Sample records for effect hydrogen binding

  1. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, WC; Zhuang, ZB; Gao, MR

    2015-01-08

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearlymore » increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.« less

  2. The origins of femtomolar protein-ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site.

    PubMed

    DeChancie, Jason; Houk, K N

    2007-05-02

    The unusually strong reversible binding of biotin by avidin and streptavidin has been investigated by density functional and MP2 ab initio quantum mechanical methods. The solvation of biotin by water has also been studied through QM/MM/MC calculations. The ureido moiety of biotin in the bound state hydrogen bonds to five residues, three to the carbonyl oxygen and one for each--NH group. These five hydrogen bonds act cooperatively, leading to stabilization that is larger than the sum of individual hydrogen-bonding energies. The charged aspartate is the key residue that provides the driving force for cooperativity in the hydrogen-bonding network for both avidin and streptavidin by greatly polarizing the urea of biotin. If the residue is removed, the network is disrupted, and the attenuation of the energetic contributions from the neighboring residues results in significant reduction of cooperative interactions. Aspartate is directly hydrogen-bonded with biotin in streptavidin and is one residue removed in avidin. The hydrogen-bonding groups in streptavidin are computed to give larger cooperative hydrogen-bonding effects than avidin. However, the net gain in electrostatic binding energy is predicted to favor the avidin-bicyclic urea complex due to the relatively large penalty for desolvation of the streptavidin binding site (specifically expulsion of bound water molecules). QM/MM/MC calculations involving biotin and the ureido moiety in aqueous solution, featuring PDDG/PM3, show that water interactions with the bicyclic urea are much weaker than (strept)avidin interactions due to relatively low polarization of the urea group in water.

  3. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    PubMed

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings

    NASA Astrophysics Data System (ADS)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2018-04-01

    Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.

  5. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling

    NASA Astrophysics Data System (ADS)

    Song, Wei; Yu, Zehua; Hu, Xinxin; Liu, Rutao

    2015-02-01

    Studies on the effects of environmental pollutants to protein in vitro has become a global attention. Hydrogen peroxide (H2O2) is used as an effective food preservative and bleacher in industrial production. The toxicity of H2O2 to trypsin was investigated by multiple spectroscopic techniques and the molecular docking method at the molecular level. The intrinsic fluorescence of trypsin was proved to be quenched in a static process based on the results of fluorescence lifetime experiment. Hydrogen bonds interaction and van der Waals forces were the main force to generate the trypsin-H2O2 complex on account of the negative ΔH0 and ΔS0. The binding of H2O2 changed the conformational structures and internal microenvironment of trypsin illustrated by UV-vis absorption, fluorescence, synchronous fluorescence, three-dimensional (3D) fluorescence and circular dichroism (CD) results. However, the binding site was far away from the active site of trypsin and the trypsin activity was only slightly affected by H2O2, which was further explained by molecular docking investigations.

  6. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    PubMed

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  7. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy

    PubMed Central

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-01-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER. PMID:27034988

  8. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  9. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?

    PubMed Central

    2017-01-01

    Halogens are present in a significant number of drugs, contributing favorably to ligand–protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to ligand binding than halogen bonds based on quantum mechanical calculations. In addition, bioinformatics analysis of ligand–protein crystal structures shows the presence of significant numbers of such interactions. It is shown that interactions between halogens and hydrogen bond donors (HBDs) are dominated by perpendicular C–X···HBD orientations. Notably, the orientation dependence of the halogen–HBD (X–HBD) interactions is minimal over greater than 100° with favorable interaction energies ranging from −2 to −14 kcal/mol. This contrasts halogen bonds in that X–HBD interactions are substantially more favorable, being comparable to canonical hydrogen bonds, with a smaller orientation dependence, such that they make significant, favorable contributions to ligand–protein binding and, therefore, should be actively considered during rational ligand design. PMID:28657759

  10. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.

