Science.gov

Sample records for efeito na radioterapia

  1. On efeito do achatamento nos pontos de equilíbrio e na dinâmica de sistemas coorbitais

    NASA Astrophysics Data System (ADS)

    Mourão, D. C.; Winter, O. C.; Yokoyama, T.

    2003-08-01

    Neste trabalho analisamos o efeito do achatamento do corpo principal nos pontos de equilíbrio lagrangianos e na configuração de órbitas girino-ferradura. Enfatizamos os sistemas coorbitais de satélites de Saturno, pois se encontram em relativa proximidade com o planeta, em que o efeito do achatamento se torna mais evidente. O estudo é dividido em três etapas independentes. Na primeira fase analisamos as equações de movimento do problema restrito de três corpos considerando o efeito do achatamento, e através do balanceamento de forças buscamos a nova configuração dos pontos de equilíbrio lagrangianos. Concluímos, nesta etapa, que os pontos de equilíbrio estáveis apresentam um pequeno deslocamento definido pelo parâmetro de achatamento, não podendo ser mais representados por triângulos eqüiláteros. Aplicamos este resultado aos satélites coorbitais de Tetis e Dione, encontrando as posições de equilíbrio levemente deslocadas em relação ao caso sem achatamento. Na segunda fase visamos o sistema Saturno-Jano-Epimeteu, que por se tratar de um sistema de massas comparáveis, optamos por desenvolver as equações de Yoder et al (Icarus 53, pág 431-443, 1983), que permitem determinar os pontos de equilíbrio e a amplitude de oscilação angular das órbitas girino-ferradura para o problema não-restrito de três corpos, porém, no nosso estudo consideramos o efeito do achatamento do corpo principal nestas equações. Encontramos que a distância angular entre satélites, quando em posição de equilíbrio estável, diminui quanto maior for o parâmetro de achatamento do corpo principal. Além disso, a órbita de transição girino-ferradura possui largura angular menor em relação ao caso sem achatamento. Por fim, realizamos integrações numéricas para os casos reais de coorbitais de Saturno comparando com os resultados analíticos. Nestas integrações simulamos diversas órbitas girino-ferradura com diferentes parâmetros de achatamento

  2. Efeitos do binarismo não resolvido na determinação da função de massa de aglomerados

    NASA Astrophysics Data System (ADS)

    Kerber, L. O.; Santiago, B. X.

    2003-08-01

    Através de simulações numéricas buscamos quantificar os efeitos que o binarismo não resolvido causa na determinação da função de massa (MF) de aglomerados estelares. Geramos diagramas cor-magnitude (CMDs) artificiais simulando uma população única, caracterizada por estrelas de mesma idade e composição quí mica, com uma fração de binárias não resolvidas e distribuição em massa das estrelas dada por uma MF do tipo lei de potência. A presença de pares de estrelas não resolvidos faz com que a MF obtida da função de luminosidade (LF) tenha a têndencia de ser mais plana do que a MF que gerou o CMD artificial. Propomos um tratamento de correção para tal efeito. Outro efeito relacionado diz respeito ao alargamento do CMD, que apresenta-se como um indicador do número total de estrelas no domí nio de baixas massas (m < 0.6M¤). Todos os resultados acima possuem uma forte dependência com os erros fotométricos e estão baseados na hipótese de que ambas estrelas do par não resolvido são sorteadas de uma mesma MF de forma independente. O objetivo final é aplicarmos o tratamento aqui desenvolvido para implementarmos a análise da nossa amostra de aglomerados ricos da Grande Nuvem de Magalhães.

  3. Research methodology in the "Associazione Italiana di Radioterapia Oncologica (AIRO)".

    PubMed

    Emiliani, E

    2000-01-01

    The research methodology in the "Associazione Italiana di Radioterapia (AIRO)" (The Italian Association of Radiation Oncology) is presented according to two interconnected aspects: the consensus research on similar projects with other Scientific Associations and the clinical research carried out in the ten years of life of the Association. The mechanism of the "Federazione Intersocietaria" (Federation of Associations) with the Radiology, Oncology and Physics Associations can be a stimulant to broaden the horizons and feasibility of cancer research which is one of the main causes of mortality and which is increasing due to the population aging. The results of three national multicentric trials on the clinical research on cancer of the rectum, oropharynx and in the elderly, are reported. The study methodology, based on the clinical evidence and multidisciplinarity, shows that the time is ripe for a development of research and, if coordinated by the Association, it would contribute to the prestige and importance of the Italian Radiotherapy.

  4. External beam radiotherapy in thyroid carcinoma: clinical review and recommendations of the AIRO "Radioterapia Metabolica" Group.

    PubMed

    Mangoni, Monica; Gobitti, Carlo; Autorino, Rosa; Cerizza, Lorenzo; Furlan, Carlo; Mazzarotto, Renzo; Monari, Fabio; Simontacchi, Gabriele; Vianello, Federica; Basso, Michela; Zanirato Rambaldi, Giuseppe; Russi, Elvio; Tagliaferri, Luca

    2017-03-24

    The therapeutic approach to thyroid carcinoma usually involves surgery as initial treatment. The use of external beam radiotherapy (EBRT) is limited to high-risk patients and depends on clinical stage and histologic type. Different behavior patterns and degrees of aggressiveness of thyroid carcinomas require different management for differentiated, medullary, and anaplastic carcinoma. However, the role of EBRT is an issue of debate. Most clinical studies are retrospective and based on single-institution experiences. In this article, we review the main literature and give recommendations for the use of EBRT in thyroid carcinoma on behalf of the "Radioterapia Metabolica" Group of the Italian Radiation Oncology Association.

  5. Seguridad del paciente en Radioterapia Intraoperatoria: Impacto de los elementos controlados por el Radiofisico

    NASA Astrophysics Data System (ADS)

    Tarjuelo, Juan Lopez

    Introduccion: En la administracion de la radioterapia intervienen profesionales y equipos de tratamiento, por lo que existe el riesgo de error y se precisa que dicho equipamiento funcione conforme a lo esperado. A los radiofisicos les corresponde participar en las actividades de garantia o aseguramiento de la calidad, incluyendo el control de calidad de los equipos, y en la evaluacion de los riesgos asociados. La radioterapia intraoperatoria (RIO) es una tecnica radioterapica de intensificacion de dosis, altamente selectiva, dirigida a volumenes anatomicos restringidos durante el tratamiento quirurgico oncologico, basada en la administracion de una dosis absorbida alta por medio de un haz de electrones tras el examen visual directo del lecho tumoral. Como incorporar los ultimos avances en el refuerzo de la seguridad en radioterapia es una tarea ambiciosa y compleja, resulta mas concreta y de inmediata aplicacion su introduccion en la RIO. El objetivo es analizar los elementos que reducen los riesgos y aumentan la seguridad en la RIO y su dosimetria, y valorar la funcion del radiofisico en esta labor. Material y metodos: Se emplearon el planificador Radiance de GMV y el acelerador lineal de los tratamientos de RIO Elekta Precise, controlado con el verificador diario de haces Daily QA Check 1090 y medido con las camaras de ionizacion PPC 40, FC65-G y FC65-P de PTW-Freiburg, a su vez verificadas con fuentes radiactivas adecuadas de estroncio-90 modelos CDP y CDC de IBA Dosimetry. Se realizo un analisis de modos de fallo y efectos (failure mode and effect analysis, FMEA) con el fin de identificar los elementos que forman la RIO y aplicar las herramientas necesarias para la minimizacion de los riesgos y la mejora de la seguridad en la tecnica. Se estudiaron las verificaciones diarias de dicho acelerador Precise con el control estadistico de procesos (statistical process control, SPC) y se simularon intervenciones para devolverlo al estado llamado en control. El SPC

  6. Radiation treatment of early vocal cord carcinoma. Eighteen years experience at "Instituto de Oncologia y Radioterapia de Mar del Plata".

    PubMed

    Castro Vita, H

    1990-01-01

    A detailed retrospective analysis of 260 patients with T 1 NO MO vocal cord carcinoma treated at "Instituto de Oncologia y Radioterapia de Mar del Plata" from 1967 to 1985 was performed. The majority of the patients were in the age range of 50 to 79 years, and 79% were males. The overall observed three year tumor free survival was 85.3%. When survival rate was adjusted for intercurrent disease and second primary tumor death, the 3 year tumor free survival was 92%. Sixty two percent of the patients (17/27) undergoing surgical salvage for recurrence, were controlled. Second primary tumors were seen in 18 patients (6.9%). It is emphasized the importance of close follow up to diagnose as early as possible both the vocal cord recurrence and the second primary tumors.

  7. Testing Na+ in blood

    PubMed Central

    Lava, Sebastiano A.G.; Bianchetti, Mario G.; Milani, Gregorio P.

    2017-01-01

    Abstract Both direct potentiometry and indirect potentiometry are currently used for Na+ testing in blood. These measurement techniques show good agreement as long as protein and lipid concentrations in blood remain normal. In severely ill patients, indirect potentiometry commonly leads to relevant errors in Na+ estimation: 25% of specimens show a disagreement between direct and indirect potentiometry, which is ≥4 mmol/L (mostly spuriously elevated Na+ level due to low circulating albumin concentration). There is a need for increased awareness of the poor performance of indirect potentiometry in some clinical settings.

  8. Na+ coordination at the Na2 site of the Na+/I- symporter.

    PubMed

    Ferrandino, Giuseppe; Nicola, Juan Pablo; Sánchez, Yuly E; Echeverria, Ignacia; Liu, Yunlong; Amzel, L Mario; Carrasco, Nancy

    2016-09-13

    The sodium/iodide symporter (NIS) mediates active I(-) transport in the thyroid-the first step in thyroid hormone biosynthesis-with a 2 Na(+): 1 I(-) stoichiometry. The two Na(+) binding sites (Na1 and Na2) and the I(-) binding site interact allosterically: when Na(+) binds to a Na(+) site, the affinity of NIS for the other Na(+) and for I(-) increases significantly. In all Na(+)-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na(+) ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues-S66, D191, Q194, and Q263-are also involved in Na(+) coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I(-) These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance.

  9. Detecção inesperada de efeitos de lentes fracas em grupos de galáxias pouco luminosos em raios-X

    NASA Astrophysics Data System (ADS)

    Carrasco, R.; Mendes de Oliveira, C.; Sodrã©, L., Jr.; Lima Neto, G. B.; Cypriano, E. S.; Lengruber, L. L.; Cuevas, H.; Ramirez, A.

    2003-08-01

    Obtivemos, como parte do programa de verificação científica do GMOS Sul, imagens profundas de três grupos de galáxias: G97 e G102 (z~0,4) e G124 (z = 0,17). Esses alvos foram selecionados a partir do catálogo de fontes extensas de Vikhlinin (1998), por terem luminosidades em raios X menores que 3´1043 ergs s-1, valor cerca de uma ou duas ordens de grandeza inferior ao de aglomerados de galáxias. O objetivo primário dessas observações é o estudo da evolução de galáxias em grupos. Grupos são ambientes menos densos que aglomerados, contêm a grande maioria das galáxias do Universo mas que, até o momento, foram estudados detalhadamente apenas no Universo local (z~0). Com esses dados efetuamos uma análise estatística da distorção na forma das galáxias de fundo (lentes gravitacionais fracas) como forma de inferir o conteúdo e a distribuição de massa nesses grupos apesar de que, em princípio, esse efeito não deveria ser detectado uma vez que os critérios de seleção adotados previlegiam sistemas de baixa massa. De fato, para G124 obtivemos apenas um limite superior para sua massa que é compatível com sua luminosidade em raios X. De modo contrário e surpreendente, os objetos G102 e G097, aparentam ter massas que resultariam em dispersões de velocidade maiores que 1000 km s-1, muito maiores do que se espera para grupos de galáxias. Com efeito, para G097 obtivemos, a partir de dados do satélite XMM, uma estimativa para a temperatura do gás intragrupo de kT = 2,6 keV, que é tipica de sistemas com dispersões de velocidade de ~ 600 km s-1, bem característica de grupos. Essas contradições aparentes entre lentes fracas e raios X podem ser explicadas de dois modos: i) a massa obtida por lentes estaria sobreestimada devido à superposição de estruturas massivas ao longo da linha de visada ou ii) a temperatura do gás do meio intra-grupo reflete o potencial gravitacional de estruturas menores que estariam se fundindo para formar uma

  10. Na Cauda do Cometa

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2009-01-01

    Quando viam um cometa, os antigos gregos imaginavam uma estrela com uma vasta cabeleira. Não à toa, a palavra deriva do termo koma, que significa cabelo. Constituídos por fragmentos de gelo e gases, os cometas possuem um núcleo sólido, que pode ter vários quilômetros de diâmetro, e uma cauda que sempre aponta na direção contrária ao Sol, devido aos ventos solares. Graças à aparência de pontos luminosos em movimento (ao contrário de outros astros, que parecem estáticos), esses corpos celestes foram interpretados por diferentes povos com muito misticismo, inspirando mitos tanto de boas-novas como de maus presságios. Conheça algumas dessas histórias:

  11. Na+ coordination at the Na2 site of the Na+/I− symporter

    PubMed Central

    Ferrandino, Giuseppe; Nicola, Juan Pablo; Sánchez, Yuly E.; Echeverria, Ignacia; Liu, Yunlong; Amzel, L. Mario; Carrasco, Nancy

    2016-01-01

    The sodium/iodide symporter (NIS) mediates active I− transport in the thyroid—the first step in thyroid hormone biosynthesis—with a 2 Na+: 1 I− stoichiometry. The two Na+ binding sites (Na1 and Na2) and the I− binding site interact allosterically: when Na+ binds to a Na+ site, the affinity of NIS for the other Na+ and for I− increases significantly. In all Na+-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na+ ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues—S66, D191, Q194, and Q263—are also involved in Na+ coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I−. These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance. PMID:27562170

  12. Solidification of NaCl-NaF eutectic in space

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yu, J. G.

    1974-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, have been produced in space and on earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis.

  13. Na+ recirculation and isosmotic transport.

    PubMed

    Larsen, E H; Møbjerg, N

    2006-01-01

    The Na(+) recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na(+) serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (-/-) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na(+) in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na(+) reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6-7 mOsm in small intestine and < or = 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na(+) recirculation of 50-70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na(+) uptake, which is not included in the mathematical treatment.

  14. Na Deposition on MnO(100)

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Cox, David F.

    2016-03-01

    Na deposition on the MnO(100) surface was investigated by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Na TPD and XPS results indicate that adsorbed Na interacts strongly with the MnO substrate to form an irreversibly-adsorbed, oxidic Na compound on the surface for coverages up to 1 monolayer (ML). This strongly-bound Na diffuses into the MnO subsurface and bulk at elevated temperatures above 500 K. For Na coverages above 1 ML, metallic Na is present and desorbs from the surface below 500 K. The deposition of Na on MnO(100) follows a Stranski-Krastanov (SK) growth mode, with the formation of metallic Na islands following completion of the first Na monolayer. After Na deposition, the surface exhibits a diffuse (1 × 1) LEED pattern, suggesting the formation of disordered Na overlayers. After heating to 1000 K, the surface presents a (2 × 2) LEED pattern indicating that a surface reconstruction is induced by the diffusion of Na into the near surface region. CO2 can be used as a probe molecule in TPD to distinguish between metallic Na islands and oxidic Na in the first ML, and to indicate when Na that is still observable by XPS goes subsurface.

  15. Contagem de fontes de radio na direção de aglomerados ricos de galaxias

    NASA Astrophysics Data System (ADS)

    Andreazza, C. M.; Andernach, H.

    A contagem de fontes de rádio, na direção de aglomerados ricos de galáxias, deve fornecer uma distribuçãto acima da média do campo devido aos efeitos do meio. No entanto, a distribução de radiofontes de alguns aglomerados, investigada por vários autores no passado, mostrou, em alguns casos, uma deficência de fontes fracas. Neste trabalho, analisamos os levantamentos em 2.7 GHz (Reuter e Andernach 1990, 1990A&AS...82..279R; Loiseau et al. 1988, 1988A&AS...75...67L) e o catálogo 6CII em 151 MHz (Hales et al. 1988, 1988MNRAS.234..919H). Nosso estudio da distribução de radiofontes, na direção de aglomerados ricos de galáxias, nestas duas frequências, mostra um excesso de fontes fortes somente nas regiões centrais dos aglomerados. Este resultado pode ser explicado devido à evidência de confinamento das radiofontes pelo gás, do meio intra-aglomerado, e devido aos processos de colisão, coalescência e canibalismo de galáxias.

  16. Calmodulin limits pathogenic Na+ channel persistent current

    PubMed Central

    Yan, Haidun; Wang, Chaojian; Marx, Steven O.

    2017-01-01

    Increased “persistent” current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD–CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)–like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current. PMID:28087622

  17. Efeitos dos sais na planta e tolerância das culturas à salinidade (Salinity effects on plants and tolerance of crops to salinity)

    USDA-ARS?s Scientific Manuscript database

    The major challenge for world agriculture today is to maintain food and water supplies that can meet the demands of a growing world population. The shortage of fresh water, and its use mainly for human consumption, leaves the farmers with the choice of using reclycled city water, or underground sali...

  18. Astrocytes generate Na+-mediated metabolic waves.

    PubMed

    Bernardinelli, Yann; Magistretti, Pierre J; Chatton, Jean-Yves

    2004-10-12

    Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.

  19. The NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Krivda, M.; NA62 Collaboration

    2013-08-01

    The main aim of the NA62 experiment (NA62 Technical Design Report, na62.web.cern.ch/NA62/Documents/TD_Full_doc_v1.pdf> [1]) is to study ultra-rare Kaon decays. In order to select rare events over the overwhelming background, central systems with high-performance, high bandwidth, flexibility and configurability are necessary, that minimize dead time while maximizing data collection reliability. The NA62 experiment consists of 12 sub-detector systems and several trigger and control systems, for a total channel count of less than 100,000. The GigaTracKer (GTK) has the largest number of channels (54,000), and the Liquid Krypton (LKr) calorimeter shares with it the largest raw data rate (19 GB/s). The NA62 trigger system works with 3 trigger levels. The first trigger level is based on a hardware central trigger unit, so-called L0 Trigger Processor (L0TP), and Local Trigger Units (LTU), which are all located in the experimental cavern. Other two trigger levels are based on software, and done with a computer farm located on surface. The L0TP receives information from triggering sub-detectors asynchronously via Ethernet; it processes the information, and then transmits a final trigger decision synchronously to each sub-detector through the Trigger and Timing Control (TTC) system. The interface between L0TP and the TTC system, which is used for trigger and clock distribution, is provided by the Local Trigger Unit board (LTU). The LTU can work in two modes: global and stand-alone. In the global mode, the LTU provides an interface between L0TP and TTC system. In the stand-alone mode, the LTU can fully emulate L0TP and so provides an independent way for each sub-detector for testing or calibration purposes. In addition to the emulation functionality, a further functionality is implemented that allows to synchronize the clock of the LTU with the L0TP and the TTC system. For testing and debugging purposes, a Snap Shot Memory (SSM) interface is implemented, that can work

  20. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG

  1. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  2. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  3. Ionic regulation of Na absorption in proximal colon: cation inhibition of electroneutral Na absorption

    SciTech Connect

    Sellin, J.H.; De Soignie, R.

    1987-01-01

    Active Na absorption (J/sub net//sup NA/) in rabbit proximal colon in vitro is paradoxically stimulated as (Na) in the bathing media is lowered with constant osmolarity. J/sub m..-->..s//sup Na/ increases almost linearly from 0 to 50 mM (Na)/sub 0/ but then plateaus and actually decreases from 50 to 140 mM (Na)/sub 0/, consistent with inhibition of an active transport process. Both lithium and Na are equally effective inhibitors of J/sub net//sup Na/, whereas choline and mannitol do not block the high rate of J/sub net//sup Na/ observed in decreased (Na)/sub 0/. Either gluconate or proprionate replacement of Cl inhibits J/sub net//sup Na/. J/sub net//sup Na/ at lowered (Na)/sub 0/ is electrically silent and is accompanied by increased Cl absorption; it is inhibited by 10/sup -3/ M amiloride and 10/sup -3/ theophylline but not by 10/sup -4/ M bumetanide. Epinephrine is equally effective at stimulating Na absorption at 50 and 140 mM (Na). Na gradient experiments are consistent with a predominantly serosal effect of the decreased (Na)/sub 0/. These results suggest that 1) Na absorption in rabbit proximal colon in vitro is stimulated by decreased (Na); 2) the effect is cation specific, both Na and Li blocking the stimulatory effect; 3) the transport is mediated by Na-H exchange and is Cl dependent but 4) is under different regulatory mechanisms than the epinephrine-sensitive Na-Cl cotransport previously described in proximal colon. Under the appropriate conditions, proximal colon absorbs Na extremely efficiently. Na-H exchange in this epithelium is cation inhibitable, either directly or by a secondary regulatory process.

  4. Deliquescence of NaCl-NaNO3 and KNO3-NaNO3 Salt Mixtures at 90C

    SciTech Connect

    Carroll, S; Craig, L; Wolery, T

    2003-12-29

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO3-H2O and KNO{sub 3}-NaNO{sub 3}-H{sub 2}O systems at 90 C to determine relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Model predictions agree with experimental results for the NaCl-NaNO{sub 3}-H{sub 2}O system, but underestimate relative humidity by as much as 8% and solution composition by as much as 50% in the KNO{sub 3}-NaNO{sub 3}-H{sub 2}O system.

  5. Na+ Tolerance and Na+ Transport in Higher Plants

    PubMed Central

    TESTER, MARK; DAVENPORT, ROMOLA

    2003-01-01

    Tolerance to high soil [Na+] involves processes in many different parts of the plant, and is manifested in a wide range of specializations at disparate levels of organization, such as gross morphology, membrane transport, biochemistry and gene transcription. Multiple adaptations to high [Na+] operate concurrently within a particular plant, and mechanisms of tolerance show large taxonomic variation. These mechanisms can occur in all cells within the plant, or can occur in specific cell types, reflecting adaptations at two major levels of organization: those that confer tolerance to individual cells, and those that contribute to tolerance not of cells per se, but of the whole plant. Salt‐tolerant cells can contribute to salt tolerance of plants; but we suggest that equally important in a wide range of conditions are processes involving the management of Na+ movements within the plant. These require specific cell types in specific locations within the plant catalysing transport in a coordinated manner. For further understanding of whole plant tolerance, we require more knowledge of cell‐specific transport processes and the consequences of manipulation of transporters and signalling elements in specific cell types. PMID:12646496

  6. Fisica a escala de Planck usando o principio de incerteza generalizado: efeitos nas flutuações primordiais e buracos negros

    NASA Astrophysics Data System (ADS)

    Horvath, J. E.; Custódio, P. S.

    2003-08-01

    Em escalas proximas à escala de Planck todas as teorias perturbativas de cordas produzem essenciamente a mesma relação de conmutação entre as coordenadas e impulsos (a chamada "álgebra deformada"), permitindo assim estudar a física resultante independentemente dos detalhes da teoria de cordas que seja considerada correta. Este resultado completamente geral, que inclui as interações gravitacionais junto com o resto dos campos pode ser considerada uma versão generalizada (GUP) do Princípio de Incerteza de Heisenberg. Aplicamos neste trabalho essas relações de conmutação para dois sistemas físicos bem definidos: buracos negros de massas próximas à massa de Planck, e flutuações quânticas em pequenas escalas antes do universo sofrer inflação. Obtemos dois resultados concretos dos efeitos do GUP : o primeiro é que o GUP impede a evaporação completa de buracos negros microscópicos na extensão do formalismo semiclássico, deixando assim remanescentes de pequena massa que já foram postulados como candidatos a matéria escura. O segundo resultado é o 'smoothing' das flutuações primordiais em pequenas escalas que levariam à produção de buracos negros primordiais após a inflação, impedindo assim a produção abundante destes últimos e predizendo abundancias atuais bem menores do que os limites disponíveis. Concluimos que, analogamente a utilização do Princípio de Incerteza de Heisenberg para estudar e determinar propriedades fundamentais das interações sem gravitação, o GUP e uma ferramenta poderosa para estudar uma ampla variedade de sistemas trans-Planckianos e predizer seu comportamento dispensando cálculos mais detalhados proprios da teoria quântica da gravitação.

  7. Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio)

    PubMed Central

    2013-01-01

    Introduction In mammals, internal Na+ homeostasis is maintained through Na+ reabsorption via a variety of Na+ transport proteins with mutually compensating functions, which are expressed in different segments of the nephrons. In zebrafish, Na+ homeostasis is achieved mainly through the skin/gill ionocytes, namely Na+/H+ exchanger (NHE3b)-expressing H+-ATPase rich (HR) cells and Na+-Cl- cotransporter (NCC)-expressing NCC cells, which are functionally homologous to mammalian proximal and distal convoluted tubular cells, respectively. The present study aimed to investigate whether or not the functions of HR and NCC ionocytes are differentially regulated to compensate for disruptions of internal Na+ homeostasis and if the cell differentiation of the ionocytes is involved in this regulation pathway. Results Translational knockdown of ncc caused an increase in HR cell number and a resulting augmentation of Na+ uptake in zebrafish larvae, while NHE3b loss-of-function caused an increase in NCC cell number with a concomitant recovery of Na+ absorption. Environmental acid stress suppressed nhe3b expression in HR cells and decreased Na+ content, which was followed by up-regulation of NCC cells accompanied by recovery of Na+ content. Moreover, knockdown of ncc resulted in a significant decrease of Na+ content in acid-acclimated zebrafish. Conclusions These results provide evidence that HR and NCC cells exhibit functional redundancy in Na+ absorption, similar to the regulatory mechanisms in mammalian kidney, and suggest this functional redundancy is a critical strategy used by zebrafish to survive in a harsh environment that disturbs body fluid Na+ homeostasis. PMID:23924428

  8. The hydrogen storage properties of Na decorated small boron cluster B6Na8

    NASA Astrophysics Data System (ADS)

    Tang, Chunmei; Wang, Zhiguo; Zhang, Xue; Wen, Ninghua

    2016-09-01

    The binding energy of the Na atoms to the hollow sites of the B6 cage is larger than the experimental cohesive energy of bulk Na, so the clustering of Na atoms can be avoided. The polarization interaction dominates the adsorption of H2 by the B6Na8 cluster. The Na-coated B6Na8sbnd B8sbnd B6Na8 complex with the dispersive Na atoms and four H2 molecules adsorbed per Na can serve as better building blocks of polymers than the (B6Na8)2 dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on sp2-terminated boron chains.

  9. Conversion and Distribution of Lead and Tin in NaOH-NaNO3 Fusion Process

    NASA Astrophysics Data System (ADS)

    Liu, Jingxin; Guo, Xueyi

    2016-12-01

    Oxidizing alkali fusion process has been studied to extract amphoteric metals. Transformation and distribution behaviors of typical amphoteric metals Pb and Sn in the NaOH-NaNO3 fusion process are systemically studied by theoretical analysis and experimental verification done in this work. Functions of NaOH and NaNO3 in the fusion process were also investigated. The results show the fused products, Na2PbO3 and Na2SnO3, are captured in the flux, and Na2PbO4 is speculated to reduce to Pb(II) in the following leaching process. By measuring solubility data of NaOH-Na2SnO3-PbO-H2O system, a strategy of crystallization is proposed to separate Sn with Pb in concentrated alkaline solution, and slice Na2Sn(OH)6 is obtained as a product.

  10. Conversion and Distribution of Lead and Tin in NaOH-NaNO3 Fusion Process

    NASA Astrophysics Data System (ADS)

    Liu, Jingxin; Guo, Xueyi

    2017-04-01

    Oxidizing alkali fusion process has been studied to extract amphoteric metals. Transformation and distribution behaviors of typical amphoteric metals Pb and Sn in the NaOH-NaNO3 fusion process are systemically studied by theoretical analysis and experimental verification done in this work. Functions of NaOH and NaNO3 in the fusion process were also investigated. The results show the fused products, Na2PbO3 and Na2SnO3, are captured in the flux, and Na2PbO4 is speculated to reduce to Pb(II) in the following leaching process. By measuring solubility data of NaOH-Na2SnO3-PbO-H2O system, a strategy of crystallization is proposed to separate Sn with Pb in concentrated alkaline solution, and slice Na2Sn(OH)6 is obtained as a product.

  11. A long-life Na-air battery based on a soluble NaI catalyst.

    PubMed

    Yin, Wen-Wen; Shadike, Zulipiya; Yang, Yin; Ding, Fei; Sang, Lin; Li, Hong; Fu, Zheng-Wen

    2015-02-11

    A Na-air battery with NaI dissolved in a typical organic electrolyte could run up to 150 cycles with a capacity limit of 1000 mA h g(-1). The low charge voltage plateau of 3.2 V vs. Na(+)/Na in a Na-air battery should mainly be attributed to the oxidation reaction of active iodine anions.

  12. Silicene for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  13. Kinetic Analysis of H(+)-Na(+) Selectivity in a Light-Driven Na(+)-Pumping Rhodopsin.

    PubMed

    Kato, Yoshitaka; Inoue, Keiichi; Kandori, Hideki

    2015-12-17

    Krokinobacter eikastus rhodopsin 2 (KR2) is a recently identified light-driven Na(+) pump from a marine bacterium. KR2 pumps Na(+) in NaCl solution but pumps H(+) in the absence of Na(+) and Li(+). The Na(+) transport mechanism in KR2 has been extensively studied, whereas understanding of the H(+) transport mechanism is very limited. Here we studied ion uptake mechanisms and H(+)-Na(+) selectivity using flash photolysis. The results show that decay of the blue-shifted M intermediate is dependent on both [Na(+)] and [H(+)], indicating that KR2 competitively uptakes Na(+) or H(+) upon M decay. Comprehensive concentration dependence of Na(+) and H(+) revealed that the rate constant of H(+) uptake (kH) was much larger than that of Na(+) uptake (kNa) with a ratio (kH/kNa) of >10(3). Therefore, KR2 pumps only H(+) when Na(+) and H(+) concentrations are similar. On the contrary, KR2 pumps Na(+) exclusively under physiological conditions in which [Na(+)] is much greater than [H(+)].

  14. Structural effects of 34Na in the 33Na(n ,γ )34Na radiative capture reaction

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2017-06-01

    Background: The path towards the production of r -process seed nuclei follows a course where the neutron rich light and medium mass nuclei play a crucial role. The neutron capture rates for these exotic nuclei could dominate over their α -capture rates, thereby enhancing their abundances at or near the drip line. Sodium isotopes especially should have a strong neutron capture flow to gain abundance at the drip line. In this context, study of 33Na(n ,γ )34Na and 33Na(α ,n )36Al reactions becomes indispensable. Purpose: In this paper, we calculate the radiative neutron capture cross section for the 33Na(n ,γ )34Na reaction involving deformation effects. Subsequently, the rate for this reaction is found and compared with that of the α -capture for the 33Na(α ,n )36Al reaction to determine the possible path flow for the abundances of sodium isotopes. Method: We use the entirely quantum mechanical theory of finite-range distorted-wave Born approximation upgraded to incorporate deformation effects, and calculate the Coulomb dissociation of 34Na as it undergoes elastic breakup on 208Pb when directed at a beam energy of 100 MeV/u. Using the principle of detailed balance to study the reverse photodisintegration reaction, we find the radiative neutron capture cross section with variation in one-neutron binding energy and quadrupole deformation of 34Na. The rate of this 33Na(n ,γ )34Na reaction is then compared with that of the α -capture by 33Na deduced from the Hauser-Feshbach theory. Results: The nonresonant one-neutron radiative capture cross section for 33Na(n ,γ )34Na is calculated and is found to increase with increasing deformation of 34Na. An analytic scrutiny of the capture cross section with neutron separation energy as a parameter is also done at different energy ranges. The calculated reaction rate is compared with the rate of the 33Na(α ,n )36Al reaction, and is found to be significantly higher below a temperature of T9=2 . Conclusion: At the

  15. Revisiting the hydration structure of aqueous Na+

    NASA Astrophysics Data System (ADS)

    Galib, M.; Baer, M. D.; Skinner, L. B.; Mundy, C. J.; Huthwelker, T.; Schenter, G. K.; Benmore, C. J.; Govind, N.; Fulton, J. L.

    2017-02-01

    A combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na+. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å-1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å-1. Both provide an accurate measure of the shape and position of the first peak in the Na-O pair distribution function, gNaO(r). The measured Na-O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Å (EXAFS) are in excellent agreement. These measurements show a much shorter Na-O distance than generally reported in the experimental literature (Na-Oavg ˜ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na-O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na-O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (-D3 and -D2) significantly worsens the agreement with experiment by further increasing the Na-O distance by 0.07 Å. In contrast, the use of a classical Na-O Lennard-Jones potential with SPC/E water accurately predicts the Na-O distance as 2.39 Å although the Na-O peak is over-structured with respect to experiment.

  16. Revisiting the hydration structure of aqueous Na().

    PubMed

    Galib, M; Baer, M D; Skinner, L B; Mundy, C J; Huthwelker, T; Schenter, G K; Benmore, C J; Govind, N; Fulton, J L

    2017-02-28

    A combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na(+). The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å(-1) while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å(-1). Both provide an accurate measure of the shape and position of the first peak in the Na-O pair distribution function, gNaO(r). The measured Na-O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Å (EXAFS) are in excellent agreement. These measurements show a much shorter Na-O distance than generally reported in the experimental literature (Na-Oavg ∼ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na-O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na-O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (-D3 and -D2) significantly worsens the agreement with experiment by further increasing the Na-O distance by 0.07 Å. In contrast, the use of a classical Na-O Lennard-Jones potential with SPC/E water accurately predicts the Na-O distance as 2.39 Å although the Na-O peak is over-structured with respect to experiment.

  17. The effect of Na vapor on the Na content of chondrules

    NASA Technical Reports Server (NTRS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-01-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the P(sub Na) for these experimental conditions to be in the 10(exp -6) atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable

  18. Extracellular Na+ inhibits Na+/H+ exchange: cell shrinkage reduces the inhibition.

    PubMed

    Dunham, Philip B; Kelley, Scott J; Logue, Paul J

    2004-08-01

    Na+/H+ exchangers (NHE) are ubiquitous transporters participating in regulation of cell volume and pH. Cell shrinkage, acidification, and growth factors activate NHE by increasing its sensitivity to intracellular H+ concentration. In this study, the kinetics were studied in dog red blood cells of Na+ influx through NHE as a function of external Na+ concentration ([Na+](o)). In cells in isotonic media, [Na+](o) inhibited Na+ influx >40 mM. Osmotic shrinkage activated NHE by reducing this inhibition. In cells in isotonic media + 120 mM sucrose, there was no inhibition, and influx was a hyperbolic function of [Na+](o). The kinetics of Na+-inhibited Na+ influx were analyzed at various extents of osmotic shrinkage. The curves for inhibited Na+ fluxes were sigmoid, indicating more than one Na+ inhibitory site associated with each transporter. Shrinkage significantly increased the Na+ concentration at half-maximal velocity of Na+-inhibited Na+ influx, the mechanism by which shrinkage activates NHE.

  19. Mechanism of epithelial lithium transport. Evidence for basolateral Na:Na and Na:Li exchange

    PubMed Central

    1983-01-01

    Measurement of transmural sodium fluxes across isolated, ouabain- inhibited turtle colon in the presence of a serosal-to-mucosal sodium gradient shows that in the absence of active transport the amiloride- sensitive cellular path contains at least two routes for the transmural movement of sodium and lithium, one a conductive path and the other a nonconductive, cation-exchange mechanism. The latter transport element can exchange lithium for sodium, and the countertransport of these two cations provides a mechanistic basis for the ability of tight epithelia to actively absorb lithium despite the low affinity of the basolateral Na/K-ATPase for this cation. PMID:6644269

  20. Growth of binary organic NLO crystals: m.NA-p.NA and m.NA-CNA system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.

    1993-01-01

    Experiments were carried out to grow 3.Nitroaniline (m.NA) crystals doped with 4.Nitroaniline (p.NA) and 2.chloro 4.Nitroaniline (CNA). The measured undercooling for m.NA, p.NA, and CNA were 0.21 tm K, 0.23 tm K, and 0.35 tm K respectively, where tm represents the melting temperature of the pure component. Because of the crystals' large heat of fusion and large undercooling, it was not possible to grow good quality crystals with low thermal gradients. In the conventional two-zone Bridgman furnace we had to raise the temperature of the hot zone above the decomposition temperature of CNA, p.NA, and m.NA to achieve the desired thermal gradient. To avoid decomposition, we used an unconventional Bridgman furnace. Two immiscible liquids, silicone oil and ethylene glycol, were used to build a special two-zone Bridgman furnace. A temperature gradient of 18 K/cm was achieved without exceeding the decomposition temperature of the crystal. The binary crystals, m.NA-p.NA and m.NA-CNA, were grown in centimeter size in this furnace. X-ray and optical characterization showed good optical quality.

  1. 13C and 23Na NMR studies of Na2C60 and Na6C60 fullerides

    NASA Astrophysics Data System (ADS)

    Rachdi, F.; Hajji, L.; Galtier, M.; Yildirim, T.; Fischer, J. E.; Goze, C.; Mehring, M.

    1997-10-01

    We report on 13C and 23Na NMR measurements on Na2C60 and Na6C60 compounds. The room-temperature 13C NMR spectra of Na2C60 and Na6C60 samples present a narrow isotropic line at 172 and 176 ppm, respectively. The Na6C60 resonance is shifted 20 ppm more down field than the resonances of A6C60 compounds with heavier alkalis, indicating a partial charge transfer to the threefold degenerate t1u level which is totally filled in the latter compounds. The 23Na NMR spectrum of A2C60 shows one line at 73 ppm and the one of A6C60 presents two lines at 73 and 147 ppm. The intensity ratio of the latter lines is about 2:1. According to previously reported x-ray data we attribute the line at 147 ppm to the Na tetramers in the octahedral sites and the line at 73 ppm to the Na cations in the tetrahedral ones which are singly occupied.

  2. Maintaining the Na atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Morgan, Thomas H.

    1993-01-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  3. Maintaining the NA atmosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Morgan, T. H.

    1993-02-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  4. Simulation study of Na-majorite

    NASA Astrophysics Data System (ADS)

    Dymshits, A.; Vinograd, V.; Paulsen, N.; Winkler, B.; Perchuk, L.; Bobrov, A.

    2009-04-01

    Garnets, which are found as inclusions in diamonds, often have the excess of Na2O and SiO2 [Stachel, 2001]. Experimental studies suggest that Na is incorporated in pyrope-rich garnet via the coupled substitution Mg+Al=Na+Si [Bobrov et al., 2008]. This study is concerned with the determination of the structure and the thermodynamic properties of NaGrt (Na2MgSi5O12), which is assumed to be the end-member of pyrope-rich garnets with the excess of Na2O and SiO2. Static lattice energy calculations were performed with the program GULP [Gale & Rohl, 2003] using the force-field model [Vinograd et al., 2007] for 200 structures of Na2MgSi5O12 composition. These structures were prepared from Ia3-d pyrope Mg3Al2Si3O12 by replacing all octahedral Al atoms with Si and 2/3 of Mg atoms with Na. The distribution of Mg and Na was varied randomly. The static energies of these structures were cluster expanded using 8 pairwise effective cluster interactions (ECI). The ECIs were used to constrain Monte Carlo simulations within a 4×4×4 supercell (NNN exchangeable sites). The annealing experiments have shown that the lowest energy structure has the space group I4

  5. Painful Na-channelopathies: an expanding universe.

    PubMed

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic.

  6. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Rosener, B. . Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  7. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. |; Rosener, B.

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  8. First mesopause Na retrievals from satellite Na D-line nightglow observations

    NASA Astrophysics Data System (ADS)

    Savigny, C.; Langowski, M. P.; Zilker, B.; Burrows, J. P.; Fussen, D.; Sofieva, V. F.

    2016-12-01

    We report the retrieval of Na concentration profiles in the mesopause region from satellite observations of the Na D-line nightglow emission near 589 nm made by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on the Envisat spacecraft. The retrieval assumes the Na D-line excitation mechanism originally proposed by Chapman in 1939. The retrieval approach, including treatment of self-absorption by Na, a retrieval uncertainty budget, and first retrieval results, is presented. The retrieved Na profiles are compared to independent satellite measurements. Good agreement in terms of peak altitude, peak concentration, and vertical column density is found. The retrievals constitute the first Na profile retrievals from satellite observations of the Na D-line nightglow emission profile. They enable our understanding of the Na nightglow excitation mechanism to be tested.

  9. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart

    PubMed Central

    Shattock, Michael J; Ottolia, Michela; Bers, Donald M; Blaustein, Mordecai P; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H B; Chen-Izu, Ye; Clancy, Colleen E; Edwards, Andrew; Goldhaber, Joshua; Kaplan, Jack; Lingrel, Jerry B; Pavlovic, Davor; Philipson, Kenneth; Sipido, Karin R; Xie, Zi-Jian

    2015-01-01

    This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field. PMID:25772291

  10. Exploration of NaVOPO4 as a cathode for a Na-ion battery.

    PubMed

    Song, Jie; Xu, Maowen; Wang, Long; Goodenough, John B

    2013-06-11

    Monoclinic NaVOPO4 is explored as a cathode material for a sodium ion battery. It exhibits electrochemical activity operating at an average potential of 3.6 V (vs. Na(+)/Na) and delivers a reversible capacity of 90 mA h g(-1) at 1/15 C.

  11. Kinetin Reversal of NaCl Effects

    PubMed Central

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  12. High NA Nicrostepper Final Optical Design Report

    SciTech Connect

    Hudyma, R

    1999-09-24

    The development of a new EUV high NA small-field exposure tool has been proposed for obtaining mask defect printability data in a timeframe several years before beta-tools are available. The imaging system for this new Micro-Exposure Tool (MET), would have a numerical aperture (NA) of about 0.3, similar to the NA for a beta-tool, but substantially larger than the 0.10 NA for the Engineering Test Stand (ETS) and 0.088 NA for the existing 10x Microstepper. This memorandum discusses the development and summarizes the performance of the camera for the MET and includes a listing of the design prescription, detailed analysis of the distortion, and analysis demonstrating the capability to resolution 30 nm features under the conditions of partially coherent illumination.

  13. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  14. Na+ binding to the Na(+)-glucose cotransporter is potential dependent.

    PubMed

    Bennett, E; Kimmich, G A

    1992-02-01

    Activity of the Na(+)-glucose cotransporter in LLC-PK1 epithelial cells was assayed by measuring sugar-induced currents (IAMG) using whole cell recording techniques. IAMG was compared among cells by standardizing the measured currents to cell size using cell capacitance measurements. IAMG at a given membrane potential was measured as a function of alpha-methylglucoside (AMG) concentration and can be fit to Michaelis-Menten kinetics. IAMG at varying Na+ concentrations can be described by the Hill equation with a Hill coefficient of 1.6 at all tested potentials. At high external Na+ levels (155 mM), Na+ is at least 90% saturating at all tested potentials. Maximal currents at a given membrane potential (Im) are calculated from the Michaelis-Menten equation fit to data measuring IAMG vs. AMG concentration at a constant Na+ concentration. Im showed potential dependence under all conditions. Potential-dependent Na+ binding rate(s) cannot alone explain the observed potential dependence of Im under saturating Na+ conditions. Therefore, because Im is potential dependent, at least one step of the transport cycle other than external Na+ binding must be potential dependent. Im was also calculated from data taken at 40 mM external Na+. At all potentials studied, Im at 155 mM Na+ is greater than Im calculated at 40 mM Na+. This implies that the rate of external Na+ binding to the transporter at 40 mM also affects the maximal transport rate. Furthermore, Im at 40 mM external Na+ increases with hyperpolarization faster than Im at 155 mM Na+. Together, these facts indicate that the rate at which Na+ binds to the transporter is also potential dependent.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  16. Pharmacological modulation of human cardiac Na+ channels.

    PubMed

    Krafte, D S; Davison, K; Dugrenier, N; Estep, K; Josef, K; Barchi, R L; Kallen, R G; Silver, P J; Ezrin, A M

    1994-02-15

    Pharmacological modulation of human sodium current was examined in Xenopus oocytes expressing human heart Na+ channels. Na+ currents activated near -50 mV with maximum current amplitudes observed at -20 mV. Steady-state inactivation was characterized by a V1/2 value of -57 +/- 0.5 mV and a slope factor (k) of 7.3 +/- 0.3 mV. Sodium currents were blocked by tetrodotoxin with an IC50 value of 1.8 microM. These properties are consistent with those of Na+ channels expressed in mammalian myocardial cells. We have investigated the effects of several pharmacological agents which, with the exception of lidocaine, have not been characterized against cRNA-derived Na+ channels expressed in Xenopus oocytes. Lidocaine, quinidine and flecainide blocked resting Na+ channels with IC50 values of 521 microM, 198 microM, and 41 microM, respectively. Use-dependent block was also observed for all three agents, but concentrations necessary to induce block were higher than expected for quinidine and flecainide. This may reflect differences arising due to expression in the Xenopus oocyte system or could be a true difference in the interaction between human cardiac Na+ channels and these drugs compared to other mammalian Na+ channels. Importantly, however, this result would not have been predicted based upon previous studies of mammalian cardiac Na+ channels. The effects of DPI 201-106, RWJ 24517, and BDF 9148 were also tested and all three agents slowed and/or removed Na+ current inactivation, reduced peak current amplitudes, and induced use-dependent block. These data suggest that the alpha-subunit is the site of interaction between cardiac Na+ channels and Class I antiarrhythmic drugs as well as inactivation modifiers such as DPI 201-106.

  17. Long range intermolecular interactions between the alkali diatomics Na2, K2, and NaK

    NASA Astrophysics Data System (ADS)

    Zemke, Warren T.; Byrd, Jason N.; Michels, H. Harvey; Montgomery, John A.; Stwalley, William C.

    2010-06-01

    Long range interactions between the ground state alkali diatomics Na2-Na2, K2-K2, Na2-K2, and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential ELR=Eelec+Edisp+Eind is shown to accurately represent the intermolecular interactions for these systems at long range.

  18. Long range intermolecular interactions between the alkali diatomics Na(2), K(2), and NaK.

    PubMed

    Zemke, Warren T; Byrd, Jason N; Michels, H Harvey; Montgomery, John A; Stwalley, William C

    2010-06-28

    Long range interactions between the ground state alkali diatomics Na(2)-Na(2), K(2)-K(2), Na(2)-K(2), and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential E(LR)=E(elec)+E(disp)+E(ind) is shown to accurately represent the intermolecular interactions for these systems at long range.

  19. Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein.

    PubMed Central

    Komwatana, P; Dinudom, A; Young, J A; Cook, D I

    1996-01-01

    In tight Na+-absorbing epithelial cells, the fate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-beta-S, pertussis toxin, and antibodies against the alpha-subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-. Images Fig. 4 PMID:8755611

  20. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  1. Anomalously high Na(+) and low Li(+) mobility in intercalated Na2Ti6O13.

    PubMed

    Ling, Chen; Zhang, Ruigang

    2017-04-12

    We report an anomalous diffusion behavior in intercalated Na2Ti6O13. Using first-principles calculations, the direct migration of inserted Na(+) along the tunnel direction is predicted to have a barrier of 0.24-0.44 eV, while the migration of inserted Li(+) along the tunnel direction has a barrier of 0.86-1.15 eV. Although Li(+) can also diffuse along a zig-zag path in the tunnel, the barrier of 0.86-0.99 eV is still much higher than that for Na(+). Our results surprisingly lead to the conclusion that the diffusion of larger Na(+) is 4-8 orders of magnitude faster than Li(+) in the same host lattice, and explain the experimentally observed exceptional rate capability of Na2Ti6O13 as the Na-ion battery anode. The anomalous diffusion behavior is attributed to the geometric features of Na2Ti6O13. For migration of Li(+) it is necessary to weaken Li-O bonds and to overcome the repulsion between Li and host Na ions simultaneously, while for Na(+) diffusion the improved Na-O bonding at the transition state partially compensates for the energy penalty from the repulsion of host Na ions.

  2. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells

    PubMed Central

    Berret, Emmanuelle; Smith, Pascal Y.; Henry, Mélaine; Soulet, Denis; Hébert, Sébastien S.; Toth, Katalin; Mouginot, Didier; Drolet, Guy

    2014-01-01

    MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out). The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in). Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump. PMID:25538563

  3. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  4. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  5. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  6. Myocardial Na,K-ATPase: Clinical aspects

    PubMed Central

    Kjeldsen, Keld

    2003-01-01

    The specific binding of digitalis glycosides to Na,K-ATPase is used as a tool for Na,K-ATPase quantification with high accuracy and precision. In myocardial biopsies from patients with heart failure, total Na,K-ATPase concentration is decreased by around 40%; a correlation exists between a decrease in heart function and a decrease in Na,K-ATPase concentration. During digitalization, around 30% of remaining pumps are occupied by digoxin. Myocardial Na,K-ATPase is also influenced by other drugs used for the treatment of heart failure. Thus, potassium loss during diuretic therapy has been found to reduce myocardial Na,K-ATPase, whereas angiotensin-converting enzyme inhibitors may stimulate Na,K pump activity. Furthermore, hyperaldosteronism induced by heart failure has been found to decrease Na,K-ATPase activity. Accordingly, treatment with the aldosterone antagonist, spironolactone, may also influence Na,K-ATPase activity. The importance of Na,K pump modulation with heart disease, inhibition in digitalization and other effects of medication should be considered in the context of sodium, potassium and calcium regulation. It is recommended that digoxin be administered to heart failure patients who, after institution of mortality-reducing therapy, still have heart failure symptoms, and that the therapy be continued if symptoms are revealed or reduced. Digitalis glycosides are the only safe inotropic drugs for oral use that improve hemodynamics in heart failure. An important aspect of myocardial Na,K pump affection in heart disease is its influence on extracellular potassium (Ke) homeostasis. Two important aspects should be considered: potassium handling among myocytes, and effects of potassium entering the extracellular space of the heart via the bloodstream. It should be noted that both of these aspects of Ke homeostasis are affected by regulatory aspects, eg, regulation of the Na,K pump by physiological and pathophysiological conditions, as well as by medical

  7. Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport.

    PubMed

    Marunaka, Yoshinori

    2014-01-01

    Epithelial Na(+) transport participates in control of various body functions and conditions: e.g., homeostasis of body fluid content influencing blood pressure, control of amounts of fluids covering the apical surface of alveolar epithelial cells at appropriate levels for normal gas exchange, and prevention of bacterial/viral infection. Epithelial Na(+) transport via the transcellular pathway is mediated by the entry step of Na(+) across the apical membrane via Epithelial Na(+) Channel (ENaC) located at the apical membrane, and the extrusion step of Na(+) across the basolateral membrane via the Na(+),K(+)-ATPase located at the basolateral membrane. The rate-limiting step of the epithelial Na(+) transport via the transcellular pathway is generally recognized to be the entry step of Na(+) across the apical membrane via ENaC. Thus, up-/down-regulation of ENaC essentially participates in regulatory systems of blood pressure and normal gas exchange. Amount of ENaC-mediated Na(+) transport is determined by the number of ENaCs located at the apical membrane, activity (open probability) of individual ENaC located at the apical membrane, single channel conductance of ENaC located at the apical membrane, and driving force for the Na(+) entry via ENaCs across the apical membrane. In the present review article, I discuss the characteristics of ENaC and how these factors are regulated.

  8. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul; ...

    2015-11-17

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na+) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm–1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na3PSe4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mS cm–1 and does notmore » require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na3PSe4 only permits rapid Na+ diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  9. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-08

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect

  10. Catalysis of Na+ permeation in the bacterial sodium channel NaVAb

    PubMed Central

    Chakrabarti, Nilmadhab; Ing, Christopher; Payandeh, Jian; Zheng, Ning; Catterall, William A.; Pomès, Régis

    2013-01-01

    Determination of a high-resolution 3D structure of voltage-gated sodium channel NaVAb opens the way to elucidating the mechanism of ion conductance and selectivity. To examine permeation of Na+ through the selectivity filter of the channel, we performed large-scale molecular dynamics simulations of NaVAb in an explicit, hydrated lipid bilayer at 0 mV in 150 mM NaCl, for a total simulation time of 21.6 μs. Although the cytoplasmic end of the pore is closed, reversible influx and efflux of Na+ through the selectivity filter occurred spontaneously during simulations, leading to equilibrium movement of Na+ between the extracellular medium and the central cavity of the channel. Analysis of Na+ dynamics reveals a knock-on mechanism of ion permeation characterized by alternating occupancy of the channel by 2 and 3 Na+ ions, with a computed rate of translocation of (6 ± 1) × 106 ions⋅s−1 that is consistent with expectations from electrophysiological studies. The binding of Na+ is intimately coupled to conformational isomerization of the four E177 side chains lining the extracellular end of the selectivity filter. The reciprocal coordination of variable numbers of Na+ ions and carboxylate groups leads to their condensation into ionic clusters of variable charge and spatial arrangement. Structural fluctuations of these ionic clusters result in a myriad of ion binding modes and foster a highly degenerate, liquid-like energy landscape propitious to Na+ diffusion. By stabilizing multiple ionic occupancy states while helping Na+ ions diffuse within the selectivity filter, the conformational flexibility of E177 side chains underpins the knock-on mechanism of Na+ permeation. PMID:23803856

  11. Interaction between Na+ and H+ ions on Na-H exchange in sheep cardiac Purkinje fibers.

    PubMed

    Wu, M L; Vaughan-Jones, R D

    1997-04-01

    The interaction between Na+ and H+ ions upon Na-H exchange (NHE) was examined in sheep cardiac Purkinje fibers. Acid equivalent fluxes through NHE were examined using recordings of intracellular pH and Na+ in isolated preparations measured with ion selective microelectrodes. The extent of acid-extrusion by NHE was estimated from pH(i) recovery-rate, multiplied by beta(i) (intracellular buffering power) in response to an internal acid load induced by 20 mm NH4Cl removal (nominally HCO3- free media). A mixed inhibitory effect was found of extracellular H+ on external Na+-activation of NHE (i.e. an increase, at low pH(o), in the apparent Michaelis constant for external Na+ ions [K(Nao)(0.5)] and a decrease in the maximum transport rate [V(Nao)(max)]). In addition, we confirmed that the stoichiometry of Na(o) binding is unaffected by the pH(o) (between 7.5 and 6.5), showing a Hill coefficient close to one. The interaction between Na+ and H+ ions at the internal face of the cardiac NHE was also studied. Our evidence suggests that an increase in the intracellular Na+ ion concentration ([Na+]i) inhibits acid efflux and that this inhibition can be approximated by the decrease in thermodynamic driving force caused by reducing the transmembrane Na+ gradient. It appears, however, that small variations in [Na+]i from the normal resting level (intracellular sodium activity, a(i)Na = 7 to 13 mm) have little or no effect on acid efflux, suggesting that variation of a(i)Na is not a physiologically important controller of NHE activity in heart.

