40 CFR 60.287a - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... furnace, digester system, brown stock washer system, multiple-effect evaporator system, or condensate... digester system, brown stock washer system, multiple effect evaporator system, or condensate stripper...
Portable brine evaporator unit, process, and system
Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.
2009-04-07
The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.
Experimental Measurements of Spreading of Volatile Liquid Droplets
NASA Technical Reports Server (NTRS)
Zhang, Neng-Li; Chao, David F.
2001-01-01
Based on the laser shadowgraphic system used by the first author of the present paper, a simple optical system, which combined the laser shadowgraphy and the direct magnified-photography, has been developed to measure the contact angle, the spreading speed, and the evaporation rate. Additionally, the system can also visualize thermocapillary convection inside of a sessile drop simultaneously. The experimental results show that evaporation/condensation and thermocapillary convection in the sessile drop induced by the evaporation strongly affects the wetting and spreading of the drop. Condensation always promotes the wetting and spreading of the drop. Evaporation may increase or decrease the contact angle of the evaporating sessile drops, depending on the evaporation rate. The thermocapillary convection in the drop induced by the evaporation enhances the effects of evaporation to suppress the spreading.
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
Wang, Dan-Dan; Lv, Zhe; Xu, Chang-Qing; Liu, Sai; Chen, Jun; Peng, Xiao; Wu, Yan
2018-01-01
Through indoor and field comparative experiments, the properties of membrane type leaf evaporation inhibitors and its effects on photosynthesis of Lycium barbarum and compatibility and synergistic of pesticide were studied. The evaporation inhibitors and L. barbarum were chosen to investigate the suppression of water evaporation and the compatibility with pesticides. The effect of evaporation inhibitors on photosynthesis of L. barbarum leaves was determined by the chlorophyll fluorescence imaging system. The results showed that water evaporation of L. barbarum leaves of different leaf age were evidently suppressed after treated with evaporation inhibitor. The inhibitor was well compatible with pesticide and effectively improved the pesticide efficacy,and had no significant effect on chlorophyll fluorescence parameters. It is concluded that the evaporation inhibitor has good compatibility with the pesticide, and has remarkable effect of restraining moisture evaporation, which make it can be used for reducing the dosage and improving the efficacy of the pesticide in the field of L. barbarum. Copyright© by the Chinese Pharmaceutical Association.
Wilms, C T; Schober, P; Kalb, R; Loer, S A
2006-01-01
During partial liquid ventilation perfluorocarbons are instilled into the airways from where they subsequently evaporate via the bronchial system. This process is influenced by multiple factors, such as the vapour pressure of the perfluorocarbons, the instilled volume, intrapulmonary perfluorocarbon distribution, postural positioning and ventilatory settings. In our study we compared the effects of open and closed breathing systems, a heat-and-moisture-exchanger and a sodalime absorber on perfluorocarbon evaporation during partial liquid ventilation. Isolated rat lungs were suspended from a force transducer. After intratracheal perfluorocarbon instillation (10 mL kg(-1)) the lungs were either ventilated with an open breathing system (n = 6), a closed breathing system (n = 6), an open breathing system with an integrated heat-and-moisture-exchanger (n = 6), an open breathing system with an integrated sodalime absorber (n = 6), or a closed breathing system with an integrated heat-and-moisture-exchanger and a sodalime absorber (n = 6). Evaporative perfluorocarbon elimination was determined gravimetrically. When compared to the elimination half-life in an open breathing system (1.2 +/- 0.07 h), elimination half-life was longer with a closed system (6.4 +/- 0.9 h, P 0.05) when compared to a closed system. Evaporative perfluorocarbon loss can be reduced effectively with closed breathing systems, followed by the use of sodalime absorbers and heat-and-moisture-exchangers.
GLOBAL INSTABILITY OF THE EXO-MOON SYSTEM TRIGGERED BY PHOTO-EVAPORATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ming; Xie, Ji-Wei; Zhou, Ji-Lin
2016-12-10
Many exoplanets have been found in orbits close to their host stars and thus they are subject to the effects of photo-evaporation. Previous studies have shown that a large portion of exoplanets detected by the Kepler mission have been significantly eroded by photo-evaporation. In this paper, we numerically study the effects of photo-evaporation on the orbital evolution of a hypothesized moon system around a planet. We find that photo-evaporation is crucial to the stability of the moon system. Photo-evaporation can erode the atmosphere of the planet thus leading to significant mass loss. As the planet loses mass, its Hill radiusmore » shrinks and its moons increase their orbital semimajor axes and eccentricities. When some moons approach their critical semimajor axes, global instability of the moon system would be triggered, which usually ends up with two, one or even zero surviving moons. Some lost moons could escape from the moon system to become a new planet orbiting the star or run away further to become a free-floating object in the Galaxy. Given the destructive role of photo-evaporation, we speculate that exomoons are less common for close-in planets (<0.1 au), especially those around M-type stars, because they are more X-ray luminous and thus enhancing photo-evaporation. The lessons we learn in this study may be helpful for the target selection of on-going/future exomoon searching programs.« less
Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach
NASA Astrophysics Data System (ADS)
Hugo, Bruce Robert
Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.
Liquid over-feeding air conditioning system and method
Mei, Viung C.; Chen, Fang C.
1993-01-01
A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.
Analysis of heat recovery of diesel engine using intermediate working fluid
NASA Astrophysics Data System (ADS)
Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming
2017-07-01
The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.
On the link between potential evaporation and regional evaporation from a CBL perspective
NASA Astrophysics Data System (ADS)
Lhomme, J. P.; Guilioni, L.
2010-07-01
The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.
A Computer Model of the Evaporator for the Development of an Automatic Control System
NASA Astrophysics Data System (ADS)
Kozin, K. A.; Efremov, E. V.; Kabrysheva, O. P.; Grachev, M. I.
2016-08-01
For the implementation of a closed nuclear fuel cycle it is necessary to carry out a series of experimental studies to justify the choice of technology. In addition, the operation of the radiochemical plant is impossible without high-quality automatic control systems. In the technologies of spent nuclear fuel reprocessing, the method of continuous evaporation is often used for a solution conditioning. Therefore, the effective continuous technological process will depend on the operation of the evaporation equipment. Its essential difference from similar devices is a small size. In this paper the method of mathematic simulation is applied for the investigation of one-effect evaporator with an external heating chamber. Detailed modelling is quite difficult because the phase equilibrium dynamics of the evaporation process is not described. Moreover, there is a relationship with the other process units. The results proved that the study subject is a MIMO plant, nonlinear over separate control channels and not selfbalancing. Adequacy was tested using the experimental data obtained at the laboratory evaporation unit.
Liquid over-feeding air conditioning system and method
Mei, V.C.; Chen, F.C.
1993-09-21
A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.
Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System
NASA Astrophysics Data System (ADS)
Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.
2018-01-01
The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.
Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.
Boopathy, R; Sekaran, G
2013-09-15
The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. Copyright © 2013 Elsevier B.V. All rights reserved.
Nasiri, Rasoul; Luo, Kai H
2017-07-10
For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.
NASA Astrophysics Data System (ADS)
Hołyst, R.; Litniewski, M.; Jakubczyk, D.; Kolwas, K.; Kolwas, M.; Kowalski, K.; Migacz, S.; Palesa, S.; Zientara, M.
2013-03-01
Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid-vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid-vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417-28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid-vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P1/(a + P2), where a is the radius of the evaporating droplet, t is time and P1 and P2 are two parameters. P1 = -λΔT/(qeffρL), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet and the vapour far from the interface, qeff is the enthalpy of evaporation per unit mass and ρL is the liquid density. The P2 parameter is the kinetic correction proportional to the evaporation coefficient. P2 = 0 only in the absence of temperature discontinuity at the interface. We discuss various models and problems in the determination of the evaporation coefficient and discuss evaporation scenarios in the case of single- and multi-component systems.
Increasing the Efficiency of Maple Sap Evaporators with Heat Exchangers
Lawrence D. Garrett; Howard Duchacek; Mariafranca Morselli; Frederick M. Laing; Neil K. Huyler; James W. Marvin
1977-01-01
A study of the engineering and economic effects of heat exchangers in conventional maple syrup evaporators indicated that: (1) Efficiency was increased by 15 to 17 percent with heat exchangers; (2) Syrup produced in evaporators with heat exchangers was similar to syrup produced in conventional systems in flavor and in chemical and physical composition; and (3) Heat...
Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle
NASA Astrophysics Data System (ADS)
Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani
2017-03-01
In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.
Characteristics of the Self-evaporation Behavior of Sprinkled Water near the Triple Point
NASA Astrophysics Data System (ADS)
Aizawa, Kazuo; Hayashi, Kanetoshi; Ogoshi, Hidemasa; Maeyama, Katsuya; Yonezawa, Noriyuki
For the sake of capturing the basic data in concern with the designing of vacuum evaporation apparatus, characteristics of the self-evaporation behavior of sprinkled water near the triple point has been investigated experimentally. The relationship between the amount of the vaporized water and the pressure in the vessel was elucidated quantitatively on the condition that over-heated water was sprinkled from water supplying nozzles of diameter of 4 mm into the center of the steam area in the heat insulation glass evaporation vessel having diameter of 200 mm and height of 1100 mm. Even under the mild water sprinkling conditions such as no small particle formation, small Reynolds number, and small Weber number, the temperature effectiveness of the self-evaporation in the center of the steam was as high as 80%, which clearly shows the effectiveness of this water-sprinkling method. In addition, the basic data for system designing such as water evaporation coefficient from water layer surface and temperature effectiveness of self-evaporation during the f1ight in the steam space were obtained.
Evaporation effects in a shock-driven multiphase instability with a spherical interface
NASA Astrophysics Data System (ADS)
Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob
2017-11-01
This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.
Design of on line detection system for static evaporation rate of LNG vehicle cylinders
NASA Astrophysics Data System (ADS)
Tang, P.; Wang, M.; Tan, W. H.; Ling, Z. W.; Li, F.
2017-06-01
In order to solve the problems existing in the regular inspection of LNG vehicle cylinders, the static evaporation rate on line detection system of LNG cylinders is discussed in this paper. A non-disassembling, short-term and high-efficiency on line detection system for LNG vehicle cylinders is proposed, which can meet the requirement of evaporation rate test under different media and different test pressures. And then test methods under the experimental conditions, atmospheric pressure and pressure are given respectively. This online detection system designed in this paper can effectively solve the technical problems during the inspection of the cylinder.
Evaporative cooling enhanced cold storage system
Carr, Peter
1991-01-01
The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.
Evaporative cooling enhanced cold storage system
Carr, P.
1991-10-15
The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.
USDA-ARS?s Scientific Manuscript database
Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander
2017-04-01
Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to atmospheric controls. The interaction between evaporation, hydrophobicity and moisture of the soil surface, or litter, presents a potentially significant negative feedback to drying across wetland-forestland interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn
Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs, including redbacks and black widows, indicates that evaporation of the donor star by the MSP’s irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possiblymore » the formation of isolated MSPs.« less
Exergy analysis of biomass organic Rankine cycle for power generation
NASA Astrophysics Data System (ADS)
Nur, T. B.; Sunoto
2018-02-01
The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.
Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers
NASA Astrophysics Data System (ADS)
Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun
2017-04-01
A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.
NASA Technical Reports Server (NTRS)
Richmond, R. G.; Kelso, R. M.
1980-01-01
A concern has arisen regarding the emissive distribution of water molecules from the shuttle orbiter flash evaporator system (FES). The role of the orbiter fuselage and elevon in affecting molecular scattering distributions was nuclear. The effect of these components were evaluated. Molecular distributions of the water vapor effluents from the FE were measured. These data were compared with analytically predicted values and the resulting implications were calculated.
NASA Astrophysics Data System (ADS)
Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu
2015-07-01
The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagayama, Gyoko, E-mail: nagayama@mech.kyutech.ac.jp; Takematsu, Masaki; Mizuguchi, Hirotaka
2015-07-07
The structure and thermodynamic properties of the liquid–vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid–vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain lengthmore » of the molecules affects the condensation/evaporation behavior at the liquid–vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid–vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid–vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.« less
Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu
2015-07-07
The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005
Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System
NASA Astrophysics Data System (ADS)
Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon
2016-01-01
In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.
Lysozyme pattern formation in evaporating droplets
NASA Astrophysics Data System (ADS)
Gorr, Heather Meloy
Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this PhD dissertation provide insight into the evaporative behavior and pattern formation in droplets of simplified model biological fluids (aqueous lysozyme + NaCl). The patterns that form depend sensitively on the evaporation conditions, characteristic time and length scales, and the physiochemical properties of the solutions. The patterns are unique, dependent on solution chemistry, and may therefore act as a "fingerprint" in identifying fluid properties.
Performance characteristic of hybrid cooling system based on cooling pad and evaporator
NASA Astrophysics Data System (ADS)
Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.
2018-01-01
In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1% of minor difference at the same comparison condition.
Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.
Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel
2014-01-01
To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.
Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V
2018-05-30
Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.
Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo
2008-09-12
As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.
Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
NASA Astrophysics Data System (ADS)
Shellito, Peter J.; Small, Eric E.; Livneh, Ben
2018-03-01
Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.
Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops
NASA Astrophysics Data System (ADS)
Marin, Alvaro; Karpitschka, Stefan; Rossi, Massimiliano; Kaehler, Christian J.; Noguera-Marin, Diego; Rodriguez-Valverde, Miguel A.
2017-11-01
Salts can be found in different forms in almost any evaporating droplet in nature, our homes and in laboratories. The transport processes in such apparently simple systems differ strongly from `sweet' evaporating droplets since the liquid flows in the inverse direction due to Marangoni stresses at the surface. Such an effect has crucial consequences to salt crystallization processes and to the evaporation itself. In this work we show measurements that not only confirm clearly the details of the inverted flow patterns, but also permit us to calculate the surface tension gradients responsible for the reversal. Such a reversal does not prevent the coffee-stain effect; on the contrary, particles accumulate and get trapped at the liquid-air interface driven by the surface flow. In order to prove this, we show measurements of the full three-dimensional flow inside the evaporating salty droplet, confocal imaging is used to quantify the growth of the particle deposits for different salt concentrations, and we compare the experimental results with numerical simulations that capture the solvent evaporation, the evaporation-induced liquid flow and the quasi-equilibrium liquid-gas interface.
Ma, Shuangchen; Chai, Jin; Wu, Kai; Xiang, Yajun; Jia, Shaoguang; Li, Qingsong
2018-03-20
Zero liquid discharge (ZLD) of wastewater has become the trend of environmental governance after the implementation of 'The Action Plan for Prevention and Treatment of Water Pollution' in China, desulfurization wastewater has gained more attention due to its complex composition and heavy metals. However, current technologies for ZLD have some shortcomings such as high cost and insufficient processing capacity, ZLD cannot be achieved actually. This paper proposes a new evaporation drying technology. An independent bypass evaporation tower was built, part of the hot flue gas before the air preheater was introduced into the evaporation tower for desulfurization wastewater evaporation, and the generated dust after evaporation was discharged back to the flue duct before electrostatic precipitator. This paper reports on the performance of desulfurization wastewater evaporation and the characteristics of evaporation products in depth and makes a comprehensive discussion of the impact on the existing equipment based on the self-designed evaporation tower. Research suggests that this technology has high system reliability and little effect on subsequent equipment and provides theoretical and practical data. Due to environmental policies and huge market demand for ZLD of desulfurization wastewater, bypass evaporation tower technology has a great application prospect in the future.
Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems
CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel
2014-01-01
Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201
Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...
Modeling of liquid and gas flows in the horizontal layer with evaporation
NASA Astrophysics Data System (ADS)
Lyulin, Yuri; Rezanova, Ekaterina
2017-10-01
Mathematical modeling of two-layer flows in the "ethanol-nitrogen" system on the basis of the exact solutions of a special type is carried out. The influence of the gas flow, temperature and Soret effect on the flow patterns and evaporating processes at the interface is investigated. The results of comparison of the experimental and theoretical data are presented; the dependence of the evaporation intensity at interface of the gas flow rate and temperature is studied.
Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, K; Kita, N; Mendybaev, R
2009-06-18
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.« less
Well logging evaporative thermal protection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamers, M.D.; Martelli, V.P.
1981-02-03
An evaporative thermal protection system for use in hostile environment well logging applications, the system including a downhole thermal protection cartridge disposed within a well logging sonde or tool to keep a payload such as sensors and support electronics cool, the cartridge carrying either an active evaporative system for refrigeration or a passive evaporative system, both exhausting to the surface through an armored flexible fluidic communication mechanical cable.
NASA Astrophysics Data System (ADS)
Kerkez, B.; Fries, K. J.; Gronewold, A.; Lenters, J. D.
2014-12-01
While overlake evaporation is a major component of the Great Lakes' water balance, our scientific understanding of the climatic drivers of evaporation and its effects on water levels is significantly impeded by limited data. Existing measurement methods, such as eddy covariance, are not easily implemented in offshore applications. As such, there are only a handful of sites making direct, overlake measurements of evaporation on the entire Great Lakes, where the lake surface area comprises nearly one third of the entire basin. Long-term forecasts of water levels are thus very uncertain, particularly relating to climatic forcing, which is known to be a major driver of evaporation. We present a novel sensor architecture which is deployed on buoys, both tethered and drifting, to provide real-time measurements of overlake evaporation across the Great Lakes. Our system is comprised of a hierarchy of low-power, cost-effective sensor nodes, which carry out on-board computations to estimate evaporation in real-time. An ultra-low power microcontroller samples a suite of sensors to compute evaporation based on the Bowen ratio energy budget approach. The readings are then transmitted via satellite modules to a cloud-based server infrastructure for real-time updated scientific analysis and forecasting. Initial assessment of our new satellite drifter platform indicates robust field performance, validating its use in ongoing efforts to deploy a large-scale evaporation observation network across the Great Lakes basin.
The interaction of Dirac particles with a Hawking charged radiating black hole
NASA Astrophysics Data System (ADS)
Kubik, Erik
2007-08-01
The interaction of spin 1/2 fields with a charged, evaporating black hole (EBH) is investigated. Using the Vaidya metric to model the Hawking evaporating black hole, the wave equation for a massless spinor field is obtained. The resulting field equation is solved utilizing techniques developed by Brill and Wheeler. Unlike previous efforts, a charged, evaporating black hole has never been used as a background to investigate spin 1/2 quantum field propagation, e.g., Brill and Wheeler considered massless spin 1/2 interactions in a static, Schwarzschild background. Using the WKB approximation, the wave equation is solved for the case of an EBH with constant luminosity. Analysis of the effective potential at different stages of evaporation is made including the dependence on the parameters of the system such as the total angular momentum, energy of the incident field, and luminosity of the evaporating black hole. Utilizing techniques of Mukhopad-hey, the transmission and reflection coefficients for the massless spinors are computed and compared to Schwarzschild result for both the high energy and hard scattering cases. The effect of the time dependence of the space-time metric has an important effect on the behavior of quantum fields over the lifetime of the evaporating black hole and may provide a signature for the detection of such objects.
The impact of surface chemistry on the performance of localized solar-driven evaporation system
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561
The impact of surface chemistry on the performance of localized solar-driven evaporation system.
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-09-04
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.
Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions
NASA Astrophysics Data System (ADS)
Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.
2016-08-01
We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead to multiple length scales in the laterally phase separated configurations.
Control of stain geometry by drop evaporation of surfactant containing dispersions.
Erbil, H Yildirim
2015-08-01
Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.
Duplex Tear Film Evaporation Analysis.
Stapf, M R; Braun, R J; King-Smith, P E
2017-12-01
Tear film thinning, hyperosmolarity, and breakup can cause irritation and damage to the human eye, and these form an area of active investigation for dry eye syndrome research. Recent research demonstrates that deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. In this paper, we explore the conditions for tear film breakup by considering a model for tear film dynamics with two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of osmosis, evaporation as modified by the lipid, and the polar portion of the lipid layer. We solve the system numerically for reasonable parameter values and initial conditions and analyze how shifts in these cause changes to the system's dynamics.
Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System
NASA Astrophysics Data System (ADS)
Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.
2017-05-01
A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.
Increasing the collected energy and reducing the water requirements in salt-gradient solar ponds
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Ruskowitz, J. A.; Tyler, S. W.; Childress, A. E.
2013-12-01
Salt-gradient solar ponds are low-cost, large-scale solar collectors with integrated storage that can be used as an energy source in many thermal systems. For instance, solar ponds have proven to be a promising solution to drive thermal desalination in arid zones. However, in zones with limited water availability, where evaporation constrains the use of solar ponds in areas with the greatest potential for solar energy development, evaporation losses at the surface of the pond constrain their use. Therefore, evaporation represents a significant challenge for development of these low-cost solar systems in arid settings. In this investigation, different transparent floating elements were tested to suppress evaporation: flat discs, hemispheres, and a continuous cover. Flat discs were the most effective evaporation suppression element. Evaporation decreased from 4.8 to 2.5 mm/day when 88% of the pond was covered with the flat discs. In addition, the highest temperature increased from 34 to 43°C and the heat content increased from 179 to 220 MJ (a 22% increase). Reduced evaporative losses at the surface of the pond resulted in lower conductive losses from the storage zone and increased the collected energy. The magnitude of evaporation reduction observed in this work is important as it allows solar pond operation in locations with limited water supply for replenishment. The increase in stored heat allows more energy to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds.
NASA Astrophysics Data System (ADS)
Anderson, L.; Abbott, M. B.; Finney, B. P.; Burns, S. J.
2005-12-01
Analyses of sediment cores from Marcella Lake, a small, hydrologically-closed lake in the semi-arid interior southwest Yukon Territory, provide evaporation information for the last 4500 years at century-scale resolution. Water chemistry and oxygen isotope data from lakes and precipitation in the region indicate that oxygen isotope ratios from Marcella Lake are currently affected by summer evaporation. Past lake water changes were reconstructed from oxygen isotope analyses of sedimentary endogenic calcite. An oxygen isotope record of mean-annual precipitation from Jellybean Lake, a nearby open evaporation-insensitive system, provides simultaneous oxygen isotope ratio variations related to atmospheric circulation and ambient temperature. The difference between the two isotope records represents oxygen-18-enrichment in Marcella Lake water caused by summer evaporation. The oxygen isotope results indicate a prolonged period of lower evaporation between 3000 and 1500 cal BP, a finding that is consistent with independent evidence for higher lake levels during this period (i.e. increased effective moisture). The data indicate that since 1500 cal BP evaporation has increased and that during the last 200 years it has been greater than during the previous ~4000 years. Two prominent increases in evaporation occurred at 1200 and 200 cal BP. These shifts correspond with increases in aridity observed in other records of effective moisture variability in the interior southwest Yukon and with prominent changes in North Pacific atmospheric circulation patterns over the Gulf of Alaska.
Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.
Pan, Zhenhai; Dash, Susmita; Weibel, Justin A; Garimella, Suresh V
2013-12-23
Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the comprehensive model developed here.
Evaporative cooling system for storage of fruits and vegetables - a review.
Lal Basediya, Amrat; Samuel, D V K; Beera, Vimala
2013-06-01
Horticultural produce are stored at lower temperature because of their highly perishable nature. There are many methods to cool the environment. Hence, preserving these types of foods in their fresh form demands that the chemical, bio-chemical and physiological changes are restricted to a minimum by close control of space temperature and humidity. The high cost involved in developing cold storage or controlled atmosphere storage is a pressing problem in several developing countries. Evaporative cooling is a well-known system to be an efficient and economical means for reducing the temperature and increasing the relative humidity in an enclosure and this effect has been extensively tried for increasing the shelf life of horticultural produce in some tropical and subtropical countries. In this review paper, basic concept and principle, methods of evaporative cooling and their application for the preservation of fruits and vegetables and economy are also reported. Thus, the evaporative cooler has prospect for use for short term preservation of vegetables and fruits soon after harvest. Zero energy cooling system could be used effectively for short-duration storage of fruits and vegetables even in hilly region. It not only reduces the storage temperature but also increases the relative humidity of the storage which is essential for maintaining the freshness of the commodities.
Open-cycle OTEC system performance analysis. [Claude cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, A.A.; Olson, D.A.; Johnson, D.H.
1980-10-01
An algorithm developed to calculate the performance of Claude-Cycle ocean thermal energy conversion (OTEC) systems is described. The algorithm treats each component of the system separately and then interfaces them to form a complete system, allowing a component to be changed without changing the rest of the algorithm. Two components that are subject to change are the evaporator and condenser. For this study we developed mathematical models of a channel-flow evaporator and both a horizontal jet and spray director contact condenser. The algorithm was then programmed to run on SERI's CDC 7600 computer and used to calculate the effect onmore » performance of deaerating the warm and cold water streams before entering the evaporator and condenser, respectively. This study indicates that there is no advantage to removing air from these streams compared with removing the air from the condenser.« less
NASA Technical Reports Server (NTRS)
Li, C.
1975-01-01
Computer programs are developed and used in the study of the combined effects of evaporation and solidification in space processing. The temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation were mathematically formulated. Computer results are included along with an econotechnical model of crystal growth. This model allows: prediction of crystal size, quality, and cost; systematic selection of the best growth equipment or alloy system; optimization of growth or material parameters; and a maximization of zero-gravity effects. Segregation in GaAs crystals was examined along with vibration effects on GaAs crystal growth. It was found that a unique segregation pattern and strong convention currents exist in GaAs crystal growth. Some beneficial effects from vibration during GaAs growth were discovered. The implications of the results in space processing are indicated.
Pulse thermal energy transport/storage system
Weislogel, Mark M.
1992-07-07
A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.
Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C. J.
2013-08-13
Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.; ...
2018-02-09
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
Analysis of Evaporative On-Board Diagnostic (OBD) Readiness and DTCs Using I/M Data
Gasoline vehicles are equipped with evaporative emissions control systems that control vapor from the fuel storage system while a vehicle is sitting or driving. When these systems or the vehicle’s gasoline delivery system malfunction, excessive evaporative emissions can be emitte...
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solidmore » platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.« less
Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces
Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.
2015-01-01
Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940
Do lipids retard the evaporation of the tear fluid?
Rantamäki, Antti H; Javanainen, Matti; Vattulainen, Ilpo; Holopainen, Juha M
2012-09-21
We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. A custom-built system was developed to measure evaporation rates at 35°C. Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. Olive oil and long-chain alcohol decreased evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (∼20% decrease). In PC/WE mixtures, an ∼90% proportion of WE was required for evaporation retardation. Based on BAM and ISR, WE resulted in more condensed layers than the non-retardant layers. Highly condensed, solid-like lipid layers, such as those containing high proportions of WEs, are evaporation-retardant. In multi-component lipid layers, the evaporation-retardant interactions between carbon chains decrease and, therefore, these lipid layers do not retard evaporation.
NASA Astrophysics Data System (ADS)
Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling
2017-05-01
Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.
NASA Astrophysics Data System (ADS)
Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao
2018-02-01
Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.
LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K.
2012-05-10
Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporatormore » serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.« less
Size effects and electron microscopy of thin metal films. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hernandez, J. D.
1978-01-01
All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.
40 CFR 799.1053 - Trichlorobenzenes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems that control for evaporation of the test substance, shall be conducted for 1,2,3- and 1,2,4... through systems, and systems that control for evaporation of the test substance shall be conducted for 1,2... systems that control evaporation of the test substance shall be conducted for 1,2,3-trichlorobenzene. A 96...
40 CFR 799.1053 - Trichlorobenzenes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... systems that control for evaporation of the test substance, shall be conducted for 1,2,3- and 1,2,4... through systems, and systems that control for evaporation of the test substance shall be conducted for 1,2... systems that control evaporation of the test substance shall be conducted for 1,2,3-trichlorobenzene. A 96...
40 CFR 799.1053 - Trichlorobenzenes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... systems that control for evaporation of the test substance, shall be conducted for 1,2,3- and 1,2,4... through systems, and systems that control for evaporation of the test substance shall be conducted for 1,2... systems that control evaporation of the test substance shall be conducted for 1,2,3-trichlorobenzene. A 96...
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2015-12-08
A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian
2014-01-01
Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.
Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.
Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo
2015-01-01
This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.
Advanced Design Heat PumpRadiator for EVA Suits
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis
2009-01-01
Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.
Variability of Evaporation and Precipitation over the Ocean from Satellite Data
NASA Astrophysics Data System (ADS)
Malinin, V. N.; Gordeeva, S. M.
2017-12-01
HOAPS-3 and PMWC satellite archives for 1988-2008 are used to estimate moisture-exchange components between the ocean and atmosphere (evaporation, precipitation, and the difference between them or effective evaporation). Moisture-exchange components for the entire World Ocean and for the North Atlantic Ocean within 30°-60° N are calculated. A strong overestimation of the global values of effective evaporation by HOAPS data (mainly caused by a decrease in precipitation) is shown. In the interannual variability of effective evaporation, there is clearly an overestimated positive trend, which contradicts the real increase in the Global Sea Level. Large systematic errors in moisture-exchange components are revealed for the North Atlantic water area. According to HOAPS data, there is a significant underestimation of evaporation and effective evaporation. According to PMWC data, the amount of precipitation is significantly overestimated and evaporation is underestimated. As a consequence, effective evaporation becomes negative, which is impossible. Low accuracy in the estimation of moisture-exchange components and the need to improve old estimates and develop new evaporation and precipitation databases based on satellite data are noted.
Droplet bubbling evaporatively cools a blowfly.
Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V
2018-04-19
Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1976-01-01
A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.
Surma, J; Assonov, S; Herwartz, D; Voigt, C; Staubwasser, M
2018-03-21
This study demonstrates the potential of triple O-isotopes to quantify evaporation with recharge on a salt lake from the Atacama Desert, Chile. An evaporative gradient was found in shallow ponds along a subsurface flow-path from a groundwater source. Total dissolved solids (TDS) increased by 177 g/l along with an increase in δ 18 O by 16.2‰ and in δD by 65‰. 17 O-excess decreased by 79 per meg, d-excess by 55‰. Relative humidity (h), evaporation over inflow (E/I), the isotopic composition of vapor ( * R V ) and of inflowing water ( * R WI ) determine the isotope distribution in 17 O-excess over δ 18 O along a well-defined evaporation curve as the classic Craig-Gordon model predicts. A complementary on-site simple (pan) evaporation experiment over a change in TDS, δ 18 O, and 17 O-excess by 392 g/l, 25.0‰, and -130 per meg, respectively, was used to determine the effects of sluggish brine evaporation and of wind turbulence. These effects translate to uncertainty in E/I rather than h. The local composition of * R V relative to * R WI pre-determines the general ability to resolve changes in h. The triple O-isotope system is useful for quantitative hydrological balancing of lakes and for paleo-humidity reconstruction, particularly if complemented by D/H analysis.
Cooling system having dual suction port compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guolian
2017-08-29
A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less
Refrigeration system having dual suction port compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guolian
A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less
Evaporation of LOX under supercritical and subcritical conditions
NASA Technical Reports Server (NTRS)
Yang, A. S.; Hsieh, W. H.; Kuo, K. K.; Brown, J. J.
