Sample records for efeitos od laser

  1. Laser safety eyewear.

    PubMed

    1993-04-01

    In spite of repeated warnings about laser safety practices, as well as the availability of laser safety eyewear (LSE), eye injuries continue to occur during use of surgical lasers, as discussed in the Clinical Perspective, "Laser Energy and Its Dangers to Eyes," preceding this Evaluation. We evaluated 48 models of LSE, including goggles, spectacles, and wraps, from 11 manufacturers. The evaluated models are designed with absorptive lenses that provide protection from CO2 (carbon dioxide), Nd:YAG (neodymium:yttrium-aluminum-garnet), and 532 (frequency-doubled Nd:YAG) surgical laser wavelengths; several models provide multiwavelength protection. (Refer to ECRI's Product Comparison System report on LSE for specifications of other models.) Although most of the evaluated models can adequately protect users from laser energy--provided that the eyewear is used--many models of LSE, especially goggles, are designed with little regard for the needs of actual use (e.g., adequate labeling, no alteration of color perception, sufficient field of vision [FOV], comfort). Because these factors can discourage people from using LSE, we encourage manufacturers to develop new and improved models that will be worn. We based our ratings primarily on the laser protection provided by the optical density (OD) of the lenses; we acknowledge the contribution of Montana Laser Optics Inc., of Bozeman, Montana, in performing our OD testing. We also considered actual-use factors, such as those mentioned above, to be significant. Among the models rated Acceptable is one whose labeled OD is lower than the level we determined to be adequate for use during most laser surgery; however, this model offers protection under specific conditions of use (e.g., for use by spectators some distance from the surgical site, for use during endoscopic procedures) that should be determined by the laser safety officer (LSO). LSE that would put the wearer at risk are rated Unacceptable (e.g., some models are not

  2. OD Technology for the Future.

    ERIC Educational Resources Information Center

    Blake, Robert R.; Mouton, Jane Srygley

    1979-01-01

    The authors state that organizational development (OD) consultants are reluctant to rely upon instruments because this would diminish their sense of usefulness. They discuss 15 OD issues and conclude that OD instruments must be based on sound principles of behavior and sequenced in a planned way in order to implement organizational change and…

  3. Applying OD to the Public Sector

    ERIC Educational Resources Information Center

    Warrick, D. D.

    1976-01-01

    Discusses special considerations affecting organizational development (OD) programs in public-sector organizations, presents guidelines for using OD procedures in the public sector, and offers conclusions about the applicability of OD in the public sector. (Author/JG)

  4. Estimating the Success of OD Applications.

    ERIC Educational Resources Information Center

    Golembiewski, Robert T.; And Others

    1982-01-01

    Organizational development (OD) and its future are discussed. Examines database implications about OD's applications. Reports an effort to transcend the limitations of the literature, based on a very intensive search for OD applications in both business and government contexts. (CT)

  5. High temperature oxidation behavior of ODS steels

    NASA Astrophysics Data System (ADS)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  6. Oxidation And Hot Corrosion Of ODS Alloy

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  7. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  8. OD in Schools: The State of the Art. Vol. II: Review of Research on OD. Final Report.

    ERIC Educational Resources Information Center

    Fullan, Michael; And Others

    The purpose of this document, the second of a five-volume series, was to analyze the various reviews of organizational development (OD) in general, and case studies of school districts in particular, in order to synthesize information about OD as it applies to schools. The review is organized into four main categories: (1) values, themes, and…

  9. High yttria ferritic ODS steels through powder forging

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  10. Intervention and Evaluation: A Proactive Team Approach to OD

    ERIC Educational Resources Information Center

    Gavin, James F.; McPhail, S. Morton

    1978-01-01

    A team of change agents initiated an intensive organizational development (OD) program in a nonacademic, service department of a midwestern university. Concluding comments include exploration of the feasibility of substantive OD change in short-term programs, and the possibility of nonlinear relations between OD outcomes and time investments. For…

  11. Eye Exam: Is a Laser Retina Scan Worthwhile?

    MedlinePlus

    Healthy Lifestyle Adult health Is a laser retina scan necessary? My eye care provider offers the test, but I'm not sure if I need it. Answers from Alaina ... Softing Hataye, O.D. For most people, a laser retina scan isn't necessary. If you choose ...

  12. 46 CFR 280.4 - Standards governing payment of ODS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Standards governing payment of ODS. 280.4 Section 280.4... Standards governing payment of ODS. (a) Full payment. Except to the extent otherwise provided in § 280.8, ODS shall be paid in full to the operator for vessel operations on the inbound and outbound legs of...

  13. 46 CFR 280.9 - Special rules for last year of ODS agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Special rules for last year of ODS agreement. 280.9... LINER OPERATORS § 280.9 Special rules for last year of ODS agreement. (a) Reduction in payment of ODS. ODS payable during the last year of any ODS agreement shall be reduced, as provided in paragraph (b...

  14. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-10-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  15. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2013-09-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the martian atmosphere. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  16. Development of high performance ODS alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lin; Gao, Fei; Garner, Frank

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoidmore » and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.« less

  17. Strangeness Photoproduction at the BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Jude, T. C.; Alef, S.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Boese, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.; Zimmermann, T.

    BGO-OD is a newly commissioned experiment to investigate the internal structure of the nucleon, using an energy tagged bremsstrahlung photon beam at the ELSA electron facility. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating meson photoproduction. The extensive physics programme for open strangeness photoproduction is introduced, and preliminary analysis presented.

  18. 46 CFR 280.3 - Standards governing award of an ODS agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Standards governing award of an ODS agreement. 280.3 Section 280.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING... LINER OPERATORS § 280.3 Standards governing award of an ODS agreement. No ODS agreement, including any...

  19. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in ODS Steel MA956

    DTIC Science & Technology

    2013-06-01

    dispersion strengthened - Eurofer steel ,” J. Nucl. Mater., vol. 416 , pp. 2229, Sep 1, 2011. [10] H. J. K. Lemmen and K. J. Sudmeijer, I, “Laser beam...Reynolds and W. Tang, “Structure, properties, and residual stress of 304L stainless steel friction stir welds,” Scr. Mater., vol. 48, pp. 12891294...OF RESIDUAL STRESS AS A FUNCTION OF FRICTION STIR WELDING PARAMETERS IN ODS STEEL MA956 by Martin S. Bennett June 2013 Thesis Advisor

  20. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    PubMed

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  1. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels

    PubMed Central

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-01

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening. PMID:29329260

  2. Raman Laser Spectrometer internal Optical Head current status: opto-mechanical redesign to minimize the excitation laser trace

    NASA Astrophysics Data System (ADS)

    Sanz, Miguel; Ramos, Gonzalo; Moral, Andoni; Pérez, Carlos; Belenguer, Tomás; del Rosario Canchal, María; Zuluaga, Pablo; Rodriguez, Jose Antonio; Santiago, Amaia; Rull, Fernando; Instituto Nacional de Técnica Aeroespacial (INTA); Ingeniería de Sistemas para la Defesa de España S.A. (ISDEFE)

    2016-10-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instruments of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). The original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks.The investigation revealing that the laser trace was not properly filtered as well as the iOH opto-mechanical redesign are reported on. After the study of the Long Pass Filters Optical Density (OD) as a function of the filtering stage to the detector distance, a new set of filters (Notch filters) was decided to be evaluated. Finally, and in order to minimize the laser trace, a new collection path design (mainly consisting on that the collimation and filtering stages are now separated in two barrels, and on the kind of filters to be used) was required. Distance between filters and collimation stage first lens was increased, increasing the OD. With this new design and using two Notch filters, the laser trace was reduced to assumable values, as can be observed in the functional test comparison also reported on this paper.

  3. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris

    PubMed Central

    Li, Bin; Sang, Jizhang; Zhang, Zhongping

    2016-01-01

    A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958

  4. High resolution SEM characterization of nano-precipitates in ODS steels.

    PubMed

    Jóźwik, Iwona; Strojny-Nędza, Agata; Chmielewski, Marcin; Pietrzak, Katarzyna; Kurpaska, Łukasz; Nosewicz, Szymon

    2018-05-01

    The performance of the present-day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low-kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo-diode BSE detector in SEM imaging allowed for the registration of single nm-sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM-EDS. © 2018 Wiley Periodicals, Inc.

  5. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  6. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy.

    PubMed

    Wilson, Christopher R; Hutchens, Thomas C; Hardy, Luke A; Irby, Pierce B; Fried, Nathaniel M

    2015-10-01

    The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.3F (0.433-mm OD) nitinol wire basket to form a 1.9F (0.633-mm OD) device. TFL energy of 30 mJ, 500 μs pulse duration, and 500 Hz pulse rate was delivered to human uric acid stones, ex vivo. Stone ablation rates measured 1.5 ± 0.2 mg/s, comparable to 1.7 ± 0.3 mg/s using bare fiber tips separately with stone basket. With further development, this device may minimize stone retropulsion, allowing more efficient TFL lithotripsy at higher pulse rates. It may also provide increased flexibility, higher saline irrigation rates through the ureteroscope working channel, reduce fiber degradation compared with separate fiber and basket manipulation, and reduce laser-induced nitinol wire damage.

  7. Internal Delorme's Procedure for Treating ODS Associated With Impaired Anal Continence.

    PubMed

    Liu, Weicheng; Sturiale, Alessandro; Fabiani, Bernardina; Giani, Iacopo; Menconi, Claudia; Naldini, Gabriele

    2017-12-01

    The aim of this study was to evaluate the medium-term outcomes of internal Delorme's procedure for treating obstructed defecation syndrome (ODS) patients with impaired anal continence. In a retrospective study, 41 ODS patients who underwent internal Delorme's procedure between 2011 and 2015 were divided into 3 subgroups according to their associated symptoms of impaired continence, as urgency, passive fecal incontinence and both, before study. Then the patients' preoperative statuses, perioperative complications, and postoperative outcomes were investigated and collected from standardized questionnaires, including Altomare ODS score, Fecal Incontinence Severity Index (FISI), Patient Assessment of Constipation-Quality of Life Questionnaire (PAC-QoL), and Fecal Incontinence Quality of Life Scale (FIQLS). All results with a 2-tailed P < .05 were considered statistically significant. At an average 2.8 years of follow-up, there were significant improvements ( P < .01) in Altomare ODS score, FISI, PAC-QoL, and FIQLS in all patients when comparing scores from before the operation with those at the final follow-up. Similar results were also observed in both the urgency subgroup and passive fecal incontinence subgroup, but there were no statistically significant improvements ( P > .05) in Altomare ODS score, FISI, PAC-QoL, or FIQLS in the urgency and passive fecal incontinence subgroups. Anorectal manometry showed the mean value of anal resting pressure increased 20%. Additionally, no major complications occurred. Internal Delorme's procedure is effective without major morbidity for treating ODS associated with urgency or passive fecal incontinence, but it may be less effective for treating ODS associated with both urgency and passive fecal incontinence.

  8. Bilateral Symmetry before and Six Months after Aberration-Free™ Correction with the SCHWIND AMARIS TotalTech Laser: Clinical Outcomes

    PubMed Central

    Arbelaez, Maria Clara; Vidal, Camila; Arba-Mosquera, Samuel

    2010-01-01

    Purpose To compare the preoperative and postoperative bilateral symmetry between OD and OS eyes that have undergone femto-LASIK using the Ziemer LDV femtosecond laser system, the SCHWIND AMARIS Excimer Laser and the Aberrationfree™ profiles implemented in the SCHWIND Custom Ablation Manager software. Methods A total of 25 LASIK patients were bilaterally evaluated at the six-month follow-up visit. In all cases standard examinations, pre- and postoperative analysis with corneal wavefront topography (OPTIKON Scout) were performed. Aberration-free™ aspheric treatments were devised using the Custom Ablation Manager software and ablations were performed by means of the SCHWIND AMARIS flying-spot excimer laser system (both SCHWIND eyetech- solutions). In all cases LASIK flaps were created using an LDV femtosecond laser (Ziemer Group). The OD/OS bilateral symmetry was evaluated in terms of corneal wavefront aberration. Results Preoperatively, 11 Zernike terms showed significant bilateral (OS-vs.-OD) symmetry, and only 6 Zernike terms were significantly different. Overall, 23 out of the 25 patients showed significant bilateral symmetry, and only 2 out of 25 patients showed significant differences. None of the aberration metrics changed from pre- to postoperative values by a clinically relevant amount. At the 6-month postoperative visit, 12 Zernike terms showed significant symmetry, and 8 terms were significantly different. Overall, 22 out of 25 patients showed significant bilateral symmetry (OS vs. OD), and only 3 out of 25 patients showed significant differences. Also, this postoperative examination revealed that 6 Zernike terms lost significant OS-vs.-OD symmetry, but 4 Zernike terms gained significant symmetry. Finally, 4 patients lost significant bilaterality, and 2 patients gained significant bilaterality: bilateral symmetry between eyes was better maintained in those patients with a clear preoperative bilateral symmetry. Conclusions Aberration-Free Treatments with

  9. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  10. 46 CFR 280.8 - Certain ODS agreement provisions not affected.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Certain ODS agreement provisions not affected. 280.8 Section 280.8 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING... LINER OPERATORS § 280.8 Certain ODS agreement provisions not affected. The provisions of this part are...

  11. HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.

    PubMed

    Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun

    2008-07-01

    A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.

  12. Detection of OD towards the low-mass protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Parise, B.; Du, F.; Liu, F.-C.; Belloche, A.; Wiesemeyer, H.; Güsten, R.; Menten, K. M.; Hübers, H.-W.; Klein, B.

    2012-06-01

    Context. Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical network, is a promising way to infer its chemical origin. Aims: We aim at understanding the formation mechanisms of water by investigating the origin of its deuterium fractionation. This can be achieved by observing the abundance of OD towards the low-mass protostar IRAS 16293-2422, where the HDO distribution is already known. Methods: Using the GREAT receiver on board SOFIA, we observed the ground-state OD transition at 1391.5 GHz towards the low-mass protostar IRAS 16293-2422. We also present the detection of the HDO 111-000 line using the APEX telescope. We compare the OD/HDO abundance ratio inferred from these observations with the predictions of chemical models. Results: The OD line is detected in absorption towards the source continuum. This is the first detection of OD outside the solar system. The SOFIA observation, coupled to the observation of the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~ 17-90 in the gas where the absorption takes place. This value is fairly high compared with model predictions. This may be reconciled if reprocessing in the gas by means of the dissociative recombination of H2DO+ further fractionates OH with respect to water. Conclusions: The present observation demonstrates the capability of the SOFIA/GREAT instrument to detect the ground transition of OD towards star-forming regions in a frequency range that was not accessible before. Dissociative recombination of H2DO+ may play an important role in setting a high OD abundance. Measuring the branching ratios of this reaction in the laboratory will be of great value for chemical models. Figure 5 is available in electronic form at http://www.aanda.org

  13. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    PubMed

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  14. [Development and integration of the Oncological Documentation System ODS].

    PubMed

    Raab, G; van Den Bergh, M

    2001-08-01

    To simplify clinical routine and to improve medical quality without exceeding the existing resources. Intensifying communication and cooperation between all institutions of patients' health care. The huge amount of documentation work of physicians can no longer be done without modern tools of paperless data processing. The development of ODS was a tight cooperation between physician and technician which resulted in a mutual understanding and led to a high level of user convenience. - At present all cases of gynecology, especially gynecologic oncology can be documented and processed by ODS. Users easily will adopt the system as data entry within different program areas follows the same rules. In addition users can choose between an individual input of data and assistants guiding them through highly specific areas of documentation. ODS is a modern, modular structured and very fast multiuser database environment for in- and outpatient documentation. It automatically generates a lot of reports for clinical day to day business. Statistical routines will help the user reflecting his work and its quality. Documentation of clinical trials according to the GCP guidelines can be done by ODS using the internet or offline datasharing. As ODS is the synthesis of a computer based patient administration system and an oncological documentation database, it represents the basis for the construction of the electronical patient chart as well as the digital documentation of clinical trials. The introduction of this new technology to physicians and nurses has to be done slowly and carefully, in order to increase motivation and to improve the results.

  15. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique

    NASA Astrophysics Data System (ADS)

    Karimov, Kh. S.; Fatima, Noshin; Sulaiman, Khaulah; Mahroof Tahir, M.; Ahmad, Zubair; Mateen, A.

    2015-03-01

    The humidity sensing properties of the thin films of an organic semiconductor material orange dye (OD) and its composite with CNTs deposited at high gravity conditions have been reported. Impedance, phase angle, capacitance and dissipation of the samples were measured at 1 kHz and room temperature conditions. The impedance decreases and capacitance increases with an increase in the humidity level. It was found that the sensitivity of the OD-based thin film samples deposited at high gravity condition is higher than the samples deposited at low gravity condition. The impedances and capacitance sensitivities of the of the samples deposited under high gravity condition are 6.1 times and 1.6 times higher than the films deposited under low gravity condition.

  16. Vitamin C deficiency exerts paradoxical cardiovascular effects in osteogenic disorder Shionogi (ODS) rats.

    PubMed

    Vergely, Catherine; Goirand, Françoise; Ecarnot-Laubriet, Aline; Renard, Céline; Moreau, Daniel; Guilland, Jean-Claude; Dumas, Monique; Rochette, Luc

    2004-04-01

    Vitamin C is considered to be a very efficient water-soluble antioxidant, for which several new cardiovascular properties were recently described. The aim of this study was to determine in vivo the effects of a severe depletion of vitamin C on cardiac and vascular variables and reperfusion arrhythmias. For this purpose, we used a mutant strain of Wistar rats, osteogenic disorder Shionogi (ODS). After 15 d of consuming a vitamin C-deficient diet, ODS rats had a 90% decrease in plasma and tissue levels of ascorbate compared with ODS vitamin C-supplemented rats and normal Wistar rats. However, plasma antioxidant capacity, proteins, alpha-tocopherol, urate, catecholamines, lipids, and nitrate were not influenced by the vitamin C deficiency in ODS rats. Moreover, there was no difference between ODS vitamin C-deficient and -supplemented rats in heart rate and arterial pressure. After 5 min of an in vivo regional myocardial ischemia, various severe arrhythmias were observed, but their intensities were not modified by vitamin C in vitamin C-deficient ODS rats. The vascular reactivity, measured in vitro on thoracic arteries, was not altered by ascorbate deficiency in ODS rats. These unexpected results suggest that unidentified compensatory mechanisms play a role in maintaining normal cardiac function and vascular reactivity in vitamin C-deficient rats.

  17. An Experimental and Master Equation Study of the Kinetics of OH/OD + SO2: The Limiting High-Pressure Rate Coefficients.

    PubMed

    Blitz, Mark A; Salter, Robert J; Heard, Dwayne E; Seakins, Paul W

    2017-05-04

    The kinetics of the reaction OH/OD + SO 2 were studied using a laser flash photolysis/laser-induced fluorescence technique. Evidence for two-photon photolysis of SO 2 at 248 nm is presented and quantified, and which appears to have been evident to some extent in most previous photolysis studies, potentially leading to values for the rate coefficient k 1 that are too large. The kinetics of the reaction OH(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) were measured under conditions where SO 2 photolysis was taken into account. These results, together with literature data, were modeled using a master equation analysis. This analysis highlighted problems with the literature data: the rate coefficients derived from flash photolysis data were generally too high and from the flow tube data too low. Our best estimate of the high-pressure limiting rate coefficient k 1 ∞ was obtained from selected data and gives a value of (7.8 ± 2.2) × 10 -13 cm 3 molecule -1 s -1 , which is lower than that recommended in the literature. A parametrized form of k 1 ([N 2 ],T) is provided. The OD(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) data are reported for the first time, and master equation analysis reinforces our assignment of k 1 ∞ .

  18. Microstructural development under irradiation in European ODS ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Schäublin, R.; Ramar, A.; Baluc, N.; de Castro, V.; Monge, M. A.; Leguey, T.; Schmid, N.; Bonjour, C.

    2006-06-01

    Oxide dispersion strengthened steels based on the ferritic/martensitic steel EUROFER97 are promising candidates for a fusion reactor because of their improved high temperature mechanical properties and their potential higher radiation resistance relative to the base material. Several EUROFER97 based ODS F/M steels are investigated in this study. There are the Plansee ODS steels containing 0.3 wt% yttria, and the CRPP ODS steels, whose production route is described in detail. The reinforcing particles represent 0.3-0.5% weight and are composed of yttria. The effect of 0.3 wt% Ti addition is studied. ODS steel samples have been irradiated with 590 MeV protons to 0.3 and 1.0 dpa at room temperature and 350 °C. Microstructure is investigated by transmission electron microscopy and mechanical properties are assessed by tensile and Charpy tests. While the Plansee ODS presents a ferritic structure, the CRPP ODS material presents a tempered martensitic microstructure and a uniform distribution of the yttria particles. Both materials provide a yield stress higher than the base material, but with reduced elongation and brittle behaviour. Ti additions improve elongation at high temperatures. After irradiation, mechanical properties of the material are only slightly altered with an increase in the yield strength, but without significant decrease in the total elongation, relative to the base material. Samples irradiated at room temperature present radiation induced defects in the form of blacks dots with a size range from 2 to 3 nm, while after irradiation at 350 °C irradiation induced a0<1 0 0>{1 0 0} dislocation loops are clearly visible along with nanocavities. The dispersed yttria particles with an average size of 6-8 nm are found to be stable for all irradiation conditions. The density of the defects and the dispersoid are measured and found to be about 2.3 × 10 22 m -3 and 6.2 × 10 22 m -3, respectively. The weak impact of irradiation on mechanical properties of ODS F

  19. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, James; Heuser, Brent; Robertson, Ian

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on amore » variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases

  20. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  1. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO 2 or ZrO 2. Themore » new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.« less

  2. Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.

    Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.

  3. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersionmore » was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.« less

  4. Development of terahertz laser diagnostics for electron density measurements.

    PubMed

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  5. Long-range activation of Sox9 in Odd Sex (Ods) mice.

    PubMed

    Qin, Yangjun; Kong, Ling-kun; Poirier, Christophe; Truong, Cavatina; Overbeek, Paul A; Bishop, Colin E

    2004-06-15

    The Odd Sex mouse mutation arose in a transgenic line of mice carrying a tyrosinase minigene driven by the dopachrome tautomerase (Dct) promoter region. The minigene integrated 0.98 Mb upstream of Sox9 and was accompanied by a deletion of 134 kb. This mutation causes female to male sex reversal in XX Ods/+ mice, and a characteristic eye phenotype of microphthalmia with cataracts in all mice carrying the transgene. Ods causes sex reversal in the absence of Sry by upregulating Sox9 expression and maintaining a male pattern of Sox9 expression in XX Ods/+ embryonic gonads. This expression, which begins at E11.5, triggers downstream events leading to the formation of a testis. We report here that the 134 kb deletion, in itself, is insufficient to cause sex reversal. We demonstrate that in Ods, the Dct promoter is capable of acting over a distance of 1 Mb to induce inappropriate expression of Sox9 in the retinal pigmented epithelium of the eye, causing the observed microphthalmia. In addition, it induces Sox9 expression in the melanocytes where it causes pigmentation defects. We propose that Ods sex reversal is due to the Dct promoter element interacting with gonad-specific enhancer elements to produce the observed male pattern expression of Sox9 in the embryonic gonads.

  6. OD in Schools: The State of the Art. Vol. IV: Case Studies. Final Report.

    ERIC Educational Resources Information Center

    Fullan, Michael; And Others

    This volume, the fourth of a five-volume series, contains three onsite case studies of organization development (OD) selected from a sample of 76 school districts. The purpose of the case studies was to analyze in detail different types of OD programs and their use. Each case study represents a different OD focus: case study A involves a survey…

  7. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    PubMed

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  8. STS-74 view of ODS from Payload Changout Room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.

  9. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C

    NASA Astrophysics Data System (ADS)

    Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2018-04-01

    In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.

  10. Variational Bayes method for estimating transit route OD flows using APC data.

    DOT National Transportation Integrated Search

    2017-01-31

    The focus of this study is on the use of large quantities of APC data to estimate OD flows : for transit bus routes. Since most OD flow estimation methodologies based on boarding and : alighting counts were developed before the prevalence of APC tech...

  11. Rasch-built Overall Disability Scale (R-ODS) for immune-mediated peripheral neuropathies.

    PubMed

    van Nes, S I; Vanhoutte, E K; van Doorn, P A; Hermans, M; Bakkers, M; Kuitwaard, K; Faber, C G; Merkies, I S J

    2011-01-25

    To develop a patient-based, linearly weighted scale that captures activity and social participation limitations in patients with Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and gammopathy-related polyneuropathy (MGUSP). A preliminary Rasch-built Overall Disability Scale (R-ODS) containing 146 activity and participation items was constructed, based on the WHO International Classification of Functioning, Disability and Health, literature search, and patient interviews. The preliminary R-ODS was assessed twice (interval: 2-4 weeks; test-retest reliability studies) in 294 patients who experienced GBS in the past (n = 174) or currently have stable CIDP (n = 80) or MGUSP (n = 40). Data were analyzed using the Rasch unidimensional measurement model (RUMM2020). The preliminary R-ODS did not meet the Rasch model expectations. Based on disordered thresholds, misfit statistics, item bias, and local dependency, items were systematically removed to improve the model fit, regularly controlling the class intervals and model statistics. Finally, we succeeded in constructing a 24-item scale that fulfilled all Rasch requirements. "Reading a newspaper/book" and "eating" were the 2 easiest items; "standing for hours" and "running" were the most difficult ones. Good validity and reliability were obtained. The R-ODS is a linearly weighted scale that specifically captures activity and social participation limitations in patients with GBS, CIDP, and MGUSP. Compared to the Overall Disability Sum Score, the R-ODS represents a wider range of item difficulties, thereby better targeting patients with different ability levels. If responsive, the R-ODS will be valuable for future clinical trials and follow-up studies in these conditions.

  12. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  13. Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography.

    PubMed

    Hayes, J D; Malik, A

    2001-03-01

    Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.

  14. Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.

    PubMed

    Djordjevic, N M; Fitzpatrick, F; Houdiere, F

    2001-04-01

    The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.

  15. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less

  16. Combined laser treatment in a patient with pigment dispersion secondary to a large iris pigment epithelial cyst.

    PubMed

    Aykan, Umit; Yıldırım, Ozlem

    2012-09-01

    We reported a case of bilateral extensive iris pigment epithelial cysts masquerading as pigment dispersion. A-30-year-old male patient presented with a dull pain in both eyes and a decreased visual acuity OD. He underwent a complete ophthalmic examination. OD was injected and the cells were graded as +3 and pigmented a +2, in the OS. Intraocular pressures (IOP) were measured as 42 (OD) and 22 (OS) mmHg. Gonioscopy revealed a confluent accumulation of dense pigment in both eyes. Visual fields, peripapillary retinal nerve fiber layer thickness (Spectral OCT/SLO OTI-OPKO Health. Inc, Miami, FL) and optic nerve head tomography (HRT-II Heidelberg Engineering, Heidelberg, Germany) results were within normal limits. On ultrasound biomicroscopy (UBM), bilateral extensive cysts were identified in the midzonal portion of the iris and in the ciliary body. An, antiglaucomatous treatment was started. Then, we decided to perform both Nd:YAG laser iridocystotomyc and selective laser trabeculoplasty. Fourteen months after the combined therapy, the cysts had not recurred, and still apposed and the IOPs were under control without medication.

  17. A major locus on mouse chromosome 18 controls XX sex reversal in Odd Sex (Ods) mice.

    PubMed

    Qin, Yangjun; Poirier, Christophe; Truong, Cavatina; Schumacher, Armin; Agoulnik, Alexander I; Bishop, Colin E

    2003-03-01

    We have previously reported a dominant mouse mutant, Odd sex (Ods), in which XX Ods/+ mice on the FVB/N background show complete sex reversal, associated with expression of Sox9 in the fetal gonads. Remarkably, when crossed to the A/J strain approximately 95% of the (AXFVB) F(1) XX Ods/+ mice developed as fully fertile, phenotypic females, the remainder developing as males or hermaphrodites. Using a (AXFVB) F(2) population, we conducted a genome-wide linkage scan to identify the number and chromosomal location of potential Ods modifier genes. A single major locus termed Odsm1 was mapped to chromosome 18, tightly linked to D18Mit189 and D18Mit210. Segregation at this locus could account for the presence of sex reversal in 100% of XX Ods/+ mice which develop as males, for the absence of sex reversal in approximately 92% of XX Ods/+ mice which develop as females, and for the mixed sexual phenotype in approximately 72% of XX Ods/+ mice that develop with ambiguous genitalia. We propose that homozygosity for the FVB-derived allele strongly favors Ods sex reversal, whereas homozygosity for the A/J-derived allele inhibits it. In mice heterozygous at Odsm1, the phenotypic outcome, male, female or hermaphrodite, is determined by a complex interaction of several minor modifying loci. The close proximity of Smad2, Smad7 and Smad4 to D18Mit189/210 provides a potential mechanism through which Odsm1 might act.

  18. Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Lindau, R.; Jäntsch, U.; Möslang, A.

    2017-09-01

    The EUROFER-ODS alloy with 0.5% Y2O3 was neutron irradiated with doses up to 16.2 dpa at 250 °C, 350 °C and 450 °C. The radiation induced changes in the microstructure (e.g. dislocation loops and voids) were investigated using transmission electron microscopy (TEM). The number density of radiation induced defects was found to be significantly lower than in EUROFER 97 irradiated at the same conditions. It was found that the appearance and extent of radiation damage strongly depend not only on the irradiation temperature but also on the local number density and size distribution of ODS particles. The higher number density of dislocation loops and voids was found in the local areas with low number density of ODS particles. The interstitial loops with Burgers vector of both ½<111> and <100> types were detected by imaging using different diffraction conditions.

  19. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta.

    PubMed

    Kobayashi, Akira; Higashide, Tomomi; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI) with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures). Two patients (67-year-old male and his 26-year-old son) with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 μm oculus dexter (OD) (the right eye) and 384 μm oculus sinister (OS) (the left eye) in the father and 430 μm OD and 425 μm OS in the son). In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients.

  20. Comparison of a polymeric pseudostationary phase in EKC with ODS stationary phase in RP-HPLC.

    PubMed

    Ni, Xinjiong; Zhang, Min; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2018-01-01

    Poly(stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) was induced as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). The n-octadecyl groups in SMA were the same as that in octadecylsilane (ODS) C18 column. Thus, the present work focused on the comparison of selectivity between polymeric PSP and ODS stationary phase (SP), and the effect of organic modifiers on the selectivity of polymeric PSP and ODS SP. 1-butanol could directly interacted with PSP as a Class I modifier, and improved both of the methylene selectivity and polar group selectivity. When the analysis times were similar, the polymeric PSP exhibited better methylene selectivity and polar group selectivity. Although the hydrophobic groups were similar, the substituted benzenes elution order was different between polymeric PSP and ODS SP. Linear solvation energy relationships (LSER) model analysis found that polymeric PSP and ODS SP exhibited two same key factors in selectivity: hydrophobic interaction and hydrogen bonding acidity. But polymeric PSP exhibited relatively strong n- and π-electrons interaction to the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Commissioning and initial experimental program of the BGO-OD experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Alef, S.; Bauer, P.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Böse, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Görtz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Knaust, J.; Kohl, K.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.; Zimmermann, T.

    2016-11-01

    BGO-OD is a new meson photoproduction experiment at the ELSA facility of Bonn University. It aims at the investigation of non strange and strange baryon excitations, and is especially designed to be able to detect weekly bound meson-baryon type structures. The setup for the BGO-OD experiment is presented, the characteristics of the photon beam and the detector performances are shown and the initial experimental program is discussed.

  2. The photodissociation lifetimes of the OH and OD radicals in comets

    NASA Technical Reports Server (NTRS)

    Singh, P. D.; Van Dishoeck, E. F.; Dalgarno, A.

    1983-01-01

    The photodissociation rates of OH and OD molecules due to absorption of solar radiation in the X(2)Pi-A(2)Sigma(+) electronic transition are calculated to lie between 3.5 and 6.7 x 10 to the -6th/sec for OH for heliocentric velocities between -60 and +60 km/sec and at about 4.7 x 10 to the -7th/sec for OD at 1 AU from the sun. The corresponding lifetimes, which are upper bounds to the actual lifetimes, are generally consistent with the observational cometary data.

  3. Tri-wave laser therapy for spinal cord injury, neuropathic pain management, and restoration of motor function

    NASA Astrophysics Data System (ADS)

    Chariff, Mark D.; Olszak, Peter

    2015-03-01

    A laser therapy device using three combined wavelengths 532nm, 808nm, and 1064nm has been demonstrated in clinical studies. Primarily, therapeutic lasers have used wavelengths in the ranges of 632nm through 1064nm, where the optical density (OD) < 5, to achieve pain relief and tissue regeneration. Conventional wisdom would argue against using wavelengths in the region of 532nm, due to poor penetration (OD ~ 8); however, the author's observations are to the contrary. The 532nm light is efficiently absorbed by chromophores such as oxyhemoglobin, deoxyhemoglobin, and cytochrome c oxidase thereby providing energy to accelerate the healing process. The 808nm light is known to result in Nitric Oxide production thereby reducing inflammation and oxidative stress. All three laser wavelengths likely contribute to pain relief by inhibiting nerve conduction; however, the 1064nm has the deepest penetration. Through the use of this device on over 1000 patients with a variety of acute and chronic neuro-musculoskeletal disorders, the author observed that a majority of these individuals experienced rapid relief from their presenting conditions and most patients reported a tingling sensation upon irradiation. Patient testimonials and thermal images have been collected to document the results of the laser therapy. These studies demonstrate the ability of laser therapy to rapidly alleviate pain from both acute and chronic conditions.

  4. Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.

    2009-04-01

    An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.

  5. An integrated fiber and stone basket device for use in Thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hutchens, Thomas C.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the Holmium:YAG laser. The TFL's superior near-single mode beam profile enables higher power transmission through smaller fibers with reduced proximal fiber tip damage. Recent studies have also reported that attaching hollow steel tubing to the distal fiber tip decreases fiber degradation and burn-back without compromising stone ablation rates. However, significant stone retropulsion was observed, which increased with pulse rate. In this study, the hollow steel tip fiber design was integrated with a stone basket to minimize stone retropulsion during ablation. A device was constructed consisting of a 100-μm-core, 140-μm-OD silica fiber outfitted with 5-mm-long stainless steel tubing at the distal tip, and integrated with a 1.3-Fr (0.433-mm-OD) disposable nitinol wire basket, to form an overall 1.9-Fr (0.633-mm- OD) integrated device. This compact design may provide several potential advantages including increased flexibility, higher saline irrigation rates through the ureteroscope working channel, and reduced fiber tip degradation compared to separate fiber and stone basket manipulation. TFL pulse energy of 31.5 mJ with 500 μs pulse duration and pulse rate of 500 Hz was delivered through the integrated fiber/basket device in contact with human uric acid stones, ex vivo. TFL stone ablation rates measured 1.5 +/- 0.2 mg/s, comparable to 1.7 +/- 0.3 mg/s (P > 0.05) using standard bare fiber tips separately with a stone basket. With further development, this device may be useful for minimizing stone retropulsion, thus enabling more efficient TFL lithotripsy at higher pulse rates.

