the oddball task which is the object of this research. The data were pre-processed by filtering it and correcting artefact, then, epochs of one second long for targets and distractors were extracted. Distributed source analysis was performed in BESA Research 6.0, using its results and information from the literature, 9 ideal locations for source dipoles were identified. The nine dipoles were used to perform discrete source analysis, fitting them to the averaged epochs for obtaining source waveforms. The results were statistically analysed comparing the outcomes before and after the subjects were paralysed. Finally, frequency analysis was performed for better explain the results. The findings were that distributed source analysis could produce confounded results for EEG contaminated with myogenic signals, conversely, statistical analysis of the results from discrete source analysis showed that this method could help for dealing with EEG data contaminated with muscle electrical signal.

  16. Spatiotemporal source analysis in scalp EEG vs. intracerebral EEG and SPECT: a case study in a 2-year-old child.

    PubMed

    Aarabi, A; Grebe, R; Berquin, P; Bourel Ponchel, E; Jalin, C; Fohlen, M; Bulteau, C; Delalande, O; Gondry, C; Héberlé, C; Moullart, V; Wallois, F

    2012-06-01

    This case study aims to demonstrate that spatiotemporal spike discrimination and source analysis are effective to monitor the development of sources of epileptic activity in time and space. Therefore, they can provide clinically useful information allowing a better understanding of the pathophysiology of individual seizures with time- and space-resolved characteristics of successive epileptic states, including interictal, preictal, postictal, and ictal states. High spatial resolution scalp EEGs (HR-EEG) were acquired from a 2-year-old girl with refractory central epilepsy and single-focus seizures as confirmed by intracerebral EEG recordings and ictal single-photon emission computed tomography (SPECT). Evaluation of HR-EEG consists of the following three global steps: (1) creation of the initial head model, (2) automatic spike and seizure detection, and finally (3) source localization. During the source localization phase, epileptic states are determined to allow state-based spike detection and localization of underlying sources for each spike. In a final cluster analysis, localization results are integrated to determine the possible sources of epileptic activity. The results were compared with the cerebral locations identified by intracerebral EEG recordings and SPECT. The results obtained with this approach were concordant with those of MRI, SPECT and distribution of intracerebral potentials. Dipole cluster centres found for spikes in interictal, preictal, ictal and postictal states were situated an average of 6.3mm from the intracerebral contacts with the highest voltage. Both amplitude and shape of spikes change between states. Dispersion of the dipoles was higher in the preictal state than in the postictal state. Two clusters of spikes were identified. The centres of these clusters changed position periodically during the various epileptic states. High-resolution surface EEG evaluated by an advanced algorithmic approach can be used to investigate the spatiotemporal characteristics of sources located in the epileptic focus. The results were validated by standard methods, ensuring good spatial resolution by MRI and SPECT and optimal temporal resolution by intracerebral EEG. Surface EEG can be used to identify different spike clusters and sources of the successive epileptic states. The method that was used in this study will provide physicians with a better understanding of the pathophysiological characteristics of epileptic activities. In particular, this method may be useful for more effective positioning of implantable intracerebral electrodes. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization.

    PubMed

    Cao, Cheng; Akalin Acar, Zeynep; Kreutz-Delgado, Kenneth; Makeig, Scott

    2012-01-01

    Here, we introduce a novel approach to the EEG inverse problem based on the assumption that principal cortical sources of multi-channel EEG recordings may be assumed to be spatially sparse, compact, and smooth (SCS). To enforce these characteristics of solutions to the EEG inverse problem, we propose a correlation-variance model which factors a cortical source space covariance matrix into the multiplication of a pre-given correlation coefficient matrix and the square root of the diagonal variance matrix learned from the data under a Bayesian learning framework. We tested the SCS method using simulated EEG data with various SNR and applied it to a real ECOG data set. We compare the results of SCS to those of an established SBL algorithm.

  18. Effect of EEG electrode density on dipole localization accuracy using two realistically shaped skull resistivity models.

    PubMed

    Laarne, P H; Tenhunen-Eskelinen, M L; Hyttinen, J K; Eskola, H J

    2000-01-01

    The effect of number of EEG electrodes on the dipole localization was studied by comparing the results obtained using the 10-20 and 10-10 electrode systems. Two anatomically detailed models with resistivity values of 177.6 omega m and 67.0 omega m for the skull were applied. Simulated potential values generated by current dipoles were applied to different combinations of the volume conductors and electrode systems. High and low resistivity models differed slightly in favour of the lower skull resistivity model when dipole localization was based on noiseless data. The localization errors were approximately three times larger using low resistivity model for generating the potentials, but applying high resistivity model for the inverse solution. The difference between the two electrode systems was minor in favour of the 10-10 electrode system when simulated, noiseless potentials were used. In the presence of noise the dipole localization algorithm operated more accurately using the denser electrode system. In conclusion, increasing the number of recording electrodes seems to improve the localization accuracy in the presence of noise. The absolute skull resistivity value also affects the accuracy, but using an incorrect value in modelling calculations seems to be the most serious source of error.

  19. Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging.

    PubMed

    Chen, Andrew C N; Liu, Feng-Jun; Wang, Li; Arendt-Nielsen, Lars

    2006-02-15

    This study determined: (a) if acupuncture stimulation at a traditional site might modulate ongoing EEG as compared with stimulation of a control site; (b) if high-frequency vs. low-frequency stimulation could exert differential effects of acupuncture; (c) if the observed effects of acupuncture were specific to certain EEG bands; and (d) if the acupuncture effect could be isolated at a specific scalp field, with its putative underlying intracranial source. Twelve healthy male volunteers (age range 22-35) participated in two experimental sessions separated by 1 week, which involved transcutaneous acupoint stimulation at selected acupoint (Li 4, HeGu) vs. a mock point at the fourth interosseous muscle area on the left hand in high (HF: 100 Hz) vs. low-frequency (LF: 2 Hz) stimulation by counter-balanced order. 124-ch EEG data were used to analyze the Delta, Theta, Alpha-1, Alpha-2, Beta, and Gamma bands. The absolute EEG powers (muv2) at focal maxima across three stages (baseline, stimulation, post) were examined by two-way (condition, stage) repeated measures ANOVA. The activity of the Theta power significantly decreased (P = 0.02), compared with control during HF but not LF stimulation at acupoint stimulation, however, there was no study effect at the mock point. A decreased Theta EEG power was prominent at the frontal midline sites (FCz, Fz) and the contralateral right hemisphere front site (FCC2h). In contrast, the Theta power of low-frequency stimulation showed an increase from the baseline as those in both controlled mock point stimulations. The observed high-frequency acupoint stimulation effects of Theta EEG were only present during, but not after, simulation. The topographic Theta activity was tentatively identified to originate from the intracranial current source in cingulate cortex, likely ACC. It is likely that short-term cortical plasticity occurs during high-frequency but not low-frequency stimulation at the HeGu point, but not mock point. We suggest that HeGu acupuncture stimulation modulates limbic cingulum by a frequency modulation mode, which then may damp nociceptive processing in the brain.

  20. Regional Reductions in Sleep Electroencephalography Power in Obstructive Sleep Apnea: A High-Density EEG Study

    PubMed Central

    Jones, Stephanie G.; Riedner, Brady A.; Smith, Richard F.; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.

    2014-01-01

    Study Objectives: Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Design: Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Setting: Sleep laboratory. Patients or Participants: Nine subjects with AHI > 10 and nine matched controls. Interventions: N/A. Measurements and Results: Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. Conclusion: This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process. Citation: Jones SG; Riedner BA; Smith RF; Ferrarelli F; Tononi G; Davidson RJ; Benca RM. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study. SLEEP 2014;37(2):399-407. PMID:24497668

  1. Source localization of rhythmic ictal EEG activity: a study of diagnostic accuracy following STARD criteria.

    PubMed

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana; Åkeson, Per; Pedersen, Birthe; Pinborg, Lars H; Ziebell, Morten; Jespersen, Bo; Fuglsang-Frederiksen, Anders

    2013-10-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal EEG activity using a distributed source model. Source localization of rhythmic ictal scalp EEG activity was performed in 42 consecutive cases fulfilling inclusion criteria. The study was designed according to recommendations for studies on diagnostic accuracy (STARD). The initial ictal EEG signals were selected using a standardized method, based on frequency analysis and voltage distribution of the ictal activity. A distributed source model-local autoregressive average (LAURA)-was used for the source localization. Sensitivity, specificity, and measurement of agreement (kappa) were determined based on the reference standard-the consensus conclusion of the multidisciplinary epilepsy surgery team. Predictive values were calculated from the surgical outcome of the operated patients. To estimate the clinical value of the ictal source analysis, we compared the likelihood ratios of concordant and discordant results. Source localization was performed blinded to the clinical data, and before the surgical decision. Reference standard was available for 33 patients. The ictal source localization had a sensitivity of 70% and a specificity of 76%. The mean measurement of agreement (kappa) was 0.61, corresponding to substantial agreement (95% confidence interval (CI) 0.38-0.84). Twenty patients underwent resective surgery. The positive predictive value (PPV) for seizure freedom was 92% and the negative predictive value (NPV) was 43%. The likelihood ratio was nine times higher for the concordant results, as compared with the discordant ones. Source localization of rhythmic ictal activity using a distributed source model (LAURA) for the ictal EEG signals selected with a standardized method is feasible in clinical practice and has a good diagnostic accuracy. Our findings encourage clinical neurophysiologists assessing ictal EEGs to include this method in their armamentarium. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  2. Electrophysiological evidence during episodic prospection implicates medial prefrontal and bilateral middle temporal gyrus.

    PubMed

    Hsu, Chia-Fen; Sonuga-Barke, Edmund J S

    2016-08-01

    fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Frequency domain beamforming of magnetoencephalographic beta band activity in epilepsy patients with focal cortical dysplasia.

    PubMed

    Heers, Marcel; Hirschmann, Jan; Jacobs, Julia; Dümpelmann, Matthias; Butz, Markus; von Lehe, Marec; Elger, Christian E; Schnitzler, Alfons; Wellmer, Jörg

    2014-09-01

    Spike-based magnetoencephalography (MEG) source localization is an established method in the presurgical evaluation of epilepsy patients. Focal cortical dysplasias (FCDs) are associated with focal epileptic discharges of variable morphologies in the beta frequency band in addition to single epileptic spikes. Therefore, we investigated the potential diagnostic value of MEG-based localization of spike-independent beta band (12-30Hz) activity generated by epileptogenic lesions. Five patients with FCD IIB underwent MEG. In one patient, invasive EEG (iEEG) was recorded simultaneously with MEG. In two patients, iEEG succeeded MEG, and two patients had MEG only. MEG and iEEG were evaluated for epileptic spikes. Two minutes of iEEG data and MEG epochs with no spikes as well as MEG epochs with epileptic spikes were analyzed in the frequency domain. MEG oscillatory beta band activity was localized using Dynamic Imaging of Coherent Sources. Intralesional beta band activity was coherent between simultaneous MEG and iEEG recordings. Continuous 14Hz beta band power correlated with the rate of interictal epileptic discharges detected in iEEG. In cases where visual MEG evaluation revealed epileptic spikes, the sources of beta band activity localized within <2cm of the epileptogenic lesion as shown on magnetic resonance imaging. This result held even when visually marked epileptic spikes were deselected. When epileptic spikes were detectable in iEEG but not MEG, MEG beta band activity source localization failed. Source localization of beta band activity has the potential to contribute to the identification of epileptic foci in addition to source localization of visually marked epileptic spikes. Thus, this technique may assist in the localization of epileptic foci in patients with suspected FCD. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model

    PubMed Central

    Aydin, Ümit; Vorwerk, Johannes; Küpper, Philipp; Heers, Marcel; Kugel, Harald; Galka, Andreas; Hamid, Laith; Wellmer, Jörg; Kellinghaus, Christoph; Rampp, Stefan; Wolters, Carsten Hermann

    2014-01-01

    To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP) and field (SEF) data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data. PMID:24671208

  5. Corrected Four-Sphere Head Model for EEG Signals.

    PubMed

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  6. Corrected Four-Sphere Head Model for EEG Signals

    PubMed Central

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V.; Dale, Anders M.; Einevoll, Gaute T.; Wójcik, Daniel K.

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations. PMID:29093671

  7. A transition in brain state during propofol-induced unconsciousness.

    PubMed

    Mukamel, Eran A; Pirondini, Elvira; Babadi, Behtash; Wong, Kin Foon Kevin; Pierce, Eric T; Harrell, P Grace; Walsh, John L; Salazar-Gomez, Andres F; Cash, Sydney S; Eskandar, Emad N; Weiner, Veronica S; Brown, Emery N; Purdon, Patrick L

    2014-01-15

    Rhythmic oscillations shape cortical dynamics during active behavior, sleep, and general anesthesia. Cross-frequency phase-amplitude coupling is a prominent feature of cortical oscillations, but its role in organizing conscious and unconscious brain states is poorly understood. Using high-density EEG and intracranial electrocorticography during gradual induction of propofol general anesthesia in humans, we discovered a rapid drug-induced transition between distinct states with opposite phase-amplitude coupling and different cortical source distributions. One state occurs during unconsciousness and may be similar to sleep slow oscillations. A second state occurs at the loss or recovery of consciousness and resembles an enhanced slow cortical potential. These results provide objective electrophysiological landmarks of distinct unconscious brain states, and could be used to help improve EEG-based monitoring for general anesthesia.

  8. Recovering TMS-evoked EEG responses masked by muscle artifacts.

    PubMed

    Mutanen, Tuomas P; Kukkonen, Matleena; Nieminen, Jaakko O; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J

    2016-10-01

    Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) often suffers from large muscle artifacts. Muscle artifacts can be removed using signal-space projection (SSP), but this can make the visual interpretation of the remaining EEG data difficult. We suggest to use an additional step after SSP that we call source-informed reconstruction (SIR). SSP-SIR improves substantially the signal quality of artifactual TMS-EEG data, causing minimal distortion in the neuronal signal components. In the SSP-SIR approach, we first project out the muscle artifact using SSP. Utilizing an anatomical model and the remaining signal, we estimate an equivalent source distribution in the brain. Finally, we map the obtained source estimate onto the original signal space, again using anatomical information. This approach restores the neuronal signals in the sensor space and interpolates EEG traces onto the completely rejected channels. The introduced algorithm efficiently suppresses TMS-related muscle artifacts in EEG while retaining well the neuronal EEG topographies and signals. With the presented method, we can remove muscle artifacts from TMS-EEG data and recover the underlying brain responses without compromising the readability of the signals of interest. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. [Objective Assessment of Emotion Processing. Forensic Case Report].

    PubMed

    Reyes, Ana Calzada; Gutiérrez Manso, Ana Teresa; González, Mariloly Acosta

    2014-03-01

    The main objective of the emotions is to ensure the homeostasis, the survival and the well-being of the organism. To demonstrate the usefulness of performing neurophysiological and neuropsychological assessments in patients, in order to demonstrate the significant role of the emotions in the execution of certain behaviours. A forensic psychiatric interview was conducted. EEG in vigil state was registered, the generators of current density to theta band were calculated, and the emotions recognition test was performed. The results of the psychiatric interview demonstrated that fear was an important element in acting impulsively, and lack of foresight of the accused. A substantial decrease was demonstrated in the ability to understand the scope of the acts and the direction of the behaviour during the time the crime occurred. The EEG showed alterations in frontal regions, and the generators of current density were located in frontal-temporal regions and occipital associative areas. It is recommended to associate these studies with the forensic psychiatric assessment, in order to increase the objectivity of the diagnoses formulated by medical experts. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  10. Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆

    PubMed Central

    Stenroos, Matti; Hauk, Olaf

    2013-01-01

    The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only. PMID:23639259

  11. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    PubMed Central

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID:25374520

  12. Infant phantom head circuit board for EEG head phantom and pediatric brain simulation

    NASA Astrophysics Data System (ADS)

    Almohsen, Safa

    The infant's skull differs from an adult skull because of the characteristic features of the human skull during early development. The fontanels and the conductivity of the infant skull influence surface currents, generated by neurons, which underlie electroencephalography (EEG) signals. An electric circuit was built to power a set of simulated neural sources for an infant brain activity simulator. Also, in the simulator, three phantom tissues were created using saline solution plus Agarose gel to mimic the conductivity of each layer in the head [scalp, skull brain]. The conductivity measurement was accomplished by two different techniques: using the four points' measurement technique, and a conductivity meter. Test results showed that the optimized phantom tissues had appropriate conductivities to simulate each tissue layer to fabricate a physical head phantom. In this case, the best results should be achieved by testing the electrical neural circuit with the sample physical model to generate simulated EEG data and use that to solve both the forward and the inverse problems for the purpose of localizing the neural sources in the head phantom.

  13. Brain-computer interaction research at the Computer Vision and Multimedia Laboratory, University of Geneva.

    PubMed

    Pun, Thierry; Alecu, Teodor Iulian; Chanel, Guillaume; Kronegg, Julien; Voloshynovskiy, Sviatoslav

    2006-06-01

    This paper describes the work being conducted in the domain of brain-computer interaction (BCI) at the Multimodal Interaction Group, Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland. The application focus of this work is on multimodal interaction rather than on rehabilitation, that is how to augment classical interaction by means of physiological measurements. Three main research topics are addressed. The first one concerns the more general problem of brain source activity recognition from EEGs. In contrast with classical deterministic approaches, we studied iterative robust stochastic based reconstruction procedures modeling source and noise statistics, to overcome known limitations of current techniques. We also developed procedures for optimal electroencephalogram (EEG) sensor system design in terms of placement and number of electrodes. The second topic is the study of BCI protocols and performance from an information-theoretic point of view. Various information rate measurements have been compared for assessing BCI abilities. The third research topic concerns the use of EEG and other physiological signals for assessing a user's emotional status.

  14. Rostral Anterior Cingulate Cortex Theta Current Density and Response to Antidepressants and Placebo in Major Depression

    PubMed Central

    Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.

    2009-01-01

    Objective To assess whether pretreatment theta current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC) differentiates responders from non-responders to antidepressant medication or placebo in a double-blinded study. Methods Pretreatment EEGs were collected from 72 subjects with Major Depressive Disorder (MDD) who participated in one of three placebo-controlled trials. Subjects were randomized to receive treatment with fluoxetine, venlafaxine, or placebo. Low-resolution brain electromagnetic tomography (LORETA) was used to assess theta current density in the rACC and mOFC. Results Medication responders showed elevated rACC and mOFC theta current density compared to medication non-responders (rACC: p=0.042; mOFC: p=0.039). There was no significant difference in either brain region between placebo responders and placebo non-responders. Conclusions Theta current density in the rACC and mOFC may be useful as a biomarker for prediction of response to antidepressant medication. Significance This is the first double-blinded treatment study to examine pretreatment rACC and mOFC theta current density in relation to antidepressant response and placebo response. Results support the potential clinical utility of this approach for predicting clinical outcome to antidepressant treatments in MDD. PMID:19539524

  15. Can the Psycho-Emotional State be Optimized by Regular Use of Positive Imagery?, Psychological and Electroencephalographic Study of Self-Guided Training

    PubMed Central

    Velikova, Svetla; Sjaaheim, Haldor; Nordtug, Bente

    2017-01-01

    The guided imagery training is considered as an effective method and therefore widely used in modern cognitive psychotherapy, while less is known about the effectiveness of self-guided. The present study investigated the effects of regular use of self-guided positive imagery, applying both subjective (assessment of the psycho-emotional state) and objective (electroencephalographic, EEG) approaches to research. Thirty healthy subjects participated in the cognitive imagery-training program for 12 weeks. The schedule began with group training with an instructor for 2 days, where the participants learned various techniques of positive imagery, after which they continued their individual training at home. Psychological and EEG evaluations were applied at the baseline and at the end of the training period. The impact of training on the psycho-emotional states of the participants was evaluated through: Center for epidemiologic studies- Depression (CES-D) 20 item scale, Satisfaction with life scale (SWLS) and General Self-Efficacy scale (GSE). EEGs (19-channels) were recorded at rest with eyes closed. EEG analysis was performed using Low resolution electromagnetic tomography (LORETA) software that allows the comparison of current source density (CSD) and functional connectivity (lagged phase and coherence) in the default mode network before and after a workout. Initial assessment with CES-D indicated that 22 participants had subthreshold depression. After the training participants had less prominent depressive symptoms (CES-D, p = 0.002), were more satisfied with their lives (SWLS, p = 0.036), and also evaluated themselves as more effective (GSE, p = 0.0002). LORETA source analysis revealed an increase in the CSD in the right mPFC (Brodmann area 10) for beta-2 band after training (p = 0.038). LORETA connectivity analysis demonstrated an increase in lagged coherence between temporal gyruses of both hemispheres in the delta band, as well as between the Posterior cingulate cortex and right BA21 in the theta band after a workout. Since mPFC is involved in emotional regulation, functional changes in this region can be seen in line with the results of psychological tests and their objective validation. A possible activation of GAMK-ergic system is discussed. Self-guided positive imagery (after instructions) can be helpful for emotional selfregulation in healthy subjects and has the potential to be useful in subthreshold depression. PMID:28127281

  16. EEG-LORETA endophenotypes of the common idiopathic generalized epilepsy syndromes.

    PubMed

    Clemens, B; Puskás, S; Besenyei, M; Emri, M; Opposits, G; Kis, S A; Hollódy, K; Fogarasi, A; Kondákor, I; Füle, K; Bense, K; Fekete, I

    2012-05-01

    We tested the hypothesis that the cortical areas with abnormal local EEG synchronization are dissimilar in the three common idiopathic generalized epilepsy (IGE) phenotypes: IGE patients with absence seizures (ABS), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures exclusively (EGTCS). Groups of unmedicated ABS, JME and EGTCS patients were investigated. Waking EEG background activity (without any epileptiform potentials) was analyzed by a source localization method, LORETA (Low Resolution Electromagnetic Tomography). Each patient group was compared to a separate, age-matched group of healthy control persons. Voxel-based, normalized broad-band (delta, theta, alpha, and beta) and very narrow band (VNB, 1Hz bandwidth, from 1 to 25Hz) LORETA activity (=current source density, A/m(2)) were computed for each person. Group comparison included subtraction (average patient data minus average control data) and group statistics (multiple t-tests, where Bonferroni-corrected p<0.05 values were accepted as statistically significant). Statistically not significant main findings were: overall increased delta and theta broad band activity in the ABS and JME groups; decrease of alpha and beta activity in the EGTCS group. Statistically significant main findings were as follows. JME group: bilaterally increased theta activity in posterior (temporal, parietal, and occipital) cortical areas; bilaterally increased activity in the medial and basal prefrontal area in the 8Hz VNB; bilaterally decreased activity in the precuneus, posterior cingulate and superior parietal lobule in the 11Hz and 21-22Hz VNBs. ABS group: bilaterally increased theta activity emerged in the basal prefrontal and medial temporal limbic areas. Decreased activity was found at 19-21Hz in the right postcentral gyrus and parts of the right superior and medial temporal gyri. EGTCS group: decreased activity was found in the frontal cortex and the postcentral gyrus at 10-11Hz, increased activity in the right parahippocampal gyrus at 16-18Hz. Increased theta activity in the posterior parts of the cortex is the endophenotype for JME. Increased theta activity in the fronto-temporal limbic areas is the endophenotype for ABS. Statistically not significant findings might indicate diffuse biochemical abnormality of the cortex in JME and ABS. EEG-LORETA endophenotypes may correspond to the selective propensity to generate absence and myoclonic seizures in the ABS and JME syndromes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches

    NASA Astrophysics Data System (ADS)

    Safieddine, Doha; Kachenoura, Amar; Albera, Laurent; Birot, Gwénaël; Karfoul, Ahmad; Pasnicu, Anca; Biraben, Arnaud; Wendling, Fabrice; Senhadji, Lotfi; Merlet, Isabelle

    2012-12-01

    Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artifact, as EEG is a key diagnosis tool for this pathology. In this context, our aim was to compare the ability of two stochastic approaches of blind source separation, namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to remove muscle artifacts from EEG signals. To quantitatively compare the performance of these four algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency of CCA, ICA, EMD, and WT to correct the muscular artifact was evaluated both by calculating the normalized mean-squared error between denoised and original signals and by comparing the results of source localization obtained from artifact-free as well as noisy signals, before and after artifact correction. Tests on real data recorded in an epileptic patient are also presented. The results obtained in the context of simulations and real data show that EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity. For less noisy data, and when spikes arose from a single cortical source, the myogenic artifact was best corrected with CCA and ICA. Otherwise when spikes originated from two distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while WT offered the better denoising result for less noisy data. These results suggest that the performance of muscle artifact correction methods strongly depend on the level of data contamination, and of the source configuration underlying EEG signals. Eventually, some insights into the numerical complexity of these four algorithms are given.

  18. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior.

    PubMed

    Hansen, Sofie Therese; Hansen, Lars Kai

    2017-03-01

    Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging connections exist in the brain than long ranging, arguing for spatially focal sources. Additionally, recent work (Delorme et al., 2012) argues that EEG can be decomposed into components having sparse source distributions. On the temporal side both short and long term stationarity of brain activation are seen. We summarize these insights in an inverse solver, the so-called "Variational Garrote" (Kappen and Gómez, 2013). Using a Markov prior we can incorporate flexible degrees of temporal stationarity. Through spatial basis functions spatially smooth distributions are obtained. Sparsity of these are inherent to the Variational Garrote solver. We name our method the MarkoVG and demonstrate its ability to adapt to the temporal smoothness and spatial sparsity in simulated EEG data. Finally a benchmark EEG dataset is used to demonstrate MarkoVG's ability to recover non-stationary brain dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

    PubMed Central

    Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Iglesias, Juan Eugenio; Hämäläinen, Matti S.; Purdon, Patrick L.

    2017-01-01

    Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. PMID:29138310

  20. An EEG blind source separation algorithm based on a weak exclusion principle.

    PubMed

    Lan Ma; Blu, Thierry; Wang, William S-Y

    2016-08-01

    The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.

  1. Hardware enhance of brain computer interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  2. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    PubMed

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  3. Combined process automation for large-scale EEG analysis.

    PubMed

    Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E

    2012-01-01

    Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis.

    PubMed

    Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C; Hardiman, Orla

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05). There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS.

  5. Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography.

    PubMed

    Hamilton, Liberty S; Chang, David L; Lee, Morgan B; Chang, Edward F

    2017-01-01

    In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.

  6. Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography

    PubMed Central

    Hamilton, Liberty S.; Chang, David L.; Lee, Morgan B.; Chang, Edward F.

    2017-01-01

    In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. PMID:29163118

  7. Imaging the cortical effect of lamotrigine in patients with idiopathic generalized epilepsy: a low-resolution electromagnetic tomography (LORETA) study.

    PubMed

    Clemens, Béla; Piros, Pálma; Bessenyei, Mónika; Tóth, Márton; Hollódy, Katalin; Kondákor, István

    2008-10-01

    Anatomical localization of the cortical effect of lamotrigine (LTG) in patients with idiopathic generalized epilepsy (IGE). 19 patients with untreated IGE were investigated. EEG was recorded in the untreated condition and 3 months later when LTG treatment abolished the seizures. 19-channel EEG was recorded, and a total of 2min artifact-free, waking EEG was processed to low-resolution electromagnetic tomography (LORETA) analysis. Activity (that is, current source density, A/m(2)) was computed in four frequency bands (delta, theta, alpha, and beta), for 2394 voxels that represented the cortical gray matter and the hippocampi. Group differences between the untreated and treated conditions were computed for the four bands and all voxels by multiple t-tests for interdependent datasets. The results were presented in terms of anatomical distribution and statistical significance. p<0.01 (uncorrected) changes (decrease of activity) emerged in the theta and the alpha bands. Theta activity decreased in a large cluster of voxels including parts of the temporal, parietal, occipital cortex bilaterally, and in the transverse temporal gyri, insula, hippocampus, and uncus on the right side. Alpha activity decreased in a relatively smaller cortical area involving the right temporo-parietal junction and surrounding parts of the cortex, and part of the insula on the right side. LTG decreased theta activity in several cortical areas where abnormally increased theta activity had been found in a prior study in another cohort of untreated IGE patients [Clemens, B., Bessenyei, M., Piros, P., Tóth, M., Seress, L., Kondákor, I., 2007b. Characteristic distribution of interictal brain electrical activity in idiopathic generalized epilepsy. Epilepsia 48, 941-949]. These LTG-related changes might be related to the decrease of seizure propensity in IGE.

  8. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    PubMed

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  9. Sedation for electroencephalography with dexmedetomidine or chloral hydrate: a comparative study on the qualitative and quantitative electroencephalogram pattern.

    PubMed

    Fernandes, Magda L; Oliveira, Welser Machado de; Santos, Maria do Carmo Vasconcellos; Gomez, Renato S

    2015-01-01

    Sedation for electroencephalography in uncooperative patients is a controversial issue because majority of sedatives, hypnotics, and general anesthetics interfere with the brain's electrical activity. Chloral hydrate (CH) is typically used for this sedation, and dexmedetomidine (DEX) was recently tested because preliminary data suggest that this drug does not affect the electroencephalogram (EEG). The aim of the present study was to compare the EEG pattern during DEX or CH sedation to test the hypothesis that both drugs exert similar effects on the EEG. A total of 17 patients underwent 2 EEGs on 2 separate occasions, one with DEX and the other with CH. The EEG qualitative variables included the phases of sleep and the background activity. The EEG quantitative analysis was performed during the first 2 minutes of the second stage of sleep. The EEG quantitative variables included density, duration, and amplitude of the sleep spindles and absolute spectral power. The results showed that the qualitative analysis, density, duration, and amplitude of sleep spindles did not differ between DEX and CH sedation. The power of the slow-frequency bands (δ and θ) was higher with DEX, but the power of the faster-frequency bands (α and β) was higher with CH. The total power was lower with DEX than with CH. The differences of DEX and CH in EEG power did not change the EEG qualitative interpretation, which was similar with the 2 drugs. Other studies comparing natural sleep and sleep induced by these drugs are needed to clarify the clinical relevance of the observed EEG quantitative differences.

  10. Automated MRI segmentation for individualized modeling of current flow in the human head

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-12-01

    Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.Main results. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.Significance. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  11. Enabling computer decisions based on EEG input.

    PubMed

    Culpepper, Benjamin J; Keller, Robert M

    2003-12-01

    Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.

  12. Enabling computer decisions based on EEG input

    NASA Technical Reports Server (NTRS)

    Culpepper, Benjamin J.; Keller, Robert M.

    2003-01-01

    Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.

  13. Monitoring alert and drowsy states by modeling EEG source nonstationarity

    NASA Astrophysics Data System (ADS)

    Hsu, Sheng-Hsiou; Jung, Tzyy-Ping

    2017-10-01

    Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r  =  -0.390 with alertness models and r  =  0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to monitoring cognitive or mental states of human operators in attention-critical settings or in passive brain-computer interfaces.

  14. Information-Theoretical Analysis of EEG Microstate Sequences in Python.

    PubMed

    von Wegner, Frederic; Laufs, Helmut

    2018-01-01

    We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG) measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A-D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  15. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    PubMed

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  16. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome

    PubMed Central

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232

  17. Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features.

    PubMed

    Shim, Miseon; Hwang, Han-Jeong; Kim, Do-Won; Lee, Seung-Hwan; Im, Chang-Hwan

    2016-10-01

    Recently, an increasing number of researchers have endeavored to develop practical tools for diagnosing patients with schizophrenia using machine learning techniques applied to EEG biomarkers. Although a number of studies showed that source-level EEG features can potentially be applied to the differential diagnosis of schizophrenia, most studies have used only sensor-level EEG features such as ERP peak amplitude and power spectrum for machine learning-based diagnosis of schizophrenia. In this study, we used both sensor-level and source-level features extracted from EEG signals recorded during an auditory oddball task for the classification of patients with schizophrenia and healthy controls. EEG signals were recorded from 34 patients with schizophrenia and 34 healthy controls while each subject was asked to attend to oddball tones. Our results demonstrated higher classification accuracy when source-level features were used together with sensor-level features, compared to when only sensor-level features were used. In addition, the selected sensor-level features were mostly found in the frontal area, and the selected source-level features were mostly extracted from the temporal area, which coincide well with the well-known pathological region of cognitive processing in patients with schizophrenia. Our results suggest that our approach would be a promising tool for the computer-aided diagnosis of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sleep affects cortical source modularity in temporal lobe epilepsy: A high-density EEG study.