1993-01-01
The evaporation of LOX under supercritical and subcritical conditions was studied experimentally and theoretically. In experiments, the evaporation rate and surface temperature were measured for LOX strand vaporizing in helium environments at pressures ranging from 5 to 68 atmospheres. Gas sampling and chromatography analysis were also employed to profile the gas composition above the LOX surface for the purpose of model validation. A comprehensive theoretical model was formulated and solved numerically to simulate the evaporation process of LOX at high pressures. The model was based on the conservation equations of mass, momentum, energy, and species concentrations for a multicomponent system, with consideration of gravitational body force, solubility of ambient gases in liquid, and variable thermophysical properties. Good agreement between predictions and measured oxygen mole fraction profiles was obtained. The effect of pressure on the distribution of the Lewis number, as well as the effect of variable diffusion coefficient, were further examined to elucidate the high-pressure transport behavior exhibited in the LOX vaporization process.
NASA Astrophysics Data System (ADS)
De Gennaro, Michele; Paffumi, Elena; Martini, Giorgio
2016-03-01
This paper assesses the effectiveness of the evaporative emissions control systems of European passenger cars on the basis of real-world activity data. The study relies on two large datasets of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems, consisting of 4.5 million trips and parking events recorded by monitoring 28,000 vehicles over one month. Real world evaporative emissions are estimated using a model that associates a carbon canister desorption event to each trip and a fuel vapour generation event to each parking. The mass of volatile organic compounds released into the air is calculated taking into account the hot-soak, permeation and breathing emission mechanisms. The analysis is based on 36 scenarios, defined by varying the climate conditions, the fuel vapour pressure, the tank material, the tank headspace volume, the purging volume flow rate and the mass of the activated carbon contained in the canister. The results show that in May 4 out of the 18 scenarios considered for Modena and 6 out of the 18 scenarios considered for Firenze lead to evaporative emissions values above the current type approval limit (i.e. 2 [g/day] per vehicle). In July, these numbers increase to 10 out of the 18 scenarios for Modena and to 12 out of the 18 scenarios for Firenze. Looking at the fleet distribution a share of approximately 20% of the fleet is characterised by evaporative emissions higher than the limit in May, increasing to 48% in July, with a peak value of 98%. The emission peak value is estimated to be approximately 4 [g/day] in May and 8 [g/day] in July, while the time-dependent results show emission rates up to nearly 15 [g/s] in Modena and 30 [g/s] in Firenze, with a respective cumulative value in July up to 0.4 and 0.8 tons of VOCs per day. The space-dependent results show a value of the emissions in July of approximately 4-to-8 [kg/km2/day] in the city areas. These results confirm previous findings from the authors, highlighting how the evaporative emissions control system currently used in passenger cars might not be effective under real-world use condition, calling for a revision of the type-approval test procedure.
Application of the PJ and NPS evaporation duct models over the South China Sea (SCS) in winter
Yang, Shaobo; Li, Xingfei; Wu, Chao; He, Xin; Zhong, Ying
2017-01-01
The detection of duct height has a significant effect on marine radar or wireless apparatus applications. The paper presents two models to verify the adaptation of evaporation duct models in the SCS in winter. A meteorological gradient instrument used to measure evaporation ducts was fabricated using hydrological and meteorological sensors at different heights. An experiment on the adaptive characteristics of evaporation duct models was carried out over the SCS. The heights of the evaporation ducts were measured by means of log-linear fit, Paulus-Jeske (PJ) and Naval Postgraduate School (NPS) models. The results showed that NPS model offered significant advantages in stability compared with the PJ model. According the collected data computed by the NPS model, the mean deviation (MD) was -1.7 m, and the Standard Deviation (STD) of the MD was 0.8 m compared with the true value. The NPS model may be more suitable for estimating the evaporation duct height in the SCS in winter due to its simpler system characteristics compared with meteorological gradient instruments. PMID:28273113
Phase space theory of evaporation in neon clusters: the role of quantum effects.
Calvo, F; Parneix, P
2009-12-31
Unimolecular evaporation of neon clusters containing between 14 and 148 atoms is theoretically investigated in the framework of phase space theory. Quantum effects are incorporated in the vibrational densities of states, which include both zero-point and anharmonic contributions, and in the possible tunneling through the centrifugal barrier. The evaporation rates, kinetic energy released, and product angular momentum are calculated as a function of excess energy or temperature in the parent cluster and compared to the classical results. Quantum fluctuations are found to generally increase both the kinetic energy released and the angular momentum of the product, but the effects on the rate constants depend nontrivially on the excess energy. These results are interpreted as due to the very few vibrational states available in the product cluster when described quantum mechanically. Because delocalization also leads to much narrower thermal energy distributions, the variations of evaporation observables as a function of canonical temperature appear much less marked than in the microcanonical ensemble. While quantum effects tend to smooth the caloric curve in the product cluster, the melting phase change clearly keeps a signature on these observables. The microcanonical temperature extracted from fitting the kinetic energy released distribution using an improved Arrhenius form further suggests a backbending in the quantum Ne(13) cluster that is absent in the classical system. Finally, in contrast to delocalization effects, quantum tunneling through the centrifugal barrier does not play any appreciable role on the evaporation kinetics of these rather heavy clusters.
Materials Performance in USC Steam Portland
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.R. Holcomb; J. Tylczak; R. Hu
2011-04-26
Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interestmore » include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.« less
Quantifying Evaporation in a Permeable Pavement System
Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...
NASA Astrophysics Data System (ADS)
Gao, Xin; Chen, Min; Snyder, G. Jeffrey; Andreasen, Søren Juhl; Kær, Søren Knudsen
2013-07-01
To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers' datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.
Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds
NASA Astrophysics Data System (ADS)
Li, Ting; Li, Jingfeng
2017-12-01
Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.
Air Evaporation closed cycle water recovery technology - Advanced energy saving designs
NASA Technical Reports Server (NTRS)
Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert
1986-01-01
The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.
NASA Astrophysics Data System (ADS)
Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley
2015-01-01
This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.
Xu, Zhang-Run; Zhong, Chong-Hui; Guan, Yan-Xia; Chen, Xu-Wei; Wang, Jian-Hua; Fang, Zhao-Lun
2008-10-01
A miniaturized flow injection analysis (FIA) system integrating a micropump on a microfluidic chip based on capillary and evaporation effects was developed. The pump was made by fixing a filter paper plug with a vent tube at the channel end, it requires no peripheral equipment and provides steady flow in the microl min(-1) range for FIA operation. Valve-free sample injection was achieved at nanolitre level using an array of slotted vials. The practical applicability of the system was demonstrated by DNA assay with laser-induced fluorescence (LIF) detection. A precision of 1.6% RSD (10.0 ng microl(-1), n=15) was achieved with a sampling throughput of 76 h(-1) and sample consumption of 95 nl.
Apparatus and method for evaporator defrosting
Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.
2001-01-01
An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.
NASA Astrophysics Data System (ADS)
Yang, D.; Yang, H.; Sun, F.
2007-12-01
Increase in air temperature and decrease in pan evaporation was found to be common worldwide during the past half century. This results in controversy in view of the changes to the hydrological cycle. Increases in precipitation have been expected due to the Clausius¡§CClapyeron relation in that the specific humidity increases exponentially with the greenhouse-gas induced temperature increasing and confirmed by measurements over northern extratropical land areas. The hydrologic cycle is expected to be intensified (or accelerated). However, the decreased pan evaporation is found to be well related to the global dimming, i.e., the decreased solar radiation induced by the pollution increasing, thus evaporation (i.e., the latent heat flux) should be steadily decreasing from the energy balance perspective. Many researchers explained that the potential evaporation (usually measured by pan) is decreased with increasing of precipitation; however, the increased soil moisture (due to precipitation increasing) can be evaporated because of extra energy available. Therefore, the actual and potential evaporation are in complementary relationship, which is expected to unify the controversy between global warming and dimming. This means that pan evaporation decrease implicates acceleration of the global hydrologic cycle, i.e., increase in the terrestrial evaporation. Based on the complementary theory, many operational formulae have been introduced to estimated actual evaporation from the potential evaporation. Our recent water balance analysis of 108 catchments in non-humid regions of China has shown that there are no general opposite trends between potential and actual evaporation in the same period. A novel phenomenon has been found that the complementary relationships in evaporation are distinctly confirmed when the annual actual and potential evaporation are plotted against annual precipitation; However, complementary relationships disappear in many catchments when actual and potential evaporations are plotted against the time (year) during the same period. This means that complementary idea cannot provide universally correct predictions on the trend of actual evaporation only from the potential one. In this research, we examine the coupled water-energy balance based on Budyko hypothesis and proposed a conceptual model for predicting the inter-annual variability of annual water balance, and the change trends of water balances due to climate changes. The wet environment evaporation was defined as the boundary condition in the Bouchet hypothesis and introduced into complementary relationship (CR), which combined the actual evaporation with potential evaporation in an equation. However, the CR was derived in a closed system where no horizontal energy advection existed. The effect of the horizontal advection on the CR in a real open system was also analyzed in this study. Using the long-term water balance analysis in the 108 study catchments and flux observation at 7 sites in Asia monsoon region, the regional and seasonal variability of the complementary relationship was examined. Key Words: climate change, evapotranspiration, water balance, flux observation, Budyko hypothesis, Bouchet hypothesis
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop
NASA Astrophysics Data System (ADS)
Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef
2016-11-01
Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.
Representative shuttle evaporative heat sink
NASA Technical Reports Server (NTRS)
Hixon, C. W.
1978-01-01
The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.
One-step method for the production of nanofluids
Kostic, Milivoje [Chicago, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John R [Downers Grove, IL; Choi, Stephen U. S. [Napersville, IL
2010-05-18
A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.
Localised boundary air layer and clothing evaporative resistances for individual body segments.
Wang, Faming; del Ferraro, Simona; Lin, Li-Yen; Sotto Mayor, Tiago; Molinaro, Vincenzo; Ribeiro, Miguel; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar
2012-01-01
Evaporative resistance is an important parameter to characterise clothing thermal comfort. However, previous work has focused mainly on either total static or dynamic evaporative resistance. There is a lack of investigation of localised clothing evaporative resistance. The objective of this study was to study localised evaporative resistance using sweating thermal manikins. The individual and interaction effects of air and body movements on localised resultant evaporative resistance were examined in a strict protocol. The boundary air layer's localised evaporative resistance was investigated on nude sweating manikins at three different air velocity levels (0.18, 0.48 and 0.78 m/s) and three different walking speeds (0, 0.96 and 1.17 m/s). Similarly, localised clothing evaporative resistance was measured on sweating manikins at three different air velocities (0.13, 0.48 and 0.70 m/s) and three walking speeds (0, 0.96 and 1.17 m/s). Results showed that the wind speed has distinct effects on local body segments. In contrast, walking speed brought much more effect on the limbs, such as thigh and forearm, than on body torso, such as back and waist. In addition, the combined effect of body and air movement on localised evaporative resistance demonstrated that the walking effect has more influence on the extremities than on the torso. Therefore, localised evaporative resistance values should be provided when reporting test results in order to clearly describe clothing local moisture transfer characteristics. Localised boundary air layer and clothing evaporative resistances are essential data for clothing design and assessment of thermal comfort. A comprehensive understanding of the effects of air and body movement on localised evaporative resistance is also necessary by both textile and apparel researchers and industry.
NASA Astrophysics Data System (ADS)
Brombin, M.; Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.
2014-11-01
A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.
Brombin, M; Spolaore, M; Serianni, G; Pomaro, N; Taliercio, C; Dalla Palma, M; Pasqualotto, R; Schiesko, L
2014-11-01
A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.
Thermal management of a Li-ion battery pack employing water evaporation
NASA Astrophysics Data System (ADS)
Ren, Yonghuan; Yu, Ziqun; Song, Guangji
2017-08-01
Battery thermal management (BTM) system plays a key part in vehicle thermal safety. A novel method employing water evaporation is presented in this paper. The thin sodium alginate film (SA-1 film) with water content of 99 wt% is prepared using a simple spraying method, and is attached on the surface of battery pack to explore its effectiveness on preventing heat accumulation. The result shows that under the condition with constant current charge/discharge larger than 1 C, the temperature rise rate is reduced by half. Under the condition with the New Europe Drive Cycle, the temperature could maintain stable without obvious rise. Moreover, a simple water automatic-refilling system is designed to address the dry issue of the film in terms of evaporation elimination. The proposed SA-1 film BTM system shows to be a very convenient and efficient approach in handling the thermal surge of Li-ion batteries without any change in battery pack integration and assembly.
Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin
2016-12-15
The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.
40 CFR 1042.107 - Evaporative emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuels (for example, natural gas). (b) If an engine uses a volatile liquid fuel, such as methanol, the engine's fuel system and the vessel in which the engine is installed must meet the evaporative emission... emissions are controlled. (2) Present test data to show that fuel systems and vessels meet the evaporative...
40 CFR 1042.107 - Evaporative emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuels (for example, natural gas). (b) If an engine uses a volatile liquid fuel, such as methanol, the engine's fuel system and the vessel in which the engine is installed must meet the evaporative emission... emissions are controlled. (2) Present test data to show that fuel systems and vessels meet the evaporative...
Spacesuit Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott
2011-01-01
For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.
Design of a solar energy assisted air conditioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varlet, J.L.P.; Johnson, B.R.; Vora, J.N.
1976-03-24
Energy consumption in air conditioning systems can be reduced by reducing the water content of air before cooling. This reduction in humidity can be accomplished by contacting the humid air with a hygroscopic solution in a spray tower. The hydroscopic solution, diluted by water from the air, can be reconcentrated in a solar evaporator. A solar evaporator for this purpose was evaluated by formulating simultaneous energy and mass balances for forced air convection through the evaporator. Temperatures in the evaporator were calculated by numerical integration of the mathematical model. The calculations indicated that the salt solution cannot be reconcentrated inmore » a forced convection evaporator because of the large energy losses associated with the air stream passing through the evaporator.« less
Understanding the role of monolayers in retarding evaporation from water storage bodies
NASA Astrophysics Data System (ADS)
Fellows, Christopher M.; Coop, Paul A.; Lamb, David W.; Bradbury, Ronald C.; Schiretz, Helmut F.; Woolley, Andrew J.
2015-03-01
Retardation of evaporation by monomolecular films by a 'barrier model' does not explain the effect of air velocity on relative evaporation rates in the presence and absence of such films. An alternative mechanism for retardation of evaporation attributes reduced evaporation to a reduction of surface roughness, which in turn increases the effective vapour pressure of water above the surface. Evaporation suppression effectiveness under field conditions should be predictable from measurements of the surface dilational modulus of monolayers and research directed to optimising this mechanism should be more fruitful than research aimed at optimising a monolayer to provide an impermeable barrier.
Vacuum distillation/vapor filtration water recovery, phases 1 and 2
NASA Technical Reports Server (NTRS)
Honegger, R. J.; Remus, G. A.; Krug, E. K.
1973-01-01
The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.
NASA Astrophysics Data System (ADS)
Horton, Travis W.; Defliese, William F.; Tripati, Aradhna K.; Oze, Christopher
2016-01-01
Growing pressure on sustainable water resource allocation in the context of global development and rapid environmental change demands rigorous knowledge of how regional water cycles change through time. One of the most attractive and widely utilized approaches for gaining this knowledge is the analysis of lake carbonate stable isotopic compositions. However, endogenic carbonate archives are sensitive to a variety of natural processes and conditions leaving isotopic datasets largely underdetermined. As a consequence, isotopic researchers are often required to assume values for multiple parameters, including temperature of carbonate formation or lake water δ18O, in order to interpret changes in hydrologic conditions. Here, we review and analyze a global compilation of 57 lacustrine dual carbon and oxygen stable isotope records with a topical focus on the effects of shifting hydrologic balance on endogenic carbonate isotopic compositions. Through integration of multiple large datasets we show that lake carbonate δ18O values and the lake waters from which they are derived are often shifted by >+10‰ relative to source waters discharging into the lake. The global pattern of δ18O and δ13C covariation observed in >70% of the records studied and in several evaporation experiments demonstrates that isotopic fractionations associated with lake water evaporation cause the heavy carbon and oxygen isotope enrichments observed in most lakes and lake carbonate records. Modeled endogenic calcite compositions in isotopic equilibrium with lake source waters further demonstrate that evaporation effects can be extreme even in lake records where δ18O and δ13C covariation is absent. Aridisol pedogenic carbonates show similar isotopic responses to evaporation, and the relevance of evaporative modification to paleoclimatic and paleotopographic research using endogenic carbonate proxies are discussed. Recent advances in stable isotope research techniques present unprecedented opportunities to overcome the underdetermined nature of stable isotopic data through integration of multiple isotopic proxies, including dual element 13C-excess values and clumped isotope temperature estimates. We demonstrate the utility of applying these multi-proxy approaches to the interpretation of paleohydroclimatic conditions in ancient lake systems. Understanding past, present, and future hydroclimatic systems is a global imperative. Significant progress should be expected as these modern research techniques become more widely applied and integrated with traditional stable isotopic proxies.
Dew-point hygrometry system for measurement of evaporative water loss in infants.
Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J
1997-03-01
Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.
Effect of solvent evaporation and coagulation on morphology development of asymmetric membranes
NASA Astrophysics Data System (ADS)
Chandrasekaran, Neelakandan; Kyu, Thein
2008-03-01
Miscibility behavior of blends of amorphous polyamide (PA) and polyvinylpyrrolidone (PVP) was studied in relation to membrane formation. Dimethylsulfoxide (DMSO) and water were used as solvent and non-solvent, respectively. Differential scanning calorimetry and cloud point measurements revealed that the binary PA/PVP blends as well as the ternary PA/PVP/DMSO system were completely miscible at all compositions. However, the addition of non-solvent (water) to this ternary system has led to phase separation. Visual turbidity study was used to establish a ternary liquid-liquid phase diagram of the PA-PVP/DMSO/water system. Scanning Electron Microscopy (SEM) showed the development of finger-like and sponge-like cross sectional morphologies during coagulation. Effects of polymer concentration, PA/PVP blend ratio, solvent/non-solvent quality, and evaporation time on the resulting membrane morphology will be discussed.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur
2015-01-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment. PMID:26079632
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
NASA Astrophysics Data System (ADS)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur
2015-06-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.
NASA Astrophysics Data System (ADS)
Nella Mollema, Pauline; Antonellini, Marco
2015-04-01
Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form where the gravel pits are below the water table and fill with groundwater. Their presence changes the drainage patterns, water- and hydrochemical budgets of a watershed. We have studied the water budget of two gravel pit lakes systems using stable H and O isotopes of water as well as conservative tracer (Cl) modeling. The Dutch gravel pit lakes are a fluvial fresh water system of 70 lakes along the Meuse River and the Italian gravel pit lakes are a brackish system along the Adriatic coast. Surface water evaporation from the gravel pit lakes is larger than the actual evapotranspiration of the grass land and forests that were replaced. The ratio of evaporation to total flow into the Dutch lakes was determined by using a Fen as a natural evaporation pan: the isotope content of the Tuspeel Fen, filled with rain water and sampled in a dry and warm summer period (August 2012), is representative for the limiting isotopic enrichment under local hydro meteorological conditions. The Local Evaporation line (LEL) was determined δ2 H = 4.20 δ 18O - 14.10 (R² = 0.99) and the ratio of total inflow to evaporation for three gravel pit lakes were calculated to be 22.6 for the De Lange Vlieter lake used for drinking water production, 11.3 for the Boschmolen Lake and 8.9 for the Anna's Beemd lake showing that groundwater flow is much larger than evaporation. The Italian gravel pit lakes are characterized by high salinity (TDS = 4.6-12.3 g L-1). Stable isotope data show that these latter gravel pit lakes are fed by groundwater, which is a mix between fresh Apennine River water and brackish (Holocene) Adriatic Sea water. The local evaporation line is determined: δ2H = 5.02 δ18O - 10.49. The ratio of total inflow to evaporation is 5. Conservative tracer modeling indicates that the chloride concentration in the Italian gravel pit lakes stabilizes after a short period of rapid increase, because water leaving the lake via groundwater flow, driven by the drainage system, removes part of the Cl that accumulates in the lake due to evapo-concentration. Under climate change, rising sea levels and continuing land subsidence as well as increasing precipitation would increase the need for drainage which would enhance groundwater flow through the lake. The resulting steady-state Cl concentration of the lakes could become less than the current Cl concentration. This effect would be larger than increasing evapo- concentration. Both gravel pit lake systems have a large flux of groundwater into and out of the lakes driven by evaporation and (artificial) drainage with important consequences for the water- and hydrochemical budgets of the whole watershed and in particular on freshwater quantity and groundwater salinity.
Thermodynamic performance testing of the orbiter flash evaporator system
NASA Technical Reports Server (NTRS)
Jaax, J. R.; Melgares, M. A.; Frahm, J. P.
1980-01-01
System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.
Long term measurement of lake evaporation using a pontoon mounted Eddy Covariance system
NASA Astrophysics Data System (ADS)
McGowan, H. A.; McGloin, R.; McJannet, D.; Burn, S.
2011-12-01
Accurate quantification of evaporation from water storages is essential for design of water management and allocation policy that aims to balance demands for water without compromising the sustainability of future water resources, particularly during periods of prolonged and severe drought. Precise measurement of evaporation from lakes and dams however, presents significant research challenges. These include design and installation of measurement platforms that can withstand a range of wind and wave conditions; accurate determination of the evaporation measurement footprint and the influence of changing water levels. In this paper we present results from a two year long deployment of a pontoon mounted Eddy Covariance (EC) system on a 17.2ha irrigation reservoir in southeast Queensland, Australia. The EC unit included a CSAT-3 sonic anemometer (Campbell Scientific, Utah, United States) and a Li-Cor CS7500 open-path H2O/CO2 infrared gas analyzer (LiCor, Nebraska, United States) at a height of 2.2m, a net radiometer (CNR1, Kipp & Zonen, Netherlands) at a height of 1.2m and a humidity and temperature probe (HMP45C,Vaisala, Finland) at 2.3m. The EC unit was controlled by a Campbell Scientific CR3000 data logger with flux measurements made at 10 Hz and block averaged values logged every 15 minutes. Power to the EC system was from mounted solar panels that charged deep cycle lead-acid batteries while communication was via a cellphone data link. The pontoon was fitted with a weighted central beam and gimbal ring system that allowed self-levelling of the instrumentation and minimized dynamic influences on measurements (McGowan et al 2010; Wiebe et al 2011). EC measurements were corrected for tilt errors using the double rotation method for coordinate rotation described by Wilczak et al. (2001). High and low frequency attenuation of the measured co-spectrum was corrected using Massman's (2000) method for estimating frequency response corrections, while measurements were corrected for density fluctuations using the method of Webb-Pearman-Leuning (Webb et al. 1980). The evaporation measurement footprint over the reservoir was determined using the SCADIS one and a half order turbulence closure footprint model (Sogachev and Lloyd, 2004). Comparison of EC measured evaporation rates show excellent agreement with independent measurement of evaporation by scintillometer under a wide range of conditions (McJannet et al 2011). They confirm that pontoon mounted EC systems offer a robust, highly portable and reliable cost effective approach for accurate quantification of evaporation from reservoirs.
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
Experimental System of Solar Adsorption Refrigeration with Concentrated Collector.
Yuan, Z X; Li, Y X; Du, C X
2017-10-18
To improve the performance of solar adsorption refrigeration, an experimental system with a solar concentration collector was set up and investigated. The main components of the system were the adsorbent bed, the condenser, the evaporator, the cooling sub-system, and the solar collector. In the first step of the experiment, the vapor-saturated bed was heated by the solar radiation under closed conditions, which caused the bed temperature and pressure to increase. When the bed pressure became high enough, the bed was switched to connect to the condenser, thus water vapor flowed continually from the bed to the condenser to be liquefied. Next, the bed needed to cool down after the desorption. In the solar-shielded condition, achieved by aluminum foil, the circulating water loop was opened to the bed. With the water continually circulating in the bed, the stored heat in the bed was took out and the bed pressure decreased accordingly. When the bed pressure dropped below the saturation pressure at the evaporation temperature, the valve to the evaporator was opened. A mass of water vapor rushed into the bed and was adsorbed by the zeolite material. With the massive vaporization of the water in the evaporator, the refrigeration effect was generated finally. The experimental result has revealed that both the COP (coefficient of the performance of the system) and the SCP (specific cooling power of the system) of the SAPO-34 zeolite was greater than that of the ZSM-5 zeolite, no matter whether the adsorption time was longer or shorter. The system of the SAPO-34 zeolite generated a maximum COP of 0.169.
Parent, Boris; Suard, Benoît; Serraj, Rachid; Tardieu, François
2010-08-01
Rice is known to be sensitive to soil water deficit and evaporative demand, with a greatest sensitivity of lowland-adapted genotypes. We have analysed the responses of plant water relations and of leaf elongation rate (LER) to soil water status and evaporative demand in seven rice genotypes belonging to different species, subspecies, either upland- or lowland-adapted. In the considered range of soil water potential (0 to -0.6 MPa), stomatal conductance was controlled in such a way that the daytime leaf water potential was similar in well-watered, droughted or flooded conditions (isohydric behaviour). A low sensitivity of LER to evaporative demand was observed in the same three conditions, with small differences between genotypes and lower sensitivity than in maize. The sensitivity of LER to soil water deficit was similar to that of maize. A tendency towards lower sensitivities was observed in upland than lowland genotypes but with smaller differences than expected. We conclude that leaf water status and leaf elongation of rice are not particularly sensitive to water deficit. The main origin of drought sensitivity in rice may be its poor root system, whose effect was alleviated in the study presented here by growing plants in pots whose soil was entirely colonized by roots of all genotypes.
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.
Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef
2016-08-02
Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop
NASA Astrophysics Data System (ADS)
Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef
2016-08-01
Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.
Measurements of evaporation from a mine void lake and testing of modelling approaches
NASA Astrophysics Data System (ADS)
McJannet, David; Hawdon, Aaron; Van Niel, Tom; Boadle, Dave; Baker, Brett; Trefry, Mike; Rea, Iain
2017-12-01
Pit lakes often form in the void that remains after open cut mining operations cease. As pit lakes fill, hydrological and geochemical processes interact and these need to be understood for appropriate management actions to be implemented. Evaporation is important in the evolution of pit lakes as it acts to concentrate various constituents, controls water level and changes the thermal characteristics of the water body. Despite its importance, evaporation from pit lakes is poorly understood. To address this, we used an automated floating evaporation pan and undertook measurements at a pit lake over a 12 month period. We also developed a new procedure for correcting floating pan evaporation estimates to lake evaporation estimates based on surface temperature differences. Total annual evaporation was 2690 mm and reflected the strong radiation inputs, high temperatures and low humidity experienced in this region. Measurements were used to test the performance of evaporation estimates derived using both pan coefficient and aerodynamic modelling techniques. Daily and monthly evaporation estimates were poorly reproduced using pan coefficient techniques and their use is not recommended for such environments. Aerodynamic modelling was undertaken using a range of input datasets that may be available to those who manage pit lake systems. Excellent model performance was achieved using over-water or local over-land meteorological observations, particularly when the sheltering effects of the pit were considered. Model performance was reduced when off-site data were utilised and differences between local and off-site vapor pressure and wind speed were found to be the major cause.
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop
Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef
2016-01-01
Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601
NASA Astrophysics Data System (ADS)
Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.
2018-06-01
Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.
Novel desiccant cooling system using indirect evaporative cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belding, W.A.; Delmas, M.P.F.
1997-12-31
An effective desiccant cooling system must efficiently reject adsorption and carryover heat from the process airstream. Rotary heat exchangers are typically used to remove this heat in currently available desiccant equipment, but these devices can leak humid air from the regeneration side of the process into the dry process side, degrading performance. Using a different approach, high cooling capacities and coefficients of performance (COPs) have been achieved in a desiccant cooling system without a heat wheel or bulky stationary heat exchanger. Using a desiccant wheel in conjunction with a compact indirect evaporative cooler and a small air-to-air heat exchanger, amore » cooling system has been developed that eliminates the need for deep dehumidification by the desiccant wheel and at the same time provides 25% to 35% ventilation air to the conditioned space. Using a 0.68 m (27 in.) diameter by 0.2 m (8 in.) deep type 1 M desiccant wheel regenerated at 175 C (347 F), 15.0 kW (4.3 tons) of cooling were achieved with a thermal COP of 0.72. With the addition of a direct evaporative cooler, humidity control over a broad range can be offered by the system. The low desiccant wheel volume and the compact nature of the indirect evaporative coolers result in equipment with a low potential first cost, assuming economies of scale. Equipment presently under development is expected to exceed a gross cooling COP of 0.9.« less
Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.
Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng
2017-09-07
To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.
Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study
Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng
2017-01-01
To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system. PMID:28880207
Evaluating the Effect of Ground Temperature on Phreatic Evaporation in Bare Soil Area
NASA Astrophysics Data System (ADS)
Manting, S.; Wang, B.; Liu, P.
2017-12-01
Phreatic water evaporation is an important link in water conversion, and it is also the main discharge of shallow groundwater. The influencing factors of phreatic evaporation intensity include meteorological elements, soil lithology, ground temperature, water table depth and plant growth status, etc. However, the effect of ground temperature on phreatic evaporation is neglected in the traditional phreatic evaporation study, while from the principle of water vapor conversion, the ground temperature is the main energy controlling the process. Taking the homogeneous sand in bare soil area for example, the effect of different temperature difference between ground temperature and air temperature on phreatic evaporation was studied by constructing soil column experiment and Hydrus numerical simulation model. Based on analysis of the process and trend of soil water content in different depths, the influence mechanism of ground temperature on phreatic evaporation was discussed quantitatively. The experimental results show that the change trend of daily evaporation is basically the same. But considering the effect of ground temperature the evaporation amount is significantly larger than that of without considering the temperature. When the temperature (-2.3 ° 13.6 °) is lower than the ground temperature (20 °), the average value of evaporation increased by about 33.7%; When the temperature (22 ° -33.2 °) is higher than the ground temperature (20 °), the average increase of evaporation is about 10.08%. The effect of ground temperature on the evaporation is very significant in winter and summer. Soil water content increased with the increase of water table depth, while the soil water content at the same depth was different due to the temperature difference, and the soil water content was also different. The larger the temperature difference, the greater the difference of soil water content. The slope of the trend line of the phreatic evaporation is also increased accordingly. That is, under the influence of ground temperature, water vapor conversion rate increased, resulting in increased soil moisture and increased phreatic evaporation. Therefore, considering the ground temperature, it has important theoretical and practical value for scientific understanding and revealing the phreatic evaporation process.
NASA Astrophysics Data System (ADS)
Haq, Gary; Martini, Giorgio; Mellios, Giorgos
2014-10-01
Evaporative emissions of non-methane volatile organic compounds (NMVOCs) arise from the vehicle's fuel system due to changes in ambient and vehicle temperatures, and contribute to urban smog. This paper presents an economic analysis of the societal costs and benefits of implementing a revised European evaporative emission test procedure for petrol vehicles under four scenarios for the period 2015-2040. The paper concludes that the most cost-effective option is the implementation of an aggressive purging strategy over 48 h and improved canister durability (scenario 2+). The average net benefit of implementing this scenario is €146,709,441 at a 6% discount rate. Per vehicle benefits range from €6-9 but when fuel savings benefits are added, total benefits range from €13-18. This is compared to average additional cost per vehicle of €9.