  6. Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions

    NASA Astrophysics Data System (ADS)

    Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji

    2017-10-01

    Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.

  7. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    PubMed Central

    Kobayashi, Akira; Higashide, Tomomi; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    Objective To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI) with special attention to the abnormality of Bowman’s layer and sub-Bowman’s fibrous structures (K-structures). Patients and methods Two patients (67-year-old male and his 26-year-old son) with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 μm oculus dexter (OD) (the right eye) and 384 μm oculus sinister (OS) (the left eye) in the father and 430 μm OD and 425 μm OS in the son). In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman’s layer; a trace of a presumed Bowman’s layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman’s layer in these OI patients. PMID:24591812

  8. A flash photolysis-resonance fluorescence study of the formation of O(D-1) in the photolysis of water and reaction of O(D-1) with H2, Ar and He

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.; Klemm, R. B.

    1974-01-01

    The relative importance of two primary processes in the photolyis of water: (1) H2O + h (nu) yields H + OH, and (2) H2O + h (nu) yields H2 + OD-1 were determined in a direct manner by time resolved detection (via resonance fluorescence) of H and O formed in processes 1 and 2 respectively. The initially formed OD-1 was deactivated to ground state OP-3 prior to detection via resonance fluorescence. The relative quantum yields for processes 1 and 2 are 0.89 and 0.11 for the wavelength interval 105 to 145nm and = to or greater than 0.99, and = to or less than 0.01 for the wavelength interval 145 to 185nm. Rate constants at 300 K for the reactions OD-1 + H2, + Ar, and + He are presented.

  9. In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jun-Li; Mo, Kun; Yun, Di

    2016-04-01

    Advanced ODS alloys provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic 9F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of three advanced ODS materials including 14YWT, MA957, and 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to themore » different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstrom's dislocation models. (C) 2016 Elsevier B.V. All rights reserved.« less

  10. Role of enterocele in the obstructed defecation syndrome (ODS): a new radiological point of view.

    PubMed

    Morandi, C; Martellucci, J; Talento, P; Carriero, A

    2010-08-01

    The aim of this study was to understand the role of enterocele in the pathogenesis of the obstructed defecation syndrome (ODS) a new defecographic classification based on function. A total of 597 patients (551 women, 46 men) who underwent cinedefecography between November 2001 and November 2005 were studied. A total of 567 (95%) underwent cinedefecography as they had symptoms of ODS. Enterocele was classified into three types. Enterocele was found in 127 (23%) female and one (2.2%) male patients. Thirty-eight (6.9%) patients had type A, 38(6.9%) type B, and 27(4.9%) type C enterocele. A total of 24 patients (4.35%) had sigmoidocele. In patients with type C enterocele, the finding of a radiological pattern of ODS was higher (26/27) than that in the other groups (A + B + Sigmoidocele) (23/100) (P < 0.001). An obstructed evacuation pattern was found in 49 (38.5%) patients with enterocele and in 148 (34.9%) patients in the control group. Type C enterocele is often associated with a radiological pattern of ODS and usually presents as an isolated condition. Type B is less frequently associated with ODS and is more frequently accompanied by other pathological conditions.

  11. Analysis of sorption into single ODS-silica gel microparticles in acetonitrile-water.

    PubMed

    Nakatani, Kiyoharu; Kakizaki, Hiroshi

    2003-08-01

    Intraparticle mass transfer processes of Phenol Blue (PB) in single octadecylsilyl (ODS)-silica gel microparticles in acetonitrile-water were analyzed by microcapillary manipulation and microabsorption methods. An absorption maximum of PB, the sorption isotherm parameters, and the sorption rate in the microparticle system were highly dependent on the percentage of acetonitrile in solution. The results are discussed in terms of the microscopic polarity surrounding PB in the ODS phase and the relationship between the isotherm parameters and the sorption rate.

  12. Precipitates and boundaries interaction in ferritic ODS steels

    NASA Astrophysics Data System (ADS)

    Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves

    2016-04-01

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.

  13. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Deyong; Li, Yunliang; Li, Hao

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate thatmore » this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.« less

  14. Optical Depth Sensor (ODS) for the measurement of dust and clouds properties in the Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2014-04-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  15. First results from the commissioning of the BGO-OD experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Bella, Andreas

    2014-11-01

    The BGO-OD experiment at the ELSA accelerator facility in Bonn combines the highly segmented BGO calorimeter with a particle tracking magnetic spectrometer at forward angles. An extensive physics program using an energy tagged Bremsstrahlung photon beam is planned. The commissioning phase of the experiment is recently complete, enhancements for the BGO-OD experiment are nevertheless in development. Recent results from the analysis of the commissioning data, which includes particle track reconstruction in the forward spectrometer and momentum reconstruction with the BGO calorimeter are presented.

  16. Metabolic cooperation of ascorbic acid and glutathione in normal and vitamin C-deficient ODS rats.

    PubMed

    Wang, Y; Kashiba, M; Kasahara, E; Tsuchiya, M; Sato, E F; Utsumi, K; Inoue, M

    2001-01-01

    Although the coordination of various antioxidants is important for the protection of organisms from oxidative stress, dynamic aspects of the interaction of endogenous antioxidants in vivo remain to be elucidated. We studied the metabolic coordination of two naturally occurring water-soluble antioxidants, ascorbic acid (AA) and reduced glutathione (GSH), in liver, kidney and plasma of control and scurvy-prone osteogenic disorder Shionogi (ODS) rats that hereditarily lack the ability to synthesize AA. When supplemented with AA, its levels in liver and kidney of ODS rats increased to similar levels of those in control rats. Hepato-renal levels of glutathione were similar with the two animal groups except for the slight increase in its hepatic levels in AA-supplemented ODS rats. Administration of L-buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, rapidly decreased the hepato-renal levels of glutathione in a biphasic manner, a rapid phase followed by a slower phase. Kinetic analysis revealed that glutathione turnover was enhanced significantly in liver mitochondria and renal cytosol of ODS rats. Administration of BSO significantly increased AA levels in the liver and kidney of control rats but decreased them in AA-supplemented ODS rats. Kinetic analysis revealed that AA is synthesized by control rat liver by some BSO-enhanced mechanism and the de novo synthesized AA is transferred to the kidney. Such a coordination of the metabolism of GSH and AA in liver and kidney is suppressed in AA-deficient ODS rats. These and other results suggest that the metabolism of AA and GSH forms a compensatory network by which oxidative stress can be decreased.

  17. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    PubMed

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  18. Experimental study of the reactions of limonene with OH and OD radicals: kinetics and products.

    PubMed

    Braure, Tristan; Bedjanian, Yuri; Romanias, Manolis N; Morin, Julien; Riffault, Véronique; Tomas, Alexandre; Coddeville, Patrice

    2014-10-09

    The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K.

  19. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hauser, Daniel; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S.; Geistlinger, Katharina; Kumar, Sunil S.; Wester, Roland

    2016-03-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just a few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J =1 ←0 and J =2 ←1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598 596.08(19) MHz for J =1 ←0 and 1 196 791.57(27) MHz for J =2 ←1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  20. Casting technology for ODS steels - the internal oxidation approach

    NASA Astrophysics Data System (ADS)

    Miran, S.; Franke, P.; Möslang, A.; Seifert, H. J.

    2017-07-01

    The formation of stainless ODS steel by internal oxidation of as-cast steel has been investigated. An alloy (Fe-16Cr-0.2Al-0.05Y, wt.%) was embedded in a (VO/V2O3) powder mixture serving as an oxygen activity buffer and heat treated at 1450 °C for 20 h. After this procedure no oxide scale was present on the surface of the sample but a zone of internal oxidation with a depth of about 2000 μm was formed in its interior. The precipitates within this zone consisted of two types of oxides. Discrete aluminium oxide particles with a size of a few micrometres were formed in outer regions of the specimen. Finer aluminium-yttrium oxides with a size of some hundred nanometres were mainly precipitated in inner regions of the sample. The results can be considered as a promising step towards an alternative production route for ODS steels.

  1. Laser in situ keratomileusis for residual hyperopic astigmatism after conductive keratoplasty.

    PubMed

    Kymionis, George D; Aslanides, Ioannis M; Khoury, Aghlab N; Markomanolakis, Marinos M; Naoumidi, Tatiana; Pallikaris, loannis G

    2004-01-01

    To report a case of laser in situ keratomileusis (LASIK) in a patient with previous conductive keratoplasty. A 48-year-old man underwent conductive keratoplasty for low hyperopic astigmatism (manifest refraction OD: +2.25 -0.50 x 77 degrees; OS: +2.50 -0.50 x 105 degrees). Three months postoperatively, UCVA was 20/25 and BSCVA was 20/20 in both eyes; manifest refraction OD: -0.25 -0.75 x 110 degrees; OS: +0.75 -0.75 x 50 degrees. Sixteen months after the operation, regression of refractive outcome was (manifest) OD: +1.75 -1.25 x 90 degrees; OS: +2.50 -0.50 x 85 degrees; UCVA was 20/40 in the right eye and 20/63 in the left eye and BSCVA was 20/20 in both eyes. LASIK was performed for hyperopic regression in the left eye using an automated microkeratome (Alcon SKBM, 130-microm plate; Aesculap-Meditec MEL 70 excimer laser). LASIK was uneventful and no intraoperative or postoperative complications related to the previous conductive keratoplasty procedure or LASIK were observed. Three months after LASIK and 19 months after the initial conductive keratoplasty, the patient's left eye was emmetropic; UCVA was 20/20(-2), BSCVA was 20/20 and manifest refraction was +0.25 -0.25 x 35 degrees. There was a uniform increase in topographical steepening. Visual acuity, refraction and topographic findings remained unchanged at 6 months. Even though our experience is limited, treatment of hyperopia with LASIK in an eye with refractive regression following previous conductive keratoplasty resulted in a predicted refractive outcome, with no complications, and improvement in visual acuity at 6 months follow-up.

  2. The comparison of microstructures and mechanical properties between 14Cr-Al and 14Cr-Ti ferritic ODS alloys

    DOE PAGES

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; ...

    2016-03-03

    In this study, two kinds of 14Cr ODS alloys (14Cr-Al and 14Cr-Ti) were investigated to reveal the different effects between Al and Ti on the microstructures and mechanical properties of 14Cr ferritic ODS alloys. The microstructure information such as grains, minor phases of these two alloys has been investigated by high-energy X-ray diffraction and transmission electron microscopy (TEM). The in situ synchrotron X-ray diffraction tensile test was applied to investigate the mechanical properties of these two alloys. The lattice strains of different phases through the entire tensile deformation process in these two alloys were analyzed to calculate their elastic stresses.more » From the comparison of elastic stress, the strengthening capability of Y 2Ti 2O 7 is better than TiN in 14Cr-Ti, and the strengthening capability of YAH is much better than YAM and AlN in 14Cr-Al ODS. The dislocation densities of 14Cr-Ti and 14Cr-Al ODS alloys during tensile deformation were also examined by modified Williamson-Hall analyses of peak broadening, respectively. In conclusion, the different increasing speed of dislocation density with plastic deformation reveals the better strengthening effect of Y-Ti-O particles in 14Cr-Ti ODS than that of Y-Al-O particles in 14Cr-Al ODS alloy.« less

  3. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    NASA Astrophysics Data System (ADS)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  4. STS-79 Ku-band antenna, ODS and Spacehab module at PCR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The orbiter Ku-band antenna looms large in this view of the Space Shuttle Atlantis' payload bay. Visible just past the antenna system -- stowed on the starboard side of the payload bay wall -- is the Orbiter Docking System (ODS), and connected to the ODS via a tunnel is the Spacehab Double Module in the aft area of the payload bay. This photograph was taken from the starboard wing platform on the fifth level of the Payload Changeout Room (PCR) at Launch Pad 39A. Work is under way in the PCR to close Atlantis' payload bay doors for flight. Atlantis currently is being targeted for liftoff on Mission STS-79, the fourth docking of the U.S. Shuttle to the Russian Space Station Mir, around September 12.

  5. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  6. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    NASA Astrophysics Data System (ADS)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  7. The influence of Cr content on the mechanical properties of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  8. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boegelein, Thomas, E-mail: t.boegelein@liv.ac.uk; Louvis, Eleftherios; Dawson, Karl

    2016-02-15

    Oxide dispersion strengthened (ODS) alloys exhibit superior mechanical and physical properties due to the presence of nanoscopic Y(Al, Ti) oxide precipitates, but their manufacturing process is complex. The present study is aimed at further investigation of the application of an alternative, Additive Manufacturing (AM) technique, Selective Laser Melting (SLM), to the production of consolidated ODS alloy components. Mechanically alloyed PM2000 (ODS-FeCrAl) powders have been consolidated and a fine dispersion of Y-containing precipitates were observed in an as built thin-walled component, but these particles were typically poly-crystalline and contained a variety of elements including O, Al, Ti, Cr and Fe. Applicationmore » of post-build heat treatments resulted in the modification of particle structures and compositions; in the annealed condition most precipitates were transformed to single crystal yttrium aluminium oxides. During the annealing treatment, precipitate distributions homogenised and localised variations in number density were diminished. The resulting volume fractions of those precipitates were 25–40% lower than have been reported in conventionally processed PM2000, which was attributed to Y-rich slag-like surface features and inclusions formed during SLM. - Highlights: • A wall structure was grown from ODS steel powder using selective laser melting. • A fine dispersion of nano-precipitates was apparent in as-build material. • Precipitates were multi-phased containing several elements, e.g. O, Ti, Al, Fe, Cr, Y. • Post-build annealing changed those into typically single-crystalline Y–Al–O. • The anneal also reduced and stabilised the volume fraction of precipitates to ~ 0.006.« less

  9. Ascorbic acid deficiency aggravates stress-induced gastric mucosal lesions in genetically scorbutic ODS rats.

    PubMed

    Ohta, Y; Chiba, S; Imai, Y; Kamiya, Y; Arisawa, T; Kitagawa, A

    2006-12-01

    We examined whether ascorbic acid (AA) deficiency aggravates water immersion restraint stress (WIRS)-induced gastric mucosal lesions in genetically scorbutic ODS rats. ODS rats received scorbutic diet with either distilled water containing AA (1 g/l) or distilled water for 2 weeks. AA-deficient rats had 12% of gastric mucosal AA content in AA-sufficient rats. AA-deficient rats showed more severe gastric mucosal lesions than AA-sufficient rats at 1, 3 or 6 h after the onset of WIRS, although AA-deficient rats had a slight decrease in gastric mucosal AA content, while AA-sufficient rats had a large decrease in that content. AA-deficient rats had more decreased gastric mucosal nonprotein SH and vitamin E contents and increased gastric mucosal lipid peroxide content than AA-sufficient rats at 1, 3 or 6 h of WIRS. These results indicate that AA deficiency aggravates WIRS-induced gastric mucosal lesions in ODS rats by enhancing oxidative damage in the gastric mucosa.

  10. A complex interaction of imprinted and maternal-effect genes modifies sex determination in Odd Sex (Ods) mice.

    PubMed

    Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P; Anaya, Yanett; Singer, Jonathan B; Hill, Annie E; Lander, Eric S; Nadeau, Joseph H; Bishop, Colin E

    2004-11-01

    The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1(A). Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo.

  11. A Complex Interaction of Imprinted and Maternal-Effect Genes Modifies Sex Determination in Odd Sex (Ods) Mice

    PubMed Central

    Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P.; Anaya, Yanett; Singer, Jonathan B.; Hill, Annie E.; Lander, Eric S.; Nadeau, Joseph H.; Bishop, Colin E.

    2004-01-01

    The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1A. Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo. PMID:15579706

  12. The Bgo-Od Experiment at Elsa

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bieling, J.; Böse, S.; Braglieri, A.; Brinkmann, K.; Burdeynyi, D.; Curciarello, F.; de Leo, V.; di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Frese, T.; Friedrick, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, O.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Noviskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Schaerf, C.; Schmieden, H.; Sumachev, V.; Tarakonov, V.; Vegna, V.; Vlasov, P.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2014-01-01

    Meson photoproduction is a key tool for the experimental investigation of the nucleon excitation spectrum. To disentangle the specific couplings of resonances, in addition to the rather well measured pion and eta photoproduction channels it is mandatory to obtain information on channels involving strange and vector mesons and higher mass pseudoscalar mesons, and the associated multi-particle final states with both charged and neutral particles. In this respect, the new BGO-OD experiment at the ELSA accelerator of the University of Bonn's Physikalisches Institut provides unique instrumentation. We describe the experiment, present its status and the initial program of measurements.

  13. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    NASA Astrophysics Data System (ADS)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  14. Rasch-built Overall Disability Scale for patients with chemotherapy-induced peripheral neuropathy (CIPN-R-ODS).

    PubMed

    Binda, D; Vanhoutte, E K; Cavaletti, G; Cornblath, D R; Postma, T J; Frigeni, B; Alberti, P; Bruna, J; Velasco, R; Argyriou, A A; Kalofonos, H P; Psimaras, D; Ricard, D; Pace, A; Galiè, E; Briani, C; Dalla Torre, C; Lalisang, R I; Boogerd, W; Brandsma, D; Koeppen, S; Hense, J; Storey, D; Kerrigan, S; Schenone, A; Fabbri, S; Rossi, E; Valsecchi, M G; Faber, C G; Merkies, I S J; Galimberti, S; Lanzani, F; Mattavelli, L; Piatti, M L; Bidoli, P; Cazzaniga, M; Cortinovis, D; Lucchetta, M; Campagnolo, M; Bakkers, M; Brouwer, B; Boogerd, W; Grant, R; Reni, L; Piras, B; Pessino, A; Padua, L; Granata, G; Leandri, M; Ghignotti, I; Plasmati, R; Pastorelli, F; Heimans, J J; Eurelings, M; Meijer, R J; Grisold, W; Lindeck Pozza, E; Mazzeo, A; Toscano, A; Russo, M; Tomasello, C; Altavilla, G; Penas Prado, M; Dominguez Gonzalez, C; Dorsey, S G

    2013-09-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common neurological side-effect of cancer treatment and may lead to declines in patients' daily functioning and quality of life. To date, there are no modern clinimetrically well-evaluated outcome measures available to assess disability in CIPN patients. The objective of the study was to develop an interval-weighted scale to capture activity limitations and participation restrictions in CIPN patients using the Rasch methodology and to determine its validity and reliability properties. A preliminary Rasch-built Overall Disability Scale (pre-R-ODS) comprising 146 items was assessed twice (interval: 2-3 weeks; test-retest reliability) in 281 CIPN patients with a stable clinical condition. The obtained data were subjected to Rasch analyses to determine whether model expectations would be met, and if necessarily, adaptations were made to obtain proper model fit (internal validity). External validity was obtained by correlating the CIPN-R-ODS with the National Cancer Institute-Common Toxicity Criteria (NCI-CTC) neuropathy scales and the Pain-Intensity Numeric-Rating-Scale (PI-NRS). The preliminary R-ODS did not meet Rasch model's expectations. Items displaying misfit statistics, disordered thresholds, item bias or local dependency were systematically removed. The final CIPN-R-ODS consisting of 28 items fulfilled all the model's expectations with proper validity and reliability, and was unidimensional. The final CIPN-R-ODS is a Rasch-built disease-specific, interval measure suitable to detect disability in CIPN patients and bypasses the shortcomings of classical test theory ordinal-based measures. Its use is recommended in future clinical trials in CIPN. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaluating the Good Ontology Design Guideline (GoodOD) with the Ontology Quality Requirements and Evaluation Method and Metrics (OQuaRE)

    PubMed Central

    Duque-Ramos, Astrid; Boeker, Martin; Jansen, Ludger; Schulz, Stefan; Iniesta, Miguela; Fernández-Breis, Jesualdo Tomás

    2014-01-01

    Objective To (1) evaluate the GoodOD guideline for ontology development by applying the OQuaRE evaluation method and metrics to the ontology artefacts that were produced by students in a randomized controlled trial, and (2) informally compare the OQuaRE evaluation method with gold standard and competency questions based evaluation methods, respectively. Background In the last decades many methods for ontology construction and ontology evaluation have been proposed. However, none of them has become a standard and there is no empirical evidence of comparative evaluation of such methods. This paper brings together GoodOD and OQuaRE. GoodOD is a guideline for developing robust ontologies. It was previously evaluated in a randomized controlled trial employing metrics based on gold standard ontologies and competency questions as outcome parameters. OQuaRE is a method for ontology quality evaluation which adapts the SQuaRE standard for software product quality to ontologies and has been successfully used for evaluating the quality of ontologies. Methods In this paper, we evaluate the effect of training in ontology construction based on the GoodOD guideline within the OQuaRE quality evaluation framework and compare the results with those obtained for the previous studies based on the same data. Results Our results show a significant effect of the GoodOD training over developed ontologies by topics: (a) a highly significant effect was detected in three topics from the analysis of the ontologies of untrained and trained students; (b) both positive and negative training effects with respect to the gold standard were found for five topics. Conclusion The GoodOD guideline had a significant effect over the quality of the ontologies developed. Our results show that GoodOD ontologies can be effectively evaluated using OQuaRE and that OQuaRE is able to provide additional useful information about the quality of the GoodOD ontologies. PMID:25148262

  16. Evaluating the Good Ontology Design Guideline (GoodOD) with the ontology quality requirements and evaluation method and metrics (OQuaRE).

    PubMed

    Duque-Ramos, Astrid; Boeker, Martin; Jansen, Ludger; Schulz, Stefan; Iniesta, Miguela; Fernández-Breis, Jesualdo Tomás

    2014-01-01

    To (1) evaluate the GoodOD guideline for ontology development by applying the OQuaRE evaluation method and metrics to the ontology artefacts that were produced by students in a randomized controlled trial, and (2) informally compare the OQuaRE evaluation method with gold standard and competency questions based evaluation methods, respectively. In the last decades many methods for ontology construction and ontology evaluation have been proposed. However, none of them has become a standard and there is no empirical evidence of comparative evaluation of such methods. This paper brings together GoodOD and OQuaRE. GoodOD is a guideline for developing robust ontologies. It was previously evaluated in a randomized controlled trial employing metrics based on gold standard ontologies and competency questions as outcome parameters. OQuaRE is a method for ontology quality evaluation which adapts the SQuaRE standard for software product quality to ontologies and has been successfully used for evaluating the quality of ontologies. In this paper, we evaluate the effect of training in ontology construction based on the GoodOD guideline within the OQuaRE quality evaluation framework and compare the results with those obtained for the previous studies based on the same data. Our results show a significant effect of the GoodOD training over developed ontologies by topics: (a) a highly significant effect was detected in three topics from the analysis of the ontologies of untrained and trained students; (b) both positive and negative training effects with respect to the gold standard were found for five topics. The GoodOD guideline had a significant effect over the quality of the ontologies developed. Our results show that GoodOD ontologies can be effectively evaluated using OQuaRE and that OQuaRE is able to provide additional useful information about the quality of the GoodOD ontologies.

  17. Hot-rolling of reduced activation 8CrODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-11-01

    The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  18. OD in North American Schools: A Scandinavian View, with Comments by Matthew Miles and Michael Fullan. Uppsala Reports on Education, No. 20.

    ERIC Educational Resources Information Center

    Berg, Gunnar

    This report discusses the structural conditions under which organizational development (OD), as employed in the school systems of the United States and Canada, is more or less applicable to schools. The first section (chapters 1-6) reviews papers and books, concerning either OD in general or the ways in which the ideas of OD have been used in the…

  19. Tri-length laser therapy associated to tecar therapy in the treatment of low-back pain in adults: a preliminary report of a prospective case series.

    PubMed

    Osti, Raffaella; Pari, Carlotta; Salvatori, Giada; Massari, Leo

    2015-01-01

    Low-back pain is very frequent, especially in active adult population. There are several different orthopaedic condition that can cause low-back pain, and the pain worsen the quality of life significantly. The treatments vary from drugs, physical therapies, kinesiology, local infiltrations, and so on. Laser therapy has an important role in the treatment of the inflammatory causes of pain, with several studies that demonstrate the efficacy of low and high energy laser therapy in the treatment of low-back pain. Sixty-six consecutive patients with low-back pain with or without leg pain were treated using a combination of Tri-length laser I-Triax® (Mectronic Medicale, Bergamo, Italy) and Pharon® tecar therapy (Mectronic Medicale, Bergamo, Italy). The patients were treated three times a week, every other day, for a total of 10 sessions. Clinical results were evaluated using visual analogic scale for individual pain (0 to 10) and the Oswestry disability scale (ODS). Tests started before the beginning of therapies and 8 weeks after the end of the therapies. Visual analogic scale (VAS) score significantly improved from an average value of 8.1 ± 1.58 pre-treatment to an average value 8-weeks post-treatment of 2.63 ± 2.74 (P < .01). ODS values start from a pre-treatment average value of 53.0 ± 13.0 to a post-treatment average value of 23.5 ± 19.8 (P < .01). A higher improvement both in VAS and in ODS was denoted in the group of patient with low-back pain and leg pain (respectively, VAS from 8.66 ± 1.58 to 2.86 ± 2.94 and ODS from 57.8 ± 15.5 to 23.7 ± 19.5). Low-back pain, associated or not with leg pain, is a very common clinical situation. The treatments of this condition are different, and an important role can be given to the laser therapy. The conclusion of this study is that the association between laser therapy iLux-Triax® and tecar therapy Pharon® in the treatment of low-back pain, with or without leg pain, can

  20. Determination of OB/OD/SF Emission Factors using Unmanned Aerial Systems

    EPA Science Inventory

    Instrumented, unmanned aerial systems (UASs) have been used successfully in eight campaigns since 2010 to determine emission factors from open burning (OB), open detonation (OD), and static firing (SF) demilitarization activities. These systems have sampled directly from the plu...

  1. Dynamics of Dangling Od-Stretch at the Air/water Interface by Heterodyne-Detected Sfg Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stiopkin, I. V.; Weeraman, C.; Shalhout, F.; Benderskii, A. V.

    2009-06-01

    SFG spectra of dangling OD-stretch at the air/water interface contain information on vibrational dephasing dynamics, ultrafast reorientational molecular motion, and vibrational energy transfer. To better separate these processes we conducted heterodyne-detected SFG experiments to measure real and imaginary contributions of the SFG spectrum of the dangling OD-stretch at the air/D_2O interface for SSP, PPP, and SPS polarizations. Variations in the temporal profiles of the SFG signals for these three polarizations will be also discussed.

  2. Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Makabe, Nobuyuki; Mitsui, Ryo; Hirokawa, Takeshi

    2005-08-12

    A fast and highly sensitive ion chromatographic method using monolithic ODS columns was developed for the determination of nitrite (NO2-) and nitrate (NO3-) in seawater. Two monolithic ODS columns (50 mm x 4.6 mm i.d. + 100 mm x 4.6 mm i.d.) connected in series were coated and equilibrated with 5 mM cetyltrimethylammonium chloride (CTAC) aqueous solution. The column efficiency with 0.5 M NaCl as the mobile phase did not decrease in spite of the increase in flow rate of the mobile phase. Thus, good chromatograms were obtained within 3 minutes for NO2- and NO3 in artificial seawater without interferences by coexisting ions. The detection limit (S/N = 3) with UV detection at 225 nm was 0.8 and 1.6 microg/L for NO2- and NO3-, respectively. The characteristics of the monolithic CTA(+)-coated ODS columns were discussed. The present method was successfully applied to the fast and sensitive determination of NO2- and NO3- in real seawater samples.

  3. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; ...

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO 2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which ismore » a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y 2O 3 with ZrO 2, HfO 2 or TiO 2.« less

  4. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-08-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  5. Electrically tunable laser based on heliconical cholesteric (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter

    2016-09-01

    STUDENT CONTRIBUTION: Cholesteric liquid crystals (CLC) self-assemble into a periodic supramolecular helical structure with properties of a one-dimensional photonic crystal. The CLCs doped with a fluorescent dye and optical pump enable a distributed feedback cavity and lasing [1]. Although lasing was observed in range of wavelength from near UV to near IR, a practical method of tuning of emission wavelength from a dye-doped CLC without structural destruction of a helix is not demonstrated yet. In this work, we demonstrate an electrically tunable dye-doped CLC laser based on the so-called oblique helicoidal, or heliconical, CLC state [2,3]. In this state, the molecules twist around the helicoidal axis, making an angle smaller than 90 degrees with the axis. Molecular tilt makes the heliconical structure different from the regular CLC (in which the molecules are perpendicular to the axis) and enable electric tunability [2,3]. An electric field applied parallel to the heliconical axis changes the pitch but does not realign the axis. When the field increases, the pitch decreases. As a result, the selective reflection band and a lasing wavelength move towards shorter wavelength. Using heliconical CLC and two laser dyes DCM and LD688, we demonstrate effective tuning of the laser emission wavelength from 574 nm to 722 nm. With appropriate laser dyes, the spectrum can be extended from near UV to near IR. Efficient electric tuning in the broad spectral range and small size of the heliconical cholesteric lasers makes them potentially useful for optical and biomedical applications. [1] P. Palffy-Muhoay, W.Y. Cao, M. Moreira, B. Taheri, A. Munoz, Photonics and lasing in liquid crystal [2] J. Xiang, S.V. Shiyanovskii, C.T. Imrie, O.D. Lavrentovich, Electrooptic Response of Chiral Nematic Liquid Crystals with Oblique Helicoidal Director, Phys Rev Lett, 112 (2014) 217801. [3] J. Xiang, Y.N. Li, Q. Li, D.A. Paterson, J.M.D. Storey, C.T. Imrie, O.D. Lavrentovich, Electrically

  6. Phase diagram of multiferroic KCu3As2O7(OD ) 3

    NASA Astrophysics Data System (ADS)

    Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji

    2017-06-01

    The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .

  7. Capabilities to improve corrosion resistance of fuel claddings by using powerful laser and plasma sources

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Trofimov, V. N.; Sapozhkov, A. Yu.; Kuzmenko, V. A.; Mikhaylov, V. B.; Cherkovets, V. Ye.; Yakushkin, A. A.; Yakushin, V. L.; Dzhumayev, P. S.

    2016-12-01

    The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature ( T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al2O3, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppression of corrosion in liquid lead to the temperature of 720°C are shown.

  8. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  9. The effectiveness of laser diode induction to Carica Papaya L. chlorophyll extract to be ROS generating in the photodynamic inactivation mechanisms for C.albicans biofilms

    NASA Astrophysics Data System (ADS)

    Dewi Astuty, S.; Baktir, A.

    2017-05-01

    Research on the effectiveness of photo inactivation of C.albicans biofilms led by a-PDT system mediated by chlorophyll-diode-laser-induced was done. This research was done using in vitro technique in order to effectively determine chlorophyll extract of ROS-generated Carica Papaya L. using in situ technique. This technique induced laser diode on different dose and C. albicans with reduced degree. This research is a preliminary study in efforts to find anew sensitizer agent candidate made of chlorophyll extract and antifungal of Carica Papaya L. The effectiveness of eradication has been tested with MDA’s content and OD of biomass biofilms as well as analyzed using ANOVA and Tukey Test (α=0.05). The characteristic of chlorophyll extract of Carica Papaya L. has maximum absorptions on blue areas (λmax = 420 nm) and red areas (λmax = 670 nm). The MIC value of Carica Papaya L.’schlorophyll extract against C. albicans planktonic and biofilms cell is 63.8 μM and 31.9 μM respectively. The result shows that treatment using laser which was combined with chlorophyll extract is more effective than that with laser only or chlorophyll extract only. The treatment using laser combined with chlorophyll extract obtained more than 65% (α=0.05) (more than that of negative control) for P2L1 group with OD595 0.915. The MDA’s content showed that group of laser which was mediated with chlorophyll extract had larger values than group of laser or chlorophyll extract only.

  10. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    NASA Astrophysics Data System (ADS)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H. J.

    2014-12-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal-mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi-ODS steel exhibits a remarkable lifetime extension with a factor of 10-20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 1014 m-2, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y-Ti-O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti-ODS steel.

  11. A simple approach for the modeling of an ODS steel mechanical behavior in pilgering conditions

    NASA Astrophysics Data System (ADS)

    Vanegas-Márquez, E.; Mocellin, K.; Toualbi, L.; de Carlan, Y.; Logé, R. E.

    2012-01-01

    The optimization of the forming of ODS tubes is linked to the choice of an appropriated constitutive model for modeling the metal forming process. In the framework of a unified plastic constitutive theory, the strain-controlled cyclic characteristics of a ferritic ODS steel were analyzed and modeled with two different tests. The first test is a classical tension-compression test, and leads to cyclic softening at low to intermediate strain amplitudes. The second test consists in alternated uniaxial compressions along two perpendicular axes, and is selected based on the similarities with the loading path induced by the Fe-14Cr-1W-Ti ODS cladding tube pilgering process. This second test exhibits cyclic hardening at all tested strain amplitudes. Since variable strain amplitudes prevail in pilgering conditions, the parameters of the considered constitutive law were identified based on a loading sequence including strain amplitude changes. A proposed semi automated inverse analysis methodology is shown to efficiently provide optimal sets of parameters for the considered loading sequences. When compared to classical approaches, the model involves a reduced number of parameters, while keeping a good ability to capture stress changes induced by strain amplitude changes. Furthermore, the methodology only requires one test, which is an advantage when the amount of available material is limited. As two distinct sets of parameters were identified for the two considered tests, it is recommended to consider the loading path when modeling cold forming of the ODS steel.

  12. A Level-Headed Look: The Potential of OD-ROM in Education.

    ERIC Educational Resources Information Center

    Hiscox, Michael D.; Hiscox, Suzanne B.

    1986-01-01

    Reviews 15 potential uses of optical disc read-only memory (OD-ROM) in education, including instructional, curriculum, assessment, administrative, and counseling applications. Need for the product, cost of development, size of audience, critical competitor, and potential profitability to suppliers are noted for each application. (MBR)

  13. The Use of Orientation/Decision/Do/Discuss/Reflect (OD3R) Method to Increase Critical Thinking Skill and Practical Skill in Biochemistry Learning

    ERIC Educational Resources Information Center

    Anwar, Yunita Arian Sani; Senam, Senam; Laksono, Endang W.

    2018-01-01

    We have developed an OD3R method that can be applied on Biochemistry learning. This OD3R consists of 5 phases: orientation, decision, do, discuss, and reflect to connect lessons in the class with practice in the laboratory. Implementation of OD3R method was done in 2 universities in Yogyakarta to increase critical thinking skill and practical…

  14. Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, M.; Koizumi, T.; Inoue, M.

    2013-07-01

    Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution inmore » the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)« less

  15. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    PubMed

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  16. Broadband polarized emission from P(NDI2OD-T2) polymer.

    PubMed

    Ulrich, Steve; Sutch, Tabitha; Szulczewski, Greg; Schweizer, Matthias; Barbosa, Newton; Araujo, Paulo

    2018-05-18

    We investigate the P(NDI2OD-T2) photophysical properties via absorbance and fluorescence spectroscopy, in association with the experimental approach baptized Stokes Spectroscopy, which provides valuable material information through the acquisition and analysis of the fluorescence polarization degree. By changing solvents and using different samples such as solutions, thick, and thin films, it is possible to control the polarization degree spectrum associated to the fluorescence emitted by the polymer's isolated chains and aggregates. We show that the polarization degree could become a powerful tool to obtain information related to the samples morphology, which is connected to their microscopic structure. Moreover, the polarization degree spectra suggest that depolarization effects linked to energy and charge transfer mechanisms are likely taking place. Our findings indicate that P(NDI2OD-T2) polymers are excellent candidates for the advancement of organic technologies that rely on the emission and detection of polarized lights. © 2018 IOP Publishing Ltd.