    PubMed

    Nagatomo, Shigenori; Okumura, Miki; Saito, Kazuya; Ogura, Takashi; Kitagawa, Teizo; Nagai, Masako

    2017-03-07

    Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O 2 affinity changes were investigated via 1 H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O 2 to the α subunits is forbidden in the mutant Hbs, the O 2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O 2 affinity. It was found in this study that the quaternary structure of α(Fe 3+ )β(Fe 2+ -CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α 1 -β 2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.

  11. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study.

    PubMed

    Kanti Si, Mrinal; Sen, Anik; Ganguly, Bishwajit

    2017-05-10

    G-quadruplexes are formed by the association of four guanine bases through Hoogsteen hydrogen bonding in guanine-rich sequences of DNA and exist in the telomere as well as in promoter regions of certain oncogenes. The sequences of G-quadruplex-DNA are targets for the design of molecules that can bind and can be developed as anti-cancer drugs. The linear and cyclic protonated diamines have been explored to bind to G-quadruplex-DNA through hydrogen bonding interactions. The quadruplex-DNA binders exploit π-stacking and hydrogen bonding interactions with the phosphate backbone of loops and grooves. In this study, linear and cyclic protonated diamines showed remarkable binding affinity for G-tetrads using hydrogen bonding interactions. The DFT M06-2X/6-31G(d)//B3LYP/6-31+G(d) level of theory showed that the cyclic ee-1,2-CHDA (equatorial-equatorial form of 1,2-disubstituted cyclohexadiamine di-cation) binds to the G-tetrads very strongly (∼70.0 kcal mol -1 ), with a much higher binding energy than the linear protonated diamines. The binding affinity of ligands for G-tetrads with counterions has also been examined. The binding preference of these small ligands for G-tetrads is higher than for DNA-duplex. The binding affinity of an intercalated acridine-based ligand (BRACO-19) for G-quadruplexes has been examined and the binding energy is relatively lower than that for the 1,2 disubstituted cyclohexadiamine di-cation with G-tetrads. The atoms-in-molecules (AIM) analysis reveals that the hydrogen bonding interactions between the organic systems with G-tetrads are primarily electrostatic in nature. The molecular dynamics simulations performed using a classical force field (GROMACS) also supported the phosphate backbone sites of G-quadruplex-DNA to bind to these diamines. To mimic the structural pattern of BRACO-19, the designed inhibitor N,2-bis-2(3,4-aminocyclohexyl) acetamide (9) examined possesses two 1,2-CHDA moieties linked through an acetamide group. The molecular

  12. Effect of Ion Binding in Palmitoyl-Oleoyl Phosphatidylserine Monolayers

    NASA Astrophysics Data System (ADS)

    Eckler, Matthew; Matysiak, Silvina

    2013-03-01

    Molecular dynamics simulations of palmitoyl-oleoyl phosphatidylserine (POPS) monolayers at the air-water interface were performed with different ionic strengths with the aim of determining the specific organization and dynamics of counterion binding events. Na + ions penetrated the monolayers into both the ester carbonyl and carboxylate regions of the phospholipids. The binding events increase with the addition of salt. Differences in lipid order parameter, headgroup orientation, and prevalence of inter- and intramolecular hydrogen bonding events between the amine group of the lipid and oxygen groups are observed depending on whether the Na + is binding near the carboxylate or ester region of the lipid. The observed changes are explained in terms of the salting-out effect.

  13. Electronic wave function and binding effects in M-shell ionization of gold by protons

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Banaś, D.; Jabłoński, Ł.; Mukoyama, T.