Xu, Xuefeng; Ma, Liran
2015-01-01
During liquid evaporation, the equations for the vapor concentration in the atmosphere and for the temperature in the liquid are coupled and must be solved in an iterative manner. In the present paper, a combined field approach which unifies the coupled fields into one single hybrid field and thus makes the iteration unnecessary is proposed. By using this approach, the influences of the evaporative cooling on the evaporation of pinned sessile droplets are investigated, and its predictions are found in good agreement with the previous theoretical and experimental results. A dimensionless number Ec which can evaluate the strength of the evaporative cooling is then introduced, and the results show that both the evaporation flux along the droplet surface and the total evaporation rate of the droplet decrease as the evaporative cooling number Ec increases. For drying droplets, there exists a critical value EcCrit below which the evaporative cooling effect can be neglected and above which the significance of the effect increases dramatically. The present work may also have more general applications to coupled field problems in which all the fields have the same governing equation. PMID:25721987
NASA Astrophysics Data System (ADS)
Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam
2011-12-01
Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
One-step method for the production of nanofluids
Kostic, Milivoje [Sycamore, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John [Downers Grove, IL; Choi, Stephen U. S. [Naperville, IL
2011-08-16
A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.
Chemical and isotopic fractionations by evaporation and their cosmochemical implications
NASA Astrophysics Data System (ADS)
Ozawa, Kazuhito; Nagahara, Hiroko
2001-07-01
A kinetic model for evaporation of a multi-component condensed phase with a fixed rate constant of the reaction is developed. A binary system with two isotopes for one of the components undergoing simple thermal histories (e.g., isothermal heating) is investigated in order to evaluate the extent of isotopic and chemical fractionations during evaporation. Diffusion in the condensed phase and the effect of back reaction from ambient gas are taken into consideration. Chemical and isotopic fractionation factors and the Péclet number for evaporation are the three main parameters that control the fractionation. Dust enrichment factor (η), the ratio of the initial dust quantity to that required for attainment of gas-dust equilibrium, is critical when back reactions become significant. Dust does not reach equilibrium with gas at η < 1. Notable chemical and isotopic fractionations usually take place under these conditions. There are two circumstances in which isotopic fractionation of a very volatile element does not accompany chemical fractionation during isothermal heating. One is free evaporation when diffusion in the condensed phase is very slow (η = 0), and the other is evaporation in the presence of ambient gas (η > 0). In the former case, a quasi-steady state in the diffusion boundary layer is maintained for isotopic fractionation but not for chemical fractionation. In the latter case, the back reaction brings the strong isotopic fractionation generated in the earlier stage of evaporation back to a negligibly small value in the later stage before complete evaporation. The model results are applied to cosmochemical fractionation of volatile elements during evaporation from a condensed phase that can be regarded as a binary solution phase. The wide range of potassium depletion without isotopic fractionation in various types of chondrules (Alexander et al., 2000) is explained by instantaneous heating followed by cooling in a closed system with various degrees of dust enrichment (η = 0.001-10) and cooling rates of less than ˜5°C/min. The extent of decoupling between isotopic and chemical fractionations of various elements in chondrules and matrix minerals may constrain the time scale and the conditions of heating and cooling processes in the early solar nebula.
NASA Astrophysics Data System (ADS)
Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra
2017-02-01
Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.
Evaporative cooling for Holstein dairy cows under grazing conditions
NASA Astrophysics Data System (ADS)
Valtorta, Silvia E.; Gallardo, Miriam R.
. Twenty-four grazing Holstein cows in mid and late lactation were randomly assigned to two treatment groups: control and cooled. The trial was performed at the Experimental Dairy Unit, Rafaela Agricultural Experimental Station (INTA), Argentina. The objective was to evaluate the effects of sprinkler and fan cooling before milkings on milk production and composition. The effects of the cooling system on rectal temperature and respiration rate were also evaluated. Cooled cows showed higher milk production (1.04 l cow-1 day-1). The concentration and yield of milk fat and protein increased in response to cooling treatment. The cooling system also reduced rectal temperature and respiration rate. No effects were observed on body condition. It was concluded that evaporative cooling, which is efficient for housed animals, is also appropriate to improve yields and animal well-being under grazing systems. These results are impressive since the cooling system was utilized only before milkings, in a system where environmental control is very difficult to achieve. This trial was performed during a mild summer. The results would probably be magnified during hotter weather.
The cement solidification systems at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veazey, G.W.
1990-01-01
There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cementmore » type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.« less
Laser Damage in Thin Film Optical Coatings
1992-07-01
10) using E- beam evaporation and laser tests performed to determine the effect of conditioning laser spot size and coating design on improvement in...1.06 pm) consisting of a 15 layer 3 quarter-wave design (HFO2/SiO 2 and ZrO2/SiO 2) were fabricated by E- beam evaporation. Sol-gel processing was used to... designers select laser damage resistant coatings for optical elements to be employed in military systems using lasers or encountering lasers used as
Condensation and Evaporation of Solar System Materials
NASA Astrophysics Data System (ADS)
Davis, A. M.; Richter, F. M.
2003-12-01
It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The absence of isotopic fractionation in a volatile element-depleted condensed phase is more a measure of the degree to which the system maintained thermodynamic equilibrium than a diagnostic of whether the path involved condensation or evaporation.The pervasive volatile element depletion of inner solar system planets and the asteroidal parent bodies of most meteorites is a major, but by no means the only reason to consider evaporation and condensation processes in the early history of the solar system. Chondrules appear to have been rapidly heated and then cooled over a period of minutes to hours (see Chapter 1.07). If this occurred in a gas of solar composition under nonequilibrium conditions, chondrules should have partially evaporated and an isotopic fractionation record should remain. The absence of such effects can be used to chonstrain the conditions of chondrule formation (e.g., Alexander et al., 2000; Alexander and Wang, 2001). There is good petrologic, chemical, and isotopic evidence suggesting that certain solar system materials such as the coarse-grained CAIs are likely evaporation residues. For example, the type B CAIs are often found to have correlated enrichments in the heavy isotopes of silicon and magnesium ( Figure 1), and these isotopic fractionations are very much like those of evaporation residues produced in laboratory experiments. Condensation also appears to be a major control of elemental zoning patterns in metal grains in CH chondrites (Meibom et al., 1999, 2001; Campbell et al., 2001; Petaev et al., 2001; Campbell et al., 2002). A more contemporary example is the isotopic and chemical compositions of deep-sea spherules that have been significantly affected by evaporative loss during atmospheric entry ( Davis et al., 1991a; Davis and Brownlee, 1993; Herzog et al., 1994, 1999; Xue et al., 1995; Alexander et al., 2002). (7K)Figure 1. Isotopic mass fractionation effects in CAIs. Most coarse-grained CAIs have enrichments of a few ‰ amu-1 in magnesium and silicon, whereas "fractionation and unknown nuclear" (FUN) CAIs are isotopically heavier. The volatile element depletion patterns of planetary size objects and the chemical and isotopic composition of numerous smaller objects such as chondrules and CAIs provide the motivation to consider evaporation and condensation process in the early solar system. The key point is that the processes that led to chondrules and planets appear to have occurred under conditions very close to equilibrium, whereas the processes that led to CAIs involved significant departures from equilibrium.
Numerical modelling and experimental study of liquid evaporation during gel formation
NASA Astrophysics Data System (ADS)
Pokusaev, B. G.; Khramtsov, D. P.
2017-11-01
Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.
NASA Astrophysics Data System (ADS)
Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.
2018-04-01
The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.
NASA Astrophysics Data System (ADS)
Xiao, K.; Griffis, T. J.; Baker, J. M.; Bolstad, P. V.; Erickson, M. D.; Lee, X.; Wood, J. D.; Hu, C.
2017-12-01
Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. For example, the water level of White Bear Lake (WBL) declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The annual evaporation for years 2014 through 2016 were 559±22 mm, 779±81 mm, and 766±11 mm, respectively. The larger evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicated that WBL evaporation increased by about 3.8 mm yr-1. Mass balance analysis implied that the lake level declines at WBL during 1986-1990 and 2003-2012 were mainly caused by the coupled low precipitation and high evaporation. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm yr-1 over this century, which is largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.
Wilson, Jacqueline; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2015-01-06
Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.
NASA Astrophysics Data System (ADS)
Hasözbek, Altug; Mathew, Kattathu; Wegener, Michael
2013-04-01
The total evaporation (TE) is a well-established analytical method for safeguards measurement of uranium and plutonium isotope-amount ratios using the thermal ionization mass spectrometry (TIMS). High accuracy and precision isotopic measurements find many applications in nuclear safeguards, for e.g. assay measurements using isotope dilution mass spectrometry. To achieve high accuracy and precision in TIMS measurements, mass dependent fractionation effects are minimized by either the measurement technique or changes in the hardware components that are used to control sample heating and evaporation process. At NBL, direct total evaporation (DTE) method on the modified MAT261 instrument, uses the data system to read the ion signal intensity and its difference from a pre-determined target intensity, is used to control the incremental step at which the evaporation filament is heated. The feedback and control is achieved by proprietary hardware from SPECTROMAT that uses an analog regulator in the filament power supply with direct feedback of the detector intensity. Compared to traditional TE method on this instrument, DTE provides better precision (relative standard deviation, expressed as a percent) and accuracy (relative difference, expressed as a percent) of 0.05 to 0.08 % for low enriched and high enriched NBL uranium certified reference materials.
Freezing of Water Droplet due to Evaporation
NASA Astrophysics Data System (ADS)
Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu
In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; ...
2015-06-16
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
Evaporation control research, 1959-60
,
1963-01-01
Two hundred and forty-five dispersions of long-chain alkanols were formulated by using various emulsifiers and alkanols. The dispensing and spreading ability of each of these formulations was tested. The most promising emulsifier that could be used with any of the alkanols was glyceryl monostearate (self-emulsifying). However, the concentration of the alkanol in the dispersion form varied somewhat: with the length of the carbon chain. A maximum concentration of 16 percent was obtained using the longer chain alkanols in the dispersion form without losing any of the properties of a fluid. Nine field tests were undertaken on small stock tanks. The retardant materials used in these tests were dodecanol, hexadecanol, and octadecanol. These materials were applied in either liquid or dispersion form. Four types of dispensing equipment were tested. The first type used a pressure system which sprayed a liquid onto the surface of the water. An anemometer and wind-controlled vane, operated by an electrical system, determined the length End frequency of application. The second type was similar to the first except that gravity was utilized to force the liquid onto the surface. The third type. used a drip system with rates of about 10 drops per minute. The fourth type used a gravity feed and a wind-controlled valve which allowed the dispersion material to flow onto the surface of the water when the wind was in the proper direction. In the field tests, the best reduction in evaporation was obtained using octadecanol in dispersion form and dispensed with the wind-controlled valve and gravity feed system. The maximum reduction in evaporation for a 2-week period was 27 percent. However, the economics of suppressing evaporation from stock tanks is questionable because of the short travel time across the tank by the film. There are still many problems unsolved. Some of these can be resolved in the laboratory whereas others can be resolved only in the field. Some of the more serious problems are the effect of impurities in the alkanols; the rate of cooling of the alkanol from a liquid to a solid state ; the effect of the film on the exchange of water molecules between the air and water; whether the film remains effective in suppressing evaporation for any rate of movement downwind; and the possible use of dodecanol and eicosanol as suppressants.
Effect of evaporation on the shelf life of a universal adhesive.
Pongprueksa, P; Miletic, V; De Munck, J; Brooks, N R; Meersman, F; Nies, E; Van Meerbeek, B; Van Landuyt, K L
2014-01-01
The purpose of this study was to evaluate how evaporation affects the shelf life of a one-bottle universal adhesive. Three different versions of Scotchbond Universal (SBU, 3M ESPE, Seefeld, Germany) were prepared using a weight-loss technique. SBU0 was left open to the air until maximal weight loss was obtained, whereas SBU50 was left open until 50% of evaporation occurred. In contrast, SBU100 was kept closed and was assumed to contain the maximum concentration of all ingredients. The degree of conversion (DC) was determined by using Fourier transform infrared spectroscopy on different substrates (on dentin or glass plate and mixed with dentin powder); ultimate microtensile strength and microtensile bond strength to dentin were measured as well. DC of the 100% solvent-containing adhesive (SBU100) was higher than that of the 50% (SBU50) and 0% (SBU0) solvent-containing adhesives for all substrates. DC of the adhesive applied onto glass and dehydrated dentin was higher than that applied onto dentin. Even though the ultimate microtensile strength of SBU0 was much higher than that of SBU50 and SBU100, its bond strength to dentin was significantly lower. Evaporation of adhesive ingredients may jeopardize the shelf life of a one-bottle universal system by reducing the degree of conversion and impairing bond strength. However, negative effects only became evident after more than 50% evaporation.
Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)
2000-01-01
Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.
Controlling energy costs in refrigeration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vig, R.
1984-08-09
Altering the operating conditions of components in a refrigeration system can have a significant effect on energy consumption. The ramifications of superheating the gas at the evaporator, subcooling the liquid at the condenser, lowering the condensing pressure, and raising the suction temperature should be examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Jacqueline M.; Imre, D.; Beranek, Josef
2015-01-06
Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH.more » We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.« less
NASA Astrophysics Data System (ADS)
Fu, Qiang; Yan, Peiru; Li, Tianxiao; Cui, Song; Peng, Li
2018-04-01
To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 kg/hm2 (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3-6 d, decrease the speed at which the surface soil thaws by 0.40-0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70-7.40 mm in the thawing period, increase the range of soil evaporation by 0.04-0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25-0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 kg/hm2, the effect of increasing the amount of straw mulch on daily soil water evaporation was small.
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron
2013-01-01
Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CORBETT JE; TEDESCH AR; WILSON RA
2011-02-14
A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.
2014-11-15
A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors’ holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation.more » No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.« less
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)
2001-01-01
The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with warm and cold ENSO events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during ENSO and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We use the da Silva ocean flux data to identify composite structure of departures of latent heat flux from climatology. We also show how these patterns arise out of associated wind and humidity anomaly distributions. Our preliminary work shows that evaporation sensitivity estimates from the da Silva / COADS data, computed for the tropical oceans (30 degrees N/S) are in the neighborhood of 5 to 6 W/square m K. Model estimates are also quite close to this figure. This rate is only slightly less than a rate corresponding to constant relative humidity; however, substantial regional departures from constant relative humidity are present. These patterns are robust and we relate the associated wind and humidity fluctuations noted in previous investigations to the derived evaporation anomalies. Finally, these results are interpreted with other data from the Earth radiation Budget Experiment (ERBE), Global Precipitation Climatology Project (GPCP) and NASA's Surface Radiation Budget (SRB) data set to characterize the tropical energetics of ENSO-related climate variability.
Effect of UV irradiation on the evaporation rate of alcohols droplets
NASA Astrophysics Data System (ADS)
Korobko, O. V.; Britan, A. V.; Verbinskaya, G. H.; Gavryushenko, D. A.
2015-06-01
The effect of ultraviolet irradiation with a wavelength of 390 nm on the evaporation of droplets of the homologous series of alcohols ( n-propanol, n-butanol, n-pentanol, n-heptanol, n-octanol, and n-decanol) at 10, 30, 50, 100, and 200 mm Hg in an atmosphere of dry nitrogen is studied. The values of the evaporation rate of alcohols are calculated with and without irradiation. Starting from n-pentanol, the rate of evaporation grows strongly for droplets of higher alcohols under the effect of low-power irradiation not associated with the heating of the evaporating droplets of alcohols. The obtained results are analyzed by comparing them to experimental data on neutron scattering by alcohols. It is shown that free convection must be considered in order to describe the evaporation process. Expressions of different authors for describing this effect are analyzed.
NASA Astrophysics Data System (ADS)
Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae
2018-02-01
Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised evaporation model was used in order to explain the experimental data, and it showed good agreement. In particular, it was found that the temperature showed a significant effect on the evaporation rate, and the effect of temperature and C content on the activity coefficients of Cu, Sn, and S also significantly affected the evaporation rate. The chemical reaction rate constant of the individual evaporation reaction ( kiR ) and residual rate constant ( kir ) could be obtained as a function of temperature. The activation energy of each evaporation reaction was derived and discussed. The evaporation rate model can be applied in order to predict the content of Cu and Sn remaining in liquid iron under various conditions of temperature and [pct C].
NASA Astrophysics Data System (ADS)
Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae
2018-06-01
Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised evaporation model was used in order to explain the experimental data, and it showed good agreement. In particular, it was found that the temperature showed a significant effect on the evaporation rate, and the effect of temperature and C content on the activity coefficients of Cu, Sn, and S also significantly affected the evaporation rate. The chemical reaction rate constant of the individual evaporation reaction ( kiR ) and residual rate constant ( kir ) could be obtained as a function of temperature. The activation energy of each evaporation reaction was derived and discussed. The evaporation rate model can be applied in order to predict the content of Cu and Sn remaining in liquid iron under various conditions of temperature and [pct C].
Controlling water evaporation through self-assembly
Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma
2016-01-01
Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848
Using evaporation to control capillary instabilities in micro-systems.
Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic
2017-12-06
The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.
Controlling water evaporation through self-assembly.
Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma
2016-09-13
Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.
Roof sprinkling system sweats down A/C costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This article describes a roof spray system which enhances the energy efficiency of a building's HVAC system at a nominal cost in relationship to the benefits it yields. Roof spray cooling is based on the fact that water, when it evaporates, absorbs large amounts of heat. The evaporation of one gallon of water will dissipate about 8500 BTU's of heat; and three fallons of water evaporated over one hour's time offers the same cooling capacity as a two-ton airconditioner operated over the same period. By intermittently spraying its surface with water, a direct evaporative cooling system allows a roof tomore » sweat away the sun's radiant heat, cooling an un-airconditioned building from 10 to 12 degrees mrt and reducing summer electric costs by 25%.« less
Development of biodegradable drug delivery system to treat addiction.
Mandal, T K
1999-06-01
Opiate addiction is a serious problem that has now spread worldwide to all levels of society. Buprenorphine has been used for several years for the treatment of opiate addiction. The objective of this project was to develop sustained-release biodegradable microcapsules for the parenteral delivery of buprenorphine. Biodegradable microcapsules of buprenorphine/poly(lactide-co-glycolide) were prepared using two main procedures based on an in-water drying process in a complex emulsion system. These procedures differ in the way the organic solvent was eliminated: evaporation or extraction. The effect of drug loading and the effect of partial saturation of the aqueous phase with the core material during the in-water solvent evaporation were also studied. The efficiency of encapsulation increased from 11% to 34% when the drug loading was decreased from 20% to 5%. There was no significant change in the efficiency of encapsulation when the aqueous phase was partially saturated with buprenorphine. In changing the solvent removal process from evaporation to extraction, no significant change in the efficiency of encapsulation was observed. The microcapsules prepared by the solvent evaporation were smooth and spherical. However, the microcapsules prepared by the extraction of the organic solvent lost their surface smoothness and became slightly irregular and porous compared with the other batches. The average particle size of the microcapsules was between 14 and 49 microns. The cumulative drug release was between 2% and 4% within the first 24 hr. A sustained drug release continued over 45 days.
NASA Astrophysics Data System (ADS)
Bekezhanova, V. B.; Goncharova, O. N.
2017-09-01
The solution of special type of the Boussinesq approximation of the Navier - Stokes equations is used to simulate the two-layer evaporative fluid flows. This solution is the 3D generalization of the Ostroumov - Birikh solution of the equations of free convection. Modeling of the 3D fluid flows is performed in an infinite channel of the rectangular cross section without assumption of the axis-symmetrical character of the flows. Influence of gravity and evaporation on the dynamic and thermal phenomena in the system is studied. The fluid flow patterns are determined by various thermal, mechanical and structural effects. Numerical investigations are performed for the liquid - gas system like ethanol - nitrogen and HFE-7100 - nitrogen under conditions of normal and low gravity. The solution allows one to describe a formation of the thermocapillary rolls and multi-vortex structures in the system. Alteration of topology and character of the flows takes place with change of the intensity of the applied thermal load, thermophysical properties of working media and gravity action. Flows with translational, translational-rotational or partially reverse motion can be formed in the system.
Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A
2017-08-01
Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.
Harlow, H J
1987-01-01
Plasma melatonin levels of laboratory rats were elevated both during acute heat exposure (43 degrees C for 40 min) and chronic exposure (33 degrees C for 17 days) suggesting a possible correlation between melatonin and thermoregulatory mechanisms. Pinealectomy reduced the nighttime elevation in oxygen consumption and evaporative water loss. In addition, pinealectomized animals exhibited a significantly lower cutaneous evaporative water loss both at night and during the day when exposed to an acute heat exposure of 38 degrees C for 45 min. Pinealectomy elevated the blood pressure over the control group whereas melatonin infusion depressed the blood pressure without altering the cardiac output. This relationship implies an action by melatonin on the peripheral vasculature. In support of this conclusion, melatonin pretreatment tended to dampen the vasopressive effect of infused norepinephrine. These data, therefore, suggest a role of the pineal gland and melatonin in thermoregulation through an influence on the cardiovascular system and evaporative water loss.
NASA Astrophysics Data System (ADS)
Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham
2015-12-01
The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.
Secondary atomization of single coal-water fuel droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassel, G.R.; Scaroni, A.W.
1989-03-01
The evaporative behavior of single, well characterized droplets of a lignite coal-water slurry fuel (CWSF) and a carbon black in water slurry was studied as a function of heating rate and droplet composition. Induced droplet heating rates were varied from 0 to 10{sup 5} K/s. Droplets studied were between 97 and 170 {mu}m in diameter, with compositions ranging from 25 to 60% solids by weight. The effect of a commercially available surfactant additive package on droplet evaporation rate, explosive boiling energy requirements, and agglomerate formation was assessed. Surfactant concentrations were varied from none to 2 and 4% by weight solutionmore » (1.7 and 3.6% by weight of active species on a dry coal basis). The experimental system incorporated an electrodynamic balance to hold single, free droplets, a counterpropagating pulsed laser heating arrangement, and both video and high speed cinematographic recording systems. Data were obtained for ambient droplet evaporation by monitoring the temporal size, weight, and solids concentration changes. 49 refs., 31 figs.« less
Effects of air velocity on laying hen production
USDA-ARS?s Scientific Manuscript database
Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...
Effects of Gravel Mulch Properties and Thickness on Evaporation from Underlying Soil
NASA Astrophysics Data System (ADS)
Li, Z.; Smits, K. M.
2017-12-01
Evaporation is the process of mass and heat transfer between the atmosphere and the shallow subsurface, and it is critical to many natural and industrial applications. In arid areas with very little rainfall, gravel has been widely used as a mulch layer to suppress evaporation from the underlying soil. The properties of mulch layers have a significant effect on the evaporation process, and the effect of grain size and mulch thickness has been previously studied experimentally. However, there is debate on the effect of the gravel mulch hydraulic properties on the evaporation suppression and role of the gravel mulch layer just after precipitation has not been discussed. The goal of this work is to investigate in more depth the impact of the gravel mulch hydraulic properties and the thickness of the mulch layer on evaporation from underlying soil with the combination of experiments and theoretical models. For this work, we developed a fully coupled numerical model of layered porous media that solves for heat, liquid water and water vapor flux under both wet and dry soil conditions. Various mulch layers with different texture and thickness were employed in the numerical simulation to study the effect of the hydraulic properties and thickness on the underlying soil evaporation. The water and heat transport in the soil and across the soil-atmosphere interface were presented and analyzed. In addition, results from numerical simulations were also compared with a series of mulch layer experiments performed using bench-scale porous media tanks interfaced with an open-return wind tunnel. Results demonstrated that gravel mulch is effective in significantly delaying and suppressing evaporation from underlying soil, and the evaporation behavior varies from different mulch types and thicknesses. The reason for evaporation suppression is that the gravel mulch retards the evaporation from the underlying soil first, and then cuts the hydraulic connection between the drying front and the atmosphere. The delaying time and evaporation reduction increases with the decrease of the grain size and increase of the air entry value of the gravel mulch, in which the air entry value is the primary factor. Thicker mulch layers have a better performance in both retarding and preventing evaporation from the underlying soil.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... meibomian gland dysfunction (MGD), also known as evaporative dry eye or lipid deficiency dry eye. The system... evaporative dry eye or lipid deficiency dry eye. The system consists of a component that is inserted around...
Effects of horizontal grid resolution on evapotranspiration partitioning using TerrSysMP
NASA Astrophysics Data System (ADS)
Shrestha, P.; Sulis, M.; Simmer, C.; Kollet, S.
2018-02-01
Biotic leaf transpiration (T) and abiotic evaporation (E) are the two major pathways by which water is transferred from land surfaces to the atmosphere. Earth system models simulating the terrestrial water, carbon and energy cycle are required to reliably embed the role of soil and vegetation processes in order to realistically reproduce both fluxes including their relative contributions to total evapotranspiration (ET). Earth system models are also being used with increasing spatial resolutions to better simulate the effects of surface heterogeneity on the regional water and energy cycle and to realistically include effects of subsurface lateral flow paths, which are expected to feed back on the exchange fluxes and their partitioning in the model. Using the hydrological component of the Terrestrial Systems Modeling Platform (TerrSysMP), we examine the uncertainty in the estimates of T/ET ratio due to horizontal model grid resolution for a dry and wet year in the Inde catchment (western Germany). The aggregation of topography results in smoothing of slope magnitudes and the filtering of small-scale convergence and divergence zones, which directly impacts the surface-subsurface flow. Coarsening of the grid resolution from 120 m to 960 m increased the available soil moisture for ground evaporation, and decreased T/ET ratio by about 5% and 8% for dry and wet year respectively. The change in T/ET ratio was more pronounced for agricultural crops compared to forested areas, indicating a strong local control of vegetation on the ground evaporation, affecting the domain average statistics.
Ye, Aiqian; Singh, Harjinder; Taylor, Michael W; Anema, Skelte G
2004-11-01
The changes in milk fat globules and fat globule surface proteins during concentration of whole milk using a pilot-scale multiple-effect evaporator were examined. The effects of heat treatment of milk at 95 degrees C for 20 s, prior to evaporation, on fat globule size and the milk fat globule membrane (MFGM) proteins were also determined. In both non-preheated and preheated whole milk, the size of milk fat globules decreased while the amount of total surface proteins at the fat globules increased as the milk passed through each effect of the evaporator. In non-preheated samples, the amount of caseins at the surface of fat globules increased markedly during evaporation with a relatively small increase in whey proteins. In preheated samples, both caseins and whey proteins were observed at the surface of fat globules and the amounts of these proteins increased during subsequent steps of evaporation. The major original MFGM proteins, xanthine oxidase, butyrophilin, PAS 6 and PAS 7, did not change during evaporation, however, PAS 6 and PAS 7 decreased during preheating. These results indicate that the proteins from the skim milk were adsorbed onto the fat globule surface when the milk fat globules were disrupted during evaporation.
Martini, Giorgio; Paffumi, Elena; De Gennaro, Michele; Mellios, Giorgos
2014-07-15
This paper presents an evaluation of the European type-approval test procedure for evaporative emissions from passenger cars based on real-world mobility data. The study relies on two large databases of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems in the Italian provinces of Modena and Firenze. Approximately 28,000 vehicles were monitored, corresponding to approximately 36 million kilometres over a period of one month. The driving pattern of each vehicle was processed to derive the relation between trip length and parking duration, and the rate of occurrence of parking events against multiple evaporative cycles, defined on the basis of the type-approval test procedure as 12-hour diurnal time windows. These results are used as input for an emission simulation model, which calculates the total evaporative emissions given the characteristics of the evaporative emission control system of the vehicle and the ambient temperature conditions. The results suggest that the evaporative emission control system, fitted to the vehicles from Euro 3 step and optimised for the current type-approval test procedure, could not efficiently work under real-world conditions, resulting in evaporative emissions well above the type-approval limit, especially for small size vehicles and warm climate conditions. This calls for a revision of the type-approval test procedure in order to address real-world evaporative emissions. Copyright © 2014. Published by Elsevier B.V.
A new technology for harnessing the dye polluted water and dye collection in a chemical factory.
Pu, J P; Pu, P M; Hu, C H; Qian, J L; Pu, J X; Hua, J K
2001-04-01
A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.
Hydronic rooftop cooling systems
Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA
2008-01-29
A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.
Wetherbee, Gregory A.; Rhodes, Mark F.
2013-01-01
The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance project (PCQA) to provide independent, external quality-assurance for the National Atmospheric Deposition Program (NADP). NADP is composed of five monitoring networks that measure the chemical composition of precipitation and ambient air. PCQA and the NADP Program Office completed five short-term studies to investigate the effects of equipment performance with respect to the National Trends Network (NTN) and Mercury Deposition Network (MDN) data quality: sample evaporation from NTN collectors; sample volume and mercury loss from MDN collectors; mercury adsorption to MDN collector glassware, grid-type precipitation sensors for precipitation collectors, and the effects of an NTN collector wind shield on sample catch efficiency. Sample-volume evaporation from an NTN Aerochem Metrics (ACM) collector ranged between 1.1–33 percent with a median of 4.7 percent. The results suggest that weekly NTN sample evaporation is small relative to sample volume. MDN sample evaporation occurs predominantly in western and southern regions of the United States (U.S.) and more frequently with modified ACM collectors than with N-CON Systems Inc. collectors due to differences in airflow through the collectors. Variations in mercury concentrations, measured to be as high as 47.5 percent per week with a median of 5 percent, are associated with MDN sample-volume loss. Small amounts of mercury are also lost from MDN samples by adsorption to collector glassware irrespective of collector type. MDN 11-grid sensors were found to open collectors sooner, keep them open longer, and cause fewer lid cycles than NTN 7-grid sensors. Wind shielding an NTN ACM collector resulted in collection of larger quantities of precipitation while also preserving sample integrity.
Purfication kinetics of beryllium during vacuum induction melting
NASA Technical Reports Server (NTRS)
Mukherjee, J. L.; Gupta, K. P.; Li, C. H.
1972-01-01
The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.
Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control
NASA Technical Reports Server (NTRS)
Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew
2015-01-01
The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.
Surfactant-Enhanced Benard Convection on an Evaporating Drop
NASA Astrophysics Data System (ADS)
Nguyen, Van X.; Stebe, Kathleen J.
2001-11-01
Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior are discussed. References: [1]R. D. Deegan,, PRE 61,475 (2000). [2]M. Maillard et al., J. Phys. Chem. B 104, 11871 (2000). [3]H. Wang et al. Langmuir 15, 957 (2001). [4]B. G. Moore et al., J. Phys. Chem. 94, 4588 (1990). [5]J. C. Berg & A. Acrivos, Chem. Eng. Sci. 20,737 (1965).
Evaporation effect on two-dimensional wicking in porous media.
Benner, Eric M; Petsev, Dimiter N
2018-03-15
We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Meier, D. L.; Campbell, R. B.; Davis, J. R., Jr.; Rai-Choudhury, P.; Sienkiewicz, L. J.
1982-01-01
Two experimental contact systems were examined and compared to a baseline contact system consisting of evaporated layers of titanium, palladium, and silver and an electroplated layer of copper. The first experimental contact system consisted of evaporated layers of titanium, nickel, and copper and an electroplated layer of copper. This system performed as well as the baseline system in all respects, including its response to temperature stress tests, to a humidity test, and to an accelerated aging test. In addition, the cost of this system is estimated to be only 43 percent of the cost of the baseline system at a production level of 25 MW/year. The second experimental contact system consisted of evaporated layers of nickel and copper and an electroplated layer of copper. Cells with this system show serious degradation in a temperature stress test at 350 C for 30 minutes. Auger electron spectroscopy was used to show that the evaporated nickel layer is not an adequate barrier to copper diffusion even at temperatures as low as 250 C. This fact brings into question the long-term reliability of this contact system.