  17. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy

    NASA Astrophysics Data System (ADS)

    Ramar, A.; Spätig, P.; Schäublin, R.

    2008-12-01

    Oxide dispersion in tempered martensitic EUROFER97 steel is an efficient approach to improve its strength. The oxide dispersion strengthened (ODS) EUROFER97 steel shows a good strength up to 600 °C, but degrades rapidly beyond that temperature. To understand the origin in the microstructure of this drop in strength in situ heating experiment in TEM was performed from room temperature to 1000 °C. Upon heating neither microstructure changes nor dislocation movement are observed up to 600 °C. Movement of dislocations are observed above 680 °C. Phase transformation to austenite starts at 840 °C. Yttria particles remain stable up to 1000 °C. Changes in mechanical properties thus do not relate to changes in yttria dispersion. It is attempted to relate these observations to the thermal activation parameters measured by the technique of conventional strain rate experiment, which allow to identify at a mesoscopic scale the microstructural mechanisms responsible for the degradation of ODS steel at high temperatures.

  18. Broadband polarized emission from P(NDI2OD-T2) polymer

    NASA Astrophysics Data System (ADS)

    Ulrich, Steven V.; Sutch, Tabitha; Szulczewski, Greg; Schweizer, Matthias; Barbosa Neto, Newton M.; Araujo, Paulo T.

    2018-07-01

    We investigate the P(NDI2OD-T2) photophysical properties via absorbance and fluorescence spectroscopy, in association with the experimental approach baptized Stokes Spectroscopy, which provides valuable material information through the acquisition and analysis of the fluorescence polarization degree. By changing solvents and using different samples such as solutions, thick, and thin films, it is possible to control the polarization degree spectrum associated to the fluorescence emitted by the polymer’s isolated chains and aggregates. We show that the polarization degree could become a powerful tool to obtain information related to the samples morphology, which is connected to their microscopic structure. Moreover, the polarization degree spectra suggest that depolarization effects linked to energy and charge transfer mechanisms are likely taking place. Our findings indicate that P(NDI2OD-T2) polymers are excellent candidates for the advancement of organic technologies that rely on the emission and detection of polarized lights.

  19. Capabilities to improve corrosion resistance of fuel claddings by using powerful laser and plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisov, V. M., E-mail: borisov@triniti.ru; Trofimov, V. N.; Sapozhkov, A. Yu.

    2016-12-15

    The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature (T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al{sub 2}O{sub 3}, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppressionmore » of corrosion in liquid lead to the temperature of 720°C are shown.« less

  20. 75 FR 9232 - Office of Dietary Supplements (ODS) 2010-2014 Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ...-2014. SUMMARY: The Office of Dietary Supplements (ODS) at the National Institutes of Health (NIH) has..., entitled Strengthening Knowledge and Understanding of Dietary Supplements. The strategic plan is available... the federal government, academia, the dietary supplement industry, consumer advocacy and education...

  1. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  2. Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Li, Ruihuan; Ding, Jianhua; Huang, Shaosong; Zhang, Pengbo; Lu, Zheng; Zhao, Jijun

    2018-02-01

    Using first-principles calculations, we systemically investigate the energetics and stability behavior of helium (He) atoms and small Hen (n = 2-4) clusters inside oxide dispersion strengthened (ODS) steel, as well as the incorporation of large amount of He atoms inside Y2O3 crystal. From the energetic point of view, He atom inside Y2O3 cluster is most stable, followed by the interstitial sites at the α-Fe/Y2O3 interface, and the tetrahedral interstitial sites inside α-Fe region. We further consider Hen (n = 2-4) clusters at the tetrahedral interstitial site surrounded by four Y atoms, which is the most stable site in the ODS steel model. The incorporation energies of all these Hen clusters are lower than that of single He atom in α-Fe, while the binding energy between two He atoms is relatively small. With insertion of 15 He atoms into 80-atom unit cell of Y2O3 crystal, the incorporation energy of He atoms is still lower than that of He4 cluster in α-Fe crystal. These theoretical results suggest that He atoms tend to aggregate inside Y2O3 clusters or at the α-Fe/Y2O3 interface, which is beneficial to prevent the He embrittlement in ODS steels.

  3. Exogenous bFGF or TGFβ1 accelerates healing of reconstructed dura by CO2 laser soldering in minipigs.

    PubMed

    Wang, Zhenmin; Zhong, Hongliang; Yang, Zhijun; Zhao, Fu; Wang, Bo; Qu, Peiran; Liu, Pinan

    2014-05-01

    This study aims to explore the probable mechanism of better result of dural reconstruction by CO2 laser soldering and the effect of exogenous basic fibroblast growth factor (bFGF) or transforming growth factor-beta1(TGFβ1) on wound healing. In part I of the study, ten minipigs were randomized into two equal groups, and the dural defects were reconstructed by conventional fibrin glue (FG) bonding (group I a) or by CO2 laser soldering (group Ib). In part II, 36 minipigs were randomized into three equal groups, and the dural defect was reconstructed by CO2 laser soldering; then exogenous bFGF or TGFβ1 was administered in group IIb and group IIc, respectively, while group IIa served as control group. The dural specimens were harvested at 1st week postoperatively in part I; and at 1st, 2nd, 3rd, and 4th week postoperatively in part II, they were examined for healing condition and subjected to hematoxylin-eosin (HE) staining and immunohistochemical (IHC) staining with antibodies against bFGF and TGFβ1. In part I, group Ib showed higher fibroblast cell density than group Ia (P < 0.05). The optical density (OD) for IHC staining with antibodies against bFGF of group Ib was significantly higher than that of group Ia (P < 0.05), and for IHC staining with antibodies against TGFβ1, group Ib showed positive staining while group Ia was negative. In part II, administering exogenous bFGF or TGFβ1 made a left shift of fibroblast cell number-time curve compared with control group. For specimens' IHC staining with antibodies against bFGF, the OD of group IIb was higher than that of group IIa in the corresponding time. For specimens' IHC staining with antibodies against TGFβ1, the OD of groups IIb and IIc was both higher than that of group IIa (P < 0.05 and P < 0.01, respectively). In conclusion, CO2 laser may trigger fibroblast proliferation through stimulating the secretion of bFGF and TGFβ1. Topically administering exogenous bFGF or TGFβ1 could accelerate the healing of the

  4. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Massey, Caleb P.; Edmondson, Philip D.

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y 2O 3 (+ ZrO 2 or TiO 2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ballmore » milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.« less

  5. Tissue dissection using a 1470-nm diode laser and laparoscopic prototype

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Hammerland, John; Nau, William H.; Fried, Nathaniel M.

    2017-02-01

    A continuous-wave, 40 Watt, 1470 nm laser was explored for rapid and precise dissection of porcine mesentery fascia and liver tissues, ex vivo. Laser energy was delivered through a 550-μm-core optical fiber inside a 5-mm-OD, laparoscopic probe, with detachable, 2 mm, sapphire ball rolling tip. Fascia tissue was cleanly dissected with scanning rates from 2.0 - 4.5 mm/s using 16 - 31W. Fascia collateral thermal damage measured as low as 180 +/- 50 μm at 4.5 mm/s scan speed. Porcine liver ablation crater depth measured up to 1010 +/- 220 μm with 30 W at 2.0 mm/s or as shallow as 80 +/- 30 μm with 10 W at 10 mm/s. Peak temperatures reached 130 °C at ball tip and 75 °C on metal jaws. The 1470-nm laser and probe show promise for laparoscopic tissue cutting and coagulation.

  6. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    NASA Astrophysics Data System (ADS)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  7. The level of orally ingested vitamin C affected the expression of vitamin C transporters and vitamin C accumulation in the livers of ODS rats.

    PubMed

    Sone, Yasuko; Ueta, Etsuko; Kodama, Satoru; Sannoumaru, Yasuko; Miyake, Noriko; Sone, Hirohito; Fujiwara, Yoko; Otsuka, Yuzuru; Kondo, Kazuo; Inagaki, Masahiro; Namba, Eiji; Kurata, Tadao; Suzuki, Emiko

    2011-01-01

    We investigated the effects of vitamin C administration on vitamin C-specific transporters in ODS/ShiJcl-od/od rat livers. The vitamin C-specific transporter levels increased in the livers of the rats not administered vitamin C and decreased in the livers of those administered vitamin C at 100 mg/d, indicating that these transporter levels can be influenced by the amount of vitamin C administered.

  8. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats.

    PubMed

    Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio

    2011-08-01

    Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.

  9. Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process

    NASA Astrophysics Data System (ADS)

    Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.

  10. Corrigendum to 'On the influence of microstructure on the fracture behaviour of hot extruded ferritic ODS steels' [J. Nucl. Mater. 497 (2017) 60-75

    NASA Astrophysics Data System (ADS)

    Das, A.; Viehrig, H. W.; Altstadt, E.; Heintze, C.; Hoffmann, J.

    2018-02-01

    ODS steels are known to show inferior fracture properties as compared to ferritic martensitic non-ODS steels. Hot extruded 13Cr ODS steel however, showed excellent fracture toughness at a temperature range from room temperature to 400 °C. In this work, the factors which resulted in superior and anisotropic fracture behaviour were investigated by comparing different orientations of two hot extruded materials using scanning electron, electron backscatter and transmission electron microscopy. Fracture behaviour of the two materials was compared using unloading compliance fracture toughness tests. Anisotropic fracture toughness was predominantly influenced by grain morphology. Superior fracture toughness in 13Cr ODS-KIT was predominantly influenced by factors such as smaller void inducing particle size and higher sub-micron particle-matrix interfacial strength.

  11. Satellite Laser Ranging Photon-Budget Calculations for a Single Satellite Cornercube Retroreflector: Attitude Control Tolerance

    DTIC Science & Technology

    2015-11-01

    beam splitter , and an arrangement of polarising prisms and waveplates to measure the diffraction pattern resulting from uni- form laser beams in...cornercube retroreflectors identified in the current satellite design are found to allow for a significant variation in the reflected beam width. The...Surface quality 60-40 Housing tolerance OD:† +0/− 0.5 mm H: ±0.25 mm Beam -angle tolerance 3 arcsec Substrate N-BK7 Coating Internal silver Figure 2: Design

  12. Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm

    NASA Technical Reports Server (NTRS)

    Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.

    1998-01-01

    We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.

  13. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tubemore » axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each

  14. Green chiral HPLC enantiomeric separations using high temperature liquid chromatography and subcritical water on Chiralcel OD and Chiralpak AD.

    PubMed

    Droux, Serge; Félix, Guy

    2011-01-01

    We report here the application of subcritical water in chiral separations on two popular polysaccharide chiral stationary phases (CSPs): Chiralpak AD and Chiralcel OD. The behavior of these two CSPs was studied under reversed phase conditions at room temperature to discover the maximum percentage of water in the mobile phase, which provided the separation of enantiomers of flavanone and benzoin, respectively, in a reasonable time (i.e., less than 1 h). Then, the stability of Chiralpak AD and Chiralcel OD versus temperature was investigated and discussed. Chiralcel OD separation of flavanone racemate was obtained at 120 °C with water and 2-propanol (80/20) as the mobile phase, while benzoin racemate was separated in pure water at 160 °C. Separations of several racemates were also presented, and advantages and limitations of the technique were discussed. Copyright © 2011 Wiley Periodicals, Inc.

  15. Producing a Climate-Quality Database of Global Upper Ocean Profile Temperatures - The IQuOD (International Quality-controlled Ocean Database) Project.

    NASA Astrophysics Data System (ADS)

    Sprintall, J.; Cowley, R.; Palmer, M. D.; Domingues, C. M.; Suzuki, T.; Ishii, M.; Boyer, T.; Goni, G. J.; Gouretski, V. V.; Macdonald, A. M.; Thresher, A.; Good, S. A.; Diggs, S. C.

    2016-02-01

    Historical ocean temperature profile observations provide a critical element for a host of ocean and climate research activities. These include providing initial conditions for seasonal-to-decadal prediction systems, evaluating past variations in sea level and Earth's energy imbalance, ocean state estimation for studying variability and change, and climate model evaluation and development. The International Quality controlled Ocean Database (IQuOD) initiative represents a community effort to create the most globally complete temperature profile dataset, with (intelligent) metadata and assigned uncertainties. With an internationally coordinated effort organized by oceanographers, with data and ocean instrumentation expertise, and in close consultation with end users (e.g., climate modelers), the IQuOD initiative will assess and maximize the potential of an irreplaceable collection of ocean temperature observations (tens of millions of profiles collected at a cost of tens of billions of dollars, since 1772) to fulfil the demand for a climate-quality global database that can be used with greater confidence in a vast range of climate change related research and services of societal benefit. Progress towards version 1 of the IQuOD database, ongoing and future work will be presented. More information on IQuOD is available at www.iquod.org.

  16. Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational characterization study by TEM and APT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Q. Wu; K. N. Allahar; J. Burns

    2013-08-01

    Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (~ 100 – 500 nm) and micron-size grains with nanostructured oxide precipitatesmore » formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures.« less

  17. Microstructure examination of Fe-14Cr ODS ferritic steels produced through different processing routes

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Hosemann, P.; Vogel, S. C.; Baluc, N.

    2014-08-01

    Various thermo-mechanical treatments were applied to refine and homogenise grain size and improve mechanical properties of hot-isostatically pressed (HIP) 14%Cr ODS ferritic steel. The grain size was reduced, improving mechanical properties, tensile strength and Charpy impact, however bimodal-like distribution was also observed. As a result, larger, frequently elongated grains with size above 1 μm and refined, equiaxed grains with a diameter ranging from 250 to 500 nm. Neutron diffraction measurements revealed that for HIP followed by hydrostatic extrusion material the strongest fiber texture was observed oriented parallel to the extrusion direction. In comparison with hot rolling and hot pressing methods, this material exhibited promising mechanical properties: the ultimate tensile strength of 1350 MPa, yield strength of 1280 MPa, total elongation of 21.7% and Charpy impact energy of 5.8 J. Inferior Charpy impact energy of ∼3.0 J was measured for HIP and hot rolled material, emphasising that parameters of this manufacturing process still have to be optimised. As an alternative manufacturing route, due to the uniform microstructure and simplicity of the process, hot pressing might be a promising method for production of smaller parts of ODS ferritic steels. Besides, the ductile-to-brittle transition temperature of all thermo-mechanically treated materials, in comparison with as-HIPped ODS steel, was improved by more than 50%, the transition temperature ranging from 50 to 70 °C (323 and 343 K) remains still unsatisfactory.

  18. Characterization of non-endcapped polymeric ODS column for the separation of triacylglycerol positional isomers.

    PubMed

    Gotoh, Naohiro; Matsumoto, Yumiko; Yuji, Hiromi; Nagai, Toshiharu; Mizobe, Hoyo; Ichioka, Kenji; Kuroda, Ikuma; Noguchi, Noriko; Wada, Shun

    2010-01-01

    The characteristics of a non-endcapped polymeric ODS column for the resolution of triacylglycerol positional isomers (TAG-PI) were examined using a recycle HPLC-atmospheric pressure chemical ionization/mass spectrometry system. A pair of TAG-PI containing saturated fatty acids at least 12 carbons was separated. Except for TAG-PI containing elaidic acid, pairs of TAG-PI containing three unsaturated fatty acids were not separated, even by recycle runs. These results indicate that the resolution of TAG-PI on a non-endcapped polymeric ODS stationary phase is realized by the recognition of the linear structure of the fatty acid and the binding position of the saturated fatty acid in TAG-PI. Chain length was also an important factor for resolution. This method may be a useful and simple for measuring the abundance ratio of TAG-PI containing saturated fatty acids in natural oils.

  19. Immediate loading of mandibular overdentures supported by one-piece, direct metal laser sintering mini-implants: a short-term prospective clinical study.

    PubMed

    Mangano, Francesco G; Caprioglio, Alberto; Levrini, Luca; Farronato, Davide; Zecca, Piero A; Mangano, Carlo

    2015-02-01

    Only a few studies have dealt with immediately loaded, unsplinted mini-implants supporting ball attachment-retained mandibular overdentures (ODs). The aim of this study is to evaluate treatment outcomes of ball attachment-retained mandibular ODs supported by one-piece, unsplinted, immediately loaded, direct metal laser sintering (DMLS) mini-implants. Over a 4-year period (2009 to 2012), all patients referred to the Dental Clinic, University of Varese, and to a private practice for treatment with mandibular ODs were considered for inclusion in this study. Each patient received three or four DMLS mini-implants. Immediately after implant placement, a mandibular OD was connected to the implants. At each annual follow-up session, clinical and radiographic parameters were assessed, including the following outcome measures: 1) implant failures; 2) peri-implant marginal bone loss; and 3) complications. Statistical analysis was conducted using a life-table analysis. A total of 231 one-piece DMLS mini-implants were inserted in 62 patients. After 4 years of loading, six implants failed, giving an overall cumulative survival rate of 96.9%. The mean distance between the implant shoulder and the first visible bone-to-implant contact was 0.38 ± 0.25 and 0.62 ± 0.20 mm at the 1- and 4-year follow-up examinations, respectively. An incidence of 6.0% of biologic complications was reported; prosthetic complications were more frequent (12.9%). Within the limits of this study, it can be concluded that the immediate loading of one-piece, unsplinted, DMLS titanium mini-implants by means of ball attachment-supported mandibular ODs is a successful treatment procedure. Long-term follow-up studies are needed to confirm these results.

  20. Thulium fiber laser recanalization of occluded ventricular catheters in an ex vivo tissue model

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Hardy, Luke A.; McLanahan, C. Scott; Fried, Nathaniel M.

    2017-04-01

    Hydrocephalus is a chronic medical condition that occurs in individuals who are unable to reabsorb cerebrospinal fluid (CSF) created within the ventricles of the brain. Treatment requires excess CSF to be diverted from the ventricles to another part of the body, where it can be returned to the vascular system via a shunt system beginning with a catheter within the ventricle. Catheter failures due to occlusion by brain tissues commonly occur and require surgical replacement of the catheter. In this preliminary study, minimally invasive clearance of occlusions is explored using an experimental thulium fiber laser (TFL), with comparison to a conventional holmium: yttrium aluminium garnet (YAG) laser. The TFL utilizes smaller optical fibers (<200-μm OD) compared with holmium laser (>450-μm OD), providing critical extra cross-sectional space within the 1.2-mm-inner-diameter ventricular catheter for simultaneous application of an endoscope for image guidance and a saline irrigation tube for visibility and safety. TFL ablation rates using 100-μm core fiber, 33-mJ pulse energy, 500-μs pulse duration, and 20- to 200-Hz pulse rates were compared to holmium laser using a 270-μm core fiber, 325-mJ, 300-μs, and 10 Hz. A tissue occluded catheter model was prepared using coagulated egg white within clear silicone tubing. An optimal TFL pulse rate of 50 Hz was determined, with an ablation rate of 150 μm/s and temperature rise outside the catheter of ˜10°C. High-speed camera images were used to explore the mechanism for removal of occlusions. Image guidance using a miniature, 0.7-mm outer diameter, 10,000 pixel endoscope was explored to improve procedure safety. With further development, simultaneous application of TFL with small fibers, miniature endoscope for image guidance, and irrigation tube for removal of tissue debris may provide a safe, efficient, and minimally invasive method of clearing occluded catheters in the treatment of hydrocephalus.

  1. Recent Results of the BGO-OD Experiment at ELSA Facility

    NASA Astrophysics Data System (ADS)

    De Leo, Veronica; Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bieling, J.; Boese, S.; Braghieri, A.; Brinkmann, K.; Burdeynyi, D.; Curciarello, F.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Frese, T.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, O.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Messi, F.; Messi, R.; Moricciani, D.; Nedorezov, V.; Noviskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Schaerf, C.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Vlasov, P.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2013-03-01

    The results obtained at the BGO-OD experiment with the BGO calorimeter, equipped with the new electronic readout based on sampling ADCs, during the tests performed with the beam time of March and June 2012 are presented. The proper functioning of the apparatus has allowed the reconstruction of the pseudo-scalar mesons π0 and η invariant masses. The simulation of the η' photoproduction reaction prepared for a proposal to the joint ELSA-MAMI Physics Advisory Committee is also presented.

  2. Oxide Evolution in ODS Steel Resulting From Friction Stir Welding

    DTIC Science & Technology

    2014-06-01

    Master’s Thesis 4 . TITLE AND SUBTITLE OXIDE EVOLUTION IN ODS STEEL RESULTING FROM FRICTION STIR WELDING 5. FUNDING NUMBERS 6 . AUTHOR(S...temperatures, from [5]. ........... 6   Figure 4 .  The phase diagram for aluminum and yttrium oxide, from [13]. ......................8  Figure 5...millimeters per minute. FSW Conditions RPM IPM MMPM Heat Index 400 7 175 2.3 300 4 100 3 200 2 50 4 400 4 100 4 300 2 50 6 400 2 50 8 500 1 25

  3. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

    NASA Astrophysics Data System (ADS)

    Gao, Rui; Ge, Wen-jun; Miao, Shu; Zhang, Tao; Wang, Xian-ping; Fang, Qian-feng

    2016-03-01

    The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30-40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

  4. Dissociative photoionization mechanism of methanol isotopologues (CH3OH, CD3OH, CH3OD and CD3OD) by iPEPICO: energetics, statistical and non-statistical kinetics and isotope effects.

    PubMed

    Borkar, Sampada; Sztáray, Bálint; Bodi, Andras

    2011-07-28

    The dissociative photoionization of energy selected methanol isotopologue (CH(3)OH, CD(3)OH, CH(3)OD and CD(3)OD) cations was investigated using imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy. The first dissociation is an H/D-atom loss from the carbon, also confirmed by partial deuteration. Somewhat above 12 eV, a parallel H(2)-loss channel weakly asserts itself. At photon energies above 15 eV, in a consecutive hydrogen molecule loss to the first H-atom loss, the formation of CHO(+)/CDO(+) dominates as opposed to COH(+)/COD(+) formation. We see little evidence for H-atom scrambling in these processes. In the photon energy range corresponding to the B[combining tilde] and C[combining tilde] ion states, a hydroxyl radical loss appears yielding CH(3)(+)/CD(3)(+). Based on the branching ratios, statistical considerations and ab initio calculations, this process is confirmed to take place on the first electronically excited Ã(2)A' ion state. Uncharacteristically, internal conversion is outcompeted by unimolecular dissociation due to the apparently weak Renner-Teller-like coupling between the X[combining tilde] and the à ion states. The experimental 0 K appearance energies of the ions CH(2)OH(+), CD(2)OH(+), CH(2)OD(+) and CD(2)OD(+) are measured to be 11.646 ± 0.003 eV, 11.739 ± 0.003 eV, 11.642 ± 0.003 eV and 11.737 ± 0.003 eV, respectively. The E(0)(CH(2)OH(+)) = 11.6454 ± 0.0017 eV was obtained based on the independently measured isotopologue results and calculated zero point effects. The 0 K heat of formation of CH(2)OH(+), protonated formaldehyde, was determined to be 717.7 ± 0.7 kJ mol(-1). This yields a 0 K heat of formation of CH(2)OH of -11.1 ± 0.9 kJ mol(-1) and an experimental 298 K proton affinity of formaldehyde of 711.6 ± 0.8 kJ mol(-1). The reverse barrier to homonuclear H(2)-loss from CH(3)OH(+) is determined to be 36 kJ mol(-1), whereas for heteronuclear H(2)-loss from CH(2)OH(+) it is found to be 210 kJ mol(-1). This

  5. NQRS Data for AlDO2 [Al(OD)O] (Subst. No. 0032)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO2 [Al(OD)O] (Subst. No. 0032)

  6. Method to enhance the performance of synthetic origin-destination (O-D) trip table estimation models.

    DOT National Transportation Integrated Search

    1998-01-01

    The conventional methods of determining origin-destination (O-D) trip tables involve elaborate surveys, e.g., home interviews, that require considerable time, staff, and funds. To overcome this drawback, a number of theoretical models that synthesize...

  7. Fiber optic illumination of a poly(dimethylsiloxane) sheath flow cuvette for diode laser induced fluorescence detection in capillary electrophoresis.

    PubMed

    Skinner, Cameron D

    2015-02-01

    A Tee configuration sheath flow cuvette with square cross-section channels has been produced in PDMS for CE detection. The output of a 1.4 W laser diode operating at 450 nm was focused onto the 300 μm core of a 370 μm od fiber optic whose end was inserted into one arm of the Tee for LIF. The optimal configuration had the fiber optic positioned 500 μm downstream from the intersection and the end of the 35 cm 50 μm id 365 μm od capillary just outside the intersection and in the leg of the Tee, resulting in a 90° configuration. Detection limits of 50 and 3 pM and linear calibrations of at least three orders of magnitude were obtained for Lucifer Yellow and fluorescein, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats.

    PubMed

    Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori

    2006-02-01

    ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.

  9. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indrajit Charit; Megan Frary; Darryl Butt

    2011-03-31

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and leadmore » to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.« less

  10. Evaluation of an ODS column modified with zwitterionic/nonionic mixed surfactants and its application to direct injection determination of inorganic anions.

    PubMed

    Hasegawa, Takuya; Umemura, Tomonari; Koide, Akira; Chiba, Koichi; Ueki, Yuji; Tsunoda, Kin-ichi; Haraguchi, Hiroki

    2005-08-01

    An octadecylsilica (ODS) column modified with zwitterionic/nonionic mixed surfactants was evaluated for the direct injection determination of inorganic anions in biological fluids by ion chromatography. A zwitterionic surfactant (sulfobetaine-type) and a nonionic surfactant (polyoxyethylene-type) were used for a stationary-phase modification. When aqueous electrolyte solutions with concentrations of sub-mM to several mM were used as a mobile phase, the zwitterionic surfactant coated on the ODS surface exhibited unique separation selectivity for ionic species, while the nonionic surfactant coated on the ODS might have formed a hydrophilic network over the ODS surface and restricted matrix proteins from adsorbing on the stationary phase. Consequently, the mixed surfactant-modified column system allowed an efficient ion chromatographic separation of inorganic anions as well as a size-exclusive removal of column-fouling proteins. This separation system was applied to the direct injection determination of UV-absorbing anions in human saliva. The detection limits for nitrite, nitrate, iodide and thiocyanate were 3.1, 2.7, 4.5 and 25 microM, respectively, with UV detection at 210 nm (injection volume; 20 microl), and their relative standard deviations for 5 replicate measurements of saliva samples spiked with 100 microM each of those anions were 1.4, 0.9, 2.2 and 5.5%, respectively.

  11. ODS - modified TiO2 nanoparticles for the preparation of self-cleaning superhydrophobic coating

    NASA Astrophysics Data System (ADS)

    Kokare, Ashvini M.; Sutar, Rajaram S.; Deshmukh, S. G.; Xing, Ruimin; Liu, Shanhu; Latthe, Sanjay S.

    2018-05-01

    Rolling water drops takes off dust particles from lotus leaf showing self-cleaning performance. Self-cleaning effect has great importance in industry as well as in daily life. The present paper describes the preparation of self-cleaning superhydrophobic coating through simple and low cost dip coating technique. The prepared superhydrophobic surface enact as lotus leaf. Firstly TiO2 nanoparticles were dispersed in ethanol and different concentration of octadecyltrichlorosilane (ODS) was added in TiO2 dispersion. The effect of number of deposition layer on the wettability of the coating was studied. The coating prepared from five deposition layers showed contact angle higher than 150° and sliding angle less than 10°. The superhydrophobicity increases with increasing concentration of ODS. The hierarchical rough morphology which is preferable for superhydrophobicity was obtained. The prepared coatings were stable against water jet impact and showed repellent towards colored and muddy water. Such superhydrophobic coating can find enormous scope in self-cleaning application.

  12. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  13. Maxillary overdentures supported by four splinted direct metal laser sintering implants: a 3-year prospective clinical study.

    PubMed

    Mangano, Francesco; Luongo, Fabrizia; Shibli, Jamil Awad; Anil, Sukumaran; Mangano, Carlo

    2014-01-01

    Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS) technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females) to support bar-retained maxillary overdentures (ODs). Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB). Results. The 3-year implant survival rate was 97.4% (implant-based) and 92.9% (patient-based). Three implants failed. The incidence of biological complication was 3.5% (implant-based) and 7.1% (patient-based). The incidence of prosthetic complication was 17.8% (patient-based). No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results.

  14. Maxillary Overdentures Supported by Four Splinted Direct Metal Laser Sintering Implants: A 3-Year Prospective Clinical Study

    PubMed Central

    Mangano, Francesco; Shibli, Jamil Awad; Anil, Sukumaran

    2014-01-01

    Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS) technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females) to support bar-retained maxillary overdentures (ODs). Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB). Results. The 3-year implant survival rate was 97.4% (implant-based) and 92.9% (patient-based). Three implants failed. The incidence of biological complication was 3.5% (implant-based) and 7.1% (patient-based). The incidence of prosthetic complication was 17.8% (patient-based). No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results. PMID:25580124

  15. Real-time estimation of transit OD patterns and delays using low cost-ubiquitous advanced technologies.

    DOT National Transportation Integrated Search

    2017-04-01

    The main objective of this project is to develop and conduct limited testing of novel sensors using Bluetooth technology : (BT) to estimate OD demands and station wait times for users of public transit stations. The NYU research team tested the : fea...

  16. Study of the photochemical transformation of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA) under conditions relevant to surface waters.

    PubMed

    Calza, P; Vione, D; Galli, F; Fabbri, D; Dal Bello, F; Medana, C

    2016-01-01

    We studied the aquatic environmental fate of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA), a widespread sunscreen, to assess its environmental persistence and photoinduced transformation. Direct photolysis is shown to play a key role in phototransformation, and this fast process is expected to be the main attenuation route of OD-PABA in sunlit surface waters. The generation of transformation products (TPs) was followed via HPLC/HRMS. Five (or four) TPs were detected in the samples exposed to UVB (or UVA) radiation, respectively. The main detected TPs of OD-PABA, at least as far as HPLC-HRMS peak areas are concerned, would involve a dealkylation or hydroxylation/oxidation process in both direct photolysis and indirect phototransformation. The latter was simulated by using TiO2-based heterogeneous photocatalysis, involving the formation of nine additional TPs. Most of them resulted from the further degradation of the primary TPs that can also be formed by direct photolysis. Therefore, these secondary TPs might also occur as later transformation intermediates in natural aquatic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  18. Testing the hypothesis that vitamin C deficiency is a risk factor for clozapine-induced agranulocytosis using guinea pigs and ODS rats.

    PubMed

    Ip, Julia; Wilson, John X; Uetrecht, Jack P

    2008-04-01

    The use of clozapine is limited by a relatively high incidence of drug-induced agranulocytosis. Clozapine is oxidized by bone marrow cells to a reactive nitrenium ion. Although many idiosyncratic drug reactions are immune-mediated, the fact that patients with a history of clozapine-induced agranulocytosis do not immediately develop agranulocytosis on rechallenge suggests that some other factor may be responsible for the idiosyncratic nature of this reaction. The reactive nitrenium ion is very rapidly reduced back to clozapine by vitamin C, and many schizophrenic patients are vitamin C deficient. We set out to test the hypothesis that vitamin C deficiency is a major risk factor for clozapine-induced agranulocytosis using a vitamin C deficient guinea pig model. Although the vitamin C deficient guinea pigs did not develop agranulocytosis, the amount of clozapine covalent binding in these animals was less than we had previously observed in samples from rats and humans. Therefore, we studied ODS rats that also cannot synthesize vitamin C. Vitamin C deficient ODS rats also did not develop agranulocytosis, and furthermore, although covalent binding in the bone marrow was greater than that in the guinea pig, it was not increased in the vitamin C deficient ODS rats relative to ODS rats that had adequate vitamin C in their diet. Therefore, it is very unlikely that vitamin C deficiency is a major risk factor for clozapine-induced agranulocytosis.

  19. A method to enhance the performance of synthetic origin-destination (O-D) trip table estimation models.

    DOT National Transportation Integrated Search

    1998-01-01

    The conventional methods of determining origin-destination (O-D) trip tables involve elaborate surveys, e.g., home interviews, that require considerable time, staff, and funds. To overcome this drawback, a number of theoretical models that synthesize...

  20. The effects of dissolved organic matter and feeding on bioconcentration and oxidative stress of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) to crucian carp (Carassius auratus).

    PubMed

    Ma, Binni; Lu, Guanghua; Yang, Haohan; Liu, Jianchao; Yan, Zhenhua; Nkoom, Matthew

    2018-03-01

    Bioconcentration of UV filters in organisms is an important indicator for the assessment of environmental hazards. However, bioconcentration testing rarely accounts for the influence of natural aquatic environmental factors. In order to better assess the ecological risk of organic UV filters (OUV-Fs) in an actual water environment, this study determined the influences of dissolved organic matter (DOM) (0, 1, 10, and 20 mg/L) and feeding (0, 0.5, 1, and 2% body weight/d) on bioconcentration of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) in various tissues of crucian carp (Carassius auratus). Moreover, oxidative stress in the fish liver caused by the OD-PABA was also investigated by measuring activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), and levels of glutathione (GSH) and malondialdehyde (MDA). The bioconcentration of OD-PABA in the fish tissues was significantly decreased with the presence of DOM indicating a reduction of OD-PABA bioavailability caused by DOM. The bioconcentration factors (BCFs) decreased by 28.00~50.93% in the muscle, 72.67~96.74% in the gill, 37.84~87.72% in the liver, and 10.32~79.38% in the kidney at different DOM concentrations compared to those of the non-DOM treatments. Significant changes in SOD, CAT, GST, GSH, and MDA levels were found in the DOM- and OD-PABA-alone treatments. However, there were no significant differences in the SOD, CAT, GST, and MDA levels found when co-exposure to OD-PABA and DOM. Feeding led to lower OD-PABA concentrations in the fish tissues, and the concentrations were decreased with increasing feeding ratios. BCFs in various tissues reduced by 39.75~72.52% in the muscle, 56.86~79.73% in the gill, 66.41~87.50% in the liver, and 75.88~89.10% in the kidney, respectively. In the unfed treatments, the levels of SOD and MDA were significantly higher than those of the fed ones while GST and GSH levels were remarkably inhibited indicating the enhanced effect of starvation

  1. 2-Chloro-2,2-difluoroacetophenone: a non-ODS-based difluorocarbene precursor and its use in the difluoromethylation of phenol derivatives.

    PubMed

    Zhang, Laijun; Zheng, Ji; Hu, Jinbo

    2006-12-22

    A novel and non-ODS-based (ODS = ozone-depleting substance) preparation of 2-chloro-2,2-difluoroacetophenone (1) was achieved in high yield by using 2,2,2-trifluoroacetophenone as the starting material. Compound 1 was found to act as a good difluorocarbene reagent, which readily reacts with a variety of structurally diverse phenol derivatives 4 in the presence of potassium hydroxide or potassium carbonate to produce aryl difluoromethyl ethers 5 in good yields. This new and easy-to-handle synthetic methodology offers an environmentally friendly alternative to other Freon- or Halon-based difluoromethylating approaches.