  12. Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion

    PubMed Central

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.

    2016-01-01

    The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit

  13. Thermodynamic Model for the Solubility of Cr(OH)(3)(am) in Concentrated NaOH and NaOH-NaNO3 Solutions

    SciTech Connect

    Rai, Dhanpat ); Hess, Nancy J. ); Rao, Linfeng; Zhang, Zhicheng; Felmy, Andrew R. ); Moore, Dean A. ); Clark, Sue B.; Lumetta, Gregg J. )

    2001-12-01

    The objectives of this study were to develop a reliable thermodynamic model for predicting Cr(III) behavior in concentrated NaOH and in mixed NaOH-NaNO3 solutions for application to effective caustic leaching strategies for high-level tank sludges. To meet these objectives, the solubility of Cr(OH)3(am) was measured in 0.003 to 10.5 m NaOH, 3.0 m es in NaOH concentration...

  14. Erythrocyte 22Na+ influx in hypertension

    SciTech Connect

    Shalev, O.; Eaton, J.W.; Ben-Ishay, D.

    1984-01-01

    We assessed 22Na+ uptake by erythrocytes (RBC) from 38 individuals with essential hypertension and 37 healthy controls. All subjects were male, white, non-obese and with normal renal function, obviating sex, race, hormonal, ponderal and renal factors known to influence RBC Na+ handling. The mean +/- sem 22Na+ uptake of the patients was 284 +/- 16 mumole/liter RBC/hour while that of normal controls was 249 +/- 11 mumole/liter RBC/hour; although the difference reached borderline significance, individual values showed considerable overlap. Consequently, in our population, RBC 22Na+ uptake is not a reliable marker for essential hypertension. We believe that previous studies should be reassessed with regard to patients' characteristics and future studies employ rigorous criteria in selection of subjects.

  15. Hydrogen-fluorine exchange in NaBH4-NaBF4.

    PubMed

    Rude, L H; Filsø, U; D'Anna, V; Spyratou, A; Richter, B; Hino, S; Zavorotynska, O; Baricco, M; Sørby, M H; Hauback, B C; Hagemann, H; Besenbacher, F; Skibsted, J; Jensen, T R

    2013-11-07

    Hydrogen-fluorine exchange in the NaBH4-NaBF4 system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state (19)F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2(-) complex ion, reproducing the observation of a (19)F chemical shift at -144.2 ppm, which is different from that of NaBF4 at -159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 °C. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF and BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8% for NaBH4 as measured using Sievert's method under identical conditions, but more than 50% using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.

  16. Deliquescence of NaCl-NaNO3, KNO3-NaNO3, and NaCl-KNO3 Salt Mixtures From 90 to 120?C

    SciTech Connect

    Carroll, S A; Craig, L; Wolery, T J

    2004-10-20

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO{sub 3}-H{sub 2}O, KNO{sub 3}-NaNO{sub 3}-H{sub 2}O, and NaCl-KNO{sub 3}-H{sub 2}O systems from 90 to 120 C as a function of relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Discrepancy between model prediction and experimental code can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25 C models for Cl-NO{sub 3} and K-NO{sub 3} ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the non-ideal behavior of these highly concentrated solutions.

  17. Theoretical study of Na-atom emission from NaCl (100) surfaces

    NASA Astrophysics Data System (ADS)

    Puchin, Vladimir; Shluger, Alexander; Nakai, Yasuo; Itoh, Noriaki

    1994-04-01

    Several models for the elementary processes causing the emission of alkali atoms by electronic excitation of NaCl (100) surfaces have been investigated theoretically. First, the desorption of a Na atom neighboring an electronically excited F center on the surface is simulated using a quantum-mechanical embedded-cluster technique. It is shown that emission of a Na atom is energetically favorable. The kinetics of this process is shown to be controlled by the probability of a nonradiative transition between the two states: the excited state of the F center and that corresponding to a Na atom desorbing from the surface. The potential barrier for desorption of an excited Na atom from the excited F-center state is found to be 2.1 eV. It is also found that the energy for emission of a Na atom from a cluster of F centers (the F3 center) is considerably reduced (for a certain configuration of the defect) with respect to the similar energy for a single F center. The energy barrier for emission of a Na atom neighboring an F' center on the surface is calculated to be 1 eV. It is shown that the electronic excitation of kinklike sites, with a Na atom at the edge, can lead to a barrierless emission of a Na atom, leaving a Vk-type defect behind. The results of calculations are discussed critically on the basis of existing experimental data.

  18. Glutamate Water Gates in the Ion Binding Pocket of Na(+) Bound Na(+), K(+)-ATPase.

    PubMed

    Han, Minwoo; Kopec, Wojciech; Solov'yov, Ilia A; Khandelia, Himanshu

    2017-01-13

    The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na(+), K(+) -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na(+) or K(+) selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na(+) bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na(+) ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na(+) binding energies, we conclude that three protons in the binding site are needed to effectively bind Na(+) from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na(+) release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na(+) bound occluded conformation. Our data provides key insights into the role of protons in the Na(+) binding and release mechanism of NKA.

  19. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    PubMed Central

    1990-01-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain- sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS- treated, SO4-equilibrated human red blood cells suspended in HEPES- buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o. Addition of 10 mM Ko to tartrate i,o ghosts, with or without Cli,o, resulted in full activation of Na/K exchange and the pump's electrogenicity

  20. Glutamate Water Gates in the Ion Binding Pocket of Na+ Bound Na+, K+-ATPase

    PubMed Central

    Han, Minwoo; Kopec, Wojciech; Solov’yov, Ilia A.; Khandelia, Himanshu

    2017-01-01

    The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na+, K+ -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na+ or K+ selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na+ bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na+ ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na+ binding energies, we conclude that three protons in the binding site are needed to effectively bind Na+ from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na+ release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na+ bound occluded conformation. Our data provides key insights into the role of protons in the Na+ binding and release mechanism of NKA. PMID:28084301

  1. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters.

    PubMed

    Forster, I C; Loo, D D; Eskandari, S

    1999-04-01

    The stoichiometry of the rat and flounder isoforms of the renal type II sodium-phosphate (Na+-Pi) cotransporter was determined directly by simultaneous measurements of phosphate (Pi)-induced inward current and uptake of radiolabeled Pi and Na+ in Xenopus laevis oocytes expressing the cotransporters. There was a direct correlation between the Pi-induced inward charge and Pi uptake into the oocytes; the slope indicated that one net inward charge was transported per Pi. There was also a direct correlation between the Pi-induced inward charge and Na+ influx; the slope indicated that the influx of three Na+ ions resulted in one net inward charge. This behavior was similar for both isoforms. We conclude that for both Na+-Pi cotransporter isoforms the Na+:Pi stoichiometry is 3:1 and that divalent Pi is the transported substrate. Steady-state activation of the currents showed that the Hill coefficients for Pi were unity for both isoforms, whereas for Na+, they were 1.8 (flounder) and 2.5 (rat). Therefore, despite significant differences in the apparent Na+ binding cooperativity, the estimated Na+:Pi stoichiometry was the same for both isoforms.

  2. Vascular contractile reactivity in hypotension due to reduced renal reabsorption of Na(+) and restricted dietary Na().

    PubMed

    Alshahrani, Saeed; Rapoport, Robert M; Soleimani, Manoocher

    2017-03-01

    Reduced renal Na(+) reabsorption along with restricted dietary Na(+) depletes intravascular plasma volume which can then result in hypotension. Whether hypotension occurs and the magnitude of hypotension depends in part on compensatory angiotensin II-mediated increased vascular resistance. We investigated whether the ability of vascular resistance to mitigate the hypotension was compromised by decreased contractile reactivity. In vitro reactivity was investigated in aorta from mouse models of reduced renal Na(+) reabsorption and restricted dietary Na(+) associated with considerable hypotension and renin-angiotensin system activation: (1) the Na(+)-Cl(-)-Co-transporter (NCC) knockout (KO) with Na(+) restricted diet (0.1%, 2 weeks) and (2) the relatively more severe pendrin (apical chloride/bicarbonate exchanger) and NCC double KO. Contractile sensitivity to KCl, phenylephrine, and/or U46619 remained unaltered in aorta from both models. Maximal KCl and phenylephrine contraction expressed as force/aorta length from NCC KO with Na(+)-restricted diet remained unaltered, while in pendrin/NCC double KO were reduced to 49 and 64%, respectively. Wet weight of aorta from NCC KO with Na(+)-restricted diet remained unaltered, while pendrin/NCC double KO was reduced to 67%, consistent with decreased medial width determined with Verhoeff-Van Gieson stain. These findings suggest that hypotension associated with severe intravascular volume depletion, as the result of decreased renal Na(+) reabsorption, may in part be due to decreased contractile reactivity as a consequence of reduced vascular hypertrophy.

  3. Influence of sodium halides (NaF, NaCl, NaBr, NaI) on the photocatalytic performance of hydrothermally synthesized hematite photoanodes.

    PubMed

    Wang, Tsinghai; Huang, Mao-Chia; Hsieh, Yi-Kong; Chang, Wen-Sheng; Lin, Jing-Chie; Lee, Chih-Hao; Wang, Chu-Fang

    2013-08-28

    It has been suggested that a high concentration of Fe(3+) in solution, a low pH, and noncomplexing ions of high ionic strength are all essential for developing a high-quality hematite array. Our curiosity was piqued regarding the role of the electrolyte ions in the hydrothermal synthesis of hematite photoanodes. In this study, we prepared hematite photoanodes hydrothermally from precursor solutions of 0.1 M FeCl3 at pH 1.55 with a background electrolyte of 1.0 M sodium halide (NaF, NaCl, NaBr, or NaI). We compared the structures and properties of the as-obtained hematite photoanodes with those of the material prepared in 1.0 M NaNO3, the most widely adopted electrolyte in previous studies. Among our studied systems, we found that the hematite photoanode prepared in NaCl solution was the only one possessing properties similar to those of the sample obtained from the NaNO3 solution-most importantly in terms of photoelectrochemical performance (ca. 0.2 mA/cm(2) with +0.4 V vs SCE). The hematites obtained from the NaF, NaBr, and NaI solutions exhibited much lower (by approximately 2 orders of magnitude) photocurrent densities under the same conditions, possibly because of their relatively less ordered crystallinity and the absence of rodlike morphologies. Because the synthetic protocol was identical in each case, we believe that these two distinct features reflect the environments in which these hematite photoanodes were formed. Consistent with the latest studies reported in the literature of the X-ray photoelectron spectra of fast-frozen hematite colloids in aqueous solutions, it appears that the degree of surface ion loading at the electrolyte-hematite interface (Stern layer) is critical during the development of hematite photoanodes. We suspect that a lower ion surface loading benefits the hematite developing relatively higher-order and a rodlike texture, thereby improving the photoelectrochemical activity.

  4. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  5. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes

    PubMed Central

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-01-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi–solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]–4% SiO2/NaClO4–TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm−1), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na+ plating/stripping (5.7 to 16.5 mA cm−2). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g−1 with a fixed capacity of 1000 mA·hour g−1 in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg−1). This study makes quasi–solid state Na-CO2 batteries an attractive prospect. PMID:28164158

  6. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes.

    PubMed

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-02-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi-solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]-4% SiO2/NaClO4-TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm(-1)), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na(+) plating/stripping (5.7 to 16.5 mA cm(-2)). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g(-1) with a fixed capacity of 1000 mA·hour g(-1) in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg(-1)). This study makes quasi-solid state Na-CO2 batteries an attractive prospect.

  7. Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.

    PubMed

    Hegyi, Bence; Bányász, Tamás; Shannon, Thomas R; Chen-Izu, Ye; Izu, Leighton T

    2016-09-20

    In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.

  8. Interaction of NaCl(g) and HCl(g) with condensed NA2SO4

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The interaction of Na2SO4(l) with NaCl(g), HCl(g) and H2O(g) was studied in atmospheric pressure flowing air and oxygen at Na2SO4(l) temperatures of 900 and 1000 C. Thermomicrogravimetric and high pressure mass spectrometric sampling techniques were used. Experimental results establish that previously reported enhanced rates of weight loss of Na2SO4(l) in the presence of NaCl(g) are due to the reaction: Na2SO4(c) + 2HCl(g) = 2NaCl(g) + SO2(g) + H2O(g) + 1/2O2(g) being driven to the right in flowing gas systems. The HCl(g) is the product of hydrolysis of NaCl caused by small but significant amounts of H2O(g) present in the system. Thermochemical calculations are used to show that even with sub-ppm levels of H2O(g) present, significant quantities of HCl(g) are produced.

  9. Dynamics of Na + in a single crystal of Naβ″Al 2O 3

    NASA Astrophysics Data System (ADS)

    Fanjat, N.; Lucazeau, G.; Bates, J.; Dianoux, A. J.

    1989-01-01

    A single crystal of Naβ″ Al 2O 3 has been used to measure quasi-elastic neutron scattering spectra at 227 and 377°C. Fitted data are presented with a new model and the results are compared to those obtained with NaβAl 2O 3.

  10. Voltage dependence of Na translocation by the Na/K pump.

    PubMed

    Nakao, M; Gadsby, D C

    During each complete reaction cycle, the Na/K pump transports three Na ions out across the cell membrane and two K ions in. The resulting net extrusion of positive charge generates outward membrane current but, until now, it was unclear how that net charge movement occurs. Reasonable possibilities included a single positive charge moving outwards during Na translocation; or a single negative charge moving inwards during K translocation; or either positive or negative charges moving during both translocation steps, but in unequal quantities. Any step that involves net charge movement through the membrane must have voltage-dependent transition rates. Here we report measurements of transient, voltage-dependent, displacement currents generated by the pump when its normal Na/K transport cycle has been interrupted by removal of external K and it is thus constrained to carry out Na/Na exchange. The quantity and voltage sensitivity of the charge moved during these transient currents suggests that Na translocation includes a voltage-dependent transition involving movement of one positive charge across the membrane. This single step can thus fully account for the electrogenic nature of Na/K exchange. The result provides important new insight into the molecular mechanism of active cation transport.

  11. Dynamics of Na(+)(Benzene) + Benzene Association and Ensuing Na(+)(Benzene)2* Dissociation.

    PubMed

    Paul, Amit K; Kolakkandy, Sujitha; Hase, William L

    2015-07-16

    Chemical dynamics simulations were used to study Bz + Na(+)(Bz) → Na(+)(Bz)2* association and the ensuing dissociation of the Na(+)(Bz)2* cluster (Bz = benzene). An interesting and unexpected reaction found from the simulations is direct displacement, for which the colliding Bz molecule displaces the Bz molecule attached to Na(+), forming Na(+)(Bz). The rate constant for Bz + Na(+)(Bz) association was calculated at 750 and 1000 K, and found to decrease with increase in temperature. By contrast, the direct displacement rate constant increases with temperature. The cross section and rate constant for direct displacement are approximately an order of magnitude lower than those for association. The Na(+)(Bz)2* cluster, formed by association, dissociates with a biexponential probability, with the rate constant for the short-time component approximately an order of magnitude larger than that for the longer time component. The latter rate constant agrees with that of Rice-Ramsperger-Kassel-Marcus (RRKM) theory, consistent with rapid intramolecular vibrational energy redistribution (IVR) and intrinsic RRKM dynamics for the Na(+)(Bz)2* cluster. A coupled phase space model was used to analyze the biexponential dissociation probability.

  12. Low-affinity Na+ uptake in the halophyte Suaeda maritima.

    PubMed

    Wang, Suo-Min; Zhang, Jin-Lin; Flowers, Timothy J

    2007-10-01

    Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter

  13. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    SciTech Connect

    Dissing, S.; Hoffman, J.F. )

    1990-07-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o.

  14. A thermochemical explanation for the stability of NaCl3 and NaCl7

    NASA Astrophysics Data System (ADS)

    Fernandes de Farias, Robson

    2017-03-01

    Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.

  15. Na-ion dynamics in Quasi-1D compound NaV2O4

    NASA Astrophysics Data System (ADS)

    Månsson, M.; Umegaki, I.; Nozaki, H.; Higuchi, Y.; Kawasaki, I.; Watanabe, I.; Sakurai, H.; Sugiyama, J.

    2014-12-01

    We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet NaV2O4. By performing systematic zero-field and longitudinal-field measurements as a function of temperature we clearly distinguish that the hopping rate increases exponentially above Tdiff ≈ 250 K. The data is well fitted to an Arrhenius type equation typical for a diffusion process, showing that the Na-ions starts to be mobile above Tdiff. Such results make this compound very interesting for the tuning of Q1D magnetism using atomic-scale ion-texturing through the periodic potential from ordered Na-vacancies. Further, it also opens the door to possible use of NaV2O4 and related compounds in energy related applications.

  16. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes.

    PubMed

    Lu, Fang-Min; Hilgemann, Donald W

    2017-07-03

    Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when

  17. Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice.

    PubMed

    Vitzthum, Helga; Seniuk, Anika; Schulte, Laura Helene; Müller, Maxie Luise; Hetz, Hannah; Ehmke, Heimo

    2014-03-01

    A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased.

  18. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes

    PubMed Central

    Giles, Wayne R.

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O’Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase. PMID:27875582

  19. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes.

    PubMed

    Cardona, Karen; Trenor, Beatriz; Giles, Wayne R

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.

  20. Recent results from MoNA-LISA

    NASA Astrophysics Data System (ADS)

    Spyrou, Artemisia

    2012-03-01

    Studies of the nuclear properties of nuclei close and even beyond the limits of stability have revealed exotic modes of decay and new structural characteristics. The MoNA-LISA array is used at the National Superconducting Cyclotron Laboratory at Michigan State University to study nuclei along the neutron dripline. In a typical experiment, a radioactive beam is employed to produce the neutron-unbound state of interest. This state/resonance immediately decay into a neutron, which is detected by MoNA-LISA and a remaining charged nucleus detected by the sweeper magnet detector suite. In this talk, new exciting findings from recent MoNA-LISA experiments will be presented. These include the first observation of a dineutron decay from ^16Be, the exploration of the ``south shore'' of the Island of Inversion and the first evidence of the decay of the troubling nucleus ^26O.

  1. Photoionization studies of Na/sub 2/Cl and Na/sub 2/O and reactions of metal clusters

    SciTech Connect

    Peterson, K.I.; Dao, P.D.; Castleman, A.W. Jr.

    1983-07-15

    Reaction between metal clusters and various reactant gases in a coexpanding nozzle led to the formation of Na/sub 2/Cl and Na/sub 2/O. These species were subjected to photoionization using a UV light source, monochromator, and mass spectrometer detection system. Appearance potentials of 95.7 and 116.7 kcal/mol were obtained for Na/sub 2/Cl and Na/sub 2/O, respectively. The appearance potential of the Na/sub 2/Cl lies between the ionization potential of the metal and the electron affinity of chlorine, while that of Na/sub 2/O is close to the ionization potential of the metal. Using these values and other literature data, energies were derived for the following bonds: Na--NaCl (19.7 kcal/mol), Na/sup +//sub 2/xCl (115.5), Na/sub 2/xCl (98.9), and Na/sup +//sub 2/xCl/sup -/ (127.8); Na/sup +/xNaO (56.8), Na/sup +//sub 2/xO (94.2), Na/sub 2/xO (98.6), and Na/sup +//sub 2/xO/sup -/ (177.2).

  2. Targeting voltage gated sodium channels NaV1.7, Na V1.8, and Na V1.9 for treatment of pathological cough.

    PubMed

    Muroi, Yukiko; Undem, Bradley J

    2014-02-01

    Recent advances in our understanding of voltage-gated sodium channels (NaVs) lead to the rational hypothesis that drugs capable of selective blockade of NaV subtypes may be a safe and effective strategy for the treatment of unwanted cough. Among the nine NaV subtypes (NaV1.1-NaV1.9), the afferent nerves involved in initiating cough, in common with nociceptive neurons in the somatosensory system, express mainly NaV1.7, NaV1.8, and NaV1.9. Although knowledge about the effect of selectively blocking these channels on the cough reflex is limited, their biophysical properties indicate that each may contribute to the hypertussive and allotussive state that typifies subacute and chronic nonproductive cough.

  3. Intracellular [Na+], Na+ pathways, and fluid transport in cultured bovine corneal endothelial cells.

    PubMed

    Kuang, Kunyan; Li, Yansui; Yiming, Maimaiti; Sánchez, José M; Iserovich, Pavel; Cragoe, E J; Diecke, Friedrich P J; Fischbarg, Jorge

    2004-07-01

    The mechanism of fluid transport across corneal endothelium remains unclear. We examine here the relative contributions of cellular mechanisms of Na+ transport and the homeostasis of intracellular [Na+] in cultured bovine corneal endothelial cells, and the influence of ambient Na+ and HCO3- on the deturgescence of rabbit cornea. Bovine corneal endothelial cells plated on glass coverslips were incubated for 60 min with 10 microm of the fluorescent Na+ indicator SBFI precursor in HCO3- HEPES (BH) Ringer's solution. After loading, cells were placed in a perfusion chamber. Indicator fluorescence (490 nm) was determined with a Chance-Legallais time-sharing fluorometer. Its voltage output was the ratio of the emissions excited at 340 and 380 nm. For calibration, cells were treated with gramicidin D. For fluid transport measurements, rabbit corneas were mounted in a Dikstein-Maurice chamber, and stromal thickness was measured with a specular microscope. The steady-state [Na+]i in BH was 14.36+/-0.38 mM (n = mean+/-s.e.). Upon exposure to Na+ -free BH solution (choline substituted), [Na+]i decreased to 1.81+/-0.20mM (n = 19). When going from Na+ -free plus 100 microm ouabain to BH plus ouabain, [Na+]i increased to 46.17+/-2.50 (n = 6) with a half time of 1.26+/-0.04 min; if 0.1 microm phenamil plus ouabain were present, it reached only 21.78+/-1.50mm. The exponential time constants (min-1) were: 0.56+/-0.04 for the Na+ pump; 0.39+/-0.01 for the phenamil sensitive Na+ channel; and 0.17+/-0.02 for the ouabain-phenamil-insensitive pathways. In HCO3- free medium (gluconate substituted), [Na+]i was 14.03+/-0.11mM; upon changing to BH medium, it increased to 30.77+/-0.74 mm. This last [Na+]i increase was inhibited 66% by 100 microm DIDS. Using BH medium, corneal thickness remained nearly constant, increasing at a rate of only 2.9+/-0.9 microm hr-1 during 3 hr. However, stromal thickness increased drastically (swelling rate 36.1+/-2.6 microm hr-1) in corneas superfused with BH

  4. Concentration dependence of Li+/Na+ diffusion in manganese hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Takachi, Masamitsu; Fukuzumi, Yuya; Moritomo, Yutaka

    2016-06-01

    Manganese hexacyanoferrates (Mn-HCFs) with a jungle-gym-type structure are promising cathode materials for Li+/Na+ secondary batteries (LIBs/SIBs). Here, we investigated the diffusion constants D Li/D Na of Li+/Na+ against the Li+/Na+ concentration x Na/x Li and temperature (T) of A 1.32Mn[Fe(CN)6]0.833.6H2O (A = Li and Na). We evaluated the activation energy E\\text{a}\\text{Li}/E\\text{a}\\text{Na} of D Li/D Na against x Na/x Li. We found that E\\text{a}\\text{Na} steeply increases with x Na from 0.41 eV at x Na = 0.69 to 0.7 eV at 1.1. The increase in E\\text{a}\\text{Na} is ascribed to the occupancy effect of the Na+ site. The increase in E\\text{a}\\text{Li} is suppressed, probably because the number of Li+ sites is three times that of Na+ sites.

  5. Na+/K+-ATPase: Activity and inhibition

    NASA Astrophysics Data System (ADS)

    Čolović, M.; Krstić, D.; Krinulović, K.; Momić, T.; Savić, J.; Vujačić, A.; Vasić, V.

    2009-09-01

    The aim of the study was to give an overview of the mechanism of inhibition of Na+/K+-ATPase activity induced by some specific and non specific inhibitors. For this purpose, the effects of some ouabain like compounds (digoxin, gitoxin), noble metals complexes ([PtCl2DMSO2], [AuCl4]-, [PdCl4]2-, [PdCl(dien)]+, [PdCl(Me4dien)]+), transition metal ions (Cu2+, Zn2+, Fe2+, Co2+), and heavy metal ions (Hg2+, Pb2+, Cd2+) on the activity of Na+/K+-ATPase from rat synaptic plasma membranes (SPM), porcine cerebral cortex and human erythrocytes were discussed.

  6. Compact clinical high-NA multiphoton endoscopy

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2012-02-01

    Multiphoton imaging methods are excellent for non-invasive imaging of living tissue without any need of additional contrast agents. The increasing demand for endoscopic techniques has forced the development of multiphoton endoscopes for imaging of areas with reduced accessibility like chronic wounds. Gradient index (GRIN) lenses can miniaturize the bulky distal focusing optics of conventional tomographs to a diameter of less than 1.4 mm and a numerical aperture (NA) of 0.8. We combined a high NA clinical multiphoton endoscope with existing multiphoton tomographs like the DermaInspect® and the MPTflex® to enable the examination of wound healing processes.

  7. CAPE-2 Cubesat - ELaNa IV

    NASA Image and Video Library

    2016-07-25

    CAPE-2: Cajun Advanced Picosatellite Experiment – ELaNa IV CAPE-2 was developed by students from the University of Louisiana Lafayette to engage, inspire and educate K-12 students to encourage them to pursue STEM careers. The secondary focus is the technology demonstration of deployed solar panels to support the following payloads: text to speech, voice repeater, tweeting, email, file transfer and data collection from buoys. Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.

  8. Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries.

    PubMed

    Chen, Juner; Huang, Zhenguo; Wang, Caiyun; Porter, Spencer; Wang, Baofeng; Lie, Wilford; Liu, Hua Kun

    2015-06-18

    A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possesses good stability and generates no toxic or dangerous products when exposed to air and water. All these properties demonstrate that NaDFOB could be used to prepare high performance electrolytes for emerging Na-ion batteries.

  9. Response of saliva Na/K ratio to changing Na supply of lactating cows under tropical conditions.

    PubMed

    Thiangtum, Wandee; Schonewille, J Thomas; Verstegen, Martin Wa; Arsawakulsudhi, Supot; Rukkwamsuk, Theera; Hendriks, Wouter H

    2017-06-01

    Factorial determination of the sodium (Na) requirement of heat-stressed lactating cows is hindered by accurate estimates of the Na losses through sweat. Direct studies, therefore, may be needed requiring information on the time course of healthy animals to become Na depleted and the subsequent rate of repletion. The rate of Na depletion and subsequent rate of Na repletion with two levels of dietary Na to lactating dairy cows housed under tropical conditions were investigated using the salivary Na/K. The 12 lactating cows (salivary Na/K ratio 14.6) rapidly developed clinical signs of Na deficiency, including pica, polyuria and polydipsia, reduced body weight and reduced milk yield when fed a low-Na ration (0.33 g kg(-1) dry matter (DM)) for 3 weeks. Deficiency symptoms were associated with a rapid decrease in salivary Na/K ratio to <4.3 from 7 to 21 days. Subsequent repletion of the cows with NaCl to a ration concentration of 1.1 or 1.6 g Na kg(-1) DM for 5 weeks did not restore salivary Na/K ratio to values of >6. A daily Na intake of heat-stressed lactating cows to a ration intake of 1.6 g Na kg(-1) DM was insufficient to restore Na deficiency. One week was sufficient to deplete heat-stressed lactating cows of Na, allowing for rapid dose-response studies utilizing the salivary Na/K ratio as a parameter for Na status of cows under tropical conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Semisynthesis of NaK; a Na+ and K+ conducting ion channel

    PubMed Central

    Linn, Kellie M.; Derebe, Mehebaw G.; Jiang, Youxing; Valiyaveetil, Francis I.

    2010-01-01

    In this contribution, we describe the semisynthesis of NaK, a bacterial non-selective cation channel. In the semisynthesis, the NaK polypeptide is assembled from a recombinantly expressed thioester peptide and a chemically synthesized peptide using the native chemical ligation reaction. We describe a temporary tagging strategy for the purification of the hydrophobic synthetic peptide and demonstrate the efficient ligation of the synthetic peptide with the recombinant peptide thioester to form the semisynthetic NaK polypeptide. Following assembly, the NaK polypeptide is folded in vitro to the native state using lipid vesicles. Functional characterization of the folded semisynthetic NaK channels indicates that it is functionally similar to the wild type protein. We used semisynthesis to substitute aspartate 66 in the selectivity filter region of the NaK channel with the unnatural amino acids, homoserine and cysteine sulfonic acid. Functional analysis of these mutants suggests that the presence of a negatively charged residue in the vicinity of the ion binding sites is necessary for optimal flux of ions through the NaK channel. PMID:20415433

  11. Semisynthesis of NaK, a Na(+) and K(+) conducting ion channel.

    PubMed

    Linn, Kellie M; Derebe, Mehabaw G; Jiang, Youxing; Valiyaveetil, Francis I

    2010-06-01

    In this contribution, we describe the semisynthesis of NaK, a bacterial nonselective cation channel. In the semisynthesis, the NaK polypeptide is assembled from a recombinantly expressed thioester peptide and a chemically synthesized peptide using the native chemical ligation reaction. We describe a temporary tagging strategy for the purification of the hydrophobic synthetic peptide and demonstrate the efficient ligation of the synthetic peptide with the recombinant peptide thioester to form the semisynthetic NaK polypeptide. Following assembly, the NaK polypeptide is folded in vitro to the native state using lipid vesicles. Functional characterization of the folded semisynthetic NaK channels indicates that it is functionally similar to the wild-type protein. We used semisynthesis to substitute aspartate 66 in the selectivity filter region of the NaK channel with the unnatural amino acids homoserine and cysteine sulfonic acid. Functional analysis of these mutants suggests that the presence of a negatively charged residue in the vicinity of the ion binding sites is necessary for optimal flux of ions through the NaK channel.

  12. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  13. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae.

    PubMed

    Vorburger, Thomas; Nedielkov, Ruslan; Brosig, Alexander; Bok, Eva; Schunke, Emina; Steffen, Wojtek; Mayer, Sonja; Götz, Friedrich; Möller, Heiko M; Steuber, Julia

    2016-04-01

    For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Na(+) dependence of K(+) -induced natriuresis, kaliuresis and Na(+) /Cl(-) cotransporter dephosphorylation.

    PubMed

    Jensen, I S; Larsen, C K; Leipziger, J; Sørensen, M V

    2016-09-01

    High dietary K(+) intake is associated with protection against hypertension. In mammals, acute K(+) intake induces natriuresis and kaliuresis, associated with a marked dephosphorylation of the renal Na(+) /Cl(-) cotransporter (NCC). It has been suggested that reduced activity of NCC increases the driving force for more distal tubular epithelial Na(+) channel (ENaC)-dependent K(+) secretion. This study investigated the ENaC dependence of urinary K(+) and Na(+) excretion following acute K(+) loading. Mice were fed low (0.03%), control (0.2%) or high (2%) Na(+) diets for 25 days to preserve or promote Na(+) loss and thus ENaC activity. Once a week, the mice received either K(+) -containing gavage or a control gavage. Following the gavage treatment, the mice were placed in metabolic cages and urine was collected in real time. ENaC dependence of kaliuresis was assessed by benzamil injections prior to gavage. We confirmed that dietary Na(+) content is inversely related to plasma aldosterone, NCC phosphorylation and ENaC cleavage products. The novel findings were as follows: (i) acute K(+) feeding caused NCC dephosphorylation in all dietary groups; (ii) under all dietary conditions, K(+) loading induced natriuresis; (iii) high Na(+) diet markedly reduced the K(+) excretion following K(+) gavage; (iv) benzamil injection prior to K(+) loading increased natriuresis, decreased kaliuresis and eliminated the differences between the dietary groups. These data indicate that acute K(+) -induced kaliuresis is ENaC dependent. Maximal K(+) excretion rates are attenuated when ENaC is physiologically down-regulated or pharmacologically blocked. NCC is dephosphorylated following acute K(+) loading under all dietary Na(+) regimens. This leads to natriuresis, even in severely Na(+) -restricted animals. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Electronic Polarisability of NaNO2-NaNO3 and NaOH-NaNO3 Ionic Melts and Effective Ionic Radius of OH-

    NASA Astrophysics Data System (ADS)

    Iwadate, Yasuhiko; Ohnishi, Ryosuke; Ohkubo, Takahiro

    2017-01-01

    Molar volumes and refractive indexes of molten NaNO2-NaNO3 and NaOH-NaNO3 systems were measured by dilatometry and goniometry, respectively. The molar volumes of both systems increased with increasing temperature. Refractive indexes decreased with a rise of temperature or with increasing wavelength of the incident visible light. Assuming that the electronic polarisability is inherent in an ion, the electronic polarisability of a OH- ion in the melt was estimated from the Lorentz-Lorenz equation to be 1.26×10-30 m3, being comparable with that in the crystal. The effective ionic radius of a OH- ion was evaluated from the obtained electronic polarisability to be 1.34×10-10 m, using the correlation between the third power of the ionic radius and the electronic polarisability of an ion so far reported. The effective ionic radius obtained in this work was in good agreement with that assigned by Shannon.

  16. Light-induced drift of Na atoms

    NASA Astrophysics Data System (ADS)

    Werij, H. G. C.; Woerdman, J. P.

    1988-10-01

    Light can induce a flux of optically absorbing particles immersed in a buffer gas, when these particles have a different mobility in the ground and excited state. This paper presents a study of light-induced drift (LID) of Na atoms in noble gases, which can be regarded as the “canonical” system for experiments in this field. We have experimentally studied the LID effect in the optically thin and the optically thick regimes. Parameters which have been varied are laser frequency, laser intensity, buffer gas pressure and buffer gas species. This work gives the first critical comparison of LID experiments with realistic theory in which the multilevel complications of the Na atom have been incorporated. In the optically thick case (“optical piston”) one can distinguish the open cell and the closed cell regimes. Effects of adsorption and desorption of Na atoms at the surface of the cell wall have been incorporated into the theory. The experimental data are in excellent agreement with the results of a four-level rate-equation model for LID which incorporates the fine and hyperfine structure of the level scheme of the Na absorbers.

  17. Mechanisms contributing to the cardiac inotropic effect of Na pump inhibition and reduction of extracellular Na

    PubMed Central

    1987-01-01

    Reduction of the transsarcolemmal [Na] gradient in rabbit cardiac muscle leads to an increase in the force of contraction. This has frequently been attributed to alteration of Ca movements via the sarcolemmal Na/Ca exchange system. However, the specific mechanisms that mediate the increased force at individual contractions have not been clearly established. In the present study, the [Na] gradient was decreased by reduction of extracellular [Na] or inhibition of the Na pump by either the cardioactive steroid acetylstrophanthidin or by reduction of extracellular [K]. Contractile performance and changes in extracellular Ca (sensed by double-barreled Ca-selective microelectrodes) were studied in order to elucidate the underlying basis for the increase in force. In the presence of agents that inhibit sarcoplasmic reticulum (SR) function (10 mM caffeine, 100-500 nM ryanodine), reduction of the [Na] gradient produced increases in contractile force similar to that observed in the absence of caffeine or ryanodine. It is concluded that an intact, functioning SR is not required for the inotropic effect of [Na] gradient reduction (at least in rabbit ventricle). However, this does not exclude a possible contribution of enhanced SR Ca release in the inotropic response to [Na] gradient reduction in the absence of caffeine or ryanodine. Acetylstrophanthidin (3-5 microM) usually leads to an increase in the magnitude of extracellular Ca depletions associated with individual contractions. However, acetylstrophanthidin can also increase extracellular Ca accumulation during the contraction, especially at potentiated contractions. This extracellular Ca accumulation can be suppressed by ryanodine and it is suggested that this apparent enhancement of Ca efflux is secondary to an enhanced release of Ca from the SR. Under conditions where Ca efflux during contractions is minimized (after a rest interval in the presence of ryanodine), acetylstrophanthidin increased both the rate and the

  18. Intracellular Na(+) and metabolic modulation of Na/K pump and excitability in the rat suprachiasmatic nucleus neurons.

    PubMed

    Wang, Yi-Chi; Yang, Jyh-Jeen; Huang, Rong-Chi

    2012-10-01

    Na/K pump activity and metabolic rate are both higher during the day in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigated the role of intracellular Na(+) and energy metabolism in regulating Na/K pump activity and neuronal excitability. Removal of extracellular K(+) to block the Na/K pump excited SCN neurons to fire at higher rates and return to normal K(+) to reactivate the pump produced rebound hyperpolarization to inhibit firing. In the presence of tetrodotoxin to block the action potentials, both zero K(+)-induced depolarization and rebound hyperpolarization were blocked by the cardiac glycoside strophanthidin. Ratiometric Na(+) imaging with a Na(+)-sensitive fluorescent dye indicated saturating accumulation of intracellular Na(+) in response to pump blockade with zero K(+). The Na(+) ionophore monensin also induced Na(+) loading and hyperpolarized the membrane potential, with the hyperpolarizing effect of monensin abolished in zero Na(+) or by pump blockade. Conversely, Na(+) depletion with Na(+)-free pipette solution depolarized membrane potential but retained residual Na/K pump activity. Cyanide inhibition of oxidative phosphorylation blocked the Na/K pump to depolarize resting potential and increase spontaneous firing in most cells, and to raise intracellular Na(+) levels in all cells. Nonetheless, the Na/K pump was incompletely blocked by cyanide but completely blocked by iodoacetate to inhibit glycolysis, indicating the involvement of both oxidative phosphorylation and glycolysis in fueling the Na/K pump. Together, the results indicate the importance of intracellular Na(+) and energy metabolism in regulating Na/K pump activity as well as neuronal excitability in the SCN neurons.

  19. Laser trapping of {sup 21}Na atoms

    SciTech Connect

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  20. [Regulation of the Na/Ca exchanger].

    PubMed

    DiPolo, R; Rojas, H; Beaugé, L

    1993-01-01

    The introduction of the squid giant axon preparation to studies on Ca homeostasis has proven very useful in laying the foundations in the study of Ca regulation. In particular the Na/Ca exchange mechanism has been characterized in terms of its regulatory processes using the well define technique of intracellular dialysis and membrane potential control. The Na/Ca exchange countertransport system plays a critical role in physiological processes including cardiac contractility and photoreception. It has also been implicate in the etiology of essential hypertension, cardiac arrhythmias and cell death. The ability of the Na/Ca exchanger to regulate the intracellular ionized Ca concentration ([Ca2+i]) under physiological conditions, is determined by the direction (net Ca efflux or Ca influx), and magnitude of transport. The direction of Ca transport is decided by the chemical gradient of sodium and calcium. The magnitude of the exchange is regulated by kinetic factors. This kinetic factors are critical since they decide whether the exchanger will mediate a net Ca movement under certain conditions. Recently, a large effort has been put together to characterize the secondary modulation of the Na/Ca exchanger. In particular modulation by MgATP and intracellular Ca2+. In nerve cells we have discover that MgATP regulates the exchanger through as phosphorylation-dephosphorylation processes most probably relate to the action of a kinase-phosphatase system. The other important ligand that regulates the exchange activity is the level of [Ca2+i]. We have found the presence of a regulatory site in the cytoplasmic face of the exchanger different from the transport site and probably responsible for turning the carrier "on" or "off". In this article we will depict some of the processes involved in the metabolic and ionic regulation of the Na/Ca exchanger.

  1. Supervised physical therapy in women treated with radiotherapy for breast cancer.

    PubMed

    Leal, Nara Fernanda Braz da Silva; Oliveira, Harley Francisco de; Carrara, Hélio Humberto Angotti

    2016-08-15

    to evaluate the effect of physical therapy on the range of motion of the shoulders and perimetry of the upper limbs in women treated with radiotherapy for breast cancer. a total of 35 participants were randomized into two groups, with 18 in the control group (CG) and 17 in the study group (SG). Both of the groups underwent three evaluations to assess the range of motion of the shoulders and perimetry of the upper limbs, and the study group underwent supervised physical therapy for the upper limbs. the CG had deficits in external rotation in evaluations 1, 2, and 3, whereas the SG had deficits in flexion, abduction, and external rotation in evaluation 1. The deficit in abduction was recovered in evaluation 2, whereas the deficits in all movements were recovered in evaluation 3. No significant differences in perimetry were observed between the groups. the applied supervised physical therapy was effective in recovering the deficit in abduction after radiotherapy, and the deficits in flexion and external rotation were recovered within two months after the end of radiotherapy. Registration number of the clinical trial: NCT02198118. avaliar o efeito da fisioterapia na amplitude de movimento do ombro e na perimetria do membro superior, aplicada durante o período da radioterapia nas mulheres em tratamento para o câncer de mama. 35 voluntárias foram randomizadas em dois grupos, 18 para o grupo controle e 17 para o grupo de estudo. Os dois grupos foram submetidos a três avaliações da amplitude de movimento do ombro e perimetria do membro superior, sendo o grupo de estudo também submetido à fisioterapia supervisionada para os membros superiores. o grupo controle apresentou déficit entre os membros para o movimento de rotação externa nas avaliações 1, 2 e 3. O grupo de estudo apresentou déficit entre os membros para os movimentos de flexão, abdução e rotação externa na avaliação 1. Houve recuperação do déficit de movimento de abdução na avaliação 2

  2. The Na4(+3) Clusters in Sodium Sodalite

    DTIC Science & Technology

    1992-05-15

    ATES COVOIN0i-15-92 Technical 06-01-91 to 05-31-92 4. TITLE ANA SUGTITLE S. RNORNG NUMBER The Na4+ 3 Clusters in Sodium Sodalite NN l14-e0-J-se59a 𔄀...3 [AlSiO 4]3 sodalite prepared by high vacuum deposition of sodium atoms. The samples with a Na 43 +:Na33+ cluster ratio up to 1:10 show a single...absorption feature with -m. = 628 nm (1.99 eV). The absorption originates from the individual sodalite cages containing Na 43+ cluster. For the Na 43+:Na

  3. Furosemide-sensitive Na and K fluxes in human red cells. Net uphill Na extrusion and equilibrium properties

    PubMed Central

    1986-01-01

    This paper reports experiments designed to find the concentrations of internal and external Na and K at which inward and outward furosemide- sensitive (FS) Na and K fluxes are equal, so that there is no net FS movement of Na and K. The red cell cation content was modified by using the ionophore nystatin, varying cell Na (Nai) from 0 to 34 mM (K substitution, high-K cells) and cell K (Ki) from 0 to 30 mM (Na substitution, high-Na cells). All incubation media contained NaCl (Nao = 130 or 120 nM), and KCl (Ko = 0-30 mM). In high-K cells, incubated in the absence of Ko, there was net extrusion of Na through the FS pathway. The net FS Na extrusion increased when Nai was increased. Low concentrations of Ko (0-6 mM) slightly stimulated, whereas higher concentrations of Ko inhibited, FS Na efflux. Increasing Ko stimulated the FS Na influx (K0.5 = 4 mM). Under conditions similar to those that occur in vivo (Nai = 10, Ki = 130, Nao = 130, Ko = 4 mM, Cli/Clo = 0.7), net extrusion of Na occurs through the FS pathway (180-250 mumol/liter cell X h). The concentration of Ko at which the FS Na influx and efflux and the FS K influx and efflux become equal increased when Nai increased in high-K cells and when Ki was increased in high-Na cells. The net FS Na and K fluxes both approached zero at similar internal and external Na and K concentrations. In high-K cells, under conditions when net Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional flux was found to be 2:3. In high-K cells, the empirical expression (Nai/Nao)2(Ki/Ko)3 remained at constant value (apparent equilibrium constant, Kappeq +/- SEM = 22 +/- 2) for each set of internal and external cation concentrations at which there was no net Na flux. These results indicate that in the physiological region of concentrations of internal and external Na, K, and Cl, the stoichiometry of the FS Na and K fluxes is 2 Na:3 K. In high-Na cells under conditions when net FS Na and K fluxes were near zero, the ratio of

  4. The solubility of Cr(OH){sub 3}(am) in concentrated NaOH and NaOH-NaNO{sub 3} solutions

    SciTech Connect

    Felmy, A.R.; Rai, D.; Fulton, R.W.

    1994-08-01

    Chromium is a major component of the Hanford waste tank sludges, and the presence of Cr in the sludges is a significant concern in the disposal of these sludges because Cr can interfere with the formation of waste glasses. One of the current pretreatment strategies for removing constituents that can interfere with glass formation, such as P and Cr, is to wash/dissolve the sludges in basic NaOH solutions. The solubility of Cr(OH){sub 3}(am) was measured in concentrated NaOH ranging in concentration from 0.1M to 6.0M and in NaOH-NaNO{sub 3} solutions with fixed NaOH concentration and variable NaNO{sub 3} concentration at room temperature (22--23 C). Equilibrium between solids and solutions was approached relatively slowly and required approximately 60--70 days before steady-state concentrations were reached. A thermodynamic model, based upon the Pitzer equations, was developed from the solubility data in NaOH, which includes only two aqueous Cr species (Cr(OH){sub 4}{sup {minus}} and NaCr(OH){sub 4}(aq)) and ion-interaction parameters for Na{sup +} with Cr(OH){sub 4}{sup {minus}}. This model was then tested in the mixed NaOH-NaNO{sub 3} solutions and found to be reliable.

  5. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton.

    PubMed

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A Egrinya; Li, Weijiang

    2012-03-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na(+) concentrations in leaves. The [Na(+)] in the '0' side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the '0' side phloem was girdled, suggesting that the increased [Na(+)] in the '0' side roots was possibly due to transportation of foliar Na(+) to roots through phloem. Plants under non-uniform salinity extruded more Na(+) from the root than those under uniform salinity. Root Na(+) efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na(+) efflux and H(+) influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na(+) extrusion was probably due to active Na(+)/H(+) antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na(+) concentration, transport of excessive foliar Na(+) to the low salinity side, and enhanced Na(+) efflux from the low salinity root.

  6. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    NASA Astrophysics Data System (ADS)

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-01

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO 2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 °C for 2-6 h by changing the SiO 2/Al 2O 3, H 2O/Na 2O and Na 2O/SiO 2 molar ratios of precursors in the two-step process. The surface area and NH 4+-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m 2/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m 2/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ˜3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously.

  7. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    PubMed

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  8. Hypo-osmotic stimulation of active Na+ transport in frog muscle: apparent upregulation of Na+ pumps.

    PubMed

    Venosa, R A

    1991-03-01

    The purpose of this work was to determine if hypotonicity, in addition to the stimulation of active Na+ transport (Venosa, R.A., 1978, Biochim. Biophys. Acta 510:378-383), promoted changes in (i) active K+ influx, (ii) passive Na+ and K+ fluxes, and (iii) the number of 3H-ouabain binding sites. The results indicate that a reduction of external osmotic pressure (pi) to one-half of its normal value (pi = 0.5) produced the following effects: (i) an increase in active K+ influx on the order of 160%, (ii) a 20% reduction in Na+ influx and K+ permeability (PK), and (iii) a 40% increase in the apparent density of ouabain binding sites. These data suggest that the hypotonic stimulation of the Na+ pump is not caused by an increased leak of either Na+ (inward) or K+ (outward). It is unlikely that the stimulation of active Na+ extrusion and the rise in the apparent number of pump sites produced by hypotonicity were due to a reduction of the intracellular ionic strength. It appears that, at least in part, the stimulation of active Na+ transport takes place whenever muscles are transferred from one medium to another of lower tonicity even if neither one was hypotonic (for instance pi = 2 to pi = 1 transfer). Comparison of the present results with those previously reported indicate that in addition to the number of pump sites, the cycling rate of the pump is increased by hypotonicity. Active Na+ and K+ fluxes were not significantly altered by hypertonicity (pi = 2).

  9. Studies of Inelastic Collisions of NaK and NaCs Molecules with Atomic Perturbers

    NASA Astrophysics Data System (ADS)

    Jones, Joshua A.

    We have investigated collisions of NaK molecules in the first excited state [2(A)1Sigma+], with Ar and He collision partners using laser-induced fluorescence spectroscopy (LIF) and polarization-labeling (PL) spectroscopy in a two-step excitation scheme. Additionally, we have investigated collisions of NaCs molecules in the first excited state [2(A)1Sigma +] with Ar and He perturbers using the LIF technique. We use a pump-probe, two-step excitation process. The pump laser prepares the molecule in a particular ro-vibrational (v, J) level in the A state. The probe laser frequency is scanned over transitions to the 31Π in NaK or to the 53Π in NaCs. In addition to observing strong direct lines, we also see weak collisional satellite lines that arise from collisions in the intermediate state that take the molecule from the prepared level (v, J) to level (v, J + Delta J). The ratio of the intensity of the collisional line to the intensity of the direct line in LIF and PL yield information about population and orientation transfer. Our results show a propensity for DeltaJ=even collisions of NaK with Ar and an even stronger propensity for collisions with He. Collisions of NaCs with Ar do not show any such J=even propensity. Preliminary investigations of collisions of NaCs with He seem to indicate a slight J=even propensity. In addition, we observe that rotationally inelastic collisions of excited NaK molecules with potassium atoms destroy almost all of the orientation, while collisions with argon destroy about one third to two thirds and collisions with helium destroy only about zero to one third of the initial orientation.

  10. K+ Congeners That Do Not Compromise Na+ Activation of the Na+,K+-ATPase

    PubMed Central

    Mahmmoud, Yasser A.; Kopec, Wojciech; Khandelia, Himanshu

    2015-01-01

    The Na+,K+-ATPase is essential for ionic homeostasis in animal cells. The dephosphoenzyme contains Na+ selective inward facing sites, whereas the phosphoenzyme contains K+ selective outward facing sites. Under normal physiological conditions, K+ inhibits cytoplasmic Na+ activation of the enzyme. Acetamidinium (Acet+) and formamidinium (Form+) have been shown to permeate the pump through the outward facing sites. Here, we show that these cations, unlike K+, are unable to enter the inward facing sites in the dephosphorylated enzyme. Consistently, the organic cations exhibited little to no antagonism to cytoplasmic Na+ activation. Na+,K+-ATPase structures revealed a previously undescribed rotamer transition of the hydroxymethyl side chain of the absolutely conserved Thr772 of the α-subunit. The side chain contributes its hydroxyl to Na+ in site I in the E1 form and rotates to contribute its methyl group toward K+ in the E2 form. Molecular dynamics simulations to the E1·AlF4−·ADP·3Na+ structure indicated that 1) bound organic cations differentially distorted the ion binding sites, 2) the hydroxymethyl of Thr772 rotates to stabilize bound Form+ through water molecules, and 3) the rotamer transition is mediated by water traffic into the ion binding cavity. Accordingly, dehydration induced by osmotic stress enhanced the interaction of the congeners with the outward facing sites and profoundly modified the organization of membrane domains of the α-subunit. These results assign a catalytic role for water in pump function, and shed light on a backbone-independent but a conformation-dependent switch between H-bond and dispersion contact as part of the catalytic mechanism of the Na+,K+-ATPase. PMID:25533461

  11. A importância da poeira e ondas de Alfvén na estabilidade de nuvens moleculares anãs

    NASA Astrophysics Data System (ADS)

    Falceta-Gonçalves, D.; de Juli, M. C.; Jatenco-Pereira, V.

    2003-08-01

    Nuvens moleculares anãs se apresentam dinamicamente estáveis, embora possuam massas muito maiores que a massa de Jeans. Por este motivo, a estabilidade destes objetos não pode ser explicada considerando-se apenas a pressão térmica. Campos magnéticos, aproximadamente uniformes e de ~mG, exercem um termo extra de pressão que sustenta a nuvem, mas somente na direção perpendicular às linhas de campo. Para a direção paralela, ondas de Alfvén geradas por turbulências no meio, por exemplo, têm sido utilizadas. Estas, sendo supostamente fracamente amortecidas, poderiam sustentar a nuvem nesta direção. Entretanto, estes meios contêm grandes quantidades de poeira carregada eletricamente. Estes grãos de poeira possuem frequências cíclotron, que podem entrar em ressonância com as ondas. Neste trabalho calculamos os efeitos que o amortecimento cíclotron da poeira teriam na propagação da onda, e consequentemente na estabilidade da nuvem. Considerando um fluxo de ondas, com um dado espectro de frequências, e uma população de grãos de poeira, com distribuição de tamanho observada, foi possível mostrar que o amortecimento é eficiente em uma larga banda de frequências. Neste caso as ondas seriam rapidamente amortecidas gerando pequenas condensações de alta densidade, e não poderiam ser utilizadas para explicar a estabilidade de uma nuvem inteira. Desta forma, rotação e turbulência seriam candidatos alternativos para garantir a estabilidade destes objetos.