    PubMed

    Del Felice, Alessandra; Storti, Silvia Francesca; Manganotti, Paolo

    2015-09-01

    Interictal epileptiform discharges (IEDs) constitute a perturbation of ongoing cerebral rhythms, usually more frequent during sleep. The aim of the study was to determine whether sleep influences the spread of IEDs over the scalp and whether their distribution depends on vigilance-related modifications in cortical interactions. Wake and sleep 256-channel electroencephalography (EEG) data were recorded in 12 subjects with right temporal lobe epilepsy (TLE) differentiated by whether they had mesial or neocortical TLE. Spikes were selected during wake and sleep. The averaged waking signal was subtracted from the sleep signal and projected on a bidimensional scalp map; sleep and wake spike distributions were compared by using a t-test. The superimposed signal of sleep and wake traces was obtained; the rising phase of the spike, the peak, and the deflections following the spike were identified, and their cortical generator was calculated using low-resolution brain electromagnetic tomography (LORETA) for each group. A mean of 21 IEDs in wake and 39 in sleep per subject were selected. As compared to wake, a larger IED scalp projection was detected during sleep in both mesial and neocortical TLE (p<0.05). A series of EEG deflections followed the spike, the cortical sources of which displayed alternating activations of different cortical areas in wake, substituted by isolated, stationary activations in sleep in mesial TLE and a silencing in neocortical TLE. During sleep, the IED scalp region increases, while cortical interaction decreases. The interaction of cortical modules in sleep and wake in TLE may influence the appearance of IEDs on scalp EEG; in addition, IEDs could be proxies for cerebral oscillation perturbation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Spatial filters and automated spike detection based on brain topographies improve sensitivity of EEG-fMRI studies in focal epilepsy.

    PubMed

    Siniatchkin, Michael; Moeller, Friederike; Jacobs, Julia; Stephani, Ulrich; Boor, Rainer; Wolff, Stephan; Jansen, Olav; Siebner, Hartwig; Scherg, Michael

    2007-09-01

    The ballistocardiogram (BCG) represents one of the most prominent sources of artifacts that contaminate the electroencephalogram (EEG) during functional MRI. The BCG artifacts may affect the detection of interictal epileptiform discharges (IED) in patients with epilepsy, reducing the sensitivity of the combined EEG-fMRI method. In this study we improved the BCG artifact correction using a multiple source correction (MSC) approach. On the one hand, a source analysis of the IEDs was applied to the EEG data obtained outside the MRI scanner to prevent the distortion of EEG signals of interest during the correction of BCG artifacts. On the other hand, the topographies of the BCG artifacts were defined based on the EEG recorded inside the scanner. The topographies of the BCG artifacts were then added to the surrogate model of IED sources and a combined source model was applied to the data obtained inside the scanner. The artifact signal was then subtracted without considerable distortion of the IED topography. The MSC approach was compared with the traditional averaged artifact subtraction (AAS) method. Both methods reduced the spectral power of BCG-related harmonics and enabled better detection of IEDs. Compared with the conventional AAS method, the MSC approach increased the sensitivity of IED detection because the IED signal was less attenuated when subtracting the BCG artifacts. The proposed MSC method is particularly useful in situations in which the BCG artifact is spatially correlated and time-locked with the EEG signal produced by the focal brain activity of interest.

  20. [Neurofeedback for the treatment of chronic tinnitus : Review and future perspectives].

    PubMed

    Kleinjung, T; Thüring, C; Güntensperger, D; Neff, P; Meyer, M

    2018-03-01

    Neurofeedback is a noninvasive neuromodulation technique employing real-time display of brain activity in terms of electroencephalography (EEG) signals to teach self-regulation of distinct patterns of brain activity or influence brain activity in a targeted manner. The benefit of this approach for control of symptoms in attention deficit disorders, hyperactivity, depression, and migraine has been proven. Studies in recent years have also repeatedly shown this treatment to improve tinnitus symptoms, although it has not become established as routine therapy. The primary focus of this review is the rational of EEG neurofeedback for tinnitus treatment and the currently available data from published studies. Furthermore, alternative neurofeedback protocols using real-time functional magnetic resonance imaging (fMRI) measurements for tinnitus control are considered. Finally, this article highlights how modern EEG analysis (source localization, connectivity) and the improving understanding of tinnitus pathology can contribute to development of more focused neurofeedback protocols for more sustainable control of tinnitus.

  1. Brainstorm: A User-Friendly Application for MEG/EEG Analysis

    PubMed Central

    Tadel, François; Baillet, Sylvain; Mosher, John C.; Pantazis, Dimitrios; Leahy, Richard M.

    2011-01-01

    Brainstorm is a collaborative open-source application dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) data visualization and processing, with an emphasis on cortical source estimation techniques and their integration with anatomical magnetic resonance imaging (MRI) data. The primary objective of the software is to connect MEG/EEG neuroscience investigators with both the best-established and cutting-edge methods through a simple and intuitive graphical user interface (GUI). PMID:21584256

  2. Validation of Regression-Based Myogenic Correction Techniques for Scalp and Source-Localized EEG

    PubMed Central

    McMenamin, Brenton W.; Shackman, Alexander J.; Maxwell, Jeffrey S.; Greischar, Lawrence L.; Davidson, Richard J.

    2008-01-01

    EEG and EEG source-estimation are susceptible to electromyographic artifacts (EMG) generated by the cranial muscles. EMG can mask genuine effects or masquerade as a legitimate effect - even in low frequencies, such as alpha (8–13Hz). Although regression-based correction has been used previously, only cursory attempts at validation exist and the utility for source-localized data is unknown. To address this, EEG was recorded from 17 participants while neurogenic and myogenic activity were factorially varied. We assessed the sensitivity and specificity of four regression-based techniques: between-subjects, between-subjects using difference-scores, within-subjects condition-wise, and within-subject epoch-wise on the scalp and in data modeled using the LORETA algorithm. Although within-subject epoch-wise showed superior performance on the scalp, no technique succeeded in the source-space. Aside from validating the novel epoch-wise methods on the scalp, we highlight methods requiring further development. PMID:19298626

  3. Intracranial current density (LORETA) differences in QEEG frequency bands between depressed and non-depressed alcoholic patients.

    PubMed

    Coutin-Churchman, Pedro; Moreno, Rocío

    2008-04-01

    To assess possible differences in intracranial source distribution of surface QEEG power between depressed and non-depressed alcoholic patients in order to find any symptom-related topographic features of physiopathologic relevance. Low-Resolution Electromagnetic Tomography (LORETA) for the delta, theta, alpha and beta bands of EEG spectra was estimated from 38 alcoholic patients, 20 with and 18 without clinical depression, in which QEEG showed decreased slow and increased beta activity diffusely. Statistical non-parametric mapping was used to compare depressed and non-depressed groups. Measures of intracranial current density in individual patients at areas of significant differences were correlated with BDI scores. Patients with clinical depression showed areas of significantly lower current density than non-depressed patients in delta band at left anterior temporal, left midtemporal (including amygdala and hippocampus), and both frontopolar cortices mostly on the right; and in theta band at bilateral parietal lobe, anterior cingulate and medial frontal cortex. No differences were found at alpha and beta band. Intracranial current density in delta band at left parahippocampal, left midfrontal cortex and right frontopolar cortex was negatively correlated with BDI score. Theta band also showed negative correlations with BDI at sites of significant differences. Diffusely decreased delta and theta activity in the surface QEEG of alcoholic patients has a different intracranial distribution linked to the presence or not of clinical depression that seems to reveal a dysfunctional neuronal state at several specific limbic and other cortical locations that have been related to a specific clinical disorder such as depression. These results provided further evidence on the effects of depression in the context of alcohol dependence, in this case decreased slow activity as a possible marker of neuronal damage secondary to alcohol toxicity, clinically expressed as depressive symptoms when present in structures that are known to be related to clinical depression.

  4. Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures.

    PubMed

    Palva, J Matias; Wang, Sheng H; Palva, Satu; Zhigalov, Alexander; Monto, Simo; Brookes, Matthew J; Schoffelen, Jan-Mathijs; Jerbi, Karim

    2018-06-01

    When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed. Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here, however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large numbers of spurious false positive connections through field spread in the vicinity of true interactions. This fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most importantly, beyond defining and illustrating the problem of spurious, or "ghost" interactions, we provide a rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when using measures that are immune to zero-lag correlations. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting

    PubMed Central

    Huang, Yu; Parra, Lucas C.; Haufe, Stefan

    2018-01-01

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm 3 resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. PMID:26706450

  6. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

    PubMed

    Huang, Yu; Parra, Lucas C; Haufe, Stefan

    2016-10-15

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. Published by Elsevier Inc.

  7. Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation.

    PubMed

    Luu, Phan; Tucker, Don M; Makeig, Scott

    2004-08-01

    The error-related negativity (ERN) is an event-related potential (ERP) peak occurring between 50 and 100 ms after the commission of a speeded motor response that the subject immediately realizes to be in error. The ERN is believed to index brain processes that monitor action outcomes. Our previous analyses of ERP and EEG data suggested that the ERN is dominated by partial phase-locking of intermittent theta-band EEG activity. In this paper, this possibility is further evaluated. The possibility that the ERN is produced by phase-locking of theta-band EEG activity was examined by analyzing the single-trial EEG traces from a forced-choice speeded response paradigm before and after applying theta-band (4-7 Hz) filtering and by comparing the averaged and single-trial phase-locked (ERP) and non-phase-locked (other) EEG data. Electrical source analyses were used to estimate the brain sources involved in the generation of the ERN. Beginning just before incorrect button presses in a speeded choice response paradigm, midfrontal theta-band activity increased in amplitude and became partially and transiently phase-locked to the subject's motor response, accounting for 57% of ERN peak amplitude. The portion of the theta-EEG activity increase remaining after subtracting the response-locked ERP from each trial was larger and longer lasting after error responses than after correct responses, extending on average 400 ms beyond the ERN peak. Multiple equivalent-dipole source analysis suggested 3 possible equivalent dipole sources of the theta-bandpassed ERN, while the scalp distribution of non-phase-locked theta amplitude suggested the presence of additional frontal theta-EEG sources. These results appear consistent with a body of research that demonstrates a relationship between limbic theta activity and action regulation, including error monitoring and learning.

  8. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.

    PubMed

    Engemann, Denis A; Gramfort, Alexandre

    2015-03-01

    Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis

    PubMed Central

    Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C.; Hardiman, Orla

    2015-01-01

    Background Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. Methods 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Results Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05). Discussion There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS. PMID:26091258

  10. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure.

    PubMed

    Wang, Hui; Tan, Shengzhi; Xu, Xinping; Zhao, Li; Zhang, Jing; Yao, Binwei; Gao, Yabing; Zhou, Hongmei; Peng, Ruiyun

    2017-11-01

    The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm 2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. Results found that the rats in the 10mW/cm 2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm 2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Investigating dynamical information transfer in the brain following a TMS pulse: Insights from structural architecture.

    PubMed

    Amico, Enrico; Van Mierlo, Pieter; Marinazzo, Daniele; Laureys, Steven

    2015-01-01

    Transcranial magnetic stimulation (TMS) has been used for more than 20 years to investigate connectivity and plasticity in the human cortex. By combining TMS with high-density electroencephalography (hd-EEG), one can stimulate any cortical area and measure the effects produced by this perturbation in the rest of the cerebral cortex. The purpose of this paper is to investigate changes of information flow in the brain after TMS from a functional and structural perspective, using multimodal modeling of source reconstructed TMS/hd-EEG recordings and DTI tractography. We prove how brain dynamics induced by TMS is constrained and driven by its structure, at different spatial and temporal scales, especially when considering cross-frequency interactions. These results shed light on the function-structure organization of the brain network at the global level, and on the huge variety of information contained in it.

  12. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    DTIC Science & Technology

    2011-01-01

    open-source BMI software solu- tions are currently available, we feel that the Craniux software package fills a specific need in the realm of BMI...data, such as cortical source imaging using EEG or MEG recordings. It is with these characteristics in mind that we feel the Craniux software package...S. Adee, “Dean Kamen’s ‘luke arm’ prosthesis readies for clinical trials,” IEEE Spectrum, February 2008, http://spectrum .ieee.org/biomedical

  13. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.

    PubMed

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.

  14. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation

    PubMed Central

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research. PMID:27774054

  15. Integrity of central nervous function in diabetes mellitus assessed by resting state EEG frequency analysis and source localization.

    PubMed

    Frøkjær, Jens B; Graversen, Carina; Brock, Christina; Khodayari-Rostamabad, Ahmad; Olesen, Søren S; Hansen, Tine M; Søfteland, Eirik; Simrén, Magnus; Drewes, Asbjørn M

    2017-02-01

    Diabetes mellitus (DM) is associated with structural and functional changes of the central nervous system. We used electroencephalography (EEG) to assess resting state cortical activity and explored associations to relevant clinical features. Multichannel resting state EEG was recorded in 27 healthy controls and 24 patients with longstanding DM and signs of autonomic dysfunction. The power distribution based on wavelet analysis was summarized into frequency bands with corresponding topographic mapping. Source localization analysis was applied to explore the electrical cortical sources underlying the EEG. Compared to controls, DM patients had an overall decreased EEG power in the delta (1-4Hz) and gamma (30-45Hz) bands. Topographic analysis revealed that these changes were confined to the frontal region for the delta band and to central cortical areas for the gamma band. Source localization analysis identified sources with reduced activity in the left postcentral gyrus for the gamma band and in right superior parietal lobule for the alpha1 (8-10Hz) band. DM patients with clinical signs of autonomic dysfunction and gastrointestinal symptoms had evidence of altered resting state cortical processing. This may reflect metabolic, vascular or neuronal changes associated with diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Is the Surface Potential Integral of a Dipole in a Volume Conductor Always Zero? A Cloud Over the Average Reference of EEG and ERP.

    PubMed

    Yao, Dezhong

    2017-03-01

    Currently, average reference is one of the most widely adopted references in EEG and ERP studies. The theoretical assumption is the surface potential integral of a volume conductor being zero, thus the average of scalp potential recordings might be an approximation of the theoretically desired zero reference. However, such a zero integral assumption has been proved only for a spherical surface. In this short communication, three counter-examples are given to show that the potential integral over the surface of a dipole in a volume conductor may not be zero. It depends on the shape of the conductor and the orientation of the dipole. This fact on one side means that average reference is not a theoretical 'gold standard' reference, and on the other side reminds us that the practical accuracy of average reference is not only determined by the well-known electrode array density and its coverage but also intrinsically by the head shape. It means that reference selection still is a fundamental problem to be fixed in various EEG and ERP studies.

  17. Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts

    PubMed Central

    PONTIFEX, MATTHEW B.; GWIZDALA, KATHRYN L.; PARKS, ANDREW C.; BILLINGER, MARTIN; BRUNNER, CLEMENS

    2017-01-01

    Despite the growing use of independent component analysis (ICA) algorithms for isolating and removing eyeblink-related activity from EEG data, we have limited understanding of how variability associated with ICA uncertainty may be influencing the reconstructed EEG signal after removing the eyeblink artifact components. To characterize the magnitude of this ICA uncertainty and to understand the extent to which it may influence findings within ERP and EEG investigations, ICA decompositions of EEG data from 32 college-aged young adults were repeated 30 times for three popular ICA algorithms. Following each decomposition, eyeblink components were identified and removed. The remaining components were back-projected, and the resulting clean EEG data were further used to analyze ERPs. Findings revealed that ICA uncertainty results in variation in P3 amplitude as well as variation across all EEG sampling points, but differs across ICA algorithms as a function of the spatial location of the EEG channel. This investigation highlights the potential of ICA uncertainty to introduce additional sources of variance when the data are back-projected without artifact components. Careful selection of ICA algorithms and parameters can reduce the extent to which ICA uncertainty may introduce an additional source of variance within ERP/EEG studies. PMID:28026876

  18. Incorporating an ERP Project into Undergraduate Instruction

    PubMed Central

    Nyhus, Erika; Curtis, Nancy

    2016-01-01

    Electroencephalogram (EEG) is a relatively non-invasive, simple technique, and recent advances in open source analysis tools make it feasible to implement EEG as a component in undergraduate neuroscience curriculum. We have successfully led students to design novel experiments, record EEG data, and analyze event-related potentials (ERPs) during a one-semester laboratory course for undergraduates in cognitive neuroscience. First, students learned how to set up an EEG recording and completed an analysis tutorial. Students then learned how to set up a novel EEG experiment; briefly, they formed groups of four and designed an EEG experiment on a topic of their choice. Over the course of two weeks students collected behavioral and EEG data. Each group then analyzed their behavioral and ERP data and presented their results both as a presentation and as a final paper. Upon completion of the group project students reported a deeper understanding of cognitive neuroscience methods and a greater appreciation for the strengths and weaknesses of the EEG technique. Although recent advances in open source software made this project possible, it also required access to EEG recording equipment and proprietary software. Future efforts should be directed at making publicly available datasets to learn ERP analysis techniques and making publicly available EEG recording and analysis software to increase the accessibility of hands-on research experience in undergraduate cognitive neuroscience laboratory courses. PMID:27385925

  19. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  20. The infant mirror neuron system studied with high density EEG.

    PubMed

    Nyström, Pär

    2008-01-01

    The mirror neuron system has been suggested to play a role in many social capabilities such as action understanding, imitation, language and empathy. These are all capabilities that develop during infancy and childhood, but the human mirror neuron system has been poorly studied using neurophysiological measures. This study measured the brain activity of 6-month-old infants and adults using a high-density EEG net with the aim of identifying mirror neuron activity. The subjects viewed both goal-directed movements and non-goal-directed movements. An independent component analysis was used to extract the sources of cognitive processes. The desynchronization of the mu rhythm in adults has been shown to be a marker for activation of the mirror neuron system and was used as a criterion to categorize independent components between subjects. The results showed significant mu desynchronization in the adult group and significantly higher ERP activation in both adults and 6-month-olds for the goal-directed action observation condition. This study demonstrate that infants as young as 6 months display mirror neuron activity and is the first to present a direct ERP measure of the mirror neuron system in infants.

  1. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    PubMed Central

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  2. Methods for artifact detection and removal from scalp EEG: A review.

    PubMed

    Islam, Md Kafiul; Rastegarnia, Amir; Yang, Zhi

    2016-11-01

    Electroencephalography (EEG) is the most popular brain activity recording technique used in wide range of applications. One of the commonly faced problems in EEG recordings is the presence of artifacts that come from sources other than brain and contaminate the acquired signals significantly. Therefore, much research over the past 15 years has focused on identifying ways for handling such artifacts in the preprocessing stage. However, this is still an active area of research as no single existing artifact detection/removal method is complete or universal. This article presents an extensive review of the existing state-of-the-art artifact detection and removal methods from scalp EEG for all potential EEG-based applications and analyses the pros and cons of each method. First, a general overview of the different artifact types that are found in scalp EEG and their effect on particular applications are presented. In addition, the methods are compared based on their ability to remove certain types of artifacts and their suitability in relevant applications (only functional comparison is provided not performance evaluation of methods). Finally, the future direction and expected challenges of current research is discussed. Therefore, this review is expected to be helpful for interested researchers who will develop and/or apply artifact handling algorithm/technique in future for their applications as well as for those willing to improve the existing algorithms or propose a new solution in this particular area of research. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Top-down signal transmission and global hyperconnectivity in auditory-visual synesthesia: Evidence from a functional EEG resting-state study.

    PubMed

    Brauchli, Christian; Elmer, Stefan; Rogenmoser, Lars; Burkhard, Anja; Jäncke, Lutz

    2018-01-01

    Auditory-visual (AV) synesthesia is a rare phenomenon in which an auditory stimulus induces a "concurrent" color sensation. Current neurophysiological models of synesthesia mainly hypothesize "hyperconnected" and "hyperactivated" brains, but differ in the directionality of signal transmission. The two-stage model proposes bottom-up signal transmission from inducer- to concurrent- to higher-order brain areas, whereas the disinhibited feedback model postulates top-down signal transmission from inducer- to higher-order- to concurrent brain areas. To test the different models of synesthesia, we estimated local current density, directed and undirected connectivity patterns in the intracranial space during 2 min of resting-state (RS) EEG in 11 AV synesthetes and 11 nonsynesthetes. AV synesthetes demonstrated increased parietal theta, alpha, and lower beta current density compared to nonsynesthetes. Furthermore, AV synesthetes were characterized by increased top-down signal transmission from the superior parietal lobe to the left color processing area V4 in the upper beta frequency band. Analyses of undirected connectivity revealed a global, synesthesia-specific hyperconnectivity in the alpha frequency band. The involvement of the superior parietal lobe even during rest is a strong indicator for its key role in AV synesthesia. By demonstrating top-down signal transmission in AV synesthetes, we provide direct support for the disinhibited feedback model of synesthesia. Finally, we suggest that synesthesia is a consequence of global hyperconnectivity. Hum Brain Mapp 39:522-531, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses.

    PubMed

    Wang, Sheng H; Lobier, Muriel; Siebenhühner, Felix; Puoliväli, Tuomas; Palva, Satu; Palva, J Matias

    2018-06-01

    Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key systems-level mechanism for coordination of neuronal processing and communication between brain regions. Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography (MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or "source leakage", is a significant confounder for FC analyses and network localization. Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data. Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy

    PubMed Central

    2013-01-01

    Background Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. Methods Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG recordings and clinical symptoms. Power spectral density curves, power (P) and median frequency (MF) were determined using the raw EEG. In 7 patients non-depolarizing muscle relaxant (NDMR) exposure was found. The EEG sections were analyzed and compared before and after NDMR administration. Results The reevaluation found that the aEEG was truly normal in 4 neonates. In 3 neonates, high voltage electrocardiographic (ECG) artifacts were found with flat trace on raw EEG. High frequency component (HFC) was found as a cause of normal appearing aEEG in 10 neonates. HFC disappeared while P and MF decreased significantly upon NDMR administration in each observed case. Conclusion Occurrence of false normal aEEG background pattern is relatively high in neonates with HIE and hypothermia. High frequency EEG artifacts suggestive of shivering were found to be the most common cause of false normal aEEG in hypothermic neonates while high voltage ECG artifacts are less common. PMID:24268061

  6. Source localization of temporal lobe epilepsy using PCA-LORETA analysis on ictal EEG recordings.

    PubMed

    Stern, Yaki; Neufeld, Miriam Y; Kipervasser, Svetlana; Zilberstein, Amir; Fried, Itzhak; Teicher, Mina; Adi-Japha, Esther

    2009-04-01

    Localizing the source of an epileptic seizure using noninvasive EEG suffers from inaccuracies produced by other generators not related to the epileptic source. The authors isolated the ictal epileptic activity, and applied a source localization algorithm to identify its estimated location. Ten ictal EEG scalp recordings from five different patients were analyzed. The patients were known to have temporal lobe epilepsy with a single epileptic focus that had a concordant MRI lesion. The patients had become seizure-free following partial temporal lobectomy. A midinterval (approximately 5 seconds) period of ictal activity was used for Principal Component Analysis starting at ictal onset. The level of epileptic activity at each electrode (i.e., the eigenvector of the component that manifest epileptic characteristic), was used as an input for low-resolution tomography analysis for EEG inverse solution (Zilberstain et al., 2004). The algorithm accurately and robustly identified the epileptic focus in these patients. Principal component analysis and source localization methods can be used in the future to monitor the progression of an epileptic seizure and its expansion to other areas.

  7. Forward and inverse effects of the complete electrode model in neonatal EEG

    PubMed Central

    Lew, S.; Wolters, C. H.

    2016-01-01

    This paper investigates finite element method-based modeling in the context of neonatal electroencephalography (EEG). In particular, the focus lies on electrode boundary conditions. We compare the complete electrode model (CEM) with the point electrode model (PEM), which is the current standard in EEG. In the CEM, the voltage experienced by an electrode is modeled more realistically as the integral average of the potential distribution over its contact surface, whereas the PEM relies on a point value. Consequently, the CEM takes into account the subelectrode shunting currents, which are absent in the PEM. In this study, we aim to find out how the electrode voltage predicted by these two models differ, if standard size electrodes are attached to a head of a neonate. Additionally, we study voltages and voltage variation on electrode surfaces with two source locations: 1) next to the C6 electrode and 2) directly under the Fz electrode and the frontal fontanel. A realistic model of a neonatal head, including a skull with fontanels and sutures, is used. Based on the results, the forward simulation differences between CEM and PEM are in general small, but significant outliers can occur in the vicinity of the electrodes. The CEM can be considered as an integral part of the outer head model. The outcome of this study helps understanding volume conduction of neonatal EEG, since it enlightens the role of advanced skull and electrode modeling in forward and inverse computations. NEW & NOTEWORTHY The effect of the complete electrode model on electroencephalography forward and inverse computations is explored. A realistic neonatal head model, including a skull structure with fontanels and sutures, is used. The electrode and skull modeling differences are analyzed and compared with each other. The results suggest that the complete electrode model can be considered as an integral part of the outer head model. To achieve optimal source localization results, accurate electrode modeling might be necessary. PMID:27852731

  8. Investigating social cognition in infants and adults using dense array electroencephalography ((d)EEG).

    PubMed

    Akano, Adekemi J; Haley, David W; Dudek, Joanna

    2011-06-27

    Dense array electroencephalography ((d)EEG), which provides a non-invasive window for measuring brain activity and a temporal resolution unsurpassed by any other current brain imaging technology¹, ² is being used increasingly in the study of social cognitive functioning in infants and adults. While (d)EEG is enabling researchers to examine brain activity patterns with unprecedented levels of sensitivity, conventional EEG recording systems continue to face certain limitations, including 1) poor spatial resolution and source localization³,⁴2) the physical discomfort for test subjects of enduring the individual application of numerous electrodes to the surface of the scalp, and 3) the complexity for researchers of learning to use multiple software packages to collect and process data. Here we present an overview of an established methodology that represents a significant improvement on conventional methodologies for studying EEG in infants and adults. Although several analytical software techniques can be used to establish indirect indices of source localization to improve the spatial resolution of (d)EEG, the HydroCel Geodesic Sensor Net (HCGSN) by Electrical Geodesics, Inc. (EGI), a dense sensory array that maintains equal distances among adjacent recording electrodes on all surfaces of the scalp, further enhances spatial resolution⁴,⁵(,)⁶ compared to standard (d)EEG systems. The sponge-based HCGSN can be applied rapidly and without scalp abrasion, making it ideal for use with adults⁷,⁸ children⁹,¹⁰, ¹¹,¹² and infants¹², in both research and clinical ⁴,⁵,⁶,¹³,¹⁴,¹⁵settings. This feature allows for considerable cost and time savings by decreasing the average net application time compared to other (d)EEG systems. Moreover, the HCGSN includes unified, seamless software applications for all phases of data, greatly simplifying the collection, processing, and analysis of (d)EEG data. The HCGSN features a low-profile electrode pedestal, which, when filled with electrolyte solution, creates a sealed microenvironment and an electrode-scalp interface. In all Geodesic (d;)EEG systems, EEG sensors detect changes in voltage originating from the participant's scalp, along with a small amount of electrical noise originating from the room environment. Electrical signals from all sensors of the Geodesic sensor net are received simultaneously by the amplifier, where they are automatically processed, packaged, and sent to the data-acquisition computer (DAC). Once received by the DAC, scalp electrical activity can be isolated from artifacts for analysis using the filtering and artifact detection tools included in the EGI software. Typically, the HCGSN can be used continuously for only up to two hours because the electrolyte solution dries out over time, gradually decreasing the quality of the scalp-electrode interface. In the Parent-Infant Research Lab at the University of Toronto, we are using (d)EEG to study social cognitive processes including memory, emotion, goals, intentionality, anticipation, and executive functioning in both adult and infant participants.

  9. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography

    PubMed Central

    Sprecher, Kate E.; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.

    2016-01-01

    Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor. PMID:26901503

  10. As above, so below? Towards understanding inverse models in BCI

    NASA Astrophysics Data System (ADS)

    Lindgren, Jussi T.

    2018-02-01

    Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.

  11. EEG and MEG data analysis in SPM8.

    PubMed

    Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl

    2011-01-01

    SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.

  12. EEG and MEG Data Analysis in SPM8

    PubMed Central

    Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl

    2011-01-01

    SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools. PMID:21437221

  13. EEG-Annotate: Automated identification and labeling of events in continuous signals with applications to EEG.

    PubMed

    Su, Kyung-Min; Hairston, W David; Robbins, Kay

    2018-01-01

    In controlled laboratory EEG experiments, researchers carefully mark events and analyze subject responses time-locked to these events. Unfortunately, such markers may not be available or may come with poor timing resolution for experiments conducted in less-controlled naturalistic environments. We present an integrated event-identification method for identifying particular responses that occur in unlabeled continuously recorded EEG signals based on information from recordings of other subjects potentially performing related tasks. We introduce the idea of timing slack and timing-tolerant performance measures to deal with jitter inherent in such non-time-locked systems. We have developed an implementation available as an open-source MATLAB toolbox (http://github.com/VisLab/EEG-Annotate) and have made test data available in a separate data note. We applied the method to identify visual presentation events (both target and non-target) in data from an unlabeled subject using labeled data from other subjects with good sensitivity and specificity. The method also identified actual visual presentation events in the data that were not previously marked in the experiment. Although the method uses traditional classifiers for initial stages, the problem of identifying events based on the presence of stereotypical EEG responses is the converse of the traditional stimulus-response paradigm and has not been addressed in its current form. In addition to identifying potential events in unlabeled or incompletely labeled EEG, these methods also allow researchers to investigate whether particular stereotypical neural responses are present in other circumstances. Timing-tolerance has the added benefit of accommodating inter- and intra- subject timing variations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  15. Abnormal cortical sources of resting state electroencephalographic rhythms in single treatment-naïve HIV individuals: A statistical z-score index.

    PubMed

    Babiloni, Claudio; Pennica, Alfredo; Del Percio, Claudio; Noce, Giuseppe; Cordone, Susanna; Muratori, Chiara; Ferracuti, Stefano; Donato, Nicole; Di Campli, Francesco; Gianserra, Laura; Teti, Elisabetta; Aceti, Antonio; Soricelli, Andrea; Viscione, Magdalena; Limatola, Cristina; Andreoni, Massimo; Onorati, Paolo

    2016-03-01

    This study tested a simple statistical procedure to recognize single treatment-naïve HIV individuals having abnormal cortical sources of resting state delta (<4 Hz) and alpha (8-13 Hz) electroencephalographic (EEG) rhythms with reference to a control group of sex-, age-, and education-matched healthy individuals. Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values were expected to show worse cognitive status. Resting state eyes-closed EEG data were recorded in 82 treatment-naïve HIV (39.8 ys.±1.2 standard error mean, SE) and 59 age-matched cognitively healthy subjects (39 ys.±2.2 SE). Low-resolution brain electromagnetic tomography (LORETA) estimated delta and alpha sources in frontal, central, temporal, parietal, and occipital cortical regions. Ratio of the activity of parietal delta and high-frequency alpha sources (EEG marker) showed the maximum difference between the healthy and the treatment-naïve HIV group. Z-score of the EEG marker was statistically abnormal in 47.6% of treatment-naïve HIV individuals with reference to the healthy group (p<0.05). Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values exhibited lower mini mental state evaluation (MMSE) score, higher CD4 count, and lower viral load (p<0.05). This statistical procedure permitted for the first time to identify single treatment-naïve HIV individuals having abnormal EEG activity. This procedure might enrich the detection and monitoring of effects of HIV on brain function in single treatment-naïve HIV individuals. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Cai, Lihui; Wu, Xinyu; Song, Zhenxi; Wang, Jiang; Xia, Zijie; Liu, Jing; Cao, Yibin

    2018-02-01

    Epilepsy is commonly associated with abnormally synchronous activity of neurons located in epileptogenic zones. In this study, we investigated the synchronization characteristic of right temporal lobe epilepsy (RTLE). Multichannel electroencephalography (EEG) data were recorded from the RTLE patients during interictal period and normal controls. Power spectral density was first used to analyze the EEG power for two groups of subjects. It was found that the power of epileptics is increased in the whole brain compared with that of the control. We calculated phase lag index (PLI) to measure the phase synchronization between each pair of EEG signals. A higher degree of synchronization was observed in the epileptics especially between distant channels. In particular, the regional synchronization degree was negatively correlated with power spectral density and the correlation was weaker for epileptics. Moreover, the synchronization degree decayed with the increase of relative distance of channels for both the epilepsy and control, but the dependence was weakened in the former. The obtained results may provide new insights into the generation mechanism of epilepsy.

  17. EEG functional connectivity is partially predicted by underlying white matter connectivity

    PubMed Central

    Chu, CJ; Tanaka, N; Diaz, J; Edlow, BL; Wu, O; Hämäläinen, M; Stufflebeam, S; Cash, SS; Kramer, MA.

    2015-01-01

    Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales. PMID:25534110

  18. Neuronal Networks during Burst Suppression as Revealed by Source Analysis

    PubMed Central

    Reinicke, Christine; Moeller, Friederike; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Pressler, Ronit; Deuschl, Günther; Stephani, Ulrich; Siniatchkin, Michael

    2015-01-01

    Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies. PMID:25927439

  19. Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification.