  2. Low Cost Process for Manufacture of Oxide Dispersion Strengthened (ODS) Turbine Nozzle Components.

    DTIC Science & Technology

    1979-12-01

    SWTTPROCESS FORJIANUFACTURE OF9OXIDE)ISPERSIONSTRENGTHENED (ODS) O0 TURBINE !IJOZZLE COMPONENTS, -- , General Electric Company Aircraft Engine Group...machining processes for low pressure turbine (LPT) vanes , high pressure turbine (HPT) vanes , and HPT band segments for the F101 engine . The primary intent...for aircraft turbine nozzle components. These processes were shown capable of maintaining required microstructures and properties for the vane and

  3. Analysis of deformation of aluminum plates under the influence of nano- and microsecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jach, K.; Świerczyński, R.; Ostrowski, R.; Rycyk, A.; CzyŻ, K.; Strzelec, M.; Sarzyński, A.

    2017-10-01

    The paper presents numerical modeling of interaction of strong laser radiation with conventional aluminum sheets, similar to those used in military technology. The theoretical model uses equations of continuum mechanics (equations of hydrodynamics and the equations of mechanics of solid bodies in a cylindrical coordinates r, z), enriched with equations describing the typical effects of high temperature, such as absorption of laser radiation within the Al shield, electronic and radiative thermal conductivity, and energy loss on phase transitions (melting, evaporation, ionization). Semiempirical equations of state were used to describe the properties of material in the conditions of large deformation and the Johnson-Cook's model. The equations were solved using the method of free points developed by one of the authors. Two kinds od laser pulses were considered: microsecond pulse with duration of 200 μs and a low peak power of 10 kW/cm2 (CW laser), and nanosecond pulse with duration of 10 ns and high peak power of 5 GW/cm2 (pulsed laser). The aim of this study was to determine the shapes and temperatures of Al plates under the influence of these pulses for the comparison of the numerical results with future experiments and to verify the possibility to determine the distribution of the energy density of the laser beam on the basis of the plate deformation.

  4. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    PubMed

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  5. Fracture behaviour of the 14Cr ODS steel exposed to helium and liquid lead

    NASA Astrophysics Data System (ADS)

    Hojna, Anna; Di Gabriele, Fosca; Hadraba, Hynek; Husak, Roman; Kubena, Ivo; Rozumova, Lucia; Bublikova, Petra; Kalivodova, Jana; Matejicek, Jiri

    2017-07-01

    This work describes the fracture behaviour of the 14Cr ODS steel produced by mechanical alloying process, after high temperature exposures. Small specimens were exposed to helium gas in a furnace at 720 °C for 500 h. Another set of specimens was exposed to flowing liquid lead in the COLONRI II loop at 650 °C for 1000 h. All specimens were tested for the impact and tensile behaviour. The impact test results are compared to other sets of specimens in the as received state and after isothermal annealing at 650 °C for 1000 h. The impact curves of the exposed materials showed positive shifts on the transition temperature. While the upper shelf value did not change in the Pb exposed ODS steel, it significantly increased in the He exposed one. The differences are discussed in terms of surface and subsurface microscopy observation. The embrittlement can be explained as the effect of a slight change in the grain boundary and size distribution combined with the depletion of sub-surface region from alloying elements forming oxide scale on the surface.

  6. The observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence

    NASA Astrophysics Data System (ADS)

    Silalahi, Marzuki; Purwanto, Setyo; Mujamilah; Dimyati, Arbi

    2018-03-01

    About the observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence. This paper reported about the observation of the resistivity change in the ultrasonic pre-treated Fe-Cr ODS sinter alloy under the influence of magnetic field at the Center for Science and Technology of Advanced Material, Nuclear Energy Agency of Indonesia. Fe-Cr ODS alloy were sinthesized by vacuum sintering of Fe- and Cr-powder dispersed Y2O3. However, before sintering the powder mixture was subjected to the irradiation process by ultrasonic for 50 hours at 20 kHz and then isostatic pressed up to 50.91 MPa to form a coin of 10 mm in diameter. LCR meassurement revealed the decreasing of resistivity about 3 times by increasing of applied magnetic field from 0 to 70 mT. In addition, VSM meassurement was performed on both as powder material and as sintered sample. The results showed increasing the magnetization with increasing magnetic field and the curve exhibits almost exact symmetry S-form with small hysterese indicating fast changing magnetization and demagnetization capability without energy loss. This opens strong speculations about the existence of magnetoresistant property of the material which is important for many application in field of sensors or electro magnetic valves.

  7. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadbandmore » excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.« less

  8. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    PubMed

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-07

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.

  9. The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by nanoindentation

    NASA Astrophysics Data System (ADS)

    Duan, Binghuang; Heintze, Cornelia; Bergner, Frank; Ulbricht, Andreas; Akhmadaliev, Shavkat; Oñorbe, Elvira; de Carlan, Yann; Wang, Tieshan

    2017-11-01

    Oxide dispersion strengthened (ODS) Fe-Cr alloys are promising candidates for structural components in nuclear energy production. The small grain size, high dislocation density and the presence of particle matrix interfaces may contribute to the improved irradiation resistance of this class of alloys by providing sinks and/or traps for irradiation-induced point defects. The extent to which these effects impede hardening is still a matter of debate. To address this problem, a set of alloys of different grain size, dislocation density and oxide particle distribution were selected. In this study, three-step Fe-ion irradiation at both 300 °C and 500 °C up to 10 dpa was used to introduce damage in five different materials including three 9Cr-ODS alloys, one 14Cr-ODS alloy and one 14Cr-non-ODS alloy. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and nanoindentation testing were applied, the latter before and after irradiation. Significant hardening occurred for all materials and temperatures, but it is distinctly lower in the 14Cr alloys and also tends to be lower at the higher temperature. The possible contribution of Cr-rich α‧-phase particles is addressed. The impact of grain size, dislocation density and particle distribution is demonstrated in terms of an empirical trend between total sink strength and hardening.

  10. Coaching, HRD, and OD: Towards Three "Silo" Fields of Practice or a Single "Unified" Profession?

    ERIC Educational Resources Information Center

    Ellinger, Andrea D.; Hamlin, Robert G.; Beattie, Rona S.

    2008-01-01

    During the past few years, the growth of an emergent "coaching industry" in many countries has resulted in some scholars calling for the development of a "coaching profession." Yet, contemporary HRD and OD professionals conceive of coaching as a necessary area of expertise. This paper reports the results of a qualitative study of different…

  11. Helium-ion microscopy, helium-ion irradiation and nanoindentation of Eurofer 97 and ODS Eurofer

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Hlawacek, G.; Heintze, C.

    2018-07-01

    Understanding of unsolved details of helium embrittlement requires experimental evidence for dedicated sets of materials and over a wide range of irradiation conditions. The study is focussed on the comparison of a reduced-activation ferritic-martensitic 9%Cr steel (Eurofer 97) with its oxide dispersion strengthened counterpart (ODS Eurofer) with respect to irradiation-induced hardening. Imaging and He-ion irradiation in the He-ion microscope at 30 °C in a wide range of appm He (from 0.9 × 102 to 1.8 × 106) and displacements per atom (dpa) (from 3 × 10-3 to 65) were combined with post-irradiation nanoindentation in order to detect blistering and irradiation-induced hardness changes. The applicability of this combination of techniques is demonstrated and pros and cons are discussed. We have found that the indentation hardness increases significantly after in-microscope irradiation to 3 dpa (0.9 × 105 appm He). The irradiation-induced hardness increase is higher and the onset of significant hardening tends to occur at lower fluence for Eurofer 97 than for ODS Eurofer, indicating that the presence of oxide nanoparticles is efficient to reduce the detrimental effect of He under the applied irradiation conditions.

  12. Effect of deuteration on hydrogen bonding: A comparative concentration dependent Raman and DFT study of pyridine in CH3OH and CD3OD and pyrimidine in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Singh, Anurag; Gangopadhyay, Debraj; Popp, Jürgen; Singh, Ranjan K.

    2012-12-01

    The relative effect of hydrogen bonding of pyrimidine (Pyr) in H2O/D2O and pyridine (Py) in CH3OH/CD3OD has been analyzed using Raman Difference Spectroscopic (RDS) technique and DFT calculations. This study is focused on analyzing the concentration dependent variation of linewidth, peak position and intensity of ring breathing mode of Py and Pyr. The ring breathing mode of Pyr in H2O and D2O has three components; due to free Pyr, lighter complexes of mPyr + nH2O/D2O and heavier complexes of mPyr + nH2O/D2O. The pyridine molecules, however, show only two components in CH3OH and CD3OD. Of these two components, one corresponds to free Py and the other inhomogeneously broadened profile corresponds to all mPy + nCH3OH/CD3OD complexes. The variation of peak position and linewidth establishes the role of dipole moment of complexes and the diffusion in the mixture. In case of CD3OD solution splitting was observed in ˜1030 cm-1 band of Py, where an additional band at ˜1034 cm-1 appears at x(Py) ⩽ 0.4. However, this band remains single at all concentrations in case of CH3OH solvent.

  13. Production, microstructure and mechanical properties of two different austenitic ODS steels

    NASA Astrophysics Data System (ADS)

    Gräning, T.; Rieth, M.; Hoffmann, J.; Möslang, A.

    2017-04-01

    This article is to summarize and examine processing parameters of novel developed austenitic oxide dispersed strengthened (ODS) steels. Comparing hot-rolled and extruded conditions after the same degree of deformation after and before annealing, are just some examples to give insights into the complex processing of austenitic ODS steels. One of the major drawbacks of the material is the more sophisticated production process. Due to a ductile matrix material with an increased stickiness during milling, a two-step milling procedure with the use of ZrO2 milling balls was applied to raise the production yield and to use the abrasion of the ZrO2 as an additional element to facilitate the formation of nano-sized precipitates. To get a better understanding how the different powder particle sizes after milling affect final properties, sieving was applied and revealed a serious effect in terms of precipitate size, distribution and mechanical properties. Grain sizes in relation to the precipitate size, annealing time and processing parameters were determined and compared to the mechanical properties. Hardness and tensile test have pointed out, that the precipitate size and number are more important in respect to the ultimate tensile strength than the grain size and that in this study hot-rolled material exhibited the better properties. The investigation of the microstructure illustrated the stability of precipitates during annealing at 1100 °C for 40 h. These heat treatments also led to a consistent grain size, due to the pinning effect of the grain boundaries, caused by precipitates.

  14. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  15. The BGO Calorimeter of BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Bieling, J.; Bleckwenn, M.; Böse, S.; Braghieri, A.; Brinkmann, K.-Th; Burdeynyi, D.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.-F.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Mei, P.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2015-02-01

    The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 × 107 photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs.

  16. MR-defecography in obstructed defecation syndrome (ODS): technique, diagnostic criteria and grading.

    PubMed

    Piloni, V; Tosi, P; Vernelli, M

    2013-10-01

    The aim of this study was to evaluate the use of a magnetic resonance (MR)-based classification system of obstructive defecation syndrome (ODS) to guide physicians in patient management. The medical records and imaging series of 105 consecutive patients (90 female, 15 male, aged 21-78 years, mean age 46.1 ± 5.1 years) referred to our center between April 2011 and January 2012 for symptoms of ODS were retrospectively examined. After history taking and a complete clinical examination, patients underwent MR imaging according to a standard protocol using a 0.35 T permanent field, horizontally oriented open-configuration magnet. Static and dynamic MR-defecography was performed using recognized parameters and well-established diagnostic criteria. Sixty-seven out of 105 (64 %) patients found the prone position more comfortable for the evacuation of rectal contrast while 10/105 (9.5 %) were unable to empty their rectum despite repeated attempts. Increased hiatus size, anterior rectocele and focal or extensive defects of the levator ani muscle were the most frequent abnormalities (67.6, 60.0 and 51.4 %, respectively). An MR-based classification was developed based on the combinations of abnormalities found: Grade 1 = functional abnormality, including paradoxical contraction of the puborectalis muscle, without anatomical defect affecting the musculo-fascial structures; Grade 2 = functional defect associated with a minor anatomical defect such as rectocele ≤ 2 cm in size and/or first-degree intussusception; Grade 3 = severe defects confined to the posterior anatomical compartment, including >2 cm rectocele, second- or higher-degree intussusception, full-thickness external rectal prolapse, poor mesorectal posterior fixation, rectal descent >5 cm, levator ani muscle rupture, ballooning of the levator hiatus and focal detachment of the endopelvic fascia; Grade 4 = combined defects of two or three pelvic floor compartments, including cystocele, hysterocele, enlarged urogenital

  17. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  18. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    PubMed

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  19. Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered permeation of ondansetron across porcine skin.

    PubMed

    Teodorescu, Florina; Quéniat, Gurvan; Foulon, Catherine; Lecoeur, Marie; Barras, Alexandre; Boulahneche, Samia; Medjram, Mohmaed Salah; Hubert, Thomas; Abderrahmani, Amar; Boukherroub, Rabah; Szunerits, Sabine

    2017-01-10

    The development of a skin-mounted patch capable of controlled transcutaneous delivery of therapeutics through thermal activation provides a unique solution for the controlled release of active principles over long-term periods. Here, we report on a flexible transdermal patch for photothermal triggered release of ondansetron (ODS), a commonly used drug for the treatment of chemotherapy-induced nausea and vomiting and used as model compound here. To achieve this, a dispersion of ODS-loaded reduced graphene oxide (rGO-ODS) nanosheets were deposited onto Kapton to produce a flexible polyimide-based patch. It is demonstrated that ODS loaded Kapton/rGO patches have a high drug delivery performance upon irradiation with a continuous laser beam at 980nm for 10min due to an induced photothermal heating effect. The ability of ODS impregnated Kapton/rGO patches as transdermal delivery scaffolds for ODS across the skin is in addition investigated using porcine ear skin as a model. We show that the cumulative quantity and flux of ODS passing the skin are highly depending on the laser power density used. At 5Wcm -2 irradiation, the ODS flux across pig skin was determined to be 1.6μgcm -2 h -1 comparable to other approaches. The use of tween 20 as skin enhancer could significantly increase the ODS flux to 13.2μgcm -2 h -1 . While the skin penetration enhancement is comparable to that obtained using other well-known permeation enhancers, the actual superiority and interest of the proposed approach is that the Kapton/rGO photoactivatable skin patch can be loaded with any drugs and therapeutics of interest, making the approach extremely versatile. The on demand delivery of drugs upon local laser irradiation and the possibility to reload the interface with the drug makes this new drug administration route very appealing. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars

    NASA Astrophysics Data System (ADS)

    Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.

    2017-11-01

    The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.

  1. Separation of V(V)-4-(2-pyridylazo)resorcinolato complex from a large excess reagent using an ODS cartridge for high-performance liquid chromatography.

    PubMed

    Takahashi, Toru; Kaneko, Emiko; Yotsuyanagi, Takao

    2006-12-01

    A selective off-line preconcentration technique for the V(V) complex with 4-(2-pyridylazo)resorcinol has been developed and successfully applied to the determination of V(V) in an air-borne sample. The target complex was separated from excess reagent using an ODS cartridge and water as the eluent. The complex was then concentrated on another ODS cartridge using tetrabutylammonium bromide and eluted with methanol; the eluate was applied to a one-drop concentration/HPLC. A detection limit as low as (6.05 +/- 0.82)x 10(-11) M (5 ppt) was achieved.

  2. Diffusing, side-firing, and radial delivery laser balloon catheters for creating subsurface thermal lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Fried, Nathaniel M.

    2016-02-01

    Infrared lasers have been used in combination with applied cooling methods to preserve superficial skin layers during cosmetic surgery. Similarly, combined laser irradiation and tissue cooling may also allow development of minimally invasive laser therapies beyond dermatology. This study compares diffusing, side-firing, and radial delivery laser balloon catheter designs for creation of subsurface lesions in tissue, ex vivo, using a near-IR laser and applied contact cooling. An Ytterbium fiber laser with 1075 nm wavelength delivered energy through custom built 18 Fr (6-mm-OD) balloon catheters incorporating either 10-mm-long diffusing fiber tip, 90 degree side-firing fiber, or radial delivery cone mirror, through a central lumen. A chilled solution was flowed through a separate lumen into 9-mm-diameter balloon to keep probe cooled at 7°C. Porcine liver tissue samples were used as preliminary tissue model for immediate observation of thermal lesion creation. The diffusing fiber produced subsurface thermal lesions measuring 49.3 +/- 10.0 mm2 and preserved 0.8 +/- 0.1 mm of surface tissue. The side-firing fiber produced subsurface thermal lesions of 2.4 +/- 0.9 mm2 diameter and preserved 0.5 +/- 0.1 mm of surface tissue. The radial delivery probe assembly failed to produce subsurface thermal lesions, presumably due to the small effective spot diameter at the tissue surface, which limited optical penetration depth. Optimal laser power and irradiation time measured 15 W and 100 s for diffusing fiber and 1.4 W and 20 s, for side-firing fiber, respectively. Diffusing and side-firing laser balloon catheter designs provided subsurface thermal lesions in tissue. However, the divergent laser beam in both designs limited the ability to preserve a thicker layer of tissue surface. Further optimization of laser and cooling parameters may be necessary to preserve thicker surface tissue layers.

  3. Positron and nanoindentation study of helium implanted high chromium ODS steels

    NASA Astrophysics Data System (ADS)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  4. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Mueller, P.; Spätig, P.; Baluc, N.

    2011-05-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 °C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 °C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 °C).

  5. Line profile analysis of ODS steels Fe20Cr5AlTiY milled powders at different Y2O3 concentrations

    NASA Astrophysics Data System (ADS)

    Afandi, A.; Nisa, R.; Thosin, K. A. Z.

    2017-04-01

    Mechanical properties of material are largely dictated by constituent microstructure parameters such as dislocation density, lattice microstrain, crystallite size and its distribution. To develop ultra-fine grain alloys such as Oxide Dispersion Strengthened (ODS) alloys, mechanical alloying is crucial step to introduce crystal defects, and refining the crystallite size. In this research the ODS sample powders were mechanically alloyed with different Y2O3 concentration respectively of 0.5, 1, 3, and 5 wt%. MA process was conducted with High Energy Milling (HEM) with the ball to powder ratio of 15:1. The vial and the ball were made of alumina, and the milling condition is set 200 r.p.m constant. The ODS powders were investigated by X-Ray Diffractions (XRD), Bragg-Brentano setup of SmartLab Rigaku with 40 KV, and 30 mA, step size using 0.02°, with scanning speed of 4°min-1. Line Profile Analysis (LPA) of classical Williamson-Hall was carried out, with the aim to investigate the different crystallite size, and microstrain due to the selection of the full wide at half maximum (FWHM) and integral breadth.

  6. A photoionization study of OH and OD from 680A to 950A: An analysis of the Rydberg series

    NASA Technical Reports Server (NTRS)

    Cutler, J. N.; He, Z. X.; Samson, J. A. R.

    1994-01-01

    The photoionization spectra of OH(+) and OD(+) have been reported from 680 to 950 A (18.23 to 13.05 eV) at a wavelength resolution of 0.07 A. Through interpretation of both spectra, the Rydberg series and their higher vibrational members have been reported for three of the excited ionic states, a(sup 1)Delta, A(sup 3)Pi(i), and b(sup 1) Sigma(sup +). A vibrational progression has also been observed in both OH(+) and OD(+) which is apparently related to a fourth excited ionic state, c(sup 1)Pi. Finally, the dissociative ionization limits, corrected to 0 K,for H2O AND D2O have been measured to be 18.11+/-0.01 and 18.21+/-0.01 eV, respectively, and shown to be in good agreement with previously reported results.

  7. Vapor-phase catalytic oxidesulfurization (ODS) of organosulfur compounds over supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon

    Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and

  8. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman

    2016-09-20

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing formore » further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of α- and γ-fibers on {001}<110> and {111}<110> together with a shear texture of ζ-fiber on {011}<211> and {011}<011>. On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of θ- and ε-fiber on {001}<110> together with weak γ-fiber on {111}<112>. Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large

  9. Raman microprobe analysis of single ramie fiber during mercerization

    Treesearch

    Akira Isogai; Umesh P. Agarwal; Rajai H. Atalla

    2003-01-01

    The Raman microprobe technique was applied to structural analysis of single ramie fibers during mercerization. Polarized laser beam was irradiated on a ramie fiber in 0-30 % NaOD/D2O with the electric vector at 0 or 90° to the fiber axis, and Raman spectra thus obtained were studied in relation to the concentration of NaOD in D2O. Conversion of -OH to -OD in ramie...

  10. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    NASA Astrophysics Data System (ADS)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  11. CO + OH --> CO2 + H: The relative reaction rate of five CO isotopologues with OH and OD

    NASA Astrophysics Data System (ADS)

    Feilberg, K. L.; Nielsen, C. J.; Griffith, D. W.; Johnson, M. S.

    2003-04-01

    The reaction of carbon monoxide with the hydroxyl radical (CO + OH) plays a central role in tropospheric chemistry. While the analysis of stable isotope enrichment has been used to refine models of the sources and sinks of atmospheric CO and CO_2, less is known about the mechanism behind the enrichment [T. Röckmann et al., 1998]. We have previously reported the relative reaction rate of five CO isotopologues with OH radicals [K. L. Feilberg et al. 2002]; the present work is an expansion of the previous work in which the relative reaction rate with OD as well as with OH is measured using an improved technique. The hydroxyl radical was generated by the UV photolysis of ozone in the presence of hydrogen gas. The concentrations of the carbon monoxide isotopologues as a function of photolysis time is determined using a global fit of the rovibrationally resolved FTIR spectrum of the gas mixture in a stainless steel smog chamber. The observed inverse kinetic isotope effect is best understood in terms of the effect of isotopic substitution on the relative rate of unimolecular dissociation of the HOCO intermediate to reform reagents versus dissociate to products. In addition, we present the results of a quantum dressed classical mechanics calculation for the reaction CO + OD rightarrow CO_2 + D analogous to a previously published calculation for the reaction CO + OD rightarrow CO_2 + H [K. L. Feilberg et al. 2001]. References T. Röckmann, C. A. M. Brenninkmeijer, G. Saueressig, P. Bergamaschi, J. N. Crowley, H. Fischer and P. J. Crutzen, Science, 1998, 281, 544. K. L. Feilberg, C. J. Nielsen, D. W. T. Griffith and M. S. Johnson, Physical Chemistry Chemical Physics 4, 4687-4693, 2002. K. L. Feilberg, G. D. Billing and M. S. Johnson, Journal of Physical Chemistry A, 105(50), 11171, 2001.

  12. Defining clusters in APT reconstructions of ODS steels.

    PubMed

    Williams, Ceri A; Haley, Daniel; Marquis, Emmanuelle A; Smith, George D W; Moody, Michael P

    2013-09-01

    Oxide nanoclusters in a consolidated Fe-14Cr-2W-0.3Ti-0.3Y₂O₃ ODS steel and in the alloy powder after mechanical alloying (but before consolidation) are investigated by atom probe tomography (APT). The maximum separation method is a standard method to define and characterise clusters from within APT data, but this work shows that the extent of clustering between the two materials is sufficiently different that the nanoclusters in the mechanically alloyed powder and in the consolidated material cannot be compared directly using the same cluster selection parameters. As the cluster selection parameters influence the size and composition of the clusters significantly, a procedure to optimise the input parameters for the maximum separation method is proposed by sweeping the d(max) and N(min) parameter space. By applying this method of cluster parameter selection combined with a 'matrix correction' to account for trajectory aberrations, differences in the oxide nanoclusters can then be reliably quantified. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Developing an OD-Intervention Metric System with the Use of Applied Theory-Building Methodology: A Work/Life-Intervention Example

    ERIC Educational Resources Information Center

    Morris, Michael Lane; Storberg-Walker, Julia; McMillan, Heather S.

    2009-01-01

    This article presents a new model, generated through applied theory-building research methods, that helps human resource development (HRD) practitioners evaluate the return on investment (ROI) of organization development (OD) interventions. This model, called organization development human-capital accounting system (ODHCAS), identifies…

  14. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases.

    PubMed

    Lesellier, E

    2012-03-09

    The chromatographic efficiency, in terms of plate number per second, was dramatically improved by the introduction of sub-two microns particles with ultra-high pressure liquid chromatography (UHPLC). On the other hand, the recent development of superficially porous particles, called core-shell or fused-core particles, appears to allow the achievement of the same efficiency performances at higher speed without high pressure drops. CO₂-based mobile phases exhibiting much lower viscosities than aqueous based mobile phases allow better theoretical efficiencies, even with 3-5 μm particles, but with relative low pressure drops. They also allow much higher flow rates or much longer columns while using conventional instruments capable to operate below 400 bar. Moreover, the use of superficially porous particles in SFC could enhance the chromatographic performances even more. The kinetic behavior of ODS phases bonded on these particles was studied, with varied flow rates, outlet (and obviously inlet) pressures, temperatures, by using a homologous series (alkylbenzenes) with 10% modifier (methanol or acetonitrile) in the carbon dioxide mobile phase. Results were also compared with classical fully porous particles, having different sizes, from 2.5 to 5 μm. Superior efficiency (N) and reduced h were obtained with these new ODS-bonded particles in regards to classical ones, showing their great interest for use in SFC. However, surprising behavior were noticed, i.e. the increase of the theoretical plate number vs. the increase of the chain length of the compounds. This behavior, opposite to the one classically reported vs. the retention factor, was not depending on the outlet pressure, but on the flow rate and the temperature changes. The lower radial trans-column diffusion on this particle types could explain these results. This diffusion reduction with these ODS-bonded superficially porous particles seems to decrease with the increase of the residence time of compounds

  15. ENERGIC OD Geopan application using Virtual Hub: multi-temporal knowledge oriented information on built environment and riverbed changes to geologist community

    NASA Astrophysics Data System (ADS)

    Boldrini, E.; Brumana, R.; Previtali, M., Jr.; Mazzetti, P., Sr.; Cuca, B., Sr.; Barazzetti, L., Sr.; Camagni, R.; Santoro, M.

    2016-12-01

    The Built Environment (BE) is intended as the sum of natural and human activities in dynamic transformations in the past, in the present and in the future: it calls for more informed decisions to face the challenging threats (climate change, natural hazards, anthropic pressures) by exploiting resilience, sustainable intervention and tackling societal opportunities, as heritage valorization and tourism acknowledgment; thus, it asks for awareness rising among circular reflective society. In the framework of ENERGIC OD project (EU Network for Redistributing Geographic Information - Open Data), this paper describes the implementation of an application (GeoPAN Atl@s app) addressed to improve a circular multi-temporal knowledge oriented generation of information, able to integrate and take in account historic and current maps, as well as products of satellite image processing to understand on course and on coming phenomena and relating them with the ones occurred in the ancient and recent past in a diachronic approach. The app is focused on riverbeds-BE and knowledge generation for the detection of their changes by involving geologist community and providing to other user the retrieved information (architects and urban planner, tourists and citizen). Here is described the implementation of the app interfaced with the ENERGIC OD Virtual Hub component, based on a brokering framework for OD discovery and access, to assure interoperability and integration of different datasets, wide spread cartographic products with huge granularity (national, regional environmental Risk Maps, i.e. PAI, on site local data, i.e. UAV data, or results of Copernicus Programme satellite data processing, i.e. object-based and time series image analysis for riverbed monitoring using Sentinel2): different sources, scales and formats, including historical maps needing metadata generation, and SHP data used by the geologist in their daily activities for hydrogeological analysis, to be both usable as

  16. Evaluation of a rectangular rapid flashing beacon system at the Belmont Ridge Road and W&OD Trail mid-block crosswalk.

    DOT National Transportation Integrated Search

    2015-05-01

    On April 8, 2013, the Virginia Department of Transportation (VDOT) installed a Rectangular Rapid Flashing Beacon : (RRFB) system at Belmont Ridge Road in Loudoun County that included two units at the Washington and Old Dominion : (W&OD) Trail crossin...

  17. Genetics of reproductive isolation in the Drosophila simulans clade: DNA marker-assisted mapping and characterization of a hybrid-male sterility gene, Odysseus (Ods).

    PubMed

    Perez, D E; Wu, C I; Johnson, N A; Wu, M L

    1993-05-01

    In this study, we address the question of whether there exist major genes that cause complete male sterility in the interspecific hybrids of Drosophila and, if they do, how these genes may be characterized at the molecular level. Our approach is to introgress small segments of the X chromosome from Drosophila mauritiana (or Drosophila sechellia) into Drosophila simulans by repeated backcrosses for more than 20 generations. The introgressions are monitored by both visible mutations and a series of DNA markers. We compare the extent of introgressions that cause male sterility with those that do not. If a major sterility factor exists, there should be a sharp boundary between these two classes of introgressions and their breakpoints should demarcate such a gene. Furthermore, if male sterility is the only major fitness effect associated with the introgression, recombination analysis should yield a pattern predicted by the classical three-point cross. Both the genetic and molecular analyses suggest the presence of a major sterility factor from D. mauritiana, which we named Odysseus (Ods), in the cytological interval of 16D. We thus formalize three criteria for inferring the existence of a major gene within an introgression: (1) complete penetrance of sterility, (2) complementarity in recombination analysis, and (3) physical demarcation. Introgressions of Ods from D. sechellia do not cause sterility. Twenty-two introgressions in our collection have breakpoints in this interval of about 500 kb, making it possible to delineate Ods more precisely for molecular identification. The recombination analysis also reveals the complexity of the introgressed segments--even relatively short ones may contain a second male sterility factor and partial viability genes and may also interfere with crossovers. The spermatogenic defects associated with Ods and/or a second factor were characterized by phase-contrast microscopy.

  18. Investigation of eddy current examination on OD fatigue crack for steam generator tubes

    NASA Astrophysics Data System (ADS)

    Kong, Yuying; Ding, Boyuan; Li, Ming; Liu, Jinhong; Chen, Huaidong; Meyendorf, Norbert G.

    2015-03-01

    The opening width of fatigue crack was very small, and conventional Bobbin probe was very difficult to detect it in steam generator tubes. Different sizes of 8 fatigue cracks were inspected using bobbin probe rotating probe. The analysis results showed that, bobbin probe was not sensitive for fatigue crack even for small through wall crack mixed with denting signal. On the other hand, the rotating probe was easily to detect all cracks. Finally, the OD phase to depth curve for fatigue crack using rotating probe was established and the results agreed very well with the true crack size.

  19. Identification of damage in plates using full-field measurement with a continuously scanning laser Doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming; Xu, Y. F.; Zhu, W. D.

    2018-05-01

    An effective and reliable damage identification method for plates with a continuously scanning laser Doppler vibrometer (CSLDV) system is proposed. A new constant-speed scan algorithm is proposed to create a two-dimensional (2D) scan trajectory and automatically scan a whole plate surface. Full-field measurement of the plate can be achieved by applying the algorithm to the CSLDV system. Based on the new scan algorithm, the demodulation method is extended from one dimension for beams to two dimensions for plates to obtain a full-field operating deflection shape (ODS) of the plate from velocity response measured by the CSLDV system. The full-field ODS of an associated undamaged plate is obtained by using polynomials with proper orders to fit the corresponding full-field ODS from the demodulation method. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with ODSs that are obtained by the demodulation method and the polynomial fit is proposed to identify damage. An auxiliary CDI obtained by averaging CDIs at different excitation frequencies is defined to further assist damage identification. An experiment of an aluminum plate with damage in the form of 10.5% thickness reduction in a damage area of 0.86% of the whole scan area is conducted to investigate the proposed method. Six frequencies close to natural frequencies of the plate and one randomly selected frequency are used as sinusoidal excitation frequencies. Two 2D scan trajectories, i.e., a horizontally moving 2D scan trajectory and a vertically moving 2D scan trajectory, are used to obtain ODSs, CODSs, and CDIs of the plate. The damage is successfully identified near areas with consistently high values of CDIs at different excitation frequencies along the two 2D scan trajectories; the damage area is also identified by auxiliary CDIs.

  20. Influence of Al Addition Upon the Microstructure and Mechanical Property of Dual-Phase 9Cr-ODS Steels

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosheng; Ma, Zongqing; Yu, Liming; Huang, Yuan; Li, Huijun; Liu, Yongchang

    2018-06-01

    With Al addition, dual-phase oxide dispersion strengthened (ODS) steels consisting of martensite and ferrite are fabricated by spark plasma sintering. It is found that Al addition has a negligible effect on martensite lath size, while the amount and size of ferrite grains are related to the Al content. M23C6 (M = Fe, Cr) carbides have been identified within the ferrite grains or along ferrite boundaries. With increasing Al concentration, more fine Y-Al-O oxide nanoparticles are formed. Upon annealing treatment, homogeneous and refined distribution of ferrite grains is obtained, which may involve the particle-stimulated nucleation of recrystallization caused by the large sized M23C6. As Al is increased from 0.05 to 0.1 wt%, the tensile strength of the annealed steel is decreased, as well as its ductility. For the annealed 9Cr-ODS steel containing 0.1 wt% Al, in tensile loading the large sized M23C6 along ferrite boundaries would facilitate the cracking along boundaries between the hard annealed ferrite and soft annealed martensite, producing the mixed fracture of dimple and intergranular fracture.

  1. Progress toward determining the potential of ODS alloys for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Hoppin, G., III; Sheffler, K.

    1983-01-01

    The Materials for Advanced Turbine Engine (MATE) Program managed by the NASA Lewis Research Center is supporting two projects to evaluate the potential of oxide dispersion strengthened (ODS) alloys for aircraft gas turbine applications. One project involves the evaluation of Incoloy (TM) MA-956 for application as a combustor liner material. An assessment of advanced engine potential will be conducted by means of a test in a P&WA 2037 turbofan engine. The other project involves the evaluation of Inconel (TM) MA 6000 for application as a high pressure turbine blade material and includes a test in a Garrett TFE 731 turbofan engine. Both projects are progressing toward these engine tests in 1984.

  2. C-Terminal residues in small potassium channel blockers OdK1 and OSK3 from scorpion venom fine-tune the selectivity.

    PubMed

    Kuzmenkov, Alexey I; Peigneur, Steve; Chugunov, Anton O; Tabakmakher, Valentin M; Efremov, Roman G; Tytgat, Jan; Grishin, Eugene V; Vassilevski, Alexander A

    2017-05-01

    We report isolation, sequencing, and electrophysiological characterization of OSK3 (α-KTx 8.8 in Kalium and Uniprot databases), a potassium channel blocker from the scorpion Orthochirus scrobiculosus venom. Using the voltage clamp technique, OSK3 was tested on a wide panel of 11 voltage-gated potassium channels expressed in Xenopus oocytes, and was found to potently inhibit Kv1.2 and Kv1.3 with IC 50 values of ~331nM and ~503nM, respectively. OdK1 produced by the scorpion Odontobuthus doriae differs by just two C-terminal residues from OSK3, but shows marked preference to Kv1.2. Based on the charybdotoxin-potassium channel complex crystal structure, a model was built to explain the role of the variable residues in OdK1 and OSK3 selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle

    PubMed Central

    Nelson, William C.; Stegen, James C.