  12. Na Partitioning During Thermomechanical Processing of an Mg-Sn-Zn-Na Alloy

    NASA Astrophysics Data System (ADS)

    TerBush, Jessica R.; Stanford, Nicole; Nie, Jian-Feng; Barnett, Matthew R.

    2013-11-01

    Microstructural characterization was used to examine the changes that occur in an Mg-6Sn-5Zn-0.3Na alloy from casting to extrusion at either 623 K or 723 K (350 °C or 450 °C) followed by artificial aging at 473 K (200 °C). In particular, the partitioning of Na was examined at each step using STEM-EDS mapping. Na atoms were found to preferentially partition to the Mg-Zn phase when present. After extrusion, when no Mg-Zn was observed, the spherical Mg2Sn particles were found to be enriched in Na, particularly at the higher extrusion temperature. Artificial aging following extrusion resulted in a change in Na partitioning, and a coarse distribution of Mg-Zn precipitate rods. Na microadditions led to a high as-extruded hardness, but a significant tension-compression yield asymmetry was still observed at room temperature. The compressive yield strength was found to decrease significantly after 1000 hours of aging.

  13. Conduction of Na+ and K+ through the NaK Channel: Molecular and Brownian Dynamics Studies

    PubMed Central

    Vora, Taira; Bisset, David; Chung, Shin-Ho

    2008-01-01

    Conduction of ions through the NaK channel, with M0 helix removed, was studied using both Brownian dynamics and molecular dynamics. Brownian dynamics simulations predict that the truncated NaK has approximately a third of the conductance of the related KcsA K+ channel, is outwardly rectifying, and has a Michaelis-Menten current-concentration relationship. Current magnitude increases when the glutamine residue located near the intracellular gate is replaced with a glutamate residue. The channel is blocked by extracellular Ca2+. Molecular dynamics simulations show that, under the influence of a strong applied potential, both Na+ and K+ move across the selectivity filter, although conduction rates for Na+ ions are somewhat lower. The mechanism of conduction of Na+ differs significantly from that of K+ in that Na+ is preferentially coordinated by single planes of pore-lining carbonyl oxygens, instead of two planes as in the usual K+ binding sites. The water-containing filter pocket resulting from a single change in the selectivity filter sequence (compared to potassium channels) disrupts several of the planes of carbonyl oxygens, and thus reduces the filter's ability to discriminate against sodium. PMID:18456826

  14. Conduction of Na+ and K+ through the NaK channel: molecular and Brownian dynamics studies.

    PubMed

    Vora, Taira; Bisset, David; Chung, Shin-Ho

    2008-08-01

    Conduction of ions through the NaK channel, with M0 helix removed, was studied using both Brownian dynamics and molecular dynamics. Brownian dynamics simulations predict that the truncated NaK has approximately a third of the conductance of the related KcsA K+ channel, is outwardly rectifying, and has a Michaelis-Menten current-concentration relationship. Current magnitude increases when the glutamine residue located near the intracellular gate is replaced with a glutamate residue. The channel is blocked by extracellular Ca2+. Molecular dynamics simulations show that, under the influence of a strong applied potential, both Na+ and K+ move across the selectivity filter, although conduction rates for Na+ ions are somewhat lower. The mechanism of conduction of Na+ differs significantly from that of K+ in that Na+ is preferentially coordinated by single planes of pore-lining carbonyl oxygens, instead of two planes as in the usual K+ binding sites. The water-containing filter pocket resulting from a single change in the selectivity filter sequence (compared to potassium channels) disrupts several of the planes of carbonyl oxygens, and thus reduces the filter's ability to discriminate against sodium.

  15. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Astrophysics Data System (ADS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-09-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  16. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics.

    PubMed

    Dibrov, Pavel; Dibrov, Elena; Pierce, Grant N

    2017-09-01

    The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Final-state symmetry of Na 1s core-shell excitons in NaCl and NaF

    SciTech Connect

    Nagle, K.P.; Seidler, G.T.; Shirley, E.L.; Fister, T.T.; Bradley, J.A.; Brown, F.C.

    2009-08-13

    We report measurements of the Na 1s contribution to the nonresonant inelastic x-ray scattering (NRIXS) from NaCl and NaF. Prior x-ray absorption studies have observed two pre-edge excitons in both materials. The momentum-transfer dependence (q dependence) of the measured NRIXS cross section and of real-space full multiple scattering and Bethe-Salpeter calculations determine that the higher-energy core excitons are s type for each material. The lower-energy core excitons contribute at most weakly to the NRIXS signal and we propose that these may be surface core excitons, as have been observed in several other alkali halides. The analysis of the orbital angular momentum of these features leads to a discussion of the limited sensitivity of NRIXS measurements to d-type final states when investigating 1s initial states. In this case the s- and p-type final density of states can be characterized by measurements at a small number of momentum transfers. This is in contrast to the case of more complex initial states for which measurements at a large number of momentum transfers are needed to separate the rich admixture of accessible and contributing final-state symmetries.

  18. Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Charpentier, Thibault; Menziani, Maria Cristina; Pedone, Alfonso

    2014-09-01

    Molecular dynamics, density functional theory calculations and 23Na NMR experiments have been used to inspect the chemical and structural characteristics of the Na environment in soda-lime silicate (CSN) and aluminosilicate (CASN) glasses. The use of an improved 3QMAS pulse sequence has allowed a clear identification of different Na sites. Average coordination numbers have been extracted by fitting the 23Na 3QMAS spectra with the computed NMR parameters. The results show that the 23Na δiso values correlate with the average <Na-O> distances only when the different coordination numbers are explicitly taken into account.

  19. An enhancement to the NA4 gear vibration diagnostic parameter

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.

    1994-01-01

    A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.

  20. Mechanisms and regulation of Na(+) uptake by freshwater fish.

    PubMed

    Kumai, Yusuke; Perry, Steve F

    2012-12-01

    Mechanisms of ion uptake by freshwater (FW) fish have received considerable attention over the past 80 years. Through an assortment of techniques incorporating whole animal physiology, electrophysiology and molecular biological approaches, three models have been proposed to account for Na(+) uptake. (1) Direct exchange of Na(+) and H(+) via one or more types of Na(+)/H(+) exchanger (slc9), (2) uptake of Na(+) through epithelial Na(+) channels energized by an electrical gradient created by H(+)-ATPase and (3) Na(+)/Cl(-) co-transport (slc12). While each mechanism is supported at least in part by theoretical or experimental data, there are several outstanding questions that have not yet been fully resolved. Furthermore, there are few details concerning how these Na(+) uptake mechanisms are fine tuned in response to the fluctuating FW environments. In this review, we summarize the current understanding of these three Na(+) uptake mechanisms and discuss their regulation by endocrine (cortisol and prolactin) and neurohumoral (catecholamines) factors.

  1. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  2. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  3. Inelastic and reactive collisions with polarized excited Na atoms

    SciTech Connect

    Schmidt, H.; Hertel, I.V.; Lee, Y.T.

    1985-07-01

    Polarization effects in inelastic collisions of laser state-prepared Na(3/sup 2/P, M/sub J/) with Na/sup +/ leading to Na(3/sup 2/D) or Na(3/sup 2/S) are discussed for the energy range E/sub cm/ = 5-47.5eV. Studies with linearly polarized light can be explained with a simple ''locking'' model of the Na(P)-orbital. The investigations employing circularly polarized light are a very sensitive test of the models describing the nonadiabatic angular momentum coupling between electronic and nuclear motion. The dynamical effects of the electronic spin on the angular momentum transfer are discussed. Recent crossed-beam experiments on the Na + O/sub 2/ -> NaO = O reaction in the energy range E/sub cm/ = 0/3-0.8eV show a pronounced dependence on the electric electronic symmetry of Na. 17 refs., 11 figs.

  4. Elementary immunology: Na(+) as a regulator of immunity.

    PubMed

    Schatz, Valentin; Neubert, Patrick; Schröder, Agnes; Binger, Katrina; Gebhard, Matthias; Müller, Dominik N; Luft, Friedrich C; Titze, Jens; Jantsch, Jonathan

    2017-02-01

    The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases.

  5. Design of Na(+) -Selective Fluorescent Probes: A Systematic Study of the Na(+) -Complex Stability and the Na(+) /K(+) Selectivity in Acetonitrile and Water.

    PubMed

    Schwarze, Thomas; Müller, Holger; Schmidt, Darya; Riemer, Janine; Holdt, Hans-Jürgen

    2017-05-29

    There is a tremendous demand for highly Na(+) -selective fluoroionophores to monitor the top analyte Na(+) in life science. Here, we report a systematic route to develop highly Na(+) /K(+) selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme ) to investigate the Na(+) /K(+) selectivity and Na(+) - complex stability in CH3 CN and H2 O. These Na(+) -probes bear different 15-crown-5 moieties to bind Na(+) stronger than K(+) . In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1>3>2>4>5 in CH3 CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3 CN the highest Na(+) -induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K(+) induced FE of 3.7. The Na(+) -complex stability of 1-4 in CH3 CN is enhanced in the following order of 2>4>3>1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na(+) -complex formation. Furthermore, we found for the N-(o-methoxyphenyl)aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2 O, an enhanced Na(+) -complex stability in the following order 8>2>9 and an increased Na(+) /K(+) selectivity in the reverse order 9>2>8. Notably, the Na(+) -induced FE of 8 (FEF=10.9), 2 (FEF=5.0) and 9 (FEF=2.0) showed a similar trend associated with a decreased K(+) -induced FE [8 (FEF=2.7)>2 (FEF=1.5)>9 (FEF=1.1)]. Here, the Na(+) -complex stability and Na(+) /K(+) selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (Kd =48 mm) allows high-contrast, sensitive, and selective Na(+) measurements over extracellular K(+) levels. A higher Na(+) /K(+) selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na(+) concentrations up to

  6. Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na-magnetic resonance imaging.

    PubMed

    Kopp, Christoph; Beyer, Christian; Linz, Peter; Dahlmann, Anke; Hammon, Matthias; Jantsch, Jonathan; Neubert, Patrick; Rosenhauer, Daniela; Müller, Dominik N; Cavallaro, Alexander; Eckardt, Kai-Uwe; Schett, Georg; Luft, Friedrich C; Uder, Michael; Distler, Jörg H W; Titze, Jens

    2017-04-01

    Skin fibrosis is the predominant feature of SSc and arises from excessive extracellular matrix deposition. Glycosaminoglycans are macromolecules of the extracellular matrix, which facilitate Na + accumulation in the skin. We used 23 Na-MRI to quantify Na + in skin. We hypothesized that skin Na + might accumulate in SSc and might be a biomarker for skin fibrosis. In this observational case-control study, skin Na + was determined by 23 Na-MRI using a Na + volume coil in 12 patients with diffuse cutaneous SSc and in 21 control subjects. We assessed skin fibrosis by the modified Rodnan skin score prior to 23 Na-MRI and on follow-up 12 months later. 23 Na-MRI demonstrated increased Na + in the fibrotic skin of SSc patients compared with skin from controls [mean ( s . d .): 27.2 (5.6) vs 21.4 (5.3) mmol/l, P < 0.01]. Na + content was higher in fibrotic than in non-fibrotic SSc skin [26.2 (4.8) vs 19.2 (3.4) mmol/l, P < 0.01]. Furthermore, skin Na + amount was correlated with changes in follow-up modified Rodnan skin score (R 2 = 0.68). 23 Na-MRI detected increased Na + in the fibrotic SSc skin; high Na + content was associated with progressive skin disease. Our findings provide the first evidence that 23 Na-MRI might be a promising tool to assess skin Na + and thereby predict progression of skin fibrosis in SSc.

  7. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  8. {beta} decay of {sup 32}Na

    SciTech Connect

    Mattoon, C. M.; Sarazin, F.; Hackman, G.; Ball, G. C.; Chakrawarthy, R. S.; Scraggs, H. C.; Smith, M. B.; Cunningham, E. S.; Walker, P. M.; Austin, R. A. E.; Finlay, P.; Grinyer, G. F.; Hyland, B.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Garrett, P. E.; Koopmans, K. A.; Waddington, J. C.; Washbrook, B.

    2007-01-15

    The {beta}-decay of {sup 32}Na has been studied using {beta}-{gamma} coincidences. New transitions and levels are tentatively placed in the level scheme of {sup 32}Mg from an analysis of {gamma}-{gamma} and {beta}-{gamma}-{gamma} coincidences. The observation of the indirect feeding of the 2321 keV state in {sup 32}Mg removes some restrictions previously placed on the spin assignment for this state. No evidence of a state at 2117 keV in {sup 32}Mg is found. Previously unobserved weak transitions up to 5.4 MeV were recorded but could not be placed in the decay scheme of {sup 32}Na.

  9. [Tui-Na, an oriental massage].

    PubMed

    Esteve Torres, Andreu

    2005-05-01

    Tui-Na is an oriental massage whose principles are based on traditional Chinese medicine. This medicine conceives a person as one entire entity giving as much importance to emotional and physical aspects as to everything that surrounds a person, including climate, social relationships, diet. This philosophy believes that an individual will achieve his/her ideal health state when he/she has found interior harmony and is in balance with all his/her environment. From this viewpoint, this philosophy understands pathology as an unbalance or a lack of harmony in an organism. Tui-Na massage is one of the techniques which make use of traditional Chinese medicine to maintain, or to recuperate, an organism's balance.

  10. Dielectronic recombination resonances in Na8+

    NASA Astrophysics Data System (ADS)

    Nikolić, D.; Lindroth, E.; Kieslich, S.; Brandau, C.; Schippers, S.; Shi, W.; Müller, A.; Gwinner, G.; Schnell, M.; Wolf, A.

    2004-12-01

    The electron-ion recombination spectrum of the Li-like Na8+ ion in the energy range 0.0-0.5eV is presented. Experimental results obtained by storage-ring techniques are compared with a calculated spectrum, based on a combination of relativistic many-body methods and complex rotation, and the agreement is found to be very good. The deviations between measured and calculated dielectronic recombination resonance energies are usually below about 2meV with a maximum difference at 5.5meV , while the theoretical cross sections deviate by at most 20% from the experiment. The recombination spectrum in the investigated energy region is determined by the 2pj7ℓj' Rydberg manifold of dielectronic recombination resonances, comprising 61 states within half an eV above the ground state of Na8+ . The theoretical resonance parameters of all contributing states are provided.

  11. The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.

    PubMed

    Vedovato, Natascia; Gadsby, David C

    2010-07-01

    Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K-adenosine triphosphatase (ATPase) alpha subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane's electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis alpha1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain-sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 microM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump-induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the

  12. The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions

    PubMed Central

    Vedovato, Natascia

    2010-01-01

    Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K–adenosine triphosphatase (ATPase) α subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane’s electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis α1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain–sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 µM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump–induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the

  13. The temperature dependence of the cross section for the energy pooling process Na(3P)+Na(3P) to Na(4D)+Na(3S)

    NASA Astrophysics Data System (ADS)

    Horvatic, V.; Movre, M.; Vadla, C.

    1999-10-01

    We report the measurements of the temperature dependence of the cross section σ4D for the energy pooling process Na(3P)+Na(3P) to Na(4D)+Na(3S). The latest two, as yet undisputed, results for σ4D obtained by different authors at T = 597 K and T = 483 K suggest that this cross section decreases with increasing T, which contradicts the theory and other experiments on similar processes. To resolve this controversy and to examine the temperature trend of the cross section, we have measured the σ4D in the temperature range 567-705 K, covering the high-temperature region that has not yet been investigated experimentally. To determine σ4D we have excited sodium atoms in the quasistatic wing of the D1 line using a cw dye laser and measured the fluorescence intensity for the 4D to 3P3/2 transition, relative to the intensity of the optically thin quasistatic wing of the D2 line. The spatial distribution of the number density of the sodium atoms in the 3P3/2 state and the sodium ground-state number density were measured too. The method used for the determination of the cross section is advantageous since it entirely circumvents the need to account for the radiation trapping of 3P level radiation, which was substantial under experimental conditions of the ground-state densities being 1014-1016 cm-3. The measurements of the cross section σ4D in the investigated temperature range have shown that it increases as ~exp(-Δ E/kT). From the experiment we obtained Δ E = (608±95) cm-1, which is in excellent agreement with the energy defect (613 cm-1) for the considered process, and in fair agreement with the values which follow from recent theoretical calculations.

  14. The complex lightcurve of 1992 NA

    NASA Astrophysics Data System (ADS)

    Wisniewski, Wieslaw Z.; Harris, A. W.

    1994-04-01

    Amor asteroid 1992 NA was monitored during three nights at a large phase angle of -65 deg. The lightcurves obtained did not reveal a repeatable curve with two maxima and two minima. However, some features suggested a periodicity with three maxima and three minima. A satisfactory composite lightcurve of this form was obtained by means of an 'eyeball' fit and by Fourier analysis. Individual and composite lightcurves are presented. The observed colors are consistent with the C class.

  15. The NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Venditti, Stefano

    2016-12-01

    The goal of the NA62 experiment at CERN is to collect O(100) events of the ultrarare K+→ π +ν bar {ν } decay in two years. After a long R&D phase and a successful pilot run in 2014, the first data-taking phase took place in 2015. In this paper the importance of the experiment's physics goal, as well as the experimental solutions adopted in order to attain it, will be reviewed.

  16. The complex lightcurve of 1992 NA

    NASA Technical Reports Server (NTRS)

    Wisniewski, Wieslaw Z.; Harris, A. W.

    1994-01-01

    Amor asteroid 1992 NA was monitored during three nights at a large phase angle of -65 deg. The lightcurves obtained did not reveal a repeatable curve with two maxima and two minima. However, some features suggested a periodicity with three maxima and three minima. A satisfactory composite lightcurve of this form was obtained by means of an 'eyeball' fit and by Fourier analysis. Individual and composite lightcurves are presented. The observed colors are consistent with the C class.

  17. Conformational changes couple Na+ and glucose transport

    PubMed Central

    Loo, Donald D. F.; Hirayama, Bruce A.; Gallardo, Elsa M.; Lam, Jason T.; Turk, Eric; Wright, Ernest M.

    1998-01-01

    The mechanism by which cotransport proteins couple their substrates across cell membranes is not known. A commonly proposed model is that cotransport results from ligand-induced conformational transitions that change the accessibility of ligand-binding sites from one side of the membrane to the other. To test this model, we have measured the accessibility of covalent probes to a cysteine residue (Q457C) placed in the putative sugar-translocation domain of the Na+/glucose cotransporter (SGLT1). The mutant protein Q457C was able to transport sugar, but transport was abolished after alkylation by methanethiosulfonate reagents. Alkylation blocked sugar translocation but not sugar binding. Accessibility of Q457C to alkylating reagents required external Na+ and was blocked by external sugar and phlorizin. The voltage dependence of accessibility was directly correlated with the presteady–state charge movement of SGLT1. Voltage-jump experiments with rhodamine-6-maleimide-labeled Q457C showed that the time course and level of changes in fluorescence closely followed the presteady–state charge movement. We conclude that conformational changes are responsible for the coupling of Na+ and sugar transport and that Q457 plays a critical role in sugar translocation by SGLT1. PMID:9636229

  18. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697. © 2016 Wiley Periodicals, Inc.

  19. 33 CFR 147.833 - Na Kika FDS safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description. Na...

  20. 33 CFR 147.833 - Na Kika FDS safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description. Na...

  1. 33 CFR 147.833 - Na Kika FDS safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description. Na...

  2. 33 CFR 147.833 - Na Kika FDS safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description. Na...

  3. 33 CFR 147.833 - Na Kika FDS safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description. Na...

  4. Spontaneous NA+ transients in individual mitochondria of intact astrocytes.

    PubMed

    Azarias, Guillaume; Van de Ville, Dimitri; Unser, Michael; Chatton, Jean-Yves

    2008-02-01

    Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.

  5. Na/K-ATPase Mimetic pNaKtide Peptide Inhibits the Growth of Human Cancer Cells*

    PubMed Central

    Li, Zhichuan; Zhang, Zhongbing; Xie, Joe X.; Li, Xin; Tian, Jiang; Cai, Ting; Cui, Hongjuan; Ding, Hanfei; Shapiro, Joseph I.; Xie, Zijian

    2011-01-01

    Cells contain a large pool of nonpumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. A supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces the activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness of pNaKtide and suggest that the defect in Na/K-ATPase-mediated signal transduction may be targeted for developing new anticancer therapeutics. PMID:21784855

  6. Reflectivity of NaK Droplets

    NASA Astrophysics Data System (ADS)

    Wiedemann, C.; Oswald, M.; Stabroth, S.; Klinkrad, H.; Vörsmann, P.

    An important contribution to the space debris population near 900 km orbital altitude are the NaK droplets. Sixteen nuclear powered satellites of the type RORSAT launched between 1980 and 1988 activated a reactor core ejection system close to this altitude. The core ejection causes an opening of the primary coolant circuit. The liquid coolant has been released into space during these core ejections, forming droplets up to a diameter of 5.5 cm. These droplets consist of an alloy of two alkali metals, sodium and potassium (NaK). In this paper the monochromatic and the total reflectivity of NaK is calculated using theoretical models. The reflectivity depends on the alloy composition and temperature of a droplet. The alloy composition may change due to evaporation, resulting in an enrichment of sodium especially at the droplet surface. According to the literature, there is only a limited number of available measurement data concerning the optical properties of NaK alloys. Furthermore the published data for pure sodium and potassium are controversial. Thus it is necessary to investigate the optical properties of alkali metals and their alloys. Mainly two types of optical absorption, the intraband and the interband absorption, are considered. The intraband absorption is calculated using the Drude-model which uses electrical properties to derive the optical constants of pure metals or alloys. Drude assumes that the valence electrons can be treated as free electrons. The electrons behave like an ideal gas of uncharged particles. The theory of free electrons is a very simple model for the description of the valence electrons in metals. This assumption is sufficient for alkali metals, because they show a nearly free electron behavior. For the interband absorption the classical Butcher-model is used. Furthermore an absorption anomaly which has been observed in some alkali metals is discussed. Especially for potassium, some measurements revealed an unexpected absorption in the

  7. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    PubMed

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  8. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex

    PubMed Central

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Bazzy-Asaad, Alia; Lazarus, Lawrence H.; Balboni, Gianfranco; Kim, Dong H.; Xia, Ying

    2012-01-01

    Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na+ influx through TTX-sensitive voltage-gated Na+ channels may be a main mechanism for hypoxia-induced disruption of K+ homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na+ channels. In the present study we examined the role of DOR in the regulation of Na+ influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na+ influx induced by a Na+ channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na+ activity in mouse cortical slices with Na+ selective electrodes and found that (1) anoxia-induced Na+ influx occurred mainly through TTX-sensitive Na+ channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na+ influx; (3) veratridine, a Na+ channel opener, enhanced the anoxia-induced Na+ influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na+ influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na+ influx through Na+ channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex. PMID:22609332

  9. A computational study of Na behavior on graphene

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn; Kulish, Vadym V.; Tan, Teck L.; Manzhos, Sergei; Persson, Clas

    2015-04-01

    We present the first ab initio and molecular dynamics study of Na adsorption and diffusion on ideal graphene that considers Na-Na interaction and dispersion forces. From density functional theory (DFT) calculations using the generalized gradient approximation (GGA), the binding energy (vs. the vacuum reference state) of -0.75 eV is higher than the cohesive energy of Na metal (ENa metal cohesive energy (EcohDFT - D = - 1.21 eV) when dispersion correction is included (DFT-D), with Eb = -1.14 eV. Both DFT and DFT-D predict that the increase of Na concentration on graphene results in formation of Na complexes. This is evidenced by smaller Bader charge on Na atoms of Na dimer, 0.55e (0.48e for DFT) compared to 0.86e (for both DFT and DFT-D) for the single atom adsorption as well as by the formation of a Nasbnd Na bond identified by analysis of the electron density. These results suggest that ideal graphene is not a promising anode material for Na-ion batteries. Analysis of diffusion pathways for a Na dimer shows that the dimer remains stable during the diffusion, and computed migration barriers are significantly lower for the dimer than that for the single atom diffusion. This indicates that Na-Na interaction should be taken into account during the analysis of Na transport on graphene. Finally, we show that the typical defects (vacancy and divacancy) induce significant strengthening of the Nasbnd C interaction. In particular, the largest change to the interaction is computed for vacancy-defected graphene, where the found lowest binding energy (vs. the metal reference state) is about 1.15 eV (1.21 eV for DFT) lower than that for ideal graphene.

  10. pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis

    PubMed Central

    Sodhi, Komal; Maxwell, Kyle; Yan, Yanling; Liu, Jiang; Chaudhry, Muhammad A.; Getty, Morghan; Xie, Zijian; Abraham, Nader G.; Shapiro, Joseph I.

    2015-01-01

    Obesity has become a worldwide epidemic and is a major risk factor for metabolic syndrome. Oxidative stress is known to play a role in the generation and maintenance of an obesity phenotype in both isolated adipocytes and intact animals. Because we had identified that the Na/K-ATPase can amplify oxidant signaling, we speculated that a peptide designed to inhibit this pathway, pNaKtide, might ameliorate an obesity phenotype. To test this hypothesis, we first performed studies in isolated murine preadipocytes (3T3L1 cells) and found that pNaKtide attenuated oxidant stress and lipid accumulation in a dose-dependent manner. Complementary experiments in C57Bl6 mice fed a high-fat diet corroborated our in vitro observations. Administration of pNaKtide in these mice reduced body weight gain, restored systemic redox and inflammatory milieu, and, crucially, improved insulin sensitivity. Thus, we propose that inhibition of Na/K-ATPase amplification of oxidative stress may ultimately be a novel way to combat obesity, insulin resistance, and metabolic syndrome. PMID:26601314

  11. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  12. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    PubMed Central

    Dracatos, Peter M.; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A.; Plummer, Kim M.

    2016-01-01

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2. PMID:27598152

  13. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis.

    PubMed

    Møller, Inge S; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M; Roy, Stuart J; Coates, Juliet C; Haseloff, Jim; Tester, Mark

    2009-07-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants.

  14. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi.

    PubMed

    Dracatos, Peter M; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A; Plummer, Kim M

    2016-09-03

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.

  15. Na+ channel function, regulation, structure, trafficking and sequestration

    PubMed Central

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  16. Effect of Na+ on surface fractal dimension of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2015-05-01

    Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.

  17. Na+-K+ pump regulation and skeletal muscle contractility.

    PubMed

    Clausen, Torben

    2003-10-01

    In skeletal muscle, excitation may cause loss of K+, increased extracellular K+ ([K+]o), intracellular Na+ ([Na+]i), and depolarization. Since these events interfere with excitability, the processes of excitation can be self-limiting. During work, therefore, the impending loss of excitability has to be counterbalanced by prompt restoration of Na+-K+ gradients. Since this is the major function of the Na+-K+ pumps, it is crucial that their activity and capacity are adequate. This is achieved in two ways: 1) by acute activation of the Na+-K+ pumps and 2) by long-term regulation of Na+-K+ pump content or capacity. 1) Depending on frequency of stimulation, excitation may activate up to all of the Na+-K+ pumps available within 10 s, causing up to 22-fold increase in Na+ efflux. Activation of the Na+-K+ pumps by hormones is slower and less pronounced. When muscles are inhibited by high [K+]o or low [Na+]o, acute hormone- or excitation-induced activation of the Na+-K+ pumps can restore excitability and contractile force in 10-20 min. Conversely, inhibition of the Na+-K+ pumps by ouabain leads to progressive loss of contractility and endurance. 2) Na+-K+ pump content is upregulated by training, thyroid hormones, insulin, glucocorticoids, and K+ overload. Downregulation is seen during immobilization, K+ deficiency, hypoxia, heart failure, hypothyroidism, starvation, diabetes, alcoholism, myotonic dystrophy, and McArdle disease. Reduced Na+-K+ pump content leads to loss of contractility and endurance, possibly contributing to the fatigue associated with several of these conditions. Increasing excitation-induced Na+ influx by augmenting the open-time or the content of Na+ channels reduces contractile endurance. Excitability and contractility depend on the ratio between passive Na+-K+ leaks and Na+-K+ pump activity, the passive leaks often playing a dominant role. The Na+-K+ pump is a central target for regulation of Na+-K+ distribution and excitability, essential for second

  18. Acidosis Differentially Modulates Inactivation in NaV1.2, NaV1.4, and NaV1.5 Channels

    PubMed Central

    Vilin, Yury Y.; Peters, Colin H.; Ruben, Peter C.

    2012-01-01

    NaV channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of NaV1.2, NaV1.4, and NaV1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas NaV1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in NaV1.2 and NaV1.5 were profound. In NaV1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in NaV1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability. PMID:22701426

  19. Shank2 redistributes with NaPilla during regulated endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Giral, Hector; Caldas, Yupanqui A.; Levi, Moshe

    2010-01-01

    Serum phosphate levels are acutely impacted by the abundance of sodium-phosphate cotransporter IIa (NaPiIIa) in the apical membrane of renal proximal tubule cells. PSD-95/Disks Large/Zonula Occludens (PDZ) domain-containing proteins bind NaPiIIa and likely contribute to the delivery, retention, recovery, and trafficking of NaPiIIa. Shank2 is a distinctive PDZ domain protein that binds NaPiIIa. Its role in regulating NaPiIIa activity, distribution, and abundance is unknown. In the present in vivo study, rats were maintained on a low-phosphate diet, and then plasma phosphate levels were acutely elevated by high-phosphate feeding to induce the recovery, endocytosis, and degradation of NaPiIIa. Western blot analysis of renal cortical tissue from rats given high-phosphate feed showed NaPiIIa and Shank2 underwent degradation. Quantitative immunofluorescence analyses, including microvillar versus intracellular intensity ratios and intensity correlation quotients, showed that Shank2 redistributed with NaPiIIa during the time course of NaPiIIa endocytosis. Furthermore, NaPiIIa and Shank2 trafficked through distinct endosomal compartments (clathrin, early endosomes, lysosomes) with the same temporal pattern. These in vivo findings indicate that Shank2 is positioned to coordinate the regulated endocytic retrieval and downregulation of NaPiIIa in rat renal proximal tubule cells. PMID:20810910

  20. Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries

    SciTech Connect

    Li, Xin; Wang, Yan; Wu, Di; Liu, Lei; Bo, Shou-Hang; Ceder, Gerbrand

    2016-08-30

    Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. Here, we show in this paper that there is a clear relation between the Jahn$-$Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Consequently, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart this effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.

  1. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    SciTech Connect

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-15

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO{sub 2} and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO{sub 2}/Al{sub 2}O{sub 3}, H{sub 2}O/Na{sub 2}O and Na{sub 2}O/SiO{sub 2} molar ratios of precursors in the two-step process. The surface area and NH{sub 4}{sup +}-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m{sup 2}/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m{sup 2}/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of {approx}3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  2. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system.

    PubMed

    Hao, Jie; Lu, Jiaojiao; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2016-08-01

    Oxidized starch, one of the most important starch derivatives, has many different properties and applications. Currently, there are two ways to produce oxidized starch, through specific and nonspecific oxidation. Specific oxidation using the stable nitroxyl radical, 2,2,6,6-tetramethyl preparidinloxy (TEMPO), with NaBr and NaClO can produce oxidized starches with different properties under good quality control. In the current study, we examine the products of specifically oxidized starch. As the amount of oxidant and the temperature, two critical factors impacting the oxidation of starch were thoroughly investigated. Analysis of the molecular weight (MW), degree of oxidization (DO) and the detailed structures of corresponding products was accomplished using gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and quadrapole time-of-flight mass spectrometry (Q/TOF-MS). According to the analytical results, the oxidation patterns of starch treated with specific oxidant TEMPO-NaBr-NaClO were established. When high amounts of oxidant was applied, more glucose residues within starch were oxidized to glucuronic acids (higher DO) and substantial degradation to starch oligosaccharides was observed. By selecting a reaction temperature of 25°C a high DO could be obtained for a given amount of oxidant. The reducing end sugar residue within oxidized starch was itself oxidized and ring opened in all TEMPO-NaBr-NaClO reactions. Furthermore, extra oxidant generated additional novel structures in the reducing end residues of some products, particularly in low temperature reactions.

  3. Design and implementation of the NaI(Tl)/CsI(Na) detectors output signal generator

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Cong-Zhan; Zhao, Jian-Ling; Zhang, Fei; Zhang, Yi-Fei; Li, Zheng-Wei; Zhang, Shuo; Li, Xu-Fang; Lu, Xue-Feng; Xu, Zhen-Ling; Lu, Fang-Jun

    2014-02-01

    We designed and implemented a signal generator that can simulate the output of the NaI(Tl)/CsI(Na) detectors' pre-amplifier onboard the Hard X-ray Modulation Telescope (HXMT). Using the development of the FPGA (Field Programmable Gate Array) with VHDL language and adding a random constituent, we have finally produced the double exponential random pulse signal generator. The statistical distribution of the signal amplitude is programmable. The occurrence time intervals of the adjacent signals contain negative exponential distribution statistically.

  4. Neutron spectroscopy of water dynamics in NaX and NaA zeolites

    NASA Astrophysics Data System (ADS)

    Kamitakahara, William A.; Wada, Noboru

    2008-04-01

    We have investigated the dynamics of water molecules in zeolites NaA and NaX by high-resolution quasielastic neutron scattering methods. Between 260 and 310 K, the local translational diffusive motion of water in the zeolites is one to two orders of magnitude slower than in bulk water. The Q dependence of the scattering shows effects of confinement and the presence of both relatively mobile and immobile molecules. The speed of the diffusive motion depends strongly on hydration level. Comparison with other hydrated siliceous materials indicates that the host charge per water molecule is a major factor in determining the time scale of diffusion.

  5. Direct Reactions with MoNA-LISA

    NASA Astrophysics Data System (ADS)

    Kuchera, Anthony

    2016-03-01

    Nuclear reactions can be used to probe the structure of nuclei. Direct reactions, which take place on short time scales, are well-suited for experiments with beams of short-lived nuclei. One such reaction is nucleon knockout where a proton or neutron is removed from the incoming beam from the interaction with a target. Single nucleon knockout reactions have been used to study the single-particle nature of nuclear wave functions. A recent experiment at the National Superconducting Cyclotron Laboratory was performed to measure cross sections from single nucleon knockout reactions for several p-shell nuclei. Detection of the residual nucleus in coincidence with any gamma rays emitted from the target allowed cross sections to ground and excited states to be measured. Together with input from reaction theory, ab initio structure theories can be tested. Simultaneously the accuracy of knockout reaction models can be validated by detecting the knocked out neutron with the Modular Neutron Array and Large multi-Institutional Scintillator Array (MoNA-LISA). Preliminary results from this experiment will be shown. Knockout reactions can also be used to populate nuclei which are neutron unbound, thus emit neutrons nearly instantaneously. The structure of these nuclei, therefore, cannot be probed with gamma ray spectroscopy. However, with large neutron detectors like MoNA-LISA the properties of these short-lived nuclei are able to be measured. Recent results using MoNA-LISA to study the structure of neutron-rich nuclei will be presented. The author would like to acknowledge support from the NNSA and NSF.

  6. Revisiting the hydration structure of aqueous Na+

    DOE PAGES

    Galib, M.; Baer, M. D.; Skinner, L. B.; ...

    2017-02-27

    In this paper, a combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na+. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å–1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å–1. Both provide an accurate measure of the shape and position of the first peak in the Na–O pair distribution function, gNaO(r). The measured Na–O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Å (EXAFS) are in excellentmore » agreement. These measurements show a much shorter Na–O distance than generally reported in the experimental literature (Na–Oavg ~ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na–O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na–O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (–D3 and –D2) significantly worsens the agreement with experiment by further increasing the Na–O distance by 0.07 Å. In contrast, the use of a classical Na–O Lennard-Jones potential with SPC/E water accurately predicts the Na–O distance as 2.39 Å although the Na–O peak is over-structured with respect to experiment.« less

  7. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite

    NASA Astrophysics Data System (ADS)

    Zhirong, Liu; Azhar Uddin, Md.; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  8. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite.

    PubMed

    Zhirong, Liu; Azhar Uddin, Md; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  9. COPPER Students - ELaNa IV

    NASA Image and Video Library

    2013-07-11

    The Close Orbiting Propellant Plume Elemental Recognition (COPPER) was developed by students from St. Louis University as a technology demonstration mission whose objective is to test the suitability of a commercially-available compact uncooled microbolometer (tiny infrared camera) array for scientific imagery of Earth in the long-wave infrared range (LWIR, 7-13 microns). Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.

  10. CONCEPTUAL BASIS FOR NATURAL ATTENUATION (NA) ...

    EPA Pesticide Factsheets

    As used in enforcement actions at hazardous waste sites by U.S. EPA, monitored natural attenuation is a remedy fully equivalent to any other remedy. The acceptance of MNA is based on three lines of evidence: historical ground water and/or soil chemistry data that demonstrates a trend of declining contaminant concentration, 2. hydrogeologic and geochemical data that demonstrate NA processes and rates, and 3. Field or microcosm studies. MNA is appropriate as remedial approach only where it can be demonstrated to achieve remedial objectives within reasonable time frame, and meets the applicable remedy selection criteria for the particular regulatory program. To inform the public.

  11. The NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Piccini, Mauro

    2016-11-01

    The rare decays K → πvv¯ are excellent processes to make tests of new physics at the highest scale complementary to LHC thanks to their theoretically cleanness. The NA62 experiment at CERN SPS aims to collect of the order of 100 events in two years of data taking for the decay K+ → π+vv¯, keeping the background at the level of 10%. Part of the experimental apparatus has been commissioned during a technical run in 2012. The diverse and innovative experimental techniques will be explained and some preliminary results obtained during the 2014 pilot run will be reviewed.

  12. Status of the NA62 Experiment

    NASA Astrophysics Data System (ADS)

    Palladino, Vito

    2016-04-01

    The rare decays {{{K}}^ + } to {π ^ + }{{ν bar ν }} are excellent processes to make tests of new physics at the highest scale complementary to LHC thanks to their theoretically cleaness. The NA62 experiment at CERN SPS aims to collect of the order of 100 events in two years of data taking, keeping the background at the level of 10%. Part of the experimental apparatus has been commissioned during a technical run in 2012. The physics prospects and the status of the experiment will be reviewed after the commissioning run of 2014 and the data taking in 2015.

  13. The NA62 Gigatracker pixel detector system

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Noy, M.; Petrucci, F.; Riedler, P.; Rivetti, A.; Tiuraniemi, S.

    2010-05-01

    The silicon tracker for the NA62 experiment has to provide both a time resolution of 150 ps rms and a space resolution of about 100 μm rms. These challenging specifications require the development of a new readout electronics in order to address the problem of measuring the tracks arrival time with such a high channel density. Moreover, the high particle density (up to 1.5 MHz/mm2 in the center and 0.8-1 GHz in total) requires a high speed measurement and data transmission in order to keep the dead time below 1%.

  14. Subnitride chemistry: A first-principles study of the NaBa 3N, Na 5Ba 3N, and Na 16Ba 6N phases

    NASA Astrophysics Data System (ADS)

    Oliva, Josep M.

    2005-04-01

    An ab initio study on the electronic structure of the subnitrides NaBa 3N, Na 5Ba 3N, and Na 16Ba 6N is performed for the first time. The NaBa 3N and Na 5Ba 3N phases consist of infinite 1∞[NBa 6/2] strands composed of face-sharing NBa 6 octahedra surrounded by a "sea" of sodium atoms. The Na 16Ba 6N phase consist of discrete [NBa 6] octahedra arranged in a body-cubic fashion, surrounded by a "sea" of sodium atoms. Our calculations suggest that the title subnitrides are metals. Analysis of the electronic structure shows partial interaction of N(2s) with Ba(5 p) electrons in the lower energy region for NaBa 3N and Na 5Ba 3N. However, no dispersion is observed for the N(2s) and Ba(5 p) bands in the cubic phase Na 16Ba 6N. The metallic band below the Fermi level shows a strong mixing of N(2p), Ba(6 s), Ba(5 d), Ba(6 p), Na(3 s) and Na(3 p) orbitals. The metallic character in these nitrides stems from delocalized electrons corresponding to hybridized 5dl6sm6pn barium orbitals which interact with hybridized 3sn3pm sodium orbitals. Analysis of the electron density and electronic structure in these nitrides shows two different regions: a metallic matrix corresponding to the sodium atoms and the regions around them and heteropolar bonding between nitrogen and barium within the infinite 1∞[NBa 6/2] strands of the NaBa 3N and Na 5Ba 3N phases, and within the isolated [NBa 6] octahedra of the Na 16Ba 6N phase. The nitrogen atoms inside the strands and octahedra are negatively charged, the anionic character of nitrogens being larger in the isolated octahedra of the cubic phase Na 16Ba 6N, due to the lack of electron delocalization along one direction as opposed to the other phases. The sodium and barium atoms appear to be slightly negatively and positively charged, the latter to a larger extent. From the computed Ba-N overlap populations as well as the analysis of the contour maps of differences between total density and superposition of atomic densities, we suggest

  15. Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake.

    PubMed

    Parks, Scott K; Tresguerres, Martin; Goss, Greg G

    2007-02-01

    Isolated mitochondria-rich (MR) cells from the rainbow trout gill epithelium were subjected to intracellular pH (pH(i)) imaging with the pH-sensitive dye BCECF-AM. MR cells were categorized into two distinct functional subtypes based on their ability to recover pH(i) from an NH(4)Cl-induced acidification in the absence of Na(+). An apparent link between resting pH(i) and Na(+)-independent pH(i) recovery was made. We observed a unique pH(i) acidification event that was induced by extracellular Na(+) addition. This further classified the mixed MR cell population into two functional subtypes: the majority of cells (77%) demonstrated the Na(+)-induced pH(i) acidification, whereas the minority (23%) demonstrated an alkalinization of pH(i) under the same circumstances. The focus of this study was placed on the Na(+)-induced acidification and pharmacological analysis via the use of amiloride and phenamil, which revealed that Na(+) uptake was responsible for the intracellular acidification. Further experiments revealed that pH(i) acidification could be abolished when Na(+) was allowed entry into the cell, but the activity of an electrogenic Na(+)-HCO(3)(-) cotransporter (NBC) was inhibited by DIDS. The electrogenic NBC activity was supported by a DIDS-sensitive, Na(+)-induced membrane potential depolarization as observed via imaging of the voltage-sensitive dye bis-oxonol. We also demonstrated NBC immunoreactivity via Western blotting and immunohistochemistry in gill tissue. We propose a model for transepithelial Na(+) uptake occurring via an apical Na(+) channel linked to a basolateral, electrogenic NBC in one subpopulation of MR cells.

  16. On the regulation of Na+/H+ and K+/H+ antiport in yeast mitochondria: evidence for the absence of an Na(+)-selective Na+/H+ antiporter.

    PubMed

    Welihinda, A A; Trumbly, R J; Garlid, K D; Beavis, A D

    1993-10-04

    Unlike mammalian mitochondria, yeast mitochondria swell spontaneously in both NaOAc and KOAc. This swelling reflects the activity of an electroneutral cation/H+ antiport pathway. Transport of neither salt is stimulated by depletion of endogenous divalent cations; however, it can be inhibited by addition of exogenous divalent cations (Mg2+ IC50 = 2.08 mM, Ca2+ IC50 = 0.82 mM). Transport of both Na+ and K+ can be completely inhibited by the amphiphilic amines propranolol (IC50 = 71 microM) and quinine (IC50 = 199 microM) with indistinguishable IC50 values. Dicyclohexylcarbodiimide inhibits with a second-order rate constant of 1.6 x 10(-4) (nmol DCCD/mg)-1 min-1 at 0 degrees C; however, with both Na+ and K+ inhibition reaches a maximum of about 46%. The remaining transport can still be inhibited by propranolol. Transport of both cations is sensitive to pH; yielding linear Hill plots and Dixon plots with a pIC50 value of 7.7 for both Na+ and K+. These properties are qualitatively the same as those of the non-selective K+/H+ antiporter of mammalian mitochondria. However, the remarkable similarity between the data obtained in Na+ and K+ media suggests that an antiporter akin to the Na(+)-selective Na+/H+ antiporter of mammalian mitochondria, which is inhibited by none of these agents, is absent in yeast. In an attempt to reveal the activity of a propranolol-insensitive Na(+)-selective antiporter, we compared the rates of Na+/H+ and K+/H+ antiport in the presence of sufficient propranolol to block the K+/H+ antiporter. Between pH 4.6 and 8.8 no difference could be detected. Consequently, we conclude that yeast mitochondria lack the typical Na(+)-selective Na+/H+ antiporter of mammalian mitochondria.

  17. Novel regulation of cell [Na(+)] in macula densa cells: apical Na(+) recycling by H-K-ATPase.

    PubMed

    Peti-Peterdi, János; Bebok, Zsuzsa; Lapointe, Jean-Yves; Bell, P Darwin

    2002-02-01

    Na-K-ATPase is the nearly ubiquitous enzyme that maintains low-Na(+), high-K(+) concentrations in cells by actively extruding Na(+) in exchange for K(+). The prevailing paradigm in polarized absorbing epithelial cells, including renal nephron segments and intestine, has been that Na-K-ATPase is restricted to the basolateral membrane domain, where it plays a prominent role in Na(+) absorption. We have found, however, that macula densa (MD) cells lack functionally and immunologically detectable amounts of Na-K-ATPase protein. In fact, these cells appear to regulate their cytosolic [Na(+)] via another member of the P-type ATPase family, the colonic form of H-K-ATPase, which is located at the apical membrane in these cells. We now report that this constitutively expressed apical MD colonic H-K-ATPase can function as a Na(H)-K-ATPase and regulate cytosolic [Na(+)] in a novel manner. This apical Na(+)-recycling mechanism may be important as part of the sensor function of MD cells and represents a new paradigm in cell [Na(+)] regulation.

  18. Penning and associative ionization in crossed-beam Na/Na collisions assisted by strong resonant laser fields

    SciTech Connect

    Weiner, J.; Polak-Dingels, P.

    1981-01-01

    We observe the production of Na/sub 2//sup +/ and Na/sup +/ arising from single collisions between crossed beams of sodium atoms when a laser field is tuned near the Na(3p /sup 2/P/sub 3/2/) and Na(3p /sup 2/P/sub 1/2/) transitions. Measurements of ion intensity vs laser intensity show that at moderately high power true laser-induced processes dominate over purely collisional effects. Relative intensity of mass-selected ions produced at either member of the Na resonance doublet shows conclusively that Na/sup +/ does not arise simply from photodissociation of Na/sub 2//sup +/ but must result from a direct, laser-induced collisional ionization.

  19. Vanadate sensitivity of Na+, K+-ATPase from Schistosoma mansoni and its modulation by Na+, K+ and Mg2+.

    PubMed

    Noel, F; Pardon, R S

    1989-01-01

    Vanadate inhibitory effects on Na+, K+-ATPases from carcass of Schistosoma mansoni and from lamb kidney outer medulla were compared in the presence of various concentrations of Na+, K+ and Mg2+. Depending on the ionic conditions, the schistosomal Na+, K+-ATPase was 2.4- to 175-fold less sensitive to vanadate than the lamb kidney enzyme. In 100 mM Na+, 3 mM K+ and 3 mM Mg2+, schistosomal Na+, K+-ATPase was surprisingly resistant to vanadate (I50 = 944 microM). The difference in vanadate sensitivity between schistosomal and lamb Na+, K+-ATPases may be due to a species difference in the efficacy of Na+, K+ and Mg2+ in promoting conformational changes between E1 and E2 forms of the enzyme.

  20. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton

    PubMed Central

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A. Egrinya

    2012-01-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na+ concentrations in leaves. The [Na+] in the ‘0’ side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the ‘0’ side phloem was girdled, suggesting that the increased [Na+] in the ‘0’ side roots was possibly due to transportation of foliar Na+ to roots through phloem. Plants under non-uniform salinity extruded more Na+ from the root than those under uniform salinity. Root Na+ efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na+ efflux and H+ influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na+ extrusion was probably due to active Na+/H+ antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na+ concentration, transport of excessive foliar Na+ to the low salinity side, and enhanced Na+ efflux from the low salinity root. PMID:22200663

  1. Synthesis of NaYF4, NaLuF4 and NaGdF4-based upconversion nanocrystals with hydro (solvo) thermal methods.

    PubMed

    Yin, Dongguang; Song, Kailin; Ou, Yangjuan; Wang, Chengcheng; Liu, Bing; Wu, Minghong

    2013-06-01

    Serials of NaYF4, NaLuF4 and NaGdF4-based nanocrystals have been synthesized successfully by solvothermal and hydrothermal, respectively. The properties of the products were characterized and compared. The nanocrystals prepared by hydrothermal method exhibited uniform hexagonal phase and large size, while the nanocrystals prepared by solvothermal method displayed high upconversion luminescence (UCL) and small size. The UCL intensities of the nanocrystals prepared by solvothermal method were higher than that of nanocrystals from hydrothermal method. Whether using solvothermal or hydrothermal method, the UCL intensities of the nanocrystals were in the sequence (from strong to weak) of NaLuF4:Gd/Yb/Tm, NaLuF4:Yb/Tm, NaGdF4:Yb/Tm, NaYF4:Gd/Yb/Tm and NaYF4:Yb/Tm, respectively. This is the first time to systematically compare three kinds of host-based nanocrystals, which are prepared by two different approaches with various lanthanide ions doped. This work could provide new insight into fabrication of upconversion nanocrystals with intense UCL and controllable morphology and size via using suitable doping ions, host materials and efficient approaches.

  2. NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7: novel single crystal pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Sanders, M. B.; Krizan, J. W.; Plumb, K. W.; McQueen, T. M.; Cava, R. J.

    2017-02-01

    The crystal structures and magnetic properties of three previously unreported A2B2F7 pyrochlore materials, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7 are presented. In these compounds, either S  =  2Fe2+ or S  =  5/2Mn2+ is on the B site, while nonmagnetic Na and Ca (Na and Sr) are disordered on the A site. The materials, which were grown as crystals via the floating zone method, display high effective magnetic moments and large Curie-Weiss thetas. Despite these characteristics, no ordering transition is detected. However, freezing of the magnetic spins, characterized by peaks in the susceptibility or specific heat, is observed at very low temperatures. The empirical frustration index, f  =  -θ CW/T f, for the materials are 36 (NaSrMn2F7), 27 (NaSrFe2F7), and 19 (NaCaFe2F7). AC susceptibility, DC susceptibility, and heat capacity measurements are used to characterize the observed spin glass behavior. The results suggest that the compounds are frustrated pyrochlore antiferromagnets with weak bond disorder. The magnetic phenomena that these fluoride pyrochlores exhibit, in addition to their availability as relatively large single crystals, make them promising candidates for the study of geometric magnetic frustration.

  3. NA-CORDEX: Overview and Sample Results

    NASA Astrophysics Data System (ADS)

    Bukovsky, Melissa; Mearns, Linda; Arritt, Raymond; Castro, Christopher; Chang, Hsin-I.; Christensen, Jens; Christensen, Ole; Frigon, Anne; Gutowski, William; Kjellström, Erik; Laprise, René; McGinnis, Seth; Nikulin, Grigory; Scinocca, John; Sushama, Laxmi; Winger, Katje

    2017-04-01

    The North American CORDEX program (NA-CORDEX) has produced a good number of projections of climate according to the first phase of the CORDEX program. These simulations are based on a wide range of regional and global climate models, and some matrices of combinations have resulted. The RCMs involved include: WRF, CanRCM4, CRCM5, RegCM4, RCA4, and HirHam5. Driving GCMs include: EC-EARTH, CanESM2, HadGEM2-ES, GFDL-ESM2M, MPI-ESM-LR. These GCMs nicely span the equilibrium climate sensitivity of the GCMs making up the CMIP5 suite of models. Simulations have been performed both at .44 and .22 spatial resolutions and often for both RCP8.5 and 4.5. We will present an update of the status of NA-CORDEX, an overview of the simulations, and some of the results for North America, focusing on the quality of the baseline climate simulations and the projections of precipitation and temperature.

  4. The NA62 GigaTracker

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Feito, D. Alvarez; Arcidiacono, R.; Biino, C.; Bonacini, S.; Ceccucci, A.; Chiozzi, S.; Gil, E. Cortina; Ramusino, A. Cotta; Degrange, J.; Fiorini, M.; Gamberini, E.; Gianoli, A.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Minucci, E.; Morel, M.; Noël, J.; Noy, M.; Perktold, L.; Perrin-Terrin, M.; Petagna, P.; Petrucci, F.; Poltorak, K.; Romagnoli, G.; Ruggiero, G.; Velghe, B.; Wahl, H.

    2017-02-01

    The GigaTracker is a hybrid silicon pixel detector built for the NA62 experiment aiming at measuring the branching fraction of the ultra-rare kaon decay K+ →π+ ν ν bar at the CERN SPS. The detector has to track particles in a beam with a flux reaching 1.3 MHz/mm2 and provide single-hit timing with 200 ps RMS resolution for a total material budget of less than 0.5% X0 per station. The tracker comprises three 60.8 mm×27 mm stations installed in vacuum (∼10-6 mbar) and cooled with liquid C6F14 circulating through micro-channels etched inside a few hundred micron thick silicon plates. Each station is composed of a 200 μm thick silicon sensor read out by 2×5 custom 100 μm thick ASICs, called TDCPix. Each chip contains 40×45 asynchronous pixels, 300 μm×300 μm each and is instrumented with 100 ps bin time-to-digital converters. In order to cope with the high rate, the TDCPix is equipped with four 3.2 Gb/s serialisers sending out the data. We will describe the detector and the results from the 2014 and 2015 NA62 runs.