    PubMed

    Al-Kaysi, Alaa M; Al-Ani, Ahmed; Loo, Colleen K; Powell, Tamara Y; Martin, Donel M; Breakspear, Michael; Boonstra, Tjeerd W

    2017-01-15

    Transcranial direct current stimulation (tDCS) is a promising treatment for major depressive disorder (MDD). Standard tDCS treatment involves numerous sessions running over a few weeks. However, not all participants respond to this type of treatment. This study aims to investigate the feasibility of identifying MDD patients that respond to tDCS treatment based on resting-state electroencephalography (EEG) recorded prior to treatment commencing. We used machine learning to predict improvement in mood and cognition during tDCS treatment from baseline EEG power spectra. Ten participants with a current diagnosis of MDD were included. Power spectral density was assessed in five frequency bands: delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (13-30Hz) and gamma (30-100Hz). Improvements in mood and cognition were assessed using the Montgomery-Åsberg Depression Rating Scale and Symbol Digit Modalities Test, respectively. We trained the classifiers using three algorithms (support vector machine, extreme learning machine and linear discriminant analysis) and a leave-one-out cross-validation approach. Mood labels were accurately predicted in 8 out of 10 participants using EEG channels FC4-AF8 (accuracy=76%, p=0.034). Cognition labels were accurately predicted in 10 out of 10 participants using channels pair CPz-CP2 (accuracy=92%, p=0.004). Due to the limited number of participants (n=10), the presented results mainly aim to serve as a proof of concept. These finding demonstrate the feasibility of using machine learning to identify patients that will respond to tDCS treatment. These promising results warrant a larger study to determine the clinical utility of this approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole-Cole parameters. In the second case, we perform a laboratory sandbox experiment in which we mix a volume of burning coal and sand. The algorithm is able to localize the burning coal both in terms of electrical conductivity and chargeability.

  1. Pediatric ICU EEG Monitoring: Current Resources and Practice in the United States and Canada

    PubMed Central

    Sanchez, Sarah M.; Carpenter, Jessica; Chapman, Kevin E.; Dlugos, Dennis J.; Gallentine, William; Giza, Christopher C.; Goldstein, Joshua L.; Hahn, Cecil D.; Kessler, Sudha Kilaru; Loddenkemper, Tobias; Riviello, James J.; Abend, Nicholas S.

    2013-01-01

    PURPOSE To describe current continuous EEG (cEEG) utilization in critically ill children. METHODS An online survey of pediatric neurologists from 50 United States (U.S.) and 11 Canadian institutions was conducted in August 2011. RESULTS Responses were received from 58 of 61 (95%) surveyed institutions. Common cEEG indications are altered mental status after a seizure or status epilepticus (97%), altered mental status of unknown etiology (88%), or altered mental status with an acute primary neurological condition (88%). The median number of patients undergoing cEEG per month per center increased from August 2010 to August 2011 (6 to 10 per month in U.S., 2 to 3 per month in Canada). Few institutions have clinical pathways addressing cEEG use (31%). Physicians most commonly review cEEG twice per day (37%). There is variability regarding which services can order cEEG, the degree of neurology involvement, technologist availability, and whether technologists perform cEEG screening. CONCLUSIONS Among the surveyed institutions, which included primarily large academic centers, cEEG use in pediatric intensive care units is increasing and is often considered indicated for children with altered mental status at risk for non-convulsive seizures. However, there remains substantial variability in cEEG access and utilization among institutions. PMID:23545766

  2. EEG source reconstruction evidence for the noun-verb neural dissociation along semantic dimensions.

    PubMed

    Zhao, Bin; Dang, Jianwu; Zhang, Gaoyan

    2017-09-17

    One of the long-standing issues in neurolinguistic research is about the neural basis of word representation, concerning whether grammatical classification or semantic difference causes the neural dissociation of brain activity patterns when processing different word categories, especially nouns and verbs. To disentangle this puzzle, four orthogonalized word categories in Chinese: unambiguous nouns (UN), unambiguous verbs (UV), ambiguous words with noun-biased semantics (AN), and ambiguous words with verb-biased semantics (AV) were adopted in an auditory task for recording electroencephalographic (EEG) signals from 128 electrodes on the scalps of twenty-two subjects. With the advanced current density reconstruction (CDR) algorithm and the constraint of standardized low-resolution electromagnetic tomography, the spatiotemporal brain dynamics of word processing were explored with the results that in multiple time periods including P1 (60-90ms), N1 (100-140ms), P200 (150-250ms) and N400 (350-450ms), noun-verb dissociation over the parietal-occipital and frontal-central cortices appeared not only between the UN-UV grammatical classes but also between the grammatically identical but semantically different AN-AV pairs. The apparent semantic dissociation within one grammatical class strongly suggests that the semantic difference rather than grammatical classification could be interpreted as the origin of the noun-verb neural dissociation. Our results also revealed that semantic dissociation occurs from an early stage and repeats in multiple phases, thus supporting a functionally hierarchical word processing mechanism. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Amplitude-integrated EEG colored according to spectral edge frequency.

    PubMed

    Kobayashi, Katsuhiro; Mimaki, Nobuyoshi; Endoh, Fumika; Inoue, Takushi; Yoshinaga, Harumi; Ohtsuka, Yoko

    2011-10-01

    To improve the interpretability of figures containing an amplitude-integrated electroencephalogram (aEEG), we devised a color scale that allows us to incorporate spectral edge frequency (SEF) information into aEEG figures. Preliminary clinical assessment of this novel technique, which we call aEEG/SEF, was performed using neonatal and early infantile seizure data. We created aEEG, color density spectral array (DSA), and aEEG/SEF figures for focal seizures recorded in seven infants. Each seizure was paired with an interictal period from the same patient. After receiving instructions on how to interpret the figures, eight test reviewers examined each of the 72 figures displaying compressed data in aEEG, DSA, or aEEG/SEF form (12 seizures and 12 corresponding interictal periods) and attempted to identify each as a seizure or otherwise. They were not provided with any information regarding the original record. The median number of correctly identified seizures, out of a total of 12, was 7 (58.3%) for aEEG figures, 8 (66.7%) for DSA figures and 10 (83.3%) for aEEG/SEF figures; the differences among these are statistically significant (p=0.011). All reviewers concluded that aEEG/SEF figures were the easiest to interpret. The aEEG/SEF data presentation technique is a valid option in aEEG recordings of seizures. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Tuning Neural Phase Entrainment to Speech.

    PubMed

    Falk, Simone; Lanzilotti, Cosima; Schön, Daniele

    2017-08-01

    Musical rhythm positively impacts on subsequent speech processing. However, the neural mechanisms underlying this phenomenon are so far unclear. We investigated whether carryover effects from a preceding musical cue to a speech stimulus result from a continuation of neural phase entrainment to periodicities that are present in both music and speech. Participants listened and memorized French metrical sentences that contained (quasi-)periodic recurrences of accents and syllables. Speech stimuli were preceded by a rhythmically regular or irregular musical cue. Our results show that the presence of a regular cue modulates neural response as estimated by EEG power spectral density, intertrial coherence, and source analyses at critical frequencies during speech processing compared with the irregular condition. Importantly, intertrial coherences for regular cues were indicative of the participants' success in memorizing the subsequent speech stimuli. These findings underscore the highly adaptive nature of neural phase entrainment across fundamentally different auditory stimuli. They also support current models of neural phase entrainment as a tool of predictive timing and attentional selection across cognitive domains.

  5. Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction.

    PubMed

    de Munck, Jan C; van Houdt, Petra J; Gonçalves, Sónia I; van Wegen, Erwin; Ossenblok, Pauly P W

    2013-01-01

    Co-registered EEG and functional MRI (EEG/fMRI) is a potential clinical tool for planning invasive EEG in patients with epilepsy. In addition, the analysis of EEG/fMRI data provides a fundamental insight into the precise physiological meaning of both fMRI and EEG data. Routine application of EEG/fMRI for localization of epileptic sources is hampered by large artefacts in the EEG, caused by switching of scanner gradients and heartbeat effects. Residuals of the ballistocardiogram (BCG) artefacts are similarly shaped as epileptic spikes, and may therefore cause false identification of spikes. In this study, new ideas and methods are presented to remove gradient artefacts and to reduce BCG artefacts of different shapes that mutually overlap in time. Gradient artefacts can be removed efficiently by subtracting an average artefact template when the EEG sampling frequency and EEG low-pass filtering are sufficient in relation to MR gradient switching (Gonçalves et al., 2007). When this is not the case, the gradient artefacts repeat themselves at time intervals that depend on the remainder between the fMRI repetition time and the closest multiple of the EEG acquisition time. These repetitions are deterministic, but difficult to predict due to the limited precision by which these timings are known. Therefore, we propose to estimate gradient artefact repetitions using a clustering algorithm, combined with selective averaging. Clustering of the gradient artefacts yields cleaner EEG for data recorded during scanning of a 3T scanner when using a sampling frequency of 2048 Hz. It even gives clean EEG when the EEG is sampled with only 256 Hz. Current BCG artefacts-reduction algorithms based on average template subtraction have the intrinsic limitation that they fail to deal properly with artefacts that overlap in time. To eliminate this constraint, the precise timings of artefact overlaps were modelled and represented in a sparse matrix. Next, the artefacts were disentangled with a least squares procedure. The relevance of this approach is illustrated by determining the BCG artefacts in a data set consisting of 29 healthy subjects recorded in a 1.5 T scanner and 15 patients with epilepsy recorded in a 3 T scanner. Analysis of the relationship between artefact amplitude, duration and heartbeat interval shows that in 22% (1.5T data) to 30% (3T data) of the cases BCG artefacts show an overlap. The BCG artefacts of the EEG/fMRI data recorded on the 1.5T scanner show a small negative correlation between HBI and BCG amplitude. In conclusion, the proposed methodology provides a substantial improvement of the quality of the EEG signal without excessive computer power or additional hardware than standard EEG-compatible equipment. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Potential for unreliable interpretation of EEG recorded with microelectrodes.

    PubMed

    Stacey, William C; Kellis, Spencer; Greger, Bradley; Butson, Christopher R; Patel, Paras R; Assaf, Trevor; Mihaylova, Temenuzhka; Glynn, Simon

    2013-08-01

    Recent studies in epilepsy, cognition, and brain machine interfaces have shown the utility of recording intracranial electroencephalography (iEEG) with greater spatial resolution. Many of these studies utilize microelectrodes connected to specialized amplifiers that are optimized for such recordings. We recently measured the impedances of several commercial microelectrodes and demonstrated that they will distort iEEG signals if connected to clinical EEG amplifiers commonly used in most centers. In this study we demonstrate the clinical implications of this effect and identify some of the potential difficulties in using microelectrodes. Human iEEG data were digitally filtered to simulate the signal recorded by a hybrid grid (two macroelectrodes and eight microelectrodes) connected to a standard EEG amplifier. The filtered iEEG data were read by three trained epileptologists, and high frequency oscillations (HFOs) were detected with a well-known algorithm. The filtering method was verified experimentally by recording an injected EEG signal in a saline bath with the same physical acquisition system used to generate the model. Several electrodes underwent scanning electron microscopy (SEM). Macroelectrode recordings were unaltered compared to the source iEEG signal, but microelectrodes attenuated low frequencies. The attenuated signals were difficult to interpret: all three clinicians changed their clinical scoring of slowing and seizures when presented with the same data recorded on different sized electrodes. The HFO detection algorithm was oversensitive with microelectrodes, classifying many more HFOs than when the same data were recorded with macroelectrodes. In addition, during experimental recordings the microelectrodes produced much greater noise as well as large baseline fluctuations, creating sharply contoured transients, and superimposed "false" HFOs. SEM of these microelectrodes demonstrated marked variability in exposed electrode surface area, lead fractures, and sharp edges. Microelectrodes should not be used with low impedance (<1 GΩ) amplifiers due to severe signal attenuation and variability that changes clinical interpretations. The current method of preparing microelectrodes can leave sharp edges and nonuniform amounts of exposed wire. Even when recorded with higher impedance amplifiers, microelectrode data are highly prone to artifacts that are difficult to interpret. Great care must be taken when analyzing iEEG from high impedance microelectrodes. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  7. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia.

    PubMed

    Blokland, Yvonne; Spyrou, Loukianos; Thijssen, Dick; Eijsvogels, Thijs; Colier, Willy; Floor-Westerdijk, Marianne; Vlek, Rutger; Bruhn, Jorgen; Farquhar, Jason

    2014-03-01

    Combining electrophysiological and hemodynamic features is a novel approach for improving current performance of brain switches based on sensorimotor rhythms (SMR). This study was conducted with a dual purpose: to test the feasibility of using a combined electroencephalogram/functional near-infrared spectroscopy (EEG-fNIRS) SMR-based brain switch in patients with tetraplegia, and to examine the performance difference between motor imagery and motor attempt for this user group. A general improvement was found when using both EEG and fNIRS features for classification as compared to using the single-modality EEG classifier, with average classification rates of 79% for attempted movement and 70% for imagined movement. For the control group, rates of 87% and 79% were obtained, respectively, where the "attempted movement" condition was replaced with "actual movement." A combined EEG-fNIRS system might be especially beneficial for users who lack sufficient control of current EEG-based brain switches. The average classification performance in the patient group for attempted movement was significantly higher than for imagined movement using the EEG-only as well as the combined classifier, arguing for the case of a paradigm shift in current brain switch research.

  8. Wake High-Density Electroencephalographic Spatiospectral Signatures of Insomnia

    PubMed Central

    Colombo, Michele A.; Ramautar, Jennifer R.; Wei, Yishul; Gomez-Herrero, Germán; Stoffers, Diederick; Wassing, Rick; Benjamins, Jeroen S.; Tagliazucchi, Enzo; van der Werf, Ysbrand D.; Cajochen, Christian; Van Someren, Eus J.W.

    2016-01-01

    Study Objectives: Although daytime complaints are a defining characteristic of insomnia, most EEG studies evaluated sleep only. We used high-density electroencephalography to investigate wake resting state oscillations characteristic of insomnia disorder (ID) at a fine-grained spatiospectral resolution. Methods: A case-control assessment during eyes open (EO) and eyes closed (EC) was performed in a laboratory for human physiology. Participants (n = 94, 74 female, 21–70 y) were recruited through www.sleepregistry.nl: 51 with ID, according to DSM-5 and 43 matched controls. Exclusion criteria were any somatic, neurological or psychiatric condition. Group differences in the spectral power topographies across multiple frequencies (1.5 to 40 Hz) were evaluated using permutation-based inference with Threshold-Free Cluster-Enhancement, to correct for multiple comparisons. Results: As compared to controls, participants with ID showed less power in a narrow upper alpha band (11–12.7 Hz, peak: 11.7 Hz) over bilateral frontal and left temporal regions during EO, and more power in a broad beta frequency range (16.3–40 Hz, peak: 19 Hz) globally during EC. Source estimates suggested global rather than cortically localized group differences. Conclusions: The widespread high power in a broad beta band reported previously during sleep in insomnia is present as well during eyes closed wakefulness, suggestive of a round-the-clock hyperarousal. Low power in the upper alpha band during eyes open is consistent with low cortical inhibition and attentional filtering. The fine-grained HD-EEG findings suggest that, while more feasible than PSG, wake EEG of short duration with a few well-chosen electrodes and frequency bands, can provide valuable features of insomnia. Citation: Colombo MA, Ramautar JR, Wei Y, Gomez-Herrero G, Stoffers D, Wassing R, Benjamins JS, Tagliazucchi E, van der Werf YD, Cajochen C, Van Someren EJW. Wake high-density electroencephalographic spatiospectral signatures of insomnia. SLEEP 2016;39(5):1015–1027. PMID:26951395

  9. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  10. Anatomically constrained dipole adjustment (ANACONDA) for accurate MEG/EEG focal source localizations

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Jung, Hyun-Kyo; Fujimaki, Norio

    2005-10-01

    This paper proposes an alternative approach to enhance localization accuracy of MEG and EEG focal sources. The proposed approach assumes anatomically constrained spatio-temporal dipoles, initial positions of which are estimated from local peak positions of distributed sources obtained from a pre-execution of distributed source reconstruction. The positions of the dipoles are then adjusted on the cortical surface using a novel updating scheme named cortical surface scanning. The proposed approach has many advantages over the conventional ones: (1) as the cortical surface scanning algorithm uses spatio-temporal dipoles, it is robust with respect to noise; (2) it requires no a priori information on the numbers and initial locations of the activations; (3) as the locations of dipoles are restricted only on a tessellated cortical surface, it is physiologically more plausible than the conventional ECD model. To verify the proposed approach, it was applied to several realistic MEG/EEG simulations and practical experiments. From the several case studies, it is concluded that the anatomically constrained dipole adjustment (ANACONDA) approach will be a very promising technique to enhance accuracy of focal source localization which is essential in many clinical and neurological applications of MEG and EEG.

  11. Detection and description of non-linear interdependence in normal multichannel human EEG data.

    PubMed

    Breakspear, M; Terry, J R

    2002-05-01

    This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex.

  12. Neurodevelopmental Correlates of Theory of Mind in Preschool Children

    ERIC Educational Resources Information Center

    Sabbagh, Mark A.; Bowman, Lindsay C.; Evraire, Lyndsay E.; Ito, Jennie M. B.

    2009-01-01

    Baseline electroencephalogram (EEG) data were collected from twenty-nine 4-year-old children who also completed batteries of representational theory-of-mind (RTM) tasks and executive functioning (EF) tasks. Neural sources of children's EEG alpha (6-9 Hz) were estimated and analyzed to determine whether individual differences in regional EEG alpha…

  13. Towards a constructionist approach to emotions: verification of the three-dimensional model of affect with EEG-independent component analysis.

    PubMed

    Wyczesany, Miroslaw; Ligeza, Tomasz S

    2015-03-01

    The locationist model of affect, which assumes separate brain structures devoted to particular discrete emotions, is currently being questioned as it has not received enough convincing experimental support. An alternative, constructionist approach suggests that our emotional states emerge from the interaction between brain functional networks, which are related to more general, continuous affective categories. In the study, we tested whether the three-dimensional model of affect based on valence, arousal, and dominance (VAD) can reflect brain activity in a more coherent way than the traditional locationist approach. Independent components of brain activity were derived from spontaneous EEG recordings and localized using the DIPFIT method. The correspondence between the spectral power of the revealed brain sources and a mood self-report quantified on the VAD space was analysed. Activation of four (out of nine) clusters of independent brain sources could be successfully explained by the specific combination of three VAD dimensions. The results support the constructionist theory of emotions.

  14. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    PubMed

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1.

    PubMed

    Komssi, S; Huttunen, J; Aronen, H J; Ilmoniemi, R J

    2004-03-01

    Dipole models, which are frequently used in attempts to solve the electromagnetic inverse problem, require explicit a priori assumptions about the cerebral current sources. This is not the case for solutions based on minimum-norm estimates. In the present study, we evaluated the spatial accuracy of the L2 minimum-norm estimate (MNE) in realistic noise conditions by assessing its ability to localize sources of evoked responses at the primary somatosensory cortex (SI). Multichannel somatosensory evoked potentials (SEPs) and magnetic fields (SEFs) were recorded in 5 subjects while stimulating the median and ulnar nerves at the left wrist. A Tikhonov-regularized L2-MNE, constructed on a spherical surface from the SEP signals, was compared with an equivalent current dipole (ECD) solution obtained from the SEFs. Primarily tangential current sources accounted for both SEP and SEF distributions at around 20 ms (N20/N20m) and 70 ms (P70/P70m), which deflections were chosen for comparative analysis. The distances between the locations of the maximum current densities obtained from MNE and the locations of ECDs were on the average 12-13 mm for both deflections and nerves stimulated. In accordance with the somatotopical order of SI, both the MNE and ECD tended to localize median nerve activation more laterally than ulnar nerve activation for the N20/N20m deflection. Simulation experiments further indicated that, with a proper estimate of the source depth and with a good fit of the head model, the MNE can reach a mean accuracy of 5 mm in 0.2-microV root-mean-square noise. When compared with previously reported localizations based on dipole modelling of SEPs, it appears that equally accurate localization of S1 can be obtained with the MNE. MNE can be used to verify parametric source modelling results. Having a relatively good localization accuracy and requiring minimal assumptions, the MNE may be useful for the localization of poorly known activity distributions and for tracking activity changes between brain areas as a function of time.

  16. Sparse EEG/MEG source estimation via a group lasso

    PubMed Central

    Lim, Michael; Ales, Justin M.; Cottereau, Benoit R.; Hastie, Trevor

    2017-01-01

    Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ2 minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches. PMID:28604790

  17. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP)

    PubMed Central

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S.

    2014-01-01

    Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421

  18. Graph theory in brain-to-brain connectivity: A simulation study and an application to an EEG hyperscanning experiment.

    PubMed

    Toppi, J; Ciaramidaro, A; Vogel, P; Mattia, D; Babiloni, F; Siniatchkin, M; Astolfi, L

    2015-08-01

    Hyperscanning consists in the simultaneous recording of hemodynamic or neuroelectrical signals from two or more subjects acting in a social context. Well-established methodologies for connectivity estimation have already been adapted to hyperscanning purposes. The extension of graph theory approach to multi-subjects case is still a challenging issue. In the present work we aim to test the ability of the currently used graph theory global indices in describing the properties of a network given by two interacting subjects. The testing was conducted first on surrogate brain-to-brain networks reproducing typical social scenarios and then on real EEG hyperscanning data recorded during a Joint Action task. The results of the simulation study highlighted the ability of all the investigated indexes in modulating their values according to the level of interaction between subjects. However, only global efficiency and path length indexes demonstrated to be sensitive to an asymmetry in the communication between the two subjects. Such results were, then, confirmed by the application on real EEG data. Global efficiency modulated, in fact, their values according to the inter-brain density, assuming higher values in the social condition with respect to the non-social condition.

  19. Brain signatures of moral sensitivity in adolescents with early social deprivation.

    PubMed

    Escobar, María Josefina; Huepe, David; Decety, Jean; Sedeño, Lucas; Messow, Marie Kristin; Baez, Sandra; Rivera-Rei, Álvaro; Canales-Johnson, Andrés; Morales, Juan Pablo; Gómez, David Maximiliano; Schröeder, Johannes; Manes, Facundo; López, Vladimir; Ibánez, Agustín

    2014-06-19

    The present study examined neural responses associated with moral sensitivity in adolescents with a background of early social deprivation. Using high-density electroencephalography (hdEEG), brain activity was measured during an intentional inference task, which assesses rapid moral decision-making regarding intentional or unintentional harm to people and objects. We compared the responses to this task in a socially deprived group (DG) with that of a control group (CG). The event-related potentials (ERPs) results showed atypical early and late frontal cortical markers associated with attribution of intentionality during moral decision-making in DG (especially regarding intentional harm to people). The source space of the hdEEG showed reduced activity for DG compared with CG in the right prefrontal cortex, bilaterally in the ventromedial prefrontal cortex (vmPFC), and right insula. Moreover, the reduced response in vmPFC for DG was predicted by higher rates of externalizing problems. These findings demonstrate the importance of the social environment in early moral development, supporting a prefrontal maturation model of social deprivation.

  20. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  1. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old)

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Land, S.; Buysse, D. J.; Kupfer, D. J.; Monk, T. H.

    2001-01-01

    The effects of age and gender on sleep EEG power spectral density were assessed in a group of 100 subjects aged 20 to 60 years. We propose a new statistical strategy (mixed-model using fixed-knot regression splines) to analyze quantitative EEG measures. The effect of gender varied according to frequency, but no interactions emerged between age and gender, suggesting that the aging process does not differentially influence men and women. Women had higher power density than men in delta, theta, low alpha, and high spindle frequency range. The effect of age varied according to frequency and across the night. The decrease in power with age was not restricted to slow-wave activity, but also included theta and sigma activity. With increasing age, the attenuation over the night in power density between 1.25 and 8.00 Hz diminished, and the rise in power between 12.25 and 14.00 Hz across the night decreased. Increasing age was associated with higher power in the beta range. These results suggest that increasing age may be related to an attenuation of homeostatic sleep pressure and to an increase in cortical activation during sleep.

  2. An EEG Data Investigation Using Only Artifacts

    DTIC Science & Technology

    2017-02-22

    approach, called artifact separation, was developed to enable the consumer of the EEG data to decide how to handle artifacts. The current...mediation approach, called artifact separation, was developed to enable the consumer of the EEG data to decide how to handle artifacts. The current...contaminated. Having the spectral results flagged as containing an artifact, means that the consumer of the data has the freedom to decide how to

  3. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    PubMed Central

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters. PMID:23956786

  4. The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem

    PubMed Central

    Piastra, Maria Carla; Nüßing, Andreas; Vorwerk, Johannes; Bornfleth, Harald; Oostenveld, Robert; Engwer, Christian; Wolters, Carsten H.

    2018-01-01

    In Electro- (EEG) and Magnetoencephalography (MEG), one important requirement of source reconstruction is the forward model. The continuous Galerkin finite element method (CG-FEM) has become one of the dominant approaches for solving the forward problem over the last decades. Recently, a discontinuous Galerkin FEM (DG-FEM) EEG forward approach has been proposed as an alternative to CG-FEM (Engwer et al., 2017). It was shown that DG-FEM preserves the property of conservation of charge and that it can, in certain situations such as the so-called skull leakages, be superior to the standard CG-FEM approach. In this paper, we developed, implemented, and evaluated two DG-FEM approaches for the MEG forward problem, namely a conservative and a non-conservative one. The subtraction approach was used as source model. The validation and evaluation work was done in statistical investigations in multi-layer homogeneous sphere models, where an analytic solution exists, and in a six-compartment realistically shaped head volume conductor model. In agreement with the theory, the conservative DG-FEM approach was found to be superior to the non-conservative DG-FEM implementation. This approach also showed convergence with increasing resolution of the hexahedral meshes. While in the EEG case, in presence of skull leakages, DG-FEM outperformed CG-FEM, in MEG, DG-FEM achieved similar numerical errors as the CG-FEM approach, i.e., skull leakages do not play a role for the MEG modality. In particular, for the finest mesh resolution of 1 mm sources with a distance of 1.59 mm from the brain-CSF surface, DG-FEM yielded mean topographical errors (relative difference measure, RDM%) of 1.5% and mean magnitude errors (MAG%) of 0.1% for the magnetic field. However, if the goal is a combined source analysis of EEG and MEG data, then it is highly desirable to employ the same forward model for both EEG and MEG data. Based on these results, we conclude that the newly presented conservative DG-FEM can at least complement and in some scenarios even outperform the established CG-FEM approaches in EEG or combined MEG/EEG source analysis scenarios, which motivates a further evaluation of DG-FEM for applications in bioelectromagnetism. PMID:29456487

  5. Sleep EEG Changes during Adolescence: An Index of a Fundamental Brain Reorganization

    ERIC Educational Resources Information Center

    Feinberg, Irwin; Campbell, Ian G.

    2010-01-01

    Delta (1-4 Hz) EEG power in non-rapid eye movement (NREM) sleep declines massively during adolescence. This observation stimulated the hypothesis that during adolescence the human brain undergoes an extensive reorganization driven by synaptic elimination. The parallel declines in synaptic density, delta wave amplitude and cortical metabolic rate…

  6. A Robust Current Pattern for the Detection of Intraventricular Hemorrhage in Neonates Using Electrical Impedance Tomography

    PubMed Central

    Tang, T.; Oh, Sungho; Sadleir, R. J.

    2010-01-01

    We compared two 16-electrode electrical impedance tomography (EIT) current patterns on their ability to reconstruct and quantify small amounts of bleeding inside a neonatal human head using both simulated and phantom data. The current patterns used were an adjacent injection RING pattern (with electrodes located equidistantly on the equator of a sphere) and an EEG current pattern based on the 10–20 EEG electrode layout. Structures mimicking electrically important structures in the infant skull were included in a spherical numerical forward model and their effects on reconstructions were determined. The EEG pattern was found to be a better topology to localize and quantify anomalies within lateral ventricular regions. The RING electrode pattern could not reconstruct anomaly location well, as it could not distinguish different axial positions. The quantification accuracy of the RING pattern was as good as the EEG pattern in noise-free environments. However, the EEG pattern showed better quantification ability than the RING pattern when noise was added. The performance of the EEG pattern improved further with respect to the RING pattern when a fontanel was included in forward models. Significantly better resolution and contrast of reconstructed anomalies was achieved when generated from a model containing such an opening and 50 dB added noise. The EEG method was further applied to reconstruct data from a realistic neonatal head model. Overall, acceptable reconstructions and quantification results were obtained using this model and the homogeneous spherical forward model. PMID:20238166

  7. Combined electroencephalography-functional magnetic resonance imaging and electrical source imaging improves localization of pediatric focal epilepsy.

    PubMed

    Centeno, Maria; Tierney, Tim M; Perani, Suejen; Shamshiri, Elhum A; St Pier, Kelly; Wilkinson, Charlotte; Konn, Daniel; Vulliemoz, Serge; Grouiller, Frédéric; Lemieux, Louis; Pressler, Ronit M; Clark, Christopher A; Cross, J Helen; Carmichael, David W

    2017-08-01

    Surgical treatment in epilepsy is effective if the epileptogenic zone (EZ) can be correctly localized and characterized. Here we use simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) data to derive EEG-fMRI and electrical source imaging (ESI) maps. Their yield and their individual and combined ability to (1) localize the EZ and (2) predict seizure outcome were then evaluated. Fifty-three children with drug-resistant epilepsy underwent EEG-fMRI. Interictal discharges were mapped using both EEG-fMRI hemodynamic responses and ESI. A single localization was derived from each individual test (EEG-fMRI global maxima [GM]/ESI maximum) and from the combination of both maps (EEG-fMRI/ESI spatial intersection). To determine the localization accuracy and its predictive performance, the individual and combined test localizations were compared to the presumed EZ and to the postsurgical outcome. Fifty-two of 53 patients had significant maps: 47 of 53 for EEG-fMRI, 44 of 53 for ESI, and 34 of 53 for both. The EZ was well characterized in 29 patients; 26 had an EEG-fMRI GM localization that was correct in 11, 22 patients had ESI localization that was correct in 17, and 12 patients had combined EEG-fMRI and ESI that was correct in 11. Seizure outcome following resection was correctly predicted by EEG-fMRI GM in 8 of 20 patients, and by the ESI maximum in 13 of 16. The combined EEG-fMRI/ESI region entirely predicted outcome in 9 of 9 patients, including 3 with no lesion visible on MRI. EEG-fMRI combined with ESI provides a simple unbiased localization that may predict surgery better than each individual test, including in MRI-negative patients. Ann Neurol 2017;82:278-287. © 2017 American Neurological Association.

  8. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.

  9. Non-linear Parameter Estimates from Non-stationary MEG Data

    PubMed Central

    Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth

    2016-01-01

    We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815

  10. MRI with and without a high-density EEG cap--what makes the difference?

    PubMed

    Klein, Carina; Hänggi, Jürgen; Luechinger, Roger; Jäncke, Lutz

    2015-02-01

    Besides the benefit of combining electroencephalography (EEG) and magnetic resonance imaging (MRI), much effort has been spent to develop algorithms aimed at successfully cleaning the EEG data from MRI-related gradient and ballistocardiological artifacts. However, there are also studies showing a negative influence of the EEG on MRI data quality. Therefore, in the present study, we focused for the first time on the influence of the EEG on morphometric measurements of T1-weighted MRI data (voxel- and surfaced-based morphometry). Here, we demonstrate a strong influence of the EEG on cortical thickness, surface area, and volume as well as subcortical volumes due to local EEG-related inhomogeneities of the static magnetic (B0) and the gradient field (B1). In a second step, we analyzed the signal-to-noise ratios for both the anatomical and the functional data when recorded simultaneously with EEG and MRI and compared them to the ratios of the MRI data without simultaneous EEG measurements. These analyses revealed consistently lower signal-to-noise ratios for anatomical as well as functional MRI data during simultaneous EEG registration. In contrast, further analyses of T2*-weighted images provided reliable results independent of whether including the individuals' T1-weighted image with or without the EEG cap in the fMRI preprocessing stream. Based on our findings, we strongly recommend against using the structural images obtained during simultaneous EEG-MRI recordings for further anatomical data analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Use of EEG Monitoring and Management of Non-Convulsive Seizures in Critically Ill Patients: A Survey of Neurologists

    PubMed Central

    Abend, Nicholas S.; Dlugos, Dennis J.; Hahn, Cecil D.; Hirsch, Lawrence J.; Herman, Susan T.