    2015-01-01

    Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in a broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. “Housekeeping” genes and genes for biosynthesis of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides, and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle, or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest that the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum. PMID:26257709

  4. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William C.; Stegen, James C.

    2015-07-21

    Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. ‘Housekeeping’ genes and genes for biosynthesis ofmore » peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.« less

  5. The Effects of an Intergroup Development OD Intervention as Conditioned by the Life Cycle State of Organizations: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Randolph, W. Alan; Posner, Barry Z.

    1982-01-01

    Explored the effectiveness of an intergroup development organization development (OD) intervention at different stages of an organization's life cycle through four simulated organizations. Results suggest intergroup development interventions can be effective at any life stage, but impacts will be felt in different outcome measures and perceptual…

  6. Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser.

    PubMed

    Hagelschuer, Till; Wienold, Martin; Richter, Heiko; Schrottke, Lutz; Grahn, Holger T; Hübers, Heinz-Wilhelm

    2017-11-27

    We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D 2 O and CH 3 OD in an absorption cell.

  7. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

    DOE PAGES

    Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2016-01-01

    For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y 2O 3 (125Y), (2) Y 2O 3 + ZrO 2 (125YZ), and (3) Y 2O 3 + HfO 2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al 2O 3 and yttrium–aluminum garnet (YAG) phases (Y 3Al 5O 12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had themore » most complex precipitation sequence whereby in addition to the YAG and Al 2O 3 phases, Hf(C,N), Y 2Hf 2O 7, and HfO 2 precipitates were also found. The presence of HfO 2 was mainly due to the incomplete incorporation of HfO 2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y 2O 3 + ZrO 2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressed in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.« less

  8. Effect of microstructural anisotropy on fracture toughness of hot rolled 13Cr ODS steel - The role of primary and secondary cracking

    NASA Astrophysics Data System (ADS)

    Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.

    2017-08-01

    ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.

  9. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    PubMed

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  10. Polarised Photon Beams for the BGO-OD Experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Zimmermann, T.; Bella, A.; Alef, S.; Bayadilov, D.; Beck, R.; Becker, M.; Bielefeldt, P.; Boese, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.

    The new BGO-OD experiment at the electron accelerator ELSA, of the University of Bonn, is designed to study the reaction dynamics of nucleon excitations in meson photoproduction. It consists of a central BGO calorimeter with a magnetic spectrometer in forward direction. The physics programme includes the measurement of polarisation observables using linearly and circularly polarised photon beams. Linear polarisation is obtained by coherent bremsstrahlung off a diamond crystal, and circular polarisation is obtained via bremsstrahlung from longitudinally polarised electrons. The degree of linear polarisation is determined from the bremsstrahlung spectrum itself. To determine the polarisation of the circularly polarised photon beam, the polarisation of the electron beam is measured by a Møller polarimeter. As a preliminary consistency check, the (linear) polarisation observable, Σ, was compared to world data for π0 and η photoproduction. To determine the degree of circular polarisation, a Møller polarimeter was setup and first measurements of the electron beam polarisation performed.

  11. The role of yttrium and titanium during the development of ODS ferritic steels obtained through the STARS route: TEM and XAS study

    NASA Astrophysics Data System (ADS)

    Ordás, Nerea; Gil, Emma; Cintins, Arturs; de Castro, Vanessa; Leguey, Teresa; Iturriza, Iñigo; Purans, Juris; Anspoks, Andris; Kuzmin, Alexei; Kalinko, Alexandr

    2018-06-01

    Oxide Dispersion Strengthened Ferritic Steels (ODS FS) are candidate materials for structural components in future fusion reactors. Their high strength and creep resistance at elevated temperatures and their good resistance to neutron radiation damage is obtained through extremely fine microstructures containing a high density of nanometric precipitates, generally yttrium and titanium oxides. This work shows transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) characterization of Fe-14Cr-2W-0.3Ti-0.24Y ODS FS obtained by the STARS route (Surface Treatment of gas Atomized powder followed by Reactive Synthesis), an alternative method to obtain ODS alloys that avoids the mechanical alloying to introduce Y2O3 powder particles. In this route, FS powders already containing Ti and Y, precursors of the nanometric oxides, are obtained by gas atomization. Then, a metastable Cr- and Fe-rich oxide layer is formed on the surface of the powder particles. During consolidation by HIP at elevated temperatures, and post-HIP heat treatments above the HIP temperature, this oxide layer at Prior Particle Boundaries (PPBs) dissociates, the oxygen diffuses, and Y-Ti-O nano-oxides precipitate in the ferritic matrix. TEM characterization combined with XAFS and XANES analyses have proven to be suitable tools to follow the evolution of the nature of the different oxides present in the material during the whole processing route and select appropriate HIP and post-HIP parameters to promote profuse and fine Y-Ti-O nanometric precipitates.

  12. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    PubMed

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  13. Impact of friction stir welding on the microstructure of ODS steel

    NASA Astrophysics Data System (ADS)

    Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.

    2017-04-01

    We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.

  14. A Safe Place to Stay Sharp: Action Learning Meets Cooperative Inquiry in the Service of NHS OD Capacity Building

    ERIC Educational Resources Information Center

    Traeger, James; Norgate, Carolyn

    2015-01-01

    This is an account of practice. It explores the meeting point between action learning and action research, as a way of doing capacity building in organisational development (OD) in the NHS in the UK. The authors were part of a short cooperative inquiry (Heron, J. 1996. "Co-operative Inquiry: Research into the Human Condition." London:…

  15. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle

    DOE PAGES

    Nelson, William C.; Stegen, James C.

    2015-07-21

    Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in a broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. “Housekeeping” genes and genes for biosynthesismore » of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides, and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle, or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest that the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.« less

  16. Laser and Optical Remote Sensing: Instrumentation and Techniques Topical Meeting Held in North Falmoth Massachusetts on September 28 - October 1, 1987. Volume 18. Technical Digest Series

    DTIC Science & Technology

    1987-10-01

    DOMoPment Of Laser aOd Spectral Equpmen for Dennis K. Killinger, thiewsrity of South F&oiAt Piresior MOsOsrmud of Abnssphsul MOlcular Gases , V. E . Zuev. U...Law, tiorms of Atmospheric Gases . V E . Zuev. V. P. Lopasov. Yu. N. Jan E van der I aan. SRI ,nte’r’at’ona* Operation of a low- Ponomnarev. L. N...9, p.1917, 1981. 2. VJuloev, Yu.AI.cdeg e , A.o.Gftrbeaekov, egas, nl wt eaeeg t o Inteatio@tonal Lcseo radtar 1o8ezence. o s nto, motazos , Catadr. N

  17. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  18. Helical order and multiferroicity in the S =1/2 quasi-kagome system KCu3As2O7(OD)3

    NASA Astrophysics Data System (ADS)

    Nilsen, G. J.; Okamoto, Y.; Ishikawa, H.; Simonet, V.; Colin, C. V.; Cano, A.; Chapon, L. C.; Hansen, T.; Mutka, H.; Hiroi, Z.

    2014-04-01

    Several Cu2+ hydroxide minerals have been recently identified as candidate realizations of the S=1/2 kagome Heisenberg model. In this context, we have studied the distorted system KCu3As2O7(OD)3 using neutron scattering and bulk measurements. Although the distortion favors magnetic order over a spin liquid ground state, refinement of the magnetic diffraction pattern below TN1=7.05(5) K yields a complex helical structure with k =(0.77,0,0.11). This structure, as well as the spin excitation spectrum, are well described by a classical Heisenberg model with ferromagnetic nearest neighbor couplings. Multiferroicity is observed below TN1, with an unusual crossover between improper and pseudoproper behavior occurring at TN2=5.5 K. The polarization at T =2 K is P =1.5μCm-2. The properties of KCu3As2O7(OD)3 highlight the variety of physics which arise from the interplay of spin and orbital degrees of freedom in Cu2+ kagome systems.

  19. Quantitative isotopic measurements of gas-phase alcohol mixtures using a broadly tunable swept external cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, B. E.; Phillips, M. C.

    A swept-ECQCL is used for broadband IR spectroscopy of isotopic mixtures of CH3OH, CH3OD, CH3CH2OH, and CH3CH2OD in a static gas cell over a wavelength range of 9.5 to 10.4 µm. A weighted least squares fitting approach with quantitative library spectra illustrates that significant spectral congestion does not negatively impact the ability for in situ quantification of large isotopic species in a mixture. The noise equivalent concentrations for CH3OH, CH3OD, CH3CH2OH, and CH3CH2OD are 19 ppbv x m, 28 ppbv x m, 450 ppbv x m, and 330 ppbv x m respectively for a 50 second integration time. Based onmore » the observed NECs, isotopic precisions of 0.07‰ and 0.79‰ for a 50 s integration time are calculated for measurements of the [MeOD]/[MeOH] and [EtOD]/[EtOH] isotope ratios , respectively, for the species concentrations in the gas cell.« less

  20. Low-level laser therapy and Calendula officinalis in repairing diabetic foot ulcers.

    PubMed

    Carvalho, Ana Flávia Machado de; Feitosa, Maura Cristina Porto; Coelho, Nayana Pinheiro Machado de Freitas; Rebêlo, Veruska Cronemberger Nogueira; Castro, Juçara Gonçalves de; Sousa, Patrícia Regina Gomes de; Feitosa, Valrian Campos; Arisawa, Emilia Angela Lo Schiavo

    2016-01-01

    To evaluate the effects of low-level laser therapy isolated and associated with Calendula officinalis oil in treating diabetic foot ulcers. An experimental, randomized, controlled, prospective, interventional clinical case study using a quantitative approach. The sample consisted of 32 diabetic patients of both genders. Participants were randomly divided into four groups. Doppler Ultrasound evaluation of the Ankle-Brachial Index, brief pain inventory and analog pain scale were performed at baseline and after 30 days. Reduced pain was observed in the Low-level laser therapy and Low-level laser therapy associated with Essential Fatty Acids groups (p<0.01). Regarding the Ankle-Brachial Index and Doppler Ultrasound, all groups remained stable. By analyzing lesion area reduction, Low-level laser therapy associated with Essential fatty acids group showed a significance of p=0.0032, and the Low-level laser therapy group showed p=0.0428. Low-level laser therapy, performed alone or associated with the Calendula officinalis oil was effective in relieving pain and accelerating the tissue repair process of diabetic foot. Avaliar os efeitos da Terapia a Laser de Baixa Intensidade isolada e associada ao óleo de Calendula officinalis no reparo de úlceras em pé diabético. Estudo de caso clínico, experimental, controlado, randomizado, prospectivo, intervencional, de caráter quantitativo. A amostra foi composta de 32 pacientes diabéticos, de ambos os gêneros. Os participantes foram distribuídos aleatoriamente em quatro grupos. Ultrassom Doppler, avaliação do Índice Tornozelo-Braquial, Inventário breve de dor e escala de dor analógica foram realizados no início e após 30 dias. Houve redução da dor nos grupos Terapia a Laser de Baixa Intensidade e Terapia a Laser de Baixa intensidade associada aos Ácidos Graxos Essenciais, com p<0,01. Quanto ao Índice Tornozelo-Braquial e Ultrassom Doppler, todos os grupos mantiveram-se estáveis. Na análise da redução de

  1. The OD/OH Isotope Ratio in Comets 8P/Tuttle and C/2012 F6 (Lemmon)

    NASA Astrophysics Data System (ADS)

    Rousselot, Philippe; Jehin, Emmanuel; Hutsemekers, Damien; Manfroid, Jean; Decock, Alice; Bockelee-Morvan, Dominique

    2016-10-01

    The determination of isotopic ratios in solar system objects is an important source of information about their origin, especially for comets. Among these ratios the D/H is of particular importance because of its sensitivity to fractionation processes and physical environment, and the abundance of hydrogen in the solar system. The main molecule used to derive this ratio in comets is water. So far, apart water, only HCN has permitted to derive D/H ratio and not only upper limits.Most of the existing determinations of D/H in water molecules have been obtained by spectroscopic observations of water lines in the sub-mm or near infrared range [1,2]. So far only one measurement has been based on OD/OH emission lines radicals in the near-UV [3] and another one on the Lyman-alpha D emission [4]. In situ measurements have also been obtained in comets 1P/Halley and 67P/Churyumov-Gerasimenko using mass spectrometer [5,6,7,8].In this work we have used the OH and OD ultraviolet bands at 310 nm observed with the ESO 8-m Very Large Telescope feeding the Ultraviolet-Visual Echelle Spectrograph (UVES) for measuring the D/H ratio in comets 8P/Tuttle and C/2012 F6 (Lemmon). The OH and OD being the photodissociation products of H2O and HDO such observations allow to derive D/H ratio for water molecules. This work constitutes an independant determination of the D/H ratios already published for these comets and based on observations performed in the sub-mm and near infrared range of H2O and HDO lines. We present our modeling, data analysis and numerical values obtained for this ratio.[1] D. Bockelée-Morvan et al., 2015, SSR 197, 47-83 [2] N. Biver et al., 2016, A&A 589, id A78, 11p [3] D. Hutsemékers et al., 2008, A&A 490, L31 [4] H.A. Weaver et al., 2008, LPI Contributions 1405, 8216 [5] H. Balsiger, K. Altwegg, J. Geiss, 1995, JGR 100, 5827 [6] P. Eberhardt et al., 1995, A&A 302, 301 [7] R.H. Brown et al., 2012, PSS 60, 166 [8] K. Alwegg et al., 2015, Science 347, article id. 1261952

  2. Evaluation of palatability of 10 commercial amlodipine orally disintegrating tablets by gustatory sensation testing, OD-mate as a new disintegration apparatus and the artificial taste sensor.

    PubMed

    Uchida, Takahiro; Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Furuno, Hiroyuki; Teraoka, Makoto; Ikezaki, Hidekazu

    2013-09-01

    The purpose of this study was to evaluate and compare the palatability of 10 formulations (the original manufacturer's formulation and nine generics) of amlodipine orally disintegrating tablets (ODTs) by means of human gustatory sensation testing, disintegration/dissolution testing and the evaluation of bitterness intensity using a taste sensor. Initially, the palatability, dissolution and bitterness intensity of the ODTs were evaluated in gustatory sensation tests. Second, the disintegration times of the ODTs were measured using the OD-mate, a newly developed apparatus for measuring the disintegration of ODTs, and lastly, the bitterness intensities were evaluated using an artificial taste sensor. Using factor analysis, the factors most affecting the palatability of amlodipine ODTs were found to be disintegration and taste. There was high correlation between the disintegration times of the 10 amlodipine ODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of amlodipine ODTs 10, 20 and 30 s after starting the conventional brief dissolution test and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. The OD-mate and the taste sensor may be useful for predicting the disintegration and bitterness intensity of amlodipine ODTs in the mouth. © 2013 Royal Pharmaceutical Society.

  3. Radiographic findings of post-operative double stapled trans anal rectal resection (STARR) in patient with obstructed defecation syndrome (ODS).

    PubMed

    Grassi, Roberto; Romano, Stefania; Micera, Osvaldo; Fioroni, Claudio; Boller, Brigitta

    2005-03-01

    Longo's procedure of double stapled trans anal rectal resection (STARR) has been evocated as surgical treatment of the obstructed defecation syndrome (ODS) in patients with rectal mucosal prolapse. The aim of this study was to investigate the post-interventional findings of this technique, to help radiologist in knowledge of the changed morphology of the rectal lumen, also in attempt to recognize some potential related complications.

  4. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy

    NASA Astrophysics Data System (ADS)

    Mori, A.; Mamiya, H.; Ohnuma, M.; Ilavsky, J.; Ohishi, K.; Woźniak, Jarosław; Olszyna, A.; Watanabe, N.; Suzuki, J.; Kitazawa, H.; Lewandowska, M.

    2018-04-01

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 °C. Sintering at 1000 °C for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.

  5. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  6. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    DOE PAGES

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y 2O 3 (125Y), (2) Y 2O 3+ZrO 2 (125YZ), (3) Y 2O 3+HfO 2 (125YH), and (4) Y 2O 3+TiO 2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change aftermore » testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO 2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.« less

  7. Preparation of magnetic ODS-PAN thin-films for microextraction of quetiapine and clozapine in plasma and urine samples followed by HPLC-UV detection.

    PubMed

    Li, Dan; Zou, Juan; Cai, Pei-Shan; Xiong, Chao-Mei; Ruan, Jin-Lan

    2016-06-05

    In this study, conventional thin-film microextraction (TFME) was endowed with magnetic by introducing superparamagnetic SiO2@Fe3O4 nanoparticles in thin-films. Novel magnetic octadecylsilane (ODS)-polyacrylonitrile (PAN) thin-films were prepared by spraying, and used for the microextraction of quetiapine and clozapine in plasma and urine samples, followed by the detection of HPLC-UV. The influencing factors on the extraction efficiency of magnetic ODS-PAN TFME, including pH, extraction time, desorption solvent, desorption time, and ion strength were investigated systematically. Under the optimal conditions, both analytes showed good linearity over ranges of 0.070-9.000μgmL(-1) and 0.012-9.000μgmL(-1) in plasma and urine samples, respectively, with correlation coefficients (R(2)) above 0.9990. Limits of detection (LODs) for quetiapine in plasma and urine samples were 0.013 and 0.003μgmL(-1), respectively. LODs for clozapine in plasma and urine samples were 0.015 and 0.003μgmL(-1), respectively. The relative standard deviations (RSDs) for quetiapine and clozapine were less than 9.23%. After the validation, the protocol was successfully applied for the determination of quetiapine and clozapine in patients' plasma and urine samples with satisfactory recoveries between 99-110%. The proposed magnetic ODS-PAN TFME was very simple, fast and easy to handle. It showed high potential as a powerful pretreatment technology for routine therapeutic drug monitoring (TDM) in plasma and urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Realizing 11.3% efficiency in PffBT4T-2OD fullerene organic solar cells via superior charge extraction at interfaces

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Wright, Matthew; Elumalai, Naveen Kumar; Mahmud, Md Arafat; Wang, Dian; Gonçales, Vinicius R.; Upama, Mushfika Baishakhi; Haque, Faiazul; Gooding, J. Justin; Uddin, Ashraf

    2018-06-01

    The influence of interface engineering on the performance and photovoltaic properties of the PffBT4T-2OD poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)-2,2';5',2″;5″,2'''-quaterthiophen-5,5'''-diy)] based polymer solar cells (PSCs) are investigated. Owing to the high crystallinity and processing parameter dependent morphology distribution of the PffBT4T-2OD polymer, the performance of the devices can vary significantly with power conversion efficiency (PCE) of around 10% has been reported via such morphology modification. In this work, we demonstrate the effect of trap state passivation at the electron transport layer (ETL)/Polymer interface on the performance of PffBT4T-2OD based PSCs. Aluminium doped ZnO (AZO) and pristine Zinc Oxide (ZnO) are employed as ETLs, which modified the polymer wettability and blend morphology. The interface engineered devices exhibited high PCE of over 11% with high J sc of about 22.5 mA/cm2 which is about 19% higher than that of the conventional ZnO based devices. The reason behind such distinct enhancements is investigated using several material and device characterization methods including electrochemical impedance spectroscopy (EIS). The recombination resistance ( R rec) of the AZO based device is found to be 4.5 times higher than that of the ZnO devices. The enhanced photovoltaic parameters of the AZO based device are attributed to the superior charge transport characteristics in the ETL as well as at the ETL/polymer interface, enabling effective charge extraction at the respective electrodes with much lesser recombination. The mechanism and the processes behind such enhancements are also elaborated in detail.

  9. "Candidatus Sonnebornia yantaiensis", a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea).

    PubMed

    Gong, Jun; Qing, Yao; Guo, Xiaohong; Warren, Alan

    2014-02-01

    An intracellular bacterium was discovered in an isolate of Paramecium bursaria from a freshwater pond in Yantai, China. The bacteria were abundant and exclusively found in the cytoplasm of the host which, along with the green alga Chlorella, formed a three-partner consortium that could survive in pure water for at least one week. Cloning, sequencing and phylogenetic analysis of the bacterial 16S rRNA gene showed that the bacterium belonged to the uncultured candidate division OD1, which usually forms part of the rare biosphere. Transmission electron microscopy and fluorescence in situ hybridization (FISH) with specific probes showed that the bacteria were usually located close to the perialgal membranes of endosymbiotic Chlorella cells, and occasionally irregularly distributed throughout the host cytoplasm. The name "Candidatus Sonnebornia yantaiensis" gen. nov., sp. nov. is proposed for the new bacterium. A strongly supported monophyletic subclade, OD1-p, which included the new species, was recognized and this study highlights that protists can be important hosts for rare bacterial taxa. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

    NASA Astrophysics Data System (ADS)

    Zilnyk, K. D.; Pradeep, K. G.; Choi, P.; Sandim, H. R. Z.; Raabe, D.

    2017-08-01

    Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 °C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 °C.

  11. Response of 9Cr-ODS Steel to Proton Irradiation at 400 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianchao He; Farong Wan; Kumar Sridharan

    2014-09-01

    The stability of Y–Ti–O nanoclusters, dislocation structure, and grain boundary segregation in 9Cr-ODS steels has been investigated following proton irradiation at 400 °C with damage levels up to 3.7 dpa. A slight coarsening and a decrease in number density of nanoclusters were observed as a result of irradiation. The composition of nanoclusters was also observed to change with a slight increase of Y and Cr concentration in the nanoclusters following irradiation. Size, density, and composition of the nanoclusters were investigated as a function of nanocluster size, specifically classified to three groups. In addition to the changes in nanoclusters, dislocation loopsmore » were observed after irradiation. Finally, radiation-induced enrichment of Cr and depletion of W were observed at grain boundaries after irradiation.« less

  12. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.

    PubMed

    Zhang, Shanchao; Chen, J F; Liu, Chang; Zhou, Shuyu; Loy, M M T; Wong, G K L; Du, Shengwang

    2012-07-01

    We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.

  13. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column.

    PubMed

    Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa

    2006-04-01

    A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.

  14. Pediatric PRK (PhotoRefractive Keratectomy) with Mitomycin C (MCC) for Persistent Anisometropic Amblyopia. A Case Report.

    PubMed

    Crawford, Courtney M; Frazier, Travis C; Torres, Mark F; Arnold, Robert W; Mazzoli, Robert A; Raymond, William R

    2012-01-01

    To evaluate the safety and efficacy of photorefractive keratectomy (PRK) with Mitomycin C (MMC) for the treatment of severe pediatric anisometropia and amblyopia resistant to more conservative treatment modalities. A 3 year-old-child, who at 18 months old underwent unilateral diode laser treatment for threshold ROP, developed 11 diopters of anisometropic myopia and secondary dense amblyopia of the Right Eye. Only after all conservative treatment options failed was he treated with PRK and MMC. Principal outcome measures included cycloplegic refraction, the amount of refractive correction, degree of corneal haze and change in visual acuity. On presentation: BCVA: 20/CF OD; 20/30 OS. CRNS: -11.50 diopters sphere OD; -0.50 diopters sphere OS. Unilateral PRK followed by application of MMC (0.2 mg/ml) for 1 min was performed under general anesthesia. Three-month postoperative findings include: VA: 20/30 OD; 20/25 OS. CRNS: +0.25 diopters sphere OD. At one year, the BCVA remained equal at the 20/30 level despite mild myopic regression OD. CRNS OD at one year was -1.25 +050 x 116. No corneal haze was appreciated. In this child, treatment with PRK and MMC safely reduced the anisometropia thus facilitating his visual rehabilitation. While encouraging, further study is required to verify the longer term results of this single case. To evaluate the safety and efficacy of photorefractive keratectomy (PRK) with Mitomycin C (MMC) for the treatment of severe pediatric anisometropia and amblyopia resistant to more conservative treatment modalities. A 3 year-old-child, who at 18 months old underwent unilateral diode laser treatment for threshold ROP, developed 11 diopters of anisometropic myopia and secondary dense amblyopia of the Right Eye. Only after all conservative treatment options failed was he treated with PRK and MMC. Principal outcome measures included cycloplegic refraction, the amount of refractive correction, degree of corneal haze and change in visual acuity. On

  15. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalska-Mori, A.; Mamiya, H.; Ohnuma, M.

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 ºC. Sintering at 1000 ºC for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128more » nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.« less

  16. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloys

    DOE PAGES

    Kowalska-Mori, A.; Mamiya, H.; Ohnuma, M.; ...

    2018-01-17

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 ºC. Sintering at 1000 ºC for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128more » nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.« less

  17. Irradiation creep and precipitation in a ferritic ODS steel under helium implantation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Pouchon, M. A.; Rebac, T.; Hoffelner, W.

    2008-02-01

    Ferritic oxide dispersion strengthened (ODS) steel, PM2000, has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to maximum doses of about 0.75 dpa (3000 ppm He) with displacement damage rates of 5.5 × 10 -6 dpa/s at temperatures of 573, 673 and 773 K. Straining of a miniaturized dog-bone specimen under helium implantation was monitored by linear variable displacement transformer (LVDT) and meanwhile by their resistance also measured by four-pole technique. Creep compliance was almost constant at 5.7 × 10 -6 dpa -1 MPa -1 for temperatures below 673 K and increased to 18 × 10 -6 dpa -1 MPa -1 at 773 K. The resistivity of PM2000 samples decreased with dose and showed a tendency to saturation. Subsequent transmission electron microscopy observations indicated the formation of ordered Fe 3- xCr xAl precipitates during implantation. Correlations between the microstructure and resistivity are discussed.

  18. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  19. XPS and SEM analysis of the surface of gas atomized powder precursor of ODS ferritic steels obtained through the STARS route

    NASA Astrophysics Data System (ADS)

    Gil, E.; Cortés, J.; Iturriza, I.; Ordás, N.

    2018-01-01

    An innovative powder metallurgy route to produce ODS FS, named STARS, has succeeded in atomizing steel powders containing the oxide formers (Y and Ti) and, hence, avoids the mechanical alloying (MA) step to dissolve Y in the matrix. A metastable oxide layer forms at the surface of atomized powders and dissociates during HIP consolidation at high temperatures, leading to precipitation of more stable Y-Ti-O nanoparticles.

  20. Orbit Determination of the Lunar Reconnaissance Orbiter: Status and Recent Development

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Mazarico, E.; Goossens, S. J.; Nicholas, J. B.; Wagner, R.; Speyerer, E. J.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    The LRO mission has been operated since June 2009, and the productivity of its seven instruments has led to a wealth of new data and scientific results. The high-resolution data acquired benefit from precise orbit determination (OD), alleviating human intervention in their geolocation and co-registration. The initial position knowledge requirement (50 meters) was met with radio tracking data from the primary NASA White Sands ground station supported by USN, after combination with LOLA altimetric crossovers. LRO-specific gravity field solutions were thus determined and allowed radio-only OD to perform adequately, although secular inclination changes required frequent updates. The high-accuracy gravity fields from GRAIL, with <10 km resolution, further improved the radio-only orbit reconstruction quality. However, it is in part limited by the 0.3-0.5 mm/s measurement noise level in the S-band. One-way tracking through Laser Ranging can supplement the tracking available for OD with 28 Hz ranges with 20 cm single-shot precision, but is available only on the nearside. The LOLA altimetric data afford accurate, independent information about LRO's orbit, with a very different geometry that includes coverage over the lunar farside. With LOLA's highest-quality topographic model of the Moon and the Kaguya Terrain Camera stereo-derived elevation model, and their combination named SLDEM2015, another altimetric measurement is now possible to use in OD. This `direct altimetry' tracking type was developed to calibrate the laser boresight pointing of the IceSAT/GLAS altimeter, as differences in geolocated height of profiles with respect to an ocean surface reference geoid were primarily attributed to pointing errors. We extended this technique to short-scale, high-resolution targets, and can now use the SLDEM2015 topographic model as a basemap to match individual LOLA tracks during OD, adjusting both spacecraft position and pointing to minimize the discrepancies. Comparisons with

  1. Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.

    PubMed

    Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S

    2014-11-01

    Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Experimental Verification of the Decomposition of Y2O3 in Fe-Based ODS Alloys During Mechanical Alloying Process

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Park, Chun Woong; Do Kim, Young

    2018-06-01

    In this study, we investigated the state of Y2O3, as a major additive element in Fe-based ODS alloys, during mechanical alloying (MA) processes by thermodynamic approaches and experimental verification. For this purpose, we introduced Ti2O3 that formed different reaction products depending on the state of Y2O3 into the Fe-based ODS alloys. In addition, the reaction products of Ti2O3, Y, and Y2O3 powders were predicted approximately based on their formation enthalpy. The experimental results relating to the formation of Y-based complex oxides revealed that YTiO3 and Y2Ti2O7 were formed when Ti2O3 reacted with Y; in contrast, only Y2Ti2O7 was detected during the reaction between Ti2O3 and Y2O3. In the alloy of Fe-Cr-Y2O3 with Ti2O3, YTiO3 (formed by the reaction of Ti2O3 with Y) was detected after the MA and heat treatment processes were complete, even though Y2O3 was present in the system. Using these results, it was proved that Y2O3 decomposed into monoatomic Y and O during the MA process.

  3. Effect of astaxanthin in combination with alpha-tocopherol or ascorbic acid against oxidative damage in diabetic ODS rats.

    PubMed

    Nakano, Masako; Onodera, Aya; Saito, Emi; Tanabe, Miyako; Yajima, Kazue; Takahashi, Jiro; Nguyen, Van Chuyen

    2008-08-01

    The present study was performed to investigate the effect of astaxanthin in combination with other antioxidants against oxidative damage in streptozotocin (STZ)-induced diabetic Osteogenic Disorder Shionogi (ODS) rats. Diabetic-ODS rats were divided into five groups: control, astaxanthin, ascorbic acid, alpha-tocopherol, and tocotrienol. Each of the four experimental groups was administered a diet containing astaxanthin (0.1 g/kg), in combination with ascorbic acid (3.0 g/kg), alpha-tocopherol (0.1 g/kg), or tocotrienol (0.1 g/kg) for 20 wk. The effects of astaxanthin with other antioxidants on lipid peroxidation, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion, serum creatinine (Cr) level, creatinine clearance (Ccr), and urinary protein content were assessed. The serum lipid peroxide levels and chemiluminescent (CL) intensity in the liver of the alpha-tocopherol and tocotrienol groups were significantly reduced in comparison to that of the control group. In the alpha-tocopherol group, urinary 8-OHdG excretion, serum Cr level, Ccr, urinary albumin excretion, and urinary protein concentration were significantly decreased as compared with those in the control group. Additionally, the CL intensity in the kidney of the alpha-tocopherol group was significantly lower, but that of the ascorbic acid group was significantly higher than that in the control group. These results indicate that dietary astaxanthin in combination with alpha-tocopherol has an inhibitory effect on oxidative stress. On the other hand, our study suggests that excessive ascorbic acid intake increases lipid peroxidation in diabetic rats.

  4. Issuance of a final RCRA Part B Subpart X permit for open burning/open detonation (OB/OD) of explosives at Eglin AFB, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.E.; Culp, J.C.; Jenness, S.R.

    1997-12-31

    Treatment and disposal of explosives and munitions items have represented a significant management challenge for Department of Defense (DOD) facilities, particularly in light of increased regulatory scrutiny under the Federal Facilities Compliance Act provisions of the Resource Conservation and Recovery Act (RCRA). Subpart X of the RCRA regulations for storage, treatment, and disposal of hazardous wastes was drafted specifically to address explosive wastes. Until just recently, any DOD facility that was performing open burning/open detonation (OB/OD) of explosives was doing so under interim status for RCRA Part B Subpart X. In August 1996, Eglin Air Force Base (AFB), Florida becamemore » the first Air Force facility to be issued a final Part B Subpart X permit to perform OB/OD operations at two Eglin AFB active test ranges. This presentation will examine how Eglin AFB worked proactively with the State of Florida Department of Environmental Protection (FDEP) and EPA Region IV to develop permit conditions based upon risk assessment considerations for both air and ground-water exposure pathways. It will review the role of air emissions and air dispersion modeling in assessing potential exposure and impacts to both onsite and offsite receptors, and will discuss how air monitoring will be used to assure that the facility remains in compliance during OB/OD activities. The presentation will also discuss the soil and ground-water characterization program and associated risk assessment provisions for quarterly ground-water monitoring to assure permit compliance. The project is an excellent example of how a collaborative working relationship among the permittee, their consultant and state, and EPA can result in an environmentally protective permit that assures operational flexibility and mission sensitivity.« less

  5. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzer, David T.; Bunn, Jeffrey R.; Gussev, Maxim N.

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  6. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  7. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  8. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  9. Precise positioning with sparse radio tracking: How LRO-LOLA and GRAIL enable future lunar exploration

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Goossens, S. J.; Barker, M. K.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2017-12-01

    Two recent NASA missions to the Moon, the Lunar Reconnaissance Orbiter (LRO) and the Gravity Recovery and Interior Laboratory (GRAIL), have obtained highly accurate information about the lunar shape and gravity field. These global geodetic datasets resolve long-standing issues with mission planning; the tidal lock of the Moon long prevented collection of accurate gravity measurements over the farside, and deteriorated precise positioning of topographic data. We describe key datasets and results from the LRO and GRAIL mission that are directly relevant to future lunar missions. SmallSat and CubeSat missions especially would benefit from these recent improvements, as they are typically more resource-constrained. Even with limited radio tracking data, accurate knowledge of topography and gravity enables precise orbit determination (OD) (e.g., limiting the scope of geolocation and co-registration tasks) and long-term predictions of altitude (e.g., dramatically reducing uncertainties in impact time). With one S-band tracking pass per day, LRO OD now routinely achieves total position knowledge better than 10 meters and radial position knowledge around 0.5 meter. Other tracking data, such as Laser Ranging from Earth-based SLR stations, can further support OD. We also show how altimetry can be used to substantially improve orbit reconstruction with the accurate topographic maps now available from Lunar Orbiter Laser Altimeter (LOLA) data. We present new results with SELENE extended mission and LRO orbits processed with direct altimetry measurements. With even a simple laser altimeter onboard, high-quality OD can be achieved for future missions because of the datasets acquired by LRO and GRAIL, without the need for regular radio contact. Onboard processing of altimetric ranges would bring high-quality real-time position knowledge to support autonomous operation. We also describe why optical ranging transponders are ideal payloads for future lunar missions, as they can

  10. High efficiency laser-pumped emerald lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, S.T.

    1987-09-25

    Highly efficient laser operation has been achieved in emerald. In a quasi-cw laser-pumped emerald laser, 64% output slope efficiency has been measured at 768 nm, corresponding to a laser quantum yield of 76%. An output power of 1.6 W was reached at 3.6 W of pump power at 647.1 nm from a krypton laser, and was pump power limited. The emerald laser has a tuning range of 720 to 842 nm. The round trip loss excluding the excited state absorption (ESA) is 0.4%/cm. These results indicate the high laser efficiency and the high optical quality of the emerald attainable inmore » the present laser.« less

  11. Ascorbic acid deficiency increases endotoxin influx to portal blood and liver inflammatory gene expressions in ODS rats.