  5. Minimizing Load Effects on NA4 Gear Vibration Diagnostic Parameter

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Zakrajsek, James J.

    2001-01-01

    NA4 is a vibration diagnostic parameter, developed by researchers at NASA Glenn Research Center, for health monitoring of gears in helicopter transmissions. The NA4 reacts to the onset of gear pitting damage and continues to react to the damage as it spreads. This research also indicates NA4 reacts similarly to load variations. The sensitivity of NA4 to load changes will substantially affect its performance on a helicopter gearbox that experiences continuously changing load throughout its flight regimes. The parameter NA4 has been used to monitor gear fatigue tests at constant load. At constant load, NA4 effectively detects the onset of pitting damage and tracks damage severity. Previous research also shows that NA4 reacts to changes in load applied to the gears in the same way it reacts to the onset of pitting damage. The method used to calculate NA4 was modified to minimize these load effects. The modified NA4 parameter was applied to four sets of experimental data. Results indicate the modified NA4 is no longer sensitive to load changes, but remains sensitive to pitting damage.

  6. Adsorbed or intercalated: Na on graphene/Ir(111)

    NASA Astrophysics Data System (ADS)

    Pervan, Petar; Lazić, Predrag

    2017-09-01

    Interaction of sodium with graphene (Gr) on Ir(111) was studied with the aim to resolve the issue of Na adsorption/intercalation kinetics. The system Na/Gr/Ir(111) was studied by means of angle-resolved photoemission spectroscopy, low-energy electron diffraction, and ab initio density functional theory (DFT) calculation. It has been found that at room temperature (RT) and low concentrations Na is dominantly adsorbed on graphene. At higher concentrations, an intercalation process sets in so that it is possible to observe the coexistence of these two states. Eventually, all Na atoms are found in the intercalated state as determined by exposure to oxygen. While adsorption of Na on graphene already intercalated by Na [Na/Gr/Na/Ir(111) system] at RT was not possible, we could observe Li adsorption through the increase of Dirac point binding energy. Li coadsorption strongly affects the binding energy of the iridium surface state as well. This finding was supported by DFT calculations of adsorption energy of Na and Li on bare and fully Na intercalated graphene.

  7. Elevated intracellular Na(+) concentrations in developing spinal neurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2017-03-01

    Over 25 years ago it was first reported that intracellular chloride levels (Cl(-)in ) were higher in developing neurons than in maturity. This finding has had significant implications for understanding the excitability of developing networks and recognizing the underlying causes of hyperexcitability associated with disease and neural injury. While there is some evidence that intracellular sodium levels (Na(+)in ) change during the development of non-neural cells, it has largely been assumed that Na(+)in is the same in developing and mature neurons. Here, using the sodium indicator SBFI, we test this idea and find that Na(+)in is significantly higher in embryonic spinal motoneurons and interneurons than in maturity. We find that Na(+)in reaches ~ 60 mM in mid-embryonic development and is then reduced to ~ 30 mM in late embryonic development. By retrogradely labeling motoneurons with SBFI we can reliably follow Na(+)in levels in vitro for hours. Bursts of spiking activity, and blocking voltage-gated sodium channels did not influence observed motoneuron sodium levels. On the other hand, Na(+)in was reduced by blocking the Na(+) -K(+) -2Cl(-) cotransporter NKCC1, and was highly sensitive to changes in external Na(+) and a blocker of the Na(+) /K(+) ATPase. Our findings suggest that the Na(+) gradient is weaker in embryonic neuronal development and strengthens in maturity in a manner similar to that of Cl(-) .

  8. Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex

    PubMed Central

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Balboni, Gianfranco; Salvadori, Severo; Kim, Dong H.; Xia, Ying

    2012-01-01

    Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H2S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na+ activity using Na+ selective electrodes in mouse cortical slices that H2S donor sodium hydrosulfide (NaHS) increased Na+ influx in a concentration-dependent manner. This effect could be partially blocked by either Na+ channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H2S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na+ influx through Na+ channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na+ currents/influx in normoxia, had no effect on H2S-induced Na+ influx, suggesting that H2S-induced disruption of Na+ homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia. PMID:22474073

  9. Rydberg States of Na-doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Drabbels, Marcel

    2008-03-01

    The dynamics of excited states of Na atoms deposited on the surface of helium nanodroplets has been investigated with velocity map ion imaging, photoelectron spectroscopy and time-of-flight mass-spectroscopy. For the first time, the excitation spectra of Na-doped helium nanodroplets corresponding to Rydberg states of Na atoms have been measured from the lowest excited 3p state up to the ionization threshold. All lines in the excitation spectra are shifted and broadened with respect to the corresponding atomic lines. In addition to bare Na* atoms also Na*HeN (N = 1-6) exciplexes are detected upon excitation. Photoelectron spectroscopy reveals the desorption of Na* not only in the initially excited states but also in lower lying states, indicating that relaxation plays an important role. The recorded velocity distributions show interesting characteristics: for the lowest states the mean kinetic energy of Na* increases linearly with excitation energy. The velocity distributions of Na*HeN exciplexes do not manifest such remarkable properties. The observations can be largely explained by assuming that the interaction of Na* with the helium nanodroplet can be described by the sum of Na*-He pair potentials.

  10. Direct interaction of Na-azide with the KATP channel.

    PubMed

    Trapp, S; Ashcroft, F M

    2000-11-01

    1. The effects of the metabolic inhibitor sodium azide were tested on excised macropatches from Xenopus oocytes expressing cloned ATP-sensitive potassium (KATP) channels of the Kir6.2/SUR1 type. 2. In inside-out patches from oocytes expressing Kir6.2 delta C36 (a truncated form of Kir6.2 that expresses in the absence of SUR), intracellular Na-azide inhibited macroscopic currents with an IC50 of 11 mM. The inhibitory effect of Na-azide was mimicked by the same concentration of NaCl, but not by sucrose. 3. Na-azide and NaCl blocked Kir6.2/SUR1 currents with IC50 of 36 mM and 19 mM, respectively. Inhibition was abolished in the absence of intracellular Mg2+. In contrast, Kir6.2 delta C36 currents were inhibited by Na-azide both in the presence or absence of intracellular Mg2+. 4. Kir6.2/SUR1 currents were less sensitive to 3 mM Na-azide in the presence of MgATP. This apparent reduction in sensitivity is caused by a small activatory effect of Na-azide conferred by SUR. 5. We conclude that, in addition to its well-established inhibitory effect on cellular metabolism, which leads to activation of KATP channels in intact cells, intracellular Na-azide has direct effects on the KATP channel. Inhibition is intrinsic to Kir6.2, is mediated by Na+, and is modulated by SUR. There is also a small, ATP-dependent, stimulatory effect of Na-azide mediated by the SUR subunit. The direct effects of 3 mM Na-azide on KATP channels are negligible in comparison to the metabolic activation produced by the same Na-azide concentration.

  11. Theoretical calculation of low-lying states of NaAr and NaXe

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.

    1981-01-01

    Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.

  12. Decomposition Kinetics of Titania Slag in Eutectic NaOH-NaNO3 System

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Zhi; Qi, Tao; Wang, Lina; Xue, Tianyan

    2016-02-01

    The decomposition kinetics and mechanism of titania slag in eutectic NaOH-NaNO3 system were studied in the temperature range 623 K to 723 K (350 °C to 450 °C). Decomposed products were examined using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. It has been identified that the main product is Na2TiO3 and the decomposition kinetics of titania slag followed a shrinking unreacted core model. It is proposed that the chemical reaction process was the rate determining step with apparent activation energy of 62.4 kJ/mol. NaNO3 was mainly acted as oxygen carrier and mass transport agent to lower the viscosity of the system. The purity of TiO2 obtained in the product was up to 99.3 pct. A flow diagram to produce TiO2 and to recycle the media was proposed.

  13. 24Mg(p, α)21Na reaction study for spectroscopy of 21Na

    DOE PAGES

    Cha, S. M.; Chae, K. Y.; Kim, A.; ...

    2015-11-03

    The Mg-24(p, alpha)Na-21 reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in Na-21 for the astrophysically important F-17(alpha, p)Ne-20 reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched Mg-24 solid targets were used. When recoiling He-4 particles from the Mg-24(p, alpha)Na-21 reaction we used a highly segmented silicon detector array to detect them; it measured the yields of He-4 particles over a range of angles simultaneously. A observed a new level at 6661 ± 5 keVmore » in the present work. The extracted angular distributions for the first four levels of Na-21 and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.« less

  14. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels.

    PubMed

    Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A; Isom, Lori L; Raman, Indira M

    2009-02-18

    The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits.

  15. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes

    PubMed Central

    1989-01-01

    Na/K pump current was determined between -140 and +60 mV as steady- state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide- tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage

  16. Catecholamine-induced transport systems in trout erythrocyte. Na+/H+ countertransport or NaCl cotransport?

    PubMed Central

    1986-01-01

    It has previously been shown (Baroin, A., F. Garcia-Romeu, T. Lamarre, and R. Motais. 1984a, b. Journal of Physiology. 350:137, 356:21; Mahe, Y., F. Garcia-Romeu, and R. Motais. 1985. European Journal of Pharmacology. 116:199) that the addition of catecholamines to an isotonic suspension of nucleated red blood cells of the rainbow trout first stimulates a cAMP-dependent, amiloride-sensitive Na+/H+ exchange. This stimulation seems to be transient. It is followed by a more permanent activation of a coupled entry of Na+ and Cl-, which is inhibited by amiloride but also by inhibitors of band 3 protein (DIDS, furosemide, niflumic acid). The coupled entry of Na+ and Cl- could therefore result from the parallel and simultaneous exchange of Na+out for H+in (via the cAMP-dependent Na+/H+ antiporter) and Cl- out for HCO3- in (via the anion exchange system located in band 3 protein). However, in view of the following arguments, it had been proposed that NaCl uptake does not proceed by the double-exchanger system but via an NaCl cotransport: (a) Na+ entry requires Cl- as anion (in NO3- medium, the Na uptake is strongly inhibited, whereas NO3- is an extremely effective substitute for Cl- in the anion exchange system); (b) Na uptake is not significantly affected by the presence of HCO3- in the suspension medium despite the fact that in red cells, Cl-/HCO3- exchange occurs more readily than the exchanges of Cl- for basic equivalents in a theoretically CO2-free medium (the so-called Cl-/OH- exchanges). The purpose of the present paper was a reassessment of the two models by using monensin, an ionophore allowing Na+/H+ exchange. From this study, it appears that NaCl entry results from the simultaneous functioning of the Na+/H+ antiporter and the anion exchange system. The apparent Cl dependence is explained by the fact that, in these erythrocytes, NO3- clearly inhibits the turnover rate of the Na+/H+ antiporter. As Na+/H+ exchange is the driving component in the salt uptake process

  17. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1).

    PubMed

    Cheung, Joseph Y; Zhang, Xue-Qian; Song, Jianliang; Gao, Erhe; Chan, Tung O; Rabinowitz, Joseph E; Koch, Walter J; Feldman, Arthur M; Wang, JuFang

    2013-01-01

    Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.

  18. Na emission and bubble instability in single-bubble sonoluminescence.

    PubMed

    Choi, Pak-Kon; Takumori, Keisuke; Lee, Hyang-Bok

    2017-09-01

    Na emission in single-bubble sonoluminescence (SBSL) was observed from 0.1mM sodium dodecyl sulfate (SDS) solution containing a dissolved noble gas at a low acoustic pressure, at which a continuous spectral component was negligible. High-speed shadowgraph movies were captured at a frame rate of 30,000fps, which indicated that bubble dancing is responsible for the Na emission. The measured bubble path length was well correlated with the Na intensity. The disintegration of a daughter bubble followed by immediate coalescence was frequently observed, which may have been the cause of the bubble dancing. A comparison of the Na spectra obtained in SBSL and multibubble SL showed that the conditions under which Na emission is generated are twofold. A narrow component was observed in the Na spectrum in SBSL, while narrow and broad components were observed in MBSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The paranodal cytoskeleton clusters Na(+) channels at nodes of Ranvier.

    PubMed

    Amor, Veronique; Zhang, Chuansheng; Vainshtein, Anna; Zhang, Ao; Zollinger, Daniel R; Eshed-Eisenbach, Yael; Brophy, Peter J; Rasband, Matthew N; Peles, Elior

    2017-01-30

    A high density of Na(+) channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na(+) channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na(+) channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na(+) channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na(+)channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.

  20. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes

    PubMed Central

    Malinen, Anssi M.; Luoto, Heidi H.

    2013-01-01

    SUMMARY In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H+ transport across biological membranes (H+-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na+ (Na+-pyrophosphatase) or both Na+ and H+ (Na+,H+-pyrophosphatase). Both these transporters require Na+ for pyrophosphate hydrolysis and are further activated by K+. The determination of the three-dimensional structures of H+- and Na+-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms. PMID:23699258

  1. Simulation of Na D emission near Europa during eclipse

    USGS Publications Warehouse

    Cassidy, T.A.; Johnson, R.E.; Geissler, P.E.; Leblanc, F.

    2008-01-01

    The Cassini imaging science subsystem observed Europa in eclipse during Cassini's Jupiter flyby. The disk-resolved observations revealed a spatially nonuniform emission in the wavelength range of 200-1050 nm (clear filters). By building on observations and simulations of Europa's Na atmosphere and torus we find that electron-excited Na in Europa's tenuous atmosphere can account for the observed emission if the Na is ejected preferentially from Europa's dark terrain. Copyright 2008 by the American Geophysical Union.

  2. Recent results and prospects for NA62 experiment

    NASA Astrophysics Data System (ADS)

    Martellotti, Silvia; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Ammendola, R.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Barbanera, M.; Bendotti, J.; Biagioni, A.; Bician, L.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Boretto, M.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brunetti, M. B.; Bryman, D.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Checcucci, B.; Chikilev, O.; Chiozzi, S.; Ciaranfi, R.; Collazuol, G.; Conovaloff, A.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotorobai, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Di Lorenzo, S.; Dixon, N.; Doble, N.; Dobrich, B.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Estrada, N.; Falaleev, V.; Fantechi, R.; Fascianelli, V.; Federici, L.; Fedotov, S.; Fiorini, M.; Fry, J.; Fu, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Galeotti, S.; Gamberini, E.; Gatignon, L.; Georgiev, G.; Gianoli, A.; Giorgi, M.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Husek, T.; Hutanu, O.; Hutchcroft, D.; Iacobuzio, L.; Iacopini, E.; Imbergamo, E.; Jamet, O.; Jarron, P.; Jones, E.; Kampf, K.; Kaplon, J.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khotyantsev, A.; Khudyakov, A.; Kiryushin, Yu.; Kleimenova, A.; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kucerova, Z.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Latino, G.; Lazzeroni, C.; Lehmann-Miotto, G.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lollini, R.; Lomidze, D.; Lonardo, A.; Lupi, M.; Lurkin, N.; McCormick, K.; Madigozhin, D.; Maire, G.; Mandeiro, C.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Marchevski, R.; Martellotti, S.; Massarotti, P.; Massri, K.; Matak, P.; Maurice, E.; Mefodev, A.; Menichetti, E.; Minucci, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Neri, I.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Numao, T.; Obraztsov, V.; Ostankov, A.; Padolski, S.; Page, R.; Palladino, V.; Paoluzzi, G.; Parkinson, C.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Peruzzo, L.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Polenkevich, I.; Pontisso, L.; Potrebenikov, Yu.; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santoni, C.; Saracino, G.; Sargeni, F.; Semenov, V.; Sergi, A.; Serra, M.; Shaikhiev, A.; Shkarovskiy, S.; Skillicorn, I.; Soldi, D.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Sturgess, A.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Trilov, S.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, T.; Velghe, B.; Veltri, M.; Venditti, S.; Vicini, P.; Volpe, R.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.; NA62 Collaboration

    2017-04-01

    The K+ →π+ ν ν ‾ decay is theoretically one of the cleanest meson decays and so a good place to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio of this decay with 10% precision. NA62 was commissioned in October 2014, took data in pilot runs in 2014 and 2015. The NA62 experimental setup is illustrated and data quality is reported.

  3. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3

    NASA Astrophysics Data System (ADS)

    Yahia, H. Ben; Essehli, R.; Avdeev, M.; Park, J.-B.; Sun, Y.-K.; Al-Maadeed, M. A.; Belharouak, I.

    2016-06-01

    The new compounds NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 crystallize with a stuffed α-CrPO4-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 a statistical disorder Ni2+/Cr3+ was observed on both the 8g and 4a atomic positions, whereas in NaCoCr2(PO4)3 the statistical disorder Co2+/Cr3+ was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 delivered specific capacities of 352, 385, and 368 mA h g-1, respectively, which attests to the electrochemical activity of sodium in these compounds.

  4. Magnesium correction to the NaKCa chemical geothermometer

    USGS Publications Warehouse

    Fournier, R.O.; Potter, R.W.

    1979-01-01

    Equations and graphs have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca chemical geothermometer. Either the equations or graphs can be used to determine appropriate temperature corrections for given waters with calculated NaKCa temperatures > 70??C and R 50 are probably derived from relatively cool aquifers with temperatures approximately equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures. ?? 1979.

  5. Sodium superionic conduction in Na2B12H12.

    PubMed

    Udovic, Terrence J; Matsuo, Motoaki; Unemoto, Atsushi; Verdal, Nina; Stavila, Vitalie; Skripov, Alexander V; Rush, John J; Takamura, Hitoshi; Orimo, Shin-ichi

    2014-04-11

    Impedance measurements indicate that Na2B12H12 exhibits dramatic Na(+) conductivity (on the order of 0.1 S cm(-1)) above its order-disorder phase-transition at ≈529 K, rivaling that of current, solid-state, ceramic-based, Na-battery electrolytes. Superionicity may be aided by the large size, quasispherical shape, and high rotational mobility of the B12H12(2-) anions.

  6. Kinetic properties and Na+ dependence of rheogenic Na(+)-HCO3- co-transport in frog retinal pigment epithelium.

    PubMed Central

    la Cour, M

    1991-01-01

    1. Na(+)-HCO3- co-transport across the retinal membrane of the frog retinal pigment epithelium was studied by means of double-barrelled pH-selective microelectrodes. Transient changes in the intracellular pH were monitored in response to abrupt changes in the Na+ concentration on the retinal side of the epithelium. 2. The experiments were performed as follows. The Na(+)-HCO3- co-transport was inhibited by perfusing the retinal side of the epithelium with a Na(+)-free solution. The co-transport was then stimulated by changing the perfusate from the Na(+)-free solution to a solution which contained from 5 to 110 mM-Na+. The resulting inward Na(+)-HCO3- co-transport produced an intracellular alkalinization, the initial rate of which was used to calculate the initial rate of Na(+)-HCO3- co-transport, JHCO3-. 3. The Na+ dependence of the Na(+)-HCO3- co-transport was studied at two different values of extracellular pH (7.40 and 7.10), at constant extracellular HCO3- concentration (27.5 mM) and at two different extracellular HCO3- concentrations (27.5 mM and 55 mM) at constant extracellular pH (7.40). In these experiments, the calculated values of JHCO3- followed single Michaelis-Menten kinetics with respect to the extracellular Na+ concentration. 4. The data are consistent with a model in which the co-transporter has a single binding site for the Na+ ion with an apparent affinity constant (apparent Km) of 37 mM. The apparent affinity constant for Na+ was independent of the extracellular concentration of CO3(2-) in the range of 16-65 microM, and of the extracellular HCO3- concentration in the range 27.5-55 mM. 5. The NaCO3- ion-pair hypothesis, in which sodium binds to the co-transporter and is translocated across the cell membrane as the NaCO3- ion pair, was analysed. For stoichiometries 1:2 and 1:3 of the Na(+)-HCO3- co-transport, the NaCO3- ion-pair hypothesis was found incompatible with the data. 6. The intracellular buffer capacity as measured by the CO2 method was

  7. Symbiodinium isolation by NaOH treatment.

    PubMed

    Zamoum, Thamilla; Furla, Paola

    2012-11-15

    The presence of photosynthetic zooxanthellae (dinoflagellates) in the tissue of many cnidarians is the main reason for their ecological success (i.e. coral reefs). It could also be the main cause of their demise, as the worldwide bleaching of reef-building coral is nothing less than the breakdown of this symbiotic association. The stability of this relationship is the principal marker for the biomonitoring of cnidarian health. We have therefore developed a new, simple method to isolate zooxanthellae in a few steps using NaOH solution. The protocol was validated in three symbiotic cnidarian species: a sea anemone, a gorgonian and a coral. Our method allows the isolation of intact and viable zooxanthellae with better yields than classic methods, especially for species with a calcareous skeleton. Moreover, the isolated zooxanthellae were free of host nucleic contaminants, facilitating subsequent specific molecular analyses.

  8. The NA49 large acceptance hadron detector

    NASA Astrophysics Data System (ADS)

    Afanasiev, S.; Alber, T.; Appelshäuser, H.; Bächler, J.; Barna, D.; Barnby, L. S.; Bartke, J.; Barton, R. A.; Betev, L.; Bialkowska, H.; Bieser, F.; Billmeier, A.; Blyth, C. O.; Bock, R.; Bormann, C.; Bracinik, J.; Brady, F. P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H. L.; Cebra, D.; Cooper, G. E.; Cramer, J. G.; Csato, P.; Cyprian, M.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Empl, T.; Eschke, J.; Ferguson, M. I.; Fessler, H.; Fischer, H. G.; Flierl, D.; Fodor, Z.; Frankenfeld, U.; Foka, P.; Freund, P.; Friese, V.; Ftacnik, J.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gaździcki, M.; Gładysz, E.; Grebieszkow, J.; Günther, J.; Harris, J. W.; Hegyi, S.; Henkel, T.; Hill, L. A.; Hlinka, V.; Huang, I.; Hümmler, H.; Igo, G.; Irmscher, D.; Ivanov, M.; Janik, R.; Jacobs, P.; Jones, P. G.; Kadija, K.; Kolesnikov, V. I.; Kowalski, M.; Lasiuk, B.; Lévai, P.; Liebicher, K.; Lynen, U.; Malakhov, A. I.; Margetis, S.; Markert, C.; Marks, C.; Mayes, B.; Melkumov, G. L.; Mock, A.; Molnár, J.; Nelson, J. M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A. D.; Pestov, Y.; Petridis, A.; Pikna, M.; Pimpl, W.; Pinsky, L.; Piper, A.; Porter, R. J.; Poskanzer, A. M.; Poziombka, S.; Prindle, D. J.; Pühlhofer, F.; Rauch, W.; Reid, J. G.; Renfordt, R.; Retyk, W.; Ritter, H. G.; Röhrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Schäfer, E.; Schmidt, R.; Schmischke, D.; Schmitz, N.; Schönfelder, S.; Semenov, A. Yu.; Seyboth, J.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Squier, G. T. A.; Stelzer, H.; Stock, R.; Strmen, P.; Ströbele, H.; Struck, C.; Susa, T.; Szarka, I.; Szentpetery, I.; Szymański, P.; Sziklai, J.; Toy, M.; Trainor, T. A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Vranic, D.; Wang, F. Q.; Weerasundara, D. D.; Wenig, S.; Whitten, C.; Wieman, H.; Wienold, T.; Wood, L.; Yates, T. A.; Zimanyi, J.; Zhu, X.-Z.; Zybert, R.

    1999-07-01

    The NA49 detector is a wide acceptance spectrometer for the study of hadron production in p+p, p+A, and A+A collisions at the CERN SPS. The main components are 4 large-volume TPCs for tracking and particle identification via d E/d x. TOF scintillator arrays complement particle identification. Calorimeters for transverse energy determination and triggering, a detector for centrality selection in p+A collisions, and beam definition detectors complete the set-up. A description of all detector components is given with emphasis on new technical realizations. Performance and operational experience are discussed in particular with respect to the high track density environment of central Pb+Pb collisions.

  9. Na-Zn liquid metal battery

    NASA Astrophysics Data System (ADS)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  10. Pion and kaon freezeout in NA44

    SciTech Connect

    NA44 Collaboration

    1994-12-01

    The NA44 spectrometer is optimized for the study of single and two-particle particle spectra near mid-rapidity for transverse momenta below {approx} 1 GeV/c. A large fraction of all pairs in the spectrometer`s acceptance are at low relative momenta, resulting in small statistical uncertainties on the extracted size parameters. In addition, the spectrometer`s clean particle identification allows the authors to measure correlation functions for pions, kaons, and protons. This contribution will concentrate on the source size parameters determined from pion and kaon correlation functions. These size parameters will be compared to calculations from the RQMD event generator and also interpreted in the context of a hydrodynamic model. Finally, the measured single particle spectra will be examined from the viewpoint of hydrodynamics.

  11. Study of OSL in NaF: Ca,Cu

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Wankhede, S. P.; Moharil, S. V.

    2013-06-01

    Sodium Fluoride containing Cu+ ions was prepared by R.A.P. followed by melt-quenching technique. Results on photo, thermo and optically stimulated luminescence in NaF:Ca,Cu are reported. OSL sensitivity of NaF:Ca,Cu is approximately 2 times than that of standard phosphor LMP. The rate of OSL depletion for 90% decay for NaF:Ca,Cu is 0.3 times as that of OSL phosphor LMP. NaF:Ca,Cu thus deserves much more attention than it has received up till now.

  12. Influenza virus neuraminidase (NA): a target for antivirals and vaccines.

    PubMed

    Jagadesh, Anitha; Salam, Abdul Ajees Abdul; Mudgal, Piya Paul; Arunkumar, Govindakarnavar

    2016-08-01

    Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.

  13. The Physiological Relevance of Na+-Coupled K+-Transport.

    PubMed Central

    Maathuis, FJM.; Verlin, D.; Smith, F. A.; Sanders, D.; Fernandez, J. A.; Walker, N. A.

    1996-01-01

    Plant roots utilize at least two distinct pathways with high and low affinities to accumulate K+. The system for high-affinity K+ uptake, which takes place against the electrochemical K+ gradient, requires direct energization. Energization of K+ uptake via Na+ coupling has been observed in algae and was recently proposed as a mechanism for K+ uptake in wheat (Triticum aestivum L.). To investigate whether Na+ coupling has general physiological relevance in energizing K+ transport, we screened a number of species, including Arabidopsis thaliana L. Heynh. ecotype Columbia, wheat, and barley (Hordeum vulgare L.), for the presence of Na+-coupled K+ uptake. Rb+-flux analysis and electrophysiological K+-transport assays were performed in the presence and absence of Na+ and provided evidence for a coupling between K+ and Na+ transport in several aquatic species. However, all investigated terrestrial species were able to sustain growth and K+ uptake in the absence of Na+. Furthermore, the addition of Na+ was either without effect or inhibited K+ absorption. The latter characteristic was independent of growth conditions with respect to Na+ status and pH. Our results suggest that in terrestrial species Na+-coupled K+ transport has no or limited physiological relevance, whereas in certain aquatic angiosperms and algae this type of secondary transport energization plays a significant role. PMID:12226467

  14. New solid conductors of Na/+/ and K/+/ ions

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Kautz, H. E.; Fordyce, J. S.

    1976-01-01

    About 40 structure types for solid conductors of Na(+) and K(+) ions are surveyed. Five compounds in three structure types are discovered to be good solid conductors of alkali metal ions, capable of ion transport with conductivities in the vicinity of 0.00001/ohm-cm at 25 C. These compounds are a bcc form of NaSbO3, an orthorhombic layer structure of the composition 2M2O.3Nb2O5 with M equal to Na or K, and the Na pyrochlores NaTa2O5F and NaTaWO6. Ion exchange is required to produce each of these Na compounds. Only the 2K2O.3Nb2O5 can so far be synthesized directly from the oxides and thus is the only one which can be sintered readily. The niobate is about as good a conductor of K(+) ion as is K-beta alumina. The NaSbO3 compares well with Na beta at 280 C. A number of phase diagrams are developed.

  15. New solid conductors of Na/+/ and K/+/ ions

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Kautz, H. E.; Fordyce, J. S.

    1976-01-01

    About 40 structure types for solid conductors of Na(+) and K(+) ions are surveyed. Five compounds in three structure types are discovered to be good solid conductors of alkali metal ions, capable of ion transport with conductivities in the vicinity of 0.00001/ohm-cm at 25 C. These compounds are a bcc form of NaSbO3, an orthorhombic layer structure of the composition 2M2O.3Nb2O5 with M equal to Na or K, and the Na pyrochlores NaTa2O5F and NaTaWO6. Ion exchange is required to produce each of these Na compounds. Only the 2K2O.3Nb2O5 can so far be synthesized directly from the oxides and thus is the only one which can be sintered readily. The niobate is about as good a conductor of K(+) ion as is K-beta alumina. The NaSbO3 compares well with Na beta at 280 C. A number of phase diagrams are developed.

  16. Kaolin-based geopolymers with various NaOH concentrations

    NASA Astrophysics Data System (ADS)

    Heah, C. Y.; Kamarudin, H.; Mustafa Al Bakri, A. M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C. M.; Liew, Y. M.

    2013-03-01

    Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80°C for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na2O decreased. The increased Na2O content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.

  17. Characterization of ZnAl cast alloys with Na addition

    SciTech Connect

    Gancarz, Tomasz; Cempura, Grzegorz; Skuza, Wojciech

    2016-01-15

    This study was aimed at evaluating the microstructural change and thermal, electrical and mechanical properties with the addition of Na to eutectic ZnAl alloys. Solders based on eutectic ZnAl containing 0.2 to 3.0 (wt.%) of Na were developed for high temperature solder. Differential scanning calorimetry (DSC) measurements were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed over − 50 °C to 300 °C and 30 °C to 300 °C temperature ranges, respectively. The microstructure of the specimens was analyzed using scanning (SEM) and transmission electron microscopy (TEM) techniques. Chemical microanalysis was performed by energy-dispersive X-ray spectroscopy (EDS) on SEM and TEM. The precipitates of NaZn{sub 13} were confirmed by X-ray diffraction (XRD) measurements and selected area electron diffraction (SAED) techniques. The addition of Na to eutectic ZnAl alloy increased the electrical resistivity and reduced the coefficient of thermal expansion; however, the melting point did not change. The mechanical properties, strain and microhardness increased with Na content in alloys. - Highlights: • High temperature soldering materials of ZnAl with Na were designed and characterized. • Precipitates of NaZn{sub 13}were observed and confirmed using TEM and XRD. • Addition of Na to eutectic ZnAl cussed increased mechanical properties. • NaZn{sub 13} caused increased electrical resistivity and microhardness, and reduced the CTE.

  18. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    PubMed Central

    Chen, Xian; Peng, Dengfeng; Wang, Feng

    2013-01-01

    Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles. PMID:28348353

  19. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  20. Mercury's Na Exosphere from MESSENGER Data

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  1. Mercury's Na Exosphere from MESSENGER Data

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  2. Mercury's Na Exosphere from MESSENGER data

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. E.; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-10-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UVVS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft to infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The hot portion of the source appears to be highly variable. The authors acknowledge support from NASA through the MESSENGER Participating Scientist Program and Planetary Atmospheres research grants.

  3. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  4. Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

    PubMed Central

    Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad; Maxwell, Kyle; Yan, Yanling; Wang, Xiaoliang; Shah, Preeya T.; Khawaja, Asad A.; Martin, Rebecca; Robinette, Tylor J.; El-Hamdani, Adee; Dodrill, Michael W.; Sodhi, Komal; Drummond, Christopher A.; Haller, Steven T.; Kennedy, David J.; Abraham, Nader G.; Xie, Zijian; Shapiro, Joseph I.

    2016-01-01

    We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder. PMID:27698370

  5. Scintillation Efficiency Measurement of Na Recoils in NaI(Tl) Below the DAMA/LIBRA Energy Threshold

    SciTech Connect

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-30

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  6. Na/K Pump and Beyond: Na/K-ATPase as a Modulator of Apoptosis and Autophagy.

    PubMed

    Felippe Gonçalves-de-Albuquerque, Cassiano; Ribeiro Silva, Adriana; Ignácio da Silva, Camila; Caire Castro-Faria-Neto, Hugo; Burth, Patrícia

    2017-04-21

    Lung cancer is a leading cause of global cancer deaths. Na/K-ATPase has been studied as a target for cancer treatment. Cardiotonic steroids (CS) trigger intracellular signalling upon binding to Na/K-ATPase. Normal lung and tumour cells frequently express different pump isoforms. Thus, Na/K-ATPase is a powerful target for lung cancer treatment. Drugs targeting Na/K-ATPase may induce apoptosis and autophagy in transformed cells. We argue that Na/K-ATPase has a role as a potential target in chemotherapy in lung cancer treatment. We discuss the effects of Na/K-ATPase ligands and molecular pathways inducing deleterious effects on lung cancer cells, especially those leading to apoptosis and autophagy.

  7. Decomposition reactions for NaAl H4 , Na3 Al H6 , and NaH: First-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Tanaka, Isao

    2005-01-01

    The electronic properties and lattice dynamics of the sodium alanate phases have been studied by the density functional calculations. The phases include NaAlH4 (space group, I41/a ), Na3AlH6 (space group, P21/n ), and NaH (space group, Fm-3m ). The electronic properties are discussed on the basis of the electronic band structures, the atomic charges, the bond overlap population analysis, and the Born effective charges. The phonon dispersion relations and phonon density of states (DOS) of the phases are calculated by a direct force-constant method. Within the quasiharmonic approximation, the calculated thermodynamic functions including the heat capacity, the vibrational enthalpy, and the vibrational entropy are in good agreement with experimental values. Three decomposition reactions are studied based on the thermodynamic functions. The reactions are (1) NaAlH4→(1)/(3)Na3AlH6+(2)/(3)Al+H2 , (2) (1)/(3)Na3AlH6→NaH+(1)/(3)Al+(1)/(2)H2 , and (3) NaH→Na+(1)/(2)H2 . The reactions (1), (2), and (3) are predicted to take place at 285, 390, and 726K , respectively, which are in good agreement with the experiment (353, 423, and 698K , respectively). The individual contributions to the reactions including the enthalpy and entropy are investigated. We found that the enthalpy for the reaction is almost constant, and the net entropy contribution ( TΔS ) to the reaction is approximately equal to the entropy contribution of the H2 gas molecule (produced in that reaction).

  8. RNA adducts with Na 2SeO 4 and Na 2SeO 3 - Stability and structural features

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Montazeri, Maryam

    2011-12-01

    Selenium compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Low blood Se levels were found to be associated with an increased incidence and mortality from various types of cancers. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This study was designed to examine the interaction of Na 2SeO 4 and Na 2SeO 3 with RNA in aqueous solution at physiological conditions, using a constant RNA concentration (6.25 mM) and various sodium selenate and sodium selenite/polynucleotide (phosphate) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. Fourier transform infrared, UV-Visible spectroscopic methods were used to determine the drug binding modes, the binding constants, and the stability of Na 2SeO 4 and Na 2SeO 3-RNA complexes in aqueous solution. Spectroscopic evidence showed that Na 2SeO 4 and Na 2SeO 3 bind to the major and minor grooves of RNA ( via G, A and U bases) with some degree of the Se-phosphate (PO 2) interaction for both compounds with overall binding constants of K(Na 2SeO 4-RNA) = 8.34 × 10 3 and K(Na 2SeO 3-RNA) = 4.57 × 10 3 M -1. The order of selenium salts-biopolymer stability was Na 2SeO 4-RNA > Na 2SeO 3-RNA. RNA aggregations occurred at higher selenium concentrations. No biopolymer conformational changes were observed upon Na 2SeO 4 and Na 2SeO 3 interactions, while RNA remains in the A-family structure.

  9. Mechanism of μ-conotoxin PIIIA binding to the voltage-gated Na+ channel NaV1.4.

    PubMed

    Chen, Rong; Robinson, Anna; Chung, Shin-Ho

    2014-01-01

    Several subtypes of voltage-gated Na+ (NaV) channels are important targets for pain management. μ-Conotoxins isolated from venoms of cone snails are potent and specific blockers of different NaV channel isoforms. The inhibitory effect of μ-conotoxins on NaV channels has been examined extensively, but the mechanism of toxin specificity has not been understood in detail. Here the known structure of μ-conotoxin PIIIA and a model of the skeletal muscle channel NaV1.4 are used to elucidate elements that contribute to the structural basis of μ-conotoxin binding and specificity. The model of NaV1.4 is constructed based on the crystal structure of the bacterial NaV channel, NaVAb. Six different binding modes, in which the side chain of each of the basic residues carried by the toxin protrudes into the selectivity filter of NaV1.4, are examined in atomic detail using molecular dynamics simulations with explicit solvent. The dissociation constants (Kd) computed for two selected binding modes in which Lys9 or Arg14 from the toxin protrudes into the filter of the channel are within 2 fold; both values in close proximity to those determined from dose response data for the block of NaV currents. To explore the mechanism of PIIIA specificity, a double mutant of NaV1.4 mimicking NaV channels resistant to μ-conotoxins and tetrodotoxin is constructed and the binding of PIIIA to this mutant channel examined. The double mutation causes the affinity of PIIIA to reduce by two orders of magnitude.

  10. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7.

    PubMed

    Smith, A L; Raison, P E; Martel, L; Charpentier, T; Farnan, I; Prieur, D; Hennig, C; Scheinost, A C; Konings, R J M; Cheetham, A K

    2014-01-06

    The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αβ = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to β phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry.

  11. Path integral study of the correlated electronic states of Na4-Na6

    NASA Astrophysics Data System (ADS)

    Hall, Randall W.

    1990-12-01

    Feynman's path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4-Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born-Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results show that the electrons are localized, rather than delocalized as previous workers have concluded from examination of the single-particle orbitals. We find that the best picture of these clusters is that they contain three-center, two-electron bonds.

  12. Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7

    NASA Astrophysics Data System (ADS)

    Zarrabeitia, M.; Castillo-Martínez, E.; López Del Amo, J. M.; Eguía-Barrio, A.; Muñoz-Márquez, M. A.; Rojo, T.; Casas-Cabanas, M.

    2016-08-01

    We report here on the moisture and water stability of the promising Na-ion anode material Na2Ti3O7. Spontaneous Na+/H+ exchange is detected by PXRD after air exposure, forming solid solution compounds of the form Na2-xHxTi3O7 (0 < x < 2). By controlled ion exchange in aqueous solution two mixed compositions are prepared and their composition and structure are characterized with a panel of techniques. Both mixed compositions crystallize in C2/m space group like H2Ti3O7, and therefore Na+/H+ exchange is found to involve a structural transition from AA stacking of [TiO6] layers to AB stacking sequence. The electrochemical behaviour of the mixed compositions vs. Na+/Na is studied as well as that of an electrode of pure Na2Ti3O7 prepared in water media. The water-processed electrode is shown to exhibit a superior cycling stability and therefore the results obtained highlight the potential of Na2Ti3O7 as a green, low cost anode material for NIBs.

  13. Structural and Na-ion conduction characteristics of Na3PSxSe4–x

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand

    2016-05-19

    The recent discovery of the isostructrual cubic Na3PS4 and Na3PSe4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na3PSxSe4–x. Synthesis of Na3PS4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na3PSxSe4–x identified a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistentmore » with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na3PSxSe4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  14. Na+ and K+ levels in living cells: do they depend on the rate of outward transport of Na+?

    PubMed

    Ling, G N; Ochsenfeld, M M

    1976-01-01

    At 25 degrees C, frog sartorius muslces rapidly gained Na+ and lost K+ in iodoacetamide and pure nitrogen. Beginning at normal levels, the concentrations of these ions in the cells reached those in the surrounding Ringer solution in 140 min. Yet during that time the Na+ efflux rate showed no sign of the slowing down demanded by Na-pump theory. The data support the view that maintenance and alterations of N1+ levels in frog muslce cells reflect adsorption on protein sites and the solubility property of bulk phase water and are independent of the rate at which Na+ leaves the cell surface.

  15. Estimating the hydrogen ion concentration in concentrated NaCl and Na{sub 2}SO{sub 4} electrolytes

    SciTech Connect

    Rai, D.; Felmy, A.R.; Juracich, S.P.; Rao, F.

    1995-06-01

    Combination glass electrodes were tested for determining H{sup +} concentrations in concentrated pure and mixed NaCl and Na{sub 2}SO{sub 4} solutions, as well as natural brine systems. NaCl, Na{sub 2}SO{sub 4}, and mixtures of NaCl and Na{sub 2}SO{sub 4} solutions were analyzed. Correction factors for estimating pC{sub H}{sup +} (negative logarithm of H{sup +} concentration) were determined from measured/observed pH values. Required Gran-type titrations were done with HCl and/or NaOH. The titration method is described and a step-by-step procedure provided; it has been used previously for determining pC{sub H}{sup +} values of synthetic chloride-dominated brines. Precautions are required to determine correction factors for electrolytes that react with H{sup +} or OH{sup {minus}} [sulfate brines for titration with acid; magnesium brines for titration with base because of precipitation of Mg(OH)2]. Correction factors A (pC{sub H}{sup +} = pH{sub ob} + A) from HCl titrations were similar to those from NaOH titrations where the concentration of free H{sup +} was calculated using a thermodynamic model. These values should be applicable to solns with a very large range in measured pH values (2 to 12). Because a large number of solns were titrated with HCl and the A values are similar for HCl and NaOH titrations, the A values for NaCl and Na2SO4 solns were fit as a function of molality to allow extrapolation. For NaCl solns 0 to 6.0 M, A can be obtained by multiplying the molality by 0.159. For Na2SO4 solns 0 to 2.0 M, the values of A can be obtained from (0.221 {minus} 0.549X + 0.201X{sup 2}), where X is the molality of Na{sub 2}SO{sub 4}. Orion-Ross electrode evaluations indicated that the A values did not differ significantly for different electrodes. Results suggest that the data in this report can be used to estimate A values for different NaCl and Na{sub 2}SO{sub 4} solns even for noncalibrated electrodes.

  16. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  17. Computational Study of Binding of μ-Conotoxin GIIIA to Bacterial Sodium Channels NaVAb and NaVRh.

    PubMed

    Patel, Dharmeshkumar; Mahdavi, Somayeh; Kuyucak, Serdar

    2016-03-29

    Structures of several voltage-gated sodium (NaV) channels from bacteria have been determined recently, but the same feat might not be achieved for the mammalian counterparts in the near future. Thus, at present, computational studies of the mammalian NaV channels have to be performed using homology models based on the bacterial crystal structures. A successful homology model for the mammalian NaV1.4 channel was recently constructed using the extensive mutation data for binding of μ-conotoxin GIIIA to NaV1.4, which was further validated through studies of binding of other μ-conotoxins and ion permeation. Understanding the similarities and differences between the bacterial and mammalian NaV channels is an important issue, and the NaV1.4-GIIIA system provides a good opportunity for such a comparison. To this end, we study the binding of GIIIA to the bacterial channels NaVAb and NaVRh. The complex structures are obtained using docking and molecular dynamics simulations, and the dissociation of GIIIA is studied through umbrella sampling simulations. The results are compared to those obtained from the NaV1.4-GIIIA system, and the differences in the binding modes arising from the changes in the selectivity filters are highlighted.

  18. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits.

    PubMed

    Baartscheer, Antonius; Schumacher, Cees A; Wüst, Rob C I; Fiolet, Jan W T; Stienen, Ger J M; Coronel, Ruben; Zuurbier, Coert J

    2017-03-01

    Empagliflozin (EMPA), an inhibitor of the renal sodium-glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. Elevated cardiac cytoplasmic Na(+) ([Na(+)]c) and Ca(2+) ([Ca(2+)]c) concentrations and decreased mitochondrial Ca(2+) concentration ([Ca(2+)]m) are drivers of heart failure and cardiac death. We therefore hypothesised that EMPA would directly modify [Na(+)]c, [Ca(2+)]c and [Ca(2+)]m in cardiomyocytes. [Na(+)]c, [Ca(2+)]c, [Ca (2+)]m and Na(+)/H(+) exchanger (NHE) activity were measured fluorometrically in isolated ventricular myocytes from rabbits and rats. An increase in extracellular glucose, from 5.5 mmol/l to 11 mmol/l, resulted in increased [Na(+)]c and [Ca(2+)]c levels. EMPA treatment directly inhibited NHE flux, caused a reduction in [Na(+)]c and [Ca(2+)]c and increased [Ca(2+)]m. After pretreatment with the NHE inhibitor, Cariporide, these effects of EMPA were strongly reduced. EMPA also affected [Na(+)]c and NHE flux in the absence of extracellular glucose. The glucose lowering kidney-targeted agent, EMPA, demonstrates direct cardiac effects by lowering myocardial [Na(+)]c and [Ca(2+)]c and enhancing [Ca(2+)]m, through impairment of myocardial NHE flux, independent of SGLT2 activity.

  19. NMR and IR studies of hydroxyl groups in CaNa and MgNa forms of zeolites A

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Ernst, H.; Pfeifer, H.; Staudte, B.

    1985-09-01

    By measurement of MAS proton magnetic resonance and near-infrared spectra, the existence of bridging hydroxyl groups in MgNaA and CaNaA zeolites is excluded. The MAS proton magnetic resonance lines observed at 2.5-3 ppm for CaNaA and at 3.5 ppm for MgNaA (apart from the small contributions of "terminal" OH groups) and the corresponding bands at 4576 and 4525 cm -1 in the near-infrared spectra are attributed to hydroxyl groups attached to the exchangeable cations.

  20. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-01

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  1. Central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) in sodium bioenergetics of Vibrio cholerae.

    PubMed

    Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

    2014-12-01

    Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na(+) gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na(+)-dependent transport processes and describe the central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a primary Na(+) pump, in maintaining a Na(+)-motive force. The Na(+)-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na(+) across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na(+)-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported.

  2. Expression of diverse Na+ channel messenger RNAs in rat myocardium. Evidence for a cardiac-specific Na+ channel.

    PubMed Central

    Sills, M N; Xu, Y C; Baracchini, E; Goodman, R H; Cooperman, S S; Mandel, G; Chien, K R

    1989-01-01

    This study examined the diversity of Na+ channel gene expression in intact cardiac tissue and purified myocardial cells. The screening of neonatal rat myocardial cell cDNA libraries with a conserved rat brain Na+ channel cDNA probe, resulted in the isolation and characterization of a putative rat cardiac Na+ channel cDNA probe (pCSC-1). The deduced amino acid sequence of pCSC-1 displayed a striking degree of homology with the eel, rat brain-1, and rat brain-2 Na+ channel, thereby identifying pCSC-1 as a related member of the family of Na+ channel genes. Northern blot analysis revealed the expression of a 7-kb CSC-1 transcript in rat cardiac tissue and purified myocardial cells, but little or no detectable expression of CSC-1 in rat brain, skeletal muscle, denervated skeletal muscle, or liver. Using RNase protection and Northern blot hybridization with specific rat brain Na+ channel gene probes, expression of the rat brain-1 Na+ channel was observed in rat myocardium, but no detectable expression of the rat brain-2 gene was found. This study provides evidence for the expression of diverse Na+ channel mRNAs in rat myocardium and presents the initial characterization of a new, related member of the family of Na+ channel genes, which appears to be expressed in a cardiac-specific manner. Images PMID:2544627

  3. Synthesis and characterization of sodium titanates Na 2Ti 3O 7 and Na 2Ti 6O 13

    NASA Astrophysics Data System (ADS)

    Sauvet, A.-L.; Baliteau, S.; Lopez, C.; Fabry, P.

    2004-12-01

    Na 2Ti 3O 7 and Na 2Ti 6O 13 were synthesized by sol-gel method in order to obtain pure phases. Different heat-treatments were applied on powders and pellets of these materials. The effects were studied by XRD, dilatometry, TGA-DTA, SEM and electrochemical impedance spectroscopy. Pure Na 2Ti 3O 7 was obtained at 973 K. Sintering at 1373 K caused a partial decomposition into Na 2Ti 6O 13. The Na 2Ti 3O 7 powder sintered at 1273 K showed polygonal microstructure. Na 2Ti 3O 7 pellets sintered at 1323 K for 10 h exhibited large structures. This latter microstructure decreased the electrical conductivity of Na 2Ti 3O 7. Pure Na 2Ti 6O 13 was obtained at 873 K. Sintering at 1073 K caused a partial decomposition into TiO 2 (rutile). Na 2Ti 6O 13 pellets sintered at 1323 K for 10 h exhibited common shrinkage behavior. This shrinkage process increased the electrical conductivity of this material. The presence of TiO 2 resulted in a oxygen partial pressure dependence of the electrical conductivity.

  4. Density Functional Studies of NaAlH_4, NaH and AlH_3

    NASA Astrophysics Data System (ADS)

    Aguayo, Aaron; Singh, David J.

    2004-03-01

    We report electronic structure investigations of the bonding of the alanate NaAlH4 and the related materials NaH and AlH_3. The results are based on density functional calculations using the LAPW method. All three compounds are insulators. AlH3 has a substantially covalent electronic structure with a band gap of approximately 2 eV, while NaAlH4 and NaH both show larger band gaps of approximately 4 eV and are much more ionic. This ionic character is stabilized by the Madelung energy in the respective crystal structures. We discuss the implications for H storage.

  5. Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells

    PubMed Central

    1989-01-01

    Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai- dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 m

  6. Clinical and therapeutic significance of the Na+,K+ pump*.

    PubMed

    Clausen, T

    1998-07-01

    1. The Na+,K+-ATPase or Na+,K+-pump, mediating the active transport of Na+ and K+, which was first identified 40 years ago, is a central target for acute and long-term regulation, as well as for therapeutic intervention. Acute stimulation of the Na+,K+-pump in skeletal muscle by insulin, catecholamines, beta2-agonists or theophylline increases the intracellular uptake of K+ and accounts for the hypokalaemia elicited by these agents. Conversely, digitalis intoxication elicits hyperkalaemia via acute inhibition of the Na+, K+-pump. 2. Simple and accurate methods have been developed for the quantification of the total concentration of Na+,K+-pumps in small (0.5-5 mg) fresh or frozen biopsies of human skeletal muscle, myocardium or other tissues. This has allowed the identification of several long-term regulatory changes in the concentration of this transport system in human tissues. In skeletal muscle, upregulation is induced by training, thyroid hormones or glucocorticoids. Downregulation is seen in hypothyroidism, cardiac insufficiency, myotonic dystrophy, McArdle disease, K+ deficiency and after muscle inactivity. 3. Since the skeletal muscles contain one of the major pools of Na+,K+-pumps, these changes are important for the ability to counterregulate the hyperkalaemia elicited by exercise or the ingestion of K+. Moreover, downregulation or inhibition of the Na+, K+-pumps in skeletal muscle interferes with contractile performance. Since digitalis glycosides bind to the Na+,K+-pump, the muscles constitute a large distribution volume for these agents and are therefore an important determinant for their plasma level. 4. In cardiac insufficiency, the decrease in the concentration of Na+, K+-pumps in the myocardium is over a wide range correlated to the concomitant reduction in ejection fraction. The regulatory and pathophysiological changes in the activity and concentration of Na+, K+-pumps are important for the contractile function of skeletal muscle and heart as

  7. North America and South America (NA-SA) neuropathy project.

    PubMed

    Pasnoor, Mamatha; Nascimento, Osvaldo J M; Trivedi, Jaya; Wolfe, Gil I; Nations, Sharon; Herbelin, Laura; de Freitas, M G; Quintanilha, Giseli; Khan, Saud; Dimachkie, Mazen; Barohn, Richard

    2013-08-01

    Peripheral neuropathy is a common neurological disorder. There may be important differences and similarities in the diagnosis of peripheral neuropathy between North America (NA) and South America (SA). Neuromuscular databases were searched for neuropathy diagnosis at two North American sites, University of Kansas Medical Center and University of Texas Southwestern Medical Center, and one South American site, Federal Fluminense University in Brazil. All patients were included into one of the six major categories: immune-mediated, diabetic, hereditary, infectious/inflammatory, systemic/metabolic/toxic (not diabetic) and cryptogenic. A comparison of the number of patients in each category was made between North America and South America databases. Total number of cases in North America was 1090 and in South America was 1034 [immune-mediated: NA 215 (19.7%), SA 191 (18%); diabetic: NA 148 (13.5%), SA 236 (23%); hereditary: NA 292 (26.7%), SA 103 (10%); infectious/inflammatory: NA 53 (4.8%), SA 141 (14%); systemic/metabolic/toxic: NA 71 (6.5%), SA 124 (12%); cryptogenic: NA 311 (28.5%), SA 239 (23%)]. Some specific neuropathy comparisons were hereditary neuropathies [Charcot-Marie-Tooth (CMT) cases] in NA 246/292 (84.2%) and SA 60/103 (58%); familial amyloid neuropathy in SA 31/103 (30%) and none in NA. Among infectious neuropathies, cases of human T-lymphotropic virus type 1 (HTLV-1) neuropathy in SA were 36/141(25%), Chagas disease in SA were 13/141(9%) and none for either in NA; cases of neuropathy due to leprosy in NA were 26/53 (49%) and in SA were 39/141(28%). South American tertiary care centers are more likely to see patients with infectious, diabetic and hereditary disorders such as familial amyloid neuropathies. North American tertiary centers are more likely to see patients with CMT. Immune neuropathies and cryptogenic neuropathies were seen equally in North America and South America.

  8. Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump.