Influence of surface wettability on transport mechanisms governing water droplet evaporation.
Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V
2014-08-19
Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the temperature gradient along the interface determines the peak local evaporation flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEDESCHI AR; CORBETT JE; WILSON RA
2012-01-26
Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less
Johnston, J D; Kruman, B A; Nelson, M C; Merrill, R M; Graul, R J; Hoybjerg, T G; Tuttle, S C; Myers, S J; Cook, R B; Weber, K S
2017-09-01
Residential endotoxin exposure is associated with protective and pathogenic health outcomes. Evaporative coolers, an energy-efficient type of air conditioner used in dry climates, are a potential source of indoor endotoxins; however, this association is largely unstudied. We collected settled dust biannually from four locations in homes with evaporative coolers (n=18) and central air conditioners (n=22) in Utah County, Utah (USA), during winter (Jan-Apr) and summer (Aug-Sept), 2014. Dust samples (n=281) were analyzed by the Limulus amebocyte lysate test. Housing factors were measured by survey, and indoor temperature and relative humidity measures were collected during both seasons. Endotoxin concentrations (EU/mg) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons. Endotoxin surface loads (EU/m 2 ) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons and in upholstered furniture during winter. For the nine significant season-by-location comparisons, EU/mg and EU/m 2 were approximately three to six times greater in homes using evaporative coolers. A plausible explanation for these findings is that evaporative coolers serve as a reservoir and distribution system for Gram-negative bacteria or their cell wall components in homes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of evaporative surface cooling on thermographic assessment of burn depth
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Zawacki, B. E.
1977-01-01
Differences in surface temperature between evaporating and nonevaporating, partial- and full-thickness burn injuries were studied in 20 male, white guinea pigs. Evaporative cooling can disguise the temperature differential of the partial-thickness injury and lead to a false full-thickness diagnosis. A full-thickness burn with blister intact may retain enough heat to result in a false partial-thickness diagnosis. By the fourth postburn day, formation of a dry eschar may allow a surface temperature measurement without the complication of differential evaporation. For earlier use of thermographic information, evaporation effects must be accounted for or eliminated.
High Performance Vertical Organic Field Effect Transistors
2010-05-01
systems. In pentacene /C60 bilayer system, [4] we showed that both the disordered structure of C60 and the charge trapping effect at the C60...much less significant than that by charge trapping at the interface. We also demonstrated that blending CdTe nanoparticles into a polymer–fullerene...for space applications b. We studied the photomultiplication effect in both evaporated ( pentacene /C60 bilayer) and bulk- heterojunction donor/acceptor
Zhang, Jianguo; Müller-Plathe, Florian; Leroy, Frédéric
2015-07-14
The question of the effect of surface heterogeneities on the evaporation of liquid droplets from solid surfaces is addressed through nonequilibrium molecular dynamics simulations. The mechanism behind contact line pinning which is still unclear is discussed in detail on the nanoscale. Model systems with the Lennard-Jones interaction potential were employed to study the evaporation of nanometer-sized cylindrical droplets from a flat surface. The heterogeneity of the surface was modeled through alternating stripes of equal width but two chemical types. The first type leads to a contact angle of 67°, and the other leads to a contact angle of 115°. The stripe width was varied between 2 and 20 liquid-particle diameters. On the surface with the narrowest stripes, evaporation occurred at constant contact angle as if the surface was homogeneous, with a value of the contact angle as predicted by the regular Cassie-Baxter equation. When the width was increased, the contact angle oscillated during evaporation between two boundaries whose values depend on the stripe width. The evaporation behavior was thus found to be a direct signature of the typical size of the surface heterogeneity domains. The contact angle both at equilibrium and during evaporation could be predicted from a local Cassie-Baxter equation in which the surface composition within a distance of seven fluid-particle diameters around the contact line was considered, confirming the local nature of the interactions that drive the wetting behavior of droplets. More importantly, we propose a nanoscale explanation of pinning during evaporation. Pinning should be interpreted as a drastic slowdown of the contact line dynamics rather than a complete immobilization of it during a transition between two contact angle boundaries.
Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire
Winter, T.C.; Buso, D.C.; Rosenberry, D.O.; Likens, G.E.; Sturrock, A.M.; Mau, D.P.
2003-01-01
Evaporation was determined by the energy-budget method for Mirror Lake during the open water periods of 1982-1987. For all years, evaporation rates were low in spring and fall and highest during the summer. However, the times of highest evaporation rates varied during the 6 yr. Evaporation reached maximum rates in July for three of the years, in June for two of the years, and in August for one of the years. The highest evaporation rate during the 6-yr study was 0.46 cm d-1 during 27 May-4 June 1986 and 15-21 July 1987. Solar radiation and atmospheric radiation input to the lake and long-wave radiation emitted from the lake were by far the largest energy fluxes to and from the lake and had the greatest effect on evaporation rates. Energy advected to and from the lake by precipitation, surface water, and ground water had little effect on evaporation rates. In the energy-budget method, average evaporation rates are determined for energy-budget periods, which are bounded by the dates of thermal surveys of the lake. Our study compared evaporation rates calculated for short periods, usually ???1 week, with evaporation rates calculated for longer periods, usually ???2 weeks. The results indicated that the shorter periods showed more variability in evaporation rates, but seasonal patterns, with few exceptions, were similar.
Modelling sub-daily evaporation from a small reservoir.
NASA Astrophysics Data System (ADS)
McGloin, Ryan; McGowan, Hamish; McJannet, David; Burn, Stewart
2013-04-01
Accurate quantification of evaporation from small water storages is essential for water management and is also required as input in some regional hydrological and meteorological models. Global estimates of the number of small storages or lakes (< 0.1 kilometers) are estimated to be in the order of 300 million (Downing et al., 2006). However, direct evaporation measurements at small reservoirs using the eddy covariance or scintillometry techniques have been limited due to their expensive and complex nature. To correctly represent the effect that small water bodies have on the regional hydrometeorology, reliable estimates of sub-daily evaporation are necessary. However, evaporation modelling studies at small reservoirs have so far been limited to quantifying daily estimates. In order to ascertain suitable methods for accurately modelling hourly evaporation from a small reservoir, this study compares evaporation results measured by the eddy covariance method at a small reservoir in southeast Queensland, Australia, to results from several modelling approaches using both over-water and land-based meteorological measurements. Accurate predictions of hourly evaporation were obtained by a simple theoretical mass transfer model requiring only over-water measurements of wind speed, humidity and water surface temperature. An evaporation model that was recently developed for use in small reservoir environments by Granger and Hedstrom (2011), appeared to overestimate the impact stability had on evaporation. While evaporation predictions made by the 1-dimensional hydrodynamics model, DYRESM (Dynamic Reservoir Simulation Model) (Imberger and Patterson, 1981), showed reasonable agreement with measured values. DYRESM did not show any substantial improvement in evaporation prediction when inflows and out flows were included and only a slighter better correlation was shown when over-water meteorological measurements were used in place of land-based measurements. Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack and J. J. Middelburg (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnology and Oceanography, 51, 2388-2397. Granger, R.J. and N. Hedstrom (2011), Modelling hourly rates of evaporation from small lakes, Hydrological and Earth System Sciences, 15, doi:10.5194/hess-15-267-2011. Imberger, J. and J.C. Patterson (1981), Dynamic Reservoir Simulation Model - DYRESM: 5, In: Transport Models for Inland and Coastal Waters. H.B. Fischer (Ed.). Academic Press, New York, 310-361.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.
2014-12-01
Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the tightly packed regions and a shorter stage 1 evaporation period.
Effect of Surface Excess Energy Transport on the Rupture of an Evaporating Film
NASA Astrophysics Data System (ADS)
Luo, Yan; Zhou, Jianqiu; Yang, Xia; Liu, Rong
2018-05-01
In most of existing works on the instabilities of an evaporating film, the energy boundary condition only takes into account contributions of the evaporation latent heat and the heat conduction in the liquid. We use a new generalized energy boundary condition at the evaporating liquid-vapor interface, in which the contribution of the transport of the Gibbs excess energy is included. We have derived the long-wave equations in which the thickness of film and the interfacial temperature are coupled to describe the dynamics of an evaporating thin film. The results of our computation show that the transport of the Gibbs excess internal energy delay the rupture of thin films due to van de Waals force, evaporating effect and vapor recoil.
NASA Astrophysics Data System (ADS)
Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji
2017-11-01
With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.
Wiegmann, Vincent; Martinez, Cristina Bernal; Baganz, Frank
2018-04-24
Establish a method to indirectly measure evaporation in microwell-based cell culture systems and show that the proposed method allows compensating for liquid losses in fed-batch processes. A correlation between evaporation and the concentration of Na + was found (R 2 = 0.95) when using the 24-well-based miniature bioreactor system (micro-Matrix) for a batch culture with GS-CHO. Based on these results, a method was developed to counteract evaporation with periodic water additions based on measurements of the Na + concentration. Implementation of this method resulted in a reduction of the relative liquid loss after 15 days of a fed-batch cultivation from 36.7 ± 6.7% without volume corrections to 6.9 ± 6.5% with volume corrections. A procedure was established to indirectly measure evaporation through a correlation with the level of Na + ions in solution and deriving a simple formula to account for liquid losses.
Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation
NASA Astrophysics Data System (ADS)
Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.
2016-04-01
The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.
Ricor's Nanostar water vapor compact cryopump: applications and model overview
NASA Astrophysics Data System (ADS)
Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan
2017-05-01
Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.
Hot air drum evaporator. [Patent application
Black, R.L.
1980-11-12
An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.
Black, Roger L.
1981-01-01
An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.
Wind systems the driving force of evaporation at the Dead Sea
NASA Astrophysics Data System (ADS)
Metzger, Jutta; Corsmeier, Ulrich; Alpert, Pinhas
2017-04-01
The Dead Sea is a unique place on earth. It is located in the Eastern Mediterranean at the lowest point of the Jordan Rift valley and its water level is currently at 429 m below mean sea level. The region is located in a transition zone of semi-arid to arid climate conditions and endangered by severe environmental problems, especially the rapid lake level decline (>1m/year), causing the shifting of fresh/saline groundwater interfaces and the drying up of the lake. Two key features are relevant for these environmental changes: the evaporation from the water surface and its driving mechanisms. The main driver of evaporation at the Dead Sea is the wind velocity and hence the governing wind systems with different scales in space and time. In the framework of the Virtual Institute DEad SEa Research Venue (DESERVE) an extensive field campaign was conducted to study the governing wind systems in the valley and the energy balance of the water and land surface simultaneously. The combination of several in-situ and remote sensing instruments allowed temporally and spatially high-resolution measurements to investigate the frequency of occurrence of the wind systems, their three-dimensional structure, associated wind velocities and their impact on evaporation. The characteristics of the three local wind systems governing the valley's wind field, as well as their impact on evaporation, will be presented. Mostly decoupled from the large scale flow a local lake breeze determines the conditions during the day. Strong downslope winds drive the evaporation in the afternoon, and down valley flows with wind velocities of over 10 m s-1 dominate during the night causing unusually high evaporation rates after sunset.
Laboratory prototype flash evaporator
NASA Technical Reports Server (NTRS)
Gaddis, J. L.
1972-01-01
A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.
Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator
NASA Technical Reports Server (NTRS)
Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio
1996-01-01
The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.
A Simpler Way to Tame Multiple-Effect Evaporators.
ERIC Educational Resources Information Center
Joye, Donald D.; Koko, F. William Jr.
1988-01-01
Presents a new method to teach the subject of evaporators which is both simple enough to use in the classroom and accurate and flexible enough to be used as a design tool in practice. Gives an example using a triple evaporator series. Analyzes the effect of this method. (CW)
Preliminary Trade Study of Phase Change Heat Sinks
NASA Technical Reports Server (NTRS)
Anderson, Molly; Leimkeuhler, Thomas; Quinn, Gregory; Golliher, Eric
2006-01-01
For short durations, phase change based heat rejection systems are a very effective way of removing heat from spacecraft. Future NASA vehicles, such as the Crew Exploration Vehicle (CEV), will require non-radiative heat rejection systems during at least a portion of the planned mission, just as their predecessors have. While existing technologies are available to modify, such as Apollo era sublimators, or the Space Shuttle Flash Evaporator System (FES), several new technologies are under development or investigation to progress beyond these existing heat rejection systems. Examples include the Multi-Fluid Evaporator developed by Hamilton Sundstrand, improvements upon the Contaminant Insensitive Sublimator originally developed for the X-38 program, and a Compact Flash Evaporator System (CFES). Other possibilities evaluate new ways of operating existing designs. The new developments are targeted at increasing operating life, expanding the environments in which the system can operate, improving the mass and volume characteristics, or some combination of these or other improvements. This paper captures the process and results of a preliminary trade study performed at Johnson Space Center to compare the various existing and proposed phase change based heat rejection systems for the CEV. Because the new systems are still in development, and the information on existing systems is extrapolation, this trade study is not meant to suggest a final decision for future vehicles. The results of this early trade study are targeted to aid the development efforts for the new technologies by identifying issues that could reduce the chances of selection for the CEV.
Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions
NASA Astrophysics Data System (ADS)
Kumar, Ajay
2014-05-01
A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged particle emission.
Lu, Yehu; Wang, Faming; Peng, Hui
2016-07-01
The effect of sweating simulation methods on clothing evaporative resistance was investigated in a so-called isothermal condition (T manikin = T a = T r ). Two sweating simulation methods, namely, the pre-wetted fabric "skin" (PW) and the water supplied sweating (WS), were applied to determine clothing evaporative resistance on a "Newton" thermal manikin. Results indicated that the clothing evaporative resistance determined by the WS method was significantly lower than that measured by the PW method. In addition, the evaporative resistances measured by the two methods were correlated and exhibited a linear relationship. Validation experiments demonstrated that the empirical regression equation showed highly acceptable estimations. The study contributes to improving the accuracy of measurements of clothing evaporative resistance by means of a sweating manikin.
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
Dynamics of contact line depinning during droplet evaporation based on thermodynamics.
Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan
2015-02-17
For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.
40 CFR 86.1821-01 - Evaporative/refueling family determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., construction and materials. (3) Fuel system. (4) Type of refueling emission control system—non-integrated or integrated with the evaporative control system. Further, if the system is non-integrated, whether or not any... equivalent component durability over the vehicle's useful life; and (3) Evidence that the groups will result...
40 CFR 86.1821-01 - Evaporative/refueling family determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., construction and materials. (3) Fuel system. (4) Type of refueling emission control system—non-integrated or integrated with the evaporative control system. Further, if the system is non-integrated, whether or not any... equivalent component durability over the vehicle's useful life; and (3) Evidence that the groups will result...
40 CFR 86.1821-01 - Evaporative/refueling family determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., construction and materials. (3) Fuel system. (4) Type of refueling emission control system—non-integrated or integrated with the evaporative control system. Further, if the system is non-integrated, whether or not any... equivalent component durability over the vehicle's useful life; and (3) Evidence that the groups will result...
40 CFR 86.1821-01 - Evaporative/refueling family determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., construction and materials. (3) Fuel system. (4) Type of refueling emission control system—non-integrated or integrated with the evaporative control system. Further, if the system is non-integrated, whether or not any... equivalent component durability over the vehicle's useful life; and (3) Evidence that the groups will result...
Water supply rates for recirculating evaporative cooling systems in poultry housing
USDA-ARS?s Scientific Manuscript database
Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.
2017-11-01
Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.
Huff, G.F.
2004-01-01
The tendency of solutes in input water to precipitate efficiency lowering scale deposits on the membranes of reverse osmosis (RO) desalination systems is an important factor in determining the suitability of input water for desalination. Simulated input water evaporation can be used as a technique to quantitatively assess the potential for scale formation in RO desalination systems. The technique was demonstrated by simulating the increase in solute concentrations required to form calcite, gypsum, and amorphous silica scales at 25??C and 40??C from 23 desalination input waters taken from the literature. Simulation results could be used to quantitatively assess the potential of a given input water to form scale or to compare the potential of a number of input waters to form scale during RO desalination. Simulated evaporation of input waters cannot accurately predict the conditions under which scale will form owing to the effects of potentially stable supersaturated solutions, solution velocity, and residence time inside RO systems. However, the simulated scale-forming potential of proposed input waters could be compared with the simulated scale-forming potentials and actual scale-forming properties of input waters having documented operational histories in RO systems. This may provide a technique to estimate the actual performance and suitability of proposed input waters during RO.
Evaporation of Sunscreen Films: How the UV Protection Properties Change.
Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A
2016-06-01
We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.
Optimized evaporation technique for leachate treatment: Small scale implementation.
Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz
2016-04-01
This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. Copyright © 2016. Published by Elsevier Ltd.
16 CFR 305.14 - Energy information disclosures for heating and cooling equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accordance with § 305.5. The energy efficiency rating(s) for split-system condenser-evaporator coil combinations shall be either: (A) The energy efficiency rating of the actual condenser-evaporator coil...-evaporator coil combination that is the particular manufacturer's most commonly sold combination for that...
Evaporating Spray in Supersonic Streams Including Turbulence Effects
NASA Technical Reports Server (NTRS)
Balasubramanyam, M. S.; Chen, C. P.
2006-01-01
Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.
Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids.
Zhong, Xin; Duan, Fei
2014-11-26
The effects of ethanol component and nanoparticle concentration on evaporation dynamics of graphite-water nanofluid droplets have been studied experimentally. The results show that the formed deposition patterns vary greatly with an increase in ethanol concentration from 0 to 50 vol %. Nanoparticles have been observed to be carried to the droplet surface and form a large piece of aggregate. The volume evaporation rate on average increases as the ethanol concentration increases from 0 to 50 vol % in the binary mixture nanofluid droplets. The evaporation rate at the initial stage is more rapid than that at the late stage to dry, revealing a deviation from a linear fitting line, standing for a constant evaporation rate. The deviation is more intense with a higher ethanol concentration. The ethanol-induced smaller liquid-vapor surface tension leads to higher wettability of the nanofluid droplets. The graphite nanoparticles in ethanol-water droplets reinforce the pinning effect in the drying process, and the droplets with more ethanol demonstrate the depinning behavior only at the late stage. The addition of graphite nanoparticles in water enhances a droplet baseline spreading at the beginning of evaporation, a pinning effect during evaporation, and the evaporation rate. However, with a relatively high nanoparticle concentration, the enhancement is attenuated.
Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.
Combe, Nicole A; Donaldson, D James
2017-09-28
We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.
Ti Isotopes: Echoes of Grain-Scale Heterogenaity in the Protoplanetary Disk
NASA Technical Reports Server (NTRS)
Jordan, M. K.; Kohl, I. E.; McCain, K. A.; Simon, J. I.; Young, E. D.
2017-01-01
Calcium-aluminum-rich inclusions (CAIs) are the oldest surviving solids to have formed in the Solar System. Their chemical and isotopic compositions provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of how solids formed in the solar nebula, an important step in the eventual process of planet building. The isotopic compositions of CAIs are primarily controlled by volatility. Evaporation/sublimation are well understood through both theory and experimental work to produce an enrichment in the heavy isotopes of an element, but less is understood about the effects of condensation. Mass-dependent fractionation can potentially provide a record of nebular condensation. Ti is not likely to experience evaporation due to its refractory nature, making it a useful tool for assessing the effects of condensation. We have undertaken a study of the stable isotope fractionation of Ti isotopes as a tracer of processes that predate the last evaporation events affecting CAIs. We compare the 49Ti/47Ti stable isotope ratio with excess 50Ti common in CAIs. We have collected Ti, Mg, Si, and Ca isotope data for a suite of CAIs in order to search for heterogeneity in each of these isotope systems, and for potential correlations among them. We compare our results to expectations for condensation.
NASA Astrophysics Data System (ADS)
Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N. E. C.
2016-06-01
Terrestrial evaporation is an essential variable in the climate system that links the water, energy and carbon cycles over land. Despite this crucial importance, it remains one of the most uncertain components of the hydrological cycle, mainly due to known difficulties to model the constraints imposed by land water availability on terrestrial evaporation. The main objective of this study is to assimilate satellite soil moisture observations from the Soil Moisture and Ocean Salinity (SMOS) mission into an existing evaporation model. Our over-arching goal is to find an optimal use of satellite soil moisture that can help to improve our understanding of evaporation at continental scales. To this end, the Global Land Evaporation Amsterdam Model (GLEAM) is used to simulate evaporation fields over continental Australia for the period September 2010-December 2013. SMOS soil moisture observations are assimilated using a Newtonian Nudging algorithm in a series of experiments. Model estimates of surface soil moisture and evaporation are validated against soil moisture probe and eddy-covariance measurements, respectively. Finally, an analogous experiment in which Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture is assimilated (instead of SMOS) allows to perform a relative assessment of the quality of both satellite soil moisture products. Results indicate that the modelled soil moisture from GLEAM can be improved through the assimilation of SMOS soil moisture: the average correlation coefficient between in situ measurements and the modelled soil moisture over the complete sample of stations increased from 0.68 to 0.71 and a statistical significant increase in the correlations is achieved for 17 out of the 25 individual stations. Our results also suggest a higher accuracy of the ascending SMOS data compared to the descending data, and overall higher quality of SMOS compared to AMSR-E retrievals over Australia. On the other hand, the effect of soil moisture data assimilation on the evaporation fields is very mild, and difficult to assess due to the limited availability of eddy-covariance data. Nonetheless, our continental-scale simulations indicate that the assimilation of soil moisture can have a substantial impact on the estimated dynamics of evaporation in water-limited regimes. Progressing towards our goal of using satellite soil moisture to increase understanding of global land evaporation, future research will focus on the global application of this methodology and the consideration of multiple evaporation models.
NASA Astrophysics Data System (ADS)
Wu, X.; Wang, Y.; Wang, X. S.; Hu, B.
2017-12-01
Stable isotope δ2H, δ18O and d-excess values of water have previously been used to study the hydraulic connection of groundwater between the surrounding areas such as Heihe River Basin, Qilian Mountain and the Badain Jaran desert (BJD), China. We choose to focus on the effects of strong evaporation on the isotopic characteristics of water in the desert to better understand the origin of water in the BJD. A series of evaporation experiments were conducted in the desert to examine how it may change during evaporation and infiltration under local environmental conditions. Evaporation from open water was monitored in two experiments using local groundwater and lake water, respectively. And evaporation of soil water was observed in three pits which were excavated to different depths below a flat ground surface to install the evaporation-infiltration systems. Water samples were also collected from lakes, a spring and local unconfined aquifer for analyses of stable hydrogen and oxygen isotope ratios, and d-excess values in the BJD. The results show that water isotope contents became progressively enriched along an evaporation line, and the d-excess values decreased with the evaporation. The strong relationship of d-excess and δ18O values was observed from both the experiments and the water samples of groundwater and lakes, which is considered to be a signature of strong evaporation. Also, all the values of groundwater and lake water samples fall along with the evaporation line established through the evaporation experiments, indicating that lakes and groundwater in the study area have evolved from meteoric precipitation under modern or similar to modern climatic conditions. Analysis of a few previously published d-excess and δ18O values of groundwater from the BJD, Lake Eyre Basin, Australia, and Jabal Hafit mountain, United Arab Emirates reveals strong relationships between the two, suggesting similar recharge processes as observed in the BJD. This study demonstrated that the characteristic water isotopic patterns resulting from evaporation could be utilized to help resolve ambiguities in the interpretation of water isotope data in terms of recharge sources, especially, in the arid regions, such as the central Australia and the deserts of United Arab Emirates.
GLEAM v3: updated land evaporation and root-zone soil moisture datasets
NASA Astrophysics Data System (ADS)
Martens, Brecht; Miralles, Diego; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard; Fernández-Prieto, Diego; Verhoest, Niko
2016-04-01
Evaporation determines the availability of surface water resources and the requirements for irrigation. In addition, through its impacts on the water, carbon and energy budgets, evaporation influences the occurrence of rainfall and the dynamics of air temperature. Therefore, reliable estimates of this flux at regional to global scales are of major importance for water management and meteorological forecasting of extreme events. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to the limited global coverage of in situ measurements. Remote sensing techniques can help to overcome the lack of ground data. However, evaporation is not directly observable from satellite systems. As a result, recent efforts have focussed on combining the observable drivers of evaporation within process-based models. The Global Land Evaporation Amsterdam Model (GLEAM, www.gleam.eu) estimates terrestrial evaporation based on daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation characteristics and soil moisture. Since the publication of the first version of the model in 2011, GLEAM has been widely applied for the study of trends in the water cycle, interactions between land and atmosphere and hydrometeorological extreme events. A third version of the GLEAM global datasets will be available from the beginning of 2016 and will be distributed using www.gleam.eu as gateway. The updated datasets include separate estimates for the different components of the evaporative flux (i.e. transpiration, bare-soil evaporation, interception loss, open-water evaporation and snow sublimation), as well as variables like the evaporative stress, potential evaporation, root-zone soil moisture and surface soil moisture. A new dataset using SMOS-based input data of surface soil moisture and vegetation optical depth will also be distributed. The most important updates in GLEAM include the revision of the soil moisture data assimilation system, the evaporative stress functions and the infiltration of rainfall. In this presentation, we will highlight the changes of the methodology and present the new datasets, their validation against in situ observations and the comparisons against alternative datasets of terrestrial evaporation, such as GLDAS-Noah, ERA-Interim and previous GLEAM datasets. Preliminary results indicate that the magnitude and the spatio-temporal variability of the evaporation estimates have been slightly improved upon previous versions of the datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.K.; Gonzalez, R.R.
1995-11-01
Heat acclilmation-induced sweating responses have the potential of reducing heat strain for soldiers wearing chemical protective garment. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. We studied 10 subjects exercising on a treadmill while wearing two different U.S. military chemical protective ensembles. Skin heat flux, skin temperature, core temperature,more » metabolic heat production, and heart rate were measured. We found that the benefit of heat acclimation is strongly dependent on an unimpeded ability of evaporative heat loss from skin areas. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine whether heat acclimation is helpful while protective clothing system. Our data show that when EP is less than 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination.« less
Wygoda, Mark L; Kersten, Constance A
2013-01-01
Increased cutaneous resistance to evaporative water loss (Rc) in tree frogs results in decreased water loss rate and increased body temperature. We examined sensitivity of Rc to water vapor density (WVD) in Hyla cinerea by exposing individual frogs and agar models to four different WVD environments and measuring cutaneous evaporative water loss rate and body temperature simultaneously using a gravimetric wind tunnel measuring system. We found that water loss rate varied inversely and body temperature directly with WVD but that models were affected to a greater extent than were animals. Mean Rc was significantly different between the highest WVD environment and each of the three drier environments but did not differ among the drier environments, indicating that Rc initially increases and then reaches a plateau in response to decreasing WVD. Rc was equivalent when calculated using either WVD difference or WVD deficit as the driving force for evaporation. We also directly observed secretions from cutaneous glands while measuring body temperature and tested secretions and skin samples for the presence of lipids. We found that irregular transient body temperature depressions observed during wind tunnel trials occur due to evaporative cooling from intermittent skin secretions containing lipids, although we were unable to identify lipid-secreting glands.
Pittoni, Paola G; Lin, Chia-Hui; Yu, Teng-Shiang; Lin, Shi-Yow
2014-08-12
Could a unique receding contact angle be indicated for describing the wetting properties of a real gas-liquid-solid system? Could a receding contact angle be defined if the triple line of a sessile drop is not moving at all during the whole measurement process? To what extent is the receding contact angle influenced by the intrinsic properties of the system or the measurement procedures? In order to answer these questions, a systematic investigation was conducted in this study on the effects of substrate roughness and relative humidity on the behavior of pure water drops spreading and evaporating on polycarbonate (PC) surfaces characterized by different morphologies. Dynamic, advancing, and receding contact angles were found to be strongly affected by substrate roughness. Specifically, a receding contact angle could not be measured at all for drops evaporating on the more rugged PC surfaces, since the drops were observed strongly pinning to the substrate almost until their complete disappearance. Substrate roughness and system relative humidity were also found responsible for drastic changes in the depinning time (from ∼10 to ∼60 min). Thus, for measurement observations not sufficiently long, no movement of the triple line could be noted, with, again, the failure to find a receding contact angle. Therefore, to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system, the imperative to carefully investigate and report the inner characteristics of the system (substrate roughness, topography, impurities, defects, chemical properties, etc.) is pointed out in this study. The necessity of establishing methodological standards (drop size, measurement method, system history, observation interval, relative humidity, etc.) is also suggested.
Evaporation channel as a tool to study fission dynamics
NASA Astrophysics Data System (ADS)
Di Nitto, A.; Vardaci, E.; La Rana, G.; Nadtochy, P. N.; Prete, G.
2018-03-01
The dynamics of the fission process is expected to affect the evaporation residue cross section because of the fission hindrance due to the nuclear viscosity. Systems of intermediate fissility constitute a suitable environment for testing such hypothesis since they are characterized by evaporation residue cross sections comparable or larger than the fission ones. Observables related to emitted charged particles, due to their relatively high emission probability, can be used to put stringent constraints on models describing the excited nucleus decay and to recognize the effects of fission dynamics. In this work model simulations are compared with the experimental data collected via the 32S +100 Mo reaction at Elab = 200 MeV. Consequently we pointed out, exploring an extended set of evaporation channel observables, the limits of the statistical model and the large improvement obtained with a dynamical model. Moreover we stress the importance of using an apparatus covering a large fraction of 4π to extract observables. Finally, we discuss the opportunity to measure more sensitive observables by a new detection device in operation at LNL.
Contact angle change during evaporation of near-critical liquids
NASA Astrophysics Data System (ADS)
Nikolayev, Vadim; Hegseth, John; Beysens, Daniel
1998-11-01
An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling". We report the preliminary results of the numerical simulation of the liquid evaporation by the Boundary Element method.
NASA Astrophysics Data System (ADS)
Hall, Michael L.; Doster, J. Michael
1990-03-01
The dynamic behavior of liquid metal heat pipe models is strongly influenced by the choice of evaporation and condensation modeling techniques. Classic kinetic theory descriptions of the evaporation and condensation processes are often inadequate for real situations; empirical accommodation coefficients are commonly utilized to reflect nonideal mass transfer rates. The complex geometries and flow fields found in proposed heat pipe systems cause considerable deviation from the classical models. the THROHPUT code, which has been described in previous works, was developed to model transient liquid metal heat pipe behavior from frozen startup conditions to steady state full power operation. It is used here to evaluate the sensitivity of transient liquid metal heat pipe models to the choice of evaporation and condensation accommodation coefficients. Comparisons are made with experimental liquid metal heat pipe data. It is found that heat pipe behavior can be predicted with the proper choice of the accommodation coefficients. However, the common assumption of spatially constant accommodation coefficients is found to be a limiting factor in the model.
Effects of biochar addition on evaporation in the five typical Loess Plateau soils
USDA-ARS?s Scientific Manuscript database
Soil evaporation is the main route of soil moisture loss and often exceeds precipitation in the arid and semi-arid regions of the Loess Plateau. This study was conducted to determine whether biochar addition could reduce soil evaporation in drylands. We measured the evaporative loss in five typical ...