    2018-02-01

    The measured M-X-ray production cross sections for protons, which are used in the particle induced X-ray emission (PIXE) technique, are systematically underestimated for low impact energies by the ECPSSR and ECUSAR theories. These theories, which are based on the plane wave Born approximation (PWBA) and use the screened hydrogenic wave functions, include corrections for the projectile Coulomb deflection and electron relativistic and binding effects. In the present paper, in order to interpret the observed disagreement at low impact energies, the systematic calculations of the M-shell ionization cross sections for gold were performed using the semiclassical (SCA) and the binary encounter (BEA) approximations in order to identify a role of the electronic wave function and electron binding effects. In these calculations the different wave functions, from nonrelativistic hydrogenic to selfconsistent Dirac-Hartree-Fock, were considered and the binding effect was treated within extreme separated- (SA) and united-atoms (UA) limits. The results are discussed in details and the observed discrepancies are attributed to inadequate description of the electron binding effect at the lowest impact energies for which the molecular approach is required.

  14. Inner reorganization limiting electron transfer controlled hydrogen bonding: intra- vs. intermolecular effects.

    PubMed

    Martínez-González, Eduardo; Frontana, Carlos

    2014-05-07

    In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.

  15. Intra- versus Intermolecular Hydrogen Bonding: Solvent-Dependent Conformational Preferences of a Common Supramolecular Binding Motif from 1 H NMR and Vibrational Circular Dichroism Spectra.

    PubMed

    Demarque, Daniel P; Merten, Christian

    2017-12-19

    When predicting binding properties of small molecules or larger supramolecular aggregates, intra- and intermolecular hydrogen bonds are often considered the most important factor. Spectroscopic techniques such as 1 H NMR spectroscopy are typically utilized to characterize such binding events, but interpretation is often qualitative and follows chemical intuition. In this study, we compare the effects of intramolecular hydrogen bonding and solvation on two chiral 2,6-pyridinediyl-dialkylamides. In comparison with 1 H NMR spectroscopy, vibrational circular dichroism (VCD) spectroscopy proved to be more sensitive to conformational changes. In fact, the change of the solvent from CDCl 3 to [D 6 ]DMSO generates mirror-image VCD spectra for the same enantiomer. Here, the common sense that the sterically less hindered group is more prone to solvation proved to be wrong according predicted VCD spectra, which clearly show that both asymmetric amide hydrogens are equally likely to be solvated, but never simultaneously. The competition between intra- and intermolecular hydrogen bonding and their importance for a correct prediction of spectral properties are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    NASA Astrophysics Data System (ADS)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  17. A distal point mutation in the streptavidin-biotin complex preserves structure but diminishes binding affinity: experimental evidence of electronic polarization effects?

    PubMed

    Baugh, Loren; Le Trong, Isolde; Cerutti, David S; Gülich, Susanne; Stayton, Patrick S; Stenkamp, Ronald E; Lybrand, Terry P

    2010-06-08

    We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed. Molecular dynamics simulations reveal a reduced mobility of biotin binding residues but no observable destabilization of protein-ligand interactions. Our combined structural and computational studies suggest that the additional water molecule may affect binding affinity through an electronic polarization effect that impacts the highly cooperative hydrogen bonding network in the biotin binding pocket.

  18. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    DOE PAGES

    Celik, Fuat E.; Mavrikakis, Manos

    2015-01-12

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  19. Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  20. Hydrogen Storage | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    research. An International Multi-Laboratory Investigation of Carbon-Based Hydrogen Sorbent Materials Carbon Nanotube Anions, Journal of Materials Research (2012) Manipulation of Hydrogen Binding Energy and Spectroscopy, Journal of Physical Chemistry C (2012) Reactions and Reversible Hydrogenation of Single-Walled

  1. Binding energy and photoionization cross-section of hydrogen-like donor impurity in strongly oblate ellipsoidal quantum dot

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.

    2018-01-01

    Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.