    2010-01-01

    Background Continuous EEG monitoring (cEEG) of critically ill patients is frequently utilized to detect non-convulsive seizures (NCS) and status epilepticus (NCSE). The indications for cEEG, as well as when and how to treat NCS, remain unclear. We aimed to describe the current practice of cEEG in critically ill patients to define areas of uncertainty that could aid in designing future research. Methods We conducted an international survey of neurologists focused on cEEG utilization and NCS management. Results Three-hundred and thirty physicians completed the survey. 83% use cEEG at least once per month and 86% manage NCS at least five times per year. The use of cEEG in patients with altered mental status was common (69%), with higher use if the patient had a prior convulsion (89%) or abnormal eye movements (85%). Most respondents would continue cEEG for 24 h. If NCS or NCSE is identified, the most common anticonvulsants administered were phenytoin/fosphenytoin, lorazepam, or levetiracetam, with slightly more use of levetiracetam for NCS than NCSE. Conclusions Continuous EEG monitoring (cEEG) is commonly employed in critically ill patients to detect NCS and NCSE. However, there is substantial variability in current practice related to cEEG indications and duration and to management of NCS and NCSE. The fact that such variability exists in the management of this common clinical problem suggests that further prospective study is needed. Multiple points of uncertainty are identified that require investigation. PMID:20198513

  12. Muscle and eye movement artifact removal prior to EEG source localization.

    PubMed

    Hallez, Hans; Vergult, Anneleen; Phlypo, Ronald; Van Hese, Peter; De Clercq, Wim; D'Asseler, Yves; Van de Walle, Rik; Vanrumste, Bart; Van Paesschen, Wim; Van Huffel, Sabine; Lemahieu, Ignace

    2006-01-01

    Muscle and eye movement artifacts are very prominent in the ictal EEG of patients suffering from epilepsy, thus making the dipole localization of ictal activity very unreliable. Recently, two techniques (BSS-CCA and pSVD) were developed to remove those artifacts. The purpose of this study is to assess whether the removal of muscle and eye movement artifacts improves the EEG dipole source localization. We used a total of 8 EEG fragments, each from another patient, first unfiltered, then filtered by the BSS-CCA and pSVD. In both the filtered and unfiltered EEG fragments we estimated multiple dipoles using RAP-MUSIC. The resulting dipoles were subjected to a K-means clustering algorithm, to extract the most prominent cluster. We found that the removal of muscle and eye artifact results to tighter and more clear dipole clusters. Furthermore, we found that localization of the filtered EEG corresponded with the localization derived from the ictal SPECT in 7 of the 8 patients. Therefore, we can conclude that the BSS-CCA and pSVD improve localization of ictal activity, thus making the localization more reliable for the presurgical evaluation of the patient.

  13. [Digital electroencephalography in brain death diagnostics : Technical requirements and results of a survey on the compatibility with medical guidelines of digital EEG systems from providers in Germany].

    PubMed

    Walter, U; Noachtar, S; Hinrichs, H

    2018-02-01

    The guidelines of the German Medical Association and the German Society for Clinical Neurophysiology and Functional Imaging (DGKN) require a high procedural and technical standard for electroencephalography (EEG) as an ancillary method for diagnosing the irreversible cessation of brain function (brain death). Nowadays, digital EEG systems are increasingly being applied in hospitals. So far it is unclear to what extent the digital EEG systems currently marketed in Germany meet the guidelines for diagnosing brain death. In the present article, the technical und safety-related requirements for digital EEG systems and the EEG documentation for diagnosing brain death are described in detail. On behalf of the DGKN, the authors sent out a questionnaire to all identified distributors of digital EEG systems in Germany with respect to the following technical demands: repeated recording of the calibration signals during an ongoing EEG recording, repeated recording of all electrode impedances during an ongoing EEG recording, assessability of intrasystem noise and galvanic isolation of measurement earthing from earthing conductor (floating input). For 15 of the identified 20 different digital EEG systems the specifications were provided by the distributors (among them all distributors based in Germany). All of these EEG systems are provided with a galvanic isolation (floating input). The internal noise can be tested with all systems; however, some systems do not allow repeated recording of the calibration signals and/or the electrode impedances during an ongoing EEG recording. The majority but not all of the currently available digital EEG systems offered for clinical use are eligible for use in brain death diagnostics as per German guidelines.

  14. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.

    PubMed

    Yu, Yi-Hsin; Lu, Shao-Wei; Chuang, Chun-Hsiang; King, Jung-Tai; Chang, Che-Lun; Chen, Shi-An; Chen, Sheng-Fu; Lin, Chin-Teng

    2016-07-01

    Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications.

  15. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera.

    PubMed

    Clausner, Tommy; Dalal, Sarang S; Crespo-García, Maité

    2017-01-01

    The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D . Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position.

  16. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera

    PubMed Central

    Clausner, Tommy; Dalal, Sarang S.; Crespo-García, Maité

    2017-01-01

    The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D. Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position. PMID:28559791

  17. The FieldTrip-SimBio pipeline for EEG forward solutions.

    PubMed

    Vorwerk, Johannes; Oostenveld, Robert; Piastra, Maria Carla; Magyari, Lilla; Wolters, Carsten H

    2018-03-27

    Accurately solving the electroencephalography (EEG) forward problem is crucial for precise EEG source analysis. Previous studies have shown that the use of multicompartment head models in combination with the finite element method (FEM) can yield high accuracies both numerically and with regard to the geometrical approximation of the human head. However, the workload for the generation of multicompartment head models has often been too high and the use of publicly available FEM implementations too complicated for a wider application of FEM in research studies. In this paper, we present a MATLAB-based pipeline that aims to resolve this lack of easy-to-use integrated software solutions. The presented pipeline allows for the easy application of five-compartment head models with the FEM within the FieldTrip toolbox for EEG source analysis. The FEM from the SimBio toolbox, more specifically the St. Venant approach, was integrated into the FieldTrip toolbox. We give a short sketch of the implementation and its application, and we perform a source localization of somatosensory evoked potentials (SEPs) using this pipeline. We then evaluate the accuracy that can be achieved using the automatically generated five-compartment hexahedral head model [skin, skull, cerebrospinal fluid (CSF), gray matter, white matter] in comparison to a highly accurate tetrahedral head model that was generated on the basis of a semiautomatic segmentation with very careful and time-consuming manual corrections. The source analysis of the SEP data correctly localizes the P20 component and achieves a high goodness of fit. The subsequent comparison to the highly detailed tetrahedral head model shows that the automatically generated five-compartment head model performs about as well as a highly detailed four-compartment head model (skin, skull, CSF, brain). This is a significant improvement in comparison to a three-compartment head model, which is frequently used in praxis, since the importance of modeling the CSF compartment has been shown in a variety of studies. The presented pipeline facilitates the use of five-compartment head models with the FEM for EEG source analysis. The accuracy with which the EEG forward problem can thereby be solved is increased compared to the commonly used three-compartment head models, and more reliable EEG source reconstruction results can be obtained.

  18. Kernel temporal enhancement approach for LORETA source reconstruction using EEG data.

    PubMed

    Torres-Valencia, Cristian A; Santamaria, M Claudia Joana; Alvarez, Mauricio A

    2016-08-01

    Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.

  19. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2.

    PubMed

    Zorick, Todd; Mandelkern, Mark A

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness.

  20. Self-guided Positive Imagery Training: Effects beyond the Emotions-A Loreta Study.

    PubMed

    Velikova, Svetla; Nordtug, Bente

    2017-01-01

    Previously we demonstrated that a 12-week lasting self-guided positive imagery training had a positive effect on the psycho-emotional state of healthy subjects and was associated with an increase in functional connectivity in the brain. Here we repeated the previous project, but expanded the study, testing the hypothesis that training can also affect cognitive functions. Twenty subjects (half of them with subthreshold depression according CES-D) participated in the program of positive imagery training for 12 weeks. The schedule began with group training for 2 days, followed by training at home. Evaluations of cognitive functions and electroencephalographic (EEG) activity were conducted during three examinations as follows: E 0 -baseline (1 month before the training); E 1 -pre-training and E 2 -post-training. CNS Vital Signs battery was used to test the following cognitive domains: verbal and visual memory, executive functions, cognitive flexibility, social acuity, non-verbal reasoning. EEGs (19-channel) were recorded at rest with closed eyes and analyzed with Low-resolution electromagnetic tomography software. One-way repeated measures ANOVA, followed by pairwise comparison showed a significant increase after training (E 2 vs. E 1 ; E 2 vs. E 0 ) in the number of correct hits for positive emotions received during perception of emotions test (POET); after the sample was split according to the initial presence of depressive symptoms, the effect was present only in the subgroup with subthreshold depressive symptomatology. Post-training (E 2 vs. E 1 ; E 2 vs. E 0 ) the number of correct answers on non-verbal reasoning test increased; this effect was observed only in the subgroup that does have any depressive symptoms. Comparison of EEG post-training vs. pre-training demonstrated a significant reduction in current source density (CSD) after the training in the left hemisphere (insular cortex, frontal and temporal lobes in delta, theta and alpha1 bands). The observed changes were presented only in the subgroup with initial subthreshold depressive symptomatology. A negative correlation was found between POET and CSD in the left insular cortex for theta band. No significant differences were observed when data from EEG and cognitive tests obtained during pre-training were compared with baseline values. Potential use of training for the rehabilitation of various disturbances with cognitive and emotional deficits is discussed.

  1. Self-guided Positive Imagery Training: Effects beyond the Emotions–A Loreta Study

    PubMed Central

    Velikova, Svetla; Nordtug, Bente

    2018-01-01

    Previously we demonstrated that a 12-week lasting self-guided positive imagery training had a positive effect on the psycho-emotional state of healthy subjects and was associated with an increase in functional connectivity in the brain. Here we repeated the previous project, but expanded the study, testing the hypothesis that training can also affect cognitive functions. Twenty subjects (half of them with subthreshold depression according CES-D) participated in the program of positive imagery training for 12 weeks. The schedule began with group training for 2 days, followed by training at home. Evaluations of cognitive functions and electroencephalographic (EEG) activity were conducted during three examinations as follows: E0-baseline (1 month before the training); E1-pre-training and E2-post-training. CNS Vital Signs battery was used to test the following cognitive domains: verbal and visual memory, executive functions, cognitive flexibility, social acuity, non-verbal reasoning. EEGs (19-channel) were recorded at rest with closed eyes and analyzed with Low-resolution electromagnetic tomography software. One-way repeated measures ANOVA, followed by pairwise comparison showed a significant increase after training (E2 vs. E1; E2 vs. E0) in the number of correct hits for positive emotions received during perception of emotions test (POET); after the sample was split according to the initial presence of depressive symptoms, the effect was present only in the subgroup with subthreshold depressive symptomatology. Post-training (E2 vs. E1; E2 vs. E0) the number of correct answers on non-verbal reasoning test increased; this effect was observed only in the subgroup that does have any depressive symptoms. Comparison of EEG post-training vs. pre-training demonstrated a significant reduction in current source density (CSD) after the training in the left hemisphere (insular cortex, frontal and temporal lobes in delta, theta and alpha1 bands). The observed changes were presented only in the subgroup with initial subthreshold depressive symptomatology. A negative correlation was found between POET and CSD in the left insular cortex for theta band. No significant differences were observed when data from EEG and cognitive tests obtained during pre-training were compared with baseline values. Potential use of training for the rehabilitation of various disturbances with cognitive and emotional deficits is discussed. PMID:29375344

  2. Magnetoencephalography signals are influenced by skull defects.

    PubMed

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique

    PubMed Central

    Al-Kadi, Mahmoud I.; Reaz, Mamun Bin Ibne; Ali, Mohd Alauddin Mohd; Liu, Chian Yong

    2014-01-01

    This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria's value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded from six patients who underwent scoliosis correction surgeries in the Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM) (the Medical center of National University of Malaysia). The combinational signal was tested by power spectral density, cross-correlation function and wavelet coherence. The experimental results show that the system-outputted EEG signals are neatly switched without any substantial changes in the consistency of EEG components. This paper provides an efficient procedure for analyzing EEG signals in order to avoid averaging the channels that lead to redistribution of the noise on both channels, reducing the dimensionality of the EEG features and preparing the best EEG stream for the classification and monitoring stage. PMID:25051031

  4. Automatic removal of eye-movement and blink artifacts from EEG signals.

    PubMed

    Gao, Jun Feng; Yang, Yong; Lin, Pan; Wang, Pei; Zheng, Chong Xun

    2010-03-01

    Frequent occurrence of electrooculography (EOG) artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In this paper, a robust method is presented to automatically eliminate eye-movement and eye-blink artifacts from EEG signals. Independent Component Analysis (ICA) is used to decompose EEG signals into independent components. Moreover, the features of topographies and power spectral densities of those components are extracted to identify eye-movement artifact components, and a support vector machine (SVM) classifier is adopted because it has higher performance than several other classifiers. The classification results show that feature-extraction methods are unsuitable for identifying eye-blink artifact components, and then a novel peak detection algorithm of independent component (PDAIC) is proposed to identify eye-blink artifact components. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove EOG artifacts effectively from EEG signals with little distortion of the underlying brain signals.

  5. Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder.

    PubMed

    Lubar, Joel F; Congedo, Marco; Askew, John H

    2003-09-01

    In this study we compared the current density power and power asymmetry in 15 right-handed, medication-free chronically depressed females (of the unipolar type) and age-matched non-clinical female controls. We used frequency domain LORETA (Low-Resolution Electromagnetic Tomography). In the interhemispheric asymmetry analysis, compared with the control group, the depression group exhibited a left-to-right Alpha2 (10-12 Hz) current density dominance in the left postcentral gyrus. The pattern of left-to-right dominance included frontal (especially medial and middle frontal gyri) and temporal locations. The between groups comparison of spectral power revealed decreased activity in the right middle temporal gyrus in the depressed group. The decrease emerged in the whole frequency spectrum analyzed (2-32 Hz), although it reached significance in the Delta (2-3.5 Hz) band only. These findings are discussed in terms of the existing literature on affect using EEG, PET and SPECT.

  6. The inverse problem in electroencephalography using the bidomain model of electrical activity.

    PubMed

    Lopez Rincon, Alejandro; Shimoda, Shingo

    2016-12-01

    Acquiring information about the distribution of electrical sources in the brain from electroencephalography (EEG) data remains a significant challenge. An accurate solution would provide an understanding of the inner mechanisms of the electrical activity in the brain and information about damaged tissue. In this paper, we present a methodology for reconstructing brain electrical activity from EEG data by using the bidomain formulation. The bidomain model considers continuous active neural tissue coupled with a nonlinear cell model. Using this technique, we aim to find the brain sources that give rise to the scalp potential recorded by EEG measurements taking into account a non-static reconstruction. We simulate electrical sources in the brain volume and compare the reconstruction to the minimum norm estimates (MNEs) and low resolution electrical tomography (LORETA) results. Then, with the EEG dataset from the EEG Motor Movement/Imagery Database of the Physiobank, we identify the reaction to visual stimuli by calculating the time between stimulus presentation and the spike in electrical activity. Finally, we compare the activation in the brain with the registered activation using the LinkRbrain platform. Our methodology shows an improved reconstruction of the electrical activity and source localization in comparison with MNE and LORETA. For the Motor Movement/Imagery Database, the reconstruction is consistent with the expected position and time delay generated by the stimuli. Thus, this methodology is a suitable option for continuously reconstructing brain potentials. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    PubMed

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  8. An electrophysiological investigation of non-symbolic magnitude processing: numerical distance effects in children with and without mathematical learning disabilities.

    PubMed

    Heine, Angela; Wissmann, Jacqueline; Tamm, Sascha; De Smedt, Bert; Schneider, Michael; Stern, Elsbeth; Verschaffel, Lieven; Jacobs, Arthur M

    2013-09-01

    The aim of the present study was to probe electrophysiological effects of non-symbolic numerical processing in 20 children with mathematical learning disabilities (mean age = 99.2 months) compared to a group of 20 typically developing matched controls (mean age = 98.4 months). EEG data were obtained while children were tested with a standard non-symbolic numerical comparison paradigm that allowed us to investigate the effects of numerical distance manipulations for different set sizes, i.e., the classical subitizing, counting and estimation ranges. Effects of numerical distance manipulations on event-related potential (ERP) amplitudes as well as activation patterns of underlying current sources were analyzed. In typically developing children, the amplitudes of a late parietal positive-going ERP component showed systematic numerical distance effects that did not depend on set size. For the group of children with mathematical learning disabilities, ERP distance effects were found only for stimuli within the subitizing range. Current source density analysis of distance-related group effects suggested that areas in right inferior parietal regions are involved in the generation of the parietal ERP amplitude differences. Our results suggest that right inferior parietal regions are recruited differentially by controls compared to children with mathematical learning disabilities in response to non-symbolic numerical magnitude processing tasks, but only for stimuli with set sizes that exceed the subitizing range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans

    PubMed Central

    Kim, Hyoungkyu; Hudetz, Anthony G.; Lee, Joseph; Mashour, George A.; Lee, UnCheol; Avidan, Michael S.

    2018-01-01

    The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain. PMID:29503611

  10. Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans.

    PubMed

    Kim, Hyoungkyu; Hudetz, Anthony G; Lee, Joseph; Mashour, George A; Lee, UnCheol

    2018-01-01

    The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain.

  11. Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.

    PubMed

    Gutiérrez, David; Ramírez-Moreno, Mauricio A

    2016-04-01

    We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

  12. Hybrid Weighted Minimum Norm Method A new method based LORETA to solve EEG inverse problem.

    PubMed

    Song, C; Zhuang, T; Wu, Q

    2005-01-01

    This Paper brings forward a new method to solve EEG inverse problem. Based on following physiological characteristic of neural electrical activity source: first, the neighboring neurons are prone to active synchronously; second, the distribution of source space is sparse; third, the active intensity of the sources are high centralized, we take these prior knowledge as prerequisite condition to develop the inverse solution of EEG, and not assume other characteristic of inverse solution to realize the most commonly 3D EEG reconstruction map. The proposed algorithm takes advantage of LORETA's low resolution method which emphasizes particularly on 'localization' and FOCUSS's high resolution method which emphasizes particularly on 'separability'. The method is still under the frame of the weighted minimum norm method. The keystone is to construct a weighted matrix which takes reference from the existing smoothness operator, competition mechanism and study algorithm. The basic processing is to obtain an initial solution's estimation firstly, then construct a new estimation using the initial solution's information, repeat this process until the solutions under last two estimate processing is keeping unchanged.

  13. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    PubMed Central

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  14. Effects of Fipronil on the EEG of Long Evans Rats

    EPA Science Inventory

    We have reported that the non-stimulus driven EEG is differentially altered by deltamethrin or permethrin (Lyke and Herr, Toxicologist, 114(S-1):265, 2010). In the current study, we examined the ability to detect changes in EEG activity produced by fipronil, a phenylpyrazole pest...

  15. Automatic and Direct Identification of Blink Components from Scalp EEG

    PubMed Central

    Kong, Wanzeng; Zhou, Zhanpeng; Hu, Sanqing; Zhang, Jianhai; Babiloni, Fabio; Dai, Guojun

    2013-01-01

    Eye blink is an important and inevitable artifact during scalp electroencephalogram (EEG) recording. The main problem in EEG signal processing is how to identify eye blink components automatically with independent component analysis (ICA). Taking into account the fact that the eye blink as an external source has a higher sum of correlation with frontal EEG channels than all other sources due to both its location and significant amplitude, in this paper, we proposed a method based on correlation index and the feature of power distribution to automatically detect eye blink components. Furthermore, we prove mathematically that the correlation between independent components and scalp EEG channels can be translating directly from the mixing matrix of ICA. This helps to simplify calculations and understand the implications of the correlation. The proposed method doesn't need to select a template or thresholds in advance, and it works without simultaneously recording an electrooculography (EOG) reference. The experimental results demonstrate that the proposed method can automatically recognize eye blink components with a high accuracy on entire datasets from 15 subjects. PMID:23959240

  16. Applied Neuroscience at the AFRL 711th Human Performance Wing

    DTIC Science & Technology

    2010-09-01

    Support teaming and collaboration research performed by RHCPT 25 History of Applied Neuroscience Research First EEG studies of workload at AFRL...First to classify mental workload based on integrated EEG /ECG 26 First successful real- time workload classification Measured EEG workload in...complex tasks Closed-loop adaptive aiding based on EEG /ECG History of Applied Neuroscience Research 27 Current Applied Neuroscience Research • Mix of in

  17. Neuroelectrical imaging investigation of cortical activity during listening to music in prelingually deaf children with cochlear implants.

    PubMed

    Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Maglione, Anton Giulio; Colosimo, Alfredo; Babiloni, Fabio

    2014-05-01

    To date, no objective measure of the pleasantness of music perception by children with cochlear implants has been reported. The EEG alpha asymmetries of pre-frontal cortex activation are known to relate to emotional/affective engagement in a perceived stimulus. More specifically, according to the "withdrawal/approach" model, an unbalanced de-synchronization of the alpha activity in the left prefrontal cortex has been associated with a positive affective state/approach toward a stimulus, and an unbalanced de-synchronization of the same activity in the right prefrontal cortex with a negative affective state/withdrawal from a stimulus. In the present study, High-Resolution EEG with Source Reconstruction was used to compare the music-induced alpha asymmetries of the prefrontal cortex in a group of prelingually deaf implanted children and in a control group of normal-hearing children. Six normal-hearing and six age-matched deaf children using a unilateral cochlear implants underwent High-Resolution EEG recordings as they were listening to a musical cartoon. Musical stimuli were delivered in three versions: Normal, Distort (reverse audio flow) and Mute. The EEG alpha rhythm asymmetry was analyzed: Power Spectral Density was calculated for each Region of Interest, together with a right-left imbalance index. A map of cortical activation was then reconstructed on a realistic cortical model. Asymmetries of EEG alpha rhythm in the prefrontal cortices were observed in both groups. In the normal-hearing children, the asymmetries were consistent with the withdrawal/approach model, whereas in cochlear implant users they were not. Moreover, in implanted children a different pattern of alpha asymmetries in extrafrontal cortical areas was noticed as compared to normal-hearing subjects. The peculiar pattern of alpha asymmetries in implanted children's prefrontal cortex in response to musical stimuli suggests an inability by these subjects to discriminate normal from dissonant music and to appreciate the pleasantness of normal music. High-Resolution EEG may prove to be a promising tool for objectively measuring prefrontal cortex alpha asymmetries in child cochlear implant users. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Affective attitudes to face images associated with intracerebral EEG source location before face viewing.

    PubMed

    Pizzagalli, D; Koenig, T; Regard, M; Lehmann, D

    1999-01-01

    We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning. Copyright 1999 Elsevier Science B.V.

  19. Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance.

    PubMed

    Haider, S; Hrbek, A; Xu, Y

    2008-06-01

    Primarily this report outlines our investigation on utilizing magneto-acousto-electrical-tomography (MAET) to image the lead field current density in volume conductors. A lead field current density distribution is obtained when a current/voltage source is applied to a sample via a pair of electrodes. This is the first time a high-spatial-resolution image of current density is presented using MAET. We also compare an experimental image of current density in a sample with its corresponding numerical simulation. To image the lead field current density, rather than applying a current/voltage source directly to the sample, we place the sample in a static magnetic field and focus an ultrasonic pulse on the sample to simulate a point-like current dipole source at the focal point. Then by using electrodes we measure the voltage/current signal which, based on the reciprocity theorem, is proportional to a component of the lead field current density. In the theory section, we derive the equation relating the measured voltage to the lead field current density and the displacement velocity caused by ultrasound. The experimental data include the MAET signal and an image of the lead field current density for a thin sample. In addition, we discuss the potential improvements for MAET especially to overcome the limitation created by the observation that no signal was detected from the interior of a region having a uniform conductivity. As an auxiliary we offer a mathematical formula whereby the lead field current density may be utilized to reconstruct the distribution of the electrical impedance in a piecewise smooth object.

  20. Identifying the effects of microsaccades in tripolar EEG signals.

    PubMed

    Bellisle, Rachel; Steele, Preston; Bartels, Rachel; Lei Ding; Sunderam, Sridhar; Besio, Walter

    2017-07-01

    Microsaccades are tiny, involuntary eye movements that occur during fixation, and they are necessary to human sight to maintain a sharp image and correct the effects of other fixational movements. Researchers have theorized and studied the effects of microsaccades on electroencephalography (EEG) signals to understand and eliminate the unwanted artifacts from EEG. The tripolar concentric ring electrode (TCRE) sensors are used to acquire TCRE EEG (tEEG). The tEEG detects extremely focal signals from directly below the TCRE sensor. We have noticed a slow wave frequency found in some tEEG recordings. Therefore, we conducted the current work to determine if there was a correlation between the slow wave in the tEEG and the microsaccades. This was done by analyzing the coherence of the frequency spectrums of both tEEG and eye movement in recordings where microsaccades are present. Our preliminary findings show that there is a correlation between the two.

  1. A new EEG measure using the 1D cluster variation method

    NASA Astrophysics Data System (ADS)

    Maren, Alianna J.; Szu, Harold H.

    2015-05-01

    A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.

  2. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

    PubMed Central

    Bleichner, Martin G.; Debener, Stefan

    2017-01-01

    Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG. PMID:28439233

  3. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.

    PubMed

    Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W

    2017-12-01

    Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. 3D source localization of interictal spikes in epilepsy patients with MRI lesions

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Worrell, Gregory A.; Lagerlund, Terrence D.; He, Bin

    2006-08-01

    The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. first principle vectors (FINE), using scalp EEG recordings. Computer simulations were first performed to assess source localization accuracy of FINE in the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other factors influencing the source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions was made through the coregistration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R2 statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The three-concentric-spheres head volume conductor model was built for each patient with three spheres of different radii which takes the individual head size and skull thickness into consideration. The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients' structural abnormality, i.e. MRI lesions, in all three patients. The higher R2 values achieved by FINE than MUSIC indicate that FINE provides a more satisfactory fitting of the scalp potential measurements than MUSIC in all patients. The present results suggest that FINE provides a useful brain source imaging technique, from clinical EEG recordings, for identifying and localizing epileptogenic regions in epilepsy patients with focal partial seizures. The present study may lead to the establishment of a high-resolution source localization technique from scalp-recorded EEGs for aiding presurgical planning in epilepsy patients.

  5. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.

    PubMed

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-11-01

    STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

  6. Delayed Early Primary Visual Pathway Development in Premature Infants: High Density Electrophysiological Evidence

    PubMed Central

    Tremblay, Emmanuel; Vannasing, Phetsamone; Roy, Marie-Sylvie; Lefebvre, Francine; Kombate, Damelan; Lassonde, Maryse; Lepore, Franco; McKerral, Michelle; Gallagher, Anne

    2014-01-01

    In the past decades, multiple studies have been interested in developmental patterns of the visual system in healthy infants. During the first year of life, differential maturational changes have been observed between the Magnocellular (P) and the Parvocellular (P) visual pathways. However, few studies investigated P and M system development in infants born prematurely. The aim of the present study was to characterize P and M system maturational differences between healthy preterm and fullterm infants through a critical period of visual maturation: the first year of life. Using a cross-sectional design, high-density electroencephalogram (EEG) was recorded in 31 healthy preterms and 41 fullterm infants of 3, 6, or 12 months (corrected age for premature babies). Three visual stimulations varying in contrast and spatial frequency were presented to stimulate preferentially the M pathway, the P pathway, or both systems simultaneously during EEG recordings. Results from early visual evoked potentials in response to the stimulation that activates simultaneously both systems revealed longer N1 latencies and smaller P1 amplitudes in preterm infants compared to fullterms. Moreover, preterms showed longer N1 and P1 latencies in response to stimuli assessing the M pathway at 3 months. No differences between preterms and fullterms were found when using the preferential P system stimulation. In order to identify the cerebral generator of each visual response, distributed source analyses were computed in 12-month-old infants using LORETA. Source analysis demonstrated an activation of the parietal dorsal region in fullterm infants, in response to the preferential M pathway, which was not seen in the preterms. Overall, these findings suggest that the Magnocellular pathway development is affected in premature infants. Although our VEP results suggest that premature children overcome, at least partially, the visual developmental delay with time, source analyses reveal abnormal brain activation of the Magnocellular pathway at 12 months of age. PMID:25268226

  7. Source localization of small sharp spikes: low resolution electromagnetic tomography (LORETA) reveals two distinct cortical sources.

    PubMed

    Zumsteg, Dominik; Andrade, Danielle M; Wennberg, Richard A

    2006-06-01

    We have investigated the cortical sources and electroencephalographic (EEG) characteristics of small sharp spikes (SSS) by using statistical non-parametric mapping (SNPM) of low resolution electromagnetic tomography (LORETA). We analyzed 7 SSS patterns (501 individual SSS) in 6 patients who underwent sleep EEG studies with 29 or 23 scalp electrodes. The scalp signals were averaged time-locked to the SSS peak activity and subjected to SNPM of LORETA values. All 7 SSS patterns (mean 72 individual SSS, range 11-200) revealed a very similar and highly characteristic transhemispheric oblique scalp voltage distribution comprising a first negative field maximum over ipsilateral lateral temporal areas, followed by a second negative field maximum over the contralateral subtemporal region approximately 30 ms later. SNPM-LORETA consistently localized the first component into the ipsilateral posterior insular region, and the second component into ipsilateral posterior mesial temporo-occipital structures. SSS comprise an amalgam of two sequential, distinct cortical components, showing a very uniform and peculiar EEG pattern and cortical source solutions. As such, they must be clearly distinguished from interictal epileptiform discharges in patients with epilepsy. The awareness of these peculiar EEG characteristics may increase our ability to differentiate SSS from interictal epileptiform activity. The finding of a posterior insular source might serve as an inspiration for new physiological considerations regarding these enigmatic waveforms.

  8. Experiments with planar inductive ion source meant for creation of H+ beams.

    PubMed

    Vainionpaa, J H; Kalvas, T; Hahto, S K; Reijonen, J

    2007-06-01

    In this article the effects of different engineering parameters of rf-driven ion sources with an external spiral antenna and a quartz rf window are studied. This article consists of three main topics: the effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species, and the effect of different antenna geometries on the extracted current density. The effect of source geometry was studied using three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum (Al) and alumina (Al(2)O(3)). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. The highest measured proton fractions were measured using Al(2)O(3) plasma chamber and no multicusp confinement. For the compared ion sources the source with multicusp confinement and Al(2)O(3) plasma chamber yields the highest current densities. Multicusp confinement increased the maximum extracted current by up to a factor of 2. Plasma production with different antenna geometries were also studied. The highest current density was achieved using 4.5 loop solenoid antenna with 6.0 cm diameter. A slightly lower current density with lower pressure was achieved using a tightly wound 3 loop spiral antenna with 3.3 cm inner diameter and 6 cm outer diameter.

  9. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    PubMed

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  10. Feature study of hysterical blindness EEG based on FastICA with combined-channel information.

    PubMed

    Qin, Xuying; Wang, Wei; Hu, Lintao; Wang, Xu; Yuan, Xiaojie

    2015-01-01

    An appropriate feature study of hysteria electroencephalograms (EEG) would provide new insights into neural mechanisms of the disease, and also make improvements in patient diagnosis and management. The objective of this paper is to provide an explanation for what causes a particular visual loss, by associating the features of hysterical blindness EEG with brain function. An idea for the novel feature extraction for hysterical blindness EEG, utilizing combined-channel information, was applied in this paper. After channels had been combined, the sliding-window-FastICA was applied to process the combined normal EEG and hysteria EEG, respectively. Kurtosis features were calculated from the processed signals. As the comparison feature, the power spectral density of normal and hysteria EEG were computed. According to the feature analysis results, a region of brain dysfunction was located at the occipital lobe, O1 and O2. Furthermore, new abnormality was found at the parietal lobe, C3, C4, P3, and P4, that provided us with a new perspective for understanding hysterical blindness. Indicated by the kurtosis results which were consistent with brain function and the clinical diagnosis, our method was found to be a useful tool to capture features in hysterical blindness EEG.

  11. Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials.

    PubMed

    Ratti, Elena; Waninger, Shani; Berka, Chris; Ruffini, Giulio; Verma, Ajay

    2017-01-01

    Objectives: To compare quantitative EEG signal and test-retest reliability of medical grade and consumer EEG systems. Methods: Resting state EEG was acquired by two medical grade (B-Alert, Enobio) and two consumer (Muse, Mindwave) EEG systems in five healthy subjects during two study visits. EEG patterns, power spectral densities (PSDs) and test/retest reliability in eyes closed and eyes open conditions were compared across the four systems, focusing on Fp1, the only common electrode. Fp1 PSDs were obtained using Welch's modified periodogram method and averaged for the five subjects for each visit. The test/retest results were calculated as a ratio of Visit 1/Visit 2 Fp1 channel PSD at each 1 s epoch. Results: B-Alert, Enobio, and Mindwave Fp1 power spectra were similar. Muse showed a broadband increase in power spectra and the highest relative variation across test-retest acquisitions. Consumer systems were more prone to artifact due to eye blinks and muscle movement in the frontal region. Conclusions: EEG data can be successfully collected from all four systems tested. Although there was slightly more time required for application, medical systems offer clear advantages in data quality, reliability, and depth of analysis over the consumer systems. Significance: This evaluation provides evidence for informed selection of EEG systemsappropriate for clinical trials.