    PubMed

    Kato, Hideaki E; Inoue, Keiichi; Abe-Yoshizumi, Rei; Kato, Yoshitaka; Ono, Hikaru; Konno, Masae; Hososhima, Shoko; Ishizuka, Toru; Hoque, Mohammad Razuanul; Kunitomo, Hirofumi; Ito, Jumpei; Yoshizawa, Susumu; Yamashita, Keitaro; Takemoto, Mizuki; Nishizawa, Tomohiro; Taniguchi, Reiya; Kogure, Kazuhiro; Maturana, Andrés D; Iino, Yuichi; Yawo, Hiromu; Ishitani, Ryuichiro; Kandori, Hideki; Nureki, Osamu

    2015-05-07

    Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na(+) pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na(+) transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na(+) transport. Together with the structure-based engineering of the first light-driven K(+) pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.

  9. Direct Measurement of {sup 21}Na+{alpha} Stellar Reaction

    SciTech Connect

    Binh, D. N.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Hashimoto, T.; Kahl, D.; Teranishi, T.; Iwasa, N.; Kume, N.; Kato, S.; Khiem, L. H.; Tho, N. T.; Wakabayashi, Y.

    2010-08-12

    The measurement of the resonant alpha scattering and the {sup 21}Na({alpha}, p) reaction were performed for the first time in inverse kinematics with the thick target method using a {sup 21}Na radioisotope (RI) beam. This paper reports the current result of alpha scattering measurement and its astrophysics implication.

  10. Hydrothermal Synthesis of (K,Na)NbO3 Particles

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Han, Lu; Bai, Shan; Sun, Tiedong; Karaki, Tomoaki; Adachi, Masatoshi

    2008-09-01

    (K,Na)NbO3 (KNN) particles were successfully prepared by hydrothermal synthesis. The results showed that Na+ reacted more readily with Nb to form NaNbO3 than K+. For the purpose of obtaining KNN particles with K/Na=1, a mixed alkaline solution with K+/Na+ ratios ranging from 3.5/1 to 4/1 was required as a starting solution. The morphology and size of KNN particles synthesized strongly depended on K/Na ratio in the KNN particles. The KNN particles synthesized from the starting alkaline solution with K+/Na+=3.5/1 were the smallest with a pelletlike morphology affected by NaNbO3- and KNbO3-based particles. Surfactants such as sodium dodecylbenzenesulfonate (SDBS) and sodium hexametaphosphate (SH) were used to synthesize well dispersed and small KNN particles. Platelike KNN particles with 100 nm thickness and 1.5 µm width were obtained in this study.

  11. Naïve Bayes classification in R

    PubMed Central

    2016-01-01

    Naïve Bayes classification is a kind of simple probabilistic classification methods based on Bayes’ theorem with the assumption of independence between features. The model is trained on training dataset to make predictions by predict() function. This article introduces two functions naiveBayes() and train() for the performance of Naïve Bayes classification. PMID:27429967

  12. Resurgent current of voltage-gated Na+ channels

    PubMed Central

    Lewis, Amanda H; Raman, Indira M

    2014-01-01

    Resurgent Na+ current results from a distinctive form of Na+ channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na+ channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na+ currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a ‘resurgent’ current. The generation of resurgent current depends on a factor in the Na+ channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na+ channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na+ current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology. PMID:25172941

  13. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    PubMed

    Vereninov, Igor A; Yurinskaya, Valentina E; Model, Michael A; Vereninov, Alexey A

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  14. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells

    PubMed Central

    Vereninov, Igor A.; Yurinskaya, Valentina E.; Model, Michael A.; Vereninov, Alexey A.

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1–10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential. PMID:27159324

  15. Deliquescence, efflorescence and ice nucleating ability of NaCl/hydrated NaCl particles under upper tropospheric conditions

    NASA Astrophysics Data System (ADS)

    Wise, M. E.; Baustian, K. J.; Freedman, M. A.; Koop, T.; Tolbert, M. A.

    2010-12-01

    Sea-salt aerosol particles (SSA) are ubiquitous in marine boundary layer and over coastal areas. Therefore SSA have ability to directly and indirectly affect the Earth’s radiation balance. The influence SSA have on the Earth’s radiation balance is related to their water uptake and ice nucleation characteristics. In this study, optical microscopy coupled with Raman spectroscopy was used to determine the deliquescence and efflorescence phase transitions of NaCl particles (a proxy for SSA particles) at temperatures ranging from 233 to 258 K. It was found that NaCl (s) particles deliquesced at 75.7±2.5 % RH and NaCl (aq) particles effloresced at 42.7 ±6.9 % RH. When the temperature of NaCl (aq) particles was held between 236 and 252 K, a mixture of hydrated and non-hydrated particles effloresced. Thus the water uptake characteristics of hydrated NaCl (s) particles were studied. The deliquescence relative humidities (DRH) of hydrated NaCl (s) particles ranged from 75.6 to 94.5 % RH. The DRH values for hydrated NaCl (s) do not agree with the theoretical DRH for the dihydrate form of NaCl (s) particles (the predicted phase using a bulk phase diagram). Additionally, the ice nucleating abilities of NaCl (s) and hydrated NaCl (s) were determined at temperatures ranging from 221 to 230 K. NaCl (s) particles depositionally nucleated ice at an average Sice value of 1.11±0.07. Hydrated NaCl (s) particles depositionally nucleated ice at an average Sice value of 1.01±0.03. When a mixture of hydrated and anhydrous NaCl (s) particles was present in the same sample, ice preferentially nucleated on the hydrated particles 100% of the time. Thus hydrated NaCl (s) particles are better ice nuclei than NaCl (s) particles.

  16. Eventos de Desconexao na Cauda de Plasma do Cometa P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Fahr, H. J.

    2001-08-01

    Observacoes cometárias e de vento solar sao comparadas com o propósito de determinar-se as condicoes do vento solar associadas aos eventos de desconexao (DEs) observados em caudas de plasma cometárias. Os dados cometários sao provenientes do The International Halley Watch Atlas of Large-Scale Phenomena. A análise visual sistemática das imagens do atlas revelou, entre outras estruturas morfológicas, 47 DEs ao longo da cauda de plasma do P/Halley. Estes 47 DEs registrados em 47 imagens distintas permitiram a descoberta de 19 origens de DEs, ou seja, o tempo em que as desconexoes iniciaram foi calculado. Os dados do vento solar sao provenientes de medidas feitas in situ pela sonda espacial IMP-8, as quais foram usadas para elaborar a variacao da velocidade do vento solar, densidade e pressao dinâmica durante o intervalo analisado. O presente trabalho compara as atuais teorias conflitantes, baseadas nos mecanismos de formacao, com o intuito de explicar o fenômeno cíclico dos DEs, ou seja, os efeitos de producao iônica, os efeitos de pressao e os efeitos de reconexao magnética sao analisados. Para cada uma das 19 origens de DEs comparou-se a densidade com a respectiva velocidade do vento solar com o intuito de determinar-se uma possível correlacao entre estas origens e os efeitos de pressao dinâmica. Quando da ocorrência de 6 origens de DEs o IMP-8 nao realizou medidas, nos outros 13 casos 10 origens (77%) mostraram uma anticorrelacao entre velocidade e densidade e apenas 3 (23%) revelaram uma tendência similar entre velocidade e densidade. Portanto, a análise inicial demonstra uma fraca correlacao entre as origens dos DEs e os efeitos de pressao.

  17. Dissociation of methane hydrate in aqueous NaCl solutions.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Andoh, Yoshimichi; Okazaki, Susumu; Tanaka, Hideki

    2014-10-09

    Molecular dynamics simulations of the dissociation of methane hydrate in aqueous NaCl solutions are performed. It is shown that the dissociation of the hydrate is accelerated by the formation of methane bubbles both in NaCl solutions and in pure water. We find two significant effects on the kinetics of the hydrate dissociation by NaCl. One is slowing down in an early stage before bubble formation, and another is swift bubble formation that enhances the dissociation. These effects arise from the low solubility of methane in NaCl solution, which gives rise to a nonuniform spatial distribution of solvated methane in the aqueous phase. We also demonstrate that bubbles form near the hydrate interface in dense NaCl solutions and that the hydrate dissociation proceeds inhomogeneously due to the bubbles.

  18. Feasibility study for a secondary Na/S battery

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Schiff, R.; Brummer, S. B.

    1979-01-01

    The feasibility of a moderate temperature Na battery was studied. This battery is to operate at a temperature in the range of 100-150 C. Two kinds of cathode were investigated: (1) a soluble S cathode consisting of a solution of Na2Sn in an organic solvent and (2) an insoluble S cathode consisting of a transition metal dichalcogenide in contact with a Na(+)ion conducting electrolyte. Four amide solvents, dimethyl acetamide, diethyl acetamide, N-methyl acetamide and acetamide, were investigated as possible solvents for the soluble S cathode. Results of stability and electrochemical studies using these solvents are presented. The dialkyl substituted amides were found to be superior. Although the alcohol 1,3-cyclohexanediol was found to be stable in the presence of Na2Sn at 130 C, its Na2Sn solutions did not appear to have suitable electrochemical properties.

  19. Trisodium citrate, Na3(C6H5O7)

    PubMed Central

    Rammohan, Alagappa; Kaduk, James A.

    2016-01-01

    The crystal structure of anhydrous tris­odium citrate, Na3(C6H5O7), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory (DFT). There are two independent five-coordinate Na+ and one six-coordinate Na+ cations in the asymmetric unit. The [NaO5] and [NaO6] polyhedra share edges and corners to form a three-dimensional framework. There are channels parallel to the a and b axes in which the remainder of the citrate anions reside. The only hydrogen bonds are an intra­molecular one between the hy­droxy group and one of the terminal carboxyl­ate O atoms and an intermolecular one between a methylene group and the hydroxyl O atom. PMID:27308044

  20. Interplanetary dust distribution and temporal variability of Mercury's atmospheric Na

    NASA Astrophysics Data System (ADS)

    Kameda, Shingo; Yoshikawa, Ichiro; Kagitani, Masato; Okano, Shoichi

    2009-08-01

    The interplanetary dust (IPD) distribution in the inner solar system is not yet well understood because of lack of direct dust measurements in the inner solar system and so one needs to rely on zodiacal light observations that are difficult to interpret. Mercury has an unstable atmosphere, and the source processes of Na in its atmosphere are unclear. Results of past observations have revealed that the atmospheric Na density has no or low correlation with the solar flux, sunspot number, heliocentric distance, or solar radiation pressure. We show that the variability of Mercury's atmospheric Na density depends strongly on the IPD distribution. That is, Na density is low (high) when Mercury is far away from (close to) the symmetry plane of IPD, and so one can infer the IPD distribution near Mercury orbit from the temporal variability of Na density in Mercury's atmosphere.

  1. Na-rich layered Na2Ru0.95Zr0.05O3 cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Kotobuki, Masashi; Zheng, Feng; Li, Qibin; Xu, Chaohe; Wang, Yu; Li, Wei Dong Z.; Hu, Ning; Lu, Li

    2017-02-01

    Structures and electrochemical performances of Na-rich layered cathode Na2RuO3 are studied by substitution of Zr for Ru. Na2Ru0.95Zr0.05O3 exhibits a combination of disordered and ordered stacking state with a weight fraction of ∼61.57% and 38.43%, respectively. The disordered and ordered Na2Ru0.95Zr0.05O3 exhibits reversible capacity of 137 mAh g-1 that is consistent with the theoretical capacity at a current density of 1 C. In addition, the material shows good cyclability with a capacity retention of 77% after 200 cycles at current density of 1 C, and the Coulombic efficiency remains at about 99% during cycling. The structural evolutions of the Na-rich layered Na2Ru0.95Zr0.05O3 during de(sodiation) have been investigated and found to proceed via a biphasic mechanism.

  2. Role of Na+,K+-pumps and transmembrane Na+,K+-distribution in muscle function. The FEPS lecture - Bratislava 2007.

    PubMed

    Clausen, T

    2008-03-01

    Na(+),K(+)-ATPase situated in the plasma membrane mediates active extrusion of Na(+) and intracellular accumulation of K(+). This transport system the Na(+),K(+)-pump is the major regulator of the transmembrane distribution of Na(+) and K(+), and is itself subject to regulation by a wide variety of factors in skeletal muscles. The excitation of skeletal muscles is elicited by a rapid influx of Na(+), followed by an equivalent efflux of K(+) across sarcolemmal and t-tubular membranes. Due to their size and sudden onset, these events constitute the major transport challenge for the Na(+),K(+)-pumps. Skeletal muscles contain the largest single pool of K(+) in the organism. During intense exercise, the Na(+),K(+)-pumps cannot readily reaccumulate K(+) into the muscle cells. Therefore, the working muscles undergo a net loss of K(+), causing up to a doubling of the K(+) concentration in the arterial blood plasma in less than 1 min and even larger increases in interstitial K(+). This may induce depolarization, loss of excitability and force, in particular in muscles, where the excitation-induced passive Na(+),K(+)-fluxes are large. During continuous stimulation of isolated rat muscles, there is a highly significant correlation between the rise in extracellular K(+) and the rate of force decline. Fortunately, excitation increases the Na(+),K(+)-pumping rate within seconds. Thus, maximum activation of up to 20-fold above the resting transport rate may be reached in 10 s, with utilization of all available Na(+),K(+)-pumps. In muscles, where excitability is reduced by pre-exposure to high [K(+)]o, acute activation of the Na(+),K(+)-pumps by hormones or intermittent electrical stimulation restores excitability and contractility. In working muscles, the Na(+),K(+)-pumps, due to rapid activation of their large transport capacity, play a dynamic regulatory role in the from second to second ongoing restoration and maintenance of excitability and force. Excitation is a self

  3. Single Na+ channels activated by veratridine and batrachotoxin

    PubMed Central

    1987-01-01

    Voltage-sensitive Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers in the presence of either of the alkaloid toxins veratridine (VT) or batrachotoxin (BTX). Both of these toxins are known to cause persistent activation of Na+ channels. With BTX as the channel activator, single channels remain open nearly all the time. Channels activated with VT open and close on a time scale of 1-10 s. Increasing the VT concentration enhances the probability of channel opening, primarily by increasing the rate constant of opening. The kinetics and voltage dependence of channel block by 21-sulfo-11-alpha-hydroxysaxitoxin are identical for VT and BTX, as is the ionic selectivity sequence determined by bi-ionic reversal potential (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). However, there are striking quantitative differences in open channel conduction for channels in the presence of the two activators. Under symmetrical solution conditions, the single channel conductance for Na+ is about twice as high with BTX as with VT. Furthermore, the symmetrical solution single channel conductances show a different selectivity for BTX (Na+ greater than Li+ greater than K+) than for VT (Na+ greater than K+ greater than Li+). Open channel current-voltage curves in symmetrical Na+ and Li+ are roughly linear, while those in symmetrical K+ are inwardly rectifying. Na+ currents are blocked asymmetrically by K+ with both BTX and VT, but the voltage dependence of K+ block is stronger with BTX than with VT. The results show that the alkaloid neurotoxins not only alter the gating process of the Na+ channel, but also affect the structure of the open channel. We further conclude that the rate-determining step for conduction by Na+ does not occur at the channel's "selectivity filter," where poorly permeating ions like K+ are excluded. PMID:2435846

  4. New results from the NA48 collaboration

    NASA Astrophysics Data System (ADS)

    NA48 Collaboration

    2003-04-01

    The list of new or recent NA48 results is the following: On CP Violation 1) New CP violation measurement in KS to 3 pi0 decays (eta000 parameter) 2) CP Violation measurement in the KL -> pi+pi-e+e- decay channel, where the violation is the maximal observed in the K system (about 15cross-check, no CP violation has been observed in the KS decay into the same final state. Rare KL, KS decays and Chiral Perturbation Theory (ChPT) 1) First measurement of the BR KS -> pi0 gamma gamma. It gives contraints on ChPT development terms in p**n (see also 2). 2) First precision measurement of KS -> gamma gamma. The result is incompatible with ChPT predictions at p**4 order: it gives indications on the need of a 'big' p**6 contribution. 3) Precision measurement of KL to pi0 gamma gamma; the measurement allows the av parameter (vector coupling constant) extraction used to characterize O(p**6) contributions in ChPT. Other new results from ongoing analyses that might be completed and blessed before your conference: Radiative and S.L. hyperon decays (cascade) KS to pi0 e+e- , KS to pi0 mu+mu- Ke3, Kmu3 form factors KL to 4 leptons Ke3 charge asymmetry

  5. NA-CORDEX: Overview and Sample Results

    NASA Astrophysics Data System (ADS)

    Bukovsky, M. S.; Mearns, L.; Arritt, R. W.; Castro, C. L.; Chang, H. I.; Christensen, J. H.; Christensen, O. B.; Frigon, A.; Gutowski, W. J., Jr.; Kjellstrom, E.; Laprise, R.; McGinnis, S. A.; Nikulin, G.; Scinocca, J. F.; Sushama, L.; Winger, K.

    2016-12-01

    The North American CORDEX program (NA-CORDEX) has produced a good number of projections of climate according to the first phase of the CORDEX program. These simulations are based on a wide range of regional and global climate models, and some matrices of combinations have resulted. The RCMs involved include: WRF, CanRCM4, CRCM5, RegCM4, RCA4, and HirHam5. Driving GCMs include: EC-EARTH, CanESM2, HadGEM2-ES, GFDL-ESM2M, MPI-ESM-LR. These GCMs nicely span the equilibrium climate sensitivity (ECS) of the GCMs making up the CMIP5 suite of models. Simulations have been performed both at .44 and .22 spatial resolutions and often for both RCP8.5 and 4.5. We will present an overview the simulations and their results over North America, focusing on the quality of the baseline climate simulations and the projections of precipitation and temperature.

  6. Endurance testing with Li/Na electrolyte

    SciTech Connect

    Ong, E.T.; Remick, R.J.; Sishtla, C.I.

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  7. [SENTIERI-ReNaM: Results].

    PubMed

    Binazzi, Alessandra; Zona, Amerigo; Marinaccio, Alessandro; Bruno, Caterina; Corfiati, Marisa; Fazzo, Lucia; Menegozzo, Simona; Nicita, Carmela; Pasetto, Roberto; Pirastu, Roberta; De Santisi, Marco; Comba, Pietro

    2016-01-01

    Mesothelioma incidence has been analyzed in National Priority Contaminated Sites (NPCSs) to estimate the health impact of asbestos exposure on resident people. The burden of professional and environmental exposures has been identified through data of the Regional Operational Centres (CORs), made available by the Italian National Mesothelioma Registry (ReNaM). An excess of mesothelioma incidence is confirmed in sites with a known past history of direct use of asbestos, such as Balangero, Casale Monferrato, Broni, Bari-Fibronit, and in coastal areas, where shipyards, harbours and other industries that involved a wide use of asbestos are represented (e.g., Trieste, La Spezia, Venice, and Leghorn). An excess of mesothelioma has been observed in settings where the asbestos is not mentioned as contaminant in the decree that included these sites among NPCSs, such as Cengio and Saliceto in Northern Italy; Falconara Marittima and the Bacino Idrografico Fiume Sacco in the Central Italy; the Litorale Domizio Flegreo and Agro Aversano, Milazzo, and Gela in the Southern Italy. Observed excess in the various NPCSs confirms the large-scale occurrence in contaminated Italian sites of a significant amount of total mesothelioma cases observed at national level. The analysis of occupational risk in epidemiological studies with an ecological design helps in defining the contribution of different factors to the overall risk.

  8. A semiclassical study of laser-induced atomic fluorescence from Na2, K2 and NaK

    NASA Technical Reports Server (NTRS)

    Yuan, J.-M.; Bhattacharyya, D. K.; George, T. F.

    1982-01-01

    A semiclassical treatment of laser-induced atomic fluorescence for the alkali-dimer systems Na2, K2 and NaK is presented. The variation of the fluorescence intensity with the frequency of the exciting laser photon is studied and a comparison of theoretical results with a set of experimental data is presented.

  9. Studies of rotationally inelastic collisions of NaK and NaCs with Ar and He perturbers

    NASA Astrophysics Data System (ADS)

    Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Ashman, S.; Malenda, R. F.; Weiser, P.; Carlus, S.; Fragale, A.; Hickman, A. P.; Huennekens, J.

    2013-05-01

    We report studies of rotationally inelastic collisions of Ar and He atoms with the molecules NaK and NaCs prepared in various ro-vibrational levels of the A1Σ+ electronic state. We use laser induced fluorescence (LIF) and polarization labeling (PL) spectroscopy in a pump-probe, two step excitation process. The pump excites the molecule to a ro-vibrational level (v , J) in the A state. The probe laser is scanned over transitions to the 31 Π state in NaK or the 53 Π state in NaCs. In addition to strong direct lines, we observe weak satellite lines that arise from collision-induced transitions of the A state level (v , J) to (v , J + ΔJ) . The ratio of intensities of the satellite line to the direct line in LIF and PL yields information about population and orientation transfer. Preliminary results show a strong propensity for collisions with ΔJ =even for NaK; the propensity is larger for He than for Ar. Collisions of NaCs with He show a similar propensity, but collisions of NaCs with Ar do not. Theoretical calculations are also underway. For He-NaK, we have completed potential surface calculations using GAMESS and coupled channel scattering calculations of rotational energy transfer and transfer of orientation. Work supported by NSF and XSEDE.

  10. In situ fluorescence imaging of glutamate-evoked mitochondrial Na+ responses in astrocytes.

    PubMed

    Bernardinelli, Yann; Azarias, Guillaume; Chatton, Jean-Yves

    2006-10-01

    Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.

  11. Tritium separation from Pb-17Li by permeation into Na or NaK and cold trapping

    SciTech Connect

    Reimann, J.

    1988-09-01

    The tritium extraction technique considered for a fusion reactor with a self-cooled Pb-17 Li blanket includes the permeation of the tritium into a Na or NaK intermediate loop and the precipitation as tritide in a cold trap. Tritium is recovered by thermal decomposition under vacuum. Basic kinetic studies of the thermal decomposition of sodium hydride are presented using different types of hydrides. The temperature range investigated was between 280 and 420/sup 0/C. Using fine NaH powder, the rate constants agreed well with those from other authors. For NaH crystals, the rate constants were lower by one order of magnitude and were similar to those obtained previously for coarse NaH powder.

  12. Preparation of Al-La Master Alloy by Thermite Reaction in NaF-NaCl-KCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Jang, Poknam; Li, Hyonmo; Kim, Wenjae; Wang, Zhaowen; Liu, Fengguo

    2015-05-01

    A NaF-NaCl-KCl ternary system containing La2O3 was investigated for the preparation of Al-La master alloy by the thermite reaction method. The solubility of La2O3 in NaF-NaCl-KCl molten salt was determined by the method of isothermal solution saturation. Inductively coupled plasma-optical emission spectroscopy and x-ray diffraction (XRD) analyses were used to consider the content of La2O3 in molten salt and the supernatant composition of molten salt after dissolution of La2O3, respectively. The results showed that the content of NaF had a positive influence on the solubility of La2O3 in NaF-NaCl-KCl molten salts, and the solubility of La2O3 could reach 8.71 wt.% in molten salts of 50 wt.%NaF-50 wt.% (44 wt.%NaCl + 56 wt.%KCl). The XRD pattern of cooling molten salt indicated the formation of LaOF in molten salt, which was probably obtained by the reaction between NaF and La2O3. The kinetic study showed that the thermite reaction was in accord with a first-order reaction model. The main influence factors on La content in the Al-La master alloy product, including molten salt composition, amount of Al, concentration of La2O3, stirring, reduction time and temperature, were investigated by single-factor experimentation. The content of La in the Al-La master alloy could be reached to 10.1 wt.%.

  13. A mutation in Na(+)-NQR uncouples electron flow from Na(+) translocation in the presence of K(+).

    PubMed

    Shea, Michael E; Mezic, Katherine G; Juárez, Oscar; Barquera, Blanca

    2015-01-20

    The sodium-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is a bacterial respiratory enzyme that obtains energy from the redox reaction between NADH and ubiquinone and uses this energy to create an electrochemical Na(+) gradient across the cell membrane. A number of acidic residues in transmembrane helices have been shown to be important for Na(+) translocation. One of these, Asp-397 in the NqrB subunit, is a key residue for Na(+) uptake and binding. In this study, we show that when this residue is replaced with asparagine, the enzyme acquires a new sensitivity to K(+); in the mutant, K(+) both activates the redox reaction and uncouples it from the ion translocation reaction. In the wild-type enzyme, Na(+) (or Li(+)) accelerates turnover while K(+) alone does not activate. In the NqrB-D397N mutant, K(+) accelerates the same internal electron transfer step (2Fe-2S → FMNC) that is accelerated by Na(+). This is the same step that is inhibited in mutants in which Na(+) uptake is blocked. NqrB-D397N is able to translocate Na(+) and Li(+), but when K(+) is introduced, no ion translocation is observed, regardless of whether Na(+) or Li(+) is present. Thus, this mutant, when it turns over in the presence of K(+), is the first, and currently the only, example of an uncoupled Na(+)-NQR. The fact the redox reaction and ion pumping become decoupled from each other only in the presence of K(+) provides a switch that promises to be a useful experimental tool.

  14. Growth and characterization of struvite-Na crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetan K.; Joshi, Mihirkumar J.

    2014-09-01

    Sodium magnesium phosphate heptahydrate [NaMgPO4·7H2O], also known as struvite-Na, is the sodium analog to struvite. Among phosphate containing bio-minerals, struvite has attracted considerable attention, because of its common occurrence in a wide variety of environments. Struvite and family crystals were found as urinary calculi in humans and animals. Struvite-Na crystals were grown by a single diffusion gel growth technique in a silica hydro gel medium. Struvite-Na crystals with different morphologies having transparent to translucent diaphaneity were grown with different growth parameters. The phenomenon of Liesegang rings was also observed with some particular growth parameters. The powder XRD study confirmed the structural similarity of the grown struvite-Na crystals with struvite and found that struvite-Na crystallized in the orthorhombic Pmn21 space group with unit cell parameters such as a= 6.893 Å, b=6.124 Å, c=11.150 Å, and α=β=γ=90°. FT-IR spectra of struvite-Na crystals revealed the presence of functional groups. The TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. The variation of dielectric constant with frequency of applied field was studied in the range from 400 Hz to 100 kHz.

  15. Voltage dependence of the Na-K pump.

    PubMed

    De Weer, P; Gadsby, D C; Rakowski, R F

    1988-01-01

    Present evidence demonstrates that the Na-K pump rate is voltage dependent, whereas early work was largely inconclusive. The I-V relationship has a positive slope over a wide voltage range, and the existence of a negative slope region is now doubtful. Monotonic voltage dependence is consistent with the reaction cycle containing a single voltage-dependent step. Recent measurements suggest that this voltage-dependent step occurs during Na translocation and may be deocclusion of Na+. In addition, two results suggest that K translocation is voltage insensitive: (a) large positive potentials appear to have no influence on Rb-Rb exchange or associated conformational transitions; and (b) transient currents associated with Na translocation appear to involve movement of a single charge, which is sufficient for a 3Na-2K cycle. The simplest interpretation is that the pump's cation binding sites supply two negative charges. Pre-steady-state measurements demonstrate that Na translocation precedes the pump cycle's rate-limiting step, presumably K translocation. But, because K translocation seems voltage insensitive, the voltage dependence of the steady-state pump rate probably reflects that of the concentration of the intermediate entering this slow step. Further pump current and flux data (both transient and steady-state), carefully determined over a range of conditions, should increase our understanding of the voltage-dependent step(s) in the Na-K pump cycle.

  16. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current.

    PubMed

    Vornanen, Matti; Hassinen, Minna; Haverinen, Jaakko

    2011-01-01

    Evolutionary origin and physiological significance of the tetrodotoxin (TTX) resistance of the vertebrate cardiac Na(+) current (I(Na)) is still unresolved. To this end, TTX sensitivity of the cardiac I(Na) was examined in cardiac myocytes of a cyclostome (lamprey), three teleost fishes (crucian carp, burbot and rainbow trout), a clawed frog, a snake (viper) and a bird (quail). In lamprey, teleost fishes, frog and bird the cardiac I(Na) was highly TTX-sensitive with EC(50)-values between 1.4 and 6.6 nmol·L(-1). In the snake heart, about 80% of the I(Na) was TTX-resistant with EC(50) value of 0.65 μmol·L(-1), the rest being TTX-sensitive (EC(50) = 0.5 nmol·L(-1)). Although TTX-resistance of the cardiac I(Na) appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na(+) channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.

  17. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    SciTech Connect

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  18. Electron scattering in graphene with adsorbed NaCl nanoparticles

    SciTech Connect

    Drabińska, Aneta Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Krajewska, Aleksandra

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  19. Brush-border tyrosine phosphorylation stimulates ileal neutral NaCl absorption and brush-border Na(+)-H+ exchange.

    PubMed

    Donowitz, M; Montgomery, J L; Walker, M S; Cohen, M E

    1994-04-01

    The drug genistein, a tyrosine (Tyr) kinase inhibitor, was used to define a role for Tyr phosphorylation in regulation of basal and stimulated neutral NaCl absorption in rabbit ileum. Brush-border vesicles contain Tyr-phosphorylated peptides. Genistein freeze-thawed into the vesicles caused a concentration-dependent inhibition of at least three peptides with M(r) 111,000, 83,000, and 80,000. Studied with the Ussing chamber-voltage clamp technique, genistein added to the ileal mucosal surface inhibited neutral NaCl absorption. Direct addition of genistein to brush-border vesicles made from ileal villus cells inhibited brush-border Na(+)-H+ exchange but not D-glucose-stimulated Na+ uptake. These effects were not duplicated by genistin, a drug with similar structure to genistein but lacking Tyr kinase inhibiting properties. Serosal but not mucosal epidermal growth factor (EGF) stimulated NaCl absorption. Mucosal genistein but not genistin also altered second-messenger regulation of neutral NaCl absorption, inhibiting the effect of Ca2+ ionophore A-23187 and of serosal EGF but not affecting the transport changes caused by 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP). In contrast, the Cl secretory effects indicated by the increase in short-circuit current for all three agents, A-23187, EGF, and 8-BrcAMP, were inhibited by mucosal genistein. These results suggest that 1) a Tyr kinase is involved in basally stimulating ileal neutral NaCl absorption and brush-border Na(+)-H+ exchange; 2) EGF stimulates NaCl absorption by an effect exerted from the serosal surface, but the effect also involves a brush-border Tyr kinase; 3) brush-border Tyr kinase is involved in the ability of Ca2+ ionophore A-23187 to inhibit neutral NaCl absorption but is not involved in the transport effects of cAMP. This study suggests that Tyr kinase(s) acting over short time periods is involved in stimulation of neutral NaCl absorption and brush-border Na(+)-H+ exchange and also in Ca(2

  20. Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes

    PubMed Central

    Ito, Yusuke; Kato, Akira; Hirata, Taku; Hirose, Shigehisa

    2014-01-01

    Zebrafish Na+/H+ exchanger 3b (zNHE3b) is highly expressed in the apical membrane of ionocytes where Na+ is absorbed from ion-poor fresh water against a concentration gradient. Much in vivo data indicated that zNHE3b is involved in Na+ absorption but not leakage. However, zNHE3b-mediated Na+ absorption has not been thermodynamically explained, and zNHE3b activity has not been measured. To address this issue, we overexpressed zNHE3b in Xenopus oocytes and characterized its activity by electrophysiology. Exposure of zNHE3b oocytes to Na+-free media resulted in significant decrease in intracellular pH (pHi) and intracellular Na+ activity (aNai). aNai increased significantly when the cytoplasm was acidified by media containing CO2-HCO3− or butyrate. Activity of zNHE3b was inhibited by amiloride or 5-ethylisopropyl amiloride (EIPA). Although the activity was accompanied by a large hyperpolarization of ∼50 mV, voltage-clamp experiments showed that Na+/H+ exchange activity of zNHE3b is electroneutral. Exposure of zNHE3b oocytes to medium containing NH3/NH4+ resulted in significant decreases in pHi and aNai and significant increase in intracellular NH4+ activity, indicating that zNHE3b mediates the Na+/NH4+ exchange. In low-Na+ (0.5 mM) media, zNHE3b oocytes maintained aNai of 1.3 mM, and Na+-influx was observed when pHi was decreased by media containing CO2-HCO3− or butyrate. These results provide thermodynamic evidence that zNHE3b mediates Na+ absorption from ion-poor fresh water by its Na+/H+ and Na+/NH4+ exchange activities. PMID:24401990

  1. Proposed decommissioning of radioactively contaminated NaK

    SciTech Connect

    Brown, B.W.; Geimer, R.M.; LaRue, D.M.; Stoll, F.E.; Meservey, R.H.; Maggart, C.L.

    1987-10-01

    This paper deals with a proposed method for stabilizing radioactively contaminated eutectic sodium/potassium (NaK) liquid metal. Approximately 680 liters (180 gal) of contaminated liquid NaK were generated in 1955 during testing with the Experimental Breeder Reactor (EBR-I) at the Idaho National Engineering Laboratory (INEL). Reaction of the NaK with chlorine gas to produce solid salts of sodium and potassium is proposed as a means to stabilize this waste. Preliminary testing was initiated to determine the reaction conditions required for this process. It was found that reaction with chlorine is feasible for safely treating the liquid metal.

  2. Phyla- and Subtype-Selectivity of CgNa, a Na Channel Toxin from the Venom of the Giant Caribbean Sea Anemone Condylactis Gigantea.

    PubMed

    Billen, Bert; Debaveye, Sarah; Béress, Lászlo; Garateix, Anoland; Tytgat, Jan

    2010-01-01

    Because of their prominent role in electro-excitability, voltage-gated sodium (Na(V)) channels have become the foremost important target of animal toxins. These toxins have developed the ability to discriminate between closely related Na(V) subtypes, making them powerful tools to study Na(V) channel function and structure. CgNa is a 47-amino acid residue type I toxin isolated from the venom of the Giant Caribbean Sea Anemone Condylactis gigantea. Previous studies showed that this toxin slows the fast inactivation of tetrodotoxin-sensitive Na(V) currents in rat dorsal root ganglion neurons. To illuminate the underlying Na(V) subtype-selectivity pattern, we have assayed the effects of CgNa on a broad range of mammalian isoforms (Na(V)1.2-Na(V)1.8) expressed in Xenopus oocytes. This study demonstrates that CgNa selectively slows the fast inactivation of rNa(V)1.3/β(1), mNa(V)1.6/β(1) and, to a lesser extent, hNa(V)1.5/β(1), while the other mammalian isoforms remain unaffected. Importantly, CgNa was also examined on the insect sodium channel DmNa(V)1/tipE, revealing a clear phyla-selectivity in the efficacious actions of the toxin. CgNa strongly inhibits the inactivation of the insect Na(V) channel, resulting in a dramatic increase in peak current amplitude and complete removal of fast and steady-state inactivation. Together with the previously determined solution structure, the subtype-selective effects revealed in this study make of CgNa an interesting pharmacological probe to investigate the functional role of specific Na(V) channel subtypes. Moreover, further structural studies could provide important information on the molecular mechanism of Na(V) channel inactivation.

  3. (23)Na multiple-quantum MAS NMR of the perovskites NaNbO(3) and NaTaO(3).

    PubMed

    Ashbrook, Sharon E; Le Pollès, Laurent; Gautier, Régis; Pickard, Chris J; Walton, Richard I

    2006-08-07

    The distorted perovskites NaTaO(3) and NaNbO(3) have been studied using (23)Na multiple-quantum (MQ) MAS NMR. NaTaO(3) was prepared by high temperature solid state synthesis and the NMR spectra are consistent with the expected room temperature structure of the material (space group Pbnm), with a single crystallographic sodium site. Two samples of NaNbO(3) were studied. The first, a commercially available sample which was annealed at 900 degrees C, showed two crystallographic sodium sites, as expected for the room temperature structure of the material (space group Pbcm). The second sample, prepared by a low temperature hydrothermal method, showed the presence of four sodium sites, two of which match the expected room temperature structure and the second pair, another polymorph of the material (space group P21ma). This is consistent with powder X-ray diffraction data which showed weak extra peaks which can be accounted for by the presence of this second polymorph. Density functional theory (DFT) calculations support our conclusions, and aid assignment of the NMR spectra. Finally, we discuss the measured NMR parameters in relation to other studies of sodium in high coordination sites in the solid state.

  4. 23 Na and 17O NMR studies of hyperkagome Na4Ir3O8

    NASA Astrophysics Data System (ADS)

    Shockley, Abigail; Bert, Fabrice; Orain, Jean-Christophe; Okamoto, Yoshihiko; Mendels, Philippe

    2015-03-01

    Na4Ir3O8 is a unique case of a 3D corner sharing triangular lattice which can be decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate of a new kind where the Hamiltonian might not be thought in terms of a simple Heisenberg case because of spin orbit coupling on the Ir 5d element. We present a comprehensive set of NMR data taken on both the 23Na and 17O sites. We have found that magnetic freezing of all Ir sites sets in below Tf ~ 7.5K ~ 0 . 019 J with a clear hyperfine field transferred from Ir moments and a drastic decrease of 1 /T1 . Above Tf, physical properties are expected to be a landmark of frustration in this exotic geometry. We will discuss our shift and relaxation data in the temperature range of 300K to 7.5 K in the light of published thermodynamic measurements (Y. Okamotoa et al, PRL 99 137207, 2007 and Y. Singh et al, PRB 88 220413(R), 2013) and comment on their implications for the already existing large body of theoretical work.

  5. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-07

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.

  6. Desensitization by external Na of the cyclic AMP-dependent Na+/H+ antiporter in trout red blood cells

    PubMed Central

    1988-01-01

    The erythrocytes of the trout, Salmo gairdneri, react to beta- adrenergic stimulation by activating a cyclic AMP-dependent and amiloride-sensitive Na+/H+ antiporter (see Borgese, F., F. Garcia- Romeu, and R. Motais, Journal of General Physiology, 1986, 87:551-566). The present study traces the kinetic behavior of the unidirectional Na fluxes after stimulation by isoproterenol. A very considerable increase (100-fold) of the unidirectional Na influx (JNa(in)) follows the addition of isoproterenol to the erythrocyte suspension. After 1.5 min, JNa(in) falls suddenly, and asymptotically diminishes toward the nonstimulated flux level. The unidirectional Na efflux (JNa(out)) proceeds according to similar kinetics. The decrease of JNa(in) and JNa(out)is not linked to either a change in the driving forces of the transported ions or a decrease of the cyclic AMP concentration but to a desensitization of the Na+/H+ antiporter. This desensitization is dependent on the external Na concentration and is not controlled by internal Na, cell swelling, or external Ca. PMID:2839593

  7. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive.

    PubMed

    Abate, Iwnetim I; Thompson, Leslie E; Kim, Ho-Cheol; Aetukuri, Nagaphani B

    2016-06-16

    Aprotic metal-oxygen batteries, such as Li-O2 and Na-O2 batteries, are of topical research interest as high specific energy alternatives to state-of-the-art Li-ion batteries. In particular, Na-O2 batteries with NaO2 as the discharge product offer higher practical specific energy with better rechargeability and round-trip energy efficiency when compared to Li-O2 batteries. In this work, we show that the electrochemical deposition and dissolution of NaO2 in Na-O2 batteries is unperturbed by trace water impurities in Na-O2 battery electrolytes, which is desirable for practical battery applications. We find no evidence for the formation of other discharge products such as Na2O2·H2O. Furthermore, the electrochemical efficiency during charge remains near ideal in the presence of trace water in electrolytes. Although sodium anodes react with trace water leading to the formation of a high-impedance solid electrolyte interphase, the increase in discharge overpotential is only ∼100 mV when compared to cells employing nominally anhydrous electrolytes.

  8. Hole Doping Effects on Spin-gapped Na2Cu2TeO6 via Topochemical Na Deficiency

    NASA Astrophysics Data System (ADS)

    Morimoto, Kumiko; Itoh, Yutaka; Yoshimura, Kazuyoshi; Kato, Masaki; Hirota, Ken

    2006-08-01

    We report the magnetic susceptibility and NMR studies of a spin-gapped layered compound Na2Cu2TeO6 (the spin gap Δ˜ 250 K), the hole doping effect on the Cu2TeO6 plane via a topochemical Na deficiency by soft chemical treatment, and the static spin vacancy effect by nonmagnetic impurity Zn substitution for Cu. A finite Knight shift at the 125Te site was observed for pure Na2Cu2TeO6. The negative hyperfine coupling constant 125Atr is an evidence for the existence of a superexchange pathway of the Cu-O-Te-O-Cu bond. It turned out that both the Na deficiency and Zn impurities induce a Curie-type magnetism in the uniform spin susceptibility in an external magnetic field of 1 T, but only the Zn impurities enhance the low-temperature 23Na nuclear spin-lattice relaxation rate whereas the Na deficiency suppresses it. A spin glass behavior was observed for the Na-deficient samples but not for the Zn-substituted samples. The dynamics of the unpaired moments of the doped holes are different from that of the spin vacancy in the spin-gapped Cu2TeO6 planes.

  9. Desensitization by external Na of the cyclic AMP-dependent Na+/H+ antiporter in trout red blood cells.

    PubMed

    Garcia-Romeu, F; Motais, R; Borgese, F

    1988-04-01

    The erythrocytes of the trout, Salmo gairdneri, react to beta-adrenergic stimulation by activating a cyclic AMP-dependent and amiloride-sensitive Na+/H+ antiporter (see Borgese, F., F. Garcia-Romeu, and R. Motais, Journal of General Physiology, 1986, 87:551-566). The present study traces the kinetic behavior of the unidirectional Na fluxes after stimulation by isoproterenol. A very considerable increase (100-fold) of the unidirectional Na influx (JNa(in)) follows the addition of isoproterenol to the erythrocyte suspension. After 1.5 min, JNa(in) falls suddenly, and asymptotically diminishes toward the nonstimulated flux level. The unidirectional Na efflux (JNa(out)) proceeds according to similar kinetics. The decrease of JNa(in) and JNa(out)is not linked to either a change in the driving forces of the transported ions or a decrease of the cyclic AMP concentration but to a desensitization of the Na+/H+ antiporter. This desensitization is dependent on the external Na concentration and is not controlled by internal Na, cell swelling, or external Ca.

  10. (−)-Englerin A-evoked Cytotoxicity Is Mediated by Na+ Influx and Counteracted by Na+/K+-ATPase*

    PubMed Central

    Ludlow, Melanie J.; Gaunt, Hannah J.; Rubaiy, Hussein N.; Musialowski, Katie E.; Blythe, Nicola M.; Vasudev, Naveen S.; Muraki, Katsuhiko; Beech, David J.

    2017-01-01

    (−)-Englerin A ((−)-EA) has a rapid and potent cytotoxic effect on several types of cancer cell that is mediated by plasma membrane ion channels containing transient receptor potential canonical 4 (TRPC4) protein. Because these channels are Ca2+-permeable, it was initially thought that the cytotoxicity arose as a consequence of Ca2+ overload. Here we show that this is not the case and that the effect of (−)-EA is mediated by a heteromer of TRPC4 and TRPC1 proteins. Both TRPC4 and TRPC1 were required for (−)-EA cytotoxicity; however, although TRPC4 was necessary for the (−)-EA-evoked Ca2+ elevation, TRPC1 was not. TRPC1 either had no role or was a negative regulator of Ca2+ entry. By contrast, both TRPC4 and TRPC1 were necessary for monovalent cation entry evoked by (−)-EA, and (−)-EA-evoked cell death was dependent upon entry of the monovalent cation Na+. We therefore hypothesized that Na+/K+-ATPase might act protectively by counteracting the Na+ load resulting from sustained Na+ entry. Indeed, inhibition of Na+/K+-ATPase by ouabain potently and strongly increased (−)-EA-evoked cytotoxicity. The data suggest that (−)-EA achieves cancer cell cytotoxicity by inducing sustained Na+ entry through heteromeric TRPC1/TRPC4 channels and that the cytotoxic effect of (−)-EA can be potentiated by Na+/K+-ATPase inhibition. PMID:27875305

  11. Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode.

    PubMed

    Luo, Wei; Zhang, Ying; Xu, Shaomao; Dai, Jiaqi; Hitz, Emily; Li, Yiju; Yang, Chunpeng; Chen, Chaoji; Liu, Boyang; Hu, Liangbing

    2017-06-14

    Room-temperature Na ion batteries (NIBs) have attracted great attention because of the widely available, abundant sodium resources and potentially low cost. Currently, the challenge of the NIB development is due primarily to the lack of a high-performance anode, while the Na metal anode holds great promise considering its highest specific capacity of 1165 mA h/g and lowest anodic potential. However, an uneven deposit, relatively infinite volume change, and dendritic growth upon plating/stripping cycles cause a low Coulombic efficiency, poor cycling performance, and severe safety concerns. Here, a stable Na carbonized wood (Na-wood) composite anode was fabricated via a rapid melt infusion (about 5 s) into channels of carbonized wood by capillary action. The channels function as a high-surface-area, conductive, mechanically stable skeleton, which lowers the effective current density, ensures a uniform Na nucleation, and restricts the volume change over cycles. As a result, the Na-wood composite anode exhibited flat plating/stripping profiles with smaller overpotentials and stable cycling performance over 500 h at 1.0 mA/cm(2) in a common carbonate electrolyte system. In sharp comparison, the planar Na metal electrode showed a much shorter cycle life of 100 h under the same test conditions.

  12. (-)-Englerin A-evoked Cytotoxicity Is Mediated by Na+ Influx and Counteracted by Na+/K+-ATPase.

    PubMed

    Ludlow, Melanie J; Gaunt, Hannah J; Rubaiy, Hussein N; Musialowski, Katie E; Blythe, Nicola M; Vasudev, Naveen S; Muraki, Katsuhiko; Beech, David J

    2017-01-13

    (-)-Englerin A ((-)-EA) has a rapid and potent cytotoxic effect on several types of cancer cell that is mediated by plasma membrane ion channels containing transient receptor potential canonical 4 (TRPC4) protein. Because these channels are Ca(2+)-permeable, it was initially thought that the cytotoxicity arose as a consequence of Ca(2+) overload. Here we show that this is not the case and that the effect of (-)-EA is mediated by a heteromer of TRPC4 and TRPC1 proteins. Both TRPC4 and TRPC1 were required for (-)-EA cytotoxicity; however, although TRPC4 was necessary for the (-)-EA-evoked Ca(2+) elevation, TRPC1 was not. TRPC1 either had no role or was a negative regulator of Ca(2+) entry. By contrast, both TRPC4 and TRPC1 were necessary for monovalent cation entry evoked by (-)-EA, and (-)-EA-evoked cell death was dependent upon entry of the monovalent cation Na(+) We therefore hypothesized that Na(+)/K(+)-ATPase might act protectively by counteracting the Na(+) load resulting from sustained Na(+) entry. Indeed, inhibition of Na(+)/K(+)-ATPase by ouabain potently and strongly increased (-)-EA-evoked cytotoxicity. The data suggest that (-)-EA achieves cancer cell cytotoxicity by inducing sustained Na(+) entry through heteromeric TRPC1/TRPC4 channels and that the cytotoxic effect of (-)-EA can be potentiated by Na(+)/K(+)-ATPase inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.

    PubMed

    Schlessinger, Avner; Sun, Nina N; Colas, Claire; Pajor, Ana M

    2014-06-13

    Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na(+)-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na(+)/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In addition to citric acid cycle intermediates such as α-ketoglutarate and succinate, NaDC3 transports other compounds into cells, including N-acetyl aspartate, mercaptosuccinate, and glutathione, in keeping with its dual roles in cell nutrition and detoxification. In this study, we construct a homology structural model of NaDC3 on the basis of the structure of the Vibrio cholerae homolog vcINDY. Our computations are followed by experimental testing of the predicted NaDC3 structure and mode of interaction with various substrates. The results of this study show that the substrate and cation binding domains of NaDC3 are composed of residues in the opposing hairpin loops and unwound portions of adjacent helices. Furthermore, these results provide a possible explanation for the differential substrate specificity among dicarboxylate transporters that underpin their diverse biological roles in metabolism and detoxification. The structural model of NaDC3 provides a framework for understanding substrate selectivity and the Na(+)-coupled anion transport mechanism by the human SLC13 family and other key solute carrier transporters. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl- cotransporter.

    PubMed

    van der Lubbe, Nils; Moes, Arthur D; Rosenbaek, Lena L; Schoep, Sharon; Meima, Marcel E; Danser, Alexander H J; Fenton, Robert A; Zietse, Robert; Hoorn, Ewout J

    2013-10-15

    During hypovolemia and hyperkalemia, the kidneys defend homeostasis by Na(+) retention and K(+) secretion, respectively. Aldosterone mediates both effects, but it is unclear how the same hormone can evoke such different responses. To address this, we mimicked hypovolemia and hyperkalemia in four groups of rats with a control diet, low-Na(+) diet, high-K(+) diet, or combined diet. The low-Na(+) and combined diets increased plasma and kidney ANG II. The low-Na(+) and high-K(+) diets increased plasma aldosterone to a similar degree (3-fold), whereas the combined diet increased aldosterone to a greater extent (10-fold). Despite similar Na(+) intake and higher aldosterone, the high-K(+) and combined diets caused a greater natriuresis than the control and low-Na(+) diets, respectively (P < 0.001 for both). This K(+)-induced natriuresis was accompanied by a decreased abundance but not phosphorylation of the Na(+)-Cl(-) cotransporter (NCC). In contrast, the epithelial Na(+) channel (ENaC) increased in parallel with aldosterone, showing the highest expression with the combined diet. The high-K(+) and combined diets also increased WNK4 but decreased Nedd4-2 in the kidney. Total and phosphorylated Ste-20-related kinase were also increased but were retained in the cytoplasm of distal convoluted tubule cells. In summary, high dietary K(+) overrides the effects of ANG II and aldosterone on NCC to deliver sufficient Na(+) to ENaC for K(+) secretion. K(+) may inhibit NCC through WNK4 and help activate ENaC through Nedd4-2.

  15. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.

    PubMed

    Marionneau, Céline; Abriel, Hugues

    2015-05-01

    The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.

  17. On the Structure and Chemical Bonding of Si62- and Si62- in NaSi6- Upon Na+ Coordination

    SciTech Connect

    Zubarev, Dmitry Y.; Alexandrova, Anastassia N.; Boldyrev, Alexander I.; Cui, Lifeng; Li, Xi; Wang, Lai S.

    2006-03-23

    Photoelectron spectroscopy was combined with ab initio calculations to elucidate the structure and bonding in Si62- and NaSi6-. Well-resolved electronic transitions were observed in the photoelectron spectra of Si6- and NaSi6- at three photon energies (355, 266, and 193 nm). The spectra of NaSi6- were observed to be similar to those of Si6- except that the electron binding energies of the former are lower, suggesting that the Si6 motif in NaSi6- is structurally and electronically similar to that of Si6-. The electron affinity of Si6 and NaSi6 were measured fairly accurately to be 2.23 ± 0.03 eV and 1.80 ± 0.05 eV, respectively. Global minimum structure searches for Si62- and NaSi6- were performed using Gradient Embedded Genetic Algorithm followed by B3LYP, MP2 and CCSD(T) calculations. Vertical electron detachment energies (VDEs) were calculated for the lowest Si6- and NaSi6- structures at the CCSD(T)/6-311+G(2df), ROVGF/6-311+G(2df), UOVGF/6-311+G(2d), TD B3LYP/6-311+G(2df) levels of theory. Experimental VDEs were used to verify the global minimum structure for NaSi6-. Though the octahedral Si62-, analogous to the closo-form of borane B6H62-, is the most stable form for the bare hexa-silicon dianion, it is not the kernel for the NaSi6- global minimum. The most stable isomer of NaSi6- is based on a Si62- motif, which is distorted into C2v symmetry similar to the ground state structure of Si6-. The octahedral Si62- coordinated by a Na+ is a low-lying isomer and was also observed experimentally. The chemical bonding in Si62- and NaSi6- was understood using NBO, molecular orbital, and ELF analysis.

  18. Beyond lithium-ion batteries: A computational study on Na-S and Na-O batteries

    NASA Astrophysics Data System (ADS)

    Masedi, M. C.; Ngoepe, P. E.; Sithole, H. M.

    2017-02-01

    The first principle pseudopotential calculations based on the Perdew-Burke-Ernzerhof (PBE) form of generalized gradient approximation (GGA) within density functional theory (DFT) has been utilized to investigate the stabilities of insoluble discharge products of oxygen and sulphur in the Na-O and Na-S batteries. Their structural, mechanical and electronic properties were determined. The lattice parameters were well reproduced and agree with the available experimental data. The heats of formation predict that all structures are generally stable and Na2S has the lowest value. The elastic constants suggest that all the structures are mechanically stable which in good agreement with the calculated phonon dispersions.

  19. Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere.

    PubMed

    Huang, Wentao; Chu, Xinzhao; Williams, B P; Harrell, S D; Wiig, Johannes; She, C-Y

    2009-01-15

    A Na double-edge magneto-optic filter is proposed for incorporation into the receiver of a three-frequency Na Doppler lidar to extend its wind and temperature measurements into the lower atmosphere. Two prototypes based on cold- and hot-cell designs were constructed and tested with laser scanning and quantum mechanics modeling. The hot-cell filter exhibits superior performances over the cold-cell filter containing buffer gas. Lidar simulations, metrics, and error analyses show that simultaneous wind and temperature measurements are feasible in the altitude range of 20-50 km using the hot-cell filter and reasonable Na lidar parameters.