  2. Allosteric Coupling of CARMIL and V-1 Binding to Capping Protein Revealed by Hydrogen-Deuterium Exchange.

    PubMed

    Johnson, Britney; McConnell, Patrick; Kozlov, Alex G; Mekel, Marlene; Lohman, Timothy M; Gross, Michael L; Amarasinghe, Gaya K; Cooper, John A

    2018-05-29

    Actin assembly is important for cell motility. The ability of actin subunits to join or leave filaments via the barbed end is critical to actin dynamics. Capping protein (CP) binds to barbed ends to prevent subunit gain and loss and is regulated by proteins that include V-1 and CARMIL. V-1 inhibits CP by sterically blocking one binding site for actin. CARMILs bind at a distal site and decrease the affinity of CP for actin, suggested to be caused by conformational changes. We used hydrogen-deuterium exchange with mass spectrometry (HDX-MS) to probe changes in structural dynamics induced by V-1 and CARMIL binding to CP. V-1 and CARMIL induce changes in both proteins' binding sites on the surface of CP, along with a set of internal residues. Both also affect the conformation of CP's ββ subunit "tentacle," a second distal actin-binding site. Concerted regulation of actin assembly by CP occurs through allosteric couplings between CP modulator and actin binding sites. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Density functional tight-binding and infrequent metadynamics can capture entropic effects in intramolecular hydrogen transfer reactions

    NASA Astrophysics Data System (ADS)

    Oliveira, Luiz F. L.; Fu, Christopher D.; Pfaendtner, Jim

    2018-04-01

    Infrequent metadynamics uses biased simulations to estimate the unbiased kinetics of a system, facilitating the calculation of rates and barriers. Here the method is applied to study intramolecular hydrogen transfer reactions involving peroxy radicals, a class of reactions that is challenging to model due to the entropic contributions of the formation of ring structures in the transition state. Using the self-consistent charge density-functional based tight-binding (DFTB) method, we applied infrequent metadynamics to the study of four intramolecular H-transfer reactions, demonstrating that the method can qualitatively reproduce these high entropic contributions, as observed in experiments and those predicted by transition state theory modeled by higher levels of theory. We also show that infrequent metadynamics and DFTB are successful in describing the relationship between transition state ring size and kinetic coefficients (e.g., activation energies and the pre-exponential factors).

  4. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlits, Oksana O.; Coates, Leighton; Woods, Robert J.

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 andmore » Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.« less

  5. Effect of Hydrogen Adsorption on the Stone-Wales Transformation in Small-Diameter Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Openov, L. A.; Podlivaev, A. I.

    2018-04-01

    The effect of hydrogenation of (4, 0) and (3, 0) carbon nanotubes on the Stone-Wales transformation is studied in the framework of the nonorthogonal tight-binding model. It is shown that the atomic hydrogen adsorption can lead to both a decrease and an increase in the barriers for the direct and inverse transformations depending on the orientation of a rotating C-C bond with respect to the nanotube axis. The characteristic times of formation and annealing the Stone-Wales defects have been estimated. The Young's moduli have been calculated.

  6. Theoretical Studies of Hydrogen Storage Alloys.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonsson, Hannes

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into themore » metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.« less

  7. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  8. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    PubMed

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  9. Simultaneous effects of temperature and pressure on the donor binding energy in a V-groove quantum wire

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2010-03-01

    The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga 1- xAl xAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.

  10. Effect of Li Adsorption on the Electronic and Hydrogen Storage Properties of Acenes: A Dispersion-Corrected TAO-DFT Study

    PubMed Central

    Seenithurai, Sonai; Chai, Jeng-Da

    2016-01-01

    Due to the presence of strong static correlation effects and noncovalent interactions, accurate prediction of the electronic and hydrogen storage properties of Li-adsorbed acenes with n linearly fused benzene rings (n = 3–8) has been very challenging for conventional electronic structure methods. To meet the challenge, we study these properties using our recently developed thermally-assisted-occupation density functional theory (TAO-DFT) with dispersion corrections. In contrast to pure acenes, the binding energies of H2 molecules on Li-adsorbed acenes are in the ideal binding energy range (about 20 to 40 kJ/mol per H2). Besides, the H2 gravimetric storage capacities of Li-adsorbed acenes are in the range of 9.9 to 10.7 wt%, satisfying the United States Department of Energy (USDOE) ultimate target of 7.5 wt%. On the basis of our results, Li-adsorbed acenes can be high-capacity hydrogen storage materials for reversible hydrogen uptake and release at ambient conditions. PMID:27609626

  11. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Effects of the central potassium ions on the G-quadruplex and stabilizer binding.