    PubMed

    Tokuda, Yuki; Miura, Natsuko; Kobayashi, Misato; Hoshinaga, Yukiko; Murai, Atsushi; Aoyama, Hiroaki; Ito, Hiroyuki; Morita, Tatsuya; Horio, Fumihiko

    2015-02-01

    The aim of this study was to determine whether ascorbic acid (AsA) deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. The mechanisms by which AsA deficiency provokes inflammatory changes in the liver were investigated in Osteogenic Disorder Shionogi (ODS) rats (which are unable to synthesize AsA). Male ODS rats (6-wk-old) were fed a diet containing sufficient (300 mg/kg) AsA (control group) or a diet without AsA (AsA-deficient group) for 14 or 18 d. On day 14, the hepatic mRNA levels of acute-phase proteins and inflammation-related genes were significantly higher in the AsA-deficient group than the control group, and these elevations by AsA deficiency were exacerbated on day 18. The serum concentrations of interleukin (IL)-1β and IL-6, which induce acute-phase proteins in the liver, were also significantly elevated on day 14 in the AsA-deficient group compared with the respective values in the control group. IL-1β mRNA levels in the liver, spleen, and lung were increased by AsA deficiency. Moreover, on both days 14 and 18, the portal blood endotoxin concentration was significantly higher in the AsA-deficient group than in the control group, and a significant correlation between serum IL-1β concentrations and portal endotoxin concentrations was found in AsA-deficient rats. In the histologic analysis of the ileum tissues, the number of goblet cells per villi was increased by AsA deficiency. These results suggest that AsA deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  13. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    NASA Astrophysics Data System (ADS)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  14. Effects of administration of beta-carotene, ascorbic acid, persimmons, and pods on antioxidative ability in UV-irradiated ODS rats.

    PubMed

    Hosotani, Keisuke; Yoshida, Minoru; Kitagawa, Masahiro

    2005-07-01

    To evaluate the effects of supplementing diets with carotenoid and ascorbic acid (AsA) on the antioxidative ability of Osteogenic Disorder-Shionogi (ODS) rats, we added synthetic beta-carotene (betaC), AsA, and powders of persimmon (Ka) and pods (Po) containing betaC and AsA to the diet and obtained the following results. The urinary 8-hydroxydeoxyguanosine (8-OHdG) concentration was low in the -betaC.AsA and +AsA groups but high in the +betaC.AsA, +Ka, and +Po groups. The thiobarbituric acid-reactive substances (TBARS) in both the liver and skin were higher in the -betaC.AsA group than in the +betaC.AsA group and were low in the +Ka and +Po groups. As antioxidant enzymes, glutathione peroxidase (GSH-Px) activity was high in the +betaC.AsA group, low in the -beta3C.AsA group in both the skin and liver, and also high in the + Ka and +Po group in the liver. Superoxide dismutase (SOD) activity was high in the -betaC.AsA group and low in the +betaC.AsA and +Ka groups in both the skin and liver. Catalase (CAT) activity in the liver was low in the -betaC.AsA, +AsA, and +betaC groups and high in the +betaC.AsA and +Po groups. These results confirmed that the administration of betaC, AsA, and persimmons and pods increases antioxidative ability in the skin and liver of ultraviolet-b(UV-B)-irradiated ODS rats.

  15. La Station Laser ultra mobile: de l'Obtention d'une Exactitude centimétrique des Mesures à des Applications en Océanographie et Géodésie Spatiales

    NASA Astrophysics Data System (ADS)

    Nicolas, Joëlle

    2000-12-01

    La Station Laser Ultra Mobile est la plus petite station de télémétrie laser au monde, ne pesant que 300 kg, dédiée à la poursuite de satellites équipés de rétroréflecteurs laser. Elle utilise un petit télescope de 13 cm de diamètre placé sur une monture issue d'un théodolite de précision et motorisé, un laser très compact et une photodiode à avalanche permettant la détection au niveau du simple photo-électron. Les premières expériences (Corse, fin 1996) ont révélé de nombreuses instabilités dans la qualité des mesures. Ce travail concerne l'étude et la mise en place de nombreuses modifications techniques afin d'atteindre une exactitude centimétrique des mesures et de pouvoir participer à la campagne de validation des orbites et d'étalonnage de l'altimètre du satellite océanographique JASON-1 (2001). La précision instrumentale souhaitée a été vérifiée avec succès en laboratoire. Outre cet aspect instrumental et métrologique, une analyse a été développée afin de pouvoir estimer l'exactitude et la stabilité des observations de la station mobile après intégration des modifications. A partir d'une expérience de co-localisation entre les deux stations laser fixe du plateau de Calern, l'analyse est basée sur l'ajustement, par station, de coordonnées et d'un biais instrumental moyen à partir d'une orbite de référence des satellites LAGEOS. Des variations saisonnières ont été mises en évidence dans les séries temporelles des différentes composantes. La comparaison locale des déformations de la croûte terrestre se traduisant par des variations d'altitude issues des données laser a montré une cohérence remarquable avec les mesures du gravimètre absolu transportable FG5. Des signaux de même amplitude ont aussi été observés par GPS. Ces variations sont également mises en évidence à l'échelle mondiale et leur interprétation géophysique est faite (combinaison des effets de marées terrestres et polaire

  16. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  17. On efeito do achatamento nos pontos de equilíbrio e na dinâmica de sistemas coorbitais

    NASA Astrophysics Data System (ADS)

    Mourão, D. C.; Winter, O. C.; Yokoyama, T.

    2003-08-01

    Neste trabalho analisamos o efeito do achatamento do corpo principal nos pontos de equilíbrio lagrangianos e na configuração de órbitas girino-ferradura. Enfatizamos os sistemas coorbitais de satélites de Saturno, pois se encontram em relativa proximidade com o planeta, em que o efeito do achatamento se torna mais evidente. O estudo é dividido em três etapas independentes. Na primeira fase analisamos as equações de movimento do problema restrito de três corpos considerando o efeito do achatamento, e através do balanceamento de forças buscamos a nova configuração dos pontos de equilíbrio lagrangianos. Concluímos, nesta etapa, que os pontos de equilíbrio estáveis apresentam um pequeno deslocamento definido pelo parâmetro de achatamento, não podendo ser mais representados por triângulos eqüiláteros. Aplicamos este resultado aos satélites coorbitais de Tetis e Dione, encontrando as posições de equilíbrio levemente deslocadas em relação ao caso sem achatamento. Na segunda fase visamos o sistema Saturno-Jano-Epimeteu, que por se tratar de um sistema de massas comparáveis, optamos por desenvolver as equações de Yoder et al (Icarus 53, pág 431-443, 1983), que permitem determinar os pontos de equilíbrio e a amplitude de oscilação angular das órbitas girino-ferradura para o problema não-restrito de três corpos, porém, no nosso estudo consideramos o efeito do achatamento do corpo principal nestas equações. Encontramos que a distância angular entre satélites, quando em posição de equilíbrio estável, diminui quanto maior for o parâmetro de achatamento do corpo principal. Além disso, a órbita de transição girino-ferradura possui largura angular menor em relação ao caso sem achatamento. Por fim, realizamos integrações numéricas para os casos reais de coorbitais de Saturno comparando com os resultados analíticos. Nestas integrações simulamos diversas órbitas girino-ferradura com diferentes parâmetros de achatamento

  18. CW laser pumped emerald laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  19. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  20. Structure of the mixed-metal carbonate KAgCO₃ revisited: order-disorder (OD) polytypism and allotwinning.

    PubMed

    Hans, Philipp; Stöger, Berthold; Weil, Matthias; Zobetz, Erich

    2015-04-01

    Crystals of KAgCO3 belong to an order-disorder (OD) family of structures composed of layers of two kinds. There are two polytypes with a maximum degree of order [MDO1: Pccb; MDO2: Ibca, doubled a-axis compared with MDO1], which are both realised to a different extent in two crystals under investigation [volume fraction MDO1:MDO2 in crystal (I): 0.0216:0.9784 (3) and in crystal (II): 0.9657:0.0343 (3)]. Sharp diffraction spots and the absence of diffuse scattering indicate highly ordered macroscopic domains. The structure of KAgCO3 was refined concurrently against all reflections using an allotwin model (addition of the intensities of both domains). It is shown that a disorder model refined against reflections of only one domain can lead to a significant overestimation of the volume fraction of this domain.

  1. Clinical outcomes of stapled transanal rectal resection (STARR) for obstructed defecation syndrome (ODS): a single institution experience in South Korea.

    PubMed

    Song, Kee Ho; Lee, Du Seok; Shin, Jong Keun; Lee, So Jin; Lee, Jae Bum; Yook, Eui Gon; Lee, Doo Han; Kim, Do Sun

    2011-06-01

    The purpose of this study was to assess both the short- and long-term functional outcomes of stapled transanal rectal resection (STARR) in ODS patients. We performed a retrospective review of data that were collected from January 2005 to October 2008. Between January 2005 to June 2006, 58 patients who underwent STARR were enrolled in this study. Follow-up was scheduled for 3 months and 1 year after surgery with the Cleveland Clinic Florida (CCF) constipation score and satisfaction grade. To evaluate the long-term functional outcome, we interviewed the patients by telephone using questionnaires for the CCF score and satisfaction grade on October 2008. The median follow-up period was 34 months (range, 27-46 months). The mean age and sex ratio were 54 years (range, 19-85 years) and 8:50 (M/F). The mean CCF constipation scores were 17.6 before the surgery, 9.5 at 3 months, 9.6 at 12 months, and 10.3 at the time of the latest interview. The satisfaction grade, which was rated as excellent and good by 63.4% of the patients at the time of the latest interview, was worse than that at 3 months (37.8%). Among the cases of the excellent group (19 cases) at postoperative 3 months, 13 cases (68.4%) were classified as excellent or good at the time of the latest interview. The STARR is a safe and effective surgical procedure for restoring the anatomy and function in ODS patients. Strict selection of patients is needed in enhancing and maintaining the patients' satisfaction after the procedure.

  2. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  3. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.

    Nitrosomonas europaeais an aerobic nitrifying bacterium that oxidizes ammonia (NH 3) to nitrite (NO 2 ₋) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH 4 +-dependent O 2uptake byN. europaeaby 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide usingmore » a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA.« less

  4. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    PubMed Central

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.; Yeager, Chris

    2016-01-01

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2−) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, and de novo protein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. PMID:26826234

  5. Sugar microanalysis by HPLC with benzoylation: improvement via introduction of a C-8 cartridge and a high efficiency ODS column.

    PubMed

    Miyagi, Michiko; Yokoyama, Hirokazu; Hibi, Toshifumi

    2007-07-01

    An HPLC protocol for sugar microanalysis based on the formation of ultraviolet-absorbing benzoyl chloride derivatives was improved. Here, samples were prepared with a C-8 cartridge and analyzed with a high efficiency ODS column, in which porous spherical silica particles 3 microm in diameter were packed. These devices allowed us to simultaneously quantify multiple sugars and sugar alcohols up to 10 ng/ml and to provide satisfactory separations of some sugars, such as fructose and myo-inositol and sorbitol and mannitol. This protocol, which does not require special apparatuses, should become a powerful tool in sugar research.

  6. Stereoacuity changes after laser in situ keratomileusis.

    PubMed

    Singh, Digvijay; Saxena, Rohit; Sinha, Rajesh; Titiyal, Jeewan S

    2015-02-01

    To study changes in near and distance stereoacuity after laser in situ keratomileusis (LASIK). A prospective interventional study was conducted at an apex tertiary care ophthalmology center in India. Near and distance stereoacuity was tested in 40 patients (80 eyes) who underwent LASIK for myopic correction and got unaided vision of 0.67 or better in each eye. Stereoacuity was tested with best spectacle correction before LASIK, and post-LASIK stereoacuity was tested with unaided eye near and distance Randot tests. Forty patients (80 eyes) had a mean (±SD) pre-LASIK refractive error of -4.70 (±1.72) DS OD and -4.59 (±1.58) DS OS and a mean (±SD) anisometropia of 0.55 (±0.51) DS. The median pre-LASIK near stereoacuity was 70 arcsec and distance stereoacuity was 200 arcsec, both of which improved after LASIK to 30 and 60 arcsec, respectively (p < 0.001, both). Amount of refractive error was not associated with stereoacuity but anisometropia of greater than or equal to 1 diopter had significantly worse distance stereoacuity in both the pre-LASIK and post-LASIK period. The post-LASIK near stereoacuity and distance stereoacuity were strongly associated (r = 0.706, p < 0.001) unlike the change in stereoacuity. Near and distance stereoacuity shows significant improvement after LASIK. Stereoacuity is associated with the degree of anisometropia but not the amount of refractive error corrected.

  7. Application of CO laser for laser balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akira; Sakurada, Masami; Mizuno, Kyoichi; Kurita, Akira; Nakamura, Haruo; Suda, Akira; Arai, Tsunenori; Kikuchi, Makoto

    1990-07-01

    CO laser may be efficient for thermal fusion of intima of arterial wall without adventitial tissue damage because of high tissue absorption. To investigate the efficacy of CO laser as a laser bam for laser balloon angioplasty (LBA). CO laser was irradiated to aortic tissue through 3Oim polyethylene membrane and tissue temperature was measured by a thermistor. At 2Owatt/cm2 200joules/cm2 continuous laser exposure (CE), tissue temperature was above 100°C within a depth of 1mm and rapidly decreased to 60 °C or below between 2 and 3mm in depth. Moreover, adventitial temperature could be decreased by changing duty ratio (exposure duration/interval) of intermittent laser exposure (IE) despite of the same laser energy. Light microscopy showed high degree of medial coagulation necrosis in CE, however thermal coagulation was observed only at the surface of intima of aortic tissue in IE at duty ratio 1 / 2. These findings suggested CO laser could coagulate intimal layer with less deep thermal damage compared to Nd- YAG laser and that IE was better for superficial welding than CE at the same energy. We concluded that CO laser might be more efficient as a laser beam for LBA than Nd-YAG laser.

  8. Incorporation of fiber optic beam shaping into a laparoscopic probe for laser stimulation of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.

  9. Laser Wakefield Acceleration Experiments Using HERCULES Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, T.; McGuffey, C.; Dollar, F.

    2009-07-25

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less

  10. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    NASA Astrophysics Data System (ADS)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory

  11. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  12. Gas Lasers

    NASA Astrophysics Data System (ADS)

    Dixit, S. K.

    The field of gas lasers, started with the invention of He-Ne laser in 1961, has witnessed tremendous growth in terms of technology development, research into gaseous gain medium, resonator physics and application in widely diverse arenas. This was possible due to high versatility of gas lasers in terms of operating wavelengths, power, beam quality and mode of operation. In recent years, there is a definite trend to replace the gas lasers, wherever possible, by more efficient and compact solid-state lasers. However, for many industrial, medical and military applications, the gas lasers still rule the roost due to their high-power capabilities with good beam quality at specific wavelengths. This chapter presents a short review covering the operating principle, important technical details and application potential of all the important gas lasers such as He-Ne, CO2, argon ion, copper vapour, excimer and chemical lasers. These neutral atoms, ions and molecule gas lasers are discussed as per applicable electrical, chemical and optical excitation schemes. The optically pumped gas lasers, recently experiencing resurgence, are discussed in the context of far infrared THz molecular lasers, diode-pumped alkali lasers and optically pumped gas-filled hollow-core fibre lasers.

  13. Miniature ureteroscope tip designs for use in thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    A miniature ureteroscope has the potential to eliminate need for full anesthesia and dilation, increase comfort and safety of laser lithotripsy via ureteroscopy, and reduce hospital costs via an office based procedure. A prototype, 4.5 Fr (1.5-mm-OD), five channel ureteroscope tip was developed, housing a 200-μm-ID central channel for insertion of small, 100-μm-core fibers and four surrounding channels, each with 510-μm-ID for instrumentation, irrigation, imaging, and illumination, respectively. Common urological instruments (including fibers, guidewires, and stone baskets) were inserted through tip's working channels to demonstrate feasibility. Low irrigation rates were measured, revealing a need for manual pump-assisted irrigation. Imaging was conducted using 3k, 6k, and 10k pixel miniature flexible endoscopes with 0.4, 0.6, and 0.9 mm outer diameters, respectively. The 3k pixel endoscope with integrated illumination was inserted through the prototype unimpeded, and successfully demonstrated ability to differentiate between hard tissues (e.g. kidney stones) and soft tissues (e.g. ureter wall), for visibility and safety during potential clinical application. Based on both image quality and instrument diameter, the 6k pixel endoscope provided an optimal solution for miniature ureteroscopy.

  14. Theory of Laser-Stimulated Surface Processes.

    DTIC Science & Technology

    1983-05-01

    variables9 4 via the Fourier expansion of AW. The correlation function can be written in terms of specific collective properties of the phonons by...9 -Eg/g 2 T - 11 IgL Ik odK 6(Udk-\\) (2.338)13 dk 1 \\f2k/ d(zk Using the selection rule, Eq. (2.334), along with Eq. (2.323), this can be

  15. Prototype laser-diode-pumped solid state laser transmitters

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.

    1989-01-01

    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.

  16. Laser principles.

    PubMed

    Bogdan Allemann, Inja; Kaufman, Joely

    2011-01-01

    Since the construction of the first laser in the 1960s, the role that lasers play in various medical specialities, including dermatology, has steadily increased. However, within the last 2 decades, the technological advances and the use of lasers in the field of dermatology have virtually exploded. Many treatments have only become possible with the use of lasers. Especially in aesthetic medicine, lasers are an essential tool in the treatment armamentarium. Due to better research and understanding of the physics of light and skin, there is now a wide and increasing array of different lasers and devices to choose from. The proper laser selection for each indication and treatment requires a profound understanding of laser physics and the basic laser principles. Understanding these principles will allow the laser operator to obtain better results and help avoid complications. This chapter will give an in-depth overview of the physical principles relevant in cutaneous laser surgery. Copyright © 2011 S. Karger AG, Basel.

  17. Combined treatment for Coats’ disease: retinal laser photocoagulation combined with intravitreal bevacizumab injection was effective in two cases

    PubMed Central

    2014-01-01

    Background The exact pathogenetic mechanisms of Coats’ disease remain unknown. In this report, we show two cases of Coats’ disease that achieved a favorable prognosis with the combined treatment of intravitreal bevacizumab (IVB) injection prior to photocoagulation, although both initially resisted photocoagulation therapy. Case presentations Case 1 was a 15-year-old boy with initial visual acuity of 0.4 OD. At the temporal retina, aneurysms and abnormal telangiectatic vessels were observed. Hard exudates and an exudative retinal detachment extended to the fovea. He was diagnosed as having Coats’ disease at stage 3A and we performed laser photocoagulation as an initial approach to treat peripheral aneurysms and telangiectatic vessels. After the treatment, the exudative retinal detachment was eased and visual acuity improved to 1.0; however, recurrence occurred after 5 months. The exudative change was resistant against laser photocoagulation therapy and we therefore added IVB as an adjuvant before photocoagulation. Fourteen days after IVB injection phased laser photocoagulation was given to cover the abnormal capillaries, aneurysms and the leakage area spotted in FA. A good prognosis was obtained with decreased exudation and improved visual acuity. Case 2 was an 11-year-old boy with decreased visual acuity of 0.15 OS at the initial visit. Hard exudates, retinal edema and serous retinal detachment were seen at the macula and peripheral retina. Fluorescein angiography revealed telangiectatic capillaries at the temporal retina. Our diagnosis was Coats’ disease at stage 3A. Extensive photocoagulation was performed as an initial treatment to the lesion. However, the exudative change was severe and resistant against the photocoagulation treatment. Therefore, we added IVB as an adjuvant before photocoagulation. Exudative change in the retina seemed to be eased 7 days after IVB injection, therefore, phased laser phototherapy was added to cover the abnormal

  18. Simultaneous spectral and temporal analyses of kinetic energies in nonequilibrium systems: theory and application to vibrational relaxation of O-D stretch mode of HOD in water.

    PubMed

    Jeon, Jonggu; Lim, Joon Hyung; Kim, Seongheun; Kim, Heejae; Cho, Minhaeng

    2015-05-28

    A time series of kinetic energies (KE) from classical molecular dynamics (MD) simulation contains fundamental information on system dynamics. It can also be analyzed in the frequency domain through Fourier transformation (FT) of velocity correlation functions, providing energy content of different spectral regions. By limiting the FT time span, we have previously shown that spectral resolution of KE evolution is possible in the nonequilibrium situations [Jeon and Cho, J. Chem. Phys. 2011, 135, 214504]. In this paper, we refine the method by employing the concept of instantaneous power spectra, extending it to reflect an instantaneous time-correlation of velocities with those in the future as well as with those in the past, and present a new method to obtain the instantaneous spectral density of KE (iKESD). This approach enables the simultaneous spectral and temporal resolution of KE with unlimited time precision. We discuss the formal and novel properties of the new iKESD approaches and how to optimize computational methods and determine parameters for practical applications. The method is specifically applied to the nonequilibrium MD simulation of vibrational relaxation of the OD stretch mode in a hydrated HOD molecule by employing a hybrid quantum mechanical/molecular mechanical (QM/MM) potential. We directly compare the computational results with the OD band population relaxation time profiles extracted from the IR pump-probe measurements for 5% HOD in water. The calculated iKESD yields the OD bond relaxation time scale ∼30% larger than the experimental value, and this decay is largely frequency-independent if the classical anharmonicity is accounted for. From the integrated iKESD over intra- and intermolecular bands, the major energy transfer pathways were found to involve the HOD bending mode in the subps range, then the internal modes of the solvent until 5 ps after excitation, and eventually the solvent intermolecular modes. Also, strong hydrogen

  19. Efeitos do binarismo não resolvido na determinação da função de massa de aglomerados

    NASA Astrophysics Data System (ADS)

    Kerber, L. O.; Santiago, B. X.

    2003-08-01

    Através de simulações numéricas buscamos quantificar os efeitos que o binarismo não resolvido causa na determinação da função de massa (MF) de aglomerados estelares. Geramos diagramas cor-magnitude (CMDs) artificiais simulando uma população única, caracterizada por estrelas de mesma idade e composição quí mica, com uma fração de binárias não resolvidas e distribuição em massa das estrelas dada por uma MF do tipo lei de potência. A presença de pares de estrelas não resolvidos faz com que a MF obtida da função de luminosidade (LF) tenha a têndencia de ser mais plana do que a MF que gerou o CMD artificial. Propomos um tratamento de correção para tal efeito. Outro efeito relacionado diz respeito ao alargamento do CMD, que apresenta-se como um indicador do número total de estrelas no domí nio de baixas massas (m < 0.6M¤). Todos os resultados acima possuem uma forte dependência com os erros fotométricos e estão baseados na hipótese de que ambas estrelas do par não resolvido são sorteadas de uma mesma MF de forma independente. O objetivo final é aplicarmos o tratamento aqui desenvolvido para implementarmos a análise da nossa amostra de aglomerados ricos da Grande Nuvem de Magalhães.

  20. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  1. Parameters in fractional laser assisted delivery of topical anesthetics: Role of laser type and laser settings.

    PubMed

    Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert

    2018-05-07

    Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P < 0.01). We found no significant difference in VAS scores between the CO 2 and the Er:YAG laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P < 0.05) and the Er:YAG laser (P < 0.01). Pretreatment with the CO 2 laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can

  2. Laser device

    DOEpatents

    Scott, Jill R [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  3. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  4. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  5. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  6. Safe laser application requires more than laser safety

    NASA Astrophysics Data System (ADS)

    Frevel, A.; Steffensen, B.; Vassie, L.

    1995-02-01

    An overview is presented concerning aspects of laser safety in European industrial laser use. Surveys indicate that there is a large variation in the safety strategies amongst industrial laser users. Some key problem areas are highlighted. Emission of hazardous substances is a major problem for users of laser material processing systems where the majority of the particulate is of a sub-micrometre size, presenting a respiratory hazard. Studies show that in many cases emissions are not frequently monitored in factories and uncertainty exists over the hazards. Operators of laser machines do not receive adequate job training or safety training. The problem is compounded by a plethora of regulations and standards which are difficult to interpret and implement, and inspectors who are not conversant with the technology or the issues. A case is demonstrated for a more integrated approach to laser safety, taking into account the development of laser applications, organizational and personnel development, in addition to environmental and occupational health and safety aspects. It is necessary to achieve a harmonization between these elements in any organization involved in laser technology. This might be achieved through establishing technology transfer centres in laser technology.

  7. Laser Safety: A Laser Alignment Practical Training Course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Michael; Edstrom, Steve; /SLAC

    2011-01-26

    SLAC National Accelerator Laboratory has developed a Laser Alignment Practical Training Course as one of its core laser safety classes. The course is taught to small groups of up to three students and takes 1-3 hours to complete. This practical course is not a substitute for site-specific On-the-Job Training; it does, however, provide a good introduction in core laser safety practices that can be broadly applied. Alignment and diagnostic tasks are performed with low power lasers. Students learn safe alignment and diagnostic techniques and how to avoid common mistakes that might lead to an accident. The class is taught bymore » laser supervisors, enabling them to assess the skill level of new laser personnel and determine the subsequent level of supervision needed. The course has six alignment tasks. For each task, discussion points are given for the instructor to review with the students. The optics setup includes different wavelength lasers, a beam expander, mirrors, irises, a periscope, a beam-splitting polarizer and a diffraction grating. Diagnostic tools include viewing cards, an IR viewer and a ccd camera. Laser eyewear is available to block some laser wavelengths in the setup.« less

  8. Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius.

    PubMed

    Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-07-01

    There is increasing evidence indicating that several UV filters might have endocrine disruptive effects. Numerous studies have evaluated hormonal effects in vertebrates, mainly reporting estrogenic and androgenic activities in mammals and fishes. There is only limited knowledge about potential endocrine activity in invertebrate hormonal systems. In this work, the effects on endocrine signaling genes of six frequently used UV filters were investigated in Chironomus riparius, a reference organism in aquatic toxicology. The UV filters studied were: octyl-p-methoxycinnamate (OMC) also called 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4-MBC); benzophenone-3 (BP-3); 4-hidroxybenzophenone (4-HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). After in vivo exposure at different dosages, expression levels of the genes coding for the ecdysone receptor (EcR), the ultraspiracle (usp, ortholog of the RXR) and the estrogen-related receptor (ERR) were quantified by Real Time PCR. The EcR gene was significantly upregulated by 4-MBC, OMC/EHMC and OD-PABA, with a dose-related response following 24h exposure. In contrast, the benzophenones, BP-3 and 4-HB, as well as OC did not alter this gene at the same exposure conditions. The transcription profiles of the usp and ERR genes were not significantly affected, except for BP-3 that inhibited the usp gene at the highest concentration. To our knowledge, this is the first experimental evidence in invertebrates of a direct effect of UV filters on endocrine-related genes, and is consistent with the known effects on vertebrate hormonal receptor genes. The capability of 4-MBC, OMC/EHMC and OD-PABA to stimulate the expression of the ecdysone receptor, a key transcription factor for the ecdysone-genomic response in arthropods, suggests the possibility of a broad and long-term effect on this hormonal pathway. These findings strengthen the need for further research about the ecotoxicological implications

  9. Lasers and laser-like devices: part one.

    PubMed

    Stewart, Nicholas; Lim, Adrian C; Lowe, Patricia M; Goodman, Greg

    2013-08-01

    Lasers have been used in dermatology for nearly 50 years. Through their selective targeting of skin chromophores they have become the preferred treatment for many skin conditions, including vascular malformations, photorejuvenation and acne scars. The technology and design of lasers continue to evolve, allowing greater control of laser parameters and resulting in increased safety and efficacy for patients. Innovations have allowed the range of conditions and the skin types amenable to treatment, in both general and cosmetic dermatology, to expand over the last decade. Integrated skin cooling and laser beam fractionation, for example, have improved safety, patient tolerance and decreased downtime. Furthermore, the availability and affordability of quality devices continues to increase, allowing clinicians not only to access laser therapies more readily but also to develop their personal experience in this field. As a result, most Australian dermatologists now have access to laser therapies, either in their own practice or within referable proximity, and practical knowledge of these technologies is increasingly required and expected by patients. Non-laser energy devices utilising intense pulsed light, plasma, radiofrequency, ultrasound and cryolipolysis contribute to the modern laser practitioners' armamentarium and will also be discussed. © 2013 The Authors. Australasian Journal of Dermatology © 2013 The Australasian College of Dermatologists.

  10. Unique cohesive nature of the β1-isomer of [70]PCBM fullerene on structures and photovoltaic performances of bulk heterojunction films with PffBT4T-2OD polymers.

    PubMed

    Umeyama, Tomokazu; Igarashi, Kensho; Sakamaki, Daisuke; Seki, Shu; Imahori, Hiroshi

    2018-01-04

    The effects of regioisomer and diastereomer separations of [70]PCBM on structures and photovoltaic properties of PffBT4T-2OD:[70]PCBM blend films have systematically been investigated for the first time. Decreasing the amount of a diastereomer of β-[70]PCBM with high aggregation tendency (β 1 -[70]PCBM) improved the photovoltaic performances.

  11. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  12. Transurethral vaporesection of prostate: diode laser or thulium laser?

    PubMed

    Tan, Xinji; Zhang, Xiaobo; Li, Dongjie; Chen, Xiong; Dai, Yuanqing; Gu, Jie; Chen, Mingquan; Hu, Sheng; Bai, Yao; Ning, Yu

    2018-05-01

    This study compared the safety and effectiveness of the diode laser and thulium laser during prostate transurethral vaporesection for treating benign prostate hyperplasia (BPH). We retrospectively analyzed 205 patients with BPH who underwent a diode laser or thulium laser technique for prostate transurethral vaporesection from June 2016 to June 2017 and who were followed up for 3 months. Baseline characteristics of the patients, perioperative data, postoperative outcomes, and complications were compared. We also assessed the International Prostate Symptom Score (IPSS), quality of life (QoL), maximum flow rate (Q max ), average flow rate (AFR), and postvoid residual volume (PVR) at 1 and 3 months postoperatively to evaluate the functional improvement of each group. There were no significant differences between the diode laser and thulium laser groups related to age, prostate volume, operative time, postoperative hospital stays, hospitalization costs, or perioperative data. The catheterization time was 3.5 ± 0.8 days for the diode laser group and 4.7 ± 1.8 days for the thulium laser group (p < 0.05). Each group had dramatic improvements in IPSS, QoL, Q max , AFR, and PVR compared with the preoperative values (p < 0.05), although there were no significant differences between the two groups. Use of both diode laser and thulium laser contributes to safe, effective transurethral vaporesection in patients with symptomatic BPH. Diode laser, however, is better than thulium laser for prostate transurethral vaporesection because of its shorter catheterization time. The choice of surgical approach is more important than the choice of laser types during clinical decision making for transurethral laser prostatectomy.

  13. The Optical Depth Sensor (ODS) in the DREAMS package onboard the Exomars Entry Descent and Landing Demonstrator Module

    NASA Astrophysics Data System (ADS)

    Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2012-09-01

    The optical depth sensor (ODS) is designed to retrieve the optical depth of the dust layer and to characterize the high altitude clouds on Mars. It was developped initially for the mission MARS 96, and also was included in the payload of several other missions. The sensor was finally built and used for a field experiment in Africa in order to validate the concept and test the performance. In this work we present main principle of the retrieval, the instrumental concept and the result of the tests performed during the 2004-2005 winter field experiment. It is now included in the package DREAM, which is part of the payload of the EDM on Mars 2016 and associated to two terrestrial campaigns, in tropical environment (Brasil) and in the arctic environment.

  14. Laser safety considerations for a mobile laser program

    NASA Astrophysics Data System (ADS)

    Flor, Mary

    1997-05-01

    An increased demand for advanced laser technology, especially in the area of cutaneous and cosmetic procedures has prompted physicians to use mobile laser services. Utilization of a mobile laser service allows physicians to provide the latest treatments for their patients while minimizing overhead costs. The high capital expense of laser systems is often beyond the financial means of individual clinicians, group practices, free-standing clinics and smaller community hospitals. Historically rapid technology turnover with laser technology places additional risk which is unacceptable to many institutions. In addition, health care reform is mandating consolidation of equipment within health care groups to keep costs at a minimum. In 1994, Abbott Northwestern Hospital organized an in-house mobile laser technology service which employs a group of experienced laser specialists to deliver and support laser treatments for hospital outreach and other regional physicians and health care facilities. Many of the hospital's internal safety standards and policies are applicable to the mobile environment. A significant challenge is client compliance because of the delicate balance of managing risk while avoiding being viewed as a regulator. The clinics and hospitals are assessed prior to service to assure minimum laser safety standards for both the patient and the staff. A major component in assessing new sites is to inform them of applicable regulatory standards and their obligations to assure optimum laser safety. In service training is provided and hospital and procedures are freely shared to assist the client in establishing a safe laser environment. Physician and nursing preceptor programs are also made available.

  15. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  16. Rigrod laser-pumped-laser resonator model: II. Application to thin and optically-dilute laser media

    NASA Astrophysics Data System (ADS)

    Brown, D. C.

    2014-08-01

    In part I of this paper, and to set the foundation for this part II, we derived the resonator equations describing the normalized intensities, output power, gain, and extraction efficiency for a standard resonator incorporating two dielectric mirrors and a gain element. We then generalized the results to include an absorbing region representing a second laser crystal characterized by a small-signal transmission T0. Explicit expressions were found for the output power extracted into absorption by the second laser crystal and the extraction efficiency, and the limits to each were discussed. It was shown that efficient absorption by a thin or dilute second laser crystal can be realized in resonators in which the mirror reflectivities were high and in which the single-pass absorption was low, due to the finite photon lifetime and multi-passing of the absorbing laser element. In this paper, we apply the model derived in part I to thin or dilute laser materials, concentrating on a Yb, Er:glass intracavity pumped by a 946 nm Nd:YAG laser, a Yb, Er:glass laser-pumped intracavity by a 977 nm diode laser, and an Er:YAG laser-pumped intracavity to a 1530 nm diode laser. It is shown that efficient absorption can be obtained in all cases examined.