  20. A Comparative Investigation on the JT Effect in Triangular Compounds of NaMnO2, NaNiO2 and NaTiO2

    NASA Astrophysics Data System (ADS)

    Ouyang, Sheng-De; Quan, Ya-Min; Liu, Da-Yong; Zou, Liang-Jian

    2011-06-01

    We present a study on the Jahn—Teller (JT) distortions of the TiO6, NiO6 and MnO6 complexes in NaTiO2, NaNiO2 and NaMnO2 triangular compounds with a C2/m structure. The JT vibronic normal modes are found to be Q3, Q'4 and Q6 by the group symmetry on the C2/m structure. The magnitude of the normal coordinates (Q3, Q'4, Q6) and the structural parameters of distorted octahedra MO6 (M=Ti, Ni, Mn) are obtained and in good agreement with experimental data. The energy level splitting of 3d orbitals and the highest occupied molecular orbital (HOMO) character in the MO6 complex are also calculated in accordance with the JT distortions. These results provide a first insight into the groundstate and magnetic properties of distorted triangular compounds AMO2.

  1. Infrared and SEM analyses of polyethyleneglycol-400 adsorbed on zeolites NaA, CaA, NaX and NaY

    NASA Astrophysics Data System (ADS)

    Öztürk, Nuri; Ucun, Fatih; Didem Muhtar, A.; Bahçeli, Semiha

    2009-03-01

    The adsorption of polyethyleneglycol-400 (PEG-400) on zeolites NaA, CaA, NaX and NaY have been investigated by using FT-IR spectroscopy and scanning electron microscopic (SEM) analyses. The spectral data have indicated that the source of adsorption of the PEG-400 on the mentioned zeolites is the interaction between the (OH) group of the liquid adsorbent and the surface silanol groups of the zeolites by means of a hydrogen bond. Shortly, the PEG binds with the silanol groups through the hydrogen bonding where the ethereal oxygen acts as a hydrogen bond accepter. A part of the PEG molecule remains adsorbed on the surface and the rest part remains protruded. So, the most of the silanol groups on the zeolites are masked by the PEG-400.

  2. Mg and Na clusters in a helium matrix

    NASA Astrophysics Data System (ADS)

    Höller, Johannes; Krotscheck, Eckhard; Zillich, Robert E.

    2015-08-01

    We have studied the adsorption properties of liquid 4He on small Mg and Na clusters. The calculation requires three components: a calculation of the cluster structure, a path-integral Monte Carlo calculation of the structure of the surrounding helium, and the determination of the cluster-helium interaction. The two types of clusters are examples for two physically very different situations: small Mg clusters are insulating and their interaction with the surrounding helium is relatively strong. We find for all cases considered here that these clusters are submersed in the helium droplet and reside basically at its center. Na clusters, on the other hand, are conducting down to very small particle numbers. More important, however, is the fact that the Na-He interaction is much weaker than the He-He attraction which causes small Na clusters to reside at the cluster surface.

  3. Tb/Na tobermorite: Thermal behaviour and high temperature products

    SciTech Connect

    Garra, Walter; Marchetti, Fabio; Merlino, Stefano

    2009-06-15

    By heating a sample of Tb/Na tobermorite we obtained a phase which was identified through its X-ray diffraction (XRD) pattern, as terbium silicate apatite. Subsequently this compound has been directly prepared by solid state reaction and we carried out a structural refinement from XRD data in space group P6{sub 3}/m obtaining cell parameters a=9.39199(4) A and c=6.84041(5) A. Terbium silicate apatite heated in melted NaF led to Tb{sub 4}O{sub 7} crystals. - Graphical Abstract: By heating over 900 deg. C Tb/Na tobermorite a terbium silicate apatite was obtained. The same product has been independently prepared and structurally characterized from powder diffraction data. Attempts of crystallizing terbium silicate apatite from melted NaF led to Tb{sub 4}O{sub 7} crystals.

  4. Na2MoO2As2O7

    PubMed Central

    Jouini, Raja; Zid, Mohamed Faouzi; Driss, Ahmed

    2012-01-01

    Disodium molybdenum dioxide diarsenate, Na2MoO2As2O7, has been synthesized by a solid-state reaction. The structure is built up from MoAs2O12 linear units sharing corners to form a three-dimensional framework containing tunnels running along the a-axis direction in which the Na+ cations are located. In this framework, the AsV atoms are tetra­hedrally coordinated and form an As2O7 group. The MoVI atom is displaced from the center of an octa­hedron of O atoms. Two Na+ cations are disordered about inversion centres. Structural relationships between different compounds: A 2MoO2As2O7 (A = K, Rb), AMOP2O7 (A = Na, K, Rb; M = Mo, Nb) and MoP2O7 are discussed. PMID:23468669

  5. Stellar (n ,γ ) cross sections of 23Na

    NASA Astrophysics Data System (ADS)

    Uberseder, E.; Heil, M.; Käppeler, F.; Lederer, C.; Mengoni, A.; Bisterzo, S.; Pignatari, M.; Wiescher, M.

    2017-02-01

    The cross section of the 23Na(n ,γ )24Na reaction was measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at k T =5.1 and 25 keV produced via the 18O(p ,n )18F and 7Li(p ,n )7Be reactions, respectively. The derived capture cross sections <σ> kT =5 keV=9.1 ±0.3 mb and <σ> kT =25 keV=2.03 ±0.05 mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first 23Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of s -process nucleosynthesis are discussed.

  6. Interpretation of Na-K-Mg relations in geothermal waters

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    When using a Na-K-???Mg triangular diagram as an aid in the interpretation of a geothermal water, the estimated temperature of last water-rock equilibration may change by as much as 50??C, depending on which of the many Na/K geothermometers one assumes is correct. A particular geothermometer may work well in one place and not in another because of differences in the mineralogy of the phases that are in contact with the reservoir fluid. The position of the full equilibrium line that is used for geothermometry and for assessing degrees of departure from equilibrium also changes as the assumed K/???Mg geothermometer equation changes. The degree of ambiguity can be evaluated by utilizing the results of all the recently published Na/K geothermometers on a single Na-K-???Mg triangular plot.

  7. VIEW OF CEMETERY SECTION NA (NEW ADDITION), WITH NORTHERN PERIMETER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CEMETERY SECTION NA (NEW ADDITION), WITH NORTHERN PERIMETER FENCE ALONG LINCOLN BOULEVARD IN FOREGROUND. VIEW TO SOUTH. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA

  8. VIEW OF CEMETERY SECTIONS NA (NEW ADDITION) AND NAWS (NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CEMETERY SECTIONS NA (NEW ADDITION) AND NAWS (NEW ADDITION WEST SIDE) ALONG NORTH DRIVE, WITH MAINTENANCE COMPLEX AT LEFT BACKGROUND. VIEW TO SOUTHEAST. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA

  9. Reactions of NaCl with gaseous SO3, SO2, and O2

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Stearns, C. A.; Kohl, F. J.

    1984-01-01

    Hot corrosion of gas turbine engine components involves deposits of Na2SO4 which are produced by reactions between NaCl and oxides of sulfur. For the present investigation, NaCl single crystals were exposed at 100 to 850 C to gaseous mixtures of SO3, SO2, and O2. The products formed during this exposure depend, primarily, on the temperatures. The four product films were: NaCl-SO3; Na2S2O7; Na2SO4; and NaCl-Na2SO4. The kinetics of the reactions were measured.

  10. Structural, electronic, sodium diffusion and elastic properties of Na-P alloy anode for Na-ion batteries: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Lu, Huansheng; Xu, Bo; Shi, Jing; Wu, Musheng; Hu, Yinquan; Ouyang, Chuying

    2016-11-01

    Sodium-ion batteries (NIBs) as an alternative to lithium-ion batteries (LIBs) have recently received great attentions because of the relatively high abundance of sodium. Searching for suitable anode materials has always been a hot topic in the field of NIB study. Recent reports show that phosphorus-based materials are potential as the anode materials for NIBs. Using first-principles calculations, herein, we study the atomic and electronic structures, diffusion dynamics and intrinsic elastic properties of various Na-P alloy compounds (NaP5, Na3P11, NaP and Na3P) as the intermediate phases during Na extraction/insertion in phosphorus-based anode materials. It is found that all the crystalline phases of Na-P alloy phases considered in our study are semiconductors with band gaps larger than that of black phosphorus (BP). The calculations of Na diffusion dynamics indicate a relatively fast Na diffusion in these materials, which is important for good rate performance. In addition, the diffusion channels of sodium ions are one-dimensional in NaP5 phase and three-dimensional in other three phases (Na3P11, NaP and Na3P). Elastic constant calculations indicate that all four phases are mechanically stable. Among them, however, NaP5, Na3P11 and NaP alloy phases are ductile, while the fully sodiated phase Na3P is brittle. In order to improve the electrochemical performance of Na-P alloy anodes for NIBs, thus, promoting ductility of Na-P phase with high sodium concentration may be an effective way.

  11. In search of synaptosomal Na+,K(+)-ATPase regulators.

    PubMed

    Rodríguez de Lores Arnaiz, G

    1992-01-01

    The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium pump, that is the enzyme Na+,K(+)-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of Na+,K(+)-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest to the knowledge of the possible regulatory mechanisms of Na+,K(+)-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory, that refer to the effect of neurotransmitters and endogenous substances on Na+,K(+)-ATPase activity. Mention is also made of results in the field obtained in other laboratories. Evidence showing that brain Na+,K(+)-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K(+)-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and use of the fraction. The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I and II. Peak I increased Na+,K(+)- and Mg(2+)-ATPases, and peak II inhibited Na+,K(+)-ATPase. Other membrane enzymes such as acetylcholinesterase and 5'-nucleotidase were unchanged by peaks I or II. In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus resembling ouabain effects. 3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by

  12. Identificação de variáveis cataclísmicas eruptivas na direção do bojo galáctico e Nuvens de Magalhães usando dados do OGLE

    NASA Astrophysics Data System (ADS)

    Cieslinski, D.; Diaz, M. P.; Mennickent, R.; Pietrzyski, G.

    2003-08-01

    Na década de 90 iniciaram-se vários programas para a pesquisa de matéria escura na Galáxia usando o efeito de microlentes gravitacionais. Entre os projetos mais bem conhecidos podemos mencionar o OGLE (Optical Gravitational Lensing Experiment) e o MACHO (MAssive Compact Halo Objects). A estratégia usada por eles consiste em fazer fotometria de banda larga (normalmente B, R e I) de um grande número de estrelas (dezenas de milhões) tão freqüentemente quanto possí vel e por longos perí odos de tempo (anos). Uma tal sistemática de observação, além de descobrir inúmeras lentes gravitacionais, é também muito apropriada para a descoberta de estrelas variáveis. De fato, inúmeras novas variáveis de vários tipos foram descobertas como subproduto. Exemplos podem ser encontrados nos endereços http://bulge.princeton.edu/~ogle/ e http://wwwmacho.mcmaster.ca/. As variáveis cataclí smicas eruptivas (novas clássicas, novas recorrentes e novas anãs) são objetos que apresentam variabilidade de grande amplitude com escalas de tempo de dias a centenas de dias e, por esta razão, devem ter sido detectadas em grande número nestes "surveys". Para testar esta possibilidade nós procuramos nos dados do OGLE por tais sistemas e o presente trabalho mostra os resultados desta pesquisa. Os objetos foram selecionados entre as variáveis detectadas usando a amplitude de variação de brilho como critério principal. Este critério forneceu 13756 objetos, sendo 2169 na direção da Grande Nuvem de Magalhães, 1162 na direção da Pequena Nuvem de Magalhães e o restante na direção do Bojo Galáctico. A análise foi feita inspecionando-se visualmente cada curva de luz por erupções com as características acima mencionadas. Os resultados obtidos podem ser sumarizados como: descoberta de duas novas clássicas e 33 novas anãs. Além disso, pode-se mencionar a identificação de candidatas a outros tipos de variáveis como: estrelas simbióticas, RV Tauri, R Coronae

  13. High Capacity Na+/H+ Exchange Activity in Mineralizing Osteoblasts

    PubMed Central

    Liu, Li; Schlesinger, Paul H.; Slack, Nicole M.; Friedman, Peter A.; Blair, Harry C.

    2015-01-01

    Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non-transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ∼7.3 and decreased by ∼ 1.4 units upon replacing extracellular Na+ with N-methyl-d-glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na+, caused only mild cytosolic acidification. In contrast, in Na+-free solutions, weak acids reduced pHi dramatically. After Na+ reintroduction, pHi recovered rapidly, in keeping with Na+/H+exchanger (NHE) activity. Sodium-dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO3- alkalinized osteoblasts, and pH recovered in medium containing CI-, with or without Na+, in keeping with Na+-independent CI-/HCO3- exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with CI-/HCO3- exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high-capacity Na+/H+ exchange via NHE1 and NHE6. PMID:21413028

  14. Na+ and K+ ion imbalances in Alzheimer’s disease

    PubMed Central

    Vitvitsky, Victor M.; Garg, Sanjay K.; Keep, Richard F.; Albin, Roger L.; Banerjee, Ruma

    2012-01-01

    Alzheimer’s disease (AD) is associated with impaired glutamate clearance and depressed Na+/K+ ATPase levels in AD brain that might lead to a cellular ion imbalance. To test this hypothesis, [Na+] and [K+] were analyzed in postmortem brain samples of 12 normal and 16 AD individuals, and in cerebrospinal fluid (CSF) from AD patients and matched controls. Statistically significant increases in [Na+] in frontal (25%) and parietal cortex (20%) and in cerebellar [K+] (15%) were observed in AD samples compared to controls. CSF from AD patients and matched controls exhibited no differences, suggesting that tissue ion imbalances reflected changes in the intracellular compartment. Differences in cation concentrations between normal and AD brain samples were modeled by a 2-fold increase in intracellular [Na+] and an 8–15% increase in intracellular [K+]. Since amyloid beta peptide (Aβ) is an important contributor to AD brain pathology, we assessed how Aβ affects ion homeostasis in primary murine astrocytes, the most abundant cells in brain tissue. We demonstrate that treatment of astrocytes with the Aβ 25–35 peptide increases intracellular levels of Na+ (~2–3-fold) and K+ (~1.5-fold), which were associated with reduced levels of Na+/K+ ATPase and the Na+-dependent glutamate transporters, GLAST and GLT-1. Similar increases in astrocytic Na+ and K+ levels were also caused by Aβ 1–40, but not by Aβ 1–42 treatment. Our study suggests a previously unrecognized impairment in AD brain cell ion homeostasis that might be triggered by Aβ and could significantly affect electrophysiological activity of brain cells, contributing to the pathophysiology of AD. PMID:22820549

  15. Photoassociation spectroscopy of ultracold highly excited NaCs molecules

    NASA Astrophysics Data System (ADS)

    Jayaseelan, Maitreyi; Haruza, Marek; Bigelow, Nicholas

    2013-05-01

    We report on our spectroscopic investigations of translationally ultracold NaCs molecules. Photoassociation from laser cooled mixtures of ground state sodium and excited cesium atoms creates molecules in excited states detuned from the Na(3s) + Cs(6d) dissociation asymptote. This is an as yet unexplored asymptote for molecule formation. We infer properties of the scattering wave from the PA spectra, and investigate the populated ground states using photoionization and depletion spectroscopy.

  16. The β-γ decay of 21Na

    NASA Astrophysics Data System (ADS)

    Achouri, N. L.; Angélique, J. C.; Ban, G.; Bastin, B.; Blank, B.; Dean, S.; Dendooven, P.; Giovinazzo, J.; Grévy, S.; Jungmann, K.; Laurent, B.; Liénard, E.; Naviliat-Cuncic, O.; Orr, N. A.; Rogachevskiy, A.; Sohani, M.; Traykov, E.; Wilschut, H.

    2010-04-01

    A new and independent determination of the Gamow-Teller branching ratio in the β-decay of 21Na is reported. The value 5.13 ± 0.43% obtained is in agreement with the currently adopted value and the most recent measurement. In contrast to previous experiments, the present method was based on the counting of the parent 21Na ions and the resulting 351 keV γ-rays without coincident β-particle detection.

  17. Metal Fluoride Complexes of Na,K-ATPase

    PubMed Central

    Cornelius, Flemming; Mahmmoud, Yasser A.; Toyoshima, Chikashi

    2011-01-01

    The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K+·Pi with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na+, after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na+ demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway. PMID:21708939

  18. Na + Xe collisions in the presence of two nonresonant lasers

    NASA Technical Reports Server (NTRS)

    De Vries, P. L.; Chang, C. H.; George, T. F.; Laskowski, B.; Stallcop, J. R.

    1980-01-01

    Na+Xe collisions in the presence of two distinct laser fields (rhodamine 110 and Nd:glass) are investigated with reference to the response to nonresonant radiation of alkali metals collisionally perturbed by a buffer gas. It is found that the excited Na-asterisk (4s)+Xe state is produced with a measurable cross section due to two-photon absorption with field intensities as low as 10 MW/sq cm.

  19. An empirical NaKCa geothermometer for natural waters

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1973-01-01

    An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340??C. The data for most geothermal waters cluster near a straight line when plotted as the function log ( Na K) + ?? log [ ??? (Ca) Na] vs reciprocal of absolute temperature, where ?? is either 1 3 or 4 3 depending upon whether the water equilibrated above or below 100??C. For most waters tested, the method gives better results than the Na K methods suggested by other workers. The ratio Na K should not be used to estimate temperature if ??? ( MCa) MNa is greater than 1. The Na K values of such waters generally yield calculated temperatures much higher than the actual temperature at which water interacted with the rock. A comparison of the composition of boiling hot-spring water with that obtained from a nearby well (170??C) in Yellowstone Park shows that continued water-rock reactions may occur during ascent of water even though that ascent is so rapid that little or no heat is lost to the country rock, i.e. the water cools adiabatically. As a result of such continued reaction, waters which dissolve additional Ca as they ascend from the aquifer to the surface will yield estimated aquifer temperatures that are too low. On the other hand, waters initially having enough Ca to deposit calcium carbonate during ascent may yield estimated aquifer temperatures that are too high if aqueous Na and K are prevented from further reaction with country rock owing to armoring by calcite or silica minerals. The Na-K-Ca geothermometer is of particular interest to those prospecting for geothermal energy. The method also may be of use in interpreting compositions of fluid inclusions. ?? 1973.

  20. 23Na and (1)H NMR microimaging of intact plants.

    PubMed

    Olt, S; Krötz, E; Komor, E; Rokitta, M; Haase, A

    2000-06-01

    (23)Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using (23)Na as well as (1)H NMR microimaging. Experiments were performed at 11.75 T with a double resonant (23)Na-(1)H probehead. The probehead was homebuilt and equipped with a climate chamber. T(1) and T(2) of (23)Na were measured in the cross section of the hypocotyl. Within 85 min (23)Na images with an in-plane resolution of 156 x 156 micrometer were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, (23)Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity. Copyright 2000 Academic Press.

  1. 23Na and 1H NMR Microimaging of Intact Plants

    NASA Astrophysics Data System (ADS)

    Olt, Silvia; Krötz, Eva; Komor, Ewald; Rokitta, Markus; Haase, Axel

    2000-06-01

    23Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using 23Na as well as 1H NMR microimaging. Experiments were performed at 11.75 T with a double resonant 23Na-1H probehead. The probehead was homebuilt and equipped with a climate chamber. T1 and T2 of 23Na were measured in the cross section of the hypocotyl. Within 85 min 23Na images with an in-plane resolution of 156 × 156 μm were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, 23Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  2. The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier

    PubMed Central

    Amor, Veronique; Zhang, Chuansheng; Vainshtein, Anna; Zhang, Ao; Zollinger, Daniel R; Eshed-Eisenbach, Yael; Brophy, Peter J; Rasband, Matthew N; Peles, Elior

    2017-01-01

    A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton. DOI: http://dx.doi.org/10.7554/eLife.21392.001 PMID:28134616

  3. Na+ conductance and the threshold for repetitive neuronal firing.

    PubMed

    Matzner, O; Devor, M

    1992-11-27

    The Hodgkin-Huxley equation for electrogenesis in the voltage clamped squid giant axon was used to predict the effect of altering maximal Na+ conductance (gNa+max) on the repetitive firing process. The main finding was that increasing gNa+max, without changing any other membrane parameter, reduced the threshold current required to evoke repetitive firing. That is, it rendered the membrane hyperexcitable. Threshold for evoking single action potentials was also affected, but much less so. Other consequences of increasing gNa+max were a decrease in the minimum sustainable rhythmic firing frequency (mRFF), a monotonic increase in firing frequency at any given suprathreshold stimulus intensity, an increase in the current value at which intense depolarizing stimuli block rhythmogenesis, an increase in the maximal sustainable firing frequency using intense currents (MRFF), and the consequent expansion of the dynamic range for stimulus encoding. Thus, the control of gNa+max through the regulation of Na+ channel synthesis and membrane incorporation at sites of rhythmogenesis (e.g. axon hillock-initial segment region, or peripheral sensory endings) is a potential regulatory mechanism for neuronal excitability and stimulus encoding.

  4. Xenon adsorption in NaA zeolite cavities

    NASA Astrophysics Data System (ADS)

    McCormick, A. V.; Chmelka, B. F.

    Adsorption of xenon atoms in the α-cages of NaA zeolite has been studied using 129Xe NMR spectroscopy to probe directly the distribution and configuration of molecules in confined, microporous environments. The 129Xe NMR spectrum is sensitive to subtle changes in xenon environment, so relative populations of α-cages containing different numbers of xenon guests can be determined and the effects of other co-adsorbed species monitored. On the basis of 129Xe NMR spectra, the distribution of xenon atoms among NaA α-cages is shown to exhibit a marked dependence on the pressure at which the xenon guests are introduced. 129Xe NMR spectra recorded at 200 K reveal that xenon atoms in the NaA α-cages experience diminished mobility (resembling condensation phenomena) at higher temperatures than in the bulk gas of equivalent density. Thus, the chemical potential of adsorbed xenon can be investigated experimentally as a function of both temperature and guest density. The density dependence of the 129Xe chemical shift in Xe/NaA and in bulk xenon gas shows that Xe-Xe interactions in the proximity of the NaA cage wall are important in α-cages containing more than five xenon guests. This trend is linked to entropic effects which may enhance xenon adsorption in the confined environment of the NaA α-cages.

  5. NaChBac: The Long Lost Sodium Channel Ancestor

    PubMed Central

    2011-01-01

    In excitable cells, the main mediators of sodium conductance across membranes are voltage-gated sodium channels (NaVs). Eukaryotic NaVs are essential elements in neuronal signaling and muscular contraction and in humans have been causally related to a variety of neurological and cardiovascular channelopathies. They are complex heavily glycosylated intrinsic membrane proteins present in only trace quantities that have proven to be challenging objects of study. However, in recent years, a number of simpler prokaryotic sodium channels have been identified, with NaChBac from Bacillus halodurans being the most well-characterized to date. The availability of a bacterial NaV that is amenable to heterologous expression and functional characterization in both bacterial and mammalian systems has provided new opportunities for structure–function studies. This review describes features of NaChBac as an exemplar of this class of bacterial channels, compares prokaryotic and eukaryotic NaVs with respect to their structural organization, pharmacological profiling, and functional kinetics, and discusses how voltage-gated ion channels may have evolved to deal with the complex functional demands of higher organisms. PMID:21770445

  6. High performance MCFC using Li/Na electrolyte

    SciTech Connect

    Donado, R.A.; Ong, E.T.; Sishtla, C.I.

    1995-08-01

    The substitution of a lithium/ sodium carbonate (Li/Na) mixture for the lithium/potassium carbonate (Li/K) electrolyte used in MCFCs holds the promise of higher ionic conductivity, higher exchange current density at both electrodes, lower vapor pressure, and lower cathode dissolution rates. However, when the substitution is made in cells optimized for use with the Li/K electrolyte, the promised increase in performance is not realized. As a consequence the literature contains conflicting data with regard to the performance, compositional stability, and chemical reactivity of the Li/Na electrolyte. Experiments conducted at the Institute of Gas Technology (IGT) concluded that the source of the problem is the different wetting characteristics of the two electrolytes. Electrode pore structures optimized for use with Li/K do not work well with Li/Na. Using proprietary methods and materials, IGT was able to optimize a set of electrodes for the Li/Na electrolyte. Experiments conducted in bench-scale cells have confirmed the superior performance of the Li/Na electrolyte compared to the Li/K electrolyte. The Li/Na cells exhibited a 5 to 8 percent improvement in overall performance, a substantial decrease in the rate of cathode dissolution, and a decreased decay rate. The longest running cell has logged over 13,000 hours of operation with a decay rate of less than 2 mV/1000 hours.

  7. Voltage dependence of Na-Ca exchanger conformational currents.

    PubMed Central

    Niggli, E; Lipp, P

    1994-01-01

    Properties of a transient current (Icont) believed to reflect a conformational change of the Na-Ca exchanger molecules after Ca2+ binding were investigated. Intracellular Ca2+ concentration jumps in isolated cardiac myocytes were generated with flash photolysis of caged Ca2+ dimethoxynitrophenamine, and membrane currents were simultaneously measured using the whole-cell variant of the patch-clamp technique. A previously unresolved shallow voltage dependence of Icont was revealed after developing an experimental protocol designed to compensate for the photoconsumption of the caged compound. This voltage dependence can be interpreted to reflect the distribution of Na-Ca exchanger conformational states with the Ca2+ binding site exposed to the inside of the cell immediately before the flash. Analysis performed by fitting a Boltzmann distribution to the observed data suggests that under control conditions most exchanger molecules reside in states with the Ca2+ binding site facing the outside of the cell. Dialysis of the cytosol with 3',4'-dichlorobenzamil, an organic inhibitor of the Na-Ca exchange, increased the magnitude of Icont and changed the voltage dependence, consistent with a parallel shift of the charge/voltage curve. This shift may result from intracellular DCB interfering with an Na(+)-binding or Na(+)-translocating step. These observations are consistent with Icont arising from a charge movement mediated by the Na-Ca exchanger molecules after binding of Ca2+. PMID:7819485

  8. Deliquescence of NaCl–NaNO3, KNO3–NaNO3, and NaCl–KNO3 salt mixtures from 90 to 120°C

    PubMed Central

    Carroll, Susan; Craig, Laura; Wolery, Thomas J

    2005-01-01

    We conducted reversed deliquescence experiments in saturated NaCl–NaNO3–H2O, KNO3–NaNO3–H2O, and NaCl–KNO3–H2O systems from 90 to 120°C as a function of relative humidity and solution composition. NaCl, NaNO3, and KNO3 represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV. Discrepancy between model prediction and experiment can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25°C models for Cl–NO3 and K–NO3 ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the nonideal behavior of these highly concentrated solutions.

  9. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, Bingkun; Xue, Xianghui; Lu, Gaopeng; Kuo, Chengling; Dou, Xiankang; Gao, Qi; Qie, Xiushu; Wu, Jianfei; Tang, Yihuan

    2017-04-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region. The ionospheric observations made with two digisondes near the Na lidar, the thunderstorm model, ionosphere model, and Na chemistry model are all used to discuss the possible mechanisms responsible for the enhancement of Na layer after thunderstorms.

  10. Theoretical considerations underlying Na(+) uptake mechanisms in freshwater fishes.

    PubMed

    Parks, Scott K; Tresguerres, Martin; Goss, Greg G

    2008-11-01

    Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.

  11. Regulation of the paracellular Na+ and Cl- conductances by the NaCl-generated osmotic gradient in a manner dependent on the direction of osmotic gradients.

    PubMed

    Tokuda, Shinsaku; Niisato, Naomi; Nakajima, Ken-Ichi; Marunaka, Yoshinori

    2008-02-08

    In the present study, we investigated the effect of osmolality on the paracellular ion conductance (Gp) composed of the Na(+) conductance (G(Na)) and the Cl(-) conductance (G(Cl)). An osmotic gradient generated by NaCl with relatively apical hypertonicity (NaCl-absorption-direction) induced a large increase in the G(Na) associated with a small increase in the G(Cl), whereas an osmotic gradient generated by NaCl with relatively basolateral hypertonicity (NaCl-secretion-direction) induced small increases in the G(Na) and the G(Cl). These increases in the Gp caused by NaCl-generated osmotic gradients were diminished by the application of sucrose canceling the NaCl-generated osmotic gradient. The osmotic gradient generated by apical [corrected] application of sucrose without any NaCl gradients had little effects on the Gp. However, this apical [corrected] application of sucrose produced a precondition drastically quickening the time course of the action of the NaCl-generated osmotic gradient on the Gp. Further, we found that application of the basolateral hypotonicity generated by reduction of NaCl concentration shifted the localization of claudin-1 to the apical from the lateral [corrected] side. These results indicate that the osmotic gradient regulates the paracellular ion conductive pathway of tight junctions via a mechanism dependent on the direction of NaCl gradients associated with a shift of claudin-1 localization to the apical side in renal A6 epithelial cells.

  12. NaNaX 4--4th event of the international conference series "Nanoscience with Nanocrystals".

    PubMed

    Reiss, Peter

    2010-07-27

    The conference "NaNaX 4--Nanoscience with Nanocrystals" held near Munich (April 11-15, 2010) brought together a wide range of scientists discussing the most important current issues in the field of colloidal nanoparticles. Chemical synthesis gives access to nanocrystals of controlled size, shape, composition, and surface functionalization. Past research mainly concentrated on cadmium and lead chalcogenide nanocrystals as well as on gold and iron oxide nanoparticles. Today, there is a trend toward the development of nanoscale heterostructures, which combine different classes of materials and exhibit unique optical, magnetic, and electronic properties. Beside their interest for fundamental science, colloidal nanoparticles hold great promise for a wide range of applications. To this end, speakers and poster presenters showed routes for designing and using nanocrystals in biological imaging and sensing, in energy-related applications, and in catalysis. This report gives a nonexhaustive overview of selected "hot topics" in nanoparticle research discussed at NaNaX 4.

  13. Crystallization kinetics from mixture Na2SO4/glycerol droplets of Na2SO4 by FTIR-ATR

    NASA Astrophysics Data System (ADS)

    Tan, Dan-Ting; Cai, Chen; Zhang, Yun; Wang, Na; Pang, Shu-Feng; Zhang, Yun-Hong

    2016-08-01

    The efflorescence of mixed Na2SO4/glycerol aerosols on the ZnSe substrate with various mole ratios (Na2SO4/glycerol = 1:1, 1:2, 1:4) has been studied in the relative humidity (RH) linearly decline process, using a situ Fourier transform infrared attenuated total reflection (FTIR-ATR) technique. The crystal ratio at a given RH can be gained by the absorbance of the band at 1132 cm-1, which shows the incomplete nucleation for mixed Na2SO4/glycerol aerosols and the decreased amount of the droplets crystallized at the lowest RH with the glycerol increase. Using the volume fraction of droplets that have yet to crystallize, the heterogeneous nucleation kinetics has been gained. By the Extended Aerosol Inorganics Model (E-AIM), the nucleation rate as the function of solute saturation degree has been gained for various mixed Na2SO4/glycerol aerosols.

  14. The discharge properties of Na/Ni 3S 2 cell at ambient temperature

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Seon; Ahn, Hyo-Jun; Ryu, Ho-Suk; Kim, Dong-Ju; Cho, Gyu-Bong; Kim, Ki-Won; Nam, Tae-Hyun; Ahn, Jou Hyeon

    The discharge properties of a Na/Ni 3S 2 cell using 1 M NaCF 3SO 3 in tetra(ethylene glycol)dimethyl ether liquid electrolyte were investigated at room temperature. The products were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Electrochemical properties of Na/Ni 3S 2 cells were also presented by cyclic voltammetry and the galvanostatic current method. Na/Ni 3S 2 cells have an initial discharge capacity of 420 mAh g -1 with a plateau potential at 0.94 V versus Na/Na +. After the first discharge, Ni 3S 2 and Na react at room temperature and then form sodium sulfide (Na 2S) and nickel. Sodium ion can be partially deintercalated from Na 2S charge reaction. The discharge process can be explained as follows: Ni 3S 2 + 4Na ↔ 3Ni + 2Na 2S.

  15. Drift tube measurements on Na+ ions and clusters using the 24mNa+ tracer

    NASA Astrophysics Data System (ADS)

    Kasuya, A.; Abmayr, B.; Ohtsuki, T.; Masumoto, K.; Kotajima, H.; Huenges, E.; Morinaga, H.

    1997-06-01

    Mobilities of sodium ions and their clusters in different gases have been measured by gamma-ray spectrometry using the 20 ms isomeric state of 24Na as tracer. This isomer is obtained through the β-decay of 24Ne, which was produced by bombarding 22Ne with the 7 MeV triton beam of a cyclotron. This new technique of measurement allows us to determine the mobility of sodium ions in non-reacting gases of a pressure above 1 mbar. Measurements have been carried out in gases of pressures ranging from 6 mbar to 1000 mbar under an electric field up to 250 V/cm at room temperature. The measured mobility of 24Na+ in pure neon gas at 1000 mbar was determined to be 3.2 cm2/Vs. This value is lower than the zero field mobility of about 8.5 cm2/Vs measured by Tyndall and Akridge. A small amount of polar molecules such as water or ethanol introduced into the drift tube causes their clustering with the sodium ions through monopole-dipole interaction, resulting in a strong decrease in the mobility. This clustering effect has been studied for various combinations of polar molecules and inert gases. The usable pressure range from 1 mbar to high pressures in the range of some hundred bars is interesting because most other methods for cluster studies cannot be done at such high pressures. With this method it is possible to measure the mobility change of sodium ions towards the condensation point and eventually even towards the critical point.

  16. Na(+) transport, and the E(1)P-E(2)P conformational transition of the Na(+)/K(+)-ATPase.

    PubMed Central

    Babes, A; Fendler, K

    2000-01-01

    We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P. PMID:11053130

  17. Comparative study of NaTiO2 and NaNiO2 using first principle calculations

    NASA Astrophysics Data System (ADS)

    Dhariwal, Monika; Maitra, T.; Singh, Ishwar

    2013-02-01

    The electronic band structure of NaTiO2 and NaNiO2 in their low temperature phase is studied using full potential LAPW method within LSDA+U approach. Magnetic and orbital order is studied for both the compounds in their low temperature phase. Various energy scales such as crystal field splitting, Jahn Teller splitting, exchange splitting etc. are estimated and compared for these two systems.

  18. Carbon dioxide sequestration using NaHSO4 and NaOH: A dissolution and carbonation optimisation study.

    PubMed

    Sanna, Aimaro; Steel, Luc; Maroto-Valer, M Mercedes

    2017-03-15

    The use of NaHSO4 to leach out Mg fromlizardite-rich serpentinite (in form of MgSO4) and the carbonation of CO2 (captured in form of Na2CO3 using NaOH) to form MgCO3 and Na2SO4 was investigated. Unlike ammonium sulphate, sodium sulphate can be separated via precipitation during the recycling step avoiding energy intensive evaporation process required in NH4-based processes. To determine the effectiveness of the NaHSO4/NaOH process when applied to lizardite, the optimisation of the dissolution and carbonation steps were performed using a UK lizardite-rich serpentine. Temperature, solid/liquid ratio, particle size, concentration and molar ratio were evaluated. An optimal dissolution efficiency of 69.6% was achieved over 3 h at 100 °C using 1.4 M sodium bisulphate and 50 g/l serpentine with particle size 75-150 μm. An optimal carbonation efficiency of 95.4% was achieved over 30 min at 90 °C and 1:1 magnesium:sodium carbonate molar ratio using non-synthesised solution. The CO2 sequestration capacity was 223.6 g carbon dioxide/kg serpentine (66.4% in terms of Mg bonded to hydromagnesite), which is comparable with those obtained using ammonium based processes. Therefore, lizardite-rich serpentinites represent a valuable resource for the NaHSO4/NaOH based pH swing mineralisation process.

  19. Na(+)-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles.

    PubMed

    Park, C; Moon, J Y; Cokic, P; Webster, D A

    1996-09-10

    Vitreoscilla cytochrome bo ubiquinol oxidase is similar in some properties to the Escherichia coli enzyme, but unlike the latter, the Vitreoscilla oxidase functions as a primary Na+ pump. When purified Vitreoscilla cytochrome bo is incorporated into liposomes made from Vitreoscilla phospholipids and energized with a quinol substrate, it translocates Na+, not H+, across the vesicle membrane. Since protonophores CCCP (carbonyl cyanide m-chlorophenylhydrazone) and DTHB (3,5-di-tert-butyl-4-hydroxybenzaldehyde) stimulated the Na+ pumping, it is unlikely that it is a secondary effect due to the presence of Na+/H+ antiporter activity in the preparations. The efficiency of the Na+ pumping was 3.93 Na+ pumped per O2 consumed when ascorbate/TMPD was used as the substrate. The cytochrome has a K(m) and Kcat for Na+ of 2.9 mM and 277 s-1, respectively. When ferricytochrome c was entrapped within liposomes prepared from Vitreoscilla phospholipids, it was reduced by Q1H2 (ubiquinol-1) but not by ascorbate/TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine). Although Q1H2 was oxidized by cytochrome bo in solution at a rate approximately 14 times that of the latter substrate, the rate of accumulation of Na+ within cytochrome bo vesicles driven by the membrane impermeable ascorbate/TMPD was 1.23 times that of the membrane permeable ubiquinol. These data allowed a calculation that in these synthetic proteoliposomes the cytochrome bo molecules are only 51% directed inward; a value of 61% inward-directed was estimated by measuring the ascorbate/TMPD oxidase activity of the proteoliposomes before and after disrupting them with Triton X-100. A random orientation of the E. coli cytochrome bo oxidase in proteoliposomes has also been reported.

  20. Effect of NaCl and NaHCO3 on serum ionised calcium and blood gas status during sprinting.

    PubMed

    Beard, L A; Hinchcliff, K W

    2002-09-01

    Sodium bicarbonate is often administered to horses before racing in an attempt to delay fatigue and improve performance. We examined the effect of acid-base status on serum ionised calcium concentration (iCa) during high intensity exercise in 8 Standardbred mares. In a randomised, blinded, cross-over study, mares were administered each of 3 treatments, NaCl (0.7 g/kg bwt), NaHCO3 (1 g/kg bwt) in 3 l water, or 3 l of water only, 4 h before performing a standardised exercise test to fatigue on a treadmill. Mixed venous blood samples were collected as the horses ran for 5 min at 3 m/s, to fatigue at a predetermined speed (approximately 113% VO2max) and for 5 min at 3 m/s. There was no effect of treatment on time to fatigue (P = 0.744). NaHCO3 attenuated (P<0.05) the exercise-induced decrease in venous pH (mean +/- s.e. 6.97, 6.95 and 7.06 +/- 0.02 at end of sprint for water, NaCl and NaHCO3, respectively). Both serum total calcium concentration (tCa) and iCa increased (P<0.05) with running. NaHCO3 decreased iCa (P<0.05) compared to water; iCa of 1.58 and 1.44 +/- 0.04 mmol/l before exercise and 1.69 and 1.49 +/- 0.05 end sprint, for water and NaHCO3 treatments, respectively. These results demonstrate an effect of NaHCO3 on iCa during exercise. Further study is necessary to determine the effect of alterations in iCa on exercise performance.

  1. NaCl Taste Thresholds in 13 Inbred Mouse Strains

    PubMed Central

    Ishiwatari, Yutaka

    2012-01-01

    Molecular mechanisms of salty taste in mammals are not completely understood. We use genetic approaches to study these mechanisms. Previously, we developed a high-throughput procedure to measure NaCl taste thresholds, which involves conditioning mice to avoid LiCl and then examining avoidance of NaCl solutions presented in 48-h 2-bottle preference tests. Using this procedure, we measured NaCl taste thresholds of mice from 13 genealogically divergent inbred stains: 129P3/J, A/J, BALB/cByJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J, CBA/J, CE/J, DBA/2J, FVB/NJ, NZB/BlNJ, PWK/PhJ, and SJL/J. We found substantial strain variation in NaCl taste thresholds: mice from the A/J and 129P3/J strains had high thresholds (were less sensitive), whereas mice from the BALB/cByJ, C57BL/6J, C57BL/6ByJ, CE/J, DBA/2J, NZB/BINJ, and SJL/J had low thresholds (were more sensitive). NaCl taste thresholds measured in this study did not significantly correlate with NaCl preferences or amiloride sensitivity of chorda tympani nerve responses to NaCl determined in the same strains in other studies. To examine whether strain differences in NaCl taste thresholds could have been affected by variation in learning ability or sensitivity to toxic effects of LiCl, we used the same method to measure citric acid taste thresholds in 4 inbred strains with large differences in NaCl taste thresholds but similar acid sensitivity in preference tests (129P3/J, A/J, C57BL/6J, and DBA/2J). Citric acid taste thresholds were similar in these 4 strains. This suggests that our technique measures taste quality–specific thresholds that are likely to represent differences in peripheral taste responsiveness. The strain differences in NaCl taste sensitivity found in this study provide a basis for genetic analysis of this phenotype. PMID:22293936

  2. Hydration valve controlled non-selective conduction of Na(+) and K(+) in the NaK channel.

    PubMed

    Shen, Rong; Guo, Wanlin; Zhong, Wenyu

    2010-08-01

    The Na(+) and K(+) channels are essential to neural signaling, but our current knowledge at the atomic level is mainly limited to the conducting mechanism of K(+). Unlike a K(+) channel having four equivalent K(+)-binding sites in its selectivity filter, a NaK channel has a vestibule in the middle part of its selectivity filter, and can conduct both Na(+) and K(+) ions. However, the underlying mechanism for non-selective ion conduction in NaK remains elusive. Here we find four small grottos connecting with the vestibule of the NaK selectivity filter, which form a vestibule-grotto complex perpendicular to the filter pore with a few water molecules within it. It is shown that two or more of the water molecules coming to the vestibule to coordinate the cation are necessary for conducting both Na(+) and K(+) ions, while only one water molecule in the vestibule will obstruct ion permeation. Thus, the complex with the aid of interior water movement forms a dynamic hydration valve which is flexible in conveying different cations through the vestibule. Similar exquisite hydration valve mechanisms are expected to be utilized by other non-selective cation channels, and the results should shed new light on the importance of water in neural signaling. Copyright 2010 Elsevier B.V. All rights reserved.

  3. δ-opioid receptors protect from anoxic disruption of Na+ and K+ homeostasis via Na+ channel regulation

    PubMed Central

    Kang, Xuezhi; Chao, Dongman; Gu, Quanbao; Ding, Guanghong; Wang, Yingwei; Balboni, Gianfranco; Lazarus, Lawrence H; Xia, Ying

    2011-01-01

    Hypoxic/ischemic disruption of ionic homeostasis, especially Na+ influx and K+ leakage, is a critical trigger of neuronal injury/death in the brain. There is, however, no promising strategy against such pathophysiological changes to protect the brain from hypoxic/ischemic injury. Here we present an exciting finding that activation of delta-opioid receptor (DOR), which is highly expressed in the cortex, reduced anoxic Na+ influx and K+ leakage in the cortex by restricting Na+ influx through voltage-gated Na+ channels. Furthermore, we show for the first time with direct evidence that DOR expression/activation indeed plays an inhibitory role in Na+ channel regulation by decreasing the amplitude of sodium currents and increasing activation threshold of Na+ channels. These first data have far-reaching impacts on understanding the intrinsic mechanism of neuronal responses to stress and provide novel insights into better solutions of hypoxic/ischemic encephalopathy and other neurological disorders such as epilepsy and pain. PMID:19756387

  4. A sodium calcium arsenate, NaCa(AsO(4)).

    PubMed

    Lin, Jinru; Sun, Wei; Mi, Jin-Xiao; Pan, Yuanming

    2011-12-01

    The title compound, NaCa(AsO(4)), was synthesized using a hydro-thermal method at 633-643 K. It has a dense structure composed of alternating layers of distorted [CaO(6)] octa-hedra and layers of [AsO(4)] tetra-hedra and distorted [NaO(6)] octa-hedra, stacked along the a axis. The As, Ca and two O atoms lie on the mirror plane at y = 1/4 (i.e. 4c), while the Na atom lies on an inversion centre (1/2, 1/2, 0) (i.e. 4b). Each distorted [CaO(6)] octa-hedron shares four equatorial common O vertices with four neighboring octa-hedra, forming a layer parallel to (100), whereas each distorted [NaO(6)] octa-hedron shares two opposite edges with two neighboring ones, forming a chain running along [010]. Each isolated [AsO(4)] tetra-hedron shares two edges with two different [NaO(6)] octa-hedra in one [NaO(6)] chain and a vertex with another chain. Simultaneously the above [AsO(4)] tetra-hedron located in a four-membered [CaO(6)] ring shares one edge of its base facet with one [CaO(6)] octa-hedron and three corners with three other [CaO(6)] octa-hedra of one [CaO(6)] layer, and the remaining apex is shared with another [CaO(6)] layer. [NaO(6)] octa-hedra and [CaO(6)] octa-hedra are linked to each other by sharing edges and vertices.

  5. A sodium calcium arsenate, NaCa(AsO4)

    PubMed Central

    Lin, Jinru; Sun, Wei; Mi, Jin-Xiao; Pan, Yuanming

    2011-01-01

    The title compound, NaCa(AsO4), was synthesized using a hydro­thermal method at 633–643 K. It has a dense structure composed of alternating layers of distorted [CaO6] octa­hedra and layers of [AsO4] tetra­hedra and distorted [NaO6] octa­hedra, stacked along the a axis. The As, Ca and two O atoms lie on the mirror plane at y = 1/4 (i.e. 4c), while the Na atom lies on an inversion centre (1/2, 1/2, 0) (i.e. 4b). Each distorted [CaO6] octa­hedron shares four equatorial common O vertices with four neighboring octa­hedra, forming a layer parallel to (100), whereas each distorted [NaO6] octa­hedron shares two opposite edges with two neighboring ones, forming a chain running along [010]. Each isolated [AsO4] tetra­hedron shares two edges with two different [NaO6] octa­hedra in one [NaO6] chain and a vertex with another chain. Simultaneously the above [AsO4] tetra­hedron located in a four-membered [CaO6] ring shares one edge of its base facet with one [CaO6] octa­hedron and three corners with three other [CaO6] octa­hedra of one [CaO6] layer, and the remaining apex is shared with another [CaO6] layer. [NaO6] octa­hedra and [CaO6] octa­hedra are linked to each other by sharing edges and vertices. PMID:22199467

  6. Na sup + uptake into colonic enterocyte membrane vesicles

    SciTech Connect

    Bridges, R.J.; Garty, H.; Benos, D.J.; Rummel, W. Weizmann Institute of Science, Rehovot Univ. of Alabama, Birmingham )

    1988-04-01

    Na{sup +} uptake was studied in colonic enterocyte membrane vesicles prepared from normal and dexamethasone-treated rats. Vesicles from rats treated with dexamethasone demonstrated a fivefold greater {sup 22}Na{sup +} uptake compared with vesicles from normal rats. Most of the tracer uptake in membranes derived from treated rats occurred through a conductive, amiloride-blockable pathway located in vesicles with low native K{sup +} permeability and high Cl{sup {minus}} permeability. Kinetic analysis of the amiloride inhibition curve revealed the presence of two amiloride-blockable pathways, one with a high affinity accounting for 85% of the uptake, and one with a low affinity accounting for only 12% of the uptake. Only the low-affinity pathway was detected with vesicles from normal rats. The high sensitivity to amiloride, the dependence on dexamethasone pretreatment, and the relative permeabilities to K{sup +} and Cl{sup {minus}} indicate that most of the {sup 22}Na{sup +} uptake in membranes derived from treated rats is through a Na{sup +}-specific channel located in apical membrane vesicles. Preincubation of the isolated cells from dexamethasone-treated rats at 37{degree}C in Ca{sup 2+}-free solutions before homogenization and membrane vesicle purification caused a 5- to 10-fold increase in amiloride-blockable {sup 22}Na{sup +} uptake compared with vesicles derived from cells maintained at 0{degree}C. The addition of Ca{sup 2+}, but not of Mg{sup 2+}, to the incubation solution markedly reduced this temperature-dependent enhancement in {sup 22}Na{sup +} uptake. These results suggest that Na{sup +} transport in colonic enterocytes from dexamethasone-treated rats is regulated by a Ca{sup 2+}-dependent, temperature-sensitive process which causes a sustained change in the apical membrane.

  7. Thyroid thermogenesis. Relationships between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in rat skeletal muscle.

    PubMed

    Asano, Y; Liberman, U A; Edelman, I S

    1976-02-01

    The effect of thyroid status on QO2, QO2 (t) and NaK-ATPase activity was examined in rat skeletal muscle. QO2(t) (i.e. Na+-transport-dependent respiration) was estimated with ouabain or Na+-free media supplemented with K+. In contrast to the effects of ouabain on ion composition, intracellular K+ was maintained at about 125 meq/liter, and intracellular Na+ was almost nil in the Na+-free media. The estimates of QO2(t) were independent of the considerable differences in tissue ion concentrations. The increase in QO2(t) account for 47% of the increase in QO2 in the transition from the hypothyroid to the euthyroid state and 84% of the increase in the transition from the euthyroid to the hyperthyroid state. Surgical thyroidectomy lowered NaK-ATPase activity of the microsomal fraction (expressed per milligram protein) 32%; injections of triodothyronine (T3) increased this activity 75% in initially hypothyroid rats and 26% in initially euthyroid rats. Thyroidectomy was attended by significant falls in serum Ca and Pi concentrations. Administration of T3 resulted in further declines in serum Ca and marked increases in serum Ps concentrations. Similar effects were seen in 131I-treated rats, but the magnitude of the declines in serum Ca were less. The effects of T3 on QO2, QO2(t), and NaK-ATPase activity of skeletal muscle were indistinguishable in the 131I-ablated and surgically thyroidectomized rats. In thyroidectomized or euthyroid rats given repeated doses of T3, QO2(t) and NaA-ATPase activity increased proportionately. In thyroidectomized rats injected with single doses of T3, either 10, 50, or 250 mug/100 g body wt, QO2(t) increased linearly with NaK-ATPase activity. The kinetics of the NaK-ATPase activity was assessed with an ATP-generating system. T3 elicited a significant increase in Vmax with no change in Km for ATP.

  8. Oxidant-induced formation of a neutral flavosemiquinone in the Na+-translocating NADH:Quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.

    PubMed

    Tao, Minli; Casutt, Marco S; Fritz, Günter; Steuber, Julia

    2008-01-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory flavo-FeS complex composed of the six subunits NqrA-F. The Na(+)-NQR was produced as His(6)-tagged protein by homologous expression in V. cholerae. The isolated complex contained near-stoichiometric amounts of non-covalently bound FAD (0.78 mol/mol Na(+)-NQR) and riboflavin (0.70 mol/mol Na(+)-NQR), catalyzed NADH-driven Na(+) transport (40 nmol Na(+)min(-1) mg(-1)), and was inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide. EPR spectroscopy showed that Na(+)-NQR as isolated contained very low amounts of a neutral flavosemiquinone (10(-3) mol/mol Na(+)-NQR). Reduction with NADH resulted in the formation of an anionic flavosemiquinone (0.10 mol/mol Na(+)-NQR). Subsequent oxidation of the Na(+)-NQR with ubiquinone-1 or O(2) led to the formation of a neutral flavosemiquinone (0.24 mol/mol Na(+)-NQR). We propose that the Na(+)-NQR is fully oxidized in its resting state, and discuss putative schemes of NADH-triggered redox transitions.

  9. C-peptide, Na+,K+-ATPase, and Diabetes

    PubMed Central

    Coste, T. C.; Jannot, M. F.; Raccah, D.; Tsimaratos, M.

    2004-01-01

    Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly

  10. [Impact of SDBS/Na+ on red soil colloidal stability].

    PubMed

    Tang, Ying; Li, Hang; Zhu, Hua-Ling; Tian, Rui; Gao, Xiao-Dan

    2014-04-01

    The interactions between soil colloidal-sized particles and organic contaminants or inorganic ions profoundly affect numerous soil physical, chemical and biological processes. The coupling effect of sodium dodecylbenzene sulfonate (SDBS) and Na+ on the aggregation process of red soil colloid was studied using the dynamic light scattering method, and the mechanism of interactions between soil colloidal-sized particles and SDBS/Na+ was analyzed according to the pH and Zeta potential of suspension during the aggregation process. Results show that, (1) under a given concentration of Na+, the soil colloidal suspension becomes more stable with increasing SDBS concentrations. For example, under 120 mmol x L(-1) Na+, as the concentrations of SDBS increase from 0 mmol x L(-1) to 10 mmol x L(-1), the effective diameters of aggregates decrease from 702 nm to 193 nm, and the total average aggregation rates of aggregates decrease from 28.6 nm x min(-1) to 3.36 nm x min(-1). (2) Under a given concentration of SDBS, as the concentrations of Na+ increase, the Zeta potential of suspension sharply decreases, while the effective diameters and the total average aggregation rates of aggregates gradually increase. (3) The absolute values of Zeta potential for suspensions without adding NaNO3 solution increase from 47.6 mV to 62.2 mV as the SDBS concentrations increase, and the pH of the suspensions increase from 6.17 to 6.76, although these pH values are lower than that of initial soil colloidal suspension (6.89). Therefore, the adsorption of SDBS onto soil colloidal-sized particles, which is attributed to the hydrophobic effect and electrostatic effect, results in the increment of surface charge number, as well as the decrease in effective concentration of Na+ around colloidal-sized particles' surface (resulting from the steric hindrance of long hydrophobic chain of adsorbed SDBS and adsorption of Na+ by SDBS micelle). As a result, soil colloidal suspension becomes more stable and

  11. Porous Al Current Collector for Dendrite-Free Na Metal Anodes.

    PubMed

    Liu, Shan; Tang, Shan; Zhang, Xinyue; Wang, Aoxuan; Yang, Quan-Hong; Luo, Jiayan

    2017-09-13

    Na-based batteries are proposed as promising energy storage candidates for beyond Li-ion technology due to the higher natural earth of Na metal. For its high capacity and low potential, Na metal may carve itself a niche when directly used as anodes. Similar to or even more problematic than Li, however, uneven plating/stripping of Na leads to dendrite formation. As the plating substrates, current collectors have a paramount influence on the Na plating/stripping behaviors. Here we propose porous Al current collectors as the plating substrate to suppress Na dendrites. Al does not alloy with Na. It is advantageous over Cu current collectors in terms of cost and weight. The interconnected porous structure can increase available surface for Na to nucleate and decrease the Na(+) flux distribution, leading to homogeneous plating. The Na metal anodes can run for over 1000 cycles on porous Al with a low and stable voltage hysteresis and their average plating/stripping Coulombic efficiency was above 99.9%, which is greatly improved compared to planar Al. We used the porous Al for Na-O2, Na-Na3V2(PO4)3 cells with low Na amount and anode free Na-TiS2 batteries and anticipate that using this strategy can be combined with further electrolyte and cathodes to develop high performance Na-based batteries.