    PubMed

    Wang, Zhiguo; Liu, Jun-Ping

    2017-03-01

    Human telomeres undertake the structure of intra-molecular parallel G-quadruplex in the presence of K + in eukaryotic cell. Stabilization of the telomere G-quadruplex represents a potential strategy to prevent telomere lengthening by telomerase in cancer therapy. Current work demonstrates that the binding of central K + with the parallel G-quadruplex is a coordinated water directed step-wise process. The K + above the top G-tetrad is prone to leak into environment and the 5'-adenine quickly flips over the top G-tetrad, leading to the bottom gate of G-tetrads as the only viable pathway of K + binding. Present molecular dynamics studies on the two most potent stabilizers RHPS4 and BRACO-19 reveal that the central K + has little influence on the binding conformations of the bound stabilizers. But without the central K + , either RHPS4 or BRACO-19 cannot stabilize the structure of G-quadruplex. The binding strength of stabilizers evaluated by the MM-PBSA method follows the order of BRACO-19> RHPS4, which agrees with the experimental results. The difference in binding affinities between RHPS4 and BRACO-19 is probably related to the ability to form intramolecular hydrogen bonds and favorable van del Waals interactions with G-quadruplex. In the models that have one central K + located at the upper/lower binding site, the corresponding top/bottom stacked stabilizers show more favorable binding affinities, indicating the apparent promoting effect of central K + on the stabilizer binding. Our findings provide further insights into the regulatory effect of K + on the G-quadruplex targeted binding, which is meaningful to the development of G-quadruplex stabilizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries.

    PubMed

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T; Shao, Yuyan; Liu, Jun

    2017-02-08

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li 2 S limits sulfur utilization, increases polarization, and decreases cycling stability. Dissolving Li 2 S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li 2 S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li 2 S by forming complex ligands with S 2- anions coupled with the solvent's solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li 2 S, and therefore enable the direct use of Li 2 S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.

  14. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M.

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li2S limits sulfur utilization, increases polarization and decreases cycling stability. Dissolving Li2S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li2S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li2S by forming complex ligands with S2- anions coupled with themore » solvent’s solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li2S, therefore enables the direct use of Li2S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.« less

  15. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  16. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  17. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  18. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  19. Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide.

    PubMed

    Xu, Zhen; Lei, Xiaoling; Tu, Yusong; Tan, Zhi-Jie; Song, Bo; Fang, Haiping

    2017-09-21

    Functional nanoscale structures consisting of a DNA molecule coupled to graphene or graphene oxide (GO) have great potential for applications in biosensors, biomedicine, nanotechnology, and materials science. Extensive studies using the most sophisticated experimental techniques and theoretical methods have still not clarified the dynamic process of single-stranded DNA (ssDNA) adsorbed on GO surfaces. Based on a molecular dynamics simulation, this work shows that an ssDNA segment could be stably adsorbed on a GO surface through hydrogen bonding and π-π stacking interactions, with preferential binding to the oxidized rather than to the unoxidized region of the GO surface. The adsorption process shows a dynamic cooperation adsorption behavior; the ssDNA segment first captures the oxidized groups of the GO surface by hydrogen bonding interaction, and then the configuration relaxes to maximize the π-π stacking interactions between the aromatic rings of the nucleobases and those of the GO surface. We attributed this behavior to the faster forming hydrogen bonding interaction compared to π-π stacking; the π-π stacking interaction needs more relaxation time to regulate the configuration of the ssDNA segment to fit the aromatic rings on the GO surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Significant Quantum Effects in Hydrogen Activation

    DOE PAGES

    Kyriakou, Georgios; Davidson, Erlend R. M.; Peng, Guowen; ...