  12. Modeling of Optical Waveguide Poling and Thermally Stimulated Discharge (TSD) Charge and Current Densities for Guest/Host Electro Optic Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa

    2004-01-01

    A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.

  13. Heart Rate Variability Can Be Used to Estimate Sleepiness-related Decrements in Psychomotor Vigilance during Total Sleep Deprivation

    PubMed Central

    Chua, Eric Chern-Pin; Tan, Wen-Qi; Yeo, Sing-Chen; Lau, Pauline; Lee, Ivan; Mien, Ivan Ho; Puvanendran, Kathiravelu; Gooley, Joshua J.

    2012-01-01

    Study Objectives: To assess whether changes in psychomotor vigilance during sleep deprivation can be estimated using heart rate variability (HRV). Design: HRV, ocular, and electroencephalogram (EEG) measures were compared for their ability to predict lapses on the Psychomotor Vigilance Task (PVT). Setting: Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School Singapore. Participants: Twenty-four healthy Chinese men (mean age ± SD = 25.9 ± 2.8 years). Interventions: Subjects were kept awake continuously for 40 hours under constant environmental conditions. Every 2 hours, subjects completed a 10-minute PVT to assess their ability to sustain visual attention. Measurements and Results: During each PVT, we examined the electrocardiogram (ECG), EEG, and percentage of time that the eyes were closed (PERCLOS). Similar to EEG power density and PERCLOS measures, the time course of ECG RR-interval power density in the 0.02- 0.08-Hz range correlated with the 40-hour profile of PVT lapses. Based on receiver operating characteristic curves, RR-interval power density performed as well as EEG power density at identifying a sleepiness-related increase in PVT lapses above threshold. RR-interval power density (0.02-0.08 Hz) also classified subject performance with sensitivity and specificity similar to that of PERCLOS. Conclusions: The ECG carries information about a person's vigilance state. Hence, HRV measures could potentially be used to predict when an individual is at increased risk of attentional failure. Our results suggest that HRV monitoring, either alone or in combination with other physiologic measures, could be incorporated into safety devices to warn drowsy operators when their performance is impaired. Citation: Chua ECP; Tan WQ; Yeo SC; Lau P; Lee I; Mien IH; Puvanendran K; Gooley JJ. Heart rate variability can be used to estimate sleepiness-related decrements in psychomotor vigilance during total sleep deprivation. SLEEP 2012;35(3):325-334. PMID:22379238

  14. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios

    2017-09-01

    Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [A study of complexity and power spectrum of cortical EEG and hippocampal potential in rats under different behavioral states].

    PubMed

    Feng, Zhou-yan; Zheng, Xiao-xiang

    2002-08-01

    Objective. To study the complexity and the power spectrum of cortical EEG and hippocampal potential in rats under waking and sleep states. Method. Cortical EEG and hippocampal potential were collected by implanted electrodes in freely moving rats. Algorithmic complexity (Kc), approximate entropy (ApEn), power spectral density (PSD) and gravity frequency of PSD of the potential waves were calculated. Result. The complexity of hippocampal potential was higher than that of cortical EEG under every state. The complexity of cortical EEG was lowest under the state of non rapid eye movement (NREM) sleep. The complexity of hippocampal potential was highest under waking state. The total power of both potentials in 0.5- 30 Hz frequency band showed their highest values under NREM state. Conclusion. The values of Kc and ApEn are closely related to the distributions of PSD. When there are evident peaks in PSD, the complexities of signals will decrease. The complexities may be used to distinguish the difference between cortical EEG and hippocampal potential, or large differences between the same kind of potentials under different behavioral states.

  16. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Khalsa, S. B.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    1999-01-01

    The aim of this study was to quantify the associations between slow eye movements (SEMs), eye blink rate, waking electroencephalogram (EEG) power density, neurobehavioral performance, and the circadian rhythm of plasma melatonin in a cohort of 10 healthy men during up to 32 h of sustained wakefulness. The time course of neurobehavioral performance was characterized by fairly stable levels throughout the first 16 h of wakefulness followed by deterioration during the phase of melatonin secretion. This deterioration was closely associated with an increase in SEMs. Frontal low-frequency EEG activity (1-7 Hz) exhibited a prominent increase with time awake and little circadian modulation. EEG alpha activity exhibited circadian modulation. The dynamics of SEMs and EEG activity were phase locked to changes in neurobehavioral performance and lagged the plasma melatonin rhythm. The data indicate that frontal areas of the brain are more susceptible to sleep loss than occipital areas. Frontal EEG activity and ocular parameters may be used to monitor and predict changes in neurobehavioral performance associated with sleep loss and circadian misalignment.

  17. Spatiotemporal source tuning filter bank for multiclass EEG based brain computer interfaces.

    PubMed

    Acharya, Soumyadipta; Mollazadeh, Moshen; Murari, Kartikeya; Thakor, Nitish

    2006-01-01

    Non invasive brain-computer interfaces (BCI) allow people to communicate by modulating features of their electroencephalogram (EEG). Spatiotemporal filtering has a vital role in multi-class, EEG based BCI. In this study, we used a novel combination of principle component analysis, independent component analysis and dipole source localization to design a spatiotemporal multiple source tuning (SPAMSORT) filter bank, each channel of which was tuned to the activity of an underlying dipole source. Changes in the event-related spectral perturbation (ERSP) were measured and used to train a linear support vector machine to classify between four classes of motor imagery tasks (left hand, right hand, foot and tongue) for one subject. ERSP values were significantly (p<0.01) different across tasks and better (p<0.01) than conventional spatial filtering methods (large Laplacian and common average reference). Classification resulted in an average accuracy of 82.5%. This approach could lead to promising BCI applications such as control of a prosthesis with multiple degrees of freedom.

  18. An alternative subspace approach to EEG dipole source localization

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Liang; Xu, Bobby; He, Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  19. EEG sleep activities react topographically different to GABAergic sleep modulation by flunitrazepam: relationship to regional distribution of benzodiazepine receptor subtypes?

    PubMed

    Scheuler, W

    Spectral analysis was performed to study the response of various EEG sleep activities to a modification of GABAergic sleep regulation by flunitrazepam. We observed sleep stage- and sleep cycle-dependent differences in the topographic distribution of the reactions. An increase in power density was found in the frontal regions for the alpha 2 and sigma 1 frequency band whereas a decrease in power density was emphasized in the posterior regions for the delta and alpha 1 frequency band. These topographic differences might be related to the regional distribution of benzodiazepine receptor subtypes.

  20. Use of EEG to Diagnose ADHD

    PubMed Central

    Lenartowicz, Agatha; Loo, Sandra K.

    2015-01-01

    Electroencephalography (EEG) has, historically, played a focal role in the assessment of neural function in children with attention deficit hyperactivity disorder (ADHD). We review here the most recent developments in the utility of EEG in the diagnosis of ADHD, with emphasis on the most commonly used and emerging EEG metrics and their reliability in diagnostic classification. Considering the clinical heterogeneity of ADHD and the complexity of information available from the EEG signals, we suggest that considerable benefits are to be gained from multivariate analyses and a focus towards understanding of the neural generators of EEG. We conclude that while EEG cannot currently be used as a diagnostic tool, vast developments in analytical and technological tools in its domain anticipate future progress in its utility in the clinical setting. PMID:25234074

  1. Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness

    PubMed Central

    King, J.R.; Faugeras, F.; Gramfort, A.; Schurger, A.; El Karoui, I.; Sitt, J.D.; Rohaut, B.; Wacongne, C.; Labyt, E.; Bekinschtein, T.; Cohen, L.; Naccache, L.; Dehaene, S.

    2017-01-01

    Detecting residual consciousness in unresponsive patients is a major clinical concern and a challenge for theoretical neuroscience. To tackle this issue, we recently designed a paradigm that dissociates two electro-encephalographic (EEG) responses to auditory novelty. Whereas a local change in pitch automatically elicits a mismatch negativity (MMN), a change in global sound sequence leads to a late P300b response. The latter component is thought to be present only when subjects consciously perceive the global novelty. Unfortunately, it can be difficult to detect because individual variability is high, especially in clinical recordings. Here, we show that multivariate pattern classifiers can extract subject-specific EEG patterns and predict single-trial local or global novelty responses. We first validate our method with 38 high-density EEG, MEG and intracranial EEG recordings. We empirically demonstrate that our approach circumvents the issues associated with multiple comparisons and individual variability while improving the statistics. Moreover, we confirm in control subjects that local responses are robust to distraction whereas global responses depend on attention. We then investigate 104 vegetative state (VS), minimally conscious state (MCS) and conscious state (CS) patients recorded with high-density EEG. For the local response, the proportion of significant decoding scores (M = 60%) does not vary with the state of consciousness. By contrast, for the global response, only 14% of the VS patients' EEG recordings presented a significant effect, compared to 31% in MCS patients' and 52% in CS patients'. In conclusion, single-trial multivariate decoding of novelty responses provides valuable information in non-communicating patients and paves the way towards real-time monitoring of the state of consciousness. PMID:23859924

  2. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.

    PubMed

    Sale, Patrizio; Infarinato, Francesco; Del Percio, Claudio; Lizio, Roberta; Babiloni, Claudio; Foti, Calogero; Franceschini, Marco

    2015-12-01

    Stroke is the leading cause of permanent disability in developed countries; its effects may include sensory, motor, and cognitive impairment as well as a reduced ability to perform self-care and participate in social and community activities. A number of studies have shown that the use of robotic systems in upper limb motor rehabilitation programs provides safe and intensive treatment to patients with motor impairments because of a neurological injury. Furthermore, robot-aided therapy was shown to be well accepted and tolerated by all patients; however, it is not known whether a specific robot-aided rehabilitation can induce beneficial cortical plasticity in stroke patients. Here, we present a procedure to study neural underpinning of robot-aided upper limb rehabilitation in stroke patients. Neurophysiological recordings use the following: (a) 10-20 system electroencephalographic (EEG) electrode montage; (b) bipolar vertical and horizontal electrooculographies; and (c) bipolar electromyography from the operating upper limb. Behavior monitoring includes the following: (a) clinical data and (b) kinematic and dynamic of the operant upper limb movements. Experimental conditions include the following: (a) resting state eyes closed and eyes open, and (b) robotic rehabilitation task (maximum 80 s each block to reach 4-min EEG data; interblock pause of 1 min). The data collection is performed before and after a program of 30 daily rehabilitation sessions. EEG markers include the following: (a) EEG power density in the eyes-closed condition; (b) reactivity of EEG power density to eyes opening; and (c) reactivity of EEG power density to robotic rehabilitation task. The above procedure was tested on a subacute patient (29 poststroke days) and on a chronic patient (21 poststroke months). After the rehabilitation program, we observed (a) improved clinical condition; (b) improved performance during the robotic task; (c) reduced delta rhythms (1-4 Hz) and increased alpha rhythms (8-12 Hz) during the resting state eyes-closed condition; (d) increased alpha desynchronization to eyes opening; and (e) decreased alpha desynchronization during the robotic rehabilitation task. We conclude that the present procedure is suitable for evaluation of the neural underpinning of robot-aided upper limb rehabilitation.

  3. Multicompare tests of the performance of different metaheuristics in EEG dipole source localization.

    PubMed

    Escalona-Vargas, Diana Irazú; Lopez-Arevalo, Ivan; Gutiérrez, David

    2014-01-01

    We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.

  4. Artifact removal from EEG signals using adaptive filters in cascade

    NASA Astrophysics Data System (ADS)

    Garcés Correa, A.; Laciar, E.; Patiño, H. D.; Valentinuzzi, M. E.

    2007-11-01

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.

  5. Analysis of EEG Related Saccadic Eye Movement

    NASA Astrophysics Data System (ADS)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  6. EEG signatures of arm isometric exertions in preparation, planning and execution.

    PubMed

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

    PubMed

    López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.

  8. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.

    2018-04-01

    Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  9. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    PubMed

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  10. Simultaneous EEG and diffuse optical imaging of seizure-related hemodynamic activity in the newborn infant brain

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Cooper, Robert J.; Gibson, Adam; Everdell, Nick; Austin, Topun

    2012-06-01

    An optical imaging system has been developed which uses measurements of diffusely reflected near-infrared light to produce maps of changes in blood flow and oxygenation occurring within the cerebral cortex. Optical sources and detectors are coupled to the head via an array of optical fibers, on a probe held in contact with the scalp, and data is collected at a rate of 10 Hz. A clinical electroencephalography (EEG) system has been integrated with the optical system to enable simultaneous observation of electrical and hemodynamic activity in the cortex of neurologically compromised newborn infants diagnosed with seizures. Studies have made a potentially critically important discovery of previously unknown transient hemodynamic events in infants treated with anticonvulsant medication. We observed repeated episodes of small increases in cortical oxyhemoglobin concentration followed by a profound decrease in 3 of 4 infants studied, each with cerebral injury who presented with neonatal seizures. This was not accompanied by clinical or EEG seizure activity and was not present in nineteen matched controls. The underlying cause of these changes is currently unknown. We tentatively suggest that our results may be associated with a phenomenon known as cortical spreading depolarization, not previously observed in the infant brain.

  11. A preliminary study of muscular artifact cancellation in single-channel EEG.

    PubMed

    Chen, Xun; Liu, Aiping; Peng, Hu; Ward, Rabab K

    2014-10-01

    Electroencephalogram (EEG) recordings are often contaminated with muscular artifacts that strongly obscure the EEG signals and complicates their analysis. For the conventional case, where the EEG recordings are obtained simultaneously over many EEG channels, there exists a considerable range of methods for removing muscular artifacts. In recent years, there has been an increasing trend to use EEG information in ambulatory healthcare and related physiological signal monitoring systems. For practical reasons, a single EEG channel system must be used in these situations. Unfortunately, there exist few studies for muscular artifact cancellation in single-channel EEG recordings. To address this issue, in this preliminary study, we propose a simple, yet effective, method to achieve the muscular artifact cancellation for the single-channel EEG case. This method is a combination of the ensemble empirical mode decomposition (EEMD) and the joint blind source separation (JBSS) techniques. We also conduct a study that compares and investigates all possible single-channel solutions and demonstrate the performance of these methods using numerical simulations and real-life applications. The proposed method is shown to significantly outperform all other methods. It can successfully remove muscular artifacts without altering the underlying EEG activity. It is thus a promising tool for use in ambulatory healthcare systems.

  12. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    PubMed

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z < 0.05), and neurophysiological data tested with the Mann-Whitney t test and binomial distribution test (P or Z < 0.05). An improvement in declarative (P = 0.05) and visuospatial memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison

    NASA Astrophysics Data System (ADS)

    Bleichner, Martin G.; Mirkovic, Bojana; Debener, Stefan

    2016-12-01

    Objective. This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Approach. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. Main results. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. Significance. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.

  14. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison.

    PubMed

    Bleichner, Martin G; Mirkovic, Bojana; Debener, Stefan

    2016-12-01

    This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.

  15. Prolonged activation EEG differentiates dementia with and without delirium in frail elderly patients.

    PubMed

    Thomas, C; Hestermann, U; Walther, S; Pfueller, U; Hack, M; Oster, P; Mundt, C; Weisbrod, M

    2008-02-01

    Delirium in the elderly results in increased morbidity, mortality and functional decline. Delirium is underdiagnosed, particularly in dementia. To increase diagnostic accuracy, we investigated whether maintenance of activation assessed by EEG discriminates delirium in association with dementia (D+D) from dementia without delirium (DP) and cognitively unimpaired elderly subjects (CU). Routine and quantitative EEG (rEEG/qEEG) with additional prolonged activation (3 min eyes open period) were evaluated in hospitalised elderly patients with acute geriatric disease. Patients were assigned post hoc to three comparable groups (D+D/DP/CU) by expert consensus based on DSM-IV criteria. Dementia diagnosis was confirmed using cognitive and functional tests and caregiver rating (IQCODE, Informed Questionnaire of Cognitive Decline in the Elderly). While rEEG at rest showed low accuracy for a diagnosis of delirium, qEEG in DP and CU revealed a specific activation pattern of high significance found to be absent in the D+D group. Stepwise logistic regression confirmed that differentiation of D+D from DP was best resolved using activated upper alpha and delta power density which, compared with rEEG, enabled an 11% increase in diagnostic correctness to 83%, resulting in 67% sensitivity and 91% specificity. Among frail CU and D+D subjects, almost 90% were correctly classified. Dementia associated with delirium can be discriminated reliably from dementia alone in a meaningful clinical setting. Thus EEG evaluation in chronic encephalopathy should be optimised by a simple activation task and spectral analysis, particularly in the elderly with dementia.

  16. Isolating gait-related movement artifacts in electroencephalography during human walking

    PubMed Central

    Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.

    2016-01-01

    Objective High-density electroencephelography (EEG) can provide insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. Approach We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4–1.6 m/s. We then tested artifact removal methods including moving average and wavelet-based techniques. Main Results Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Significance Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removing of EEG movement artifact to advance the field. PMID:26083595

  17. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain

    PubMed Central

    Giacometti, Paolo; Perdue, Katherine L.; Diamond, Solomon G.

    2014-01-01

    Background Interpretation and analysis of electroencephalography (EEG) measurements relies on the correspondence of electrode scalp coordinates to structural and functional regions of the brain. New Method An algorithm is introduced for automatic calculation of the International 10–20, 10-10, and 10-5 scalp coordinates of EEG electrodes on a boundary element mesh of a human head. The EEG electrode positions are then used to generate parcellation regions of the cerebral cortex based on proximity to the EEG electrodes. Results The scalp electrode calculation method presented in this study effectively and efficiently identifies EEG locations without prior digitization of coordinates. The average of electrode proximity parcellations of the cortex were tabulated with respect to structural and functional regions of the brain in a population of 20 adult subjects. Comparison with Existing Methods Parcellations based on electrode proximity and EEG sensitivity were compared. The parcellation regions based on sensitivity and proximity were found to have 44.0 ± 11.3% agreement when demarcated by the International 10–20, 32.4 ± 12.6% by the 10-10, and 24.7 ± 16.3% by the 10-5 electrode positioning system. Conclusions The EEG positioning algorithm is a fast and easy method of locating EEG scalp coordinates without the need for digitized electrode positions. The parcellation method presented summarizes the EEG scalp locations with respect to brain regions without computation of a full EEG forward model solution. The reference table of electrode proximity versus cortical regions may be used by experimenters to select electrodes that correspond to anatomical and functional regions of interest. PMID:24769168

  18. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain.

    PubMed

    Giacometti, Paolo; Perdue, Katherine L; Diamond, Solomon G

    2014-05-30

    Interpretation and analysis of electroencephalography (EEG) measurements relies on the correspondence of electrode scalp coordinates to structural and functional regions of the brain. An algorithm is introduced for automatic calculation of the International 10-20, 10-10, and 10-5 scalp coordinates of EEG electrodes on a boundary element mesh of a human head. The EEG electrode positions are then used to generate parcellation regions of the cerebral cortex based on proximity to the EEG electrodes. The scalp electrode calculation method presented in this study effectively and efficiently identifies EEG locations without prior digitization of coordinates. The average of electrode proximity parcellations of the cortex were tabulated with respect to structural and functional regions of the brain in a population of 20 adult subjects. Parcellations based on electrode proximity and EEG sensitivity were compared. The parcellation regions based on sensitivity and proximity were found to have 44.0 ± 11.3% agreement when demarcated by the International 10-20, 32.4 ± 12.6% by the 10-10, and 24.7 ± 16.3% by the 10-5 electrode positioning system. The EEG positioning algorithm is a fast and easy method of locating EEG scalp coordinates without the need for digitized electrode positions. The parcellation method presented summarizes the EEG scalp locations with respect to brain regions without computation of a full EEG forward model solution. The reference table of electrode proximity versus cortical regions may be used by experimenters to select electrodes that correspond to anatomical and functional regions of interest. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Isolating gait-related movement artifacts in electroencephalography during human walking.

    PubMed

    Kline, Julia E; Huang, Helen J; Snyder, Kristine L; Ferris, Daniel P

    2015-08-01

    High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4 to 1.6 m s(-1). We then tested artifact removal methods including moving average and wavelet-based techniques. Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removal of EEG movement artifact to advance the field.

  20. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    PubMed

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  1. Multimodal 2D Brain Computer Interface.

    PubMed

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  2. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data.

    PubMed

    Gabard-Durnam, Laurel J; Mendez Leal, Adriana S; Wilkinson, Carol L; Levin, April R

    2018-01-01

    Electroenchephalography (EEG) recordings collected with developmental populations present particular challenges from a data processing perspective. These EEGs have a high degree of artifact contamination and often short recording lengths. As both sample sizes and EEG channel densities increase, traditional processing approaches like manual data rejection are becoming unsustainable. Moreover, such subjective approaches preclude standardized metrics of data quality, despite the heightened importance of such measures for EEGs with high rates of initial artifact contamination. There is presently a paucity of automated resources for processing these EEG data and no consistent reporting of data quality measures. To address these challenges, we propose the Harvard Automated Processing Pipeline for EEG (HAPPE) as a standardized, automated pipeline compatible with EEG recordings of variable lengths and artifact contamination levels, including high-artifact and short EEG recordings from young children or those with neurodevelopmental disorders. HAPPE processes event-related and resting-state EEG data from raw files through a series of filtering, artifact rejection, and re-referencing steps to processed EEG suitable for time-frequency-domain analyses. HAPPE also includes a post-processing report of data quality metrics to facilitate the evaluation and reporting of data quality in a standardized manner. Here, we describe each processing step in HAPPE, perform an example analysis with EEG files we have made freely available, and show that HAPPE outperforms seven alternative, widely-used processing approaches. HAPPE removes more artifact than all alternative approaches while simultaneously preserving greater or equivalent amounts of EEG signal in almost all instances. We also provide distributions of HAPPE's data quality metrics in an 867 file dataset as a reference distribution and in support of HAPPE's performance across EEG data with variable artifact contamination and recording lengths. HAPPE software is freely available under the terms of the GNU General Public License at https://github.com/lcnhappe/happe.

  3. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data

    PubMed Central

    Gabard-Durnam, Laurel J.; Mendez Leal, Adriana S.; Wilkinson, Carol L.; Levin, April R.

    2018-01-01

    Electroenchephalography (EEG) recordings collected with developmental populations present particular challenges from a data processing perspective. These EEGs have a high degree of artifact contamination and often short recording lengths. As both sample sizes and EEG channel densities increase, traditional processing approaches like manual data rejection are becoming unsustainable. Moreover, such subjective approaches preclude standardized metrics of data quality, despite the heightened importance of such measures for EEGs with high rates of initial artifact contamination. There is presently a paucity of automated resources for processing these EEG data and no consistent reporting of data quality measures. To address these challenges, we propose the Harvard Automated Processing Pipeline for EEG (HAPPE) as a standardized, automated pipeline compatible with EEG recordings of variable lengths and artifact contamination levels, including high-artifact and short EEG recordings from young children or those with neurodevelopmental disorders. HAPPE processes event-related and resting-state EEG data from raw files through a series of filtering, artifact rejection, and re-referencing steps to processed EEG suitable for time-frequency-domain analyses. HAPPE also includes a post-processing report of data quality metrics to facilitate the evaluation and reporting of data quality in a standardized manner. Here, we describe each processing step in HAPPE, perform an example analysis with EEG files we have made freely available, and show that HAPPE outperforms seven alternative, widely-used processing approaches. HAPPE removes more artifact than all alternative approaches while simultaneously preserving greater or equivalent amounts of EEG signal in almost all instances. We also provide distributions of HAPPE's data quality metrics in an 867 file dataset as a reference distribution and in support of HAPPE's performance across EEG data with variable artifact contamination and recording lengths. HAPPE software is freely available under the terms of the GNU General Public License at https://github.com/lcnhappe/happe. PMID:29535597

  4. Combined MEG-EEG source localisation in patients with sub-acute sclerosing pan-encephalitis.

    PubMed

    Velmurugan, J; Sinha, Sanjib; Nagappa, Madhu; Mariyappa, N; Bindu, P S; Ravi, G S; Hazra, Nandita; Thennarasu, K; Ravi, V; Taly, A B; Satishchandra, P

    2016-08-01

    To study the genesis and propagation patterns of periodic complexes (PCs) associated with myoclonic jerks in sub-acute sclerosing pan-encephalitis (SSPE) using magnetoencephalography (MEG) and electroencephalography (EEG). Simultaneous recording of MEG (306 channels) and EEG (64 channels) in five patients of SSPE (M:F = 3:2; age 10.8 ± 3.2 years; symptom-duration 6.2 ± 10 months) was carried out using Elekta Neuromag(®) TRIUX™ system. Qualitative analysis of 80-160 PCs per patient was performed. Ten isomorphic classical PCs with significant field topography per patient were analysed at the 'onset' and at 'earliest significant peak' of the burst using discrete and distributed source imaging methods. MEG background was asymmetrical in 2 and slow in 3 patients. Complexes were periodic (3) or quasi-periodic (2), occurring every 4-16 s and varied in morphology among patients. Mean source localization at onset of bursts using discrete and distributed source imaging in magnetic source imaging (MSI) was in thalami and or insula (50 and 50 %, respectively) and in electric source imaging (ESI) was also in thalami and or insula (38 and 46 %, respectively). Mean source localization at the earliest rising phase of peak in MSI was in peri-central gyrus (49 and 42 %) and in ESI it was in frontal cortex (52 and 56 %). Further analysis revealed that PCs were generated in thalami and or insula and thereafter propagated to anterolateral surface of the cortices (viz. sensori-motor cortex and frontal cortex) to same side as that of the onset. This novel MEG-EEG based case series of PCs provides newer insights for understanding the plausible generators of myoclonus in SSPE and patterns of their propagation.

  5. Engagement Assessment Using EEG Signals

    NASA Technical Reports Server (NTRS)

    Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean

    2012-01-01

    In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.

  6. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  7. Effects of high-dose ethanol intoxication and hangover on cognitive flexibility.

    PubMed

    Wolff, Nicole; Gussek, Philipp; Stock, Ann-Kathrin; Beste, Christian

    2018-01-01

    The effects of high-dose ethanol intoxication on cognitive flexibility processes are not well understood, and processes related to hangover after intoxication have remained even more elusive. Similarly, it is unknown in how far the complexity of cognitive flexibility processes is affected by intoxication and hangover effects. We performed a neurophysiological study applying high density electroencephalography (EEG) recording to analyze event-related potentials (ERPs) and perform source localization in a task switching paradigm which varied the complexity of task switching by means of memory demands. The results show that high-dose ethanol intoxication only affects task switching (i.e. cognitive flexibility processes) when memory processes are required to control task switching mechanisms, suggesting that even high doses of ethanol compromise cognitive processes when they are highly demanding. The EEG and source localization data show that these effects unfold by modulating response selection processes in the anterior cingulate cortex. Perceptual and attentional selection processes as well as working memory processes were only unspecifically modulated. In all subprocesses examined, there were no differences between the sober and hangover states, thus suggesting a fast recovery of cognitive flexibility after high-dose ethanol intoxication. We assume that the gamma-aminobutyric acid (GABAergic) system accounts for the observed effects, while they can hardly be explained by the dopaminergic system. © 2016 Society for the Study of Addiction.

  8. An electroencephalographic Peak Density Function to detect memorization during the observation of TV commercials.

    PubMed

    Vecchiato, G; Di Flumeri, G; Maglione, A G; Cherubino, P; Kong, W; Trettel, A; Babiloni, F

    2014-01-01

    Nowadays, there is a growing interest in measuring the impact of advertisements through the estimation of cerebral reactions. Several techniques and methods are used and discussed in the consumer neuroscience. In such a context, the present paper provides a novel method to estimate the level of memorization occurred in subjects during the observation of TV commercials. In particular, the present work introduce the Peak Density Function (PDF) as an electroencephalographic (EEG) time-varying variable which is correlated with the cerebral events of memorization of TV commercials. The analysis has been performed on the EEG activity recorded on twenty healthy subjects during the exposition to several advertisements. After the EEG recordings, an interview has been performed to obtain the information about the memorized scenes for all the video clips watched by the subjects. Such information has been put in correlation with the occurrence of transient peaks of EEG synchronization in the theta band, by computing the PDF. The present results show that the increase of PDF is positively correlated, scene by scene, (R=0.46, p<;0.01) with the spontaneous recall of subjects. This technology could be of help for marketers to overcome the drawbacks of the standard marketing tools (e.g., interviews, focus groups) when analyzing the impact of advertisements.

  9. Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection.

    PubMed

    Jafadideh, Alireza Talesh; Asl, Babak Mohammadzadeh

    2018-04-27

    Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are correlated and interference sources.

  10. Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions

    PubMed Central

    Chen, Shengyong; Xiao, Gang; Li, Xiaoli

    2014-01-01

    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954

  11. How Different EEG References Influence Sensor Level Functional Connectivity Graphs

    PubMed Central

    Huang, Yunzhi; Zhang, Junpeng; Cui, Yuan; Yang, Gang; He, Ling; Liu, Qi; Yin, Guangfu

    2017-01-01

    Highlights: Hamming Distance is applied to distinguish the difference of functional connectivity networkThe orientations of sources are testified to influence the scalp Functional Connectivity Graph (FCG) from different references significantlyREST, the reference electrode standardization technique, is proved to have an overall stable and excellent performance in variable situations. The choice of an electroencephalograph (EEG) reference is a practical issue for the study of brain functional connectivity. To study how EEG reference influence functional connectivity estimation (FCE), this study compares the differences of FCE resulting from the different references such as REST (the reference electrode standardization technique), average reference (AR), linked mastoids (LM), and left mastoid references (LR). Simulations involve two parts. One is based on 300 dipolar pairs, which are located on the superficial cortex with a radial source direction. The other part is based on 20 dipolar pairs. In each pair, the dipoles have various orientation combinations. The relative error (RE) and Hamming distance (HD) between functional connectivity matrices of ideal recordings and that of recordings obtained with different references, are metrics to compare the differences of the scalp functional connectivity graph (FCG) derived from those two kinds of recordings. Lower RE and HD values imply more similarity between the two FCGs. Using the ideal recording (IR) as a standard, the results show that AR, LM and LR perform well only in specific conditions, i.e., AR performs stable when there is no upward component in sources' orientation. LR achieves desirable results when the sources' locations are away from left ear. LM achieves an indistinct difference with IR, i.e., when the distribution of source locations is symmetric along the line linking the two ears. However, REST not only achieves excellent performance for superficial and radial dipolar sources, but also achieves a stable and robust performance with variable source locations and orientations. Benefitting from the stable and robust performance of REST vs. other reference methods, REST might best recover the real FCG of EEG. Thus, REST based FCG may be a good candidate to compare the FCG of EEG based on different references from different labs. PMID:28725175

  12. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    PubMed

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.

  13. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    PubMed Central

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium. PMID:27445777

  14. Method for Improving EEG Based Emotion Recognition by Combining It with Synchronized Biometric and Eye Tracking Technologies in a Non-invasive and Low Cost Way

    PubMed Central

    López-Gil, Juan-Miguel; Virgili-Gomá, Jordi; Gil, Rosa; Guilera, Teresa; Batalla, Iolanda; Soler-González, Jorge; García, Roberto

    2016-01-01

    Technical advances, particularly the integration of wearable and embedded sensors, facilitate tracking of physiological responses in a less intrusive way. Currently, there are many devices that allow gathering biometric measurements from human beings, such as EEG Headsets or Health Bracelets. The massive data sets generated by tracking of EEG and physiology may be used, among other things, to infer knowledge about human moods and emotions. Apart from direct biometric signal measurement, eye tracking systems are nowadays capable of determining the point of gaze of the users when interacting in ICT environments, which provides an added value research on many different areas, such as psychology or marketing. We present a process in which devices for eye tracking, biometric, and EEG signal measurements are synchronously used for studying both basic and complex emotions. We selected the least intrusive devices for different signal data collection given the study requirements and cost constraints, so users would behave in the most natural way possible. On the one hand, we have been able to determine basic emotions participants were experiencing by means of valence and arousal. On the other hand, a complex emotion such as empathy has also been detected. To validate the usefulness of this approach, a study involving forty-four people has been carried out, where they were exposed to a series of affective stimuli while their EEG activity, biometric signals, and eye position were synchronously recorded to detect self-regulation. The hypothesis of the work was that people who self-regulated would show significantly different results when analyzing their EEG data. Participants were divided into two groups depending on whether Electro Dermal Activity (EDA) data indicated they self-regulated or not. The comparison of the results obtained using different machine learning algorithms for emotion recognition shows that using EEG activity alone as a predictor for self-regulation does not allow properly determining whether a person in self-regulation its emotions while watching affective stimuli. However, adequately combining different data sources in a synchronous way to detect emotions makes it possible to overcome the limitations of single detection methods. PMID:27594831

  15. Method for Improving EEG Based Emotion Recognition by Combining It with Synchronized Biometric and Eye Tracking Technologies in a Non-invasive and Low Cost Way.