  12. 75 FR 38874 - Proposed Collection; Comment Request for Form 706-NA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Request for Form 706-NA AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for... Form 706-NA, United States Estate (and Generation-Skipping Transfer) Tax Return, Estate of nonresident... not a citizen of the United States. OMB Number: 1545-0531. Form Number: 706-NA. Abstract: Form 706-NA...

  13. Genetic variability of NaCl tolerance in tomato.

    PubMed

    Saeed, A; Saleem, M F; Zakria, M; Anjum, S A; Shakeel, A; Saeed, N

    2011-07-12

    Cultivation of crops in soils with high salt (NaCl) content can affect plant development. We examined the morphological and physiological mechanisms of salt tolerance in tomato. The responses of 72 accessions of tomato (Solanum lycopersicum) to salinity were compared by measuring shoot and root lengths, and fresh shoot and root weights relative to those of controls (plants grown in normal salt levels). All traits were reduced at the seedling stage when salinity levels were increased. The accession x salinity interaction was significant for all traits. Root length had higher heritability than other traits and was used as a selection criterion to identify salt-tolerant and -non-tolerant accessions. On the basis of root length, accessions LA2661, CLN2498A, CLN1621L, BL1176, 6233, and 17870 were considered to be more tolerant than accessions 17902, LO2875 and LO4360. The degree of salt tolerance was checked by analyzing K+ and Na+ concentrations and K+/Na+ ratio in tissues of plants treated with 10 and 15 dS/m salinity levels. Tolerance of these accessions to salinity was most associated with low accumulation of Na+ and higher K+/Na+ ratios.

  14. Optical Attenuation in MoNA and LISA Detector Elements

    NASA Astrophysics Data System (ADS)

    Rice, Logan; Wong, Jonathan; MoNA Collaboration

    2011-10-01

    The MoNA collaboration is a research group of students and faculty from 13 primarily undergraduate institutions, with detectors at the NSCL: MoNA (Modular Neutron Array) and the newly-built LISA (Large multi-Institutional Scintillating Array). These arrays each have 144 plastic scintillating bars. When a neutron collides with a hydrogen nucleus within the plastic, photomultiplier tubes at either end of the bar detect the scintillation photons. Their arrival times are used to determine the position of the event, but as the light travels through the detector it loses intensity exponentially. How dramatic this loss is can be described by a parameter called the attenuation length, with larger attenuation lengths corresponding to lower loss. Recently the MoNA collaboration conducted its LISA commissioning experiment investigating two-neutron decay states of 25O. As a part of LISA's commissioning, we measured the attenuation lengths of the individual detector bars that make up the LISA array and compared these lengths with those of the older MoNA array. We found that the LISA bars had a larger attenuation length on average with impacts on detector efficiency and effective threshold. The authors wish to acknowledge the contributions of the members of the MoNA Collaboration.

  15. Na+/H+ antiport is essential for Yersinia pestis virulence.

    PubMed

    Minato, Yusuke; Ghosh, Amit; Faulkner, Wyatt J; Lind, Erin J; Schesser Bartra, Sara; Plano, Gregory V; Jarrett, Clayton O; Hinnebusch, B Joseph; Winogrodzki, Judith; Dibrov, Pavel; Häse, Claudia C

    2013-09-01

    Na(+)/H(+) antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na(+)/H(+) antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na(+)/H(+) antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na(+) levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na(+)/H(+) antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens.

  16. Na+/H+ Antiport Is Essential for Yersinia pestis Virulence

    PubMed Central

    Minato, Yusuke; Ghosh, Amit; Faulkner, Wyatt J.; Lind, Erin J.; Schesser Bartra, Sara; Plano, Gregory V.; Jarrett, Clayton O.; Hinnebusch, B. Joseph; Winogrodzki, Judith; Dibrov, Pavel

    2013-01-01

    Na+/H+ antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na+/H+ antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na+/H+ antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na+ levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na+/H+ antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens. PMID:23774602

  17. Magnetism in Na-filled Fe-based skutterudites

    SciTech Connect

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.

  18. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known.

  19. Magnetism in Na-filled Fe-based skutterudites

    DOE PAGES

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; ...

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material nearmore » an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.« less

  20. Magnetism in Na-filled Fe-based skutterudites.

    PubMed

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. Here we investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.

  1. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Mezger, E. M.; Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  2. LiNa5Mo9O30

    PubMed Central

    Hamza, Hamadi; Ennajeh, Ines; Zid, Mohamed Faouzi; Driss, Ahmed

    2012-01-01

    The tite compound, lithium penta­sodium nona­molybdate, LiNa5Mo9O30, was synthesized by solid-state reaction. The three-dimensional [Mo9O30]6− framework is built up from MoO6 octa­hedra and MoO5 bipyramids, linked together by edges and corners. The framework delimits two types of inter­secting tunnels running along [100] and [010] in which the Na+ and Li+ ions are located. The asymmetric unit contains one Mo, one Na and one Li site located on a twofold rotation axis. The crystal studied was a racemic twin with site a twin ratio of 0.51 (10):0.49 (10). Relationships between the structures of K2Mo3O10, K2Mo4O13, Cs2Mo7O22, Na6Mo10O33 and Na6Mo11O36 compounds are discussed. PMID:23284311

  3. Magnetism in Na-filled Fe-based skutterudites

    PubMed Central

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-01-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. Here we investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form. PMID:26027504

  4. Estragole blocks neuronal excitability by direct inhibition of Na+ channels

    PubMed Central

    Silva-Alves, K.S.; Ferreira-da-Silva, F.W.; Peixoto-Neves, D.; Viana-Cardoso, K.V.; Moreira-Júnior, L.; Oquendo, M.B.; Oliveira-Abreu, K.; Albuquerque, A.A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H.

    2013-01-01

    Estragole is a volatile terpenoid, which occurs naturally as a constituent of the essential oils of many plants. It has several pharmacological and biological activities. The objective of the present study was to investigate the mechanism of action of estragole on neuronal excitability. Intact and dissociated dorsal root ganglion neurons of rats were used to record action potential and Na+ currents with intracellular and patch-clamp techniques, respectively. Estragole blocked the generation of action potentials in cells with or without inflexions on their descendant (repolarization) phase (Ninf and N0 neurons, respectively) in a concentration-dependent manner. The resting potentials and input resistances of Ninf and N0 cells were not altered by estragole (2, 4, and 6 mM). Estragole also inhibited total Na+ current and tetrodotoxin-resistant Na+ current in a concentration-dependent manner (IC50 of 3.2 and 3.6 mM, respectively). Kinetic analysis of Na+ current in the presence of 4 mM estragole showed a statistically significant reduction of fast and slow inactivation time constants, indicating an acceleration of the inactivation process. These data demonstrate that estragole blocks neuronal excitability by direct inhibition of Na+ channel conductance activation. This action of estragole is likely to be relevant to the understanding of the mechanisms of several pharmacological effects of this substance. PMID:24345915

  5. Partial electronic conductivity of nanocrystalline Na2O2

    NASA Astrophysics Data System (ADS)

    Philipp, M.; Lunghammer, S.; Hanzu, I.; Wilkening, M.

    2017-07-01

    Understanding charge carrier transport in Na2O2, being one of the possible storage materials in the non-aqueous Na-O2 battery, is key to the development of this type of energy storage system. The electronic and dynamic properties of Na2O2 are expected to greatly influence the overall performance and reversibility of the discharge process. Thus far experimental studies on this topic are rare. To measure the extremely low conductivities setups with sufficiently high sensitivity are needed. Here we studied the partial electronic conductivity σ eon of nanocrystalline Na2O2 by potentiostatic polarization measurements which we carried out at room temperature. σ eon turned out to be in the order of 8.8  ×  10-14 S cm-1 with a very poor total conductivity of σ total  =  17  ×  10-14 S cm-1 we obtained σ total/σ eon  ≈  2 clearly showing that ionic transport of Na ions is strongly coupled to electronic dynamics.

  6. Links between hydrothermal environments, pyrophosphate, na(+), and early evolution.

    PubMed

    Holm, Nils G; Baltscheffsky, Herrick

    2011-10-01

    The discovery that photosynthetic bacterial membrane-bound inorganic pyrophosphatase (PPase) catalyzed light-induced phosphorylation of orthophosphate (Pi) to pyrophosphate (PPi) and the capability of PPi to drive energy requiring dark reactions supported PPi as a possible early alternative to ATP. Like the proton-pumping ATPase, the corresponding membrane-bound PPase also is a H(+)-pump, and like the Na(+)-pumping ATPase, it can be a Na(+)-pump, both in archaeal and bacterial membranes. We suggest that PPi and Na(+) transport preceded ATP and H(+) transport in association with geochemistry of the Earth at the time of the origin and early evolution of life. Life may have started in connection with early plate tectonic processes coupled to alkaline hydrothermal activity. A hydrothermal environment in which Na(+) is abundant exists in sediment-starved subduction zones, like the Mariana forearc in the W Pacific Ocean. It is considered to mimic the Archean Earth. The forearc pore fluids have a pH up to 12.6, a Na(+)-concentration of 0.7 mol/kg seawater. PPi could have been formed during early subduction of oceanic lithosphere by dehydration of protonated orthophosphates. A key to PPi formation in these geological environments is a low local activity of water.

  7. EDITORIAL: TaCoNa-Photonics 2008 TaCoNa-Photonics 2008

    NASA Astrophysics Data System (ADS)

    Chigrin, Dmitry N.; Busch, Kurt; Lavrinenko, Andrei V.

    2009-11-01

    This special section on theoretical and computational nano-photonics features papers presented at the first International Workshop on Theoretical and Computational Nano-Photonics (TaCoNa-Photonics 2008) held in Bad Honnef, Germany, 3-5 December 2008. The workshop covered a broad range of topics related to current developments and achievements in this interdisciplinary area of research. Since the late 1960s, the word `photonics' has been understood as the science of generating, controlling, and detecting light. Nowadays, a routine fabrication of complex structures with micro- and nano-scale dimensions opens up many new and exciting possibilities in photonics. The science of generating, routing and detecting light in micro- and nano-structured matter, `nano-photonics', is becoming more important both in research and technology and offers many promising applications. The inherently sub-wavelength character of the structures that nano-photonics deals with challenges modern theoretical and computational physics and engineering with many nontrivial questions: Up to what length-scale can one use a macroscopic phenomenological description of matter? Where is the interface between the classical and quantum description of light in nano-scale structures? How can one combine different physical systems, different time- and length-scales in a single computational model? How can one engineer nano-structured materials in order to achieve the desired optical properties for particular applications? Any attempt at answering these kinds of questions is impossible without the joint efforts of physicists, engineers, applied mathematicians and programmers. This is the reason why the major goal of the TaCoNa-Photonics workshops is to provide a forum where theoreticians and specialists in numerical methods from all branches of physics, engineering sciences and mathematics can compare their results, report on novel results and breakthroughs, and discuss new challenges ahead. In order to

  8. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.

    PubMed

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien James; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S; Plett, Darren; Munns, Rana; Tester, Mark; Gilliham, Matthew

    2014-11-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  9. Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries.

    PubMed

    Ali, Ghulam; Lee, Ji-Hoon; Susanto, Dieky; Choi, Seong-Won; Cho, Byung Won; Nam, Kyung-Wan; Chung, Kyung Yoon

    2016-06-22

    The surface of olivine NaFePO4 was modified with polythiophene (PTh) to develop a high-performance cathode material for use in Na-ion batteries. The Rietveld refinement results of the prepared material reveal that PTh-coated NaFePO4 belongs to a space group of Pnma with lattice parameters of a = 10.40656 Å, b = 6.22821 Å, and c = 4.94971 Å. Uncoated NaFePO4 delivers a discharge capacity of 108 mAh g(-1) at a current density of 10 mA g(-1) within a voltage range of 2.2-4.0 V. Conversely, the PTh-coated NaFePO4 electrode exhibits significantly improved electrochemical performance, where it exhibits a discharge capacity of 142 mAh g(-1) and a stable cycle life over 100 cycles, with a capacity retention of 94%. The NaFePO4/PTh electrode also exhibits satisfactory performance at high current densities, and reversible capacities of 70 mAh g(-1) at 150 mA g(-1) and 42 mAh g(-1) at 300 mA g(-1) are obtained compared with negligible capacities without coating. The related electrochemical reaction mechanism has been investigated using in situ X-ray absorption spectroscopy (XAS), which revealed a systematic change of Fe valence and reversible contraction/expansion of Fe-O octahedra upon desodiation/sodiation. The ex situ X-ray diffraction (XRD) results suggest that the deintercalation in NaFePO4/PTh electrodes proceeds through a stable intermediate phase and the lattice parameters show a reversible contraction/expansion of unit cell during cycling.

  10. Residues Contributing to the Na+-binding Pocket of the SLC24 Na+/Ca2+-K+ Exchanger NCKX2*

    PubMed Central

    Altimimi, Haider F.; Fung, Eric H.; Winkfein, Robert J.; Schnetkamp, Paul P. M.

    2010-01-01

    Na+/Ca2+-K+ exchangers (NCKX; gene family SLC24) are plasma membrane Ca2+ transporters that mediate the extrusion of one Ca2+ ion and one K+ ion in exchange for four Na+ ions. NCKX is modeled to have two sets of five transmembrane segments separated by a large cytosolic loop; within each set of transmembrane segments are regions of internal symmetry termed α1 and α2 repeats. The central residues that are important for Ca2+ and K+ liganding and transport have been identified in NCKX2, and they comprise three central acidic residues, Glu188 in α1 and Asp548 and Asp575 in α2, as well as Ser/Thr residues one-helical turn away from these residues. In this study, we have scanned through more than 100 single-residue substitutions of NCKX2 for shifts in Na+ affinity using a fluorescence assay to monitor changes in free Ca2+ in HEK293 cells treated with gramicidin to control intracellular Na+. We have identified 31 residues that, when substituted, result in shifts in Na+ affinity, either toward higher or lower Km values when compared with wild type NCKX2 (Km for Na+ 58 mm). These residues include the central acidic residues Glu188, Asp548, and Asp575, and their neighboring residues in α1 and α2, in addition to a number of newly investigated residues in transmembrane segment 3. Our results relate the identification of residues important for Na+ transport in this study to those previously identified as important in the counter-transport of Ca2+ and K+, lending support to the alternating access model of transmembrane transport. PMID:20231282

  11. Results of tests of weathered K5NA closeout material in the MSFC Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1982-01-01

    The application of K5NA over hypolon was investigated. The effects of using K5NA over painted cork surfaces, the effects of weathering on the unpainted K5NA surfaces are determined, and the use of water versus solvent for tooling K5NA in place were compared. It is concluded that: (1) K5NA can be applied to hypalon surfaces; (2) K5NA can be left unpainted; and (3) K5NA can be tested with water or solvent.

  12. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.

    PubMed

    Liang, Zhicong; Fan, Xiaofeng; Zheng, Weitao; Singh, David J

    2017-05-24

    Layered carbon is a likely anode material for Na-ion batteries (NIBs). Graphitic carbon has a low capacity of approximately 35 (mA h)/g due to the formation of NaC64. Using first-principles methods including van der Waals interactions, we analyze the adsorption of Na ions and clusters on graphene in the context of anodes. The interaction between Na ions and graphene is found to be weak. Small Na clusters are not stable on the surface of pristine graphene in the electrochemical environment of NIBs. However, we find that Na ions and clusters can be stored effectively on defected graphene that has double vacancies. In addition, the adsorption energy of small Na clusters near a double vacancy is found to decrease with increasing cluster size. With high concentrations of vacancies the capacity of Na on defective graphene is found to be as much as 10-30 times higher than that of graphitic carbon.

  13. High-NA HPCS optical fibers for medical diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Skutnik, Bolesh J.

    2010-02-01

    Hard Plastic Clad Silica (HPCS) optical fibers with pure silica cores have been developed which are robust and have NA(Numerical Aperture)>0.50. Improved clad only HPCS fibers have been produced for both new 'standard' and 'high' NA versions. Based on new cladding formulations, the 'standard' NA fiber has an NA of 0.41, while the new ultrahigh NA fiber has an NA of 0.54. Mechanical strength and preliminary fatigue data are presented along with spectral characterization data. For the first time significant results were obtained for clad only high NA fibers, The fibers are useful for diagnostic and surgical applications. Short to medium length time to failure results, indicate that the static fatigue parameters of the new high numerical aperture (NA) optical fibers are at least as good as those for former standard NA (0.37) HPCS fibers, which is an advance from previous results on the older formulation high NA fibers.

  14. Contractile abnormalities of mouse muscles expressing hyperkalemic periodic paralysis mutant NaV1.4 channels do not correlate with Na+ influx or channel content.

    PubMed

    Lucas, Brooke; Ammar, Tarek; Khogali, Shiemaa; DeJong, Danica; Barbalinardo, Michael; Nishi, Cameron; Hayward, Lawrence J; Renaud, Jean-Marc

    2014-06-01

    Hyperkalemic periodic paralysis (HyperKPP) is characterized by myotonic discharges that occur between episodic attacks of paralysis. Individuals with HyperKPP rarely suffer respiratory distress even though diaphragm muscle expresses the same defective Na(+) channel isoform (NaV1.4) that causes symptoms in limb muscles. We tested the hypothesis that the extent of the HyperKPP phenotype (low force generation and shift toward oxidative type I and IIA fibers) in muscle is a function of 1) the NaV1.4 channel content and 2) the Na(+) influx through the defective channels [i.e., the tetrodotoxin (TTX)-sensitive Na(+) influx]. We measured NaV1.4 channel protein content, TTX-sensitive Na(+) influx, force generation, and myosin isoform expression in four muscles from knock-in mice expressing a NaV1.4 isoform corresponding to the human M1592V mutant. The HyperKPP flexor digitorum brevis muscle showed no contractile abnormalities, which correlated well with its low NaV1.4 protein content and by far the lowest TTX-sensitive Na(+) influx. In contrast, diaphragm muscle expressing the HyperKPP mutant contained high levels of NaV1.4 protein and exhibited a TTX-sensitive Na(+) influx that was 22% higher compared with affected extensor digitorum longus (EDL) and soleus muscles. Surprisingly, despite this high burden of Na(+) influx, the contractility phenotype was very mild in mutant diaphragm compared with the robust abnormalities observed in EDL and soleus. This study provides evidence that HyperKPP phenotype does not depend solely on the NaV1.4 content or Na(+) influx and that the diaphragm does not depend solely on Na(+)-K(+) pumps to ameliorate the phenotype. Copyright © 2014 the American Physiological Society.

  15. Chronic and selective inhibition of basolateral membrane Na-K-ATPase uniquely regulates brush border membrane Na absorption in intestinal epithelial cells

    PubMed Central

    Manoharan, Palanikumar; Gayam, Swapna; Arthur, Subha; Palaniappan, Balasubramanian; Singh, Soudamani; Dick, Gregory M.

    2015-01-01

    Na-K-ATPase, an integral membrane protein in mammalian cells, is responsible for maintaining the favorable intracellular Na gradient necessary to promote Na-coupled solute cotransport processes [e.g., Na-glucose cotransport (SGLT1)]. Inhibition of brush border membrane (BBM) SGLT1 is, at least in part, due to the diminished Na-K-ATPase in villus cells from chronically inflamed rabbit intestine. The aim of the present study was to determine the effect of Na-K-ATPase inhibition on the two major BBM Na absorptive pathways, specifically Na-glucose cotransport and Na/H exchange (NHE), in intestinal epithelial (IEC-18) cells. Na-K-ATPase was inhibited using 1 mM ouabain or siRNA for Na-K-ATPase-α1 in IEC-18 cells. SGLT1 activity was determined as 3-O-methyl-d-[3H]glucose uptake. Na-K-ATPase activity was measured as the amount of inorganic phosphate released. Treatment with ouabain resulted in SGLT1 inhibition at 1 h but stimulation at 24 h. To further characterize this unexpected stimulation of SGLT1, siRNA silencing was utilized to inhibit Na-K-ATPase-α1. SGLT1 activity was significantly upregulated by Na-K-ATPase silencing, while NHE3 activity remained unaltered. Kinetics showed that the mechanism of stimulation of SGLT1 activity was secondary to an increase in affinity of the cotransporter for glucose without a change in the number of cotransporters. Molecular studies demonstrated that the mechanism of stimulation was not secondary to altered BBM SGLT1 protein levels. Chronic and direct silencing of basolateral Na-K-ATPase uniquely regulates BBM Na absorptive pathways in intestinal epithelial cells. Specifically, while BBM NHE3 is unaffected, SGLT1 is stimulated secondary to enhanced affinity of the cotransporter. PMID:25652450

  16. Prospects for exotics and LFV at NA62

    NASA Astrophysics Data System (ADS)

    Petrov, P.

    2017-01-01

    The NA62 experiment at the CERN SPS is designed to measure the branching ratio of the ultra-rare decay with 10% precision. For this purpose the experiment aims to collect of the order of 100 events which would require at least 1013 K + decays in the fiducial volume of the detector. The large sample of K+ decays that will be available at NA62 allows the experiment to carry out a rich program for rare and forbidden K+ and π 0 decays, including lepton flavour and/or number violating modes, sterile neutrinos, exotic particles (e.g. Dark Photons). NA62’s potential for such searches in K+ and π 0 decays is discussed, with initial sensitivity estimates. In addition, plans for continuing the experiment after 2021 (Long Shutdown 2) are presented, including in particular the possibility to operate in a beam-dump mode for exploring various Dark Matter scenarios.

  17. Studies on the Na+-K+-ATPase in myocardial infarction.

    PubMed

    Kobayashi, Y; Sasai, Y; Nakamura, N; Katagiri, T

    1981-11-01

    Changes in the cardiac sarcolemma in myocardial infarction were studied by both determination of Na+-K+-ATPase activity and SDS gel electrophoretic analysis of sarcolemmal proteins in the canine heart. Ninety minutes after coronary ligation, Na+-K+-ATPase activity in ischemic myocardium was decreased significantly to approximately 36% of that of non-ischemic myocardium, and it remained at the lower level for 28 days. By SDS gel electrophoresis, reduction of the protein band with molecular weight of 111,000, which is suggestive of the main component of ATPase, was observed simultaneously with the reduction of Na+-K+-ATPase activity. These results indicate that ischemia for 90 minutes produces substructural changes in the sarcolemma indicating irreversible myocardial changes.

  18. Superconducting properties and electronic structure of NaBi.

    PubMed

    Kushwaha, S K; Krizan, J W; Xiong, J; Klimczuk, T; Gibson, Q D; Liang, T; Ong, N P; Cava, R J

    2014-05-28

    Resistivity, dc magnetization, and heat capacity measurements are reported for superconducting NaBi. T(c), the electronic contribution to the specific heat γ, the ΔC(p)/γT(c) ratio, and the Debye temperature are found to be 2.15 K, 3.4 mJ mol(-1) K(-2), 0.78, and 140 K respectively. The calculated electron-phonon coupling constant (λ(ep) = 0.62) implies that NaBi is a moderately coupled superconductor. The upper critical field and coherence length are found to be 250 Oe and 115 nm, respectively. Electronic structure calculations show NaBi to be a good metal, in agreement with the experiments; the p(x) and p(y) orbitals of Bi dominate the electronic states at the Fermi Energy.

  19. HARP and NA61 (SHINE) hadron production experiments

    SciTech Connect

    Popov, Boris A.

    2009-11-25

    The hadroproduction experiments HARP and NA61 (SHINE) as well as their implications for neutrino physics are discussed. Recent HARP measurements have already been used for precise predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve the atmospheric neutrino flux predictions and to help in the optimization of neutrino factory and super-beam designs. First preliminary data from NA61 are of significant importance for a precise prediction of a new neutrino beam at J-PARC to be used for the first stage of the T2K experiment. Both HARP and NA61 provide a large amount of input for validation and tuning of hadroproduction models in Monte-Carlo generators.

  20. Binding energy and structure of e{sup +}Na

    SciTech Connect

    Shertzer, J.; Ward, S. J.

    2010-06-15

    We calculate the nonadiabatic binding energy and geometry of the weakly bound state of e{sup +}Na. We use the Peach model potential, which includes both the dipole and an effective quadrupole term in the polarization, to describe the interaction of the electron and positron with the ion core. The effective three-body Schroedinger equation is solved with the finite element method. Because the model potential gives rise to three spurious states, the true ground state of e{sup +}Na is embedded in a dense spectrum of spurious states. We develop a method for extracting the correct ground state for e{sup +}Na, even when the energy is nearly degenerate with a spurious level. The calculated value for the binding energy is consistent with other calculations.

  1. Na3Al(AsO4)2

    PubMed Central

    Fakhar Bourguiba, Noura; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The structure of the title compound tris­odium aluminium bis­(arsenate), Na3Al(AsO4)2, is built up from AlO4 and AsO4 corner-sharing tetra­hedra, forming an undulating two-dimensional framework parallel to (100). The layers are constituted of large Al6As6O36 rings made up from six AlO4 and AsO4 tetra­hedra in which two sodium cations are situated, the third sodium cation being located in the inter­layer space. The structural relationships between the title compound and Na3Fe(PO4)2, NaAlCo(PO4)2 and Al5Co3(PO4)8 are discussed. PMID:23424394

  2. Spatiotemporal gradients of intra-axonal [Na+] after transection and resealing in lizard peripheral myelinated axons.

    PubMed Central

    David, G; Barrett, J N; Barrett, E F

    1997-01-01

    1. Post-transection changes in intracellular Na+ ([Na+]i) were measured in lizard peripheral axons ionophoretically injected with the Na(+)-sensitive ratiometric dye, sodium-binding benzofuran isophthalate (SBFI). 2. Following axonal transection in physiological saline [Na+]i increased to more than 100 mM in a region that quickly extended hundreds of micrometers from the transection site. This post-transection increase in [Na+]i was similar when the bath contained 5 microM tetrodotoxin, but was absent in Na(+)-free solution. Depolarization of uncut axons in 50 mM K+ produced little or no elevation of [Na+]i until veratridine was added. These results suggest that the post-transection increase in [Na+]i was due mainly to Na+ entry via the cut end, rather than via depolarization-activated Na+ channels. 3. The spatiotemporal profile of the post-transection increase in [Na+]i could be accounted for by movement of Na+ from the cut end with an apparent diffusion coefficient of 1.3 x 10(-5) cm2 s-1. 4. [Na+]i began to decline toward resting levels by 20 +/- 15 min (mean +/- S.D.) post-transection, except in regions of the axon within 160 +/- 85 microns of the transection site, where [Na+]i remained high. The boundary between axonal regions in which [Na+]i did or did not recover probably defines a locus of resealing of the axonal membrane. 5. [Na+]i returned to resting values within about 1 h after resealing, even in axonal regions where the normal transmembrane [Na+] gradient had completely dissipated. The recovery of [Na+]i was faster and reached lower levels than expected by diffusional redistribution of Na+ along the axon. Partial recovery occurred even in an isolated internode, indicating that the internodal axolemma can actively extrude Na+. Images Figure 2 Figure 4 Figure 6 PMID:9032679

  3. The stability of sodalite in the system NaAlSiO sub 4 -NaCl

    SciTech Connect

    Sharp, Z.D. ); Helffrich, G.R. ); Bohlen, S.R. ); Essene, E.J. )

    1989-08-01

    The reaction sodalite = {beta}-nepheline + NaCl (s) was reversed in solid-medium apparatus and the reaction sodalite = carnegieite + NaCl (l) was reversed at 1 bar (1,649-1,652 K). The experimental reversals between 923 K and 973 K can be fit with a dP/dT of {minus}11 bar/K, suggesting that the excess entropy for sodalite is present only above 923 K. A phase diagram for the NaAlSiO{sub 4}-NaCl system that is consistent with the measured thermochemical data and the experiments between 973 and 1,650 K can be generated if the 61.7 J/mol{center dot}K entropy contribution is included in the S{sup 0}{sub 298} of sodalite. This entropy contribution must be removed below 973 K for the experiments to fit with calculations. Previously unreported thermodynamic data estimated in this study are {Delta}G{sup 0}{sub 298} for sodalite ({minus}12,697 kJ/mol) and carnegieite (NaAlSiO{sub 4}) ({minus}1,958 kJ/mol), S{sup 0}{sub 298} of carnegieite (129.6 J/mol{center dot}K) and compressibility of NaCl{sub liquid} (V{sup P}{sub 298} (cm{sup 3}) = 31.6{center dot}(1 - 24.7{center dot}10{sup {minus}3}{center dot}P + 800{center dot}10{sup {minus}6}{center dot}P{sup 2}))(T in K; P in kbar). Sodalite is a high-temperature, low-pressure phase, stable well above the solidus in sodic silica-undersaturated magmas enriched in NaCl, and its presence constrains NaCl activities in magmas. Estimates of minimum NaCl (l) activities in the Mont St-Hilaire sodalite syenites are 0.05 at 1,073 K and 0.13 at 1,273 K. Density calculations are consistent with the field observations that sodalite phenocrysts will float in a nepheline syenite liquid. This explains the enrichment of sodalite in the upper levels of the sodalite syenites at Mont St.Hilaire and elsewhere.

  4. Measurement of the low-energy Na+-Na total collision rate in an ion-neutral hybrid trap

    NASA Astrophysics Data System (ADS)

    Goodman, D. S.; Wells, J. E.; Kwolek, J. M.; Blümel, R.; Narducci, F. A.; Smith, W. W.

    2015-01-01

    We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient kia of cold sodium (Na) with optically dark low-energy Na+ ions in a hybrid ion-neutral trap. To determine kia, we measured the trap loading and loss rates from both a Na magneto-optical trap (MOT) and a linear radio-frequency quadrupole Paul trap. We found the total rate coefficient to be 7.4 ±1.9 ×10-8 cm3/s for the type-I Na MOT immersed within an ≈140 -K ion cloud and 1.10 ±0.25 ×10-7 cm3/s for the type-II Na MOT within an ≈1070 -K ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal ab initio calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be used to probe an optically dark ion cloud's spatial distribution within a hybrid trap.

  5. Plant response to Na/sup +/, K/sup +/ and K/sup +//Na/sup +/ ratios under saline conditions

    SciTech Connect

    Devitt, D.A.

    1983-01-01

    This research was undertaken to more clearly determine plant response to saline-sodic waters. In the first experiment, the response of wheat and sorghum to different K/sup +//Na/sup +/ ratios at different osmotic potentials was investigated. The plants were grown in outdoor solution culture tanks containing polyethylene glycol and/or NaCl as osmoticum with 1/2 strength Hoagland as the base nutrient solution. The mass of the root system for both wheat and sorghum was determined primarily by the osmotic potential. However, root elongation was controlled primarily by the Na/sup +/ concentration. Sorghum root elongation rates decreased with increasing Na/sup +/ while those for wheat increased. Sodium was not translocated out of the sorghum root system until a critical Na/sup +/ root saturation level of .6 moles/kg was obtained. The second experiment was designed to investigate the water, nutrient and growth responses of the second crop of wheat in a wheat-sorghum-wheat rotation to zonal saline-sodic conditions.

  6. A vanadium oxy-phosphate Na4VO(PO4)2 as cathode material for Na ion batteries

    NASA Astrophysics Data System (ADS)

    Deriouche, W.; Anger, E.; Freire, M.; Maignan, A.; Amdouni, N.; Pralong, V.

    2017-10-01

    The Na4VO(PO4)2 phase has been synthesized using a solid state route in sealed tubes. This phase crystallizing in the orthorhombic system has a one-dimensional structure built up of corner shared VO6 and PO4 polyhedra. It is an ionic conductor with a conductivity of 10-4S/cm at 500 K and an activation energy of 0.63eV. The electrochemical properties of Na4VO(PO4)2 as a positive electrode in a sodium ion battery have been studied. Results show the possibility of extracting almost one sodium through a two-phase process at 3.4 V leading to the phase Na3.2VO(PO4)2 and to insert as well one sodium at low potential 1.5 V, to form through a solid solution process the reduced phase Na5VO(PO4)2. This study is a proof of the great versatility of vanadium V3+/V4+/V5+ ions in Na-based batteries.

  7. Role of cationic amino acids in the Na+/dicarboxylate co-transporter NaDC-1.

    PubMed Central

    Pajor, A M; Kahn, E S; Gangula, R

    2000-01-01

    The role of cationic amino acids in the Na(+)/dicarboxylate co-transporter NaDC-1 was investigated by site-directed mutagenesis and subsequent expression of mutant transporters in Xenopus oocytes. Of the ten residues chosen for mutagenesis, eight (Lys-34, Lys-107, Arg-108, Lys-333, Lys-390, Arg-368, Lys-414 and Arg-541) were found to be non-essential for function or targeting. Only two conserved residues, Lys-84 (at the cytoplasmic end of helix 3) and Arg-349 (at the extracellular end of helix 7), were found to be important for transport. Both mutant transporters were expressed at the plasma membrane. The mutation of Lys-84 to Ala resulted in an increased K(m) for succinate of 1.8 mM, compared with 0.3 mM in the wild-type NaDC-1. The R349A mutant had Na(+) and citrate kinetics that were similar to those of the wild type. However, succinate handling in the R349A mutant was altered, with evidence of inhibition at high succinate concentrations. In conclusion, charge neutralization of Lys-84 and Arg-349 in NaDC-1 affects succinate handling, suggesting that these residues might have roles in substrate binding. PMID:10970779

  8. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  9. Na-caseinate/oil/water systems: emulsion morphology diagrams.

    PubMed

    Tan, Hui Lin; McGrath, Kathryn M

    2012-09-01

    The concentrated (dispersed phase 50-70 wt%) composition space of Na-caseinate, a family of milk proteins, stabilised emulsions was investigated for three different oils: soybean oil, palm olein and tetradecane with pH 6.8 phosphate buffer continuous phase. The variation of emulsion stability and microstructure were explored using static light scattering, diffusion nuclear magnetic resonance, cryo-scanning electron microscopy, rheology and the time varying macroscopic phase separation of the emulsions. For soybean oil and palm olein a rich diversity of emulsion microstructures and stabilities are realised. Five emulsion domains, each having a different microstructure and macroscopic stability have been identified within the composition space probed. For the lowest concentrations of emulsifier bridging flocculation is evident and emulsions are of low stability. Increasing Na-caseinate concentration leads to an increased stability and the existence of distinct individual oil droplets, visualised using cryo-scanning electron microscopy. Further increases in Na-caseinate concentration reduce emulsion stability due to depletion flocculation. Na-caseinate self-assembly is then initiated. At sufficiently high Na-caseinate and/or oil concentrations the continuous phase of the emulsion is a three-dimensional protein network and emulsion stability is again enhanced. At the limits of the emulsion composition space a gel-like paste is formed. The diversity of emulsion microstructure is reduced when tetradecane is the discrete phase. Na-caseinate self-assembly is limited and there is no evidence for formation of a protein network. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Performance of lime-BHA solidified plating sludge in the presence of Na2SiO3 and Na2CO3.

    PubMed

    Piyapanuwat, Rungroj; Asavapisit, Suwimol

    2011-09-01

    This research investigated the performance of lime-BHA (black rice husk ash) solidified plating sludge with 2 wt% NaO from Na(2)SiO(3) and Na(2)CO(3) at the level of 0, 30 and 50 wt%. The sludge was evaluated for strength development, leachability, solution chemistry and microstructure. The lime-BHA solidified plating sludge with Na(2)SiO(3) and Na(2)CO(3) had higher early strength when compared to the control. The addition of Na(2)SiO(3) and Na(2)CO(3) increased the OH(-) concentration and decreased the Ca(2+) and heavy metal ions in solution after the first minute. The XRD patterns showed that the addition of Na(2)SiO(3) resulted in the formation of calcium silicate hydrates, while the addition of Na(2)CO(3) resulted in CaCO(3). The heavy metals from the plating sludge, especially Zn, were immobilized in calcium zincate and calcium zinc silicate forms for the lime-BHA with and without Na(2)SiO(3) solidified wastes, while samples with Na(2)CO(3) contained Zn that was fixed in the form of CaZnCO(3). The cumulative leaching of Fe, Cr and Zn from the lime-BHA solidified plating sludge decreased significantly when activators were added, especially Na(2)CO(3).

  11. Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in Arabidopsis[W][OA

    PubMed Central

    Møller, Inge S.; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M.; Roy, Stuart J.; Coates, Juliet C.; Haseloff, Jim; Tester, Mark

    2009-01-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants. PMID:19584143

  12. First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na3MnPO4CO3 for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Debbichi, M.; Debbichi, L.; Dinh, Van An; Lebègue, S.

    2017-02-01

    Based on first principles calculations, we investigate the geometry, electronic structure, and diffusion mechanism of Na ions in Na3MnPO4CO3 using density functional theory with a Hubbard potential correction. Our results suggest that the structure of Na3MnPO4CO3 can be deintercalated with more than one Na ion, and that the removal of a Na ion can form a bound polaron. We find that our calculations of the intercalation voltages for the redox couples Mn2+ /Mn3+ and Mn3+ /Mn4+ agree very well with the experimental data. In addition, we demonstrate that Na in Na3MnPO4CO3 can diffuse in three directions with low activation energy barriers, allowing a fast charging rate.

  13. Two Na+ Sites Control Conformational Change in a Neurotransmitter Transporter Homolog*

    PubMed Central

    Tavoulari, Sotiria; Margheritis, Eleonora; Nagarajan, Anu; DeWitt, David C.; Zhang, Yuan-Wei; Rosado, Edwin; Ravera, Silvia; Rhoades, Elizabeth; Forrest, Lucy R.; Rudnick, Gary

    2016-01-01

    In LeuT, a prokaryotic homolog of neurotransmitter transporters, Na+ stabilizes outward-open conformational states. We examined how each of the two LeuT Na+ binding sites contributes to Na+-dependent closure of the cytoplasmic pathway using biochemical and biophysical assays of conformation. Mutating either of two residues that contribute to the Na2 site completely prevented cytoplasmic closure in response to Na+, suggesting that Na2 is essential for this conformational change, whereas Na1 mutants retained Na+ responsiveness. However, mutation of Na1 residues also influenced the Na+-dependent conformational change in ways that varied depending on the position mutated. Computational analyses suggest those mutants influence the ability of Na1 binding to hydrate the substrate pathway and perturb an interaction network leading to the extracellular gate. Overall, the results demonstrate that occupation of Na2 stabilizes outward-facing conformations presumably through a direct interaction between Na+ and transmembrane helices 1 and 8, whereas Na+ binding at Na1 influences conformational change through a network of intermediary interactions. The results also provide evidence that N-terminal release and helix motions represent distinct steps in cytoplasmic pathway opening. PMID:26582198

  14. Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively.

    PubMed

    Ma, Haiyan; Tian, Changyan; Feng, Gu; Yuan, Junfeng

    2011-03-01

    The present study aimed to determine the mechanism of cation-selective secretion by multicellular salt glands. Using a hydroponic culture system, the secretion and accumulation of Na(+) and K(+) in Tamarix ramosissima and T. laxa under different salt stresses (NaCl, KCl and NaCl+KCl) were studied. Additionally, the effects of salt gland inhibitors (orthovanadate, Ba(2+), ouabain, tetraethylammonium (TEA) and verapamil) on Na(+) and K(+) secretion and accumulation were examined. Treatment with NaCl (at 0-200 mmol L(-1) levels) significantly increased Na(+) secretion, whereas KCl treatment (at 0-200 mmol L(-1) levels) significantly increased K(+) secretion. The ratio of secretion to accumulation of Na(+) was higher than that of K(+). The changes in Na(+) and K(+) secretion differed after adding different ions into the single-salt solutions. Addition of NaCl to the KCl solution (at 100 mmol L(-1) level, respectively) led to a significant decrease in K(+) secretion rate, whereas addition of KCl to the NaCl solution (at 100 mmol L(-1) level, respectively) had little impact on the Na(+) secretion rate. These results indicated that Na+ secretion in Tamarix was highly selective. In addition, Na(+) secretion was significantly inhibited by orthovanadate, ouabain, TEA and verapamil, and K(+) secretion was significantly inhibited by ouabain, TEA and verapamil. The different impacts of orthovanadate on Na(+) and K(+) secretion might be the primary cause for the different Na(+) and K(+) secretion abilities of multicellular salt glands in Tamarix.

  15. Two Na+ Sites Control Conformational Change in a Neurotransmitter Transporter Homolog.

    PubMed

    Tavoulari, Sotiria; Margheritis, Eleonora; Nagarajan, Anu; DeWitt, David C; Zhang, Yuan-Wei; Rosado, Edwin; Ravera, Silvia; Rhoades, Elizabeth; Forrest, Lucy R; Rudnick, Gary

    2016-01-15

    In LeuT, a prokaryotic homolog of neurotransmitter transporters, Na(+) stabilizes outward-open conformational states. We examined how each of the two LeuT Na(+) binding sites contributes to Na(+)-dependent closure of the cytoplasmic pathway using biochemical and biophysical assays of conformation. Mutating either of two residues that contribute to the Na2 site completely prevented cytoplasmic closure in response to Na(+), suggesting that Na2 is essential for this conformational change, whereas Na1 mutants retained Na(+) responsiveness. However, mutation of Na1 residues also influenced the Na(+)-dependent conformational change in ways that varied depending on the position mutated. Computational analyses suggest those mutants influence the ability of Na1 binding to hydrate the substrate pathway and perturb an interaction network leading to the extracellular gate. Overall, the results demonstrate that occupation of Na2 stabilizes outward-facing conformations presumably through a direct interaction between Na(+) and transmembrane helices 1 and 8, whereas Na(+) binding at Na1 influences conformational change through a network of intermediary interactions. The results also provide evidence that N-terminal release and helix motions represent distinct steps in cytoplasmic pathway opening.

  16. Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions.

    PubMed Central

    Pandit, Sagar A; Berkowitz, Max L

    2002-01-01

    We performed a molecular dynamics simulation of dipalmitoylphosphatidylserine (DPPS) bilayer with Na+ counterions. We found that hydrogen bonding between the NH group and the phosphate group leads to a reduction in the area per headgroup when compared to the area in dipalmitoylphosphatidylcholine bilayer. The Na+ ions bind to the oxygen in the carboxyl group of serine, thus giving rise to a dipolar bilayer similar to dipalmitoylphosphatidylethanolamine bilayer. The results of the simulation show that counterions play a crucial role in determining the structural and electrostatic properties of DPPS bilayer. PMID:11916841

  17. GPU real-time processing in NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-01-01

    A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.

  18. Optically stimulated luminescence in doped NaCl

    SciTech Connect

    Gaikwad, S. U. Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.

    2016-05-06

    NaCl:Ca,Cu,P NaCl:Mg,Cu,P OSL phosphors are synthesized. Intense OSL is observed in these samples which is 14 times more than Al{sub 2}O{sub 3}:C. Same samples coated with PVA (poly vinyl actetae) polymer also show similar OSL properties and these coated samples are found to be less susceptible to the moisture due to protected layer of hydrophobic polymer. These coated samples may be useful as OSL dosimetersdue to high sensitivity and less or no susceptibility to moisture.

  19. Advanced radiator concepts feasibility demonstration. [Li; Na; K

    SciTech Connect

    Rhee, H.S.; Begg, L.; Wetch, J.R. ); Juhasz, A.J. )

    1991-01-05

    An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.

  20. Neutral pion form factor measurement by the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Zamkovsky, Michal; Ambrosino, F.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Baldini, W.; Balev, S.; Batley, J. R.; Behler, M.; Bifani, S.; Biino, C.; Bizzeti, A.; Blazek, T.; Bloch-Devaux, B.; Bocquet, G.; Bolotov, V.; Bucci, F.; Cabibbo, N.; Calvetti, M.; Cartiglia, N.; Ceccucci, A.; Cenci, P.; Cerri, C.; Cheshkov, C.; Chze, J. B.; Clemencic, M.; Collazuol, G.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; Cundy, D.; Dabrowski, A.; DAgostini, G.; Dalpiaz, P.; Damiani, C.; Danielsson, H.; De Beer, M.; Dellacasa, G.; Derr, J.; Dibon, H.; Di Filippo, D.; DiLella, L.; Doble, N.; Duk, V.; Engelfried, J.; Eppard, K.; Falaleev, V.; Fantechi, R.; Fidecaro, M.; Fiorini, L.; Fiorini, M.; Fonseca Martin, T.; Frabetti, P. L.; Fucci, A.; Gallorini, S.; Gatignon, L.; Gersabeck, E.; Gianoli, A.; Giudici, S.; Gonidec, A.; Goudzovski, E.; Goy Lopez, S.; Gushchin, E.; Hallgren, B.; Hita-Hochgesand, M.; Holder, M.; Hristov, P.; Iacopini, E.; Imbergamo, E.; Jeitler, M.; Kalmus, G.; Kekelidze, V.; Kleinknecht, K.; Koval, M.; Kozhuharov, V.; Kubischta, W.; Kurshetsov, V.; Lamanna, G.; Lazzeroni, C.; Lenti, M.; Leonardi, E.; Litov, L.; Lurkin, N.; Madigozhin, D.; Maier, A.; Mannelli, I.; Marchetto, F.; Marel, G.; Markytan, M.; Marouelli, P.; Martini, M.; Masetti, L.; Massarotti, P.; Mazzucato, E.; Michetti, A.; Mikulec, I.; Misheva, M.; Molokanova, N.; Monnier, E.; Moosbrugger, U.; Morales Morales, C.; Moulson, M.; Movchan, S.; Munday, D. J.; Napolitano, M.; Nappi, A.; Neuhofer, G.; Norton, A.; Numao, T.; Obraztsov, V.; Palladino, V.; Patel, M.; Pepe, M.; Peters, A.; Petrucci, F.; Petrucci, M. C.; Peyaud, B.; Piandani, R.; Piccini, M.; Pierazzini, G.; Polenkevich, I.; Popov, I.; Potrebenikov, Y.; Raggi, M.; Renk, B.; Retire, F.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Salamon, A.; Saracino, G.; Savri, M.; Scarpa, M.; Semenov, V.; Sergi, A.; Serra, M.; Shieh, M.; Shkarovskiy, S.; Slater, M. W.; Sozzi, M.; Spadaro, T.; Stoynev, S.; Swallow, E.; Szleper, M.; Valdata-Nappi, M.; Valente, P.; Vallage, B.; Velasco, M.; Veltri, M.; Venditti, S.; Wache, M.; Wahl, H.; Walker, A.; Wanke, R.; Widhalm, L.; Winhart, A.; Winston, R.; Wood, M. D.; Wotton, S. A.; Yushchenko, O.; Zinchenko, A.; Ziolkowski, M.

    2017-07-01

    The NA62 experiment at CERN collected a large sample of charged kaon decays with a highly efficient trigger for decays into electrons in 2007. The kaon beam represents a source of tagged neutral pion decays in vacuum. A measurement of the electromagnetic transition form factor slope of the neutral pion in the time-like region from ∼1 million fully reconstructed π 0 Dalitz decay is presented. The limits on dark photon production in π 0 decays from the earlier kaon experiment at CERN, NA48/2, are also reported.

  1. Neutral pion form factor measurement by the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Pepe, Monica

    2017-03-01

    The NA62 experiment at CERN collected a large sample of charged kaon decays with a highly efficient trigger for decays into electrons in 2007. A measurement of the electromagnetic transition form factor slope of the neutral pion in the time-like region from about one million fully reconstructed π0 Dalitz decays is presented. The limits on dark photon production from a sample of about 1.7 × 107 π0 Dalitz decays collected in 2003-2004 by the earlier kaon experiment at CERN NA48/2 are also reported.

  2. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  3. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction.

    PubMed

    Cui, Xiaoyu; Xie, Zijian

    2017-06-14

    The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.

  4. Elastic properties of NaXH4 (X = B, Al)

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Dong; Jiang, Zhen-Yi; Hou, Yu-Qing; Li, Li-Sha

    2009-07-01

    Elastic properties of NaXH4 (X = B, Al) have been studied by first-principles calculations using a projected augmented plane-wave approach. The calculated elastic constants compare favorably with experimental values. Our calculations show that the theoretically calculated elastic constants and bulk moduli have small values compared with those of typical metals and intermetallic compounds, which indicates that NaXH4 (X = B, Al) are highly compressible. Comparison of bulk moduli B of different complex hydrides shows a correlation between B and the decomposition temperatures. Also, we calculated the elastic anisotropies and the Debye temperatures from the elastic constants.

  5. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  6. Kinetics of 9-aminoacridine block of single Na channels

    PubMed Central

    1984-01-01

    The kinetics of 9-aminoacridine (9-AA) block of single Na channels in neuroblastoma N1E-115 cells were studied using the gigohm seal, patch clamp technique, under the condition in which the Na current inactivation had been eliminated by treatment with N-bromoacetamide (NBA). Following NBA treatment, the current flowing through individual Na channels was manifested by square-wave open events lasting from several to tens of milliseconds. When 9-AA was applied to the cytoplasmic face of Na channels at concentrations ranging from 30 to 100 microM, it caused repetitive rapid transitions (flickering) between open and blocked states within single openings of Na channels, without affecting the amplitude of the single channel current. The histograms for the duration of blocked states and the histograms for the duration of open states could be fitted with a single-exponential function. The mean open time (tau o) became shorter as the drug concentration was increased, while the mean blocked time (tau b) was concentration independent. The association (blocking) rate constant, kappa, calculated from the slope of the curve relating the reciprocal mean open time to 9-AA concentration, showed little voltage dependence, the rate constant being on the order of 1 X 10(7) M-1s-1. The dissociation (unblocking) rate constant, l, calculated from the mean blocked time, was strongly voltage dependent, the mean rate constant being 214 s-1 at 0 mV and becoming larger as the membrane being hyperpolarized. The voltage dependence suggests that a first-order blocking site is located at least 63% of the way through the membrane field from the cytoplasmic surface. The equilibrium dissociation constant for 9-AA to block the Na channel, defined by the relation of l/kappa, was calculated to be 21 microM at 0 mV. Both tau -1o and tau -1b had a Q10 of 1.3, which suggests that binding reaction was diffusion controlled. The burst time in the presence of 9-AA, which is the sum of open times and blocked

  7. In rat hepatocytes, the hypertonic activation of Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is mediated by protein kinase C.

    PubMed

    Heinzinger, H; van den Boom, F; Tinel, H; Wehner, F

    2001-11-01

    1. The initial event in the regulatory volume increase (RVI) of rat hepatocytes is an import of extracellular Na(+) via Na(+) conductance, Na(+)-K(+)-2Cl(-) symport, and Na(+)-H(+) antiport. 2. Here, the protein kinase inhibitors staurosporine (100 nmol l(-1)) and bis-indolyl-maleimide I (400 nmol l(-1)) were used to test for a possible contribution of protein kinase C (PKC) to the hypertonic activation of these transporters in confluent primary cultures. 3. Stimulation of Na(+) conductance was monitored: (i) by use of a differential approach based on Na(+) fluxes, (ii) by means of cable analysis, and (iii) in experiments with low Na(+) pulses. All three experimental protocols in concert demonstrated a block of the activation of Na(+) conductance by staurosporine and bis-indolyl-maleimide I. 4. In addition, both compounds significantly reduced the hypertonic activation of Na(+)-K(+)-2Cl(-) symport (quantified on the basis of furosemide-sensitive (86)Rb(+) uptake) to approximately 30 %. 5. In contrast, neither staurosporine nor bis-indolyl-maleimide I had any detectable effect on the hypertonicity-induced alkalinization of cell pH via Na(+)-H(+) antiport (determined fluorometrically). 6. Staurosporine and bis-indolyl-maleimide I completely blocked the RVI of rat hepatocytes (quantified by means of confocal laser-scanning microscopy). The high efficiency of the block suggests an additional inhibitory effect of both compounds on the activity of Na(+)/K(+)-ATPase (determined as ouabain-sensitive (86)Rb(+) uptake). 7. It is concluded that the hypertonic activation of rat hepatocyte Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is probably mediated by PKC.

  8. Structural requirements of Na+-dependent antidopaminergic agents: Tropapride, Piquindone, Zetidoline, and Metoclopramide Comparison with Na+-independent ligands

    NASA Astrophysics Data System (ADS)

    Collin, Sonia; Vercauteren, Daniel P.; Vanderveken, Didier; Evrard, Guy; Durant, François

    1989-03-01

    Molecular graphic design coupled with PCILO and crystallographic results have been used to investigate the three-dimensional structure of Tropapride, Piquindone, Zetidoline, and Metoclopramide, four dopamine D-2 receptor antagonists showing Na+-dependent binding. Three putative pharmacophoric elements, a nitrogen lone pair, a phenyl ring and a carbonyl moiety, are similarly oriented in all the Na+-dependent drugs. Conversely, for Na+-independent analogs, the two latter pharmacophoric elements play a subordinate role, but two Π-electron regions are systematically localized on the other side of the molecule: the first is a phenyl group while the second is a carbonyl function as in butyrophenones, a cyano group as in R48455, or a phenyl ring as in diphenylbutylpiperidines or tricyclics. The presence of a benzyl ring on this side in Tropapride might explain its weak extrapyramidal effects.