  17. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  18. Auto-simultaneous laser treatment and Ohshiro's classification of laser treatment

    NASA Astrophysics Data System (ADS)

    Ohshiro, Toshio

    2005-07-01

    When the laser was first applied in medicine and surgery in the late 1960"s and early 1970"s, early adopters reported better wound healing and less postoperative pain with laser procedures compared with the same procedure performed with the cold scalpel or with electrothermy, and multiple surgical effects such as incision, vaporization and hemocoagulation could be achieved with the same laser beam. There was thus an added beneficial component which was associated only with laser surgery. This was first recognized as the `?-effect", was then classified by the author as simultaneous laser therapy, but is now more accurately classified by the author as part of the auto-simultaneous aspect of laser treatment. Indeed, with the dramatic increase of the applications of the laser in surgery and medicine over the last 2 decades there has been a parallel increase in the need for a standardized classification of laser treatment. Some classifications have been machine-based, and thus inaccurate because at appropriate parameters, a `low-power laser" can produce a surgical effect and a `high power laser", a therapeutic one . A more accurate classification based on the tissue reaction is presented, developed by the author. In addition to this, the author has devised a graphical representation of laser surgical and therapeutic beams whereby the laser type, parameters, penetration depth, and tissue reaction can all be shown in a single illustration, which the author has termed the `Laser Apple", due to the typical pattern generated when a laser beam is incident on tissue. Laser/tissue reactions fall into three broad groups. If the photoreaction in the tissue is irreversible, then it is classified as high-reactive level laser treatment (HLLT). If some irreversible damage occurs together with reversible photodamage, as in tissue welding, the author refers to this as mid-reactive level laser treatment (MLLT). If the level of reaction in the target tissue is lower than the cells

  19. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  20. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  1. The Geoscience Laser Altimeter System (GLAS) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.; Yu, Anthony W.; Dallas, Joseph L.; Melak, Anthony; Lukemir, Alan; Ramos-Izqueirdo, L.; Mamakos, William

    2007-01-01

    The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presented

  2. Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Fwu-Hsing

    2014-04-01

    In this study, biomedical composite materials were employed to fabricate bone scaffolds using a self-developed rapid prototyping (RP) apparatus. The slurry formed by combining hydroxyapatite (HA), silica sol, and sodium tripolyphosphate (STPP) was heated by a CO2 laser. Under appropriate processing parameters, a biocomposite green body was subsequently fabricated. Its mechanical properties, including surface roughness, bending and compression strengths, volume shrinkage rate, and surface microstructure, were analyzed after heat treatment to 1200 °C, 1300 °C, and 1400 °C. The results showed that after heating the specimen to 1200 °C, its compression and bending strengths increased significantly to 43.26 MPa and 1.28 MPa, respectively; the surface roughness was 12 μm; and surface pores were of size 5-25 μm. Furthermore, the results of WST-1 and LDH assay indicate that the biocomposites showed no cytotoxicity on 3T3 fibroblast. An optical density (OD) of 1.1 was also achieved, and the specimen was suitable for the adhesion and growth of osteoblast-like cells (MG63). Therefore, the biocomposite bone scaffolds fabricated in this study have potential to be bone implants for developing hard tissue.

  3. Laser plasma interaction at an early stage of laser ablation

    NASA Astrophysics Data System (ADS)

    Lu, Y. F.; Hong, M. H.; Low, T. S.

    1999-03-01

    Laser scattering and its interaction with plasma during KrF excimer laser ablation of silicon are investigated by ultrafast phototube detection. There are two peaks in an optical signal with the first peak attributed to laser scattering and the second one to plasma generation. For laser fluence above 5.8 J/cm2, the second peak rises earlier to overlap with the first one. The optical signal is fitted by a pulse distribution for the scattered laser light and a drifted Maxwell-Boltzmann distribution with a center-of-mass velocity for the plasma. Peak amplitude and its arrival time, full width at half maximum (FWHM), starting time, and termination time of the profiles are studied for different laser fluences and detection angles. Laser pulse is scattered from both the substrate and the plasma with the latter part as a dominant factor during the laser ablation. Peak amplitude of the scattered laser signal increases but its FWHM decreases with the laser fluence. Angular distribution of the peak amplitude can be fitted with cosn θ(n=4) while the detection angle has no obvious influence on the FWHM. In addition, FWHM and peak amplitude of plasma signal increase with the laser fluence. However, starting time and peak arrival time of plasma signal reduce with the laser fluence. The time interval between plasma starting and scattered laser pulse termination is proposed as a quantitative parameter to characterize laser plasma interaction. Threshold fluence for the interaction is estimated to be 3.5 J/cm2. For laser fluence above 12.6 J/cm2, the plasma and scattered laser pulse distributions tend to saturate.

  4. Quantitative Species Measurements in Microgravity Combustion Flames using Near-Infrared Diode Lasers

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1999-01-01

    the laser beam across a methane or propane diffusion jet flame. The light beams were recaptured by a set of gradient index lenses, coupled back into separate fiber optic lines, and transmitted back to detectors and electronics in the instrument package. In these experiments a 6-mm od fiber cable (containing the nine optical fibers) fell with the drop rig. Using separate detection and demodulation channels, spatial and temporal (up to 20 Hz) maps of water vapor and methane concentrations were obtained at differing heights in the flames. While this apparatus was useful from a demonstration standpoint, several drawbacks needed attention before useful scientific measurements could be obtained. First, eight lines of sight are somewhat insufficient for detailing the spatial profiles of the gas. Second, multiple detection channels operating in parallel are both expensive and present a challenge for accurate calibration. As a result, a newer scanning system was developed in our first contract under this program. The primary characteristic of this system is that it contains a single detection channel and achieves "continuous" spatial resolution by scanning the laser beam across the flame region, then directing this beam onto a single detector. Thus spatial measurements are converted to a temporal series of data. The true spatial resolution is limited only by the beam diameter and width of the sweep. In these experiments the beam is focused to about 1-mm diameter and scans across a region up to 4-cm wide.

  5. Femtosecond laser in laser in situ keratomileusis

    PubMed Central

    Salomão, Marcella Q.; Wilson, Steven E.

    2014-01-01

    Flap creation is a critical step in laser in situ keratomileusis (LASIK). Efforts to improve the safety and predictability of the lamellar incision have fostered the development of femtosecond lasers. Several advantages of the femtosecond laser over mechanical microkeratomes have been reported in LASIK surgery. In this article, we review common considerations in management and complications of this step in femtosecond laser–LASIK and concentrate primarily on the IntraLase laser because most published studies relate to this instrument. PMID:20494777

  6. Atmospherically Related Studies of O(D-1) and O2 (b'Sigma(sub g, sup +)

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1998-01-01

    For the third year of the grant, we propose to investigate the (beta)'(Sigma)(sub g, sup +). Our earlier value of 0.77 +/- 0.23, which has been used for a long time, should be updated, and the error limits reduced. Current measurements in J. Barker's group at the University of Michigan have assigned a value closer to 0.9, and we will conduct a new evaluation. The goals of this project are to investigate various aspects of the photochemistry of O('D) and O2(beta)'(Sigma)(sub g, sup +) that are of relevance to the photochemistry and energy balance of the terrestrial atmosphere. Over the last six months, we have obtained new sky spectra data files from the Keck telescope via Don Osterbrock at UC Santa Cruz, and now 120 hours of data have been accumulated. Thus, we have been able to make large signal/noise improvements of the O2(b'(Sigma)(sub g, sup +) - X(sup 3)(Sigma)(Sub g, sup -) Atmospheric Band data that we are collecting.

  7. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  8. Task five report: Laser communications for data acquisition networks. [characteristics of lasers and laser systems for optical communication applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.

  9. Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J. R.

    1989-01-01

    Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

  10. Consistency analysis on laser signal in laser guided weapon simulation

    NASA Astrophysics Data System (ADS)

    Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin

    2015-10-01

    The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.

  11. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  12. Preparation of highly-oxidized starch using hydrogen peroxide and its application as a novel ligand for zirconium tanning of leather.

    PubMed

    Yu, Yue; Wang, Ya-Nan; Ding, Wei; Zhou, Jianfei; Shi, Bi

    2017-10-15

    A series of highly-oxidized starch (HOS) were prepared using H 2 O 2 and a copper-iron catalyst as a desired ligand for zirconium tanning of leather. The effects of catalyst and H 2 O 2 dosages, and reaction temperature on the oxidation degree (OD, represented as the amount of carbonyl and carboxyl groups derived) of starch were investigated. The OD reached 76.2% when oxidation was conducted using 60% H 2 O 2 and 0.015% catalyst at 98°C for 2h. 13 C NMR and FT-IR illustrated carbonyl and carboxyl groups were formed in HOS after oxidation. GPC and laser particle size analyses indicated the decrease of HOS molecular size with increasing H 2 O 2 dosage and OD. HOS with moderate OD and molecular weight was able to coordinate with zirconium and remarkably improve tanning process. Leather tanned by Zr complexes using HOS-60 (60% H 2 O 2 , Mn 3516g/mol) as ligand presented considerably better physical and organoleptic properties than those of traditional Zr-tanned leather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  14. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.

    PubMed

    McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy

    2017-04-20

    We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2  W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

  15. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  16. Laser propulsion for orbit transfer - Laser technology issues

    NASA Technical Reports Server (NTRS)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  17. Laser frequency modulator for modulating a laser cavity

    DOEpatents

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  18. High throughput laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  19. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  20. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  1. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F [Berkeley, CA

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  2. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  3. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    PubMed

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd

  4. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy.

    PubMed

    Nakatani, Kiyoharu; Matsuta, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.

  5. ALMDS laser system

    NASA Astrophysics Data System (ADS)

    Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Hall, David; Bethel, Michael; Calmes, Lonnie K.

    2003-06-01

    The ALMDS (Airborne Laser Mine Detection System) has been developed utilizing a solid-state laser operating at 532nm for naval mine detection. The laser system is integrated into a pod that mounts externally on a helicopter. This laser, along with other receiver systems, enables detailed underwater bathymetry. CEO designs and manufactures the laser portion of this system. Arete Associates integrates the laser system into the complete LIDAR package that utilizes sophisticated streak tube detection technology. Northrop Grumman is responsible for final pod integration. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU are undergoing MIL-STD-810 testing for vibration, shock, temperature storage and operation extremes, as well as MIL-STD-704E electrical power testing and MIL-STD-461E EMI testing. The Nd:YAG MOPA laser operates at 350 Hz pulse repetition frequency at 45 Watts average 532nm power and is controlled at the system level from within the helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior.

  6. Laser photocoagulation - eye

    MedlinePlus

    Laser coagulation; Laser eye surgery; Photocoagulation; Laser photocoagulation - diabetic eye disease; Laser photocoagulation - diabetic retinopathy; Focal photocoagulation; Scatter (or pan retinal) photocoagulation; Proliferative ...

  7. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    PubMed

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  8. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  9. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  10. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  11. Laser cutting: industrial relevance, process optimization, and laser safety

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver

    1998-09-01

    Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to

  12. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  15. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. Wemore » simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.« less

  16. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  17. LaserFest Celebration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Alan Chodos; Elizabeth A. Rogan

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and itsmore » many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.« less

  18. Observation of laser beam profile progression inside an extended laser cavity

    NASA Astrophysics Data System (ADS)

    Wu, Frank F.; Farrell, Thomas C.

    2013-03-01

    This report presents the result of the laser beam profile progression in target-in-the-loop (TIL) system. This simulation experiment is to verify whether it is possible to form a tight hot spot similar to a single transversal mode in an extended laser cavity. Therefore, it is very important to observe the progression of the laser profile at a laser cavity mirror when a seeded high energy laser pulse is injected into the TIL system. The extended laser cavity is formed with a high reflectivity mirror on one end and an optical phase conjugated mirror as the second mirror, with potential disturbance media inside. The laser oscillation occurs only when it is triggered with a single frequency high energy laser pulse to overcome the threshold condition. With a laser cavity length of around 11 meters and a seeded laser pulse of 10 ns, we have been able to acquire and distinguish the laser beam profiles of each round-trip. Inserting a scattering media and other distortion elements can simulate atmospheric effects.

  19. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  20. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  1. Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika

    2004-03-01

    The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.

  2. Laser application in neurosurgery

    PubMed Central

    Belykh, Evgenii; Yagmurlu, Kaan; Martirosyan, Nikolay L.; Lei, Ting; Izadyyazdanabadi, Mohammadhassan; Malik, Kashif M.; Byvaltsev, Vadim A.; Nakaji, Peter; Preul, Mark C.

    2017-01-01

    Background: Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. Methods: We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. Results: Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. Conclusion: Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science. PMID:29204309

  3. Fiber Optic Laser Accelerometer

    DTIC Science & Technology

    2007-11-06

    embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by

  4. Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser.

    PubMed

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir

    2011-07-01

    The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.

  5. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  6. Navigated Pattern Laser System versus Single-Spot Laser System for Postoperative 360-Degree Laser Retinopexy.

    PubMed

    Kulikov, Alexei N; Maltsev, Dmitrii S; Boiko, Ernest V

    2016-01-01

    Purpose . To compare three 360°-laser retinopexy (LRP) approaches (using navigated pattern laser system, single-spot slit-lamp (SL) laser delivery, and single-spot indirect ophthalmoscope (IO) laser delivery) in regard to procedure duration, procedural pain score, technical difficulties, and the ability to achieve surgical goals. Material and Methods . Eighty-six rhegmatogenous retinal detachment patients (86 eyes) were included in this prospective randomized study. The mean procedural time, procedural pain score (using 4-point Verbal Rating Scale), number of laser burns, and achievement of the surgical goals were compared between three groups (pattern LRP (Navilas® laser system), 36 patients; SL-LRP, 28 patients; and IO-LRP, 22 patients). Results . In the pattern LRP group, the amount of time needed for LRP and pain level were statistically significantly lower, whereas the number of applied laser burns was higher compared to those in the SL-LRP group and in the IO-LRP group. In the pattern LRP, SL-LRP, and IO-LRP groups, surgical goals were fully achieved in 28 (77.8%), 17 (60.7%), and 13 patients (59.1%), respectively ( p > 0.05). Conclusion . The navigated pattern approach allows improving the treatment time and pain in postoperative 360° LRP. Moreover, 360° pattern LRP is at least as effective in achieving the surgical goal as the conventional (slit-lamp or indirect ophthalmoscope) approaches with a single-spot laser.

  7. Lasers in otorhinolaryngology

    NASA Astrophysics Data System (ADS)

    Pais Clemente, Manuel P.

    1992-03-01

    Lasers are now commonly accepted and widely used surgical instruments in otorhinolaryngology. There have been a great number of technological advances with lasers that have contributed to the expansion of this new surgical modality with an increased number of medical applications. Surgical strategies have also changed and are more favorable toward conservative surgery in which less tissues is removed than with more radical resections. This combination of improving technology and medical attitudes has changed the field of otorhinolaryngology, and resulted in an expanding use of laser surgery. Since 1973 we have been using the carbon dioxide laser in the treatment of diseases of the upper aero digestive systems, learning this new surgical technique from the pioneer work of Strong, Jako, and Vaughan. It is our conviction that a laser surgeon must have a thorough knowledge of laser biophysics, instrumentation, safety protocols, and surgical indications, and have the technical skills to perform laser surgery. Laser technology continues to improve at an increased speed, and it is imperative to update knowledge of current and potential applications of lasers in our specialty. It is the purpose of this article to present our clinical experience of 18 years with the use of lasers in surgery of ORL, emphasizing the carbon dioxide laser.

  8. Compact Hybrid Laser Rod and Laser System

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)

    2017-01-01

    A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.

  9. Research on the laser angle deception jamming technology of laser countermeasure

    NASA Astrophysics Data System (ADS)

    Ma, Shi-wei; Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan

    2015-10-01

    In recent years , laser guided weapons behave very well at destroying the military goals in the local wars, the single-shot probability, effective range and hitting precision getting better. And the semi-active laser guided weapons are the most widely used laser guided weapons. In order to improve the viability and protect important military goals, it's necessary to study the technology to against the semi-active guided weapons. This paper studies the working principle, the advantages and disadvantages of the semi-active guided weapons at first, and analyze the possibility of laser angle deception jamming system working. Then it analyzes the working principle and process of laser angle deception jamming technology. Finally it designs a half-real simulation system of laser angle deception jamming, which consists of semi-active laser guided weapons simulation system and laser angle deception jamming system. The simulation system demonstrates the working process of the laser angle deception jamming system. This paper provides fundamental base for the research on the countermeasure technology of semi-active laser guided weapons.

  10. Laser beam-plasma plume interaction during laser welding

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  11. Nd:GdVO4 ring laser pumped by laser diodes

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.

    2013-02-01

    The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.

  12. In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.

    2014-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.

  13. Fiber Based Seed Laser for CO 2 Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuchuan

    A compact and effective 10-micron femtosecond laser with pulse duration <500fs and repetition rate of >100Hz or smaller is desirable by DOE for seeding CO 2 ultrafast laser systems to improve the stability, reliability and efficiency in generating 10-micron laser from GW up to 100TW peak power, which is irreplaceable in driving an accelerator for particle beam generation due to the efficiency proportional to the square of the laser wavelength. Agiltron proposes a fiber based ultrafast 10-micron seed laser that can provide the required specifications and high performance. Its success will directly benefit DOE’s compact proton and ion sources. Themore » innovative technology can be used for ultrafast laser generation over the whole mid-IR range, and speed up the development of mid-IR laser applications. Agiltron, Inc. has successfully completed all tasks and demonstrated the feasibility of a fiber based 10-micron ultrafast laser in Phase I of the Program. We built a mode-locked fiber laser that generated < 400fs ultrafast laser pulses and successfully controlled the repetition rate to be the required 100Hz. Using this mode-locked laser, we demonstrated the feasibility of parametric femtosecond laser generation based on frequency down conversion. The experimental results agree with our simulation results. The investigation results of Phase I will be used to optimize the design of the laser system and build a fully functional prototype for delivery to the DOE in the Phase II program. The prototype development in Phase II program will be in the collaboration with Professor Chandrashekhar Joshi, the leader of UCLA Laser-Plasma group. Prof. Joshi discovered a new mechanism for generation of monoenergetic proton/ion beams: Shock Wave Acceleration in a near critical density plasma and demonstrated that high-energy proton beams using CO 2 laser driven collisionless shocks in a gas jet plasma, which opened an opportunity to develop a rather compact high-repetition rate

  14. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  15. Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Gao, R.; Zhang, T.; Ding, H. L.; Jiang, Y.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2015-10-01

    The oxide dispersion strengthened ferritic steels with nominal composition (weight percent) of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 were fabricated by sol-gel method, mechanical alloying, and hot isostatic pressing techniques. The evolution of microstructure and mechanical properties of the hot-rolled specimens with heat treatment was investigated. Tensile strength and hardness of hot-rolled ODS steel are significantly enhanced due to the formation of mechanical twins and high density dislocations. Uniformly dispersed oxide particles (10-40 nm) and fine-grained structure (200-400 nm) are responsible for the superior mechanical properties of the hot-rolled specimen annealed between 650 °C and 850 °C. With further increasing annealing temperature, the grain size of the hot-rolled specimens increases while the size of oxide particles decreases, which leads to lower strength and hardness but better ductility. The tensile strength and total elongation of samples in the rolling direction are higher than those in the transverse direction after the same treatments owing to the grain anisotropy induced by the large mechanical deformation.

  16. Information computer program for laser therapy and laser puncture

    NASA Astrophysics Data System (ADS)

    Badovets, Nadegda N.; Medvedev, Andrei V.

    1995-03-01

    An informative computer program containing laser therapy and puncture methods has been developed. It was used successfully in connection with the compact Russian medical laser apparatus HELIOS-O1M in laser treatment and the education process.

  17. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  18. The pulsed dye laser versus the Q-switched Nd:YAG laser in laser-induced shock-wave lithotripsy.

    PubMed

    Thomas, S; Pensel, J; Engelhardt, R; Meyer, W; Hofstetter, A G

    1988-01-01

    To date, there are two fairly well-established alternatives for laser-induced shock-wave lithotripsy in clinical practice. The Q-switched Nd:YAG laser is distinguished by the high-stone selectivity of its coupler systems. The necessity of a coupler system and its fairly small conversion rate of light energy into mechanical energy present serious drawbacks. Furthermore, the minimal outer diameter of the transmission system is 1.8 mm. The pulsed-dye laser can be used with a highly flexible and uncomplicated 200-micron fiber. However, the laser system itself is more complicated than the Q-switched Nd:YAG laser and requires a great deal of maintenance. Biological evaluation of damage caused by direct irradiation shows that both laser systems produce minor damage of different degrees. YAG laser lithotripsy with the optomechanical coupler was assessed in 31 patients with ureteral calculi. The instability and limited effectiveness of the fiber application system necessitated auxiliary lithotripsy methods in 14 cases. Dye-laser lithotripsy is currently being tested in clinical application. Further development, such as systems for blind application or electronic feedback mechanisms to limit adverse tissue effects, have yet to be optimized. Nevertheless, laser-induced shock-wave lithotripsy has the potential to become a standard procedure in the endourologic management of stone disease.

  19. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  20. Effects of laser fluence on silicon modification by four-beam laser interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Le; Li, Dayou; JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU

    2015-12-21

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, andmore » the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.« less

  1. Optical radiation hazards of laser welding processes. Part II: CO2 laser.

    PubMed

    Rockwell, R J; Moss, C E

    1989-08-01

    There has been an extensive growth within the last five years in the use of high-powered lasers in various metalworking processes. The two types of lasers used most frequently for laser welding/cutting processes are the Neodymium-yttrium-aluminum-garnet (Nd:YAG) and the carbon dioxide (CO2) systems. When such lasers are operated in an open beam configuration, they are designated as a Class IV laser system. Class IV lasers are high-powered lasers that may present an eye and skin hazard under most common exposure conditions, either directly or when the beam has been diffusely scattered. Significant control measures are required for unenclosed (open beam), Class IV laser systems since workers may be exposed to scattered or reflected beams during the operation, maintenance, and service of these lasers. In addition to ocular and/or skin exposure hazards, such lasers also may present a multitude of nonlaser beam occupational concerns. Radiant energy measurements are reported for both the scattered laser radiation and the plasma-related plume radiations released during typical high-powered CO2 laser-target interactions. In addition, the application of the nominal hazard zone (NHZ) and other control measures also are discussed with special emphasis on Class IV industrial CO2 laser systems.

  2. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  3. Green chiral HPLC study of the stability of Chiralcel OD under high temperature liquid chromatography and subcritical water conditions.

    PubMed

    Droux, S; Roy, M; Félix, G

    2014-10-01

    We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Long-chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anion-exchange chromatography.

    PubMed

    Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang

    2008-08-01

    Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.

  5. Laser particle sorter

    DOEpatents

    Martin, John C.; Buican, Tudor N.

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  6. Lasers in orthodontics

    PubMed Central

    Nalcaci, Ruhi; Cokakoglu, Serpil

    2013-01-01

    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety. PMID:24966719

  7. Adiabatic Soliton Laser

    NASA Astrophysics Data System (ADS)

    Bednyakova, Anastasia; Turitsyn, Sergei K.

    2015-03-01

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  8. Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong

    2003-10-01

    Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.

  9. Comparative study of Contour Transtar and STARR procedure for the treatment of obstructed defecation syndrome (ODS)--feasibility, morbidity and early functional results.

    PubMed

    Isbert, C; Reibetanz, J; Jayne, D G; Kim, M; Germer, C-T; Boenicke, L

    2010-09-01

    Stapled transanal rectal resection (STARR) is a promising new treatment for obstructed defecation syndrome (ODS). It may be performed using either a double-stapling technique (PPH-STARR) or with the new Contour Transtar (CT) device. The aim of this study was to evaluate the two techniques with respect to morbidity and functional outcomes. Patients presenting with ODS were evaluated using standardized clinical and radiological investigations and prospectively entered into a database. A total of 150 Patients were treated with either PPH-STARR (n = 68) or CT (n = 82) and further evaluated at 12 month postoperatively. The mean size of the resected specimen was 27 cm(2) (SD +/-4.86 cm(2)) in the PPH-STARR group and 46 cm(2) (SD +/-10.6 cm(2)) in the CT group [P < 0.001]. Morbidity was 7.3% (n = 5) in the PPH-STARR group and 7.5% (n = 6) in the CT group. The most common complication was minor postoperative bleeding in both groups (PPH-STARR: n = 2, 2.9%; CT: n = 2, 2.4%) Overall there were no septic complications and no surgical re-interventions. There was a tendency for more postoperative pain following CT (n = 3, 3.6%) as compared with PPH-STARR (n = 1, 1.4%). Constipation Scores (CCS) were 15.50 +/- 5.71 in the PPH-STARR group and 15.70 +/- 5.84 in the CT group preoperatively and decreased significantly to 8.25 (SD +/-1.45) and 8.01 (SD +/-2.31) 12-months after surgery. Values did not differ significantly between the two groups. Contour Transtar is as safe and effective as PPH-STARR and provides a true circumferential resection of rectal intussusception. This may benefit selected patients and result in improved long-term durability of the technique.

  10. Qualification of Laser Diode Arrays for Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.

  11. Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.

    2008-01-01

    A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.

  12. Two-color hybrid laser wakefield and direct laser accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Khudik, V.; Bernstein, A.; Downer, M.; Shvets, G.

    2017-03-01

    We propose and investigate the concept of two-color laser wakefield and direct acceleration (LWDA) scheme in the regime of moderate (10 TW scale) laser powers. The concept utilizes two unequal frequency laser pulses: the leading long-wavelength (λ0 = 0.8 µm) wakefield laser pulse driving a nonlinear plasma wake, and a trailing short-wavelength (λDLA = λ0/2) DLA laser pulse. The combination of the large electric field, yet small ponderomotive pressure of the DLA pulse is shown to be advantageous for producing a higher energy and larger charge electron beam compared with the single frequency LWDA. The sensitivity of the dual-frequency LWDA to synchronization time jitter is also reduced.

  13. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  14. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  15. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  16. An overview of the laser ranging method of space laser altimeter

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Chen, Yuwei; Hyyppä, Juha; Li, Song

    2017-11-01

    Space laser altimeter is an active remote sensing instrument to measure topographic map of Earth, Moon and planetary. The space laser altimeter determines the range between the instrument and laser footprint by measuring round trip time of laser pulse. The return pulse reflected from ground surface is gathered by the receiver of space laser altimeter, the pulsewidth and amplitude of which are changeable with the variability of the ground relief. Meantime, several kinds of noise overlapped on the return pulse signal affect its signal-to-noise ratio. To eliminate the influence of these factors that cause range walk and range uncertainty, the reliable laser ranging methods need to be implemented to obtain high-precision range results. Based on typical space laser altimeters in the past few decades, various ranging methods are expounded in detail according to the operational principle of instruments and timing method. By illustrating the concrete procedure of determining time of flight of laser pulse, this overview provides the comparison of the employed technologies in previous and undergoing research programs and prospect innovative technology for space laser altimeters in future.

  17. Laser particle sorter

    DOEpatents

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  18. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  19. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spectral and temporal characteristics of a laser plasma

    NASA Astrophysics Data System (ADS)

    Lipchak, A. I.; Solomonov, V. I.; Tel'nov, V. A.; Osipov, V. V.

    1995-04-01

    An experimental investigation was made of the spectral and temporal characteristics of a laser plasma formed by the interaction of a CO2 laser pulse with a target in atmospheric air. The results obtained indicate that the main role in the process of filling the excited states in a laser plasma is played by a recombination cascade and that both atoms and molecules of the atmospheric gases are excited. The result also show that a laser plasma can be used in spectroscopic analysis of multicomponent samples. The solution of the thermophysical problem of heating of a target by laser radiation supports the existing ideas on the process of formation of a plasma near the target surface in air.

  20. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  1. Design of diode-pumped solid-state laser applied in laser fuses

    NASA Astrophysics Data System (ADS)

    Deng, FangLin; Zhang, YiFei

    2005-04-01

    The function of laser fuzes which are parts of certain weapon systems is to control the blasting height of warheads. Commonly the battle environment these weapon systems are confronted with is very complicated and the tactical demand for them is very rigor, so laser fuzes equipped for them must fulfill some special technical requirements, such as high repetition rate, long ranging scope, etc. Lasers are one of key components which constitute fuze systems. Whether designed lasers are advanced and reasonable will determine whether laser fuzes can be applied in these weapon systems or not. So we adopt the novel technology of diode-pumped solid-state laser (DPSSL) to design lasers applied in fuzes. Nd:YVO4 crystal is accepted as gain material, which has wide absorption band and large absorption efficient for 808nm pumping laser. As warhead's temperature is usually very high, wider absorption band is beneficial to reduce the influence of temperature fluctuation. Passive Q-switching with Cr4+:YAG is used to reduce the power consumption farthest. Design the end-pumped microchip sandwich-architecture to decrease lasers' size and increase the reliability, further it's advantageous to produce short pulses and increase peak power of lasers. The designed DPSSL features small size and weight, high repetition rate and peak power, robustness, etc. The repetition rate is expected to reach 1 kHz; peak power will exceed 300 kW; pulse width is only 5 ns; and divergence angle of laser beams is less than 5 mrad. So DPSSL is suitable for laser fuzes as an emitter.

  2. Comparison of four different lasers for acne scars: Resurfacing and fractional lasers.

    PubMed

    You, Hi-Jin; Kim, Deok-Woo; Yoon, Eul-Sik; Park, Seung-Ha

    2016-04-01

    Acne scars are common and cause cosmetic problems. There is a multitude of treatment options for acne scars, including dermabrasion, chemical peeling, and fillers, but the advent of laser technology has greatly improved the treatment of acne scars. Although several laser systems are available, studies comparing their efficacy are limited. This study compares the results of treatments using resurfacing (carbon dioxide, CO2; erbium-doped yttrium aluminum garnet, Er:YAG) versus fractional (nonablative fractional laser, NAFL; ablative fractional laser, AFL) lasers. A retrospective photographic analysis of 58 patients who underwent laser treatment for facial atrophic acne scars was performed. Clinical improvement was assessed by six blinded investigators with a scale graded from 0 to 10. Adverse events were also noted. Mean improvement scores of the CO2, Er:YAG, NAFL, and AFL groups were 6.0, 5.8, 2.2, and 5.2, respectively. The NAFL group showed a significantly lower score than the other groups. The mean number of treatments was significantly greater in the fractional laser groups than in the resurfacing laser groups. The resurfacing laser groups had a prolonged recovery period and high risk of complications. The Er:YAG laser caused less erythema or pigmentation compared to the CO2 laser. Although the CO2 laser, Er:YAG laser, and AFL improved the acne scars, the CO2 laser had a greater downtime. Three consecutive AFL treatments are as effective as a single treatment with resurfacing lasers, with shorter social downtime periods and less adverse effects. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  4. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  5. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, andmore » limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.« less

  6. Only lasers can be used for low level laser therapy

    PubMed Central

    Moskvin, Sergey Vladimirovich

    2017-01-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! PMID:29130447

  7. Design and Construction of Simple, Nitrogen-Laser-Pumped, Tunable Dye Lasers

    ERIC Educational Resources Information Center

    Hilborn, Robert C.

    1978-01-01

    The basic physical principles of dye lasers are discussed and used to analyze the design and operation of tunable dye lasers pumped by pulsed nitrogen lasers. Details of the design and construction of these dye lasers are presented. Some simple demonstration experiments are described. (BB)

  8. Laser eye injuries.

    PubMed

    Barkana, Y; Belkin, M

    2000-01-01

    Laser instruments are used in many spheres of human activity, including medicine, industry, laboratory research, entertainment, and, notably, the military. This widespread use of lasers has resulted in many accidental injuries. Injuries are almost always retinal, because of the concentration of visible and near-infrared radiation on the retina. The retina is therefore the body tissue most vulnerable to laser radiation. The nature and severity of this type of retinal injury is determined by multiple laser-related and eye-related factors, the most important being the duration and amount of energy delivered and the retinal location of the lesion. The clinical course of significant retinal laser injuries is characterized by sudden loss of vision, often followed by marked improvement over a few weeks, and occasionally severe late complications. Medical and surgical treatment is limited. Laser devices hazardous to the human eye are currently in widespread use by armed forces. Furthermore, lasers may be employed specifically for visual incapacitation on future battlefields. Adherence to safety practices effectively prevents accidental laser-induced ocular injuries. However, there is no practical way to prevent injuries that are maliciously inflicted, as expected from laser weapons.

  9. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  10. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  11. Laser myringotomy with the CO2 Otoscan laser

    NASA Astrophysics Data System (ADS)

    Sedlmaier, Benedikt W.; Jivanjee, Antonio; Schoenfeld, Uwe; Jovanovic, Sergije

    2000-06-01

    Tympanic ventilation is the treatment of choice for otitis media with effusion (OME). CO2 laser myringotomy has already proven its value and is finding increasing clinical application. The ventilation time in the middle ear is essentially determined by the size of the laser perforation. Perforations exceeding 2 mm in diameter enable tympanic ventilation for about three weeks and thus compete with the ventilation tube in the treatment of OME. IN a prospective study, laser myringotomy is performed in 84 children with OME with the new CO2 laser otoscope Otoscan. The closure time was 17 days in average for a preformation diameter of 2 mm. In the further clinical course, the ear-drums healed without atrophic scar formation. In an observation period of six month the recurrency rate of effusion was approximately 10 percent. Laser myringotomy seems to be an useful method in the operative therapy of secretory otitis media.

  12. Laser Journal

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The major results of an experimental study of a slab Nd:YAG laser are reported in the article; the laser was successfully developed by the authors. The major findings include the following: (1) a method for cooling the blended flowing air and water, as well the related experimental parameters; (2) by using a crossed lens cavity, the authors further improved the anomalous capability within the compensation cavity of the slab laser, as well as higher insensitivity of the system to maladjustment; and (3) a processing technique and major points of slab YAG laser medium.

  13. Laser Propulsion - Quo Vadis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, Willy L.

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient andmore » specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.« less

  14. Coherent laser radar at 2 microns using solid-state lasers

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Suni, Paul J. M.; Hale, Charley P.; Hannon, Stephen M.; Magee, James R.; Bruns, Dale L.; Yuen, Eric H.

    1993-01-01

    Coherent laser radar systems using 2-micron Tm- and Tm, Ho-doped solid-state lasers are useful for the remote range-resolved measurement of atmospheric winds, aerosol backscatter, and DIAL measurements of atmospheric water vapor and CO2 concentrations. Recent measurements made with a 2-micron coherent laser radar system, advances in the laser technology, and atmospheric propagation effects on 2-micron coherent lidar performance are described.

  15. Microchip Lasers

    DTIC Science & Technology

    2016-10-31

    microchip laser : (top) schematic and (bottom) photograph of working device mounted on 12.7-mm- dia. post. switch 17 (355-nm UV ), 1.5 µJ of fourth......USA E-mail: zayhowski@ll.mit.edu Abstract Microchip lasers are a rich family of solid-state lasers defined by their small size, robust integration

  16. Laser Safety Evaluation of the MILES and Mini MILES Laser Emitting Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AUGUSTONI, ARNOLD L.

    Laser safety evaluation and output emission measurements were performed (during October and November 2001) on SNL MILES and Mini MILES laser emitting components. The purpose, to verify that these components, not only meet the Class 1 (eye safe) laser hazard criteria of the CDRH Compliance Guide for Laser Products and 21 CFR 1040 Laser Product Performance Standard; but also meet the more stringent ANSI Std. z136.1-2000 Safe Use of Lasers conditions for Class 1 lasers that govern SNL laser operations. The results of these measurements confirmed that all of the Small Arms Laser Transmitters, as currently set (''as is''), meetmore » the Class 1 criteria. Several of the Mini MILES Small Arms Transmitters did not. These were modified and re-tested and now meet the Class 1 laser hazard criteria. All but one System Controllers (hand held and rifle stock) met class 1 criteria for single trigger pulls and all presented Class 3a laser hazard levels if the trigger is held (continuous emission) for more than 5 seconds on a single point target. All units were Class 3a for ''aided'' viewing. These units were modified and re-tested and now meet the Class 1 hazard criteria for both ''aided'' as well as ''unaided'' viewing. All the Claymore Mine laser emitters tested are laser hazard Class 1 for both ''aided'' as well as ''unaided'' viewing.« less

  17. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  18. Laser Safety and Hazardous Analysis for the ARES (Big Sky) Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AUGUSTONI, ARNOLD L.