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature revealmore » completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H 2 up to ~190 K and for D 2 up to ~140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H 2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D 2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Here, examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.« less

  1. Effect of pH on the Structure and DNA Binding of the FOXP2 Forkhead Domain.

    PubMed

    Blane, Ashleigh; Fanucchi, Sylvia

    2015-06-30

    Forkhead box P2 (FOXP2) is a transcription factor expressed in cardiovascular, intestinal, and neural tissues during embryonic development and is implicated in language development. FOXP2 like other FOX proteins contains a DNA binding domain known as the forkhead domain (FHD). The FHD interacts with DNA by inserting helix 3 into the major groove. One of these DNA-protein interactions is a direct hydrogen bond that is formed with His554. FOXP2 is localized in the nuclear compartment that has a pH of 7.5. Histidine contains an imidazole side chain in which the amino group typically has a pKa of ~6.5. It seems possible that pH fluctuations around 6.5 may result in changes in the protonation state of His554 and thus the ability of the FOXP2 FHD to bind DNA. To investigate the effect of pH on the FHD, both the structure and the binding affinity were studied in the pH range of 5-9. This was done in the presence and absence of DNA. The structure was assessed using size exclusion chromatography, far-UV circular dichroism, and intrinsic and extrinsic fluorescence. The results indicated that while pH did not affect the secondary structure in the presence or absence of DNA, the tertiary structure was pH sensitive and the protein was less compact at low pH. Furthermore, the presence of DNA caused the protein to become more compact at low pH and also had the potential to increase the dimerization propensity. Fluorescence anisotropy was used to investigate the effect of pH on the FOXP2 FHD DNA binding affinity. It was found that pH had a direct effect on binding affinity. This was attributed to the altered hydrogen bonding patterns upon protonation or deprotonation of His554. These results could implicate pH as a means of regulating transcription by the FOXP2 FHD, which may also have repercussions for the behavior of this protein in cancer cells.

  2. β-sheet-like hydrogen bonds interlock the helical turns of a photoswitchable foldamer to enhance the binding and release of chloride.

    PubMed

    Lee, Semin; Hua, Yuran; Flood, Amar H

    2014-09-05

    Inspired by halorhodopsin's use of photoisomerization to regulate chloride, aryltriazole-based foldamers have been created to "catch and release" chloride ions upon light irradiation of end-appended azobenzenes. The proposed mode of stabilization exploits a β-sheet-like hydrogen-bonding array to cooperatively interlock the ends of a foldamer together with its helical core. We find that the hydrogen-bonding array has a greater influence on stabilizing the helix than the π-stacked seam under the conditions examined (50:50 MeCN/THF). Thus, we show how it is possible to enhance the difference between Cl(-) binding and release using light-dependent control over the foldamer's degree of helix stabilization. Making and breaking three π-π contacts with light caused an 8-fold change in chloride affinity (40 300 M(-1) ⇄ 5000 M(-1)), five π-π contacts produced a 17-fold change (126 000 M(-1) ⇄ 7400 M(-1)), and strategically located hydrogen-bonding units enabled a greater 84-fold differential (970 000 M(-1) ⇄ 11 600 M(-1)). The improved performances were attributed to stepwise increases in the preorganization of the binding pocket that catches chloride while leaving the cis states with just one π-π contact relatively unchanged.

  3. Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpana, P.; Jayakumar, K.; Nithiananthi, P.

    2015-09-01

    The effect of geometry on an on-center hydrogenic donor impurity in a GaAs/(Ga,Al)As quantum wire (QWW) and quantum dot (QD) under the influence of Γ-X band mixing due to an applied hydrostatic pressure is theoretically studied. Numerical calculations are performed in an effective mass approximation. The ground state impurity energy is obtained by variational procedure. Both the effects of pressure and geometry are to exert an additional confinement on the impurity inside the wire as well as dot. We found that the donor binding energy is modified by the geometrical effects as well as by the confining potential when it is subjected to external pressure. The results are presented and discussed.