Effects on evaporation rates from different water-permeable pavement designs.
Starke, P; Göbel, P; Coldewey, W G
2011-01-01
The urban water balance can be attenuated to the natural by water-permeable pavements (WPPs). Furthermore, WPPs have a 16% higher evaporation rate than impermeable pavements, which can lead to a better urban climate. Evaporation rates from pavements are influenced by the pavement surface and by the deeper layers. By a compared evaporation measurement between different WPP designs, the grain size distribution of the sub-base shows no influence on the evaporation rates in a significant way. On the contrary, a sub-base made of a twin-layer decreases the evaporation by 16% compared to a homogeneous sub-base. By a change in the colour of the paving stone, 19% higher evaporation rates could be achieved. A further comparison shows that the transpiration-effect of the grass in grass pavers increases the evaporation rates more than threefold to pervious concrete pavements. These high evapotranspiration rates can not be achieved with a pervious concrete paving stone. In spite of this, the broad field of application of the pervious concrete paving stone increases the importance in regard to the urban climate.
Analysis of plasma-controlled laser evaporation of Al target in vacuum
NASA Astrophysics Data System (ADS)
Mazhukin, Vladimir I.; Nossov, Vadim V.; Smurov, Igor Y.
2004-04-01
The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 8 x 108 W/cm2 and wavelength of 1.06 μm is analyzed with account for the two-dimensional effects. The self consistent model is applied, consisting of the heat transfer equation in condensed medium, the system of radiation gas dynamics in evaporated substance, and the Knudsen layer model at the two media boundary. It is established that the phase transition of the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity and the plasma pressure, governed by the expansion regime. The process comes through three characteristics stages -- the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion and, finally, the recommence of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapor flow and the mass removal rate is much higher near the beam boundaries than in the center due to smaller plasma counter-pressure. The vapor plasma pattern is characterized by the dense hot zone near the surface where the deposition of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion. The application of the laser beam of smaller radius at the same intensity leads to the formation of more rarefied and more transparent plasma, that allows to improve the mass removal efficiency.
Instability and dynamics of volatile thin films
NASA Astrophysics Data System (ADS)
Ji, Hangjie; Witelski, Thomas P.
2018-02-01
Volatile viscous fluids on partially wetting solid substrates can exhibit interesting interfacial instabilities and pattern formation. We study the dynamics of vapor condensation and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication approximation incorporating surface tension, intermolecular effects, and evaporative fluxes. Parameter ranges for evaporation-dominated and condensation-dominated regimes and a critical case are identified. Interfacial instabilities driven by the competition between the disjoining pressure and evaporative effects are studied via linear stability analysis. Transient pattern formation in nearly flat evolving films in the critical case is investigated. In the weak evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical simulations show that long-time behaviors leading to evaporation or condensation are sensitive to transitions between filmwise and dropwise dynamics.
NASA Astrophysics Data System (ADS)
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-04-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-01-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
NASA Astrophysics Data System (ADS)
Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.
2018-03-01
For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.
RECYCLING NICKEL ELECTROPLATING RINSE WATERS BY LOW TEMPERATURE EVAPORATION AND REVERSE OSMOSIS
Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperat...
USDA-ARS?s Scientific Manuscript database
Evaporation (E) and transpiration (T) occur simultaneously in many systems with varying levels of importance, yet terms are typically lumped as evapotranspiration (ET) due to difficulty with distinguishing component fluxes. Few studies have measured all three terms (ET, E, and T), and in the few cas...
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is the sum of soil water evaporation (E) and plant transpiration (T). E and T occur simultaneously in many systems with varying levels of importance, yet it is often very challenging to distinguish these fluxes separately in the field. Few studies have measured all three term...
10 CFR 429.16 - Central air conditioners and heat pumps.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-system, when combined with a selected evaporator coil (indoor unit) or a set of selected indoor units...-evaporator coil combination selected for tests pursuant to paragraph (a)(2)(i) of this section shall include the evaporator coil that is likely to have the largest volume of retail sales with the particular...
10 CFR 429.16 - Central air conditioners and heat pumps.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-system, when combined with a selected evaporator coil (indoor unit) or a set of selected indoor units...-evaporator coil combination selected for tests pursuant to paragraph (a)(2)(i) of this section shall include the evaporator coil that is likely to have the largest volume of retail sales with the particular...
10 CFR 429.16 - Central air conditioners and heat pumps.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-system, when combined with a selected evaporator coil (indoor unit) or a set of selected indoor units...-evaporator coil combination selected for tests pursuant to paragraph (a)(2)(i) of this section shall include the evaporator coil that is likely to have the largest volume of retail sales with the particular...
Evaporation, precipitation, and associated salinity changes at a humid, subtropical estuary
Sumner, D.M.; Belaineh, G.
2005-01-01
The distilling effect of evaporation and the diluting effect of precipitation on salinity at two estuarine sites in the humid subtropical setting of the Indian River Lagoon, Florida, were evaluated based on daily evaporation computed with an energy-budget method and measured precipitation. Despite the larger magnitude of evaporation (about 1,580 mm yr-1) compared to precipitation (about 1,180 mm yr-1) between February 2002 and January 2004, the variability of monthly precipitation induced salinity changes was more than twice the variability of evaporation induced changes. Use of a constant, mean value of evaporation, along with measured values of daily precipitation, were sufficient to produce simulated salinity changes that contained little monthly (root-mean-square error = 0.33??? mo-1 and 0.52??? mo-1 at the two sites) or cumulative error (<1??? yr-1) compared to simulations that used computed daily values of evaporation. This result indicates that measuring the temporal variability in evaporation may not be critical to simulation of salinity within the lagoon. Comparison of evaporation and precipitation induced salinity changes with measured salinity changes indicates that evaporation and precipitation explained only 4% of the changes in salinity within a flow-through area of the lagoon; surface water and ocean inflows probably accounted for most of the variability in salinity at this site. Evaporation and precipitation induced salinity changes explained 61% of the variability in salinity at a flow-restricted part of the lagoon. ?? 2005 Estuarine Research Federation.
Evaporation of pure liquid sessile and spherical suspended drops: a review.
Erbil, H Yildirim
2012-01-15
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaporation from a sphagnum moss surface
D.S. Nichols; J.M. Brown
1980-01-01
Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...
Low chemical concentrating steam generating cycle
Mangus, James D.
1983-01-01
A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.
Passive cooling system for a vehicle
Hendricks, Terry Joseph; Thoensen, Thomas
2005-11-15
A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).
Passive Cooling System for a Vehicle
Hendricks, T. J.; Thoensen, T.
2005-11-15
A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).
Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation
NASA Astrophysics Data System (ADS)
Kite, G.
2000-03-01
Increasing populations and expectations, declining crop yields and the resulting increased competition for water necesitate improvements in irrigation management and productivity. A key factor in defining agricultural productivity is to be able to simulate soil evaporation and crop transpiration. In agribusiness terms, crop transpiration is a useful process while soil and open-water evaporations are wasteful processes. In this study a distributed hydrological model was used to compute daily evaporation and transpiration for a variety of crops and other land covers within the 17,200 km 2 Gediz Basin in western Turkey. The model, SLURP, describes the complete hydrological cycle for each land cover within a series of sub-basins including all dams, reservoirs, regulators and irrigation schemes in the basin. The sub-basins and land covers are defined by analysing a digital elevation model and NOAA AVHRR satellite data. In this study, the model uses the FAO implementation of the Penman-Monteith equation to simulate soil evaporation and crop transpiration. The results of the model runs provide time series of data on streamflow at many points along the river system, abstractions and return flows from crops within the irrigation schemes and areally distributed soil evaporation and crop transpiration across the entire basin on each day of an 11 year period. The results show that evaporation and transpiration vary widely across the basin on any one day and over the irrigation season and can be used to evaluate the effectiveness of the various irrigation strategies used in the basin. The advantages of using such a model as compared to deriving evapotranspiration from satellite data are that the model obtains results for each day of an indefinitely long period, as opposed to occasional snapshots, and can also be used to simulate alternate scenarios.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Birur, Gajanana
2004-01-01
This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermal electric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of condenser is fully utilized. Ammonia was used ad the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 1OW even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/-0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing the orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.
NASA Technical Reports Server (NTRS)
Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana
2004-01-01
This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5 ) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.
Humidification of unwrapped chilled meat on retail display using an ultrasonic fogging system.
Brown, Tim; Corry, Janet E L; Evans, Judith A
2007-12-01
The effects of an ultrasonic humidification system on unwrapped meat in a chilled retail display cabinet were assessed. Humidification raised the relative humidity of the cabinet air from a mean of 76.7% to just below saturation at 98.8%. This reduced the mean evaporative weight loss from whole samples of meat after 14h from 1.68% to 0.62% of their initial weight. The rate of deterioration in the appearance of the meat due to dehydration was reduced to the extent that while the unhumidified trial was terminated after 14h because all samples were judged to be unacceptable, the humidified trial was continued for 24h without any major changes in appearance. Levels of presumptive pseudomonas bacteria were relatively high in water samples taken from the humidification system and defrost water during the humidified trial, but Legionella spp. were not isolated. Significant increases in the numbers of bacteria on the meat during either trial were only found in one case, that of humidified minced beef. However, some of the samples had high counts even before display, and this may have masked any effect due to humidification. Differences in levels of air-borne contamination were small and inconsistent. Air temperatures were raised by humidification by between 1 and 2°C and this was reflected in similarly raised product temperatures. Temperatures of air leaving the evaporator indicated that this was due to icing of the evaporator in the periods leading up to defrosts.
NASA TechPort Entry for Coiled Brine Recovery Assembly (CoBRA) CL IR&D Project
NASA Technical Reports Server (NTRS)
Pensinger, Stuart
2014-01-01
The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable solution to brine water recovery. The heart of CoBRA is an evaporator that produces water vapor from brine. This evaporator leverages a novel design that enables passive transport of brine from place to place within the system. While it will be necessary to build or modify a system for testing the CoBRA concept, the emphasis of this project will be on developing the evaporator itself. This project will utilize a “test early, test often” approach, building at least one trial evaporator to guide the design of the final product.
Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick
2015-11-03
Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.
Floating rGO-based black membranes for solar driven sterilization.
Zhang, Yao; Zhao, Dengwu; Yu, Fan; Yang, Chao; Lou, Jinwei; Liu, Yanming; Chen, Yingying; Wang, Zhongyong; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2017-12-14
This paper presents a new steam sterilization approach that uses a solar-driven evaporation system at the water/air interface. Compared to the conventional solar autoclave, this new steam sterilization approach via interfacial evaporation requires no complex system design to bear high steam pressure. In such a system, a reduced graphene oxide/polytetrafluoroethylene composite membrane floating at the water/air interface serves as a light-to-heat conversion medium to harvest and convert incident solar light into localized heat. Such localized heat raises the temperature of the membrane substantially and helps generate steam with a temperature higher than 120 °C. A sterilization device that takes advantage of the interfacial solar-driven evaporation system was built and its successful sterilization capability was demonstrated through both chemical and biological sterilization tests. The interfacial evaporation-based solar driven sterilization approach offers a potential low cost solution to meet the need for sterilization in undeveloped areas that lack electrical power but have ample solar radiation.
Development of a laboratory prototype spraying flash evaporator.
NASA Technical Reports Server (NTRS)
Gaddis, J. L.
1972-01-01
A functional description of the flash evaporator that is being developed as a candidate for the Space Shuttle Environmental Control System thermal control is presented. A single evaporator configuration uses water as an evaporant to accommodate on-orbit peak heat loads and Freon 22 for terrestrial flight phases below 120,000 ft altitude. Development history, test plans, and operational characteristics are described. Detailed information is included to show: design features, fabrication techniques used for a prototype unit, redundancy considerations, and the control arrangement.
EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)
NASA Technical Reports Server (NTRS)
Coss, F. A.
1976-01-01
A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.
Fault detection and diagnosis for refrigerator from compressor sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.
A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less
Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai
2014-04-17
Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.
Fluid flow inside and outside an evaporating sessile drop
NASA Astrophysics Data System (ADS)
Bouchenna, C.; Aitsaada, M.; Chikh, S.; Tadrist, L.
2017-11-01
The sessile drop evaporation is a phenomena which is extensively studied in the literature, but the governing effects are far from being well understood especially those involving movements taking place in both liquid and gas phases. The present work numerically studies the flow within and around an evaporating sessile drop. The flow is induced by the strong mass loss at contact line, the thermo-capillary effect and the buoyancy effect in the surrounding air. The results showed that buoyancy-induced flow in gas phase weakly influences thermo-capillarity-induced flow in the liquid phase. Buoyancy effect can strongly modify the temperature distribution at liquid-gas interface and thus the overall evaporation rate of the drop when the substrate is heated.
Effects of Lily Pads on Evaporation
NASA Astrophysics Data System (ADS)
Cooley, Keith R.; Idso, Sherwood B.
1980-06-01
Measurements of evaporation from open water and water partially covered by lily pads have indicated that for the portion of the surface area covered by lily pads, evaporation is reduced to about 84% of that occurring from open water.
A microscopic description of black hole evaporation via holography
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
2016-07-19
Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.
A microscopic description of black hole evaporation via holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.
Surface tension of evaporating nanofluid droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald
2011-05-01
Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe 2O 3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower valuesmore » of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.« less
A closed unventilated chamber for the measurement of transepidermal water loss.
Nuutinen, Jouni; Alanen, Esko; Autio, Pekka; Lahtinen, Marjo-Riitta; Harvima, Ilkka; Lahtinen, Tapani
2003-05-01
Open chamber systems for measuring transepidermal water loss (TEWL) have limitations related to ambient and body-induced airflows near the probe, probe size, measurement sites and angles, and measurement range. The aim of the present investigation was to develop a closed chamber system for the TEWL measurement without significant blocking of normal evaporation through the skin. Additionally, in order to use the evaporimeter to measure evaporation rates through other biological and non-biological specimens and in the field applications, a small portable, battery-operated device was a design criteria. A closed unventilated chamber (inner volume 2.0 cm(3) was constructed. For the skin measurement, the chamber with one side open (open surface area 1.0 cm(2) is placed on the skin. The skin application time was investigated at low and high evaporation rates in order to assess the blocking effect of the chamber on normal evaporation. From the rising linear part of the relative humidity (RH) in the chamber the slope was registered. The slope was calibrated into a TEWL value by evaporating water at different temperatures and measuring the water loss of heated samples with a laboratory scale. The closed chamber evaporation technique was compared with a conventional evaporimeter based on an open chamber method (DermaLab), Cortex Technology, Hadsund, Denmark). The reproducibility of the closed chamber method was measured with the water samples and with volar forearm and palm of the hand in 10 healthy volunteers. The skin application time varied between 7 and 9 s and the linear slope region between 3 and 5 s at the evaporation rates of 3-220 g/m(2) h. A correlation coefficient between the TEWL value from the closed chamber measurements and the readings of the laboratory scale was 0.99 (P < 0.001). The reproducibility of the evaporation measurements with the water samples was 4.0% at the evaporation rate of 40 g/m(2) h. A correlation coefficient of the TEWL values between the closed chamber and open chamber measurements was 0.99 (P < 0.001) in the range where the response of a conventional evaporimeter was linear (until 120 g/m(2)h. With volar forearm and palm of the hand of 10 healthy volunteers the reproducibility of the measurements was 8.0 and 10.1%. The closed chamber technique solves the drawbacks related to open chamber evaporimeters. Especially, it extends the measurement range to high evaporation rates and TEWL measurements can be performed practically at any anatomical sites and measurement angle. By the use of a closed chamber the disturbance related to external or body-induced air flows on the measurement can be avoided.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Ansari, M. Afzal; Sathik, N. P. M.; Ali, Rahbar; Kumar, R.; Muralithar, S.; Singh, R. P.
2018-06-01
Spin distributions of nine evaporation residues 164Yb(x n ) , 163Tm(p x n ) , Er,167168(2 p x n ) , Ho-161163(α p x n ) , 164Dy(α 2 p x n ) , and 160Dy(2 α x n ) produced through complete- and incomplete-fusion reactions have been measured in the system 16O+154Sm at projectile energy =6.1 MeV /nucleon using the in-beam charged-particle (Z =1 ,2 )-γ-ray coincidence technique. The results indicate the occurrence of incomplete fusion involving the breakup of 16O into 4He+12C and/or 8Be+8Be followed by fusion of one of the fragments with target nucleus 154Sm. The pattern of measured spin distributions of the evaporation residues produced through complete and incomplete fusion are found to be entirely different from each other. It has been observed from these present results that the mean input angular momentum for the evaporation residues produced through complete fusion is relatively lower than that of evaporation residues produced through incomplete-fusion reactions. The pattern of feeding intensity of evaporation residues populated through complete- and incomplete-fusion reactions has also been studied. The evaporation residues populated through complete-fusion channels are strongly fed over a broad spin range and widely populated, while evaporation residues populated through incomplete-fusion reactions are found to have narrow range feeding only for high spin states. Comparison of present results with earlier data suggests that the value of mean input angular momentum is relatively higher for a deformed target and more mass asymmetric system than that of a spherical target and less mass asymmetric system by using the same projectile and the same energy. Thus, present results indicate that the incomplete-fusion reactions not only depend on the mass asymmetry of the system, but also depend on the deformation of the target.
30 CFR 35.22 - Test to determine effect of evaporation on flammability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...
30 CFR 35.22 - Test to determine effect of evaporation on flammability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...
30 CFR 35.22 - Test to determine effect of evaporation on flammability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...
30 CFR 35.22 - Test to determine effect of evaporation on flammability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...
Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014
NASA Astrophysics Data System (ADS)
Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.
2017-12-01
The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations from CFSv2 and LLTM are significantly smaller than those from FVCOM. The variation among the nine FVCOM runs resulted in the 3D mean water temperature cooling in a range from 3 degrees C to 5 degrees C (6-10 EJ loss in heat content), implication for impacts on preconditioning for the upcoming ice season.
Retrofit device and method to improve humidity control of vapor compression cooling systems
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2016-08-16
A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.
The fate of moderately volatile elements during planetary formation in the inner Solar System
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Moynier, F.
2017-12-01
Moderately volatile element abundances are variable among inner Solar System bodies, with differing degrees of depletion compared to chondrites. These variations are a consequence of the processes of planetary formation. The conditions and the specific mechanisms of planetary accretion and differentiation can be investigated by analyzing the stable isotope compositions of terrestrial and extraterrestrial samples. The moderately volatile lithophile elements are particularly useful to distinguish between the effects of accretion and those of core formation. Recent work has shown isotope variations in inner Solar System bodies for the moderately volatile elements Zn and K. The purely lithophile nature of Rb (in contrast to Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to further study moderately volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. Terrestrial rocks define a narrow range in Rb isotope composition, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). Larger Rb isotope variations are observed in extraterrestrial materials. Carbonaceous chondrites display a trend toward lighter Rb isotope composition coupled with decreasing Rb/Sr, opposite to the effect expected if their volatile element variations were caused by evaporative loss of Rb. This relationship indicates that the volatile element abundance variations in carbonaceous chondrites are not due to evaporation or condensation, but rather are due to the mixing of chemically and isotopically distinct primordial reservoirs. In contrast, there is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. Significant heavy isotope enrichments (up to several per mil for 87Rb/85Rb) are found for volatile-depleted planetesimals, including eucrites. In addition, lunar rocks also display heavy Rb isotope enrichments compared to the BSE. The most likely cause of these variations is Rb isotope fractionation due to evaporation during accretion.
Dynamically controlled crystal growth system
NASA Technical Reports Server (NTRS)
Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)
2002-01-01
Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.
Effect of Mg or Ag addition on the evaporation field of Al.
Aruga, Yasuhiro; Nako, Hidenori; Tsuneishi, Hidemasa; Hasegawa, Yuki; Tao, Hiroaki; Ichihara, Chikara; Serizawa, Ai
2013-09-01
It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Askalany, Ahmed A.; Saha, Bidyut B.
2017-01-01
This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.
Effect of integrating straw into agricultural soils on soil infiltration and evaporation.
Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong
2012-01-01
Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.
An Evaporative Cooling Model for Teaching Applied Psychrometrics
ERIC Educational Resources Information Center
Johnson, Donald M.
2004-01-01
Evaporative cooling systems are commonly used in controlled environment plant and animal production. These cooling systems operate based on well defined psychrometric principles. However, students often experience considerable difficulty in learning these principles when they are taught in an abstract, verbal manner. This article describes an…
EXPERIMENTAL EVALUATION OF A NOVEL FULL-SCALE EVAPORATIVELY COOLED CONDENSER
The report compares the performance of a novel evaporatively cooled condenser with that of a conventional air-cooled condenser for a split-system heat pump. The system was tested in an environmentally controlled test chamber that is able to simulate test conditions as specified b...
NASA Astrophysics Data System (ADS)
Attari Moghaddam, Alireza; Prat, Marc; Tsotsas, Evangelos; Kharaghani, Abdolreza
2017-12-01
The classical continuum modeling of evaporation in capillary porous media is revisited from pore network simulations of the evaporation process. The computed moisture diffusivity is characterized by a minimum corresponding to the transition between liquid and vapor transport mechanisms confirming previous interpretations. Also the study suggests an explanation for the scattering generally observed in the moisture diffusivity obtained from experimental data. The pore network simulations indicate a noticeable nonlocal equilibrium effect leading to a new interpretation of the vapor pressure-saturation relationship classically introduced to obtain the one-equation continuum model of evaporation. The latter should not be understood as a desorption isotherm as classically considered but rather as a signature of a nonlocal equilibrium effect. The main outcome of this study is therefore that nonlocal equilibrium two-equation model must be considered for improving the continuum modeling of evaporation.
Segregation effects during solidification in weightless melts
NASA Technical Reports Server (NTRS)
Li, C.
1973-01-01
Two types of melt segregation effects were studied: (1) evaporative segregation, or segregation due to surface evaporation; and (2) freezing segregation, or segregation due to liquid-solid phase transformation. These segregation effects are closely related. In fact, evaporative segregation always precedes freezing segregation to some degree and must often be studied prior to performing meaningful solidification experiments. This is particularly true since evaporation may cause the melt composition, at least at the critical surface regions or layers to be affected manyfold within seconds so that the surface region or layer melting point and other thermophysical properties, nucleation characteristics, base for undercooling, and critical velocity to avoid constitutional supercooling, may be completely unexpected. An important objective was, therefore, to develop the necessary normal evaporation equations for predicting the compositional changes within specified times at temperature and to correlate these equations with actual experimental data collected from the literature.
NASA Astrophysics Data System (ADS)
Lyulin, Y. V.; Rezanova, E. V.
2017-11-01
Heat- and mass transfer processes in a two-layer system of the liquid and gas are studied with respect to evaporation at interface. The stationary convective flows of two immiscible viscous incompressible fluids filling an infinite channel and being under action of the transverse gravitation field are studied analytically. Mathematical modeling of the flows is carried out with the help of the Navier-Stokes equations in Boussinesq approximation. The Dufour and Soret effects are taken into consideration in the gas-vapor phase. In the two-dimensional case the exact solutions of special type are constructed under condition of a given specific gas flow rate. Comparison of the analytical results with results of the physical experiments with the “liquid-gas” system like “ethanol-air” are presented.
NASA Astrophysics Data System (ADS)
Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra
2017-01-01
The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.
NASA Astrophysics Data System (ADS)
D'Ambro, E.; Schobesberger, S.; Lopez-Hilfiker, F.; Shilling, J. E.; Lee, B. H.; Thornton, J. A.
2017-12-01
α-Pinene (C10H16), the most abundantly emitted monoterpene, is a large contributor to global biogenic secondary organic aerosol (SOA) budgets due to its high SOA yields upon oxidation. We probe the volatility and evaporation behavior upon dilution of α-pinene SOA to further our understanding of the nascent volatility distribution, viscosity, and how these evolve in time absent photochemical oxidation. We present molecular composition measurements of the gas and particle phases of α-pinene ozonolysis SOA formed at 0% and 50% relative humidity (RH), followed by room-temperature evaporation in ultra-high purity N2 humidified to 20-90% RH. Experiments were performed in the Pacific Northwest National Laboratory 10.6 m3 and the University of Washington 0.7 m3 environmental chambers utilizing a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization. We present novel insights into the total mass that evaporates as a function of time from 10 min to 24 hours without heating, the molecular speciation of the evaporate, as well as the effective volatility and composition of the SOA mass remaining. Consistent with previous studies, we find two stages of evaporation: a rapid loss of a large portion of the total signal over the course of ≤3 hours, followed by a stage of much slower evaporation over the proceeding 21 hours. Varying the RH of formation effects evaporation rate on timescales ≤3 hours, however the mass fraction remaining after 24 hours converges to 30-50% under all formation and evaporation RHs. We simulate the evaporation behavior and remaining fractions desorbed via temperature programmed thermal desorption to derive effective saturation vapor concentrations, mass accommodation coefficients, and rates of chemical evolution producing both higher and lower volatility components during the evaporation time period.
Global Ocean Evaporation Increases Since 1960 in Climate Reanalyses: How Accurate Are They?
NASA Astrophysics Data System (ADS)
Robertson, F. R.; Roberts, J. B.; Bosilovich, M. G.
2016-12-01
Evaporation from the world's oceans constitutes the largest component of the global water balance. It is important not only as the ultimate source of moisture that is tied to the radiative processes determining Earth's energy balance but also to freshwater availability over land, governing habitability of the planet. The question we address is whether by using conventional observations alone, the problematic stepwise changes to model bias correction imposed by the continually changing satellite data record can be avoided and a more accurate estimate of evaporation changes obtained over the past six decades—including the satellite era from 1979 to the present. Three climate reanalyses are used, the NOAA ESRL 20CR V2, the ECMWF ERA-20C, and the JRA-55C. In contrast to conventional reanalyses, reduced-observational reanalyses are run with fewer constraints with more temporally homogenous records- SSTs, sea-ice, and radiative forcing (i.e. AMIPs) and additional, minimal observations of surface pressure and marine observations. An ensemble of AMIP-style experiments provides an important comparison. Though limited in temporal extent, state-of-the-art satellite retrievals from the SeaFlux project and 10m neutral winds from Remote Sensing Systems analysis of passive microwave measurements represent observationally driven estimates of evaporation and near-surface wind speed. ENSO-related changes in evaporation dominate interannual timescales, though over multi-decadal periods we find increasing evaporation trends approaching the Clausius-Clapeyron rate of 6% per degree SST rise. This contrasts with the more muted changes in AMIP experiments. Near-surface relative humidity and stability changes generally act to counterbalance the effects of SST alone, but wind speed changes are a chief driver of the evaporation changes. Multi-decadal signals related to Pacific and Atlantic climate variability are prominent; however, there are notable signatures of wind data issues—particularly over the Southern Indian Ocean. Though the passive microwave record extends only from 1988, associated wind speed measurements confirm the basic structure of wind-driven evaporation trends in recent decades.
Upward-facing Lithium Flash Evaporator for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roquemore, A. L.
2013-07-09
NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. Inmore » the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.« less
Evaporation Mechanism of Cu from Liquid Fe Containing C and S
NASA Astrophysics Data System (ADS)
Jung, Sung-Hoon; Kang, Youn-Bae
2016-08-01
A number of liquid-gas experiments were carried out in order to elucidate evaporation mechanism of Cu from liquid Fe containing C and S. Rate of Cu evaporation in liquid Fe droplets at 1873 K (1600 °C) was determined using electromagnetic levitation equipment. Evaporation rate of the Cu under various conditions (flow rate of gas mixtures, initial C, and S concentrations) was examined. It was found from a series of kinetic analyses of the experimental data that Cu evaporates in forms of Cu(g) and CuS(g). As was reported for the Sn evaporation from liquid iron (Jung et al. Met. Mater. Trans. 46B, 250-258, 2014), S plays two roles for the evaporation of Cu: accelerating the rate by forming CuS(g) and decelerating the rate by blocking evaporation sites. As a result of these combinatorial effects, the evaporation of Cu is decelerated at low S content, but is accelerated at high S content. Based on the elucidated mechanism, an evaporation model equation for Cu was developed in the present study, which takes into account (1) evaporation of Cu in the two forms (Cu(g) and CuS(g)), (2) surface blocking by S using ideal Langmuir adsorption, and (3) effect of C. The obtained rate constant of a reaction Cu i + S i = CuS i (g), k CuS R , is 1.37 × 10-9 m4 mol-1 s-1, and the residual rate constant, k CuS r , is 4.11 × 10-10 m4 mol-1 s-1 at 1873 K (1600 °C). Both of them were found to be one order lower than those for Sn evaporation.
Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.
Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin
2016-10-01
Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TERRI, FELLINGER
2004-12-21
The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less
NASA Astrophysics Data System (ADS)
Ferdous, Sunzida; Liu, Feng; Russell, Thomas
2013-03-01
Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.
Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias
2018-03-01
Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D < 0) covering a broad range of physico-chemical properties in three different aqueous matrices. The multi-layer solid-phase extraction (mlSPE) and evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.
40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) Evaporative Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1207-96 Sampling and analytical systems..., the enclosure shall be gas tight in accordance with § 86.1217-96. Interior surfaces must be...
40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) Evaporative Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1207-96 Sampling and analytical systems..., the enclosure shall be gas tight in accordance with § 86.1217-96. Interior surfaces must be...
Sequence and batch language programs and alarm related C Programs for the 242-A MCS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, J.F.
1996-04-15
A Distributive Process Control system was purchased by Project B-534, 242-A Evaporator/Crystallizer Upgrades. This control system, called the Monitor and Control system (MCS), was installed in the 242-A evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme.« less
Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide
2015-06-22
The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced Evaporation and Condensation in Tubes
NASA Astrophysics Data System (ADS)
Honda, Hiroshi
A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.
Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete
2013-01-01
Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.
2013-01-01
Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221
Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.
Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran
2016-02-01
The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Evaporation rate of emulsion and oil-base emulsion pheromones
USDA-ARS?s Scientific Manuscript database
Knowledge of pheromone evaporation rate is critical to distribute pheromone containers effectively in the forest, orchard and field. There are several factors influencing the pheromone evaporation rate that include wind speed, container size and porosity, release area, temperature, humidity, pherom...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna Post
2013-09-01
The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammablemore » hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.« less
Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.
Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse
2017-06-15
The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.
Oxide vapor distribution from a high-frequency sweep e-beam system
NASA Astrophysics Data System (ADS)
Chow, R.; Tassano, P. L.; Tsujimoto, N.
1995-03-01
Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.
11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...
11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Evaporation control research, 1955-58
Cruse, Robert R.; Harbeck, Guy Earl
1960-01-01
One hundred fifty-two compounds and compositions of matter were screened as potential evaporation retardants. The homologous straight-chain fatty alkanols are considered the best materials for retardants. Several methods of application of the alkanols to the reservoir surface were investigated. Although wick-type drippers for the application of liquids and cage rafts for the application of solids appear to be the most promising methods from an economic standpoint, both methods have serious disadvantages. Considerable study was given to reducing biochemical oxidation of the evaporation retardants. Copper in several forms was found adequate as a bacteriostatic agent but posed a potential hazard because of its toxicity. Many other bactericides that were tested were also toxic. Two sets of large-scale field tests have been completed and several others are still in progress. On the larger reservoirs, the reduction of evaporation was not more than 20 percent under the prevailing conditions and the application procedure used. Three major practical problems remain; namely, the effects and action of wind on the monofilm, the effects of biochemical oxidation, and the most effective method of application. Fundamental problems remaining include the effects of various impurities, and the composition of the best evaporation retardant; the long-range effects of monofilms on the limnology of a reservoir, including the transfer of oxygen and carbon dioxide; toxicological aspects of all components of any evaporation-retardant composition, plus toxicology of any composition chosen for large-scale use; and further studies of the calorimetry and thermodynamics involved in the mechanism of evaporation and its reduction by a monofilm.