    A laser safety and hazard analysis was performed for the ARES laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1,for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  19. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  20. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  1. Structure Optimization of 21,23-Core-Modified Porphyrins Absorbing Long-Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells

    DTIC Science & Technology

    2008-04-01

    mail.biu.ac.il (B.E.); mdetty@buffalo.edu (M.R.D.). † Bar Ilan University. ‡ The State University of New York. # Incumbent of the Falk Chair in Laser ...δ 7.26 for proton, δ 77.36 for carbon) or CD3OD (δ 50.41 for carbon). Elemental analyses were con- ducted by Atlantic Microlabs, Inc. (Norcross, GA ...the laser beam at 514.5 nm for the measurements in methanol and 454.5 nm for the measurements in liposomes (Coherent Innova 200 Ar+, Palo Alto, CA

  2. Optimal laser wavelength for efficient laser power converter operation over temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhn, O., E-mail: oliver.hoehn@ise.fraunhofer.de; Walker, A. W.; Bett, A. W.

    2016-06-13

    A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined tomore » be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.« less

  3. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  4. Color vision deficits and laser eyewear protection for soft tissue laser applications.

    PubMed

    Teichman, J M; Vassar, G J; Yates, J T; Angle, B N; Johnson, A J; Dirks, M S; Thompson, I M

    1999-03-01

    Laser safety considerations require urologists to wear laser eye protection. Laser eye protection devices block transmittance of specific light wavelengths and may distort color perception. We tested whether urologists risk color confusion when wearing laser eye protection devices for laser soft tissue applications. Subjects were tested with the Farnsworth-Munsell 100-Hue Test without (controls) and with laser eye protection devices for carbon dioxide, potassium titanyl phosphate (KTP), neodymium (Nd):YAG and holmium:YAG lasers. Color deficits were characterized by error scores, polar graphs, confusion angles, confusion index, scatter index and color axes. Laser eye protection device spectral transmittance was tested with spectrophotometry. Mean total error scores plus or minus standard deviation were 13+/-5 for controls, and 44+/-31 for carbon dioxide, 273+/-26 for KTP, 22+/-6 for Nd:YAG and 14+/-8 for holmium:YAG devices (p <0.001). The KTP laser eye protection polar graphs, and confusion and scatter indexes revealed moderate blue-yellow and red-green color confusion. Color axes indicated no significant deficits for controls, or carbon dioxide, Nd:YAG or holmium:YAG laser eye protection in any subject compared to blue-yellow color vision deficits in 8 of 8 tested with KTP laser eye protection (p <0.001). Spectrophotometry demonstrated that light was blocked with laser eye protection devices for carbon dioxide less than 380, holmium:YAG greater than 850, Nd:YAG less than 350 and greater than 950, and KTP less than 550 and greater than 750 nm. The laser eye protection device for KTP causes significant blue-yellow and red-green color confusion. Laser eye protection devices for carbon dioxide, holmium:YAG and Nd:YAG cause no significant color confusion compared to controls. The differences are explained by laser eye protection spectrophotometry characteristics and visual physiology.

  5. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  6. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Selective metallisation of diamonds with the aid of laser radiation

    NASA Astrophysics Data System (ADS)

    Shafeev, Georgii A.; Pimenov, S. M.; Lubnin, Evgenii N.; Smolin, A. A.; Konov, Vitalii I.; Laptev, V. A.

    1995-02-01

    An experimental investigation was made of laser activation of diamond surfaces (single crystals and polycrystalline diamond films) prior to electroless before catalytic deposition of metals from solutions. The activation was carried out by a copper vapour laser or a KrF excimer laser in two ways: decomposition of a thin film of palladium acetylacetonate and local laser stimulated modification of the diamond surface by laser evaporation. An ohmic contact (Cu or Ni) with an adhesive strength of 3 N mm-2 was formed and the spatial resolution achieved was 10 μm.

  7. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  8. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  9. Solid state laser

    NASA Technical Reports Server (NTRS)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  10. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  11. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  12. Lasers in periodontics.

    PubMed

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-08-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  13. Lasers in periodontics

    PubMed Central

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-01-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20th century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics. PMID:23066266

  14. Lasers in medicine

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Juzeniene, Asta; Chen, Jiyao; Svaasand, Lars O.; Warloe, Trond; Giercksky, Karl-Erik; Moan, Johan

    2008-05-01

    It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser

  15. New laser protective eyewear

    NASA Astrophysics Data System (ADS)

    McLear, Mark

    1996-04-01

    Laser technology has significantly impacted our everyday life. Lasers are now used to correct your vision, clear your arteries, and are used in the manufacturing of such diverse products as automobiles, cigarettes, and computers. Lasers are no longer a research tool looking for an application. They are now an integral part of manufacturing. In the case of Class IV lasers, this explosion in laser applications has exposed thousands of individuals to potential safety hazards including eye damage. Specific protective eyewear designed to attenuate the energy of the laser beam below the maximum permissible exposure is required for Class 3B and Class IV lasers according to laser safety standards.

  16. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  17. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  18. Contact laser microsurgery.

    PubMed

    Jallo, George I; Kothbauer, Karl F; Epstein, Fred J

    2002-07-01

    Lasers are commonly understood as instruments that produce a freestanding light beam that can cut or vaporize tissue. In contrast, a contact laser is an instrument where the laser beam resides entirely within a coated sapphire crystal probe tip. The authors describe the use of the contact laser for a variety of intraspinal procedures. The probe is mounted on a curved handpiece and can be used in the same way as any microsurgical instrument. The laser energy is delivered only at the probe tip and only on contact of the tip with tissue. Different probe sizes and shapes allow for sharp cutting or tissue vaporization with minimal tissue penetration. We have used this laser in 95 operations for dysraphic conditions, and intradural (both intra- and extramedullary) spinal tumors. It was easy to use for the microsurgically trained neurosurgeon. It is safer than a freestanding, noncontact, laser beam. To lyse scar tissue, evaporate lipomatous tissue, perform a precise myelotomy, and dissect, cut and debulk firm and fibrous intradural spinal lesions this instrument is superior to microscissors, suction, or the ultrasonic aspirator. The contact laser is a useful microsurgical instrument for use in neurosurgery. It combines the advantages of lasers with those of microinstruments and avoids most shortcomings of both.

  19. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  20. Laser interaction with tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, M.W.

    These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.

  1. Practical application of pulsed "eye-safe" microchip laser to laser rangefinders

    NASA Astrophysics Data System (ADS)

    Młyńczak, J.; Kopczyński, K.; Mierczyk, Z.; Zygmunt, M.; Natkański, S.; Muzal, M.; Wojtanowski, J.; Kirwil, P.; Jakubaszek, M.; Knysak, P.; Piotrowski, W.; Zarzycka, A.; Gawlikowski, A.

    2013-09-01

    The paper describes practical application of pulsed microchip laser generating at 1535-nm wavelength to a laser rangefinder. The complete prototype of a laser rangefinder was built and investigated in real environmental conditions. The measured performance of the device is discussed. To build the prototype of a laser rangefinder at a reasonable price and shape a number of basic considerations had to be done. These include the mechanical and optical design of a microchip laser and the opto-mechanical construction of the rangefinder.

  2. Only lasers can be used for low level laser therapy.

    PubMed

    Moskvin, Sergey Vladimirovich

    2017-12-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! © Author(s) 2017. This article is published with open access by China Medical University.

  3. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-04-01

    The purpose of the study was to review the existing literature on holmium:yttrium-aluminum-garnet laser lithotripsy regarding lithotripter settings and laser fibers. An online search of current and past peer-reviewed literature on holmium laser lithotripsy was performed on several databases, including PubMed, SciElo, and Google Scholar. Relevant studies and original articles about lithotripter settings and laser fibers were examined, and the most important information is summarized and presented here. We examine how the choice of lithotripter settings and laser fibers influences the performance of holmium laser lithotripsy. Traditional laser lithotripter settings are analyzed, including pulse energy, pulse frequency, and power levels, as well as newly developed long-pulse modes. The impact of these settings on ablation volume, fragment size, and retropulsion is also examined. Advantages of small- and large-diameter laser fibers are discussed, and controversies are highlighted. Additionally, the influence of the laser fiber is examined, specifically the fiber tip preparation and the lithotripter settings' influence on tip degradation. Many technical factors influence the performance of holmium laser lithotripsy. Knowing and understanding these controllable parameters allows the urologist to perform a laser lithotripsy procedure safely, efficiently, and with few complications.

  4. Laser safety and hazard analysis for the temperature stabilized BSLT ARES laser system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. As a result of temperature stabilization of the BSLT laser the operating parameters of the laser had changed requiring a hazard analysis based on the new operating conditions. The ARES laser system is a Van/Truck based mobile platform, which is used to performmore » laser interaction experiments and tests at various national test sites.« less

  5. Standoff analysis of laser-produced plasmas using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    We report the use of laser-induced fluorescence (LIF) of laser ablation plumes for standoff applications. The standoff analysis of Al species, as major and minor species in samples, is performed in a nanosecond laser-produced plasma created at a distance ~10 m. The LIF analysis is performed by resonantly exciting an Al transition at 394.4 nm using a continuous wave (cw) tunable laser and by collecting the direct-line fluorescence signal at 396.15 nm. The spectral resolution of LIF is obtained by scanning the cw tunable LIF laser across the selected Al transition. Our results highlight that LIF provides enhanced signal intensity,more » emission persistence, and spectral resolution when compared to thermally-excited emission, and these are crucial considerations for using laser-produced plasma for standoff isotopic analysis.« less

  6. Large laser projection displays utilizing all-solid-state RGB lasers

    NASA Astrophysics Data System (ADS)

    Xu, Zuyan; Bi, Yong

    2005-01-01

    RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.

  7. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  8. Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique.

    PubMed

    Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian; Pavel, Nicolaie

    2014-03-10

    We report on realization of buried waveguides in Nd:YAG ceramic media by direct femtosecond-laser writing technique and investigate the waveguides laser emission characteristics under the pump with fiber-coupled diode lasers. Laser pulses at 1.06 μm with energy of 2.8 mJ for the pump with pulses of 13.1-mJ energy and continuous-wave output power of 0.49 W with overall optical efficiency of 0.13 were obtained from a 100-μm diameter circular cladding waveguide realized in a 0.7-at.% Nd:YAG ceramic. A circular waveguide of 50-μm diameter yielded laser pulses at 1.3 μm with 1.2-mJ energy.

  9. Laser Doppler velocimetry for continuous flow solar-pumped iodine laser system

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Lee, Ja H.

    1991-01-01

    A laser Doppler velocimetry (LDV) system was employed to measure the flow velocity profile of iodide vapor inside laser tubes of 36 mm ID and 20 mm ID. The LDV, which was operated in the forward scatter mode used a low power (15 mW) He-Ne laser beam. Velocity ranges from 1 m/s was measured to within one percent accuracy. The flow velocity profile across the laser tube was measured and the intensity of turbulence was determined. The flow of iodide inside the laser tube demonstrated a mixture of both turbulence and laminar flow. The flowmeter used for the laser system previously was calibrated with the LDV and found to be in good agreement.

  10. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  11. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  12. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  13. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  14. In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John

    2011-11-01

    In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.

  15. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  16. Laser use and safety.

    PubMed

    1992-09-01

    This Guidance Article is an update of an article published in a special issue of Health Devices entitled "Lasers in Medicine--An Introduction" (13[8], June 1984). Although surgical lasers have a good overall safety record, they do expose patients, physicians, and other clinical staff to serious risks. Laser hazards can cause injury, disability, or even death: hospital staff have been burned by misdirected laser beams, technicians and maintenance personnel have received eye injuries while working on lasers and have been exposed to hazardous chemicals while changing laser dyes, and patients have died from injuries resulting from fires ignited by laser energy. Laser accidents most commonly result from misdirection of the laser beam. Direct or reflected radiation can burn skin, hair, or, more seriously, the cornea or retina, causing permanent damage. Misdirected laser energy can also cause ignition of surgical drapes, tracheal tubes, or the patient's hair. Also, a frequent by-product of laser-tissue interactions is laser plume, or smoke. Its acrid smell and particulate matter irritate the eyes, nose, and lungs and cause nausea; it is also a suspected vector for transmitting infectious materials, such as the human papilloma virus (HPV) associated with condyloma (a wartlike lesion) and cervical cancer. The risks are not limited to patients and those directly involved in using and maintaining lasers. Many laser procedures are performed in areas outside the controlled environment of the surgical suite; patients in a waiting area or even passersby could conceivably walk into an accessible laser treatment room, such as a doctor's office, and inadvertently be exposed to a direct or reflected beam.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. High temperature Oxidation of ODS alloy with zirconia dispersions synthesized using Arc Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bandriyana; Sujatno, A.; Salam, R.; Sugeng, B.; Dimyati, A.

    2017-02-01

    Microstructure formation and oxidation behaviour of the Oxide Dispersion Strengthened (ODS) steels for application as structure material in Nuclear Power Plant was investigated. A mixture composed of Fe and 12 wt. % Cr powder with addition of 0.5 and 1 wt.% ZrO2 particles was milled and isostatic pressed to form a sample coin. The coin was then consolidated in the Arc Plasma Sintering (APS) for 4 minutes. The samples were subjected to the high temperature oxidation test in the Magnetic Suspension Balance (MSB). The oxidation test was carried out at 700°C for 6 hours to evaluate the oxide growth in the early stage of it formation by extraction the mass gain curve. The Scanning Electron Microscope (SEM) imaging and X-ray Diffraction Spectroscopy (EDX) elemental mapping were performed to study the microstructure change and compositional distribution. SEM and EDX observation revealed the time dependent development of the Fe-Cr-phases during consolidation. The oxidation rate behaviour of the samples followed the parabolic rate characteristic for inward oxidation process driven by oxygen inward diffusion through the oxide scale with the maximum weight gain around of 60 g/m2. The oxidation resistance was strongly affected by the formation of the oxide protective layer on the surface. In so far, addition of zirconia particles has played no significant role to the oxidation behaviour.

  18. Transversely bounded DFB lasers. [bounded distributed-feedback lasers

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G.; Yeh, C.

    1975-01-01

    Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.

  19. The distribution of the scattered laser light in laser-plate-target coupling

    NASA Astrophysics Data System (ADS)

    Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng

    1997-04-01

    Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.

  20. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE PAGES

    Li, S.; Alverson, S.; Bohler, D.; ...

    2017-08-17

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  1. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Alverson, S.; Bohler, D.

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  2. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    NASA Astrophysics Data System (ADS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  3. Excimer laser decontamination

    NASA Astrophysics Data System (ADS)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  4. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  5. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  6. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1989-01-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  7. Laser demonstration and performance characterization of optically pumped Alkali Laser systems

    NASA Astrophysics Data System (ADS)

    Sulham, Clifford V.

    Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.

  8. Cyclic Oxidation Behavior and Durability of ODS-FeCrAl Alloys in H2O and CO2 rich environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A

    Cyclic oxidation testing was conducted at 1200 C in O2, dry air and in atmospheres rich in H2O and/or CO2 to simulate combustion environments. The oxidation rates were significantly higher in air + 10%H2O and a mixture of O2-buffered 50%H2O-50%CO2, leading to shorter times to breakaway oxidation. Curve fitting using the COSP cyclic oxidation program confirmed that the presence of H2O results in an increase of the alumina spallation rate. The use of specimen mass gain modeling associated with the characterization of pre-oxidized specimens and in particular the determination of the remaining Al content after exposure, will allow to accuratelymore » estimate the durability of oxide dispersion-strengthened (ODS) FeCrAl alloys in combustion environments.« less

  9. Modern retinal laser therapy

    PubMed Central

    Kozak, Igor; Luttrull, Jeffrey K.

    2014-01-01

    Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934

  10. Laser-Tissue Interaction in Tattoo Removal by Q-Switched Lasers

    PubMed Central

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments. PMID:25949016

  11. Laser-tissue interaction in tattoo removal by q-switched lasers.

    PubMed

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  12. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOEpatents

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  13. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a

  14. Safety with surgical lasers.

    PubMed

    McKenzie, A L

    1984-01-01

    As the sales of surgical lasers continue to grow, the problem of laser safety in hospitals becomes increasingly more urgent. This article considers both the principles and the practice of laser safety, and indicates how safety codes should be organized within a hospital. Eye safety is of paramount importance, and the effects of different wavelengths of laser radiation on the eye are described, both for intrabeam and extended-source exposure. An account is given of the concept of Maximum Permissible Exposure (MPE) and how it depends upon wavelength and exposure duration. The standard laser classification is developed in relation to MPE. The use of laser protective eyewear is discussed for the surgeon, other theatre staff and the patient. Finally, the role of the Laser Protection Supervisor and of the Laser Protection Adviser are explained in the context of establishing a local laser safety code.

  15. 5W intracavity frequency-doubled green laser for laser projection

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  16. Laser chirp effect on femtosecond laser filamentation generated for pulse compression.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang H

    2008-03-31

    The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.

  17. High-speed micro-scale laser shock peening using a fiber laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Chenfei; Deng, Leimin; Sun, Shiding; Lu, Yongfeng

    2017-03-01

    Laser shock peening using low-energy nanosecond (ns) fiber lasers was investigated in this study to realize high-speed micro-scale laser shock peening on selected positions without causing surface damage. Due to the employment of a fiber laser with high-frequency and prominent environmental adaptability, the laser peening system is able to work with a much higher speed compared to traditional peening systems using Nd:YAG lasers and is promising for in-situ applications in harsh environments. Detailed surface morphology investigations both on sacrificial coatings and Al alloy surfaces after the fiber laser peening revealed the effects of focal position, pulse duration, peak power density, and impact times. Micro-dent arrays were also obtained with different spot-to-spot distances. Obvious micro-hardness improvement was observed inside the laser-peening-induced microdents after the fiber laser shock peening.

  18. Determination of nitrite, nitrate, bromide, and iodide in seawater by ion chromatography with UV detection using dilauryldimethylammonium-coated monolithic ODS columns and sodium chloride as an eluent.

    PubMed

    Ito, Kazuaki; Nomura, Ryosuke; Fujii, Takuya; Tanaka, Masahito; Tsumura, Tomoaki; Shibata, Hiroyuki; Hirokawa, Takeshi

    2012-11-01

    A method was developed for determination of inorganic anions, including nitrite (NO(2)(-)), nitrate (NO(3)(-)), bromide (Br(-)), and iodide (I(-)), in seawater by ion chromatography (IC). The IC system used two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50 × 4.6 mm i.d. and 100 × 4.6 mm i.d.) connected in series for separation of the ions. Aqueous NaCl (0.5 mol/L; flow rate, 3 mL/min) containing 5 mmol/L phosphate buffer (pH 5) was used as the eluent, and detection was with a UV detector at 225 nm. The monolithic ODS columns were coated and equilibrated with a 1-mmol/L DDAB solution (in H(2)O/methanol, 90:10 v/v). The hydrophilic ions (NO(2)(-), NO(3)(-), and Br(-)) were separated within 3 min and the retention time of I(-) was 16 min. No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35 ‰ artificial seawater. The detection limits were 0.6 μg/L for NO(2)(-), 1.1 μg/L for NO(3)(-), 70 μg/L for Br(-), and 1.6 μg/L for I(-) with a 200-μL sample injection. The performance of the coated columns was maintained without addition of DDAB in the eluent. The IC system was successfully applied to real seawater samples with recovery rates of 94-108 % for all ions.

  19. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  20. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  1. Design of micro-second pulsed laser mode for ophthalmological CW self-raman laser

    NASA Astrophysics Data System (ADS)

    Mota, Alessandro D.; Rossi, Giuliano; Ortega, Tiago A.; Costal, Glauco Z.; Fontes, Yuri C.; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.; Paiva, Maria S. V.

    2011-02-01

    This work presents the mechanisms adopted for the design of micro-second pulsed laser mode for a CW Self-Raman laser cavity in 586nm and 4W output power. The new technique for retina disease treatment discharges laser pulses on the retina tissue, in laser sequences of 200 μs pulse duration at each 2ms. This operation mode requires the laser to discharge fast electric pulses, making the system control velocity of the electronic system cavity vital. The control procedures to keep the laser output power stable and the laser head behavior in micro-second pulse mode are presented.

  2. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    NASA Astrophysics Data System (ADS)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  3. Laser beam temporal and spatial tailoring for laser shock processing

    DOEpatents

    Hackel, Lloyd; Dane, C. Brent

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  4. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  5. Laser beam monitoring system

    DOEpatents

    Weil, B.S.; Wetherington, G.R. Jr.

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  6. Laser therapy (image)

    MedlinePlus

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  7. Laser cutting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Thomas J

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  8. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  9. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOEpatents

    Meissner, Helmuth E.; Beach, Raymond J.; Bibeau, Camille; Sutton, Steven B.; Mitchell, Scott; Bass, Isaac; Honea, Eric

    1999-01-01

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.

  10. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOEpatents

    Meissner, H.E.; Beach, R.J.; Bibeau, C.; Sutton, S.B.; Mitchell, S.; Bass, I.; Honea, E.

    1999-08-10

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focused by a lens duct and passed through at least one flanged end-cap into the laser rod. 14 figs.

  11. Improved Characteristics of Laser Source of Ions Using a Frequency Mode Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaydarov, R. T.

    2008-04-07

    We used a mass-spectrometric method to investigate the characteristics of laser-produced plasma ions depending on the nature of the target and on the parameters of the laser radiation. Experiments are carried out on porous Y{sub 2}O{sub 3} targets with different densities {rho}, subjected to a laser radiation, where the laser works in a frequency mode (v = l-12 Hz). We found that the laser frequency has a significant effect on the parameters of plasma ions: with increasing the frequency of the laser the charge, energy and intensity of ions increase for a given parameters of the target. This effect ismore » more pronounced for small densities of the target. We related these two effects to a non-linear ionization process in the plasma due to the formation of dense plasma volume inside the sample absorbing the laser radiation and to the change of the focusing conditions in the case of the frequency mode laser.« less

  12. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  13. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  14. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  15. Lasers in Medicine.

    ERIC Educational Resources Information Center

    Hill, P. D.

    1989-01-01

    Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)

  16. Laser shock microforming of aluminum foil with fs laser

    NASA Astrophysics Data System (ADS)

    Ye, Yunxia; Feng, Yayun; Xuan, Ting; Hua, Xijun; Hua, Yinqun

    2014-12-01

    Laser shock microforming of Aluminum(Al) foil through fs laser has been researched in this paper. The influences of confining layer, clamping method and impact times on induced dent depths were investigated experimentally. Microstructure of fs laser shock forming Al foil was observed through Transmission electron microscopy (TEM). Under the condition of tightly clamping, the dent depths increase with impact times and finally tend to saturating. Another new confining layer, the main component of which is polypropylene, was applied and the confining effect of it is better because of its higher impedance. TEM results show that dislocation is one of the main deformation mechanisms of fs laser shock forming Al foil. Specially, most of dislocations exist in the form of short and discrete dislocation lines. Parallel straight dislocation slip line also were observed. We analyzed that these unique dislocation arrangements are due to fs laser-induced ultra high strain rate.

  17. Making a Laser Level

    ERIC Educational Resources Information Center

    Hawkins, Harry

    2004-01-01

    This article describes how to construct a laser level. This laser level can be made using a typical 4' (or shorter) bubble level and a small laser point. The laser unit is detachable, so the bubble level can also be used in the conventional way. However, the laser level works better than a simple bubble level. Making this inexpensive device is an…

  18. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  19. Blue-green upconversion laser

    DOEpatents

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  20. Space-qualified laser system for the BepiColombo Laser Altimeter.

    PubMed

    Kallenbach, Reinald; Murphy, Eamonn; Gramkow, Bodo; Rech, Markus; Weidlich, Kai; Leikert, Thomas; Henkelmann, Reiner; Trefzger, Boris; Metz, Bodo; Michaelis, Harald; Lingenauber, Kay; DelTogno, Simone; Behnke, Thomas; Thomas, Nicolas; Piazza, Daniele; Seiferlin, Karsten

    2013-12-20

    The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency's Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury's surface.

  1. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  2. Laser physics and a review of laser applications in dentistry for children.

    PubMed

    Martens, L C

    2011-04-01

    The aim of this introduction to this special laser issue is to describe some basic laser physics and to delineate the potential of laser-assisted dentistry in children. A brief review of the available laser literature was performed within the scope of paediatric dentistry. Attention was paid to soft tissue surgery, caries prevention and diagnosis, cavity preparation, comfort of the patient, effect on bacteria, long term pulpal vitality, endodontics in primary teeth, dental traumatology and low level laser therapy. Although there is a lack of sufficient evidence taking into account the highest standards for evidence-based dentistry, it is clear that laser application in a number of different aetiologies for soft tissue surgery in children has proven to be successful. Lasers provide a refined diagnosis of caries combined with the appropriate preventive adhesive dentistry after cavity preparation. This will further lead to a new wave of micro-dentistry based on 'filling without drilling'. It has become clear from a review of the literature that specific laser applications in paediatric dentistry have gained increasing importance. It can be concluded that children should be considered as amongst the first patients for receiving laser-assisted dentistry.

  3. Laser-assisted bremsstrahlung and electron-positron pair creation in relativistic laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loetstedt, Erik

    2009-07-25

    An electron submitted to a relativistically strong laser field emits Compton harmonics at frequencies satisfying the nonlinear Compton formula. We investigate the scenario when in addition to the laser field, also a nuclear Coulomb field is present to accelerate the electron. In this case we may speak about laser-assisted bremsstrahlung, with radiation resulting from the combined effect of the Coulomb and laser field. The theoretical method employed is fully relativistic quantum electrodynamics, where in particular the laser-dressed Dirac-Volkov propagator requires proper treatment. Electron-positron pair creation is a physical process related to bremsstrahlung by a crossing symmetry of quantum electrodynamics. Wemore » consider pair creation in the combined fields of a laser, a nucleus and a high-frequency photon. We show that the total number of created pairs is not affected by the laser, provided the energy of the high-energy photon exceeds the pair creation threshold, but that the differential cross section is strongly enhanced in a particular direction, making a small angle with the laser beam. The physical picture is that the electron-positron pair is created by the high-energy photon, and subsequently accelerated by the laser field.« less

  4. Development of selective laser treatment techniques using mid-infrared tunable nanosecond pulsed laser.

    PubMed

    Ishii, Katsunori; Saiki, Masayuki; Hazama, Hisanao; Awazu, Kunio

    2010-01-01

    Mid-infrared (MIR) laser with a specific wavelength can excite the corresponding biomolecular site to regulate chemical, thermal and mechanical interactions to biological molecules and tissues. In laser surgery and medicine, tunable MIR laser irradiation can realize the selective and less-invasive treatments and the special diagnosis by vibrational spectroscopic information. This paper showed a novel selective therapeutic technique for a laser angioplasty of atherosclerotic plaques and a laser dental surgery of a carious dentin using a MIR tunable nanosecond pulsed laser.

  5. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  6. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  7. Chaotic He-Ne laser

    NASA Astrophysics Data System (ADS)

    Kuusela, Tom A.

    2017-09-01

    A He-Ne laser is an example of a class A laser, which can be described by a single nonlinear differential equation of the complex electric field. This laser system has only one degree of freedom and is thus inherently stable. A He-Ne laser can be driven to the chaotic condition when a large fraction of the output beam is injected back to the laser. In practice, this can be done simply by adding an external mirror. In this situation, the laser system has infinite degrees of freedom and therefore it can have a chaotic attractor. We show the fundamental laser equations and perform elementary stability analysis. In experiments, the laser intensity variations are measured by a simple photodiode circuit. The laser output intensity time series is studied using nonlinear analysis tools which can be found freely on the internet. The results show that the laser system with feedback has an attractor of a reasonably high dimension and that the maximal Lyapunov exponent is positive, which is clear evidence of chaotic behaviour. The experimental setup and analysis steps are so simple that the studies can even be implemented in the undergraduate physics laboratory.

  8. Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.

    2016-01-01

    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.

  9. [Navigated retinal laser therapy].

    PubMed

    Kernt, M; Ulbig, M; Kampik, A; Neubauer, A S

    2013-08-01

    Navigated laser therapy introduces for the first time computerized assistance systems for retinal laser therapy. The Navilas system offers high precision and safety and provides additional benefits regarding standardization of planning, execution, documentation and quality assurance. The current focus of clinical application for navigated laser therapy besides laser treatment after retinal vein occlusion and panretinal laser photocoagulation in proliferative diabetic retinopathy (PDR) is diabetic macular edema. Recent data indicate that combined initial anti-vascular endothelial growth factor (anti-VEGF) and navigated macular laser therapy allows achievement and maintenance of treatment success with a minimum number of interventions. Despite very promising results the current assessment of navigated laser therapy is still limited by the evidence available worldwide.

  10. Selective bond breaking mediated by state specific vibrational excitation in model HOD molecule through optimized femtosecond IR pulse: a simulated annealing based approach.

    PubMed

    Shandilya, Bhavesh K; Sen, Shrabani; Sahoo, Tapas; Talukder, Srijeeta; Chaudhury, Pinaki; Adhikari, Satrajit

    2013-07-21

    The selective control of O-H/O-D bond dissociation in reduced dimensionality model of HOD molecule has been explored through IR+UV femtosecond pulses. The IR pulse has been optimized using simulated annealing stochastic approach to maximize population of a desired low quanta vibrational state. Since those vibrational wavefunctions of the ground electronic states are preferentially localized either along the O-H or O-D mode, the femtosecond UV pulse is used only to transfer vibrationally excited molecule to the repulsive upper surface to cleave specific bond, O-H or O-D. While transferring from the ground electronic state to the repulsive one, the optimization of the UV pulse is not necessarily required except specific case. The results so obtained are analyzed with respect to time integrated flux along with contours of time evolution of probability density on excited potential energy surface. After preferential excitation from [line]0, 0> ([line]m, n> stands for the state having m and n quanta of excitations in O-H and O-D mode, respectively) vibrational level of the ground electronic state to its specific low quanta vibrational state ([line]1, 0> or [line]0, 1> or [line]2, 0> or [line]0, 2>) by using optimized IR pulse, the dissociation of O-D or O-H bond through the excited potential energy surface by UV laser pulse appears quite high namely, 88% (O-H ; [line]1, 0>) or 58% (O-D ; [line]0, 1>) or 85% (O-H ; [line]2, 0>) or 59% (O-D ; [line]0, 2>). Such selectivity of the bond breaking by UV pulse (if required, optimized) together with optimized IR one is encouraging compared to the normal pulses.

  11. Optical radiation hazards of laser welding processes. Part 1: Neodymium-YAG laser.

    PubMed

    Rockwell, R J; Moss, C E

    1983-08-01

    High power laser devices are being used for numerous metalworking processes such as welding, cutting and heat treating. Such laser devices are totally enclosed either by the manufacturer or the end-user. When this is done, the total laser system is usually certified by the manufacturer following the federal requirements of the Code of Federal Regulations (CFR) 1040.10 and 10.40.11 as a Class I laser system. Similarly, the end-user may also reclassify an enclosed high-power laser into the Class I category following the requirements of the American National Standards Institute (ANSI) Z-136.1 (1980) standard. There are, however, numerous industrial laser applications where Class IV systems are required to be used in an unenclosed manner. In such applications, there is concern for both ocular and skin hazards caused by direct and scattered laser radiation, as well as potential hazards caused by the optical radiation created by the laser beam's interaction with the metal (i.e. the plume radiation). Radiant energy measurements are reported for both the scattered laser radiation and the resultant plume radiations which were produced during typical unenclosed Class IV Neodymium-YAG laser welding processes. Evaluation of the plume radiation was done with both radiometric and spectroradiometric measurement equipment. The data obtained were compared to applicable safety standards.

  12. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  13. Lasers in endodontics: an overview

    NASA Astrophysics Data System (ADS)

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.

    2002-06-01

    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  14. Surgical intervention in central toxic keratopathy.

    PubMed

    Tu, Kyaw L; Aslanides, Ioannis M

    2012-05-03

    Purpose. To report management and outcome of 3 cases of bilateral central toxic keratopathy (CTK). Methods. A retrospective chart review on 3 laser-assisted in situ keratomileusis patients who developed CTK within a short time of one another. Results. Patient A had flap lifts and irrigation (FL+I) twice in the right eye (OD) on postoperative day 1 at diffuse lamellar keratitis (DLK) stage 3 and once each on days 1 (at DLK stage 3) and 5 (at CTK) for the left eye (OS). She attained 20/20 unaided visual acuity (UVA) OD at 1 month. Her UVA OS remained at 20/32 but best-corrected visual acuity (BCVA) gradually improved to 20/25 at 8 months. Patient B had right FL+I on day 3 and left FL+I on day 5 (both for CTK). His OS achieved full visual potential (20/25 UVA) by 1 month but UVA OD was reduced to 20/25 (preoperative BCVA 20/20) at 8 months. Patient C had medical management only. Her preoperative BCVA OD of 20/33 fell to 20/50 postoperative UCVA/BCVA; OS regained full visual potential of 20/40 between 2 and 8 months. Patient A's OD did not develop a full-blown CTK; instead an arrested CTK resulted. All except that one eye had initial hyperopic/astigmatic errors that gradually lessened. Artemis II imaging confirmed early stromal loss posterior to the flap with stroma regaining some thickness over the following months. Conclusions. Surgical intervention in cases of CTK may improve clinical outcomes.

  15. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  16. CO laser angioplasty system: efficacy of manipulatable laser angioscope catheter

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Kikuchi, Makoto; Mizuno, Kyoichi; Sakurada, Masami; Miyamoto, Akira; Arakawa, Koh; Kurita, Akira; Nakamura, Haruo; Takeuchi, Kiyoshi; Utsumi, Atsushi; Akai, Yoshiro

    1992-08-01

    A percutaneous transluminal coronary angioplasty system using a unique combination of CO laser (5 micrometers ) and As-S infrared glass fiber under the guidance of a manipulatable laser angioscope catheter is described. The ablation and guidance functions of this system are evaluated. The angioplasty treatment procedure under angioscope guidance was studied by in vitro model experiment and in vivo animal experiment. The whole angioplasty system is newly developed. That is, a transportable compact medical CO laser device which can emit up to 10 W, a 5 F manipulatable laser angioscope catheter, a thin CO laser cable of which the diameter is 0.6 mm, an angioscope imaging system for laser ablation guidance, and a system controller were developed. Anesthetized adult mongrel dogs (n equals 5) with an artificial complete occlusion in the femoral artery and an artificial human vessel model including occluded or stenotic coronary artery were used. The manipulatability of the catheter was drastically improved (both rotation and bending), therefore, precise control of ablation to expand stenosis was obtained. A 90% artificial stenosis made of human yellow plaque in 4.0 mm diameter in the vessel was expanded to 70% stenosis by repetitive CO laser ablations of which total energy was 220 J. All procedures were performed and controlled under angioscope visualization.

  17. Laser pyrometry

    NASA Technical Reports Server (NTRS)

    Stein, Alexander

    1988-01-01

    A method of determining the emissivity of a hot target from a laser-based reflectance measurement which is conducted simultaneously with a measurement of the target radiance is described. Once the correct radiance and emissivity are determined, one calculates the true target temperature from these parameters via the Planck equations. The design and performance of a laser pyrometer is described. The accuracy of laser pyrometry and the effect of ambient radiance are addressed.

  18. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser

  19. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  20. Color speckle in laser displays

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).