    PubMed

    López-Gil, Juan-Miguel; Virgili-Gomá, Jordi; Gil, Rosa; García, Roberto

    2016-01-01

    Technical advances, particularly the integration of wearable and embedded sensors, facilitate tracking of physiological responses in a less intrusive way. Currently, there are many devices that allow gathering biometric measurements from human beings, such as EEG Headsets or Health Bracelets. The massive data sets generated by tracking of EEG and physiology may be used, among other things, to infer knowledge about human moods and emotions. Apart from direct biometric signal measurement, eye tracking systems are nowadays capable of determining the point of gaze of the users when interacting in ICT environments, which provides an added value research on many different areas, such as psychology or marketing. We present a process in which devices for eye tracking, biometric, and EEG signal measurements are synchronously used for studying both basic and complex emotions. We selected the least intrusive devices for different signal data collection given the study requirements and cost constraints, so users would behave in the most natural way possible. On the one hand, we have been able to determine basic emotions participants were experiencing by means of valence and arousal. On the other hand, a complex emotion such as empathy has also been detected. To validate the usefulness of this approach, a study involving forty-four people has been carried out, where they were exposed to a series of affective stimuli while their EEG activity, biometric signals, and eye position were synchronously recorded to detect self-regulation. The hypothesis of the work was that people who self-regulated would show significantly different results when analyzing their EEG data. Participants were divided into two groups depending on whether Electro Dermal Activity (EDA) data indicated they self-regulated or not. The comparison of the results obtained using different machine learning algorithms for emotion recognition shows that using EEG activity alone as a predictor for self-regulation does not allow properly determining whether a person in self-regulation its emotions while watching affective stimuli. However, adequately combining different data sources in a synchronous way to detect emotions makes it possible to overcome the limitations of single detection methods.

  16. Authentication, privacy, security can exploit brainwave by biomarker

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Sweet, Charles; Sweet, James; Noel, Steven; Szu, Harold

    2014-05-01

    We seek to augment the current Common Access Control (CAC) card and Personal Identification Number (PIN) verification systems with an additional layer of classified access biometrics. Among proven devices such as fingerprint readers and cameras that can sense the human eye's iris pattern, we introduced a number of users to a sequence of 'grandmother images', or emotionally evoked stimuli response images from other users, as well as one of their own, for the purpose of authentication. We performed testing and evaluation of the Authenticity Privacy and Security (APS) brainwave biometrics, similar to the internal organ of the human eye's iris which cannot easily be altered. `Aha' recognition through stimulus-response habituation can serve as a biomarker, similar to keystroke dynamics analysis for inter and intra key fluctuation time of a memorized PIN number (FIST). Using a non-tethered Electroencephalogram (EEG) wireless smartphone/pc monitor interface, we explore the appropriate stimuli-response biomarker present in DTAB low frequency group waves. Prior to login, the user is shown a series of images on a computer display. They have been primed to click their mouse when the image is presented. DTAB waves are collected with a wireless EEG and are sent via Smartphone to a cloud based processing infrastructure. There, we measure fluctuations in DTAB waves from a wireless, non-tethered, single node EEG device between the Personal Graphic Image Number (PGIN) stimulus image and the response time from an individual's mental performance baseline. Towards that goal, we describe an infrastructure that supports distributed verification for web-based EEG authentication. The performance of machine learning on the relative Power Spectral Density EEG data may uncover features required for subsequent access to web or media content. Our approach provides a scalable framework wrapped into a robust Neuro-Informatics toolkit, viable for use in the Biomedical and mental health communities, as well as numerous consumer applications.

  17. The Brain Computer Interface Future: Time for a Strategy

    DTIC Science & Technology

    2013-02-14

    electrophysiological activity can be measured by electroencepholography ( EEG ), electrocorticography (ECoG), magnetoencephalography (MEG), or signal activity...magnetic resonance imaging (MRI) or near infrared spectroscopy. Currently EEG is most the most widely used BCI interface due to high temporal...resolution, less user risk, and lower costs.12 EEG technology has been widely available for many decades but has significantly expanded as researchers

  18. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    PubMed

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  19. Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification.

    PubMed

    Rifai Chai; Naik, Ganesh R; Sai Ho Ling; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T

    2017-07-01

    This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system.

  20. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    PubMed Central

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-01-01

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver’s vigilance level . Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model. PMID:26907278

  1. Unsupervised EEG analysis for automated epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  2. Application of Independent Component Analysis for the Data Mining of Simultaneous EEG-fMRI: Preliminary Experience on Sleep Onset

    PubMed Central

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A.; Park, Hyunwook; Yoo, Seung-Schik

    2010-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with the ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta- and alpha-rhythms that are sleep onset related EEG signatures along with the subsequent neural circuitries from a sleep deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable. PMID:19922343

  3. Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset.

    PubMed

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A; Park, Hyunwook; Yoo, Seung-Schik

    2009-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta and alpha rhythms that are sleep onset-related EEG signatures along with the subsequent neural circuitries from a sleep-deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable.

  4. Non-convulsive seizures and non-convulsive status epilepticus monitoring in the intensive care unit. A real need for the Gulf Cooperation Council countries.

    PubMed

    Mesraoua, Boulenouar; Wieser, Heinz G

    2009-10-01

    Continuous EEG (cEEG) monitoring in the intensive care unit (ICU) is essential for detecting non-convulsive seizures/status epilepticus (NCSs, NCSE). Currently there exist a number of continuous EEG monitoring systems adapted for use in the ICU. However, these systems have been trained using EEG data collected from healthy, neurologically intact patients with epileptic seizures, a very different patient population from ICU patients. The review consists of 2 parts, clinical and technological aspects. In the first one, we summarize the electroencephalographic aspects of NCSs/NCSE and other EEG patterns encountered in the ICU. In the second part, we explain how to develop a novel cEEG monitoring system to be used in Hamad Medical Corporation ICUs, Doha, Qatar, that is able to detect pathological EEG patterns commonly occurring in the critically ill patient. Real-time monitoring of seizure discharges, and other pathological EEG patterns will allow correct diagnosis and adequate treatment in a timely fashion.

  5. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2018-01-01

    The aim of our current study is to check whether multifractal patterns of the electroencephalographic (EEG) signals of normal and epileptic patients are statistically similar or different. In this regard, the generalized Hurst exponent (GHE) method is used for robust estimation of the multifractals in each type of EEG signals, and three powerful statistical tests are performed to check existence of differences between estimated GHEs from healthy control subjects and epileptic patients. The obtained results show that multifractals exist in both types of EEG signals. Particularly, it was found that the degree of fractal is more pronounced in short variations of normal EEG signals than in short variations of EEG signals with seizure free intervals. In contrary, it is more pronounced in long variations of EEG signals with seizure free intervals than in normal EEG signals. Importantly, both parametric and nonparametric statistical tests show strong evidence that estimated GHEs of normal EEG signals are statistically and significantly different from those with seizure free intervals. Therefore, GHEs can be efficiently used to distinguish between healthy and patients suffering from epilepsy.

  6. Mushu, a free- and open source BCI signal acquisition, written in Python.

    PubMed

    Venthur, Bastian; Blankertz, Benjamin

    2012-01-01

    The following paper describes Mushu, a signal acquisition software for retrieval and online streaming of Electroencephalography (EEG) data. It is written, but not limited, to the needs of Brain Computer Interfacing (BCI). It's main goal is to provide a unified interface to EEG data regardless of the amplifiers used. It runs under all major operating systems, like Windows, Mac OS and Linux, is written in Python and is free- and open source software licensed under the terms of the GNU General Public License.

  7. Rostral anterior cingulate cortex activity and early symptom improvement during treatment for major depressive disorder

    PubMed Central

    Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.

    2011-01-01

    In treatment trials for Major Depressive Disorder (MDD), early symptom improvement is predictive of eventual clinical response. Clinical response may also be predicted by elevated pretreatment theta (4-7 Hz) current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC). We investigated the relationship between pretreatment EEG and early improvement in predicting clinical outcome in 72 MDD subjects across three placebo-controlled treatment trials. Subjects were randomized to receive fluoxetine, venlafaxine, or placebo. Theta current density in the rACC and mOFC was computed with Low-Resolution Brain Electromagnetic Tomography (LORETA). An ANCOVA, examining week 8 Hamilton Depression Rating Scale (HamD) percent change, showed a significant effect of week-2-HamD-percent-change, and a significant three-way interaction of week-2-HamD-percent-change × Treatment × rACC. Medication subjects with robust early improvement showed almost no relationship between rACC theta current density and final clinical outcome. However, in subjects with little early improvement, rACC activity showed a strong relationship with clinical outcome. The model examining mOFC showed a trend in the three-way interaction. A combination of pretreatment rACC activity and early symptom improvement may be useful for predicting treatment response. PMID:21546222

  8. Resting-state EEG power and coherence vary between migraine phases.

    PubMed

    Cao, Zehong; Lin, Chin-Teng; Chuang, Chun-Hsiang; Lai, Kuan-Lin; Yang, Albert C; Fuh, Jong-Ling; Wang, Shuu-Jiun

    2016-12-01

    Migraine is characterized by a series of phases (inter-ictal, pre-ictal, ictal, and post-ictal). It is of great interest whether resting-state electroencephalography (EEG) is differentiable between these phases. We compared resting-state EEG energy intensity and effective connectivity in different migraine phases using EEG power and coherence analyses in patients with migraine without aura as compared with healthy controls (HCs). EEG power and isolated effective coherence of delta (1-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), and beta (13-30 Hz) bands were calculated in the frontal, central, temporal, parietal, and occipital regions. Fifty patients with episodic migraine (1-5 headache days/month) and 20 HCs completed the study. Patients were classified into inter-ictal, pre-ictal, ictal, and post-ictal phases (n = 22, 12, 8, 8, respectively), using 36-h criteria. Compared to HCs, inter-ictal and ictal patients, but not pre- or post-ictal patients, had lower EEG power and coherence, except for a higher effective connectivity in fronto-occipital network in inter-ictal patients (p < .05). Compared to data obtained from the inter-ictal group, EEG power and coherence were increased in the pre-ictal group, with the exception of a lower effective connectivity in fronto-occipital network (p < .05). Inter-ictal and ictal patients had decreased EEG power and coherence relative to HCs, which were "normalized" in the pre-ictal or post-ictal groups. Resting-state EEG power density and effective connectivity differ between migraine phases and provide an insight into the complex neurophysiology of migraine.

  9. Regional brain activity that determines successful and unsuccessful working memory formation.

    PubMed

    Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie

    2016-08-01

    Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.

  10. Design of electrodes and current limits for low frequency electrical impedance tomography of the brain.

    PubMed

    Gilad, O; Horesh, L; Holder, D S

    2007-07-01

    For the novel application of recording of resistivity changes related to neuronal depolarization in the brain with electrical impedance tomography, optimal recording is with applied currents below 100 Hz, which might cause neural stimulation of skin or underlying brain. The purpose of this work was to develop a method for application of low frequency currents to the scalp, which delivered the maximum current without significant stimulation of skin or underlying brain. We propose a recessed electrode design which enabled current injection with an acceptable skin sensation to be increased from 100 muA using EEG electrodes, to 1 mA in 16 normal volunteers. The effect of current delivered to the brain was assessed with an anatomically realistic finite element model of the adult head. The modelled peak cerebral current density was 0.3 A/m(2), which was 5 to 25-fold less than the threshold for stimulation of the brain estimated from literature review.

  11. Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.

    PubMed

    Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael

    2015-08-01

    In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.

  12. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy

    PubMed Central

    Gu, Ying; Cleeren, Evy; Dan, Jonathan; Claes, Kasper; Hunyadi, Borbála

    2017-01-01

    A wearable electroencephalogram (EEG) device for continuous monitoring of patients suffering from epilepsy would provide valuable information for the management of the disease. Currently no EEG setup is small and unobtrusive enough to be used in daily life. Recording behind the ear could prove to be a solution to a wearable EEG setup. This article examines the feasibility of recording epileptic EEG from behind the ear. It is achieved by comparison with scalp EEG recordings. Traditional scalp EEG and behind-the-ear EEG were simultaneously acquired from 12 patients with temporal, parietal, or occipital lobe epilepsy. Behind-the-ear EEG consisted of cross-head channels and unilateral channels. The analysis on Electrooculography (EOG) artifacts resulting from eye blinking showed that EOG artifacts were absent on cross-head channels and had significantly small amplitudes on unilateral channels. Temporal waveform and frequency content during seizures from behind-the-ear EEG visually resembled that from scalp EEG. Further, coherence analysis confirmed that behind-the-ear EEG acquired meaningful epileptic discharges similarly to scalp EEG. Moreover, automatic seizure detection based on support vector machine (SVM) showed that comparable seizure detection performance can be achieved using these two recordings. With scalp EEG, detection had a median sensitivity of 100% and a false detection rate of 1.14 per hour, while, with behind-the-ear EEG, it had a median sensitivity of 94.5% and a false detection rate of 0.52 per hour. These findings demonstrate the feasibility of detecting seizures from EEG recordings behind the ear for patients with focal epilepsy. PMID:29295522

  13. Independent EEG Sources Are Dipolar

    PubMed Central

    Delorme, Arnaud; Palmer, Jason; Onton, Julie; Oostenveld, Robert; Makeig, Scott

    2012-01-01

    Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison). PMID:22355308

  14. Neural basis of postural instability identified by VTC and EEG

    PubMed Central

    Cao, Cheng; Jaiswal, Niharika; Newell, Karl M.

    2010-01-01

    In this study, we investigated the neural basis of virtual time to contact (VTC) and the hypothesis that VTC provides predictive information for future postural instability. A novel approach to differentiate stable pre-falling and transition-to-instability stages within a single postural trial while a subject was performing a challenging single leg stance with eyes closed was developed. Specifically, we utilized wavelet transform and stage segmentation algorithms using VTC time series data set as an input. The VTC time series was time-locked with multichannel (n = 64) EEG signals to examine its underlying neural substrates. To identify the focal sources of neural substrates of VTC, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) of multichannel EEG. There were two major findings: (1) a significant increase of VTC minimal values (along with enhanced variability of VTC) was observed during the transition-to-instability stage with progression to ultimate loss of balance and falling; and (2) this VTC dynamics was associated with pronounced modulation of EEG predominantly within theta, alpha and gamma frequency bands. The sources of this EEG modulation were identified at the cingulate cortex (ACC) and the junction of precuneus and parietal lobe, as well as at the occipital cortex. The findings support the hypothesis that the systematic increase of minimal values of VTC concomitant with modulation of EEG signals at the frontal-central and parietal–occipital areas serve collectively to predict the future instability in posture. PMID:19655130

  15. Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients

    PubMed Central

    2010-01-01

    Background The physiopathological mechanism underlying the tinnitus phenomenon is still the subject of an ongoing debate. Since oscillatory EEG activity is increasingly recognized as a fundamental hallmark of cortical integrative functions, this study investigates deviations from the norm of different resting EEG parameters in patients suffering from chronic tinnitus. Results Spectral parameters of resting EEG of male tinnitus patients (n = 8, mean age 54 years) were compared to those of age-matched healthy males (n = 15, mean age 58.8 years). On average, the patient group exhibited higher spectral power over the frequency range of 2-100 Hz. Using LORETA source analysis, the generators of delta, theta, alpha and beta power increases were localized dominantly to left auditory (Brodmann Areas (BA) 41,42, 22), temporo-parietal, insular posterior, cingulate anterior and parahippocampal cortical areas. Conclusions Tinnitus patients show a deviation from the norm of different resting EEG parameters, characterized by an overproduction of resting state delta, theta and beta brain activities, providing further support for the microphysiological and magnetoencephalographic evidence pointing to a thalamocortical dysrhythmic process at the source of tinnitus. These results also provide further confirmation that reciprocal involvements of both auditory and associative/paralimbic areas are essential in the generation of tinnitus. PMID:20334674

  16. [Magnetoencephalography in the presurgical evaluation of patients with drug-resistant epilepsy].

    PubMed

    Koptelova, A M; Arkhipova, N A; Golovteev, A L; Chadaev, V A; Grinenko, O A; Kozlova, A B; Novikova, S I; Stepanenko, A Iu; Melikian, A G; Stroganova, T A

    2013-01-01

    Magnetoencephalography (MEG) in combination with structural MRI (magnetic source imaging, MSI) plays an increasingly important role as one of the tools for presurgical evaluation of medically intractable focal epilepsy. The aim of the study was to compare the MSI and commonly used video EEG monitoring method (vEEG) in their sensitivity to interictal epileptic discharges (IED) in 22 patients with drug resistant epilepsy. Furthermore, the detection and localization results obtained by both methods were verified using the data of electrocorticography (ECoG) and postsurgical outcome in 13 patients who underwent invasive EEG monitoring and surgery. The results showed that MSI was superior to vEEC in terms of sensitivity to IED with difference in sensitivity of 22%. The data also suggested that MSI superiority to vEEG in detecting epileptic discharges might, at least partly, arise from better MEG responsiveness to epileptic events coming from the medial, opercular and basal aspects of cortical lobes. MSI localization estimates were in the same cortical lobe and at the same lobar aspects as the epileptic foci detected by ECoG in all patients. Thus, magnetic source imaging can provide critical localization information that is not available when other noninvasive methods, such as vEEG and MRI, are used.

  17. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  18. Human Supervision of Time Critical Control Systems. Addendum

    DTIC Science & Technology

    2010-02-26

    signals such as electroencephalogram (EEG) and electrooculography ( EOG ). Current research has demonstrated these signals ’ ability to respond to changing...relationships often present in EEG/ EOG data; they routinely achieve classification accuracy greater than 80%. However, the discrete output of these...present data there were seven EEG and EOG signals recorded, thus, ICA assumes each were a mixture of seven independent components (Stone, 2002). Some

  19. Linking EEG signals, brain functions and mental operations: Advantages of the Laplacian transformation.

    PubMed

    Vidal, Franck; Burle, Boris; Spieser, Laure; Carbonnell, Laurence; Meckler, Cédric; Casini, Laurence; Hasbroucq, Thierry

    2015-09-01

    Electroencephalography (EEG) is a very popular technique for investigating brain functions and/or mental processes. To this aim, EEG activities must be interpreted in terms of brain and/or mental processes. EEG signals being a direct manifestation of neuronal activity it is often assumed that such interpretations are quite obvious or, at least, straightforward. However, they often rely on (explicit or even implicit) assumptions regarding the structures supposed to generate the EEG activities of interest. For these assumptions to be used appropriately, reliable links between EEG activities and the underlying brain structures must be established. Because of volume conduction effects and the mixture of activities they induce, these links are difficult to establish with scalp potential recordings. We present different examples showing how the Laplacian transformation, acting as an efficient source separation method, allowed to establish more reliable links between EEG activities and brain generators and, ultimately, with mental operations. The nature of those links depends on the depth of inferences that can vary from weak to strong. Along this continuum, we show that 1) while the effects of experimental manipulation can appear widely distributed with scalp potentials, Laplacian transformation allows to reveal several generators contributing (in different manners) to these modulations, 2) amplitude variations within the same set of generators can generate spurious differences in scalp potential topographies, often interpreted as reflecting different source configurations. In such a case, Laplacian transformation provides much more similar topographies, evidencing the same generator(s) set, and 3) using the LRP as an index of response activation most often produces ambiguous results, Laplacian-transformed response-locked ERPs obtained over motor areas allow resolving these ambiguities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Junior temperament character inventory together with quantitative EEG discriminate children with attention deficit hyperactivity disorder combined subtype from children with attention deficit hyperactivity disorder combined subtype plus oppositional defiant disorder.

    PubMed

    Chiarenza, Giuseppe A; Villa, Stefania; Galan, Lidice; Valdes-Sosa, Pedro; Bosch-Bayard, Jorge

    2018-05-19

    Oppositional defiant disorder (ODD) is frequently associated with Attention Deficit Hyperactivity Disorder (ADHD) but no clear neurophysiological evidence exists that distinguishes the two groups. Our aim was to identify biomarkers that distinguish children with Attention Deficit Hyperactivity Disorder combined subtype (ADHD_C) from children with ADHD_C + ODD, by combining the results of quantitative EEG (qEEG) and the Junior Temperament Character Inventory (JTCI). 28 ADHD_C and 22 ADHD_C + ODD children who met the DSMV criteria participated in the study. JTCI and EEG were analyzed. Stability based Biomarkers identification methodology was applied to the JTCI and the qEEG separately and combined. The qEEG was tested at the scalp and the sources levels. The classification power of the selected biomarkers was tested with a robust ROC technique. The best discriminant power was obtained when TCI and qEEG were analyzed together. Novelty seeking, self-directedness and cooperativeness were selected as biomarkers together with F4 and Cz in Delta; Fz and F4 in Theta and F7 and F8 in Beta, with a robust AUC of 0.95 for the ROC. At sources level: the regions were the right lateral and medial orbito-frontal cortex, cingular region, angular gyrus, right inferior occipital gyrus, occipital pole and the left insula in Theta, Alpha and Beta. The robust estimate of the total AUC was 0.91. These structures are part of extensive networks of novelty seeking, self-directedness and cooperativeness systems that seem dysregulated in these children. These methods represent an original approach to associate differences of personality and behavior to specific neuronal systems and subsystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN

    2018-06-01

    Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.

  2. Levetiracetam versus phenytoin for seizure prophylaxis in severe traumatic brain injury

    PubMed Central

    Jones, Kristen E.; Puccio, Ava M.; Harshman, Kathy J.; Falcione, Bonnie; Benedict, Neal; Jankowitz, Brian T.; Stippler, Martina; Fischer, Michael; Sauber-Schatz, Erin K.; Fabio, Anthony; Darby, Joseph M.; Okonkwo, David O.

    2013-01-01

    Object Current standard of care for patients with severe traumatic brain injury (TBI) is prophylactic treatment with phenytoin for 7 days to decrease the risk of early posttraumatic seizures. Phenytoin alters drug metabolism, induces fever, and requires therapeutic-level monitoring. Alternatively, levetiracetam (Keppra) does not require serum monitoring or have significant pharmacokinetic interactions. In the current study, the authors compare the EEG findings in patients receiving phenytoin with those receiving levetiracetam monotherapy for seizure prophylaxis following severe TBI. Methods Data were prospectively collected in 32 cases in which patients received levetiracetam for the first 7 days after severe TBI and compared with data from a historical cohort of 41 cases in which patients received phenytoin monotherapy. Patients underwent 1-hour electroencephalographic (EEG) monitoring if they displayed persistent coma, decreased mental status, or clinical signs of seizures. The EEG results were grouped into normal and abnormal findings, with abnormal EEG findings further categorized as seizure activity or seizure tendency. Results Fifteen of 32 patients in the levetiracetam group warranted EEG monitoring. In 7 of these 15 cases the results were normal and in 8 abnormal; 1 patient had seizure activity, whereas 7 had seizure tendency. Twelve of 41 patients in the phenytoin group received EEG monitoring, with all results being normal. Patients treated with levetiracetam and phenytoin had equivalent incidence of seizure activity (p = 0.556). Patients receiving levetiracetam had a higher incidence of abnormal EEG findings (p = 0.003). Conclusions Levetiracetam is as effective as phenytoin in preventing early posttraumatic seizures but is associated with an increased seizure tendency on EEG analysis. PMID:18828701

  3. A statistically robust EEG re-referencing procedure to mitigate reference effect

    PubMed Central

    Lepage, Kyle Q.; Kramer, Mark A.; Chu, Catherine J.

    2014-01-01

    Background The electroencephalogram (EEG) remains the primary tool for diagnosis of abnormal brain activity in clinical neurology and for in vivo recordings of human neurophysiology in neuroscience research. In EEG data acquisition, voltage is measured at positions on the scalp with respect to a reference electrode. When this reference electrode responds to electrical activity or artifact all electrodes are affected. Successful analysis of EEG data often involves re-referencing procedures that modify the recorded traces and seek to minimize the impact of reference electrode activity upon functions of the original EEG recordings. New method We provide a novel, statistically robust procedure that adapts a robust maximum-likelihood type estimator to the problem of reference estimation, reduces the influence of neural activity from the re-referencing operation, and maintains good performance in a wide variety of empirical scenarios. Results The performance of the proposed and existing re-referencing procedures are validated in simulation and with examples of EEG recordings. To facilitate this comparison, channel-to-channel correlations are investigated theoretically and in simulation. Comparison with existing methods The proposed procedure avoids using data contaminated by neural signal and remains unbiased in recording scenarios where physical references, the common average reference (CAR) and the reference estimation standardization technique (REST) are not optimal. Conclusion The proposed procedure is simple, fast, and avoids the potential for substantial bias when analyzing low-density EEG data. PMID:24975291

  4. The role of blood vessels in high-resolution volume conductor head modeling of EEG.

    PubMed

    Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T

    2016-03-01

    Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. How do reference montage and electrodes setup affect the measured scalp EEG potentials?

    NASA Astrophysics Data System (ADS)

    Hu, Shiang; Lai, Yongxiu; Valdes-Sosa, Pedro A.; Bringas-Vega, Maria L.; Yao, Dezhong

    2018-04-01

    Objective. Human scalp electroencephalogram (EEG) is widely applied in cognitive neuroscience and clinical studies due to its non-invasiveness and ultra-high time resolution. However, the representativeness of the measured EEG potentials for the underneath neural activities is still a problem under debate. This study aims to investigate systematically how both reference montage and electrodes setup affect the accuracy of EEG potentials. Approach. First, the standard EEG potentials are generated by the forward calculation with a single dipole in the neural source space, for eleven channel numbers (10, 16, 21, 32, 64, 85, 96, 128, 129, 257, 335). Here, the reference is the ideal infinity implicitly determined by forward theory. Then, the standard EEG potentials are transformed to recordings with different references including five mono-polar references (Left earlobe, Fz, Pz, Oz, Cz), and three re-references (linked mastoids (LM), average reference (AR) and reference electrode standardization technique (REST)). Finally, the relative errors between the standard EEG potentials and the transformed ones are evaluated in terms of channel number, scalp regions, electrodes layout, dipole source position and orientation, as well as sensor noise and head model. Main results. Mono-polar reference recordings are usually of large distortions; thus, a re-reference after online mono-polar recording should be adopted in general to mitigate this effect. Among the three re-references, REST is generally superior to AR for all factors compared, and LM performs worst. REST is insensitive to head model perturbation. AR is subject to electrodes coverage and dipole orientation but no close relation with channel number. Significance. These results indicate that REST would be the first choice of re-reference and AR may be an alternative option for high level sensor noise case. Our findings may provide the helpful suggestions on how to obtain the EEG potentials as accurately as possible for cognitive neuroscientists and clinicians.

  6. Deblurring

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Le, J.; Leong, H.; McEvoy, L. K.; Smith, M. E.

    1999-01-01

    In most instances, traditional EEG methodology provides insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. This article describes a method called Deblurring for increasing the spatial detail of the EEG and for fusing neurophysiologic and neuroanatomic data. Deblurring estimates potentials near the outer convexity of the cortex using a realistic finite element model of the structure of a subject's head determined from their magnetic resonance images. Deblurring is not a source localization technique and thus makes no assumptions about the number or type of generator sources. The validity of Deblurring has been initially tested by comparing deblurred data with potentials measured with subdural grid recordings. Results suggest that deblurred topographic maps, registered with a subject's magnetic resonance imaging and rendered in three dimensions, provide better spatial detail than has heretofore been obtained with scalp EEG recordings. Example results are presented from research studies of somatosensory stimulation, movement, language, attention and working memory. Deblurred ictal EEG data are also presented, indicating that this technique may have future clinical application as an aid to seizure localization and surgical planning.

  7. No short-term effects of digital mobile radio telephone on the awake human electroencephalogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeschke, J.; Mann, K.

    1997-05-01

    A recent study reported the results of an exploratory study of alterations of the quantitative sleep profile due to the effects of a digital mobile radio telephone. Rapid eye movement (REM) was suppressed, and the spectral power density in the 8--13 Hz frequency range during REM sleep was altered. The aim of the present study was to illuminate the influence of digital mobile radio telephone on the awake electroencephalogram (EEG) of healthy subjects. For this purpose, the authors investigated 34 male subjects in a single-blind cross-over design experiment by measuring spontaneous EEGs under closed-eyes condition from scalp positions C{sub 3}more » and C{sub 4} and comparing the effects of an active and an inactive digital mobile radio telephone (GSM) system. During exposure of nearly 3.5 min to the 900 MHz electromagnetic field pulsed at a frequency of 217 Hz and with a pulse width of 580 {micro}s, the authors could not detect any difference in the awake EEGs in terms of spectral power density measures.« less

  8. Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism

    PubMed Central

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-01-01

    Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993

  9. On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging.

    PubMed

    Del Percio, Claudio; Drinkenburg, Wilhelmus; Lopez, Susanna; Infarinato, Francesco; Bastlund, Jesper Frank; Laursen, Bettina; Pedersen, Jan T; Christensen, Ditte Zerlang; Forloni, Gianluigi; Frasca, Angelisa; Noè, Francesco M; Bentivoglio, Marina; Fabene, Paolo Francesco; Bertini, Giuseppe; Colavito, Valeria; Kelley, Jonathan; Dix, Sophie; Richardson, Jill C; Babiloni, Claudio

    2017-01-01

    Resting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.e., active condition). Can this procedure be back-translated to C57 (wild type) mice for aging studies? On-going EEG rhythms were recorded from a frontoparietal bipolar channel in 85 (19 females) C57 mice. Male mice were subdivided into 3 groups: 25 young (4.5-6 months), 18 middle-aged (12-15 months), and 23 old (20-24 months) mice to test the effect of aging. EEG power density was compared between short periods (about 5 minutes) of awake quiet behavior (passive) and dynamic exploration of the cage (active). Compared with the passive condition, the active condition induced decreased EEG power at 1-2 Hz and increased EEG power at 6-10 Hz in the group of 85 mice. Concerning the aging effects, the passive condition showed higher EEG power at 1-2 Hz in the old group than that in the others. Furthermore, the active condition exhibited a maximum EEG power at 6-8 Hz in the former group and 8-10 Hz in the latter. In the present conditions, delta and theta EEG rhythms reflected changes in cortical arousal and vigilance in freely behaving C57 mice across aging. These changes resemble the so-called slowing of resting state EEG rhythms observed in humans across physiological and pathological aging. The present EEG procedures may be used to enhance preclinical phases of drug discovery in mice for understanding the neurophysiological effects of new compounds against brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

    PubMed

    Sai, Chong Yeh; Mokhtar, Norrima; Arof, Hamzah; Cumming, Paul; Iwahashi, Masahiro

    2018-05-01

    Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

  11. Prevention of Blast-Related Injuries

    DTIC Science & Technology

    2017-09-01

    allow early screening and assessment of brain abnormality in soldiers to enable timely therapeutic intervention. The current study reports on the...use of qEEG in blast-induced brain injury using a swine model. The purposes are to determine if qEEG can detect brain activity abnormalities early...brain functional abnormalities and deficits in absence of any clinical mTBI symptoms. Methods such as EEG-wavelet entropy measures [36] and Shannon

  12. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  13. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.

    PubMed

    Baek, Hyun Jae; Lee, Hong Ji; Lim, Yong Gyu; Park, Kwang Suk

    2012-12-01

    In this paper, a new conductive polymer foam-surfaced electrode was proposed for use as a capacitive EEG electrode for nonintrusive EEG measurements in out-of-hospital environments. The current capacitive electrode has a rigid surface that produces an undefined contact area due to its stiffness, which renders it unable to conform to head curvature and locally isolates hairs between the electrode surface and scalp skin, making EEG measurement through hair difficult. In order to overcome this issue, a conductive polymer foam was applied to the capacitive electrode surface to provide a cushioning effect. This enabled EEG measurement through hair without any conductive contact with bare scalp skin. Experimental results showed that the new electrode provided lower electrode-skin impedance and higher voltage gains, signal-to-noise ratios, signal-to-error ratios, and correlation coefficients between EEGs measured by capacitive and conventional resistive methods compared to a conventional capacitive electrode. In addition, the new electrode could measure EEG signals, while the conventional capacitive electrode could not. We expect that the new electrode presented here can be easily installed in a hat or helmet to create a nonintrusive wearable EEG apparatus that does not make users look strange for real-world EEG applications.

  14. Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system.