Jang, Bo Yun; Lee, Jin Seok; Kim, Joon Soo
2013-05-01
SiO(x) nanoparticles were synthesized using a specially designed induction melting system equipped with a segmented graphite crucible. The graphite crucible with the segmented wall was the key to enhancing the evaporation rate due to the increase of the evaporation area and convection of the silicon melt. Injection of the gas mixture of oxygen (O2) and argon (Ar) on silicon (Si) melt caused the formation of SiO(x) nanoparticles. The evaporated SiO(x) nanoparticles were then cooled and condensed in a process chamber. The effects of the O2/Ar ratio in the injection gas on the microstructures of the SiO(x) nanoparticles were then investigated. Synthesized SiO(x) nanoparticles were proven to be of a homogeneous amorphous phase with average diameters of 30-35 nm. The microstructures were independent from the O2/Ar ratio of the injected gas. However, x increased from 1.36 to 1.84 as the O2/Ar ratio increased. The purity of the synthesized nanoparticles was about 99.9%. SiO(x) nanoparticles could be applied as the active anode material in a lithium (Li) ion secondary battery.
NASA Astrophysics Data System (ADS)
Liu, H.; Zhang, Y.; Williams, Q. L.; Jiang, H.; Sheng, L.
2008-12-01
Understanding seasonal and intraseasonal variations in evaporation over lake/reservoir is important for water resource management as well as predicting variations in hydrology as a result of climate change. Since August of 2007, we have conducted a long-term eddy covariance measurement of evaporation and the surface energy budget over Ross Barnett Reservoir (32o26'N, 90o02'W) in Mississippi, USA. The fetch for eddy covariance system exceeds 2 km in all directions and the water depth is about 4 m around the flux tower. The tower with its height of 4 m stands over a stationary wood platform with its size of 3 m × 3 m and height of about 1 m above the water surface. Along with sensible and latent heat fluxes, microclimate data are also measured, including wind speed, wind direction, relative humidity, solar radiation, net radiation, air temperature at four levels, water surface temperature, and water temperature at eight depths down to about 4 m. Mississippi is subject to frequent influences of different synoptic weather systems in a year around. Incursions of these different systems bring in air masses with different properties in temperature and moisture. Cold fronts, for example, carry them with cold and dry air from north while warm fronts with warm and moist air. Our results indicate that synoptic weather variations play an important role in controlling evaporations and the surface energy budget. For example, daily H and LE (i.e., evaporation) during the passages of cold fronts are around 2-4 times those of normal days and these cold front events lead to an increase in the seasonal H by approximately 420 and LE by 160%. However, the warm weather systems suppress largely the turbulent exchanges of sensible and latent heat, leading to very small evaporation and sensible heat fluxes (even negative). These results imply that future potential changes in cold front activities (intensity, frequency, and duration) as a result of climate change may lead to substantial shifts in regional energy budget and hydrological balance in the southern regions with an abundance of open water bodies (e.g., lakes, reservoirs, swamps etc). Using these datasets, the daytime and nighttime evaporation rates are also analyzed and nighttime evaporative water losses are substantial, contributing a significant portion to the total evaporative water loss.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Mahanama, P. P.
2012-01-01
Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.
Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant
Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN
2006-02-07
A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.
Lu, Yehu; Wang, Faming; Peng, Hui; Shi, Wen; Song, Guowen
2016-04-01
The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr ∙ m(2), respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr ∙ m(2) is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance.
Evaluation of Green Roof Plants and Materials for Semi-Arid Climates
Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...
Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe
NASA Astrophysics Data System (ADS)
Zhang, Renping
2018-03-01
A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.
Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview
WANG, Faming
2017-01-01
Evaporative resistance has been widely used to describe the evaporative heat transfer property of clothing. It is also a critical variable in heat stress models for predicting human physiological responses in various environmental conditions. At present, sweating thermal manikins provide a fast and cost-effective way to determine clothing evaporative resistance. Unfortunately, the measurement repeatability and reproducibility of evaporative resistance are rather low due to the complicated moisture transfer processes through clothing. This review article presents a systematical overview on major influential factors affecting the measurement precision of clothing evaporative resistance measurements. It also illustrates the state-of-the-art knowledge on the development of test protocol to measure clothing evaporative resistance by means of a sweating manikin. Some feasible and robust test procedures for measurement of clothing evaporative resistance using a sweating manikin are described. Recommendations on how to improve the measurement accuracy of clothing evaporative resistance are addressed and expected future trends on development of advanced sweating thermal manikins are finally presented. PMID:28566566
A unitary model of the black hole evaporation
NASA Astrophysics Data System (ADS)
Feng, Yu-Lei; Chen, Yi-Xin
2014-12-01
A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.
Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying
2009-08-01
By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.
Is evaporative colling important for shallow clouds?
NASA Astrophysics Data System (ADS)
Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.
2017-12-01
We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.
Continuous shear rheometry of o/w emulsions; control of evaporation in cone/plate geometry.
Orafidiya, L O
1989-05-01
Volatile solvents may evaporate during cone/plate viscometry so that false rheograms develop. This surface evaporation was prevented in a cod-liver oil-in-water emulsion stabilized with zanthoxylum gum by layering a film of cod-liver oil on the exposed surface of the emulsion test sample. The oil layer effectively prevented evaporation and did not alter significantly the rheological behaviour of the test material.
Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.
Dehbani, Maryam; Rahimi, Masoud
2018-04-01
In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valderrama, B.; Henderson, H.B.; Gan, J.
2015-04-01
Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO 2). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporationmore » regimes are present in UO 2. Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO 2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate.« less
Desertification of the peritoneum by thin-film evaporation during laparoscopy.
Ott, Douglas E
2003-01-01
To assess the effects of gas flow during insufflation on peritoneal fluid and peritoneal tissue regarding transient thermal behavior and thin-film evaporation. The effects of laparoscopic gas on peritoneal cell desiccation and peritoneal fluid thin-film evaporation were analyzed. Measurment of tissue and peritoneal fluid and analysis of gas flow dynamics during laparoscopy. High-velocity gas interface conditions during laparoscopic gas insufflation result in peritoneal surface temperature and decreases up to 20 degrees C/second due to rapid thin-film evaporation of the peritoneal fluid. Evaporation of the thin film of peritoneal fluid extends quickly to the peritoneal cell membrane, causing peritoneal cell desiccation, internal cytoplasmic stress, and disruption of the cell membrane, resulting in loss of peritoneal surface continuity and integrity. Changing the gas conditions to 35 degrees C and 95% humidity maintains normal peritoneal fluid thin-film characteristics, cellular integrity, and prevents evaporative losses. Cold, dry gas and the characteristics of the laparoscopic gas delivery apparatus cause local peritoneal damaging alterations by high-velocity gas flow with extremely dry gas, creating extreme arid surface conditions, rapid evaporative and hydrological changes, tissue desiccation, and peritoneal fluid alterations that contribute to the process of desertification and thin-film evaporation. Peritoneal desertification is preventable by preconditioning the gas to 35 degrees C and 95% humidity.
Solar geoengineering, atmospheric water vapor transport, and land plants
NASA Astrophysics Data System (ADS)
Caldeira, Ken; Cao, Long
2015-04-01
This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain runoff are typically locations where there is sufficient water to maintain plant growth. This work aims at: (i) Identifying the geographical distribution of sensitivity of modeled-NPP to changes in CO2, temperature, and various parameters related to the hydrological cycle; (ii) Geographically partitioning changes in modeled-NPP to changes in CO2, temperature, and hydrological variables (and a non-linear interaction term).
The continuous similarity model of bulk soil-water evaporation
NASA Technical Reports Server (NTRS)
Clapp, R. B.
1983-01-01
The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.
Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.
Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai
2008-03-01
The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to grow in the future.
NASA Astrophysics Data System (ADS)
Zhang, Renping
2017-12-01
A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.
Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of Lake Lahontan
Hostetler, S.W.
1991-01-01
A model of lake ice was coupled with a model of lake temperature and evaporation to assess the possible effect of ice cover on the late-Pleistocene evaporation rate of Lake Lahontan. The simulations were done using a data set based on proxy temperature indicators and features of the simulated late-Pleistocene atmospheric circulation over western North America. When a data set based on a mean-annual air temperature of 3?? C (7?? C colder than present) and reduced solar radiation from jet-stream induced cloud cover was used as input to the model, ice cover lasting ??? 4 months was simulated. Simulated evaporation rates (490-527 mm a-1) were ??? 60% lower than the present-day evaporation rate (1300 mm a-1) of Pyramid Lake. With this reduced rate of evaporation, water inputs similar to the 1983 historical maxima that occurred in the Lahontan basin would have been sufficient to maintain the 13.5 ka BP high stand of Lake Lahontan. ?? 1991 Springer-Verlag.
Agricultural drainwater effects on wildlife in central California
Ohlendorf, Harry M.; Hothem, Roger L.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
In California's San Joaquin Valley and in numerous other agricultural areas in the western U.S., irrigation wastewater may accumulate in confined shallow aquifers, eventually rising to levels that adversely affect crops. To sustain long-term agricultural productivity in these regions, systems for the drainage and disposal of this subsurface wastewater must be installed.1,2 the drained water may contain an array of soluble chemicals that have been applied to the crops, as well as those that have been leached from native soils. Agricultural drainwater is frequently disposed of by discharging it to surface aquatic systems where these constituents may be directly toxic to aquatic organisms, or they may bioaccumulate through the aquatic food webs upon which birds and other wildlife feed. The focus of this chapter is research conducted since 1983 to assess the effects of wildlife exposure to subsurface agricultural drainwater in the San Joaquin Valley.Agricultural drainwater is discharged primarily to tributaries and wetlands of the San Joaquin River system or, especially in the southern San Joaquin Valley, to evaporation ponds.3 Because of high nutrient content in the drainwater, evaporation ponds have high levels of biological productivity and provide an abundant food supply for aquatic birds. Aquatic birds (primarily waterfowl and shorebirds) have been the main focus of wildlife research at the evaporation ponds, and at managed wetlands (primarily hunting clubs) within the San Joaquin River system, but mammals, snakes, and frogs have also been studied. Findings of those studies are summarized in this chapter. Other studies have been conducted on fish and aquatic invertebrates in areas receiving agricultural drainwater, but in this review those findings are described only as they relate to dietary exposure of wildlife.
Alonso, R.; Bytnerowicz, A.; Yee, J.L.; Boarman, W.I.
2005-01-01
A study was conducted to determine the effects of salt spray drift from pilot technologies employed by the US Bureau of Reclamation on deposition rates of various air-born ions. An enhanced evaporation system (EES) was tested in the field at the Salton Sea, California. Dry deposition of NO3-, NH4+, SO42-, Cl-, Ca2+, Na+, K+ and Se was assessed by using nylon filters and branches of natural vegetation exposed for one-week long periods. The simultaneous exposure of both lyophilized branches and branches of live plants offered important information highlighting the dynamics of deposited ions on vegetation. The EES significantly increased the deposition rates of Cl-, SO42- and Na+ in an area of about 639-1062 m surrounding the sprayers. Similarly, higher deposition of Ca 2+ and K+ caused by the EES was detected only when deposition was assessed using nylon filters or lyophilized branches. Deposition fluxes of NO3-, NH4+ and Se were not affected by the spraying system. Techniques for measuring dry deposition and calculating landscape-level depositional loads in non-forested systems need further development. ?? 2005 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ori, Amos
2010-11-15
Callan, Giddings, Harvey, and Strominger (CGHS) previously introduced a two-dimensional semiclassical model of gravity coupled to a dilaton and to matter fields. Their model yields a system of field equations which may describe the formation of a black hole in gravitational collapse as well as its subsequent evaporation. Here we present an approximate analytical solution to the semiclassical CGHS field equations. This solution is constructed using the recently introduced formalism of flux-conserving hyperbolic systems. We also explore the asymptotic behavior at the horizon of the evaporating black hole.
Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES
NASA Astrophysics Data System (ADS)
Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.
2017-12-01
The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.
Role of ocean evaporation in California droughts and floods
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Jin, Qinjian; Yang, Zong-Liang; Dirmeyer, Paul A.
2016-06-01
Since winter 2011, a record-breaking drought has occurred in California. Studies found that the drought is mainly caused by a persistent high-pressure system off the U.S. West Coast, which is linked to Pacific sea surface temperature anomalies. The water cycles associated with the droughts and floods are still not clearly understood. Here we show that the atmospheric circulation off the West Coast not only controls the atmospheric convergence and formation of precipitation but also largely determines surface wind speed, which further affects the evaporation over the eastern North Pacific, the major evaporative moisture source for California precipitation. Because of this mechanism, the ocean evaporation over the eastern North Pacific has been reduced during the recent drought. However, the ocean evaporation anomalies have little direct influence on California precipitation, especially during dry years, mainly because of their weak amplitudes. The California droughts cannot be readily attributed to the reduced ocean evaporation. The association between increased Pacific evaporation and floods over California is somewhat stronger.
Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers
Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898
Effects of the local structure dependence of evaporation fields on field evaporation behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis
2015-12-14
Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less
Isotopic modeling of the sub-cloud evaporation effect in precipitation.
Salamalikis, V; Argiriou, A A; Dotsika, E
2016-02-15
In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic composition hardly changes even at high temperatures while at drier and warm conditions the enrichment of (18)Ο reaches up to 20‰, depending on the raindrop size and the initial meteorological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Isotope effects accompanying evaporation of water from leaky containers.
Rozanski, Kazimierz; Chmura, Lukasz
2008-03-01
Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.
Evaporator Development for an Evaporative Heat Pipe System
NASA Technical Reports Server (NTRS)
Peters, Leigh C.
2004-01-01
As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead of a tube, the evaporator is made up of a stack-up of screen material and absorbent membranes inside a stainless steel shell and held together by a film adhesive and epoxy. There is an initial design for this flat plate evaporator, however is has not yet been made. The components of the stack-up are known, so all testing is focused on how it will all go together. This includes finding an appropriate epoxy to make the evaporator conductive all the way through and finding a way to hold the required tight tolerances as the stainless steel outer shell is put together. By doing the tests on smaller samples of the stack-ups and then testing the fill size component, the final flat plate evaporator will reach its final design so that research can continue on other parts of the regenerative fue1 cell system, and another step in the improvement of fue1 cell technology can be made.
Effect of DOC on evaporation from small Wisconsin lakes
NASA Astrophysics Data System (ADS)
Watras, C. J.; Morrison, K. A.; Rubsam, J. L.
2016-09-01
Evaporation (E) dominates the loss of water from many small lakes, and the balance between precipitation and evaporation (P-E) often governs water levels. In this study, evaporation rates were estimated for three small Wisconsin lakes over several years using 30-min data from floating evaporation pans (E-pans). Measured E was then compared to the output of mass transfer models driven by local conditions over daily time scales. The three lakes were chosen to span a range of dissolved organic carbon (DOC) concentrations (3-20 mg L-1), a solute that imparts a dark, tea-stain color which absorbs solar energy and limits light penetration. Since the lakes were otherwise similar, we hypothesized that a DOC-mediated increase in surface water temperature would translate directly to higher rates of evaporation thereby informing climate response models. Our results confirmed a DOC effect on surface water temperature, but that effect did not translate to enhanced evaporation. Instead the opposite was observed: evaporation rates decreased as DOC increased. Ancillary data and prior studies suggest two explanatory mechanisms: (1) disproportionately greater radiant energy outflux from high DOC lakes, and (2) the combined effect of wind speed (W) and the vapor pressure gradient (es - ez), whose product [W(es - ez)] was lowest on the high DOC lake, despite very low wind speeds (<1.5 m s-1) and steep forested uplands surrounding all three lakes. Agreement between measured (E-pan) and modeled evaporation rates was reasonably good, based on linear regression results (r2: 0.6-0.7; slope: 0.5-0.7, for the best model). Rankings based on E were similar whether determined by measured or modeled criteria (high DOC < low DOC). Across the 3 lakes and 4 years, E averaged ∼3 mm d-1 (C.V. 9%), but statistically significant differences between lakes resulted in substantial differences in cumulative E that were consistent from year to year. Daily water budgets for these lakes show that inputs were dominated by P and outputs by E; and our findings indicate that subtle changes in the variables that drive E can have measurable effects on water levels by shifting the balance between P and E.
Trends in evaporation of a large subtropical lake
NASA Astrophysics Data System (ADS)
Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui
2017-07-01
How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).
New Directions for Evaporative Cooling Systems.
ERIC Educational Resources Information Center
Robison, Rita
1981-01-01
New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron
2012-01-01
The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.
NASA Astrophysics Data System (ADS)
Mor, Z.; Assouline, S.; Tanny, J.; Lensky, I. M.; Lensky, N. G.
2018-03-01
Evaporation from water bodies strongly depends on surface water salinity. Spatial variation of surface salinity of saline water bodies commonly occurs across diluted buoyant plumes fed by freshwater inflows. Although mainly studied at the pan evaporation scale, the effect of surface water salinity on evaporation has not yet been investigated by means of direct measurement at the scale of natural water bodies. The Dead Sea, a large hypersaline lake, is fed by onshore freshwater springs that form local diluted buoyant plumes, offering a unique opportunity to explore this effect. Surface heat fluxes, micrometeorological variables, and water temperature and salinity profiles were measured simultaneously and directly over the salty lake and over a region of diluted buoyant plume. Relatively close meteorological conditions prevailed in the two regions; however, surface water salinity was significantly different. Evaporation rate from the diluted plume was occasionally 3 times larger than that of the main salty lake. In the open lake, where salinity was uniform with depth, increased wind speed resulted in increased evaporation rate, as expected. However, in the buoyant plume where diluted brine floats over the hypersaline brine, wind speed above a threshold value (˜4 m s-1) caused a sharp decrease in evaporation probably due to mixing of the stratified plume and a consequent increase in the surface water salinity.
Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.
Yasui, Kyuichi; Izu, Noriya
2017-06-01
Acoustic oscillations of a fluid (a mixture of gas and vapor) parcel in a wet stack of a thermoacoustic engine are numerically simulated with a Lagrangian approach taking into account Rott equations and the effect of non-equilibrium evaporation and condensation of water vapor at the stack surface. In a traveling-wave engine, the volume oscillation amplitude of a fluid parcel always increases by evaporation and condensation. As a result, pV work done by a fluid parcel is enhanced, which means enhancement of acoustic energy in a thermoacoustic engine. On the other hand, in a standing-wave engine, the volume oscillation amplitude sometimes decreases by evaporation and condensation, and pV work is suppressed. Presence of a tiny traveling-wave component, however, results in the enhancement of pV work by evaporation and condensation.
Effect of air velocity on laying hen performance and egg quality
USDA-ARS?s Scientific Manuscript database
Increasing convective cooling can improve performance and thermal comfort of commercial poultry when weather or system design limit cooling through other means such as evaporative cooling. Previous work in young hens showed increased egg production rate as feed intake is maintained under heat stres...
Kjartansson, S; Hammarlund, K; Oberg, P A; Sedin, G
1991-01-01
A study was performed to investigate whether measurements of the evaporation rate from the skin of newborn infants by the gradient method are affected by the presence of non-ionizing radiation from phototherapy equipment or a radiant heater. The evaporation rate was measured experimentally with the measuring sensors either exposed to or protected from non-ionizing radiation. Either blue light (phototherapy) or infrared light (radiant heater) was used; in the former case the evaporation rate was measured from a beaker of water covered with a semipermeable membrane, and in the latter case from the hand of an adult subject, aluminium foil or with the measuring probe in the air. No adverse effect on the determinations of the evaporation rate was found in the presence of blue light. Infrared radiation caused an error of 0.8 g/m2h when the radiant heater was set at its highest effect level or when the ambient humidity was high. At low and moderate levels the observed evaporation rate was not affected. It is concluded that when clinical measurements are made from the skin of newborn infants nursed under a radiant heater, the evaporation rate can appropriately be determined by the gradient method.
NASA Astrophysics Data System (ADS)
Yu, M.; Wu, B.
2017-12-01
As an important part of the coupled Eco-Hydrological processes, evaporation is the bond for exchange of energy and heat between the surface and the atmosphere. However, the estimation of evaporation remains a challenge compared with other main hydrological factors in water cycle. The complementary relationship which proposed by Bouchet (1963) has laid the foundation for various approaches to estimate evaporation from land surfaces, the essence of the principle is a relationship between three types of evaporation in the environment. It can simply implemented with routine meteorological data without the need for resistance parameters of the vegetation and bare land, which are difficult to observed and complicated to estimate in most surface flux models. On this basis the generalized nonlinear formulation was proposed by Brutsaert (2015). The daily evaporation can be estimated once the potential evaporation (Epo) and apparent potential evaporation (Epa) are known. The new formulation has a strong physical basis and can be expected to perform better under natural water stress conditions, nevertheless, the model has not been widely validated over different climate types and underlying surface patterns. In this study, we attempted to apply the generalized nonlinear complementary relationship in North China, three flux stations in North China are used for testing the universality and accuracy of this model against observed evaporation over different vegetation types, including Guantao Site, Miyun Site and Huailai Site. Guantao Site has double-cropping systems and crop rotations with summer maize and winter wheat; the other two sites are dominated by spring maize. Detailed measurements of meteorological factors at certain heights above ground surface from automatic weather stations offered necessary parameters for daily evaporation estimation. Using the Bowen ratio, the surface energy measured by the eddy covariance systems at the flux stations is adjusted on a daily scale to satisfy the surface energy closure. After calibration the estimated daily evaporation are in good agreement with EC-measured flux data with a mean correlation coefficient in excess of 0.85. The results indicate that the generalized nonlinear complementary relationship can be applied in plant growing and non-growing season in North China.
NASA Astrophysics Data System (ADS)
Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco
2013-03-01
Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning ( P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year ( P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter ( P < 0.05) and IGF-I was higher during spring-summer ( P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF ( P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer ( P < 0.01).
Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco
2013-03-01
Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning (P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year (P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter (P < 0.05) and IGF-I was higher during spring-summer (P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF (P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer (P < 0.01).
Huang, Zhi; Liu, Kang; Feng, Yanhui; Zhou, Jun; Zhang, Xinxin
2017-06-28
Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.
Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum
NASA Astrophysics Data System (ADS)
Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.
2018-05-01
Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.
NASA Astrophysics Data System (ADS)
Leeper, R. D.; Kochendorfer, J.
2014-12-01
The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.
Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve
2016-03-22
We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and small contact angle from jump to jump; the result is a large evaporation rate leading to faster evaporation.
Meng, Lingzong; Gruszkiewicz, Miroslaw S.; Deng, Tianlong; ...
2015-08-05
In this study, the Pitzer thermodynamic model for solid-liquid equilibria in the quinary system LiCl–NaCl–KCl–SrCl 2–H 2O at 298.15 K was constructed by selecting the proper parameters for the subsystems in the literature. The solubility data of the systems NaCl–SrCl 2–H 2O, KCl–SrCl 2–H 2O, LiCl–SrCl 2–H 2O, and NaCl–KCl–SrCl 2–H 2O were used to evaluate the model. Good agreement between the experimental and calculated solubilities shows that the model is reliable. The Pitzer model for the quinary system at 298.15 K was then used to calculate the component solubilities and conduct computer simulation of isothermal evaporation of the mothermore » liquor for the oilfield brine from Nanyishan district in the Qaidam Basin. The evaporation-crystallization path and sequence of salt precipitation, change in concentration and precipitation of lithium, sodium, potassium, and strontium, and water activities during the evaporation process were demonstrated. The salts precipitated from the brine in the order : KCl, NaCl, SrCl 2∙6H 2O, SrCl 2∙2H 2O, and LiCl∙H 2O. The entire evaporation process may be divided into six stages. In each stage the variation trends for the relationships between ion concentrations or water activities and the evaporation ratio are different. This result of the simulation of brines can be used as a theoretical reference for comprehensive exploitation and utilization of this type of brine resources.« less
Shallow peatland ecohydrology - the control of peat depth on moss productivity
NASA Astrophysics Data System (ADS)
Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike
2017-04-01
Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function. These results are important as moss productivity, along with rate of organic matter decay are the two principle factors controlling the build-up of peat, and therefore sequestration of carbon. With a predicted increase in the frequency and size of rain events in northern latitudes our results indicate the productivity of shallow wetland systems may increase, but greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.
The Development of Young Children's Understanding of the Process of Evaporation.
ERIC Educational Resources Information Center
Beveridge, Michael
1985-01-01
This investigation of the development of young children's concept of evaporation examines their intuitive explanations of real world events involving evaporation. A study of the effects of providing evidence contradicting their explanations and of directing their attention to relevant situational features provides insight into the development of…
Evaporation From Soil Containers With Irregular Shapes
NASA Astrophysics Data System (ADS)
Assouline, Shmuel; Narkis, Kfir
2017-11-01
Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.
Water-evaporation reduction by duplex films: application to the human tear film.
Cerretani, Colin F; Ho, Nghia H; Radke, C J
2013-09-01
Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized. Copyright © 2013 Elsevier B.V. All rights reserved.
Results of heating mode performance tests of a solar-assisted heat pump
NASA Technical Reports Server (NTRS)
Jones, C. B.; Smetana, F. O.
1979-01-01
The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.
Correction of the heat loss method for calculating clothing real evaporative resistance.
Wang, Faming; Zhang, Chengjiao; Lu, Yehu
2015-08-01
In the so-called isothermal condition (i.e., Tair [air temperature]=Tmanikin [manikin temperature]=Tr [radiant temperature]), the actual energy used for moisture evaporation detected by most sweating manikins was underestimated due to the uncontrolled fabric 'skin' temperature Tsk,f (i.e., Tsk,f
NASA Technical Reports Server (NTRS)
Honegger, R. J.; Remus, G. A.; Kurg, E. K.
1971-01-01
The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.
Contact angle change during evaporation of near-critical liquids
NASA Astrophysics Data System (ADS)
Nikolayev, Vadim; Hegseth, John; Beysens, Daniel
1998-03-01
An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling".
Swancar, Amy; Lee, T.M.; O'Hare, T. M.
2000-01-01
Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage
Modelling the evaporation of a tear film over a contact lens.
Talbott, Kevin; Xu, Amber; Anderson, Daniel M; Seshaiyer, Padmanabhan
2015-06-01
A contact lens (CL) separates the tear film into a pre-lens tear film (PrLTF), the fluid layer between the CL and the outside environment, and a post-lens tear film (PoLTF), the fluid layer between the CL and the cornea. We examine a model for evaporation of a PrLTF on a modern permeable CL allowing fluid transfer between the PrLTF and the PoLTF. Evaporation depletes the PrLTF, and continued evaporation causes depletion of the PoLTF via fluid loss through the CL. Governing equations include Navier-Stokes, heat and Darcy's equations for the fluid flow and heat transfer in the PrLTF and porous layer. The PoLTF is modelled by a fixed pressure condition on the posterior surface of the CL. The original model is simplified using lubrication theory for the PrLTF and CL applied to a sagittal plane through the eye. We obtain a partial differential equation (PDE) for the PrLTF thickness that is first-order in time and fourth-order in space. This model incorporates evaporation, conjoining pressure effects in the PrLTF, capillarity and heat transfer. For a planar film, we find that this PDE can be reduced to an ordinary differential equation (ODE) that can be solved analytically or numerically. This reduced model allows for interpretation of the various system parameters and captures most of the basic physics contained in the model. Comparisons of ODE and PDE models, including estimates for the loss of fluid through the lens due to evaporation, are given. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Theoretical and testing performance of an innovative indirect evaporative chiller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yi; Xie, Xiaoyun
2010-12-15
An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirectmore » evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller successfully satisfy the indoor air conditioning load for the demo building. The indirect evaporative chiller has a potentially wide application in dry regions, especially for large scale commercial buildings. Finally, this paper presented the geographic regions suitable for the technology worldwide. (author)« less
Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre
2014-03-04
The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.
Chaos in matrix models and black hole evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question—especially aspects of this question such as a black hole’s negative specific heat—we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large N limit. Simple arguments show that the black zero-brane,more » like the Schwarzschild black hole, has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory. Based on these results, we give a possible geometric interpretation of the eigenvalue distribution of matrices in terms of gravity. Applying the same argument in the M-theory parameter region, we provide a scenario to derive the Hawking radiation of massless particles from the Schwarzschild black hole. In conclusion, we suggest that by adding a fraction of the quantum effects to the classical theory, we can obtain a matrix model whose classical time evolution mimics the entire life of the black brane, from its formation to the evaporation.« less
Chaos in matrix models and black hole evaporation
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
2016-12-19
Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question—especially aspects of this question such as a black hole’s negative specific heat—we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large N limit. Simple arguments show that the black zero-brane,more » like the Schwarzschild black hole, has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory. Based on these results, we give a possible geometric interpretation of the eigenvalue distribution of matrices in terms of gravity. Applying the same argument in the M-theory parameter region, we provide a scenario to derive the Hawking radiation of massless particles from the Schwarzschild black hole. In conclusion, we suggest that by adding a fraction of the quantum effects to the classical theory, we can obtain a matrix model whose classical time evolution mimics the entire life of the black brane, from its formation to the evaporation.« less
Stirling Engine External Heat System Design with Heat Pipe Heater.
1986-07-01
Figure 10. However, the evaporator analysis is greatly simplified by making the conservative assumption of constant heat flux. This assumption results in...number Cold Start Data * " ROM density of the metal, gr/cm 3 CAPM specific heat of the metal, cal./gr. K ETHG effective gauze thickness: the
Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems
NASA Technical Reports Server (NTRS)
Izenson, Michael; Chen, Weibo; Bue, Grant
2013-01-01
This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.
Evolution of Post-accretion-induced Collapse Binaries: The Effect of Evaporation
NASA Astrophysics Data System (ADS)
Liu, Wei-Min; Li, Xiang-Dong
2017-12-01
Accretion-induced collapse (AIC) is widely accepted to be one of the formation channels for millisecond pulsars (MSPs). Since the MSPs have high spin-down luminosities, they can immediately start to evaporate their companion stars after birth. In this paper, we present a detailed investigation on the evolution of the post-AIC binaries, taking into account the effect of evaporation both before and during the Roche-lobe overflow process. We discuss the possible influence of the input parameters including the evaporation efficiency, the initial spin period, and the initial surface magnetic field of the newborn neutron star. We compare the calculated results with the traditional low-mass X-ray binary evolution and suggest that they may reproduce at least part of the observed redbacks and black widows in the companion mass–orbital period plane depending on the mechanisms of angular momentum loss associated with evaporation.
Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump
NASA Astrophysics Data System (ADS)
Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.
2013-07-01
A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Dunkel, Jörn
2006-07-01
We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated N -particle system, the microcanonical TDFs exhibit (N-1) singular (nonanalytic) microscopic phase transitions of the formal order N/2 , separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.