  9. Two Completely Different Mechanisms for Highly Specific Na(+) Recognition by DNAzymes.

    PubMed

    Zhou, Wenhu; Saran, Runjhun; Ding, Jinsong; Liu, Juewen

    2017-09-19

    Our view of the interaction between Na(+) and nucleic acids was changed by a few recently discovered Na(+) -specific RNA-cleaving DNAzymes. In addition to nonspecific electrostatic interactions, highly specific recognition is also possible. Herein, two such DNAzymes, named EtNa and Ce13d, are compared to elucidate their mechanisms of Na(+) binding. Mutation studies indicate that they have different sequence requirements. Phosphorothioate (PS) substitution at the scissile phosphate drops the activity of EtNa 140-fold, and it cannot be rescued by thiophilic Cd(2+) or Mn(2+) , whereas the activity of PS-modified Ce13d can be rescued. Na(+) -dependent activity assays indicate that two Na(+) ions bind cooperatively in EtNa, and each Na(+) likely interacts with a nonbridging oxygen atom in the scissile phosphate, whereas Ce13d binds only one Na(+) ion in a well-defined Na(+) aptamer, and this Na(+) ion does not directly interact with the scissile phosphate. Both DNAzymes display a normal pH-rate profile, with a single deprotonation reaction required for catalysis. For EtNa, Na(+) fails to protect the conserved nucleotides from dimethyl sulfate attack, and no specific Na(+) binding is detected by 2-aminopurine fluorescence, both of which are different from those observed for Ce13d. This work suggests that EtNa binds Na(+) mainly through its scissile phosphate without significant involvement of the nucleotides in the enzyme strand, whereas Ce13d has a well-defined aptamer for Na(+) binding. Therefore, DNA has at least two distinct ways to achieve highly selective Na(+) binding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparative evaluation of Na(+) uptake in Cyprinodon variegatus variegatus (Lacepede) and Cyprinodon variegatus hubbsi (Carr) (Cyprinodontiformes, Teleostei): Evaluation of NHE function in high and low Na(+) freshwater.

    PubMed

    Brix, Kevin V; Esbaugh, Andrew J; Mager, Edward M; Grosell, Martin

    2015-07-01

    The euryhaline pupfish, Cyprinodon variegatus variegatus (Cvv), can successfully osmoregulate in ≥2 mM Na(+) and a freshwater population (Cyprinodon variegatus hubbsi; Cvh) osmoregulates at ≥0.1mM Na(+). We previously demonstrated that Cvv relies on an apical NKCC and NHE in the gill for Na(+) uptake in high (7mM) and intermediate (2 mM) Na(+) concentrations, while Cvh relies only on NHE for Na(+) uptake. This study investigated whether differential NHE isoform use explains differences in Na(+) uptake kinetics between these two populations. We further studied whether Cvh uses a NHE-Rh metabolon or carbonic anhydrase (CA) to overcome thermodynamic challenges of NHE function in dilute freshwater. Transfer to more dilute freshwater resulted in upregulation of nhe-2 (Cvv only) and nhe-3 (Cvv and Cvh). Relative expression of nhe-3 compared to nhe-2 was 2-fold higher in Cvv, but 200-fold higher in Cvh suggesting that nhe-3 expression is an important freshwater adaptation for Cvh. Simultaneous measurement of Na(+) and Tamm flux under various conditions provided no support for a NHE-Rh metabolon in either population. Carbonic anhydrase activity in Cvv was comparable in 7 and 2 mM Na(+) acclimated fish. In Cvh, CA activity increased by 75% in 0.1 mM Na(+) acclimated fish compared to 7 mM Na(+) fish. Ethoxzolamide had variable effects, stimulating and reducing Na(+) uptake in Cvv acclimated to 7 and 2 mM Na(+), while reducing Na(+) uptake in 7 and 0.1mM Na(+) acclimated Cvh. This suggests that CA plays important, but different roles in regulating Na(+) uptake in Cvv and Cvh.

  11. In Situ SAXS/WAXS of Zeolite Microwave Synthesis: NaY, NaA, and Beta Zeolites

    SciTech Connect

    Panzarella,B.; Tompsett, G.; Conner, W.; Jones, K.

    2007-01-01

    A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

  12. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.

    PubMed

    Panzarella, Bernard; Tompsett, Geoffrey; Conner, William C; Jones, Keith

    2007-02-19

    A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

  13. The loss of Na and Cl during the pyrolysis of a NaCl-loaded brown coal sample

    SciTech Connect

    Mody, D.; Li, C.Z.

    1999-07-01

    A Victorian brown coal was physically loaded with NaCl and pyrolyzed in a quartz fluidized-bed reactor. The fluidized-bed reactor was equipped with a quartz frit in the freeboard zone to enable the total devolatilization of the coal particles. The introduction of NaCl into the coal has caused only minor reductions in the weight loss. A significant amount of chlorine was volatilized during pyrolysis at temperatures as low as 200 C. At temperatures around 400--500 C where the loss of sodium was not very significant, about 70% of chlorine was volatilized from the coal particles. With the volatilization of chlorine at this temperature level, sodium must have been bonded to the char matrix. With increasing temperature, the volatilization of chlorine decreased and then increased again, whereas the volatilization of sodium increased monotonically with increasing temperature. Almost all the Na in coal could be volatilized at temperatures higher than about 800 C. These experimental results clearly indicate that chlorine and Na interacted strongly with coal/char at high temperatures. Na and Cl in the coal did not volatilize as NaCl molecules. Significant amounts of species containing a COO-group such as acetate, formate and oxalate were observed in the pyrolysis products although the exact forms of these species (i.e., as acids, salts or esters) in the pyrolysis product remain unknown. The yields of the species containing a COO-group decreased with increasing temperature, possibly due to the intensified thermal cracking reactions at high temperatures.

  14. Na+-dependent and Na+-independent betaine transport across the apical membrane of rat renal epithelium.

    PubMed

    Cano, Mercedes; Calonge, María L; Ilundáin, Anunciación A

    2015-10-01

    The low renal excretion of betaine indicates that the kidney efficiently reabsorbs the betaine filtered by the glomeruli but the mechanisms involved in such a process have been scarcely investigated. We have detected concentrative and non-concentrative betaine transport activity in brush-border membrane vesicles (BBMV) from rat renal cortex and medulla. The concentrative system is the Sodium/Imino-acid Transporter 1 (SIT1) because it is Na+- and Cl--dependent, electrogenic and is inhibited by an anti-SIT1 antibody. Its apparent affinity constant for betaine, Kt, is 1.1±0.5 mM and its maximal transport velocity, Vmax, 0.5±0.1 nmol betaine/mg protein/s. Inhibitors of the Na+/Cl-/betaine uptake are L-proline (75%) and cold betaine, L-carnitine and choline (40-60%). Neither creatine, TEA, taurine, β-alanine, GABA nor glycine significantly inhibited Na+/Cl-/betaine uptake. The non-concentrative betaine transport system is Na+- and H+-independent, electroneutral, with a Kt for betaine of 47±7 μM and a Vmax of 7.8±1 pmol betaine/mg protein/s. Its transport activity is nearly abolished by betaine, followed by L-carnitine (70-80%) and proline (40-50%), but a difference from the Na+/Cl-/betaine transport is that it is inhibited by TEA (approx. 50%) and unaffected by choline. The underlying carrier functions as an antiporter linking betaine entry into the BBMV with the efflux of either L-carnitine or betaine, an exchange unaffected by the anti-SIT1 antibody. As far as we know this is the first work reporting that betaine crosses the apical membrane of rat renal epithelium by SIT1 and by a Na+- and H+-independent transport system.

  15. Observation of structure in laser-induced Penning and associative ionization in crossed-beam Na+Na collisions

    SciTech Connect

    Polak-Dingels, P.; Delpech, J.; Weiner, J.

    1980-06-23

    The results of double-laser experiments in which Na/sup +//sub 2/ and Na/sup +/ are produced in crossed-alkali beams under single-collision conditions in the presence of strong optical fields are reported. Structure in the mass-selected product ion intensity as a function laser frequency is observed when the optical field is strongly focused and tuned far off atomic or dimer transitions. These measurements are the first to show that nuclear motion of the quasimolecular collision intermediate plays an important role in laser-induced collisional ionization.

  16. Synthesis and Neutron Diffraction Study of Na 3WN 3 and Na 3MoN 3

    NASA Astrophysics Data System (ADS)

    Rauch, P. E.; DiSalvo, F. J.; Brese, N. E.; Partin, D. E.; O'Keeffe, M.

    1994-05-01

    We have used our ambient pressure method for the synthesis of ternary alkali metal nitrides to synthesize a new class of nitrides, Na 3MN 3 ( M = Mo or W). These compounds were synthesized from the metal nitride and NaNH 2 at 500°C under flowing ammonia at atmospheric pressure. The structures were examined using X-ray powder diffraction and neutron powder diffraction and were found to be identical with that obtained from the single crystal prepared at high pressure by Ostermann, Zachwieja, and Jacobs.

  17. Rate coefficient for the chemi-ionization in slow Li*(n)+Li and Na*(n)+Na collisions

    SciTech Connect

    Ignjatovic, Lj.M.; Mihajlov, A.A.

    2005-08-15

    The chemi-ionization processes in slow-atom-Rydberg-atom collisions are considered in this paper. A version of the semiclassical method of rate coefficient calculation that is free of the presumptions which significantly limited its applicability previously is presented. The method is applied to the cases of Li*(n)+Li and Na*(n)+Na collisions for the principal quantum numbers 5{<=}n{<=}25 and temperatures 600{<=}T{<=}1200 K. The results of calculation of the rate coefficients of the corresponding chemi-ionization processes are compared to the existing experimental data from the literature.

  18. Luminescence and radiation resistance of undoped NaI crystals

    SciTech Connect

    Shiran, N. Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found that defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.

  19. Stainless Steel NaK Circuit Integration and Fill Submission

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed to hold a eutectic mixture of sodium potassium (NaK), was redesigned to hold lithium; but due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature loop include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This document summarizes the integration and fill of the pumped liquid metal NaK flow circuit.

  20. Reductive amination of carbohydrates using NaBH(OAc)3.

    PubMed

    Dalpathado, Dilusha S; Jiang, Hui; Kater, Marcus A; Desaire, Heather

    2005-03-01

    An improved protocol for reductive amination of carbohydrates is developed. This derivatization facilitates the detection of oligosaccharides in HPLC-UV and mass spectrometric applications by enhancing the signal of the carbohydrates. In this study, reductive amination was achieved using NaBH(OAc)3. This reducing agent is an attractive alternative to the toxic, but extensively used reducing agent, NaBH3CN. Several types of carbohydrates were successfully derivatized using NaBH(OAc)3, and the results obtained from this protocol were compared with those obtained with NaBH(OAc)3. Both reducing agents were equally effective in side-by-side analysis. Two purification strategies (purification by zip-tip and HPLC) were implemented and the instrumental limit of detection of each method was compared. The detection limit was approximately 1,000 times lower when the purification was done using HPLC, compared to using the zip-tip. Since the derivatization by-products in this protocol are not toxic, MS analysis also could also be performed directly, without purification. The MS/MS data of derivatized and underivatized oligosaccharides were acquired as well. The derivatized oligosaccharides produce more easily interpretable product ions than underivatized oligosaccharides.

  1. Bilingual Education at Dzil Na'oodilii Community School.

    ERIC Educational Resources Information Center

    Howard, Roy E.

    Proceedings of a Navajo Bilingual Education Conference held April 26 and 27, 1985, are summarized in this report which focuses on the implementation of Navajo language and cultural education at the Dzlith Na O Dith Hle Community School (DCS). The paper begins by stating that the conference was intended to assist educators in understanding and…

  2. Results from CERN experiment NA36 on strangeness production

    SciTech Connect

    Not Available

    1991-12-01

    Measurements of the production of strange particles in the reactions S + Pb and S + S at beam momentum 200GeV/c per nucleon are presented. A short description of CERN experiment NA36 and the methods of raw data analysis, is followed by physics results concentrating on the dependence of strange particle production on multiplicity. Transverse momentum distributions are also presented.

  3. Mechanism of two types of Na emission observed in sonoluminescence

    NASA Astrophysics Data System (ADS)

    Nakajima, Ryota; Hayashi, Yuichi; Choi, Pak-Kon

    2015-07-01

    The sonoluminescence (SL) spectrum of Na atoms revealed that the Na line consists of two components, one of which is a broadened component (broad component) which is shifted from the original D lines, and the other is an unshifted narrow component (narrow component). We spatially separated the continuum, broad, and narrow components by capturing SL images using different optical filters. We also temporally separated these components by measuring SL pulses using respective band-pass filters. The SL image distribution and the timing of the SL pulses were different between the broad and narrow components. The results suggested that the broad and narrow components of Na emission are generated from different bubble populations. The dependences of SL spectra on ultrasonic frequency and dissolved rare gas (He, Ne, Ar, Kr, and Xe) were also investigated. It is concluded that the broad component and a blue satellite peak at 558 nm originate from van der Waals molecules composed of Na and rare-gas atoms. The narrow component was predicted to occur under temperature conditions at bubble collapse higher than that for the broad component.

  4. Substituting KCl for NaCl in fresh Queso Fresco

    USDA-ARS?s Scientific Manuscript database

    Reducing the sodium level in cheese is challenging when a signature salty flavor is expected, such as in high-moisture Queso Fresco (QF). Fresh starter-free QF was fine milled and dry salted at different levels of NaCl and KCl to obtain total salt levels of 1.5 to 2.0%. The treatments contained 1....

  5. Influence of salt purity on Na+ and palmitic acid interactions.

    PubMed

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-12-19

    The influence of salt purity on the interactions between Na(+) ions and the carboxylate (COO(-)) head group of palmitic acid (PA) monolayers is studied in the COO(-) and OH stretching regions using broad-band vibrational sum frequency generation (VSFG) spectroscopy. Ultrapure (UP) and ACS grade NaCl salts are used for aqueous solution preparation after proper pretreatment. The time evolution of VSFG spectra of PA monolayers on solutions made from these two grades of salts is different, which reveals that the salt purity has a significant impact on the interactions between Na(+) ions and the COO(-) group of PA. The trace metal impurities in ACS grade salt, which are more abundant than those in UP grade salt, are responsible for this difference due to their stronger affinity for the carboxylate group relative to Na(+) and further affects the interfacial water structure. These results suggest that the alkali salt grade even after pretreatment is critical in the studies of alkali cation-carboxylate interactions and comparison of relative binding affinities of different cations.

  6. Rechargeable Room-Temperature Na-CO2 Batteries.

    PubMed

    Hu, Xiaofei; Sun, Jianchao; Li, Zifan; Zhao, Qing; Chen, Chengcheng; Chen, Jun

    2016-05-23

    Developing rechargeable Na-CO2 batteries is significant for energy conversion and utilization of CO2 . However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g(-1) . Herein, we realized the rechargeability of a Na-CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2 +4 Na↔2 Na2 CO3 +C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g(-1) at 1 A g(-1) (≈1000 Wh kg(-1) ) and runs for 200 cycles with controlled capacity of 2000 mAh g(-1) at charge voltage <3.7 V. The porous structure, high electro-conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2 .

  7. Neutron detection by large NaI crystal

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.

    2016-07-01

    In present days new neutron detection methods are under developed due to the global shortage of 3He and the toxicity of BF3. Neutrons can be indirectly detected by high-energy photons. The performance of a cylindrical NaI crystal, 4 in. diameter and 8 in. length as an indirect neutron detector has been investigated. Measurements were performed with 252Cf source with bare and shielded NaI detector. With a proper converter and moderator structure for the NaI detector, the detection efficiencies and the minimum detectable activities are improved, making the method very interesting for security applications. The indirect detection of neutrons by photons has several advantages. First, this method can in principle be suited by any gamma spectrometer with only slight modifications that do not compromise with its gamma spectrometry measurements. Second, fission neutron sources and neutron generators can be discriminated thanks to their different gamma energy spectra, a discrimination easily done by a NaI spectrometer.

  8. NaK release model for MASTER-2009

    NASA Astrophysics Data System (ADS)

    Wiedemann, Carsten; Flegel, Sven; Gelhaus, Johannes; Krag, Holger; Klinkrad, Heiner; Vörsmann, Peter

    2011-04-01

    Sodium-potassium droplets from the primary coolant loop of Russian orbital reactors have been released into space. These droplets are called NaK droplets. Sixteen nuclear powered satellites of the type RORSAT launched between 1980 and 1988 activated a reactor core ejection system, mostly between 900 and 950 km altitude. The core ejection causes an opening of the primary coolant loop. The liquid coolant consists of eutectic sodium-potassium alloy and has been released into space during these core ejections. The NaK coolant has been forming droplets up to a diameter of 5.5 cm. NaK droplets have been modeled before in ESA's MASTER Debris and Meteoroid Environment Model. The approach is currently revised for the MASTER-2009 upgrade. A mathematical improvement is introduced by substituting the current size distribution function by the modified Rosin-Rammler equation. A bimodal size distribution is derived which is based on the modified mass based Rosin-Rammler equation. The equation is modified by truncating the size range and normalizing over the finite range between the size limits of the smallest and the biggest droplet. The parameters of the model are introduced and discussed. For the validation of the NaK release model, sixteen release events are simulated. The resulting size distribution is compared with radar measurement data. The size distribution model fits well with revised published measurement data of radar observations. Results of orbit propagation simulation runs are presented in terms of spatial density.

  9. Modulation of the Na,K-ATPase by Magnesium Ions.

    PubMed

    Apell, Hans-Jürgen; Hitzler, Tanja; Schreiber, Grischa

    2017-02-21

    Since the beginning of investigations of the Na,K-ATPase, it has been well-known that Mg(2+) is an essential cofactor for activation of enzymatic ATP hydrolysis without being transported through the cell membrane. Moreover, experimental evidence has been collected through the years that shows that Mg(2+) ions have a regulatory effect on ion transport by interacting with the cytoplasmic side of the ion pump. Our experiments allowed us to reveal the underlying mechanism. Mg(2+) is able to bind to a site outside the membrane domain of the protein's α subunit, close to the entrance of the access channel to the ion-binding sites, thus modifying the local concentration of the ions in the electrolyte, of which Na(+), K(+), and H(+) are of physiological interest. The decrease in the concentration of these cations can be explained by electrostatic interaction and estimated by the Debye-Hückel theory. This effect provokes the observed apparent reduction of the binding affinity of the binding sites of the Na,K-ATPase in the presence of various Mg(2+) concentrations. The presence of the bound Mg(2+), however, does not affect the reaction kinetics of the transport function of the ion pump. Therefore, stopped-flow experiments could be performed to gain the first insight into the Na(+) binding kinetics on the cytoplasmic side by Mg(2+) concentration jump experiments.

  10. Spectral induced polarization of Na-montmorillonite dispersions.

    PubMed

    Leroy, Philippe; Weigand, Maximilian; Mériguet, Guillaume; Zimmermann, Egon; Tournassat, Christophe; Fagerlund, Fritjof; Kemna, Andreas; Huisman, Johan Alexander

    2017-11-01

    Montmorillonite (Mt) clays have a high specific surface area and surface charge, which confer them remarkable adsorption properties. Nevertheless, their electrochemical and aggregation behavior are not completely elucidated because of the complexity of their microstructural and interfacial properties. In this work, the conductive and dispersive properties of Na-Mt suspensions of weight fractions 0.5-5.2% were investigated for the first time using the spectral induced polarization method. A four-electrode system was used to reduce errors introduced by electrode polarization and contact resistances. Complex conductivity spectra in the low-frequency range of 0.1Hz to 45kHz were successfully described using a triple layer model of the basal surface of Mt and a complex conductivity model that considers conduction of the diffuse layer and polarization of the Stern layer. Aggregate size distributions were inferred from inverted relaxation time distributions. We found that the negative and permanent surface charge of the basal plane of Na-Mt controls its quadrature (imaginary) conductivity, which is not very sensitive to pH and salinity (NaCl) in the 100Hz to 45kHz frequency range. For lower frequencies, the sudden increase of the quadrature conductivity at the highest salinities was explained by considering coagulation of Na-Mt particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ultraweak bioluminescence of maize under NaCl stress

    NASA Astrophysics Data System (ADS)

    Xie, Zhaohui

    2009-11-01

    In this paper, the delayed ultra-weak luminescence (UWL), leaf dry/fresh weight and reactive oxygen species (ROS) of the maize (Jundan 20) were investigated under various NaCl concentration. The results showed that following with the increase of NaCl, ROS contents increased obviously, but the UWL intensity decreased, and the decrease speed increased following with the increase of NaCl concentration, the decrease extent of delayed luminescence ranged from 10.4% to 27.2%. It was also found that both dry and fresh weight of seedling leaves decreased, but the ratio of dry/fresh weight increased. According to these results, we speculated that the decrease of UWL was mainly closely associated with the destruction of seedling normal physiological activities and metabolic disorder which were caused by NaCl stress, rather than ROS only. This study revealed that the spectral analysis of UWL is a useful tool for studying plant response to salt stress.

  12. Stainless Steel NaK Circuit Integration and Fill Submission

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed to hold a eutectic mixture of sodium potassium (NaK), was redesigned to hold lithium; but due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature loop include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This document summarizes the integration and fill of the pumped liquid metal NaK flow circuit.

  13. Altered erythrocyte Na-K pump in anorectic patients

    SciTech Connect

    Pasquali, R.; Strocchi, E.; Malini, P.; Casimirri, F.; Ambrosioni, E.; Melchionda, N.; Labo, G.

    1985-07-01

    The status of the erythrocyte sodium pump was evaluated in a group of patients suffering from anorexia nervosa and a group of healthy female control subjects. Anorectic patients showed significantly higher mean values of digoxin-binding sites/cell (ie, the number of Na-K-ATPase units) with respect to control subjects while no differences were found in the specific /sup 86/Rb uptake (which reflects the Na-K-ATPase activity) between the two groups. A significant correlation was found between relative weight and the number of Na-K-ATPase pump units (r = -0.66; P less than 0.0001). Anorectic patients showed lower serum T3 concentrations (71.3 +/- 53 ng/dL) with respect to control subjects (100.8 +/- 4.7 ng/dL; P less than 0.0005) and a significant negative correlation between T3 levels and the number of pump units (r = -0.52; P less than 0.003) was found. This study therefore shows that the erythrocyte Na-K pump may be altered in several anorectic patients. The authors suggest that this feature could be interrelated with the degree of underweight and/or malnutrition.

  14. Formation of oriented membrane multilayers of Na/K-ATPase

    SciTech Connect

    Pachence, J.M.; Knott, R.; Edelman, I.S.; Schoenborn, B.P.; Wallace, B.A.

    1982-01-01

    The isolated membrane-bound enzyme retains its ouabain-sensitive ATP hydrolysis activity, and produces ATP-dependent Na/sup +/ and K/sup +/ fluxes when incorporated into phospholipid vesicles. The ultimate goal of this work is to determine its low resolution structure using both X-ray and neutron diffraction. A number of methods were used to impart lamellar stacking order to highly purified pig Na/K-ATPase membranes. Upon partial dehydration, x-ray diffraction from Na/K-ATPase membrane multilayers at 98% relative humidity yielded discrete reflections of 118 A periodicity, diffracting to 1/14.8 A/sup -1/, additionally, continuous diffraction to 1/10 A/sup -1/ was obtained. Subjecting the membrane multilayers to high magnetic fields improved the quality of the lamellar diffraction dramatically. Neutron diffraction studies of the partially dehydrated Na/K-ATPase membrane multilayers detected a mosaic spread of 2/sup 0/ when the samples were subjected to a magnetic field of 5 Tesla perpendicular to the membrane surface; the reflections were narrower than the camera line width; hence, the lattice disorder has also decreased significantly, although only four orders were measured.

  15. Space nuclear system thermoelectric NaK pump development

    NASA Technical Reports Server (NTRS)

    Johnson, J. L.

    1973-01-01

    The engineering, design, fabrication, and test history of the dual-throat thermoelectric NaK development pump is summarized, along with the engineering and design status of a similar prototype pump intended for use on the 5-kwe reactor thermoelectric system. The history of dc pump development and testing on previous programs is also summarized.

  16. Phosphate derivatives of thiamine and Na+ channel in conducting membranes.

    PubMed

    Schoffeniels, E; Dandrifosse, G; Bettendorff, L

    1984-07-01

    The results show that thiamine derivatives are copurified with the specific proteins forming the Na+ channel in conducting membranes. Therefore, thiamine derivatives could well play a specific role in the molecular aspects of bioelectrogenesis , an interpretation that could help explain the neurological symptoms observed in human pathology as well as in animals experimentally rendered deficient in vitamin B1.

  17. Results from NA60 experiment at the CERN SPS

    SciTech Connect

    Usai, G.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Averbeck, R.; Drees, A.; Banicz, K.; Castor, J.; Devaux, A.; Force, P.; Manso, F.; Chaurand, B.

    2006-07-11

    The NA60 experiment studies open charm and prompt dimuon production in proton-nucleus and nucleus-nucleus collisions at the CERN SPS. During 2003 the experiment collected data in Indium-Indium collisions at 158 GeV per nucleon. In this paper the first results on low mass dimuons, intermediate mass dimuons and J/{psi} suppression are presented.

  18. Neutral Na in comets tails: a chemical story

    NASA Astrophysics Data System (ADS)

    Ellinger, Y.; Pauzat, F.; Mousis, O.; Guilbert-Lepoutre, A.; Leblanc, F.; Ali-Dib, M.; Doronin, M.; Zicler, E.; Doressoundiram, A.

    2015-10-01

    The origin of the neutral sodium comet tail discovered in comet Hale-Bopp in 1997 is still a matter of discussion. Here we propose a scenario which is based on chemical grounds. The starting point is the chemical trapping of the Na+ ion in the refractory material during the condensation phase of the protosolar nebula, followed by its incorporation in the building blocks of the comets parent bodies. In the next step, the Na+ ions are washed out of the refractory material by the water formed by the melting of the ice due to the heat released in the radioactive decay of short period elements. When the water freezes again, the Na+ ion looses its positive charge to evolve progressively toward a neutral atom when approaching the surface of the ice. As shown by high-level numerical simulations based on first principle periodic density functional theory (DFT) to describe the solid structure of the ice, it is a neutral Na that is ejected with the sublimation of the ice top layer.

  19. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing higher educational research

  20. Li-Na ternary amidoborane for hydrogen storage: experimental and first-principles study.

    PubMed

    Li, Wen; Miao, Ling; Scheicher, Ralph H; Xiong, Zhitao; Wu, Guotao; Araújo, C Moysés; Blomqvist, Andreas; Ahuja, Rajeev; Feng, Yuanping; Chen, Ping

    2012-04-28

    Li-Na ternary amidoborane, Na[Li(NH(2)BH(3))(2)], was recently synthesized by reacting LiH and NaH with NH(3)BH(3). This mixed-cation amidoborane shows improved dehydrogenation performance compared to that of single-cation amidoboranes, i.e., LiNH(2)BH(3) and NaNH(2)BH(3). In this paper, we synthesized the Li-Na ternary amidoborane by blending and re-crystallizing equivalent LiNH(2)BH(3) and NaNH(2)BH(3) in tetrahydrofuran (THF), and employed first-principles calculations and the special quasirandom structure (SQS) method to theoretically explore the likelihood for the existence of Li(1-x)Na(x)(NH(2)BH(3)) for various Li/Na ratios. The thermodynamic, electronic and phononic properties were investigated to understand the possible dehydrogenation mechanisms of Na[Li(NH(2)BH(3))(2)].

  1. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  2. Multiple quantum filtered (23)Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i.

    PubMed

    Eykyn, Thomas R; Aksentijević, Dunja; Aughton, Karen L; Southworth, Richard; Fuller, William; Shattock, Michael J

    2015-09-01

    We investigate the potential of multiple quantum filtered (MQF) (23)Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the (23)Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM(3SA) mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered (23)Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation.

  3. In vivo sup 23 Na and sup 31 P NMR measurement of a tonoplast Na sup + /H sup + exchange process and its characteristics in two barley cultivars

    SciTech Connect

    Fan, T.W.M.; Norlyn, J.; Epstein, E. ); Higashi, R.M. )

    1989-12-01

    A Na{sup +} uptake-associated vacuolar alkalinization was observed in roots of two barley cultivars (Arivat and the more salt-tolerant California Mariout) by using {sup 23}Na and {sup 31}P in vivo NMR spectroscopy. A NaCl uptake-associated broadening was also noted for both vacuolar P{sub i} and intracellular Na NMR peaks, consistent with Na{sup +} uptake into the same compartment as the vacuolar P{sub i}. A close coupling of Na{sup +} with H{sup +} transport (presumably the Na{sup +}/H{sup +} antiport) in vivo was evidence by qualitative and quantitative correlations between Na{sup +} accumulation and vacuolar alkalinization for both cultivars. Prolongation of the low NaCl pretreatment (30 mM) increased the activity of the putative antiport in Arivat but reduced it in California Mariout. This putative antiport also showed a dependence on NaCl concentration for California Mariout but not for Arivat. No cytoplasmic acidification accompanied the antiporter activity for either cultivar. The response of adenosine phosphates indicated that ATP utilization exceeded the capacity for ATP synthesis in Arivat, but the two processes seemed balanced in California Mariout. These comparisons provide clues to the role of the tonoplast Na{sup +}/H{sup +} antiport and compensatory cytoplasmic adjustments including pH, osymolytes, and energy phosphates in governing the different salt tolerance of the two cultivars.

  4. Na+-H+ exchange activity in taste receptor cells.

    PubMed

    Vinnikova, Anna K; Alam, Rammy I; Malik, Shahbaz A; Ereso, Glenn L; Feldman, George M; McCarty, John M; Knepper, Mark A; Heck, Gerard L; DeSimone, John A; Lyall, Vijay

    2004-03-01

    mRNA for two Na(+)-H(+)-exchanger isoforms 1 and 3 (NHE-1 and NHE-3) was detected by RT-PCR in fungiform and circumvallate taste receptor cells (TRCs). Anti-NHE-1 antibody binding was localized to the basolateral membranes, and the anti-NHE-3 antibody was localized in the apical membranes of fungiform and circumvallate TRCs. In a subset of TRCs, NHE-3 immunoreactivity was also detected in the intracellular compartment. For functional studies, an isolated lingual epithelium containing a single fungiform papilla was mounted with apical and basolateral sides isolated and perfused with nominally CO(2)/HCO(3)(-)-free physiological media (pH 7.4). The TRCs were monitored for changes in intracellular pH (pH(i)) and Na(+) ([Na(+)](i)) using fluorescence ratio imaging. At constant external pH, 1) removal of basolateral Na(+) reversibly decreased pH(i) and [Na(+)](i); 2) HOE642, a specific blocker, and amiloride, a nonspecific blocker of basolateral NHE-1, attenuated the decrease in pH(i) and [Na(+)](i); 3) exposure of TRCs to basolateral NH(4)Cl or sodium acetate pulses induced transient decreases in pH(i) that recovered spontaneously to baseline; 4) pH(i) recovery was inhibited by basolateral amiloride, 5-(N-methyl-N-isobutyl)-amiloride (MIA), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), HOE642, and by Na(+) removal; 5) HOE642, MIA, EIPA, and amiloride inhibited pH(i) recovery with K(i) values of 0.23, 0.46, 0.84, and 29 microM, respectively; and 6) a decrease in apical or basolateral pH acidified TRC pH(i) and inhibited spontaneous pH(i) recovery. The results indicate the presence of a functional NHE-1 in the basolateral membranes of TRCs. We hypothesize that NHE-1 is involved in sour taste transduction since its activity is modulated during acid stimulation.

  5. The I427T neuraminidase (NA) substitution, located outside the NA active site of an influenza A(H1N1)pdm09 variant with reduced susceptibility to NA inhibitors, alters NA properties and impairs viral fitness.

    PubMed

    Tu, Véronique; Abed, Yacine; Barbeau, Xavier; Carbonneau, Julie; Fage, Clément; Lagüe, Patrick; Boivin, Guy

    2017-01-01

    Emergence of pan neuraminidase inhibitor (NAI)-resistant variants constitutes a serious clinical concern. An influenza A(H1N1)pdm09 variant containing the I427T/Q313R neuraminidase (NA) substitutions was previously identified in a surveillance study. Although these changes are not part of the NA active site, the variant showed reduced susceptibility to many NAIs. In this study, we investigated the mechanism of resistance for the I427T/Q313R substitution and its impact on the NA enzyme and viral fitness. Recombinant wild-type (WT), I427T/Q313R and I427T A(H1N1)pdm09 viruses were generated by reverse genetics and tested for their drug susceptibilities, enzymatic properties and replication kinetics in vitro as well as their virulence in mice. Molecular dynamics (MD) simulations were performed for NA structural analysis. The I427T substitution, which was responsible for the resistance phenotype observed in the double (I427T/Q313R) mutant, induced 17-, 56-, 7-, and 14-fold increases in IC50 values against oseltamivir, zanamivir, peramivir and laninamivir, respectively. The I427T substitution alone or combined to Q313R significantly reduced NA affinity. The I427T/Q313R and to a lesser extent I427T recombinant viruses displayed reduced viral titers vs WT in vitro. In experimentally-infected mice, the mortality rates were 62.5%, 0% and 14.3% for the WT, I417T/Q313R and I427T viruses, respectively. There were about 2.5- and 2-Log reductions in mean lung viral titers on day 5 post-infection for the I427T/Q313R and I427T mutants, respectively, compared to WT. Results from simulations revealed that the I427T change indirectly altered the stability of the catalytic R368 residue of the NA enzyme causing its reduced binding to the substrate/inhibitor. This study demonstrates that the I427T/Q313R mutant, not only alters NAI susceptibility but also compromises NA properties and viral fitness, which could explain its infrequent detection in clinic.

  6. Ca2+ signaling evoked by activation of Na+ channels and Na+/Ca2+ exchangers is required for GABA-induced NG2 cell migration

    PubMed Central

    Tong, Xiao-ping; Li, Xiang-yao; Zhou, Bing; Shen, Wanhua; Zhang, Zhi-jun; Xu, Tian-le

    2009-01-01

    NG2 cells originate from various brain regions and migrate to their destinations during early development. These cells express voltage-gated Na+ channels but fail to produce typical action potentials. The physiological role of Na+ channels in these cells is unclear. We found that GABA induces membrane depolarization and Ca2+ elevation in NG2 cells, a process requiring activation of GABAA receptors, Na+ channels, and Na+/Ca2+ exchangers (NCXs), but not Ca2+ channels. We have identified a persistent Na+ current in these cells that may underlie the GABA-induced pathway of prolonged Na+ elevation, which in turn triggers Ca2+ influx via NCXs. This unique Ca2+ signaling pathway is further shown to be involved in the migration of NG2 cells. Thus, GABAergic signaling mediated by sequential activation of GABAA receptors, noninactivating Na+ channels, and NCXs may play an important role in the development and function of NG2 glial cells in the brain. PMID:19596850

  7. Effects of Na2MoO4 and Na2WO4 on molybdenum and tungsten electrodes for the alkali metal thermoelectric converter (AMTEC)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Wheeler, B. L.; Jeffries-Nakamura, B.; Loveland, M. E.; Bankston, C. P.

    1988-01-01

    The effects of adding Na2MoO4 and Na2WO4 to porous Mo and W electrodes, respectively, on the performance and impedance characteristics of the electrodes in an alkali metal thermoelectric converter (AMTEC) were investigated. It was found that corrosion of the porous electrode by Na2MoO4 or Na2WO4 to form Na2MO3O6 and WO2, respectively, and recrystallization of the Mo or W as the salt evaporates, result in major morphological changes including a loss of columnar structure and a significant increase in porosity. This effect is more pronounced in Na2MoO4/Mo electrodes, due to the lower stability of Na2MoO4.

  8. The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance.

    PubMed

    Górecki, Kamil; Hägerhäll, Cecilia; Drakenberg, Torbjörn

    2014-01-15

    (23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one.

  9. Effects of Na2MoO4 and Na2WO4 on molybdenum and tungsten electrodes for the alkali metal thermoelectric converter (AMTEC)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Wheeler, B. L.; Jeffries-Nakamura, B.; Loveland, M. E.; Bankston, C. P.

    1988-01-01

    The effects of adding Na2MoO4 and Na2WO4 to porous Mo and W electrodes, respectively, on the performance and impedance characteristics of the electrodes in an alkali metal thermoelectric converter (AMTEC) were investigated. It was found that corrosion of the porous electrode by Na2MoO4 or Na2WO4 to form Na2MO3O6 and WO2, respectively, and recrystallization of the Mo or W as the salt evaporates, result in major morphological changes including a loss of columnar structure and a significant increase in porosity. This effect is more pronounced in Na2MoO4/Mo electrodes, due to the lower stability of Na2MoO4.

  10. Microscopic solvation of NaBO2 in water: anion photoelectron spectroscopy and ab initio calculations.

    PubMed

    Feng, Yuan; Cheng, Min; Kong, Xiang-Yu; Xu, Hong-Guang; Zheng, Wei-Jun

    2011-09-21

    We investigated the microscopic solvation of NaBO(2) in water by conducting photoelectron spectroscopy and ab initio studies on NaBO(2)(-)(H(2)O)(n) (n = 0-4) clusters. The vertical detachment energy (VDE) of NaBO(2)(-) is estimated to be 1.00 ± 0.08 eV. The photoelectron spectra of NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) are similar to that of bare NaBO(2)(-), except that their VDEs shift to higher electron binding energies (EBE). For the spectra of NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4), a low EBE feature appears dramatically in addition to the features observed in the spectra of NaBO(2)(-)(H(2)O)(0-2). Our study shows that the water molecules mainly interact with the BO(2)(-) unit in NaBO(2)(-)(H(2)O)(1) and NaBO(2)(-)(H(2)O)(2) clusters to form Na-BO(2)(-)(H(2)O)(n) type structures, while in NaBO(2)(-)(H(2)O)(3) and NaBO(2)(-)(H(2)O)(4) clusters, the water molecules can interact strongly with the Na atom, therefore, the Na-BO(2)(-)(H(2)O)(n) and Na(H(2)O)(n)···BO(2)(-) types of structures coexist. That can be seen as an initial step of the transition from a contact ion pair (CIP) structure to a solvent-separated ion pair (SSIP) structure for the dissolution of NaBO(2).

  11. Functional identification and characterization of sodium binding sites in Na symporters.

    PubMed

    Loo, Donald D F; Jiang, Xuan; Gorraitz, Edurne; Hirayama, Bruce A; Wright, Ernest M

    2013-11-19

    Sodium cotransporters from several different gene families belong to the leucine transporter (LeuT) structural family. Although the identification of Na(+) in binding sites is beyond the resolution of the structures, two Na(+) binding sites (Na1 and Na2) have been proposed in LeuT. Na2 is conserved in the LeuT family but Na1 is not. A biophysical method has been used to measure sodium dissociation constants (Kd) of wild-type and mutant human sodium glucose cotransport (hSGLT1) proteins to identify the Na(+) binding sites in hSGLT1. The Na1 site is formed by residues in the sugar binding pocket, and their mutation influences sodium binding to Na1 but not to Na2. For the canonical Na2 site formed by two -OH side chains, S392 and S393, and three backbone carbonyls, mutation of S392 to cysteine increased the sodium Kd by sixfold. This was accompanied by a dramatic reduction in the apparent sugar and phlorizin affinities. We suggest that mutation of S392 in the Na2 site produces a structural rearrangement of the sugar binding pocket to disrupt both the binding of the second Na(+) and the binding of sugar. In contrast, the S393 mutations produce no significant changes in sodium, sugar, and phlorizin affinities. We conclude that the Na2 site is conserved in hSGLT1, the side chain of S392 and the backbone carbonyl of S393 are important in the first Na(+) binding, and that Na(+) binding to Na2 promotes binding to Na1 and also sugar binding.

  12. Semi-volatiles at Mercury: Sodium (Na) and potassium (K)

    NASA Technical Reports Server (NTRS)

    Sprague, A.

    1994-01-01

    Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.

  13. Skin Tattoos Alter Sweat Rate and Na+ Concentration.

    PubMed

    Luetkemeier, Maurie Joe; Hanisko, Joseph Michael; Aho, Kyle Mathiew

    2017-07-01

    The popularity of tattoos has increased tremendously in the last 10 yr particularly among athletes and military personnel. The tattooing process involves permanently depositing ink under the skin at a similar depth as eccrine sweat glands (3-5 mm). The purpose of this study was to compare the sweat rate and sweat Na concentration of tattooed versus nontattooed skin. The participants were 10 healthy men (age = 21 ± 1 yr), all with a unilateral tattoo covering a circular area at least 5.2 cm. Sweat was stimulated by iontophoresis using agar gel disks impregnated with 0.5% pilocarpine nitrate. The nontattooed skin was located contralateral to the position of the tattooed skin. The disks used to collect sweat were composed of Tygon® tubing wound into a spiral so that the sweat was pulled into the tubing by capillary action. The sweat rate was determined by weighing the disk before and after sweat collection. The sweat Na concentration was determined by flame photometry. The mean sweat rate from tattooed skin was significantly less than nontattooed skin (0.18 ± 0.15 vs 0.35 ± 0.25 mg·cm·min; P = 0.001). All 10 participants generated less sweat from tattooed skin than nontattooed skin and the effect size was -0.79. The mean sweat Na concentration from tattooed skin was significantly higher than nontattooed skin (69.1 ± 28.9 vs 42.6 ± 15.2 mmol·L; P = 0.02). Nine of 10 participants had higher sweat Na concentration from tattooed skin than nontattooed skin, and the effect size was 1.01. Tattooed skin generated less sweat and a higher Na concentration than nontattooed skin when stimulated by pilocarpine iontophoresis.

  14. Aldosterone augments Na+-induced reduction of cardiac norepinephrine reuptake.

    PubMed

    Kreusser, Michael M; Lehmann, Lorenz H; Riffel, Johannes H; Haass, Markus; Maser-Gluth, Christiane; Backs, Johannes; Katus, Hugo A; Buss, Sebastian J

    2014-10-15

    Impairment of the cardiac norepinephrine (NE) reuptake by the neuronal NE transporter contributes to enhanced cardiac NE net release in congestive heart failure. Elevated plasma levels of aldosterone (AL) promote sympathetic overstimulation in failing hearts by unclear mechanisms. Our aim was to evaluate if elevated AL and/or alterations in Na(+) intake regulate cardiac NE reuptake. To test the effects of AL and Na(+) on cardiac NE reuptake, Wistar rats were fed a normal-salt (NS) diet (0.2% NaCl), a low-salt (LS) diet (0.015% NaCl), or a high-salt (HS) diet (8% NaCl). Another group of animals received AL infusion alone (0.75 μg/h) or AL infusion plus HS diet. Specific cardiac [(3)H]NE uptake via the NE transporter in a Langendorff preparation and AL plasma levels were measured at different time points between 5 and 42 days of treatment. To compare these findings from healthy animals with a disease model, Dahl salt-sensitive rats were investigated as a model of congestive heart failure with endogenously elevated AL. In summary, neither exogenous nor endogenous elevations of AL alone were sufficient to reduce cardiac NE reuptake. Only the HS diet induced a reduction of NE reuptake by 26%; additional infusion of AL augmented this effect to a further reduction of NE reuptake by 36%. In concordance, Dahl salt-sensitive rats treated with a HS diet displayed elevated AL and a marked reduction of NE reuptake. We conclude that exogenous or endogenous AL elevations alone do not reduce cardiac NE reuptake, but AL serves as an additional factor that negatively regulates cardiac NE reuptake in concert with HS intake.

  15. Structure of hydrated Na-Nafion polymer membranes.

    PubMed

    Blake, Nick P; Petersen, Matt K; Voth, Gregory A; Metiu, Horia

    2005-12-29

    We use molecular dynamics simulations to investigate the structure of the hydrated Na-Nafion membranes. The membrane is "prepared" by starting with the Nafion chains placed on a cylinder having the water inside it. Minimizing the energy of the system leads to a filamentary hydrophilic domain whose structure depends on the degree of hydration. At 5 wt % water the system does not have enough water molecules to solvate all the ions that could be formed by the dissociation of the -SO3Na groups. As a result, the -SO3Na groups aggregate with the water to form very small droplets that do not join into a continuous phase. The size of the droplets is between 5 and 8 A. As the amount of water present in the membrane is increased, the membrane swells, and SO3Na has an increasing tendency to dissociate into ions. Furthermore, a transition to a percolating hydrophilic network is observed. In the percolating structure, the water forms irregular curvilinear channels branching in all directions. The typical dimension of the cross section of these channels is about 10-20 A. Calculated neutron scattering from the simulated system is in qualitative agreement with experiment. In all simulations, the pendant sulfonated perfluorovinyl side chains of the Nafion hug the walls of the hydrophilic channel, while the sulfonate groups point toward the center of the hydrophilic phase. The expulsion of the side chains from the hydrophilic domain is favored because it allows better interaction between the water molecules. We have also examined the probability of finding water molecules around the Na+ and the -SO3(-) ions as well as the probability of finding other water molecules next to a given water molecule. These probabilities are much broader than those found in bulk water or for one ion in bulk water (calculated with the potentials used in the present simulation). This is due to the highly inhomogeneous nature of the material contained in the small hydrophilic pores.

  16. Na+-independent phosphate transport in Caco2BBE cells

    PubMed Central

    Candeal, Eduardo; Caldas, Yupanqui A.; Guillén, Natalia; Levi, Moshe

    2014-01-01

    Pi transport in epithelia has both Na+-dependent and Na+-independent components, but so far only Na+-dependent transporters have been characterized in detail and molecularly identified. Consequently, in the present study, we initiated the characterization and analysis of intestinal Na+-independent Pi transport using an in vitro model, Caco2BBE cells. Only Na+-independent Pi uptake was observed in these cells, and Pi uptake was dramatically increased when cells were incubated in high-Pi DMEM (4 mM) from 1 day to several days. No response to low-Pi medium was observed. The increased Pi transport was mainly caused by Vmax changes, and it was prevented by actinomycin D and cycloheximide. Pi transport in cells grown in 1 mM Pi (basal DMEM) decreased at pH > 7.5, and it was inhibited with proton ionophores. Pi transport in cells incubated with 4 mM Pi increased with alkaline pH, suggesting a preference for divalent phosphate. Pi uptake in cells in 1 mM Pi was completely inhibited only by Pi and partially inhibited by phosphonoformate, oxalate, DIDS, SITS, SO42−, HCO3−, and arsenate. This inhibition pattern suggests that more than one Pi transporter is active in cells maintained with 1 mM Pi. Phosphate transport from cells maintained at 4 mM Pi was only partially inhibited by phosphonoformate, oxalate, and arsenate. Attempts to identify the responsible transporters showed that multifunctional anion exchangers of the Slc26 family as well as members of Slc17, Slc20, and Slc37 and the Pi exporter xenotropic and polytropic retrovirus receptor 1 are not involved. PMID:25298422

  17. Na+-independent phosphate transport in Caco2BBE cells.

    PubMed

    Candeal, Eduardo; Caldas, Yupanqui A; Guillén, Natalia; Levi, Moshe; Sorribas, Víctor

    2014-12-15

    Pi transport in epithelia has both Na(+)-dependent and Na(+)-independent components, but so far only Na(+)-dependent transporters have been characterized in detail and molecularly identified. Consequently, in the present study, we initiated the characterization and analysis of intestinal Na(+)-independent Pi transport using an in vitro model, Caco2BBE cells. Only Na(+)-independent Pi uptake was observed in these cells, and Pi uptake was dramatically increased when cells were incubated in high-Pi DMEM (4 mM) from 1 day to several days. No response to low-Pi medium was observed. The increased Pi transport was mainly caused by Vmax changes, and it was prevented by actinomycin D and cycloheximide. Pi transport in cells grown in 1 mM Pi (basal DMEM) decreased at pH > 7.5, and it was inhibited with proton ionophores. Pi transport in cells incubated with 4 mM Pi increased with alkaline pH, suggesting a preference for divalent phosphate. Pi uptake in cells in 1 mM Pi was completely inhibited only by Pi and partially inhibited by phosphonoformate, oxalate, DIDS, SITS, SO4 (2-), HCO3 (-), and arsenate. This inhibition pattern suggests that more than one Pi transporter is active in cells maintained with 1 mM Pi. Phosphate transport from cells maintained at 4 mM Pi was only partially inhibited by phosphonoformate, oxalate, and arsenate. Attempts to identify the responsible transporters showed that multifunctional anion exchangers of the Slc26 family as well as members of Slc17, Slc20, and Slc37 and the Pi exporter xenotropic and polytropic retrovirus receptor 1 are not involved. Copyright © 2014 the American Physiological Society.

  18. Light-driven Na+ pump from Gillisia limnaea: A high-affinity Na+ binding site is formed transiently in the photocycle

    DOE PAGES

    Balashov, Sergei P.; Imasheva, Eleonora S.; Dioumaev, Andrei K.; ...

    2014-11-06

    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na+. The absorption spectrum of GLR is insensitive to Na+ at concentrations of ≤3 M. However, very low concentrations of Na+ cause profound differences in the decaymore » and rise time of photocycle intermediates, consistent with a switch from a “Na+-independent” to a “Na+-dependent” photocycle (or photocycle branch) at ~60 μM Na+. The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na+ concentration. This suggests that a high-affinity Na+ binding site is created transiently after photoexcitation, and entry of Na+ from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na+ is needed for switching the reaction path at lower pH. The data suggest therefore competition between H+ and Na+ to determine the two alternative pathways. The idea that a Na+ binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na+ binds without photoexcitation. Furthermore, binding of Na+ to the mutant shifts the chromophore maximum to the red like that of H+, which occurs in the photocycle of the wild type.« less

  19. Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.

    PubMed

    Balashov, Sergei P; Imasheva, Eleonora S; Dioumaev, Andrei K; Wang, Jennifer M; Jung, Kwang-Hwan; Lanyi, Janos K

    2014-12-09

    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type.

  20. Preparation and visible light induced photocatalytic activity of C-NaTaO3 and C-NaTaO3-Cl-TiO2 composite.

    PubMed

    Wu, Xiaoyong; Yin, Shu; Dong, Qiang; Sato, Tsugio

    2013-12-21

    A nice visible light responsive C-doped NaTaO3 (C-NaTaO3) particle has been successfully prepared by a facile solvothermal method using water-ethylene glycol mixed solutions as solvent. The results presented that the carbon could be easily incorporated in NaTaO3 from ethylene glycol during a solvothermal reaction, finally leading to excellent visible light absorption. The as-synthesized C-NaTaO3 showed excellent visible light induced photocatalytic activity superior to those of pure NaTaO3 and commercial P25. In addition, in order to further improve the visible light driven photocatalytic performance of C-NaTaO3, a new C-doped NaTaO3-Cl-doped TiO2 (C-NaTaO3-Cl-TiO2) core-shell type of composite was also fabricated. After coupling C-NaTaO3 with Cl-TiO2, the visible light induced NOx gas destruction ability of C-NaTaO3-Cl-TiO2 composite was significantly enhanced as compared to those of sole C-NaTaO3 and Cl-TiO2, probably due to the hindrance of the recombination rate of photogenerated electron-hole pairs. The C-NaTaO3 particle and C-NaTaO3-Cl-TiO2 composite prepared in this work would probably provide a new way to prepare high performance of visible light induced perovskite-type NaTaO3 based photocatalysts.

  1. Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration

    PubMed Central

    1990-01-01

    Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with an apparent pK of 6.29. In Na(+)-depleted tissues, increasing [Na+]o from 0 to values ranging from 2.5 to 110 mM increased aNai; the relationship was well described by Michaelis-Menten kinetics. The apparent Km was 15 mM at pHo 7.5 and increased to 134 mM at pHo 6.5, without change in Vmax. In Na(+)-depleted gallbladders, elevating [Na+]o from 0 to 25 mM increased aNai and pHi and caused acidification of a poorly buffered mucosal solution upon stopping the superfusion; lowering pHo inhibited both apical Na+ entry and mucosal solution acidification. Both effects can be ascribed to titration of a single site; the apparent pK's were 7.2 and 7.4, respectively. Diethylpyrocarbonate (DEPC), a histidine- specific reagent, reduced mucosal acidification by 58 +/- 4 or 39 +/- 6% when exposure to the drug was at pHo 7.5 or 6.5, respectively. Amiloride (1 mM) did not protect against the DEPC inhibition, but reduced both apical Na+ entry and mucosal acidification by 63 +/- 5 and 65 +/- 9%, respectively. In the Na(+)-depleted tissues mean pHi was 6.7. Cells were alkalinized by exposure to mucosal solutions containing high concentrations of nicotine or methylamine. Estimates of apical Na+ entry at varying pHi, upon increasing [Na+]o from 0 to 25 mM, indicate that Na+/H+ exchange is active at pHi 7.4. Intracellular H+ stimulated apical Na+ entry by titration of more than one site (apparent pK 7.1, Hill coefficient 1.7). The results suggest that external Na+ and H+ interact with one site of the Na+/H+ exchanger and that cytoplasmic H+ acts on at least two sites. The external titratable group

  2. Regulation by endothelin-1 of Na+-Ca2+ exchange current (I(NaCa)) from guinea-pig isolated ventricular myocytes.

    PubMed

    Zhang, Y H; James, A F; Hancox, J C

    2001-11-01

    The cardiac Na+-Ca2+ exchanger participates in Ca homeostasis, and Na+-Ca2+ exchanger-mediated ionic current (I(NaCa)) also contributes to the regulation of cardiac action potential duration. Moreover, I(NaCa) can contribute to arrhythmogenesis under conditions of cellular Ca overload. Although it has been shown that the peptide h