    PubMed

    Ives, John R; Mirsattari, Seyed M; Jones, D

    2007-07-01

    Intracranial electroencephalogram (EEG) monitoring involves recording multi-contact electrodes. The current systems require separate wires from each recording contact to the data acquisition unit resulting in many connectors and cables. To overcome limitations of such systems such as noise, restrictions in patient mobility and compliance, we developed a miniaturized EEG monitoring system with the amplifiers and multiplexers integrated into the electrode connectors and mounted on the head. Small, surface-mounted instrumentation amplifiers, coupled with 8:1 analog multiplexers, were assembled into 8-channel modular units to connect to 16:1 analog multiplexer manifold to create a small (55 cm(3)) head-mounted 128-channel system. A 6-conductor, 30 m long cable was used to transmit the EEG signals from the patient to the remote data acquisition system. Miniaturized EEG amplifiers and analog multiplexers were integrated directly into the electrode connectors. Up to 128-channels of EEG were amplified and analog multiplexed directly on the patient's head. The amplified EEG data were obtained over one long wire. A miniaturized system of invasive EEG recording has the potential to reduce artefact, simplify trouble-shooting, lower nursing care and increase patient compliance. Miniaturization technology improves intracranial EEG monitoring and leads to >128-channel capacity.

  15. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.

    PubMed

    Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.

  16. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources.

    PubMed

    Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia

    2016-01-01

    Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes. Discussion. These results are supported by previous findings regarding activation of neural structures that underlie sustained attention. Our findings may indicate a better-controlled attention in skilled athletes, which suggests that expertise can improve effectiveness in allocation of attentional resources during the first stages of cognitive processing during combat.

  17. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  18. QEEG-based neural correlates of decision making in a well-trained eight year-old chess player.

    PubMed

    Alipour, Abolfazl; Seifzadeh, Sahar; Aligholi, Hadi; Nami, Mohammad

    2017-10-25

    The neurocognitive substrates of decision making (DM) in the context of chess has appealed to researchers' interest for decades. Expert and beginner chess players are hypothesized to employ different brain functional networks when involved in episodes of critical DM upon chess. Cognitive capacities including, but not restricted to pattern recognition, visuospatial search, reasoning, planning and DM are perhaps the key determinants of rewarding and judgmental decisions in chess. Meanwhile, the precise neural correlates of DM in this context has largely remained elusive. The quantitative electroencephalography (QEEG) is an investigation tool possessing a proper temporal resolution in the study of neural correlates of cognitive tasks at cortical level. Here, we used a 22-channel EEG setup and digital polygraphy in a well-trained 8 year-old boy while engaged in playing chess against the computer. Quantitative analyses were done to map and source-localize the EEG signals. Our analyses indicated a lower power spectral density (PSD) for higher frequency bands in the right hemisphere upon DM-related epochs. Moreover, the information flow upon DM blocks in this particular case was more of posterior towards anterior brain regions.

  19. Suppression of competing speech through entrainment of cortical oscillations

    PubMed Central

    D'Zmura, Michael; Srinivasan, Ramesh

    2013-01-01

    People are highly skilled at attending to one speaker in the presence of competitors, but the neural mechanisms supporting this remain unclear. Recent studies have argued that the auditory system enhances the gain of a speech stream relative to competitors by entraining (or “phase-locking”) to the rhythmic structure in its acoustic envelope, thus ensuring that syllables arrive during periods of high neuronal excitability. We hypothesized that such a mechanism could also suppress a competing speech stream by ensuring that syllables arrive during periods of low neuronal excitability. To test this, we analyzed high-density EEG recorded from human adults while they attended to one of two competing, naturalistic speech streams. By calculating the cross-correlation between the EEG channels and the speech envelopes, we found evidence of entrainment to the attended speech's acoustic envelope as well as weaker yet significant entrainment to the unattended speech's envelope. An independent component analysis (ICA) decomposition of the data revealed sources in the posterior temporal cortices that displayed robust correlations to both the attended and unattended envelopes. Critically, in these components the signs of the correlations when attended were opposite those when unattended, consistent with the hypothesized entrainment-based suppressive mechanism. PMID:23515789

  20. Impedance of an intense plasma-cathode electron source for tokamak startup

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.

    2016-05-01

    An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.

  1. Comparison of corrected QT interval as measured on electroencephalography versus 12-lead electrocardiography in children with a history of syncope.

    PubMed

    Massey, Shavonne L; Wise, Marshall S; Madan, Nandini; Carvalho, Karen; Khurana, Divya; Legido, Agustin; Valencia, Ignacio

    2011-11-01

    Long QT syndrome can present with neurological manifestations, including syncope and seizure-like activity. These patients often receive an initial neurologic evaluation, including electroencephalography (EEG). Our previous retrospective study suggested an increased prevalence of prolonged corrected QT interval (QTc) measured during the EEG of patients with syncope. The aim of the current study is to assess the accuracy of the EEG QTc reading compared with the nonsimultaneous 12-lead electrocardiography (ECG) in children with syncope. Abnormal QTc was defined as ≥450 ms in boys, ≥460 ms in girls. Forty-two children were included. There was no significant correlation between QTc readings in the EEG and ECG. EEG failed to identify 2 children with prolonged QTc in the ECG and overestimated the QTc in 3 children with normal QTc in the ECG. This study suggests that interpretation of the QTc segment during an EEG is limited. Further studies with simultaneous EEG and 12-lead ECG are warranted.

  2. Evaluation of driver fatigue on two channels of EEG data.

    PubMed

    Li, Wei; He, Qi-chang; Fan, Xiu-min; Fei, Zhi-min

    2012-01-11

    Electroencephalogram (EEG) data is an effective indicator to evaluate driver fatigue. The 16 channels of EEG data are collected and transformed into three bands (θ, α, and β) in the current paper. First, 12 types of energy parameters are computed based on the EEG data. Then, Grey Relational Analysis (GRA) is introduced to identify the optimal indicator of driver fatigue, after which, the number of significant electrodes is reduced using Kernel Principle Component Analysis (KPCA). Finally, the evaluation model for driver fatigue is established with the regression equation based on the EEG data from two significant electrodes (Fp1 and O1). The experimental results verify that the model is effective in evaluating driver fatigue. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation.

    PubMed

    Plante, D T; Goldstein, M R; Landsness, E C; Peterson, M J; Riedner, B A; Ferrarelli, F; Wanger, T; Guokas, J J; Tononi, G; Benca, R M

    2013-03-20

    Sleep spindles are believed to mediate several sleep-related functions including maintaining disconnection from the external environment during sleep, cortical development, and sleep-dependent memory consolidation. Prior studies that have examined sleep spindles in major depressive disorder (MDD) have not demonstrated consistent differences relative to control subjects, which may be due to sex-related variation and limited spatial resolution of spindle detection. Thus, this study sought to characterize sleep spindles in MDD using high-density electroencephalography (hdEEG) to examine the topography of sleep spindles across the cortex in MDD, as well as sex-related variation in spindle topography in the disorder. All-night hdEEG recordings were collected in 30 unipolar MDD participants (19 women) and 30 age and sex-matched controls. Topography of sleep spindle density, amplitude, duration, and integrated spindle activity (ISA) were assessed to determine group differences. Spindle parameters were compared between MDD and controls, including analysis stratified by sex. As a group, MDD subjects demonstrated significant increases in frontal and parietal spindle density and ISA compared to controls. When stratified by sex, MDD women demonstrated increases in frontal and parietal spindle density, amplitude, duration, and ISA; whereas MDD men demonstrated either no differences or decreases in spindle parameters. Given the number of male subjects, this study may be underpowered to detect differences in spindle parameters in male MDD participants. This study demonstrates topographic and sex-related differences in sleep spindles in MDD. Further research is warranted to investigate the role of sleep spindles and sex in the pathophysiology of MDD. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A three domain covariance framework for EEG/MEG data.

    PubMed

    Roś, Beata P; Bijma, Fetsje; de Gunst, Mathisca C M; de Munck, Jan C

    2015-10-01

    In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. Our covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, like in combined EEG-fMRI experiments in which the correlation between EEG and fMRI signals is investigated. We use a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. We apply our method to real EEG and MEG data sets. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics.

    PubMed

    Chen, Xun; Liu, Aiping; Chen, Qiang; Liu, Yu; Zou, Liang; McKeown, Martin J

    2017-09-01

    Electroencephalography (EEG) recordings are frequently contaminated by both ocular and muscle artifacts. These are normally dealt with separately, by employing blind source separation (BSS) techniques relying on either second-order or higher-order statistics (SOS & HOS respectively). When HOS-based methods are used, it is usually in the setting of assuming artifacts are statistically independent to the EEG. When SOS-based methods are used, it is assumed that artifacts have autocorrelation characteristics distinct from the EEG. In reality, ocular and muscle artifacts do not completely follow the assumptions of strict temporal independence to the EEG nor completely unique autocorrelation characteristics, suggesting that exploiting HOS or SOS alone may be insufficient to remove these artifacts. Here we employ a novel BSS technique, independent vector analysis (IVA), to jointly employ HOS and SOS simultaneously to remove ocular and muscle artifacts. Numerical simulations and application to real EEG recordings were used to explore the utility of the IVA approach. IVA was superior in isolating both ocular and muscle artifacts, especially for raw EEG data with low signal-to-noise ratio, and also integrated usually separate SOS and HOS steps into a single unified step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Artifact Removal from Biosignal using Fixed Point ICA Algorithm for Pre-processing in Biometric Recognition

    NASA Astrophysics Data System (ADS)

    Mishra, Puneet; Singla, Sunil Kumar

    2013-01-01

    In the modern world of automation, biological signals, especially Electroencephalogram (EEG) and Electrocardiogram (ECG), are gaining wide attention as a source of biometric information. Earlier studies have shown that EEG and ECG show versatility with individuals and every individual has distinct EEG and ECG spectrum. EEG (which can be recorded from the scalp due to the effect of millions of neurons) may contain noise signals such as eye blink, eye movement, muscular movement, line noise, etc. Similarly, ECG may contain artifact like line noise, tremor artifacts, baseline wandering, etc. These noise signals are required to be separated from the EEG and ECG signals to obtain the accurate results. This paper proposes a technique for the removal of eye blink artifact from EEG and ECG signal using fixed point or FastICA algorithm of Independent Component Analysis (ICA). For validation, FastICA algorithm has been applied to synthetic signal prepared by adding random noise to the Electrocardiogram (ECG) signal. FastICA algorithm separates the signal into two independent components, i.e. ECG pure and artifact signal. Similarly, the same algorithm has been applied to remove the artifacts (Electrooculogram or eye blink) from the EEG signal.

  7. Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation

    PubMed Central

    Adamchic, Ilya; Toth, Timea; Hauptmann, Christian; Tass, Peter Alexander

    2014-01-01

    Acoustic Coordinated Reset (CR) neuromodulation is a patterned stimulation with tones adjusted to the patient's dominant tinnitus frequency, which aims at desynchronizing pathological neuronal synchronization. In a recent proof-of-concept study, CR therapy, delivered 4–6 h/day more than 12 weeks, induced a significant clinical improvement along with a significant long-lasting decrease of pathological oscillatory power in the low frequency as well as γ band and an increase of the α power in a network of tinnitus-related brain areas. As yet, it remains unclear whether CR shifts the brain activity toward physiological levels or whether it induces clinically beneficial, but nonetheless abnormal electroencephalographic (EEG) patterns, for example excessively decreased δ and/or γ. Here, we compared the patients' spontaneous EEG data at baseline as well as after 12 weeks of CR therapy with the spontaneous EEG of healthy controls by means of Brain Electrical Source Analysis source montage and standardized low-resolution brain electromagnetic tomography techniques. The relationship between changes in EEG power and clinical scores was investigated using a partial least squares approach. In this way, we show that acoustic CR neuromodulation leads to a normalization of the oscillatory power in the tinnitus-related network of brain areas, most prominently in temporal regions. A positive association was found between the changes in tinnitus severity and the normalization of δ and γ power in the temporal, parietal, and cingulate cortical regions. Our findings demonstrate a widespread CR-induced normalization of EEG power, significantly associated with a reduction of tinnitus severity. PMID:23907785

  8. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models

    PubMed Central

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A.; Valdés-Hernández, Pedro A.; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A.

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods, Quality Measures and Visualization Routines are freely available in a public website. PMID:29200994

  9. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.

    PubMed

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods, Quality Measures and Visualization Routines are freely available in a public website.

  10. Feasibility of imaging epileptic seizure onset with EIT and depth electrodes.

    PubMed

    Witkowska-Wrobel, Anna; Aristovich, Kirill; Faulkner, Mayo; Avery, James; Holder, David

    2018-06-01

    Imaging ictal and interictal activity with Electrical Impedance Tomography (EIT) using intracranial electrode mats has been demonstrated in animal models of epilepsy. In human epilepsy subjects undergoing presurgical evaluation, depth electrodes are often preferred. The purpose of this work was to evaluate the feasibility of using EIT to localise epileptogenic areas with intracranial electrodes in humans. The accuracy of localisation of the ictal onset zone was evaluated in computer simulations using 9M element FEM models derived from three subjects. 5 mm radius perturbations imitating a single seizure onset event were placed in several locations forming two groups: under depth electrode coverage and in the contralateral hemisphere. Simulations were made for impedance changes of 1% expected for neuronal depolarisation over milliseconds and 10% for cell swelling over seconds. Reconstructions were compared with EEG source modelling for a radially orientated dipole with respect to the closest EEG recording contact. The best accuracy of EIT was obtained using all depth and 32 scalp electrodes, greater than the equivalent accuracy with EEG inverse source modelling. The localisation error was 5.2 ± 1.8, 4.3 ± 0 and 46.2 ± 25.8 mm for perturbations within the volume enclosed by depth electrodes and 29.6 ± 38.7, 26.1 ± 36.2, 54.0 ± 26.2 mm for those without (EIT 1%, 10% change, EEG source modelling, n = 15 in 3 subjects, p < 0.01). As EIT was insensitive to source dipole orientation, all 15 perturbations within the volume enclosed by depth electrodes were localised, whereas the standard clinical method of visual inspection of EEG voltages, only localised 8 out of 15 cases. This suggests that adding EIT to SEEG measurements could be beneficial in localising the onset of seizures. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Localization of synchronous cortical neural sources.

    PubMed

    Zerouali, Younes; Herry, Christophe L; Jemel, Boutheina; Lina, Jean-Marc

    2013-03-01

    Neural synchronization is a key mechanism to a wide variety of brain functions, such as cognition, perception, or memory. High temporal resolution achieved by EEG recordings allows the study of the dynamical properties of synchronous patterns of activity at a very fine temporal scale but with very low spatial resolution. Spatial resolution can be improved by retrieving the neural sources of EEG signal, thus solving the so-called inverse problem. Although many methods have been proposed to solve the inverse problem and localize brain activity, few of them target the synchronous brain regions. In this paper, we propose a novel algorithm aimed at localizing specifically synchronous brain regions and reconstructing the time course of their activity. Using multivariate wavelet ridge analysis, we extract signals capturing the synchronous events buried in the EEG and then solve the inverse problem on these signals. Using simulated data, we compare results of source reconstruction accuracy achieved by our method to a standard source reconstruction approach. We show that the proposed method performs better across a wide range of noise levels and source configurations. In addition, we applied our method on real dataset and identified successfully cortical areas involved in the functional network underlying visual face perception. We conclude that the proposed approach allows an accurate localization of synchronous brain regions and a robust estimation of their activity.

  12. Localization of extended brain sources from EEG/MEG: the ExSo-MUSIC approach.

    PubMed

    Birot, Gwénaël; Albera, Laurent; Wendling, Fabrice; Merlet, Isabelle

    2011-05-01

    We propose a new MUSIC-like method, called 2q-ExSo-MUSIC (q ≥ 1). This method is an extension of the 2q-MUSIC (q ≥ 1) approach for solving the EEG/MEG inverse problem, when spatially-extended neocortical sources ("ExSo") are considered. It introduces a novel ExSo-MUSIC principle. The novelty is two-fold: i) the parameterization of the spatial source distribution that leads to an appropriate metric in the context of distributed brain sources and ii) the introduction of an original, efficient and low-cost way of optimizing this metric. In 2q-ExSo-MUSIC, the possible use of higher order statistics (q ≥ 2) offers a better robustness with respect to Gaussian noise of unknown spatial coherence and modeling errors. As a result we reduced the penalizing effects of both the background cerebral activity that can be seen as a Gaussian and spatially correlated noise, and the modeling errors induced by the non-exact resolution of the forward problem. Computer results on simulated EEG signals obtained with physiologically-relevant models of both the sources and the volume conductor show a highly increased performance of our 2q-ExSo-MUSIC method as compared to the classical 2q-MUSIC algorithms. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Quantitative EEG and low resolution electromagnetic tomography (LORETA) imaging of patients with persistent auditory hallucinations.

    PubMed

    Lee, Seung-Hwan; Wynn, Jonathan K; Green, Michael F; Kim, Hyun; Lee, Kang-Joon; Nam, Min; Park, Joong-Kyu; Chung, Young-Cho

    2006-04-01

    Electrophysiological studies have demonstrated gamma and beta frequency oscillations in response to auditory stimuli. The purpose of this study was to test whether auditory hallucinations (AH) in schizophrenia patients reflect abnormalities in gamma and beta frequency oscillations and to investigate source generators of these abnormalities. This theory was tested using quantitative electroencephalography (qEEG) and low-resolution electromagnetic tomography (LORETA) source imaging. Twenty-five schizophrenia patients with treatment refractory AH, lasting for at least 2 years, and 23 schizophrenia patients with non-AH (N-AH) in the past 2 years were recruited for the study. Spectral analysis of the qEEG and source imaging of frequency bands of artifact-free 30 s epochs were examined during rest. AH patients showed significantly increased beta 1 and beta 2 frequency amplitude compared with N-AH patients. Gamma and beta (2 and 3) frequencies were significantly correlated in AH but not in N-AH patients. Source imaging revealed significantly increased beta (1 and 2) activity in the left inferior parietal lobule and the left medial frontal gyrus in AH versus N-AH patients. These results imply that AH is reflecting increased beta frequency oscillations with neural generators localized in speech-related areas.

  14. The influence of low frequency sound on the changes of EEG signal morphology

    NASA Astrophysics Data System (ADS)

    Damijan, Z.; Wiciak, J.

    2006-11-01

    The effects of low frequency sound on the changes of morphology of the spectral power density function of EEG signals were studied as a part of the research program f = 40 Hz, Lp = 110 dB HP. The research program involved 33 experiments. A quantitative analysis was conducted of the driving response effect for the fundamental frequency and its harmonics to find the frequency of the driving response effect occurrence depending on the sex of participants.

  15. Brain electric correlates of strong belief in paranormal phenomena: intracerebral EEG source and regional Omega complexity analyses.

    PubMed

    Pizzagalli, D; Lehmann, D; Gianotti, L; Koenig, T; Tanaka, H; Wackermann, J; Brugger, P

    2000-12-22

    The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.

  16. Four-dimensional ultrasound current source density imaging of a dipole field

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.

    2011-09-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.

  17. Effect of mental fatigue on the central nervous system: an electroencephalography study

    PubMed Central

    2012-01-01

    Background Fatigue can be classified as mental and physical depending on its cause, and each type of fatigue has a multi-factorial nature. We examined the effect of mental fatigue on the central nervous system using electroencephalography (EEG) in eighteen healthy male volunteers. Methods After enrollment, subjects were randomly assigned to two groups in a single-blinded, crossover fashion to perform two types of mental fatigue-inducing experiments. Each experiment consisted of four 30-min fatigue-inducing 0- or 2-back test sessions and two evaluation sessions performed just before and after the fatigue-inducing sessions. During the evaluation session, the participants were assessed using EEG. Eleven electrodes were attached to the head skin, from positions F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, and O2. Results In the 2-back test, the beta power density on the Pz electrode and the alpha power densities on the P3 and O2 electrodes were decreased, and the theta power density on the Cz electrode was increased after the fatigue-inducing mental task sessions. In the 0-back test, no electrodes were altered after the fatigue-inducing sessions. Conclusions Different types of mental fatigue produced different kinds of alterations of the spontaneous EEG variables. Our findings provide new perspectives on the neural mechanisms underlying mental fatigue. PMID:22954020

  18. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages.

    PubMed

    Li, Yanjun; Tang, Xiaoying; Xu, Zhi; Liu, Weifeng; Li, Jing

    2016-03-01

    Whether the temporal correlation between inter-leads Electroencephalogram (EEG) that located on the boundary between left and right brain hemispheres is associated with sleep stages or not is still unknown. The purpose of this paper is to evaluate the role of correlation coefficients between EEG leads Fpz-Cz and Pz-Oz for automatic classification of sleep stages. A total number of 39 EEG recordings (about 20 h each) were selected from the expanded sleep database in European data format for temporal correlation analysis. Original waveform of EEG was decomposed into sub-bands δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz) and β (13-30 Hz). The correlation coefficient between original EEG leads Fpz-Cz and Pz-Oz within frequency band 0.5-30 Hz was defined as r(EEG) and was calculated every 30 s, while that between the two leads EEG in sub-bands δ, θ, α and β were defined as r(δ), r(θ), r(α) and r(β), respectively. Classification of wakefulness and sleep was processed by fixed threshold that derived from the probability density function of correlation coefficients. There was no correlation between EEG leads Fpz-Cz and Pz-Oz during wakefulness (|r| < 0.1 for r(θ), r(α) and r(β), while 0.3 > r > 0.1 for r(EEG) and r(δ)), while low correlation existed during sleep (r ≈ -0.4 for r(EEG), r(δ), r(θ), r(α) and r(β)). There were significant differences (analysis of variance, P < 0.001) for r(EEG), r(δ), r(θ), r(α) and r(β) during sleep when in comparison with that during wakefulness, respectively. The accuracy for distinguishing states between wakefulness and sleep was 94.2, 93.4, 89.4, 85.2 and 91.4% in terms of r(EEG), r(δ), r(θ), r(α) and r(β), respectively. However, no correlation index between EEG leads Fpz-Cz and Pz-Oz could distinguish all five types of wakefulness, rapid eye movement (REM) sleep, N1 sleep, N2 sleep and N3 sleep. In conclusion, the temporal correlation between EEG bipolar leads Fpz-Cz and Pz-Oz are highly associated with sleep-wake stages. Moreover, high accuracy of sleep-wake classification could be achieved by the temporal correlation within frequency band 0.5-30 Hz between EEG leads Fpz-Cz and Pz-Oz.

  19. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study

    PubMed Central

    Ehinger, Benedikt V.; Fischer, Petra; Gert, Anna L.; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter

    2014-01-01

    In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation. PMID:24616681

  20. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study.

    PubMed

    Ehinger, Benedikt V; Fischer, Petra; Gert, Anna L; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter

    2014-01-01

    In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.

  1. Feature Extraction from Subband Brain Signals and Its Classification

    NASA Astrophysics Data System (ADS)

    Mukul, Manoj Kumar; Matsuno, Fumitoshi

    This paper considers both the non-stationarity as well as independence/uncorrelated criteria along with the asymmetry ratio over the electroencephalogram (EEG) signals and proposes a hybrid approach of the signal preprocessing methods before the feature extraction. A filter bank approach of the discrete wavelet transform (DWT) is used to exploit the non-stationary characteristics of the EEG signals and it decomposes the raw EEG signals into the subbands of different center frequencies called as rhythm. A post processing of the selected subband by the AMUSE algorithm (a second order statistics based ICA/BSS algorithm) provides the separating matrix for each class of the movement imagery. In the subband domain the orthogonality as well as orthonormality criteria over the whitening matrix and separating matrix do not come respectively. The human brain has an asymmetrical structure. It has been observed that the ratio between the norms of the left and right class separating matrices should be different for better discrimination between these two classes. The alpha/beta band asymmetry ratio between the separating matrices of the left and right classes will provide the condition to select an appropriate multiplier. So we modify the estimated separating matrix by an appropriate multiplier in order to get the required asymmetry and extend the AMUSE algorithm in the subband domain. The desired subband is further subjected to the updated separating matrix to extract subband sub-components from each class. The extracted subband sub-components sources are further subjected to the feature extraction (power spectral density) step followed by the linear discriminant analysis (LDA).

  2. Frequency-dependent changes in sensorimotor and pain affective systems induced by empathy for pain.

    PubMed

    Motoyama, Yoshimasa; Ogata, Katsuya; Hoka, Sumio; Tobimatsu, Shozo

    2017-01-01

    Empathy for pain helps us to understand the pain of others indirectly. To better comprehend the processing of empathic pain, we report the frequency-dependent modulation of cortical oscillations induced by watching movies depicting pain using high-density electroencephalography (EEG), magnetoencephalography (MEG), and motor evoked potentials (MEP). Event-related desynchronization of EEG and MEG was assessed while participants viewed videos of painful (needle) or neutral (cotton swab) situations. The amplitudes of MEPs were also compared between the needle and cotton swab conditions. The degree of suppression in α/β band power was significantly increased, whereas that of γ band power was significantly decreased, in the needle condition compared with the cotton swab condition. EEG revealed that significant differences in α/β band were distributed in the right frontocentral and left parietooccipital regions, whereas significant γ band differences were distributed predominantly over the right hemisphere, which were confirmed by source estimation using MEG. There was a significant positive correlation between the difference in γ power of the two conditions and the visual analog scale subjective rating of aversion, but not in the α/β band. The amplitude of MEPs decreased in the needle condition, which confirmed the inhibition of the primary motor cortex. MEP suppression supports that modulation of cortical oscillations by viewing movies depicting pain involves sensorimotor processing. Our results suggest that α/β oscillations underlie the sensory qualities of others' pain, whereas the γ band reflects the cognitive aspect. Therefore, α/β and γ band oscillations are differentially involved in empathic pain processing under the condition of motor cortical suppression.

  3. Inhibition of Lateral Prefrontal Cortex Produces Emotionally Biased First Impressions: A Transcranial Magnetic Stimulation and Electroencephalography Study.

    PubMed

    Lapate, Regina C; Samaha, Jason; Rokers, Bas; Hamzah, Hamdi; Postle, Bradley R; Davidson, Richard J

    2017-07-01

    Optimal functioning in everyday life requires the ability to override reflexive emotional responses and prevent affective spillover to situations or people unrelated to the source of emotion. In the current study, we investigated whether the lateral prefrontal cortex (lPFC) causally regulates the influence of emotional information on subsequent judgments. We disrupted left lPFC function using transcranial magnetic stimulation (TMS) and recorded electroencephalography (EEG) before and after. Subjects evaluated the likeability of novel neutral faces after a brief exposure to a happy or fearful face. We found that lPFC inhibition biased evaluations of novel faces according to the previously processed emotional expression. Greater frontal EEG alpha power, reflecting increased inhibition by TMS, predicted increased behavioral bias. TMS-induced affective misattribution was long-lasting: Emotionally biased first impressions formed during lPFC inhibition were still detectable outside of the laboratory 3 days later. These findings indicate that lPFC serves an important emotion-regulation function by preventing incidental emotional encoding from automatically biasing subsequent appraisals.

  4. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.

    PubMed

    Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.

  5. [EEG source localization using LORETA (low resolution electromagnetic tomography)].

    PubMed

    Puskás, Szilvia

    2011-03-30

    Eledctroencephalography (EEG) has excellent temporal resolution, but the spatial resolution is poor. Different source localization methods exist to solve the so-called inverse problem, thus increasing the accuracy of spatial localization. This paper provides an overview of the history of source localization and the main categories of techniques are discussed. LORETA (low resolution electromagnetic tomography) is introduced in details: technical informations are discussed and localization properties of LORETA method are compared to other inverse solutions. Validation of the method with different imaging techniques is also discussed. This paper reviews several publications using LORETA both in healthy persons and persons with different neurological and psychiatric diseases. Finally future possible applications are discussed.

  6. A novel method for device-related electroencephalography artifact suppression to explore cochlear implant-related cortical changes in single-sided deafness.

    PubMed

    Kim, Kyungsoo; Punte, Andrea Kleine; Mertens, Griet; Van de Heyning, Paul; Park, Kyung-Joon; Choi, Hongsoo; Choi, Ji-Woong; Song, Jae-Jin

    2015-11-30

    Quantitative electroencephalography (qEEG) is effective when used to analyze ongoing cortical oscillations in cochlear implant (CI) users. However, localization of cortical activity in such users via qEEG is confounded by the presence of artifacts produced by the device itself. Typically, independent component analysis (ICA) is used to remove CI artifacts in auditory evoked EEG signals collected upon brief stimulation and it is effective for auditory evoked potentials (AEPs). However, AEPs do not reflect the daily environments of patients, and thus, continuous EEG data that are closer to such environments are desirable. In this case, device-related artifacts in EEG data are difficult to remove selectively via ICA due to over-completion of EEG data removal in the absence of preprocessing. EEGs were recorded for a long time under conditions of continuous auditory stimulation. To obviate the over-completion problem, we limited the frequency of CI artifacts to a significant characteristic peak and apply ICA artifact removal. Topographic brain mapping results analyzed via band-limited (BL)-ICA exhibited a better energy distribution, matched to the CI location, than data obtained using conventional ICA. Also, source localization data verified that BL-ICA effectively removed CI artifacts. The proposed method selectively removes CI artifacts from continuous EEG recordings, while ICA removal method shows residual peak and removes important brain activity signals. CI artifacts in EEG data obtained during continuous passive listening can be effectively removed with the aid of BL-ICA, opening up new EEG research possibilities in subjects with CIs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks.

    PubMed

    Dinov, Martin; Leech, Robert

    2017-01-01

    Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses.

  8. Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks

    PubMed Central

    Dinov, Martin; Leech, Robert

    2017-01-01

    Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses. PMID:29163110

  9. Regional differences in trait-like characteristics of the waking EEG in early adolescence.

    PubMed

    Benz, Dominik C; Tarokh, Leila; Achermann, Peter; Loughran, Sarah P

    2013-10-09

    The human waking EEG spectrum shows high heritability and stability and, despite maturational cortical changes, high test-retest reliability in children and teens. These phenomena have also been shown to be region specific. We examined the stability of the morphology of the wake EEG spectrum in children aged 11 to 13 years recorded over weekly intervals and assessed whether the waking EEG spectrum in children may also be trait-like. Three minutes of eyes open and three minutes of eyes closed waking EEG was recorded in 22 healthy children once a week for three consecutive weeks. Eyes open and closed EEG power density spectra were calculated for two central (C3LM and C4LM) and two occipital (O1LM and O2LM) derivations. A hierarchical cluster analysis was performed to determine whether the morphology of the waking EEG spectrum between 1 and 20 Hz is trait-like. We also examined the stability of the alpha peak using an ANOVA. The morphology of the EEG spectrum recorded from central derivations was highly stable and unique to an individual (correctly classified in 85% of participants), while the EEG recorded from occipital derivations, while stable, was much less unique across individuals (correctly classified in 42% of participants). Furthermore, our analysis revealed an increase in alpha peak height concurrent with a decline in the frequency of the alpha peak across weeks for occipital derivations. No changes in either measure were observed in the central derivations. Our results indicate that across weekly recordings, power spectra at central derivations exhibit more "trait-like" characteristics than occipital derivations. These results may be relevant for future studies searching for links between phenotypes, such as psychiatric diagnoses, and the underlying genes (i.e., endophenotypes) by suggesting that such studies should make use of more anterior rather than posterior EEG derivations.

  10. Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice

    PubMed Central

    Chella, Federico; D'Andrea, Antea; Basti, Alessio; Pizzella, Vittorio; Marzetti, Laura

    2017-01-01

    Bispectral analysis is a signal processing technique that makes it possible to capture the non-linear and non-Gaussian properties of the EEG signals. It has found various applications in EEG research and clinical practice, including the assessment of anesthetic depth, the identification of epileptic seizures, and more recently, the evaluation of non-linear cross-frequency brain functional connectivity. However, the validity and reliability of the indices drawn from bispectral analysis of EEG signals are potentially biased by the use of a non-neutral EEG reference. The present study aims at investigating the effects of the reference choice on the analysis of the non-linear features of EEG signals through bicoherence, as well as on the estimation of cross-frequency EEG connectivity through two different non-linear measures, i.e., the cross-bicoherence and the antisymmetric cross-bicoherence. To this end, four commonly used reference schemes were considered: the vertex electrode (Cz), the digitally linked mastoids, the average reference, and the Reference Electrode Standardization Technique (REST). The reference effects were assessed both in simulations and in a real EEG experiment. The simulations allowed to investigated: (i) the effects of the electrode density on the performance of the above references in the estimation of bispectral measures; and (ii) the effects of the head model accuracy in the performance of the REST. For real data, the EEG signals recorded from 10 subjects during eyes open resting state were examined, and the distortions induced by the reference choice in the patterns of alpha-beta bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed. The results showed significant differences in the findings depending on the chosen reference, with the REST providing superior performance than all the other references in approximating the ideal neutral reference. In conclusion, this study highlights the importance of considering the effects of the reference choice in the interpretation and comparison of the results of bispectral analysis of scalp EEG. PMID:28559790

  11. Comparison of different Kalman filter approaches in deriving time varying connectivity from EEG data.

    PubMed

    Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick

    2015-08-01

    Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.

  12. Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA.

    PubMed

    Labounek, René; Bridwell, David A; Mareček, Radek; Lamoš, Martin; Mikl, Michal; Slavíček, Tomáš; Bednařík, Petr; Baštinec, Jaromír; Hluštík, Petr; Brázdil, Milan; Jan, Jiří

    2018-01-01

    Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.