Measurement of evaporative water loss in small animals by dew-point hygrometry.
Bernstein, M H; Hudson, D M; Stearns, J M; Hoyt, R W
1977-08-01
This paper presents the procedures and equations to be utilized for measurement of evaporative water loss (mw), by use of the dew-point hygrometer, in small animals exposed to air containing water vapor in an open-flow system. The system accounted accurately for the water evaporated from a bubble flask. In addition, hygrometric measurements of pulmocutaneous mw in pigeons (Columba livia, mean mass 0.31 kg) agreed closely with simultaneous gravimetric measurements, utilizing a desiccant in the sample stream, in a manner independently of air temperature (Ta, 20 or 40 degrees C), ambient water vapor pressure (PW, 4-16 10(2) Pa), or mw (5-66 mg-min-1). Evaporation in pigeons was independent of PW at 20 degrees C, but increased with decreasing PW at 40 degrees C, suggesting differences in ventilatory adjustments to changes in PW at the two temperatures.
Organic flash cycles for efficient power production
Ho, Tony; Mao, Samuel S.; Greif, Ralph
2016-03-15
This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.
NASA Astrophysics Data System (ADS)
Zemenkova, M. Yu; Zemenkov, Yu D.; Shantarin, V. D.
2016-10-01
The paper reviews the development of methodology for calculation of hydrocarbon emissions during seepage and evaporation to monitor the reliability and safety of hydrocarbon storage and transportation. The authors have analyzed existing methods, models and techniques for assessing the amount of evaporated oil. Models used for predicting the material balance of multicomponent two-phase systems have been discussed. The results of modeling the open-air hydrocarbon evaporation from an oil spill are provided and exemplified by an emergency pit. Dependences and systems of differential equations have been obtained to assess parameters of mass transfer from the open surface of a liquid multicomponent mixture.
Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian
2015-09-22
A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.
Effects of chemical releases by the STS-3 Orbiter on the ionosphere
NASA Technical Reports Server (NTRS)
Pickett, J. S.; Murphy, G. B.; Kurth, W. S.; Goertz, C. K.; Shawhan, S. D.
1983-01-01
The Plasma Diagnostics Package, flown aboard STS-3 as part of the first Shuttle payload (OSS-1), recorded the effects of various chemical releases from the Orbiter. Changes in the plasma environment was observed during flash evaporator system releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electrostatic noise was enhanced and plasma density irregularities were observed to increase by 3 to 30 times with a spectrum which rose steeply and peaked below 6 Hz. In the case of water dumps, background electrostatic noise was enhanced at frequencies below about 3 kHz and suppressed at frequencies above 2 kHz. Thruster activity also stimulated electrostatic noise with a spectrum which peaked at approximately 0.5 kHz. In addition, ions with energies up to 1 keV were seen during some thruster events.
On the Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Vaden, T.; Imre, D. G.; Beránek, J.; Shrivastava, M.
2010-12-01
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort that is focused on finding additional SOA sources, but leaves many of the fundamental assumptions that are used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets that form instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using an accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory generated α-pinene SOA and ambient atmospheric SOA. The experimental setup was first tested by measuring the evaporation kinetics of single component organic particles of known vapor pressure. We show that, as expected for liquid droplets, smaller particles evaporate faster, and that these data yield the correct vapor pressure. We then study the evaporation kinetics of α-pinene SOA and find that evaporation proceeds in two stages: a fast stage, during which 50% of the particle volume evaporates in ~100 minutes, followed by a slower stage, when additional 25% evaporate in 1400 minutes, which is in sharp contrast to the ~10 minutes timescale predicted by current kinetic models. α-pinene SOA formed in the presence of “spectator” hydrophobic organic vapors like dioctyl phthalate, dioctyl sebacate, pyrene, or their mixture, were shown to adsorb noticeable amounts of these organics, forming what we term here ‘coated’ SOA particles. We show that these adsorbed coatings reduce evaporation rates of SOA particles. Moreover, aging of coated SOA particles dramatically reduces evaporation rates, and in some cases nearly stops it. For example, aging of SOA with adsorbed pyrene reduces evaporation rate to the point that only ~11% of the particle volume evaporates within 24 hrs. For all cases studied in this work, SOA evaporation behavior is size-independent and does not follow the evaporation kinetics of liquid droplets, which is in sharp contrast with model assumptions. To address the question of how closely the laboratory observations described above reflect reality in the atmosphere we characterized the evaporation kinetics of size-selected atmospheric SOA particles sampled in-situ during the recent Carbonaceous Aerosols and Radiative Effects Study (CARES) field campaign. We find that the evaporation of ambient SOA is very similar to that of coated and aged laboratory-generated α-pinene SOA. Ambient SOA particles in Sacramento, CA lose between 17% and 25% of their volume in 6 hours. Like laboratory SOA, their evaporation is size-independent and does not follow the kinetics of liquid droplets. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging - all indicate the need to reformulate the way SOA formation and evaporation are treated by models.
NASA Astrophysics Data System (ADS)
Normile, H.; Papelis, C.; Kibbey, T. C. G.
2015-12-01
The focus of this work was on investigating how dynamic rates of evaporation affect the fate and transport of pharmaceutical compounds in unsaturated porous media. The environmental processes of saturation and evaporation control local concentrations of contaminants in pore water of porous media. Specifically, the rate of evaporation can affect the identity and extent of solid formation of a pharmaceutical compound. A range of experiments with different evaporation rates were conducted on sand columns saturated with a solution of ciprofloxacin, a fluoroquinolone antibiotic. Experiments were designed to simulate increased and decreased pore-water concentrations of a compound due to evaporation and resaturation, respectively. Results suggest that varied rates of evaporation cause differences in compound adsorption behavior. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary models exploring the impact on contaminant mobility are discussed.
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.
1999-01-01
The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of the inside convection on the wetting and spreading processes can be figured out through comparison of the drop profiles with and without inside convection when the sessile drop is placed at different evaporation conditions.
Zhou, Zhaolu; Cao, Chong; Cao, Lidong; Zheng, Li; Xu, Jun; Li, Fengmin; Huang, Qiliang
2018-04-05
The evaporation kinetics of pesticide droplets deposited on a leaf surface can affect their application efficiency. Evaporation of droplets on the hydrophobic leaves has received considerable attention, but little is known about hydrophilic leaf surfaces. In this study, the effect of surfactant concentration on the evaporation of droplets deposited on cotton leaves was investigated. The evaporation time is roughly decreased for concentrations ranging from 0% to 0.01% and increased from 0.01% to 0.10%. Contrary to the widely held belief that pesticide retention on target crops can rapidly be formed only with surfactant concentrations exceeding the CMC (critical micelle concentration), this study demonstrates that, on hydrophilic cotton leaves, fast evaporation of the droplet at surfactant concentrations of 0.01% (CMC) can reduce the volume quickly, lower the loss point and enhance pesticide retention. In addition, the evolution of droplet volume, height and contact angle on the cotton leaf surface were measured to confirm this conclusion. The result presented herein can be used to guide the use of surfactants and pesticides in agriculture. Copyright © 2018 Elsevier B.V. All rights reserved.
Gravity Effects in Condensing and Evaporating Films
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.
2004-01-01
A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.
Building micro-soccer-balls with evaporating colloidal fakir drops
NASA Astrophysics Data System (ADS)
Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.
2013-11-01
Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...
2015-09-22
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis
Ross, David S.; Deamer, David
2016-01-01
The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life’s origins: (i) how did the polymers arise in an aqueous prebiotic world; and (ii) once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H2O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier’s principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5–10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly “ratchets up” the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers. PMID:27472365
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.
NASA Astrophysics Data System (ADS)
Norouzi Rad, M.; Shokri, N.
2014-12-01
Understanding the physics of water evaporation from saline porous media is important in many processes such as evaporation from porous media, vegetation, plant growth, biodiversity in soil, and durability of building materials. To investigate the effect of particle size distribution on the dynamics of salt precipitation in saline porous media during evaporation, we applied X-ray micro-tomography technique. Six samples of quartz sand with different grain size distributions were used in the present study enabling us to constrain the effects of particle and pore sizes on salt precipitation patterns and dynamics. The pore size distributions were computed using the pore-scale X-ray images. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for one day with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of fewer evaporation sites at the surface. The presence of more preferential evaporation sites at the surface of finer sands significantly modified the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size covering larger area at the surface as opposed to the thicker patchy crusts in samples with larger particle sizes. Our results provide new insights regarding the physics of salt precipitation in porous media during evaporation.
NASA Astrophysics Data System (ADS)
Mahmud, Md. Almostasim; MacDonald, Brendan D.
2017-01-01
In this paper we experimentally examine evaporation flux distributions and modes of interfacial energy transport for continuously fed evaporating spherical sessile water droplets in a regime that is relevant for applications, particularly for evaporative cooling systems. The contribution of the thermal conduction through the vapor phase was found to be insignificant compared to the thermal conduction through the liquid phase for the conditions we investigated. The local evaporation flux distributions associated with thermal conduction were found to vary along the surface of the droplet. Thermal conduction provided a majority of the energy required for evaporation but did not account for all of the energy transport, contributing 64 ±3 % , 77 ±3 % , and 77 ±4 % of the energy required for the three cases we examined. Based on the temperature profiles measured along the interface we found that thermocapillary flow was predicted to occur in our experiments, and two convection cells were consistent with the temperature distributions for higher substrate temperatures while a single convection cell was consistent with the temperature distributions for a lower substrate temperature.
Method for improving accuracy in full evaporation headspace analysis.
Xie, Wei-Qi; Chai, Xin-Sheng
2017-05-01
We report a new headspace analytical method in which multiple headspace extraction is incorporated with the full evaporation technique. The pressure uncertainty caused by the solid content change in the samples has a great impact to the measurement accuracy in the conventional full evaporation headspace analysis. The results (using ethanol solution as the model sample) showed that the present technique is effective to minimize such a problem. The proposed full evaporation multiple headspace extraction analysis technique is also automated and practical, and which could greatly broaden the applications of the full-evaporation-based headspace analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaporation, diffusion and self-assembly at drying interfaces.
Roger, K; Sparr, E; Wennerström, H
2018-04-18
Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... standard for each test fuel system. (e) You may demonstrate that your engine family complies with the... following: (1) You have test results showing that evaporative emissions in the family are at or below the... paragraph (e) of this section. (b) Your engine family does not comply if any fuel system representing that...
Code of Federal Regulations, 2012 CFR
2012-07-01
... standard for each test fuel system. (e) You may demonstrate that your engine family complies with the... following: (1) You have test results showing that evaporative emissions in the family are at or below the... paragraph (e) of this section. (b) Your engine family does not comply if any fuel system representing that...
Code of Federal Regulations, 2010 CFR
2010-07-01
... standard for each test fuel system. (e) You may demonstrate that your engine family complies with the... following: (1) You have test results showing that evaporative emissions in the family are at or below the... paragraph (e) of this section. (b) Your engine family does not comply if any fuel system representing that...
Code of Federal Regulations, 2014 CFR
2014-07-01
... standard for each test fuel system. (e) You may demonstrate that your engine family complies with the... following: (1) You have test results showing that evaporative emissions in the family are at or below the... paragraph (e) of this section. (b) Your engine family does not comply if any fuel system representing that...
Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher
2015-01-01
The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...
Evaporation components of a boreal forest: variations during the growing season
NASA Astrophysics Data System (ADS)
Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.
1997-10-01
To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.
NASA Astrophysics Data System (ADS)
Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.
2016-11-01
Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.
NASA Astrophysics Data System (ADS)
Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.
2013-12-01
Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.
A new structure of permeable pavement for mitigating urban heat island.
Liu, Yong; Li, Tian; Peng, Hangyu
2018-09-01
The urban heat island (UHI) effect has been a great threat to human habitation, and how to mitigate this problem has been a global concern over decades. This paper addresses the cooling effect of a novel permeable pavement called evaporation-enhancing permeable pavement, which has capillary columns in aggregate and a liner at the bottom. To explore the efficiency of mitigating the UHI, bench-scale permeable pavement units with capillary columns were developed and compared with conventional permeable pavement. Criteria of capillary capacities of the column, evaporation rates, and surface temperature of the pavements were monitored under simulated rainfall and Shanghai local weather conditions. Results show the capillary column was important in increasing evaporation by lifting water from the bottom to the surface, and the evaporation-enhancing permeable pavement was cooler than a conventional permeable pavement by as much as 9.4°C during the experimental period. Moreover, the cooling effect of the former pavement could persist more than seven days under the condition of no further rainfall. Statistical analysis result reveals that evaporation-enhancing permeable pavement can mitigate the UHI effect significantly more than a conventional permeable pavement. Copyright © 2018 Elsevier B.V. All rights reserved.
Gravity Effects in Microgap Flow Boiling
NASA Technical Reports Server (NTRS)
Robinson, Franklin; Bar-Cohen, Avram
2017-01-01
Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.
From Air Temperature to Lake Evaporation on a Daily Time Step: A New Empirical Approach
NASA Astrophysics Data System (ADS)
Welch, C.; Holmes, T. L.; Stadnyk, T. A.
2016-12-01
Lake evaporation is a key component of the water balance in much of Canada due to the vast surface area covered by open water. Hence, incorporating this flux effectively into hydrological simulation frameworks is essential to effective water management. Inclusion has historically been limited by the intensive data required to apply the energy budget methods previously demonstrated to most effectively capture the timing and volume of the evaporative flux. Widespread, consistent, lake water temperature and net radiation data are not available across much of Canada, particularly the sparsely populated boreal shield. We present a method to estimate lake evaporation on a daily time step that consists of a series of empirical equations applicable to lakes of widely varying morphologies. Specifically, estimation methods that require the single meteorological variable of air temperature are presented for lake water temperature, net radiation, and heat flux. The methods were developed using measured data collected at two small Boreal shield lakes, Lake Winnipeg North and South basins, and Lake Superior in 2008 and 2009. The mean average error (MAE) of the lake water temperature estimates is generally 1.5°C, and the MAE of the heat flux method is 50 W m-2. The simulated values are combined to estimate daily lake evaporation using the Priestley-Taylor method. Heat storage within the lake is tracked and limits the potential heat flux from a lake. Five-day running averages compare well to measured evaporation at the two small shield lakes (Bowen Ratio Energy Balance) and adequately to Lake Superior (eddy covariance). In addition to air temperature, the method requires a mean depth for each lake. The method demonstrably improves the timing and volume of evaporative flux in comparison to existing evaporation methods that depend only on temperature. The method will be further tested in a semi-distributed hydrological model to assess the cumulative effects across a lake-dominated catchment in the Lower Nelson River basin.
On the evaporation of solar dark matter: spin-independent effective operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zheng-Liang; Wu, Yue-Liang; Yang, Zi-Qing
2016-09-13
As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, wemore » determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.« less
Li, Hui-dong; Guan, De-xin; Wang, An-zhi; Wu, Jia-Bing; Jin, Chang-jie; ShiI, Ting-ting
2013-04-01
Based on the measurement data of water vapor flux by open-path eddy covariance system and of the micrometeorological factors in broad-leaved Korean pine forest in Changbai Mountains during the snow cover period from 2002 to 2005, this paper analyzed the dynamics of snow cover evaporation and the relationships between the evaporation and meteorological factors. The energy balanced ratio during the snow cover period was 79. 9% , and the latent heat flux accounted for 21. 4% of net radiation. The diurnal variation of the evaporation presented a single-peak curve, and the evaporation rate during snow-melting period was higher than that during stable snow cover period. The half-hour evaporation presented liner relationship with net radiation and quadratic relationship with air temperature. The daily evaporation presented quadratic relationship with net radiation and exponential relationship with air temperature. The daily evaporation presented a dynamic trend of decreasing-stable-increasing, with the maximum at increasing stage and the minimum at stable stage. The maximum value of the daily evaporation was 0.73 mm d-1, and the minimum value was 0. 004 mm d-1. During the snow cover periods of 2002-2003, 2003-2004 and 2004-2005, the annual evaporation was 27.6, 25.5, and 22.9 mm, accounting for 37.9% , 19.5% , and 30. 0% of the precipitation in the same periods, respectively. The mean value of the daily evaporation in the three periods was 0. 17, 0. 19, and 0. 17 mm d-1, respectively.
Progress of cryogenic pulsating heat pipes at UW-Madison
NASA Astrophysics Data System (ADS)
Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin
2017-12-01
Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.
NASA Astrophysics Data System (ADS)
Peake, C.; Riveros-Iregui, D.; Lenters, J. D.; Zlotnik, V. A.; Ong, J.
2013-12-01
The western Sand Hills of Nebraska exhibit many shallow saline lakes that actively mediate groundwater-lake-atmospheric exchanges. The region is home to the largest stabilized dune field in the western hemisphere. Most of the lakes in the western Sand Hills region are saline and support a wide range of ecosystems. However, they are also highly sensitive to variability in evaporative and groundwater fluxes, which makes them a good laboratory to examine the effects of climate on the water balance of interdunal lakes. Despite being semiarid, little is known about the importance of groundwater-surface water interactions on evaporative rates, or the effects of changes in meteorological and energy forcings on the diel, and seasonal dynamics of evaporative fluxes. Our study is the first to estimate evaporation rates from one of the hundreds of shallow saline lakes that occur in the western Sand Hills region. We applied the energy balance Bowen ratio method at Alkali Lake, a typical saline western Sand Hills lake, over a three-year period (2007-2009) to quantify summer evaporation rates. Daily evaporation rates averaged 5.5 mm/day from July through September and were largely controlled by solar radiation on a seasonal and diel scales. Furthermore, the range of annual variability of evaporation rates was low. Although less pronounced, groundwater level effects on evaporation rates were also observed, especially from August through October when solar radiation was lower. The lake exhibits significant fluctuation in lake levels and combined with a shallow lake bed, large changes in lake surface area are observed. Our findings also show that with the onset of summer conditions, lake surface area can change very rapidly (e.g. 24% of its surface area or ~16.6 hectares were lost in less than ~2 months). In every year summer evaporation exceeded annual rainfall by an average of 28.2% suggesting that groundwater is a significant component of the lake water balance, it is important for sustaining life of surrounding ecosystems, and during the growing season it is transiently stored in the lake before it is rapidly lost to the atmosphere.
Design Study of DESCANT - DEuterated SCintillator Array for Neutron Tagging
NASA Astrophysics Data System (ADS)
Wong, James; Garrett, P. E.
2007-10-01
The fusion-evaporation reaction has been a useful tool for studying nuclei. A program of such reactions is being planned to take place at the TRIUMF facility in Vancouver, Canada using the TIGRESS array of gamma-ray detectors. A particular advantage of using these reactions is that they probe nuclei at moderate-to-high angular momenta. It would be of great interest to extend the study of high-spin states to neutron-rich systems. Following the formation of the fused compound system, the highly-excited state may lose energy by ``evaporating'' particles. Neutron evaporation is the predominant decay mode from neutron-rich compound systems so neutron detectors will be required. The probability of neutrons multiple scattering is quite high so a detector array must be able to differentiate between multiple neutrons evaporating from the reaction and a single neutron scattering multiple times. To address this issue we investigate the use of a novel neutron detector array -- one based on an array of deuterated liquid scintillators as neutron detectors. Results from early feasibility tests will be presented, along with the status of our GEANT4 simulations of the array performance.
Heat storage system utilizing phase change materials government rights
Salyer, Ival O.
2000-09-12
A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.
Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels
NASA Astrophysics Data System (ADS)
Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua
2015-11-01
Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.
1999-01-01
A model combining the rate of carbon assimilation with water and energy balance equations has been run using satellite and ancillary data for a period of 60 months (January 1986 to December 1990). Calculations for the Gediz basin area give mean annual evaporation as 395 mm, which is composed of 45% transpiration, 42% soil evaporation and 13% interception. The coefficient of interannual variation of evaporation is found to be 6%, while that for precipitation and net radiation are, respectively, 16% and 2%, illustrating that net radiation has an important effect in modulating interannual variation of evaporation. The mean annual water use efficiency (i.e., the ratio of net carbon accumulation and total evaporation) is ca. 1 g/sq m/mm, and has a coefficient of interannual variation of 5%. A comparison of the mean water use efficiency with field observations suggests that evaporation over the area is utilized well for biomass production. The reference crop evaporation for irrigated areas has annual mean and coefficient of variation as, respectively, 1176 mm and 3%. The total evaporation during three summer months of peak evaporation (June-August) is estimated to be about 575 mm for irrigated crops like maize and cotton. Seasonal variations of the fluxes are presented.
Radio Frequency Propagation and Performance Assessment Suite (RFPPAS)
2016-11-15
Intelligence, Surveillance, and Reconnaissance Clutter-to-Noise Ratio Central Processing Unit Evaporation Duct Climatology Engineer’s Refractive Effects...and maximum trapped wavelength (right) PCS display ...23 12. AREPS surface layer (evaporation duct) climatology regions...evaporation duct profiles computed from surface layer climatological statistics. The impetus for building such a database is to provide a means for instant
Alternative Methods for the Reduction of Evaporation: Practical Exercises for the Science Classroom
ERIC Educational Resources Information Center
Schouten, Peter; Putland, Sam; Lemckert, Charles J.; Parisi, Alfio V.; Downs, Nathan
2012-01-01
Across the world, freshwater is valued as the most critically important natural resource, as it is required to sustain the cycle of life. Evaporation is one of the primary environmental processes that can reduce the amount of quality water available for use in industrial, agricultural and household applications. The effect of evaporation becomes…
Multilayer composite material and method for evaporative cooling
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
2002-01-01
A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.
Optimized evaporation from a microchannel heat sink
NASA Astrophysics Data System (ADS)
Monazami, Reza; Haj-Hariri, Hossein
2011-11-01
Two-phase heat transfer devices, benefiting the unique thermal capacities of phase- change, are considered as the top choice for a wide range of applications involving cooling and temperature control. Evaporation and condensation in these devices usually take place on porous structures. It is widely accepted that they improve the evaporation rates and the overall performance of the device. The liquid menisci formed on the pores of a porous material can be viewed as the active sites of evaporation. Therefore, quantifying the rate of evaporation from a single pore can be used to calculate the total evaporation taking place in the evaporator given the density and the average size of the pores. A microchannel heat sink can be viewed as an structured porous material. In this work, an analytical model is developed to predict the evaporation rate from a liquid meniscus enclosed in a microchannel. The effects of the wall superheat and the width of the channel on the evaporation profile through the meniscus are studied. The results suggest that there is an optimum size for the width of the channel in order to maximize the thermal energy absorbed by the unit area of the heat sink as an array of microchannels.
Evaporation-Driven Charge Redistribution and Current Generation for Energy Harvesting Applications
2008-12-01
has occurred and the system has a net positive energy gain, ∆Ecycle, as given by equation (5). 2 2 1 outstorecycle VCE =∆ (5) 5.5 Voltage...then the energy gained using the constant charge model can be represented by equation ( 2 ). minmaxminmax )( 2 1 VVCCE −=∆ ( 2 ) 3. DEVICE...evaporation. Evaporation can be the caused by changes in multiple environmental conditions such as: ( 1 ) percent relative humidity, ( 2 ) temperature, (3
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura
2011-01-01
This paper describes thermal vacuum testing of a proto-flight miniature loop heat pipe (MLHP) with two evaporators and two condensers designed for future small systems applications requiring low mass, low power and compactness. Each evaporator contains a wick with an outer diameter of 6.35 mm, and each has its own integral compensation chamber (CC). Miniaturization of the loop components reduces the volume and mass of the thermal system. Multiple evaporators provide flexibility for placement of instruments that need to be maintained at the same temperature, and facilitate heat load sharing among instruments, reducing the auxiliary heater power requirement. A flow regulator is used to regulate heat dissipations between the two condensers, allowing flexible placement of radiators on the spacecraft. A thermoelectric converter (TEC) is attached to each CC for control of the operating temperature and enhancement of start-up success. Tests performed include start-up, power cycle, sink temperature cycle, high power and low power operation, heat load sharing, and operating temperature control. The proto-flight MLHP demonstrated excellent performance in the thermal vacuum test. The loop started successfully and operated stably under various evaporator heat loads and condenser sink temperatures. The TECs were able to maintain the loop operating temperature within b1K of the desired set point temperature at all power levels and all sink temperatures. The un-powered evaporator would automatically share heat from the other powered evaporator. The flow regulator was able to regulate the heat dissipation among the radiators and prevent vapor from flowing into the liquid line.
Wolf, M B; Garner, R P
1997-01-01
A model was developed of transient changes in metabolic heat production and core temperature for humans subjected to cold conditions. It was modified to predict thermal effects of the upper parts of the body being sprayed with water from a system designed to reduce the smoke effects of an airplane fire. Temperature changes were computed at 25 body segments in response to water immersion, cold-air exposure, and windy conditions. Inputs to the temperature controller were: (a) temperature change signals from skin segments and (b) an integrated signal of the product of skin and head-core (hypothalamic) temperature changes. The controller stimulated changes in blood flow to skin and muscle and heat production by shivering. Two controller parameters were adjusted to obtain good predictions of temperature and heat-production experimental data in head-out, water-immersion (0 degree-28 degrees C) studies in humans. A water layer on the skin whose thickness decreased transiently due to evaporation was added to describe the effects of the water-spray system. Because the layer evaporated rapidly in a very cold and windy environment, its additional cooling effect over a 60-min exposure period was minimal. The largest additional decrease in rectal temperature due to the water layer was < 1 degree C, which was in normal conditions where total decreases were small.
Yu, Yang; Zhang, Shuzhen; Huang, Honglin
2010-08-01
Effects of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae on the behavior of Hg in soil-plant system were investigated using an artificially contaminated soil at the concentrations of 0, 1.0, 2.0, and 4.0 mg Hg kg(-1). Mercury accumulation was lower in mycorrhizal roots than in nonmycorrhizal roots when Hg was added at the rates of 2.0 and 4.0 mg kg(-1), while no obvious difference in shoot Hg concentration was found between mycorrhizal and nonmycorrhizal treatments. Mycorrhizal inoculation significantly decreased the total and extractable Hg concentrations in soil as well as the ratio of extractable to total Hg in soil. Equilibration sorption of Hg by soil was investigated, and the results indicated that mycorrhizal treatment enhanced Hg sorption on soil. The uptake of Hg was lower by mycorrhizal roots than by nonmycorrhizal roots. These experiments provide further evidence for the role of mycorrhizal inoculation in increasing immobilization of Hg in soil and reducing the uptake of Hg by roots. Calculation on mass balance of Hg in soil suggests the presence of Hg loss from soil presumably through evaporation, and AM inoculation enhanced Hg evaporation. This was evidenced by a chamber study to detect the Hg evaporated from soil.
Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination.
Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui
2016-04-13
Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.
Solvent refined coal reactor quench system
Thorogood, Robert M.
1983-01-01
There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.
Solvent refined coal reactor quench system
Thorogood, R.M.
1983-11-08
There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.
Mei, Viung C.; Chen, Fang C.
1997-01-01
A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.
A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartmentsmore » to their set point temperatures.« less
Mei, V.C.; Chen, F.C.
1997-04-22
A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.
Evaporation in equilibrium, in vacuum, and in hydrogen gas
NASA Technical Reports Server (NTRS)
Nagahara, Hiroko
1993-01-01
Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.
NASA Astrophysics Data System (ADS)
Choi, Jin-Ho; Seo, Kyong-Hwan
2017-06-01
This work seeks to find the most effective parameters in a deep convection scheme (relaxed Arakawa-Schubert scheme) of the National Centers of Environmental Prediction Climate Forecast System model for improved simulation of the Madden-Julian Oscillation (MJO). A suite of sensitivity experiments are performed by changing physical components such as the relaxation parameter of mass flux for adjustment of the environment, the evaporation rate from large-scale precipitation, the moisture trigger threshold using relative humidity of the boundary layer, and the fraction of re-evaporation of convective (subgrid-scale) rainfall. Among them, the last two parameters are found to produce a significant improvement. Increasing the strength of these two parameters reduces light rainfall that inhibits complete formation of the tropical convective system or supplies more moisture that help increase a potential energy to large-scale environment in the lower troposphere (especially at 700 hPa), leading to moisture preconditioning favorable for further development and eastward propagation of the MJO. In a more humid environment, more organized MJO structure (i.e., space-time spectral signal, eastward propagation, and tilted vertical structure) is produced.
Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei
2017-01-01
Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Isotope mass fractionation during evaporation of Mg2SiO4
NASA Technical Reports Server (NTRS)
Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Hashimoto, Akihiko
1990-01-01
Synthetic forsterite (Mg2SiO4) was partially evaporated in vacuum for various durations and at different temperatures. The residual charges obtained when molten Mg2SiO4 was evaporated to 12 percent of its initial mass were enriched in heavy isotopes by about 20, 30, and 15 per mil/amu for O, Mg, and Si, respectively, whereas solid forsterite evaporated to a similar residual mass fraction showed negligible fractionations. These results imply that calcium and aluminum-rich refractory inclusions in carbonaceous chondrites must have been at least partially molten in the primordial solar nebula if the observed large mass fractionation effects were caused by evaporation processes in the nebula.
Long-term changes in river system hydrology in Texas
NASA Astrophysics Data System (ADS)
Zhang, Yiwen; Wurbs, Ralph
2018-06-01
Climate change and human actives are recognized as a topical issue that change long-term water budget, flow-frequency, and storage-frequency characteristics of different river systems. Texas is characterized by extreme hydrologic variability both spatially and temporally. Meanwhile, population and economic growth and accompanying water resources development projects have greatly impacted river flows throughout Texas. The relative effects of climate change, water resources development, water use, and other factors on long-term changes in river flow, reservoir storage, evaporation, water use, and other components of the water budgets of different river basins of Texas have been simulated in this research using the monthly version of the Water Rights Analysis Package (WRAP) modelling system with input databases sets from the Texas Commission on Environmental Quality (TCEQ) and Texas Water Development Board (TWDB). The results show that long-term changes are minimal from analysis monthly precipitation depths. Evaporation rates vary greatly seasonally and for much of the state appear to have a gradually upward trend. River/reservoir system water budgets and river flow characteristics have changed significantly during the past 75 years in response to water resources development and use.
Heat Pump Clothes Dryer Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo
A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model tomore » simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.« less
Numerical analysis of natural convection in liquid droplets by phase change
NASA Astrophysics Data System (ADS)
Duh, J. C.; Yang, Wen-Jei
1989-09-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Numerical analysis of natural convection in liquid droplets by phase change
NASA Technical Reports Server (NTRS)
Duh, J. C.; Yang, Wen-Jei
1989-01-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Isothermal evaporation of ethanol in a dynamic gas atmosphere.