  4. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    PubMed

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  5. Interstellar hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  6. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  7. Effect of enzymatic deamidation of soy protein by protein-glutaminase on the flavor-binding properties of the protein under aqueous conditions.

    PubMed

    Suppavorasatit, Inthawoot; Cadwallader, Keith R

    2012-08-15

    The effect of the enzymatic deamidation by protein-glutaminase (PG) on flavor-binding properties of soy protein isolate (SPI) under aqueous conditions was evaluated by a modified equilibrium dialysis (ultrafiltration) technique. Binding parameters, such as number of binding sites (n) and binding constants (K), were derived from Klotz plots. The partial deamidation of SPI by PG (43.7% degree of deamidation) decreased overall flavor-binding affinity (nK) at 25 °C for both vanillin and maltol by approximately 9- and 4-fold, respectively. The thermodynamic parameters of binding indicated that the flavor-protein interactions were spontaneous (negative ΔG°) and that the driving force of the interactions shifted from entropy to enthalpy driven as a result of deamidation. Deamidation of soy protein caused a change in the mechanism of binding from hydrophobic interactions or covalent bonding (Schiff base formation) to weaker van der Waals forces or hydrogen bonding.

  8. Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: binding of TNT to porphyrin by hydrophobic and hydrogen bonds.

    PubMed

    Hikal, Walid M; Harmon, H James

    2008-06-15

    The interaction of meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl) porphyrin (C1TPP) with 2,4,6-trinitrotoluene (TNT) has been explored by UV-vis and fluorescence spectroscopy. The influence of temperature on the interaction has also been studied. C1TPP binds to TNT at pH 7.0 at room temperature via 1.94 kcal/mole hydrogen bonds with absorbance loss at 412-413 nm and the appearance of a new peak at 422-424 nm. The hydrogen binding of TNT to C1TPP was confirmed by the dissolution of the complex upon the addition of urea. Increasing the temperature results in the appearance of a new absorbance peak at 540 nm and absorbance loss at 515 nm with activation energy of 29.7 kcal/mole in the range of the hydrophobic bond energy. This suggests the hydrophobic bonding of TNT with the pyrrole nitrogens in the porphyrin. Increasing the concentration of the TNT in the solution quenches the fluorescence of the porphyrin following the Stern-Volmer equation. The association constants calculated from absorbance and fluorescence are expectedly similar.

  9. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    PubMed

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  10. Effects of Molybdenum Addition on Hydrogen Desorption of TiC Precipitation-Hardened Steel

    NASA Astrophysics Data System (ADS)

    Song, Eun Ju; Baek, Seung-Wook; Nahm, Seung Hoon; Suh, Dong-Woo

    2018-05-01

    The hydrogen-trap states in TiC and MoC that have coherent interfaces with ferrite were investigated using first-principles calculation. The trapping sites of TiC were the interfaces and interstitial sites of ferrite. On the other hand, the trapping sites of MoC were ferrite interstitial sites; the interface had a negative binding energy with H. Thermal desorption analysis confirms that the amounts of diffusible hydrogen were significantly reduced by addition of Mo in Ti-bearing steel.

  11. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%,more » 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.« less

  12. To bind or not to bind? Different temporal binding effects from voluntary pressing and releasing actions.

    PubMed

    Zhao, Ke; Chen, Yu-Hsin; Yan, Wen-Jing; Fu, Xiaolan

    2013-01-01

    Binding effect refers to the perceptual attraction between an action and an outcome leading to a subjective compression of time. Most studies investigating binding effects exclusively employ the "pressing" action without exploring other types of actions. The present study addresses this issue by introducing another action, releasing action or the voluntary lifting of the finger/wrist, to investigate the differences between voluntary pressing and releasing actions. Results reveal that releasing actions led to robust yet short-lived temporal binding effects, whereas pressing condition had steady temporal binding effects up to super-seconds. The two actions also differ in sensitivity to changes in temporal contiguity and contingency, which could be attributed to the difference in awareness of action. Extending upon current models of "willed action," our results provide insights from a temporal point of view and support the concept of a dual system consisting of predictive motor control and top-down mechanisms.