  13. A computer-based information system for epilepsy and electroencephalography.

    PubMed

    Finnerup, N B; Fuglsang-Frederiksen, A; Røssel, P; Jennum, P

    1999-08-01

    This paper describes a standardised computer-based information system for electroencephalography (EEG) focusing on epilepsy. The system was developed using a prototyping approach. It is based on international recommendations for EEG examination, interpretation and terminology, international guidelines for epidemiological studies on epilepsy and classification of epileptic seizures and syndromes and international classification of diseases. It is divided into: (1) clinical information and epilepsy relevant data; and (2) EEG data, which is hierarchically structured including description and interpretation of EEG. Data is coded but is supplemented with unrestricted text. The resulting patient database can be integrated with other clinical databases and with the patient record system and may facilitate clinical and epidemiological research and development of standards and guidelines for EEG description and interpretation. The system is currently used for teleconsultation between Gentofte and Lisbon.

  14. Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization.

    PubMed

    Mäkelä, Niko; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J

    2018-02-15

    Electrically active brain regions can be located applying MUltiple SIgnal Classification (MUSIC) on magneto- or electroencephalographic (MEG; EEG) data. We introduce a new MUSIC method, called truncated recursively-applied-and-projected MUSIC (TRAP-MUSIC). It corrects a hidden deficiency of the conventional RAP-MUSIC algorithm, which prevents estimation of the true number of brain-signal sources accurately. The correction is done by applying a sequential dimension reduction to the signal-subspace projection. We show that TRAP-MUSIC significantly improves the performance of MUSIC-type localization; in particular, it successfully and robustly locates active brain regions and estimates their number. We compare TRAP-MUSIC and RAP-MUSIC in simulations with varying key parameters, e.g., signal-to-noise ratio, correlation between source time-courses, and initial estimate for the dimension of the signal space. In addition, we validate TRAP-MUSIC with measured MEG data. We suggest that with the proposed TRAP-MUSIC method, MUSIC-type localization could become more reliable and suitable for various online and offline MEG and EEG applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. EEG sleep in Cushing's disease and Cushing's syndrome: comparison with patients with major depressive disorder.

    PubMed

    Shipley, J E; Schteingart, D E; Tandon, R; Pande, A C; Grunhaus, L; Haskett, R F; Starkman, M N

    1992-07-15

    Because patients with Cushing' syndrome (CS) and Major depressive disorder (MDD) share features of hypercortisolism and the depressive syndrome, we compared electro-encephalographic (EEG) sleep in patients with pituitary-ACTH-dependent Cushing's syndrome (Cushing's disease, CD), patients with ACTH-independent Cushing's syndrome (AICS), patients with major depressive disorder (MDD), and normal subjects. There were substantial similarities in the abnormal polysomnography profiles of patients with CD, AICS, and MDD. All three patient groups demonstrated poorer sleep continuity, shortened rapid eye movement (REM) latency, and increased first REM period density compared with normal subjects. In addition, AICS patients and MDD patients had elevated REM activity and density. These findings are discussed in terms of models of pathophysiology that relate abnormalities in sleep, mood, and hypothalamic-pituitary-adrenal function.

  16. Spatiotemporal and spectral characteristics of X-ray radiation emitted by the Z-pinch during the current implosion of quasispherical multiwire arrays

    NASA Astrophysics Data System (ADS)

    Gritsuk, A. N.

    2017-12-01

    For the first time, a quasi-spherical current implosion has been experimentally realized on a multimegaampere facility with the peak current of up to 4 MA and a soft X-ray source has been created with high radiation power density on its surface of up to 3 TW/cm2. An increase in the energy density at the centre of the source of soft X-ray radiation (SXR) was experimentally observed upon compression of quasi-spherical arrays with the linear-mass profiling. In this case, the average power density on the surface of the SXR source is three times higher than for implosions of cylindrical arrays of the same mass and close values of the discharge current. Obtained experimental data are compared with the results of modelling the current implosion of multi-wire arrays performed with the help of a three-dimensional radiation-magneto-hydrodynamic code.

  17. Electroencephalography in premature and full-term infants. Developmental features and glossary.

    PubMed

    André, M; Lamblin, M-D; d'Allest, A M; Curzi-Dascalova, L; Moussalli-Salefranque, F; S Nguyen The, Tich; Vecchierini-Blineau, M-F; Wallois, F; Walls-Esquivel, E; Plouin, P

    2010-05-01

    Following the pioneering work of C. Dreyfus-Brisac and N. Monod, research into neonatal electroencephalography (EEG) has developed tremendously in France. French neurophysiologists who had been trained in Paris (France) collaborated on a joint project on the introduction, development, and currently available neonatal EEG recording techniques. They assessed the analytical criteria for the different maturational stages and standardized neonatal EEG terminology on the basis of the large amount of data available in the French and the English literature. The results of their work were presented in 1999. Since the first edition, technology has moved towards the widespread use of digitized recordings. Although the data obtained with analog recordings can be applied to digitized EEG tracings, the present edition, including new published data, is illustrated with digitized recordings. Herein, the reader can find a comprehensive description of EEG features and neonatal behavioural states at different gestational ages, and also a definition of the main aspects and patterns of both pathological and normal EEGs, presented in glossary form. In both sections, numerous illustrations have been provided. This precise neonatal EEG terminology should improve homogeneity in the analysis of neonatal EEG recordings, and facilitate the setting up of multicentric studies on certain aspects of normal EEG recordings and various pathological patterns. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  18. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    PubMed

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  19. Validation of the Karolinska sleepiness scale against performance and EEG variables.

    PubMed

    Kaida, Kosuke; Takahashi, Masaya; Akerstedt, Torbjörn; Nakata, Akinori; Otsuka, Yasumasa; Haratani, Takashi; Fukasawa, Kenji

    2006-07-01

    The Karolinska sleepiness scale (KSS) is frequently used for evaluating subjective sleepiness. The main aim of the present study was to investigate the validity and reliability of the KSS with electroencephalographic, behavioral and other subjective indicators of sleepiness. Participants were 16 healthy females aged 33-43 (38.1+/-2.68) years. The experiment involved 8 measurement sessions per day for 3 consecutive days. Each session contained the psychomotor vigilance task (PVT), the Karolinska drowsiness test (KDT-EEG alpha & theta power), the alpha attenuation test (AAT-alpha power ratio open/closed eyes) and the KSS. Median reaction time, number of lapses, alpha and theta power density and the alpha attenuation coefficients (AAC) showed highly significant increase with increasing KSS. The same variables were also significantly correlated with KSS, with a mean value for lapses (r=0.56). The KSS was closely related to EEG and behavioral variables, indicating a high validity in measuring sleepiness. KSS ratings may be a useful proxy for EEG or behavioral indicators of sleepiness.

  20. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Microstates in resting-state EEG: current status and future directions.

    PubMed

    Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M; Farzan, Faranak

    2015-02-01

    Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable "microstates" that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Microstates in Resting-State EEG: Current Status and Future Directions

    PubMed Central

    Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M.; Farzan, Faranak

    2015-01-01

    Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable “microstates” that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. PMID:25526823

  3. Wedge MUSIC: a novel approach to examine experimental differences of brain source connectivity patterns from EEG/MEG data.

    PubMed

    Ewald, Arne; Avarvand, Forooz Shahbazi; Nolte, Guido

    2014-11-01

    We introduce a novel method to estimate bivariate synchronization, i.e. interacting brain sources at a specific frequency or band, from MEG or EEG data robust to artifacts of volume conduction. The data driven calculation is solely based on the imaginary part of the cross-spectrum as opposed to the imaginary part of coherency. In principle, the method quantifies how strong a synchronization between a distinct pair of brain sources is present in the data. As an input of the method all pairs of pre-defined locations inside the brain can be used which is computationally exhaustive. In contrast to that, reference sources can be used that have been identified by any source reconstruction technique in a prior analysis step. We introduce different variants of the method and evaluate the performance in simulations. As a particular advantage of the proposed methodology, we demonstrate that the novel approach is capable of investigating differences in brain source interactions between experimental conditions or with respect to a certain baseline. For measured data, we first show the application on resting state MEG data where we find locally synchronized sources in the motor-cortex based on the sensorimotor idle rhythms. Finally, we show an example on EEG motor imagery data where we contrast hand and foot movements. Here, we also find local interactions in the expected brain areas. Copyright © 2014. Published by Elsevier Inc.

  4. Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: a pilot study.

    PubMed

    Lustenberger, Caroline; Mouthon, Anne-Laure; Tesler, Noemi; Kurth, Salome; Ringli, Maya; Buchmann, Andreas; Jenni, Oskar G; Huber, Reto

    2017-01-01

    Reliable markers for brain maturation are important to identify neural deviations that eventually predict the development of mental illnesses. Recent studies have proposed topographical EEG-derived slow wave activity (SWA) during NREM sleep as a mirror of cortical development. However, studies about the longitudinal stability as well as the relationship with behavioral skills are needed before SWA topography may be considered such a reliable marker. We examined six subjects longitudinally (over 5.1 years) using high-density EEG and a visuomotor learning task. All subjects showed a steady increase of SWA at a frontal electrode and a decrease in central electrodes. Despite these large changes in EEG power, SWA topography was relatively stable within each subject during development indicating individual trait-like characteristics. Moreover, the SWA changes in the central cluster were related to the development of specific visuomotor skills. Taken together with the previous work in this domain, our results suggest that EEG sleep SWA represents a marker for motor skill development and further supports the idea that SWA mirrors cortical development during childhood and adolescence. © 2016 Wiley Periodicals, Inc.

  5. Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome.

    PubMed

    Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona

    2017-07-21

    Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.

  6. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features.

    PubMed

    Han, Chang-Hee; Lim, Jeong-Hwan; Lee, Jun-Hak; Kim, Kangsan; Im, Chang-Hwan

    2016-01-01

    It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training.

  7. Real-time mental arithmetic task recognition from EEG signals.

    PubMed

    Wang, Qiang; Sourina, Olga

    2013-03-01

    Electroencephalography (EEG)-based monitoring the state of the user's brain functioning and giving her/him the visual/audio/tactile feedback is called neurofeedback technique, and it could allow the user to train the corresponding brain functions. It could provide an alternative way of treatment for some psychological disorders such as attention deficit hyperactivity disorder (ADHD), where concentration function deficit exists, autism spectrum disorder (ASD), or dyscalculia where the difficulty in learning and comprehending the arithmetic exists. In this paper, a novel method for multifractal analysis of EEG signals named generalized Higuchi fractal dimension spectrum (GHFDS) was proposed and applied in mental arithmetic task recognition from EEG signals. Other features such as power spectrum density (PSD), autoregressive model (AR), and statistical features were analyzed as well. The usage of the proposed fractal dimension spectrum of EEG signal in combination with other features improved the mental arithmetic task recognition accuracy in both multi-channel and one-channel subject-dependent algorithms up to 97.87% and 84.15% correspondingly. Based on the channel ranking, four channels were chosen which gave the accuracy up to 97.11%. Reliable real-time neurofeedback system could be implemented based on the algorithms proposed in this paper.

  8. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features

    PubMed Central

    Lim, Jeong-Hwan; Lee, Jun-Hak; Kim, Kangsan

    2016-01-01

    It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training. PMID:27631005

  9. Functional brain networks in healthy subjects under acupuncture stimulation: An EEG study based on nonlinear synchronization likelihood analysis

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Liu, Jing; Cai, Lihui; Wang, Jiang; Cao, Yibin; Hao, Chongqing

    2017-02-01

    Electroencephalogram (EEG) signal evoked by acupuncture stimulation at "Zusanli" acupoint is analyzed to investigate the modulatory effect of manual acupuncture on the functional brain activity. Power spectral density of EEG signal is first calculated based on the autoregressive Burg method. It is shown that the EEG power is significantly increased during and after acupuncture in delta and theta bands, but decreased in alpha band. Furthermore, synchronization likelihood is used to estimate the nonlinear correlation between each pairwise EEG signals. By applying a threshold to resulting synchronization matrices, functional networks for each band are reconstructed and further quantitatively analyzed to study the impact of acupuncture on network structure. Graph theoretical analysis demonstrates that the functional connectivity of the brain undergoes obvious change under different conditions: pre-acupuncture, acupuncture, and post-acupuncture. The minimum path length is largely decreased and the clustering coefficient keeps increasing during and after acupuncture in delta and theta bands. It is indicated that acupuncture can significantly modulate the functional activity of the brain, and facilitate the information transmission within different brain areas. The obtained results may facilitate our understanding of the long-lasting effect of acupuncture on the brain function.

  10. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG.

    PubMed

    Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai

    2017-03-01

    The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver's brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.

  11. Disentangling Neural Sources of the Motor Interference Effect in High Functioning Autism: An EEG-Study

    ERIC Educational Resources Information Center

    Deschrijver, Eliane; Wiersema, Jan R.; Brass, Marcel

    2017-01-01

    The role of imitation in autism spectrum disorder (ASD) is controversial. Researchers have argued that deficient control of self- and other-related motor representations (self-other distinction) might explain imitation difficulties. In a recent EEG study, we showed that control of imitation relies on high-level as well as on low-level cognitive…

  12. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.

    PubMed

    Symeonidou, Evangelia-Regkina; Nordin, Andrew D; Hairston, W David; Ferris, Daniel P

    2018-04-03

    More neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion. In the current study, we tested how motion artifacts are affected by the overall mass and surface area of commercially available electrodes, as well as how cable sway contributes to motion artifacts. To provide a ground-truth signal, we used a gelatin head phantom with embedded antennas broadcasting electrical signals, and recorded EEG with a commercially available electrode system. A robotic platform moved the phantom head through sinusoidal displacements at different frequencies (0-2 Hz). Results showed that a larger electrode surface area can have a small but significant effect on improving EEG signal quality during motion and that cable sway is a major contributor to motion artifacts. These results have implications in the development of future hardware for mobile brain imaging with EEG.

  13. Synchronizing MIDI and wireless EEG measurements during natural piano performance.

    PubMed

    Zamm, Anna; Palmer, Caroline; Bauer, Anna-Katharina R; Bleichner, Martin G; Demos, Alexander P; Debener, Stefan

    2017-07-08

    Although music performance has been widely studied in the behavioural sciences, less work has addressed the underlying neural mechanisms, perhaps due to technical difficulties in acquiring high-quality neural data during tasks requiring natural motion. The advent of wireless electroencephalography (EEG) presents a solution to this problem by allowing for neural measurement with minimal motion artefacts. In the current study, we provide the first validation of a mobile wireless EEG system for capturing the neural dynamics associated with piano performance. First, we propose a novel method for synchronously recording music performance and wireless mobile EEG. Second, we provide results of several timing tests that characterize the timing accuracy of our system. Finally, we report EEG time domain and frequency domain results from N=40 pianists demonstrating that wireless EEG data capture the unique temporal signatures of musicians' performances with fine-grained precision and accuracy. Taken together, we demonstrate that mobile wireless EEG can be used to measure the neural dynamics of piano performance with minimal motion constraints. This opens many new possibilities for investigating the brain mechanisms underlying music performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study

    PubMed Central

    Mangia, Anna L.; Pirini, Marco; Cappello, Angelo

    2014-01-01

    Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519

  15. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion

    PubMed Central

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain–computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method. PMID:28558002

  16. Exploration of Lower Frequency EEG Dynamics and Cortical Alpha Asymmetry in Long-term Rajyoga Meditators

    PubMed Central

    Sharma, Kanishka; Chandra, Sushil; Dubey, Ashok Kumar

    2018-01-01

    Background: Rajyoga meditation is taught by Prajapita Brahmakumaris World Spiritual University (Brahmakumaris) and has been followed by more than one million followers across the globe. However, rare studies were conducted on physiological aspects of rajyoga meditation using electroencephalography (EEG). Band power and cortical asymmetry were not studied with Rajyoga meditators. Aims: This study aims to investigate the effect of regular meditation practice on EEG brain dynamics in low-frequency bands of long-term Rajyoga meditators. Settings and Design: Subjects were matched for age in both groups. Lower frequency EEG bands were analyzed in resting and during meditation. Materials and Methods: Twenty-one male long-term meditators (LTMs) and same number of controls were selected to participate in study as par inclusion criteria. Semi high-density EEG was recorded before and during meditation in LTM group and resting in control group. The main outcome of the study was spectral power of alpha and theta bands and cortical (hemispherical) asymmetry calculated using band power. Statistical Analysis: One-way ANOVA was performed to find the significant difference between EEG spectral properties of groups. Pearson's Chi-square test was used to find difference among demographics data. Results: Results reveal high-band power in alpha and theta spectra in meditators. Cortical asymmetry calculated through EEG power was also found to be high in frontal as well as parietal channels. However, no correlation was seen between the experience of meditation (years, hours) practice and EEG indices. Conclusion: Overall findings indicate contribution of smaller frequencies (alpha and theta) while maintaining meditative experience. This suggests a positive impact of meditation on frontal and parietal areas of brain, involved in the processes of regulation of selective and sustained attention as well as provide evidence about their involvement in emotion and cognitive processing. PMID:29343928

  17. Combining EEG and eye movement recording in free viewing: Pitfalls and possibilities.

    PubMed

    Nikolaev, Andrey R; Meghanathan, Radha Nila; van Leeuwen, Cees

    2016-08-01

    Co-registration of EEG and eye movement has promise for investigating perceptual processes in free viewing conditions, provided certain methodological challenges can be addressed. Most of these arise from the self-paced character of eye movements in free viewing conditions. Successive eye movements occur within short time intervals. Their evoked activity is likely to distort the EEG signal during fixation. Due to the non-uniform distribution of fixation durations, these distortions are systematic, survive across-trials averaging, and can become a source of confounding. We illustrate this problem with effects of sequential eye movements on the evoked potentials and time-frequency components of EEG and propose a solution based on matching of eye movement characteristics between experimental conditions. The proposal leads to a discussion of which eye movement characteristics are to be matched, depending on the EEG activity of interest. We also compare segmentation of EEG into saccade-related epochs relative to saccade and fixation onsets and discuss the problem of baseline selection and its solution. Further recommendations are given for implementing EEG-eye movement co-registration in free viewing conditions. By resolving some of the methodological problems involved, we aim to facilitate the transition from the traditional stimulus-response paradigm to the study of visual perception in more naturalistic conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Induction and separation of motion artifacts in EEG data using a mobile phantom head device.

    PubMed

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2016-06-01

    Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  19. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  20. Induction and separation of motion artifacts in EEG data using a mobile phantom head device

    NASA Astrophysics Data System (ADS)

    Oliveira, Anderson S.; Schlink, Bryan R.; Hairston, W. David; König, Peter; Ferris, Daniel P.

    2016-06-01

    Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components’ (ICs) power spectrum (˜15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  1. Application of high-frequency Granger causality to analysis of epileptic seizures and surgical decision making.

    PubMed

    Epstein, Charles M; Adhikari, Bhim M; Gross, Robert; Willie, Jon; Dhamala, Mukesh

    2014-12-01

    In recent decades intracranial EEG (iEEG) recordings using increasing numbers of electrodes, higher sampling rates, and a variety of visual and quantitative analyses have indicated the presence of widespread, high frequency ictal and preictal oscillations (HFOs) associated with regions of seizure onset. Seizure freedom has been correlated with removal of brain regions generating pathologic HFOs. However, quantitative analysis of preictal HFOs has seldom been applied to the clinical problem of planning the surgical resection. We performed Granger causality (GC) analysis of iEEG recordings to analyze features of preictal seizure networks and to aid in surgical decision making. Ten retrospective and two prospective patients were chosen on the basis of individually stereotyped seizure patterns by visual criteria. Prospective patients were selected, additionally, for failure of those criteria to resolve apparent multilobar ictal onsets. iEEG was recorded at 500 or 1,000 Hz, using up to 128 surface and depth electrodes. Preictal and early ictal GC from individual electrodes was characterized by the strength of causal outflow, spatial distribution, and hierarchical causal relationships. In all patients we found significant, widespread preictal GC network activity at peak frequencies from 80 to 250 Hz, beginning 2-42 s before visible electrographic onset. In the two prospective patients, GC source/sink comparisons supported the exclusion of early ictal regions that were not the dominant causal sources, and contributed to planning of more limited surgical resections. Both patients have a class 1 outcome at 1 year. GC analysis of iEEG has the potential to increase understanding of preictal network activity, and to help improve surgical outcomes in cases of otherwise ambiguous iEEG onset. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  2. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  3. Rapid changes in arousal states of healthy volunteers during robot-assisted gait training: a quantitative time-series electroencephalography study

    PubMed Central

    2014-01-01

    Background Robot-assisted gait training (RAGT) is expected to be an effective rehabilitative intervention for patients with gait disturbances. However, the monotonous gait pattern provided by robotic guidance tends to induce sleepiness, and the resultant decreased arousal during RAGT may negatively affect gait training progress. This study assessed electroencephalography (EEG)-based, objective sleepiness during RAGT and examined whether verbal or nonverbal warning sounds are effective stimuli for counteracting such sleepiness. Methods Twelve healthy men walked on a treadmill for 6 min, while being guided by a Gait-Assistance Robot, under 3 experimental conditions: with sine-wave sound stimulation (SS), verbal sound stimulation (VS), and no sound stimulation (NS). The volunteers were provided with warning sound stimulation at 4 min (ST1), 4 min 20 s (ST2), 4 min 40 s (ST3), and 5 min (ST4) after the start of RAGT. EEGs were recorded at the central (Cz) and occipital (O1 and O2) regions (International 10–20 system) before and during RAGT, and 4-s segments of EEG data were extracted from the filtered data during the 8 experimental periods: middle of the eyes-closed condition; middle of the eyes-open condition; beginning of RAGT; immediately before ST1; immediately after ST1, ST2, ST3, and ST4. According to the method used in the Karolinska drowsiness test, the power densities of the theta, alpha 1, and alpha 2 bands were calculated as indices of objective sleepiness. Results Comparisons of the findings between baseline and before ST showed that the power densities of the alpha 1 and 2 bands tended to increase, whereas the theta power density increased significantly (P < .05). During NS, the power densities remained at a constant high level until after ST4. During SS and VS, the power densities were attenuated immediately to the same degree and maintained at a constant low level until after ST4. Conclusions This study is the first to demonstrate that EEG-measured arousal levels decrease within a short time during RAGT, but are restored and maintained by intermittent warning sound stimulation. PMID:24725811

  4. Electrophysiological Measures of Regional Neural Interactive Coupling (Linear and Nonlinear Dependence Relationships Among Multiple Channel Electroencephalographic (EEG) Recordings),

    DTIC Science & Technology

    1980-01-01

    clinical intervention . SG1CUDING CCMENL’ In evaluating the EEGs of subjects it is important to not that . ~major differences in EEG waveshape across...studies in dyslexia . In A.L. Benton and D. Pearl (Fs.), Dyslexia : An Appraisal of Current Knowledge. New York: Oxford University Press, 1978. 4...Electroencephalo- graphy and Clinical Neurophysio !. Oct., 67, 23(4):306-19. 6) Duffy, F.H., Denckla, M.B., Bartels, P.H., and Sandini, G. Dyslexia

  5. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data

    PubMed Central

    Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages. PMID:21253357

  6. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    PubMed

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  7. Portable Amplifier Design for a Novel EEG Monitor in Point-of-Care Applications.

    PubMed

    Luan, Bo; Sun, Mingui; Jia, Wenyan

    2012-01-01

    The Electroencephalography (EEG) is a common diagnostic tool for neurological diseases and dysfunctions, such as epilepsy and insomnia. However, the current EEG technology cannot be utilized quickly and conveniently at the point of care due to the complex skin preparation procedures required and the inconvenient EEG data acquisition systems. This work presents a portable amplifier design that integrates a set of skin screw electrodes and a wireless data link. The battery-operated amplifier contains an instrumentation amplifier, two noninverting amplifiers, two high-pass filters, and a low-pass filter. It is able to magnify the EEG signals over 10,000 times and has a high impedance, low noise, small size and low weight. Our electrode and amplifier are ideal for point-of-care applications, especially during transportation of patients suffering from traumatic brain injury or stroke.

  8. Effects of adaptive refinement on the inverse EEG solution

    NASA Astrophysics Data System (ADS)

    Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.

    1995-10-01

    One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.

  9. Acute triadimefon-induced changes in the EEG of Long-Evans Rats

    EPA Science Inventory

    We have reported that the non-stimulus driven EEG is altered differently by acute treatment with deltamethrin, permethrin, fipronil, or imidacloprid (Lyke and Herr, Lyke et al., Toxicologist, 2010, 2011, 2012) in non-restrained animals. In the current study, we examined the abili...

  10. Physics of the current injection process during localized helicity injection

    NASA Astrophysics Data System (ADS)

    Hinson, Edward Thomas

    An impedance model has been developed for the arc-plasma cathode electron current source used in localized helicity injection tokamak startup. According to this model, a potential double layer (DL) is established between the high-density arc plasma (narc ˜ 1021 m-3) in the electron source, and the less-dense external tokamak edge plasma (nedge ˜ 10 18 m-3) into which current is injected. The DL launches an electron beam at the applied voltage with cross-sectional area close to that of the source aperture: Ainj ≈ 2 cm 2. The injected current, Iinj, increases with applied voltage, Vinj, according to the standard DL scaling, Iinj ˜ V(3/2/ inj), until the more restrictive of two limits to beam density nb arises, producing Iinj ˜ V(1/2/inj), a scaling with beam drift velocity. For low external tokamak edge density nedge, space-charge neutralization of the intense electron beam restricts the injected beam density to nb ˜ nedge. At high Jinj and sufficient edge density, the injected current is limited by expansion of the DL sheath, which leads to nb ˜ narc. Measurements of narc, Iinj , nedge, Vinj, support these predicted scalings, and suggest narc as a viable control actuator for the source impedance. Magnetic probe signals ≈ 300 degrees toroidally from the injection location are consistent with expectations for a gyrating, coherent electron beam with a compact areal cross-section. Technological development of the source has allowed an extension of the favorable Iinj ˜ V(1/2/inj) to higher power without electrical breakdown.

  11. Conventional and reciprocal approaches to the inverse dipole localization problem for N(20)-P (20) somatosensory evoked potentials.

    PubMed

    Finke, Stefan; Gulrajani, Ramesh M; Gotman, Jean; Savard, Pierre

    2013-01-01

    The non-invasive localization of the primary sensory hand area can be achieved by solving the inverse problem of electroencephalography (EEG) for N(20)-P(20) somatosensory evoked potentials (SEPs). This study compares two different mathematical approaches for the computation of transfer matrices used to solve the EEG inverse problem. Forward transfer matrices relating dipole sources to scalp potentials are determined via conventional and reciprocal approaches using individual, realistically shaped head models. The reciprocal approach entails calculating the electric field at the dipole position when scalp electrodes are reciprocally energized with unit current-scalp potentials are obtained from the scalar product of this electric field and the dipole moment. Median nerve stimulation is performed on three healthy subjects and single-dipole inverse solutions for the N(20)-P(20) SEPs are then obtained by simplex minimization and validated against the primary sensory hand area identified on magnetic resonance images. Solutions are presented for different time points, filtering strategies, boundary-element method discretizations, and skull conductivity values. Both approaches produce similarly small position errors for the N(20)-P(20) SEP. Position error for single-dipole inverse solutions is inherently robust to inaccuracies in forward transfer matrices but dependent on the overlapping activity of other neural sources. Significantly smaller time and storage requirements are the principal advantages of the reciprocal approach. Reduced computational requirements and similar dipole position accuracy support the use of reciprocal approaches over conventional approaches for N(20)-P(20) SEP source localization.

  12. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon-Golcher, Edwin

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm 2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum valuesmore » for a K + beam of ~90 mA/cm 2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm +) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (ε n ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.« less

  13. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10{sup 19} - 10{sup 20} m{sup -3}), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun viamore » the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm{sup 2}. The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications.« less

  14. ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

    PubMed

    Wu, Wei; Keller, Corey J; Rogasch, Nigel C; Longwell, Parker; Shpigel, Emmanuel; Rolle, Camarin E; Etkin, Amit

    2018-04-01

    Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings. © 2018 Wiley Periodicals, Inc.

  15. On the feasibility of concurrent human TMS-EEG-fMRI measurements

    PubMed Central

    Reithler, Joel; Schuhmann, Teresa; de Graaf, Tom; Uludağ, Kâmil; Goebel, Rainer; Sack, Alexander T.

    2013-01-01

    Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value of such multimodal imaging approaches. Whereas concurrent EEG-fMRI enables monitoring of brain-wide network dynamics with high temporal and spatial resolution, the combination with TMS provides insights in causal interactions within these networks. Thus the simultaneous use of all three methods would allow studying fast, spatially accurate, and distributed causal interactions in the perturbed system and its functional relevance for intact behavior. Concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI experiments are already technically challenging, and the three-way combination of TMS-EEG-fMRI might yield additional difficulties in terms of hardware strain or signal quality. The present study explored the feasibility of concurrent TMS-EEG-fMRI studies by performing safety and quality assurance tests based on phantom and human data combining existing commercially available hardware. Results revealed that combined TMS-EEG-fMRI measurements were technically feasible, safe in terms of induced temperature changes, allowed functional MRI acquisition with comparable image quality as during concurrent EEG-fMRI or TMS-fMRI, and provided artifact-free EEG before and from 300 ms after TMS pulse application. Based on these empirical findings, we discuss the conceptual benefits of this novel complementary approach to investigate the working human brain and list a number of precautions and caveats to be heeded when setting up such multimodal imaging facilities with current hardware. PMID:23221407

  16. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher's Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    PubMed Central

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-01-01

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837

  17. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.

    PubMed

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-07-24

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.

  18. The effect of CPAP treatment on EEG of OSAS patients.

    PubMed

    Zhang, Cheng; Lv, Jun; Zhou, Junhong; Su, Li; Feng, Liping; Ma, Jing; Wang, Guangfa; Zhang, Jue

    2015-12-01

    Continuous positive airway pressure (CPAP) is currently the most effective treatment method for obstructive sleep apnea syndrome (OSAS). The purpose of this study was to compare the sleep electroencephalogram (EEG) changes before and after the application of CPAP to OSAS patients. A retrospective study was conducted and 45 sequential patients who received both polysomnography (PSG) and CPAP titration were included. The raw data of sleep EEG were extracted and analyzed by engineers using two main factors: fractal dimension (FD) and the zero-crossing rate of detrended FD (zDFD). FD was an effective indicator reflecting the EEG complexity and zDFD was useful to reflect the variability of the EEG complexity. The FD and zDFD indexes of sleep EEG of 45 OSAS patients before and after CPAP titration were analyzed. The age of 45 OSAS patients was 52.7 ± 5.6 years old and the patients include 12 females and 33 males. After CPAP treatment, FD of EEG in non-rapid eye movement (NREM) sleep decreased significantly (P < 0.05), while FD of EEG increased in rapid eye movement (REM) sleep (P < 0.05). Meanwhile, zDFD were decreased remarkably in both NREM and REM sleep after CPAP therapy (P < 0.05, respectively). CPAP therapy had a significant influence on sleep EEG in patients with OSAHS, which lead to a more stable EEG pattern. This may be one of the mechanisms that CPAP could improve sleep quality and brain function of OSAS patients.

  19. Unavoidable Errors: A Spatio-Temporal Analysis of Time-Course and Neural Sources of Evoked Potentials Associated with Error Processing in a Speeded Task

    ERIC Educational Resources Information Center

    Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik

    2008-01-01

    The detection of errors is known to be associated with two successive neurophysiological components in EEG, with an early time-course following motor execution: the error-related negativity (ERN/Ne) and late positivity (Pe). The exact cognitive and physiological processes contributing to these two EEG components, as well as their functional…

  20. PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG.

    PubMed

    Ball, Kenneth; Bigdely-Shamlo, Nima; Mullen, Tim; Robbins, Kay

    2016-01-01

    Independent component analysis (ICA) is a class of algorithms widely applied to separate sources in EEG data. Most ICA approaches use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of individual observations. We propose a method of mapping real signals into a complex vector space that takes into account the temporal order of signals and enforces certain mixing stationarity constraints. The resulting procedure, which we call Pairwise Complex Independent Component Analysis (PWC-ICA), performs the ICA in a complex setting and then reinterprets the results in the original observation space. We examine the performance of our candidate approach relative to several existing ICA algorithms for the blind source separation (BSS) problem on both real and simulated EEG data. On simulated data, PWC-ICA is often capable of achieving a better solution to the BSS problem than AMICA, Extended Infomax, or FastICA. On real data, the dipole interpretations of the BSS solutions discovered by PWC-ICA are physically plausible, are competitive with existing ICA approaches, and may represent sources undiscovered by other ICA methods. In conjunction with this paper, the authors have released a MATLAB toolbox that performs PWC-ICA on real, vector-valued signals.

Top