Milev, Adriyan S; Wilson, Michael A; Kannangara, G S Kamali; Feng, Hai; Newman, Phillip A
2012-01-12
Optimization of evaporation and pyrolysis conditions for ethanol are important in carbon nanotube (CNT) synthesis. The activation enthalpy (ΔH(‡)), the activation entropy (ΔS(‡)), and the free energy barrier (ΔG(‡)) to evaporation have been determined by measuring the molar coefficient of evaporation, k(evap), at nine different temperatures (30-70 °C) and four gas flow rates (25-200 mL/min) using nitrogen and argon as carrier gases. At 70 °C in argon, the effect of the gas flow rate on k(evap) and ΔG(‡) is small. However, this is not true at temperatures as low as 30 °C, where the increase of the gas flow rate from 25 to 200 mL/min results in a nearly 6 times increase of k(evap) and decrease of ΔG(‡) by ~5 kJ/mol. Therefore, at 30 °C, the effect of the gas flow rate on the ethanol evaporation rate is attributed to interactions of ethanol with argon molecules. This is supported by simultaneous infrared spectroscopic analysis of the evolved vapors, which demonstrates the presence of different amounts of linear and cyclic hydrogen bonded ethanol aggregates. While the amount of these aggregates at 30 °C depends upon the gas flow rate, no such dependence was observed during evaporation at 70 °C. When the evaporation was carried out in nitrogen, ΔG(‡) was almost independent of the evaporation temperature (30-70 °C) and the gas flow rate (25-200 mL/min). Thus the evaporation of ethanol in a dynamic gas atmosphere at different temperatures may go via different mechanisms depending on the nature of the carrier gas.
Experimental Investigation of Heat Pipe Startup Under Reflux Mode
NASA Technical Reports Server (NTRS)
Ku, Jentung
2018-01-01
In the absence of body forces such as gravity, a heat pipe will start as soon as its evaporator temperature reaches the saturation temperature. If the heat pipe operates under a reflux mode in ground testing, the liquid puddle will fill the entire cross sectional area of the evaporator. Under this condition, the heat pipe may not start when the evaporator temperature reaches the saturation temperature. Instead, a superheat is required in order for the liquid to vaporize through nucleate boiling. The amount of superheat depends on several factors such as the roughness of the heat pipe internal surface and the gravity head. This paper describes an experimental investigation of the effect of gravity pressure head on the startup of a heat pipe under reflux mode. In this study, a heat pipe with internal axial grooves was placed in a vertical position with different tilt angles relative to the horizontal plane. Heat was applied to the evaporator at the bottom and cooling was provided to the condenser at the top. The liquid-flooded evaporator was divided into seven segments along the axial direction, and an electrical heater was attached to each evaporator segment. Heat was applied to individual heaters in various combinations and sequences. Other test variables included the condenser sink temperature and tilt angle. Test results show that as long as an individual evaporator segment was flooded with liquid initially, a superheat was required to vaporize the liquid in that segment. The amount of superheat required for liquid vaporization was a function of gravity pressure head imposed on that evaporator segment and the initial temperature of the heat pipe. The most efficient and effective way to start the heat pipe was to apply a heat load with a high heat flux to the lowest segment of the evaporator.
Sub- and super-Maxwellian evaporation of simple gases from liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kann, Z. R.; Skinner, J. L., E-mail: skinner@chem.wisc.edu
2016-04-21
Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H{sub 2} from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and itmore » is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.« less
Influence of season and microclimate on fertility of dairy cows in a hot-arid environment
NASA Astrophysics Data System (ADS)
Ray, D. E.; Jassim, A. H.; Armstrong, D. V.; Wiersma, F.; Schuh, J. D.
1992-09-01
Records were obtained over a 3 year period from six Holstein dairy farms of 300 to 500 cows each in the Phoenix, Ariz. area. Dairies were selected on the basis of similar management practices, herd size, milk production and facilities (with the exception of cooling systems). Microclimatic modifications (two dairies each) were shade only (approximately 3.7 m2/cow), evaporative-cooled shades and low-pressure water foggers under the shades. Data were categorized by season of calving (spring, Feb. May; summer, June Sept.; and fall, Oct. Jan.). Traits evaluated were calving interval, days open and services/conception. Calving interval was shortest for cows calving in the spring (378 days), intermediate in fall (382 days) and longest in summer (396 days). Similar seasonal trends were observed for days open (103, 103 and 119 days, respectively) and services/conception (1.54, 1.81 and 1.93, respectively). All differences between spring and summer were significant ( P < 0.05). Calving interval and days open were less for evaporative-cooled groups (374 and 98 days, respectively), with no difference between shade only and foggers (391 and 392 days, 112 and 116 days, respectively). Services/conception were similar for all groups (1.72 to 1.79). A significant interaction between microclimate and season for services/conception could be interpreted as (i) smaller season differences for evaporative-cooled groups than for shade or foggers, or (ii) a change in the ranking of control and fogger groups during summer versus fall. Evaporative cooling was more effective than fogging for reducing the detrimental effects of seasonal high temperatures on fertility.
Studying Cracking and Oil Invasion in Porous Medium During Drying
NASA Astrophysics Data System (ADS)
Jin, Qiu
We study two interesting phenomena occurred during the evaporation of solvent in porous medium: first, the cracking behavior; and second, the expanding mechanism and the collecting methods of the non-evaporative phase. In the first part of this thesis, we visualize the cracking behavior of colloidal suspensions during drying by a confocal microscope. We develop an effective method which can completely eliminate cracking during drying: by adding emulsion droplets into colloidal suspensions, we can systematically decrease the amount of cracking, and eliminate it completely above a critical droplet concentration. We also find another effect that the emulsion droplets can bring: it varies the speed of air invasion and provides a powerful method to adjust drying rate. Besides, we investigate the samples' fundamental mechanical properties with a rheometer and clarify the underlying physical mechanism for the decreasing of crack amounts. With the effective control over cracking and drying rate, our study may find important applications in many drying and cracking related industrial processes. In the second part of the thesis, we conduct a study on the expanding mechanism and collecting methods of the non-evaporative phase in porous medium, which is inspired by a practical pollution problem that occurs when oil spills to the sandy beach. We build a system in a smaller scale to mimic the practical pollution and investigate the distribution change of the polluting phase as the flushing cycle increases. We find an obvious expansion of the polluting phase after several flushing cycles in both hydrophilic and hydrophobic porous media, but with different distributions and expanding behaviors. We explained this difference by analyzing the pressure distribution in the system at the pore level. Finally, we develop two methods to concentrate the polluting phase in some particular regions, which is beneficial to collect and solve the practical pollution problem.
Transport phenomena in the micropores of plug-type phase separators
NASA Technical Reports Server (NTRS)
Fazah, M. M.
1995-01-01
This study numerically investigates the transport phenomena within and across a porous-plug phase separator. The effect of temperature differential across a single pore and of the sidewall boundary conditions, i.e., isothermal or linear thermal gradient, are presented and discussed. The effects are quantified in terms of the evaporation mass flux across the boundary and the mean surface temperature. A two-dimensional finite element model is used to solve the continuity, momentum, and energy equations for the liquid. Temperature differentials across the pore interface of 1.0, and 1.5 K are examined and their effect on evaporation flux and mean surface temperature is shown. For isothermal side boundary conditions, the evaporation flux across the pore is directly proportional and linear with Delta T. For the case of an imposed linear thermal gradient on the side boundaries, Biot numbers of 0.0, 0.15, and 0.5 are examined. The most significant effect of Biot number is to lower the overall surface temperature and evaporation flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boreyko, Jonathan B; Mruetusatorn, Prachya; Sarles, Stephen A
Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers ( DIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemi-spherical volumes. In the second regime, the combined effects of themore » shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a bending moment corresponding to a critical shear stress, the buckling bilayer fissions a vesicle to regulate its shape and stress. The DIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.« less
Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.
Armao, Joseph J; Lehn, Jean-Marie
2016-10-17
Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Wang, Jianhua; Davis, Andrew M.; Hashimoto, Akihiko; Clayton, Robert N.
1993-01-01
Though the origin of calcium- and aluminum-rich inclusions (CAI's) in carbonaceous chondrites is till a disputed issue, evaporation is no doubt one of the most important processes for the formation of CAI's in the early solar nebula. The mechanism for production of large isotopic mass fractionation effects in magnesium, silicon, oxygen, and chromium in CAI's can be better understood by examining isotopic fractionation during the evaporation of minerals. New evaporation experiments were performed on single-crystal forsterite. The magnesium isotopic distribution near the evaporating surfaces of the residues using a modified AEI IM-20 ion microprobe to obtain rastered beam depth profiles was measured. A theoretical model was used to explain the profiles and allowed determination of the diffusion coefficient of Mg(++) in forsterite at higher temperatures than previous measurements. The gas/solid isotopic fractionation factor for magnesium for evaporation from solid forsterite was also determined and found to be nearly the same as that for evaporation of liquid Mg2SiO4.
Urban evaporation rates for water-permeable pavements.
Starke, P; Göbel, P; Coldewey, W G
2010-01-01
In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.
Bong, Yeon-Sik; Lee, Kwang-Sik; Shin, Woo-Jin; Ryu, Jong-Sik
2008-09-01
We have analyzed the oxygen and hydrogen isotopic composition of juices from fruits and vegetables collected from a small orchard in order to investigate the differences in isotopic enrichment and evaporation intensity between fast-growing vegetables and slow-growing fruits grown under the same climatic conditions. The oxygen and hydrogen isotope levels were much higher in the juices of the fruits and vegetables than in the source waters in which they grew because of evaporation effects. According to our data, fast-growing vegetables are subject to greater evaporation than slow-growing fruits. An evaporation experiment using the source water showed that the oxygen and hydrogen isotopic composition of the 60-80% residual fraction was similar to that of the isotopically enriched grape juice, whereas those of the plume and tomato juices were very close to that of the 80-90% residual fraction, thus proving the effect of evaporation. Copyright (c) 2008 John Wiley & Sons, Ltd.
Testing of the Multi-Fluid Evaporator Engineering Development Unit
NASA Technical Reports Server (NTRS)
Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David
2007-01-01
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.
Braga, Lucylea P M; Palhares, Durval B
2007-01-01
To assess the effects of evaporation and pasteurization of human milk on its biochemical and immunological composition and on its osmolarity. The samples of mature human milk were categorized into four study groups: in natura human milk, pasteurized human milk, human milk evaporated at 70% of the baseline volume and human milk pasteurized and evaporated at 70%, with 12 different samples of milk in each group. The samples were used to determine the concentrations of sodium, potassium, calcium, phosphorus, magnesium, protein, fat, lactose, immunoglobulin A and osmolarity. The pasteurization of human milk did not show statistically significant changes in the concentration of sodium, potassium, calcium, phosphorus, magnesium, protein, fat, lactose, or in osmolarity; however, it showed remarkable reduction in the mean concentration of immunoglobulin A. Evaporation had a mean increase of 38% in the concentration of sodium, potassium, calcium, phosphorus, magnesium, protein, fat and lactose and mean reduction of 45% in the concentration of immunoglobulin A, without significant change in osmolarity in unprocessed milk. By evaporation at 70% of the baseline value of human milk, it is possible to obtain human milk that meets the nutritional requirements recommended for preterm infants, except for calcium and phosphorus.
Accounting for rainfall evaporation using dual-polarization radar and mesoscale model data
NASA Astrophysics Data System (ADS)
Pallardy, Quinn; Fox, Neil I.
2018-02-01
Implementation of dual-polarization radar should allow for improvements in quantitative precipitation estimates due to dual-polarization capability allowing for the retrieval of the second moment of the gamma drop size distribution. Knowledge of the shape of the DSD can then be used in combination with mesoscale model data to estimate the motion and evaporation of each size of drop falling from the height at which precipitation is observed by the radar to the surface. Using data from Central Missouri at a range between 130 and 140 km from the operational National Weather Service radar a rain drop tracing scheme was developed to account for the effects of evaporation, where individual raindrops hitting the ground were traced to the point in space and time where they interacted with the radar beam. The results indicated evaporation played a significant role in radar rainfall estimation in situations where the atmosphere was relatively dry. Improvements in radar estimated rainfall were also found in these situations by accounting for evaporation. The conclusion was made that the effects of raindrop evaporation were significant enough to warrant further research into the inclusion high resolution model data in the radar rainfall estimation process for appropriate locations.
Influence of some design parameters on the thermal performance of domestic refrigerator appliances
NASA Astrophysics Data System (ADS)
Rebora, Alessandro; Senarega, Maurizio; Tagliafico, Luca A.
2006-07-01
This paper presents a thermal study on chest-freezers, the small refrigerators used in domestic and supermarket applications. A thermal and energy model of a particular kind of these refrigerators, the “hot-wall” (or “skin condenser”) refrigerator, is developed and used to perform sensitivity and design optimisation analysis for given working temperatures and useful volume of the refrigerated cell. A finite-element heat transfer model of the refrigerator box is coupled to the complete thermodynamic model of the refrigerating plant, including real working conditions (compressor efficiency, friction pressure losses and so on). A sensitivity study of the main design parameters affecting the global refrigerator performance has been developed (for fixed working temperatures) with reference to the thickness of the metallic plates, to the evaporator and condenser tube diameters and to the evaporator tube pitch (with fixed evaporator-to-condenser tube pitch ratio). The results obtained show that the proposed sensitivity analysis can yield quite reliable results (in comparison with much more complex, albeit more accurate mathematical optimisation algorithms) using small computational resources. The great importance of 2-D heat conduction in the metallic plates is shown, evidencing how the plate thickness and the evaporator and condenser tube diameters affect the global performance of the system according to the well-known “fin efficiency” effect. The influence of the evaporator and condenser tube diameters on the friction pressure losses is also outlined. Some practical suggestions are made in conclusion, regarding the criteria which should be adopted in the thermal design of a hot-wall refrigerator.
Carbonate deposition on tail feathers of ruddy ducks using evaporation ponds
Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.
1989-01-01
Substantial carbonate deposits were observed on rectrices of Ruddy Ducks (Oxyura jamaicensis) collected during 1982-1984 on evaporation ponds in the San Joaquin Valley, California. Carbonate deposits were composed of about 75% aragonite and 25% calcite, both polymorphous forms of CaCO3. Significantly more carbonate deposits were observed on Ruddy Ducks as length of exposure to agricultural drain water increased, during the 1983-1984 field season when salt concentrations in the ponds were higher, and in certain evaporation-pond systems.
Dynamics of hot rotating nuclei
NASA Astrophysics Data System (ADS)
Garcias, F.; de La Mota, V.; Remaud, B.; Royer, G.; Sébille, F.
1991-02-01
The deexcitation of hot rotating nuclei is studied within a microscopic semiclassical transport formalism. This framework allows the study of the competition between the fission and evaporation channels of deexcitation, including the mean-field and two-body interactions, without shape constraint for the fission channel. As a function of initial angular momenta and excitation energies, the transitions between three regimes is analyzed [particle evaporation, binary (ternary) fussion and multifragmentation], which correspond to well-defined symmetry breakings in the inertia tensor of the system. The competition between evaporation and binary fission is studied, showing the progressive disappearance of the fission process with increasing excitation energies, up to a critical point where nuclei pass directly from evaporation to multifragmentation channels.
NASA Astrophysics Data System (ADS)
Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy
2018-06-01
Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.
Passive decay heat removal system for water-cooled nuclear reactors
Forsberg, Charles W.
1991-01-01
A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.
Micro Machining Enhances Precision Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.
Shaitan, K V; Armeev, G A; Shaytan, A K
2016-01-01
We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an aqueous microenvironment surrounding the protein.
Investigating the Control of Ocean-Atmospheric Oscillations on Global Terrestrial Evaporation
NASA Astrophysics Data System (ADS)
Martens, B.; Waegeman, W.; Dorigo, W.; Verhoest, N.; Miralles, D. G.
2017-12-01
Intra-annual and multi-decadal variability in Earth's climate is strongly driven by periodic oscillations in the coupled state of our atmosphere and ocean. These oscillations do not only impact climate in nearby regions, but can also have an effect on the climate in remote areas, a phenomenon that is often referred to as teleconnection. Because changes in local climate immediately affect terrestrial ecosystems through a series of complex processes, ocean-atmospheric oscillations are expected to influence land evaporation; i.e. the return flux of water from land into the atmosphere. In this presentation, the effects of ocean-atmospheric oscillations on global terrestrial evaporation are analysed. We use multi-decadal, satellite-based observations of different climate variables (air temperature, radiation, precipitation) in combination with a simple supervised learning method - the Least Absolute Shrinkage and Selection Operator - to detect the impact of sixteen leading ocean-atmospheric oscillations on terrestrial evaporation. The latter is retrieved using the Global Land Evaporation Amsterdam Model (GLEAM). The analysis reveals hotspot regions in which more than 30% of the inter-annual variability in terrestrial evaporation can be explained by ocean-atmospheric oscillations. The impact is different per region and season, and can typically be attributed to a small subset of oscillations. For instance, the dynamics in terrestrial evaporation over eastern Australia are substantially impacted by both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) during Austral spring. Using the same learning method, but targeting terrestrial evaporation based on its local climatic drivers (air temperature, precipitation, and radiation), shows the dominant control of precipitation on terrestrial evaporation in Australia, suggesting that both ENSO and IOD affect the precipitation, in his turn influencing evaporation. The latter is confirmed by regressing precipitation to the ocean-atmospheric oscillations. The results of our study allow for a better understanding of the link between ocean-atmosphere dynamics and terrestrial bio-geochemical cycles, and may help improve the prediction of future changes in the water cycle over the continents.
NASA Astrophysics Data System (ADS)
Wang, J.; Nichols, J. E.; Huang, Y.
2009-12-01
It is important to understand how evaporation from wetlands changes with climate. To do this, we have developed a paleoevaporation proxy for use in ombrotrophic peatland sediments. Using compound specific hydrogen isotopic ratios of vascular plant and Sphagnum biomarkers, we can quantitatively reconstruct past changes in evaporation. The contrast in H isotopic ratios of water available to living Sphagnum and water in the acrotelm can be used to estimate “f”—the fraction of water remaining after evaporation. Vascular plant leaf waxes record H isotopic ratios of precipitation which is little affected by evaporation, whereas the Sphagnum biomarker, C23 n-alkane, records H isotopic ratios of the water inside its cells and between its leaves, which is strongly affected by evaporation at the bog surface. Evaporation changes can then be calculated with the H-isotopic ratios of the two types of biomarkers. We calibrated the apparent fractionation of D/H ratios from source water to C23 n-alkane with lab-grown Sphagnum. We also present several reconstructions of paleoevaporation from peatlands throughout eastern North America. By comparison with overall hydrologic balance, we are able to understand the varying role of evaporation in the hydrologic system in both time and space.
Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.
Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M
2015-11-01
We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.
Advanced readout methods for superheated emulsion detectors
NASA Astrophysics Data System (ADS)
d'Errico, F.; Di Fulvio, A.
2018-05-01
Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.
Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jin; Kim, Dohyun, E-mail: dohyun.kim@mju.ac.kr; Chung, Minsub
2015-01-15
We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (−5.1 °C/s) and a low freezing temperature (−14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.
Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth
2010-12-07
We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.
40 CFR 86.1821-01 - Evaporative/refueling family determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Type of refueling emission control system—non-integrated or integrated with the evaporative control... criteria listed above (such as non-canister control system approaches), the Administrator will establish... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...
The Evolution of Protective Covers for Army Aviation and Missile Systems
2010-02-01
reaction • Softening, melting and sublimination • Viscosity reduction and evaporation • Physical expansion • Decreased MTBF • Thermal aging: oxidation...structural change, chemical reaction • Softening, melting and sublimination • Viscosity reduction and evaporation • Physical expansion • Decreased MTBF
Membrane evaporator/sublimator investigation
NASA Technical Reports Server (NTRS)
Elam, J.; Ruder, J.; Strumpf, H.
1974-01-01
Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Li, Dongsheng; Xu, Wei
2015-04-01
In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less
Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Sheng; Ji, Jianghui; Mordasini, Christoph
2014-11-01
We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on the core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 R {sub ⊕}. We find that evaporation can lead to a bimodal distribution of planetary sizes and to anmore » 'evaporation valley' running diagonally downward in the orbital distance—planetary radius plane, separating bare cores from low-mass planets that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only accrete small primordial H/He envelopes and their envelope masses are proportional to their core masses. We also find that the population-wide effect of evaporation is not sensitive to the heating efficiency of energy-limited description. However, in two extreme cases, namely without evaporation or with a 100% heating efficiency in an evaporation model, the final size distributions show significant differences; these two scenarios can be ruled out from the size distribution of Kepler candidates.« less
ERIC Educational Resources Information Center
Battino, Rubin; Letcher, Trevor M.
2008-01-01
The cryophorus dramatically demonstrates the cooling effect of evaporation. This article describes some simple and easy-to-make cryophoruses, ideal for demonstrating evaporative cooling to students at all levels. The most dramatic effects occurred with cyclohexane and benzene, with water generally freezing more slowly. (Contains 4 notes, 2 tables,…
NASA Technical Reports Server (NTRS)
Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas
1997-01-01
Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-14
The projected ability of the Tank Farm to support DWPF startup and continued operation has diminished somewhat since revision 1 of this Plan. The 13 month delay in DWPF startup, which actually helps the Tank Farm condition in the near term, was more than offset by the 9 month delay in ITP startup, the delay in the Evaporator startups and the reduction to Waste Removal funding. This Plan does, however, describe a viable operating strategy for the success of the HLW System and Mission, albeit with less contingency and operating flexibility than in the past. HLWM has focused resources frommore » within the division on five near term programs: The three evaporator restarts, DWPF melter heatup and completion of the ITP outage. The 1H Evaporator was restarted 12/28/93 after a 9 month shutdown for an extensive Conduct of Operations upgrade. The 2F and 2H Evaporators are scheduled to restart 3/94 and 4/94, respectively. The RHLWE startup remains 11/17/97.« less
Development of a Direct Evaporator for the Organic Rankine Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna Post Guillen; Helge Klockow; Matthew Lehar
2011-02-01
This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage intomore » the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.« less
Experimental studies of surface modified oscillating heat pipes
NASA Astrophysics Data System (ADS)
Leu, Tzong-Shyng; Wu, Cheng-Han
2017-11-01
Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c < 10°) and hybrid (superhydrophilic within evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.
Maes, Wouter H; Heuvelmans, Griet; Muys, Bart
2009-10-01
Although the importance of green (evaporative) water flows in delivering ecosystem services has been recognized, most operational impact assessment methods still focus only on blue water flows. In this paper, we present a new model to evaluate the effect of land use occupation and transformation on water quantity. Conceptually based on the supply of ecosystem services by terrestrial and aquatic ecosystems, the model is developed for, but not limited to, land use impact assessment in life cycle assessment (LCA) and requires a minimum amount of input data. Impact is minimal when evapotranspiration is equal to that of the potential natural vegetation, and maximal when evapotranspiration is zero or when it exceeds a threshold value derived from the concept of environmental water requirement. Three refinements to the model, requiring more input data, are proposed. The first refinement considers a minimal impact over a certain range based on the boundary evapotranspiration of the potential natural vegetation. In the second refinement the effects of evaporation and transpiration are accounted for separately, and in the third refinement a more correct estimate of evaporation from a fully sealed surface is incorporated. The simplicity and user friendliness of the proposed impact assessment method are illustrated with two examples.
Evaporation of Lennard-Jones fluids.
Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S
2011-06-14
Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.
NASA Astrophysics Data System (ADS)
Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim
2017-06-01
This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.
Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi; Hata, Hiroo; Tonokura, Kenichi
2018-05-01
The effects of Reid vapor pressure (RVP) on refueling emissions and the effects of ethanol 10% (E10) fuel on refueling and evaporative emissions were observed using six cars and seven fuels. The results indicated that refueling emissions can be reproduced by a simple theoretical model in which fuel vapor in the empty space in the tank is pushed out by the refueling process. In this model, the vapor pressures of fuels can be estimated by the Clausius-Clapeyron equation as a function of temperature. We also evaluated E10 fuel in terms of refueling and evaporative emissions, excluding the effect of contamination of ethanol in the canister. E10 fuel had no effect on the refueling emissions in cases without onboard refueling vapor recovery. E10 showed increased permeation emissions in evaporative emissions because of the high permeability of ethanol. And with E10 fuel, breakthrough emissions appeared earlier but broke through slower than normal fuel. Finally, canisters could store more fuel vapor with E10 fuel. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.
2009-01-01
Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.
Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu
2015-07-16
To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation.
Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Artley, J. A. (Principal Investigator)
1981-01-01
A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.
Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.
Tan, Huanshu; Diddens, Christian; Versluis, Michel; Butt, Hans-Jürgen; Lohse, Detlef; Zhang, Xuehua
2017-04-12
Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.
Factors controlling the evaporation of secondary organic aerosol from α‐pinene ozonolysis
Pajunoja, Aki; Tikkanen, Olli‐Pekka; Buchholz, Angela; Faiola, Celia; Väisänen, Olli; Hao, Liqing; Kari, Eetu; Peräkylä, Otso; Garmash, Olga; Shiraiwa, Manabu; Ehn, Mikael; Lehtinen, Kari; Virtanen, Annele
2017-01-01
Abstract Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α‐pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents. PMID:28503004
Long-wave-instability-induced pattern formation in an evaporating sessile or pendent liquid layer
NASA Astrophysics Data System (ADS)
Wei, Tao; Duan, Fei
2018-03-01
We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative or positive gravity combined with buoyancy effects in the lubrication approximation. Using linear theory, we identify the mechanisms of finite-time rupture, independent of thermocapillarity and direction of gravity, and predict the effective growth rate of an interfacial perturbation which reveals competition among the mechanisms. A stability diagram is predicted for the onset of long-wave (LW) evaporative convection. In the two-dimensional simulation, we observe well-defined capillary ridges on both sides of the valley under positive gravity and main and secondary droplets under negative gravity, while a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution and rupture time but makes contributions to the evaporation-driven convection and heat transfer. The average Nusselt number is found to increase with a stronger buoyancy effect. The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard convection under positive gravity and the LW Marangoni convection under negative gravity. In the three-dimensional simulation of moderate evaporation with a random perturbation, the rupture patterns are characterized by irregular ridge networks with distinct height scales for positive and negative gravity. A variety of interfacial and internal dynamics are displayed, depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling. Reasonable agreement is found between the present results and the reported experiments and simulations. The concept of dissipative compacton also sheds light on the properties of interfacial fractalization.
Horst Meyer and Quantum Evaporation
NASA Astrophysics Data System (ADS)
Balibar, S.
2016-11-01
With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.
Trends in evaporation loss over the UK: 1962 to 2013
NASA Astrophysics Data System (ADS)
Blyth, Eleanor; Robinson, Emma; Martinez de la Torre, Alberto
2017-04-01
Many models of hydrology assume that an increase in air temperature will result in an increase in evaporation. However, there are some processes involved in transpiration (evaporation through the vegetation) that make the relationship more complicated: in a bid to conserve water, vegetation will reduce their stomata in response to drier soils and warmer drier air which leads to lower transpiration rates despite higher evaporative demands. In addition, the vegetation responds to increases in atmospheric carbon dioxide by closing their stomata, and this further reduces the transpiration. The JULES (Joint UK Land Environment Simulator) model, used widely in the UK to study the impacts of climate change on the environment, includes many of the processes that are likely to affect changes in water loss and its impact on large scale hydrology. A new assessment of the UK wide water balance for the last 52 years (1961 to 2013) at a 1km grid-scale has been made using this model in a system called CHESS (Climate Hydrology and Ecology research Support System). Some data is available to check the overall water balance. For instance, river flow data can be used at an annual time scale to capture the water balance, while evaporation data from flux towers can be used at some locations around the UK for the few years that it is available to evaluate the seasonal variations of evaporation. Both of these methods provide imperfect but useful evidence. Here we present the results of the modelling exercise and the evaluation: long term increasing evaporation loss trends are clearly present in the model output and these are discussed with respect to the different drivers of change.
A simplified model of precipitation enhancement over a heterogeneous surface
NASA Astrophysics Data System (ADS)
Cioni, Guido; Hohenegger, Cathy
2018-06-01
Soil moisture heterogeneities influence the onset of convection and subsequent evolution of precipitating systems through the triggering of mesoscale circulations. However, local evaporation also plays a role in determining precipitation amounts. Here we aim at disentangling the effect of advection and evaporation on precipitation over the course of a diurnal cycle by formulating a simple conceptual model. The derivation of the model is inspired by the results of simulations performed with a high-resolution (250 m) large eddy simulation model over a surface with varying degrees of heterogeneity. A key element of the conceptual model is the representation of precipitation as a weighted sum of advection and evaporation, each weighed by its own efficiency. The model is then used to isolate the main parameters that control precipitation variations over a spatially drier patch. It is found that these changes surprisingly do not depend on soil moisture itself but instead purely on parameters that describe the atmospheric initial state. The likelihood for enhanced precipitation over drier soils is discussed based on these parameters. Additional experiments are used to test the validity of the model.
ERIC Educational Resources Information Center
Fan, Chao; Pashley, Richard M.
2016-01-01
The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…
ITEL Experiment Module and its Flight on MASER9
NASA Astrophysics Data System (ADS)
Löth, K.; Schneider, H.; Larsson, B.; Jansson, O.; Houltz, Y.
2002-01-01
The ITEL (Interfacial Turbulence in Evaporating Liquid) module is built under contract from the European Space Agency (ESA) and is scheduled to fly onboard a Sounding Rocket (MASER 9) in March 2002. The project is conducted by Swedish Space Corporation (SSC) with Lambda-X as a subcontractor responsible for the optical system. The Principle Investigator is Pierre Colinet from Université Libre de Bruxelles (ULB). The experiment in ITEL on Maser 9 is part of a research program, which will make use of the International Space Station. The purpose of the flight on Maser 9 is to observe the cellular convection (Marangoni-Bénard instability) which arise when the surface tension varies with temperature yielding thermocapillary instabilities. During the 6 minutes of microgravity of the ITEL experiment, a highly volatile liquid layer (ethyl alcohol) will be evaporated, and the convection phenomena generated by the evaporation process will be visualized. Due to the cooling by latent heat consumption at the level of the evaporating free surface, a temperature gradient is induced perpendicularly to it. The flight experiment module contains one experiment cell, including a gas system for regulation of nitrogen flow over the evaporating surface and an injection unit that is used for injection of liquid into the cell both initially and during surface regulation. The experiment cell is equipped with pressure and flow sensors as well as thermocouples both inside the liquid and at different positions in the cell. Two optical diagnostic systems have been developed around the experiment cell. An interferometric optical tomograph measures the 3-dimensional distribution of temperature in the evaporating liquid and a Schlieren system visualizes the temperature gradients inside the liquid together with the liquid surface deformation. A PC/104 based electronic system is used for management and control of the experiment. The electronic system handles measurements, housekeeping, image capture system, surface and pressure regulation as well as storage of data. The images are stored onboard on three DV tape recorders. At flight, video images as well as data is sent to ground and the experiment can be controlled via telecommands. In this presentation we will focus on the technical parts of the experiment, the overall module and the preliminary technical results obtained from the flight, including reconstructions of 3-dimensional temperature distributions.
A numerical method for shock driven multiphase flow with evaporating particles
NASA Astrophysics Data System (ADS)
Dahal, Jeevan; McFarland, Jacob A.
2017-09-01
A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.
40 CFR 1060.101 - What evaporative emission requirements apply under this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (c) Section 1060.104 describes running loss emission control requirements for fuel systems. (d... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD... related requirements as follows: (a) Section 1060.102 describes permeation emission control requirements...
40 CFR 86.1217-96 - Evaporative emission enclosure calibrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Obtain another small cylinder that has been charged with pure methanol if the system will be used for... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1217-96 Evaporative emission enclosure... determination of enclosure background emissions (hydrocarbons and methanol); initial determination of enclosure...