  13. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21.

    PubMed

    Jabbur, James R; Tabor, Amy D; Cheng, Xiaodong; Wang, Hua; Uesugi, Motonari; Lozano, Guillermina; Zhang, Wei

    2002-10-10

    Analyses of five wild-type p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 after treatment with ionizing (IR) or ultraviolet (UV) radiation. Importantly, Thr18 phosphorylation correlated with induction of the p53 downstream targets p21(Waf1/Cip1) (p21) and Mdm-2, suggesting a transactivation enhancing role. Thr18 phosphorylation has been shown to abolish side-chain hydrogen bonding between Thr18 and Asp21, an interaction necessary for stabilizing alpha-helical conformation within the transactivation domain. Mutagenesis-derived hydrogen bond disruption attenuated the interaction of p53 with the transactivation repressor Mdm-2 but had no direct effect on the interaction of p53 with the basal transcription factor TAF(II)31. However, prior incubation of p53 mutants with Mdm-2 modulated TAF(II)31 interaction with p53, suggesting Mdm-2 blocks the accessibility of p53 to TAF(II)31. Consistently, p53-null cells transfected with hydrogen bond disrupting p53 mutants demonstrated enhanced endogenous p21 expression, whereas p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. We conclude disruption of intramolecular hydrogen bonding between Thr18 and Asp21 enhances p53 transactivation by modulating Mdm-2 binding, facilitating TAF(II)31 recruitment.

  14. Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins

    PubMed Central

    Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris

    2015-01-01

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830

  15. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    DOE PAGES

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less

  16. DFT STUDY OF HYDROGEN STORAGE ON Li- AND Na-DOPED C59B HETEROFULLERENE

    NASA Astrophysics Data System (ADS)

    Zahedi, Ehsan; Mozaffari, Majid

    2014-05-01

    Effect of light alkali metal (Li and Na) decorated on the C59B heterofullerene for hydrogen storage is considered using DFT-MPW1PW91 method. Results show that Li and Na atoms strongly prefer to adsorb on top of five-member and six-member ring where a carbon atom is replaced by a boron atom. Significant charge transfer from the alkali metal to the C59B compensates for the electron deficiency of C59B and makes the latter aromatic in nature. Corrected binding energies of hydrogen molecule on the alkali-doped C59B using counterpoise method, structural properties and NBO analysis indicate that first hydrogen molecule is adsorbed physically and does not support minimal conditions of DOE requirement. Finally, positive values of binding energies for the adsorption of a second hydrogen molecule show that alkali doped C59B are capable of storing a maximum of one hydrogen molecule.

  17. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    PubMed

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  18. Probing for and Quantifying Agonist Hydrogen Bonds in α6β2 Nicotinic Acetylcholine Receptors.

    PubMed

    Post, Michael R; Lester, Henry A; Dougherty, Dennis A

    2017-04-04

    Designing subtype-selective agonists for neuronal nicotinic acetylcholine receptors is a challenging and significant goal aided by intricate knowledge of each subtype's binding patterns. We previously reported that in α6β2 receptors, acetylcholine makes a functional cation-π interaction with Trp149, but nicotine and TC299423 do not, suggesting a distinctive binding site. This work explores hydrogen binding at the backbone carbonyl associated with α6β2 Trp149. Substituting residue i + 1, Thr150, with its α-hydroxy analogue (Tah) attenuates the carbonyl's hydrogen bond accepting ability. At α6(T150Tah)β2, nicotine shows a 24-fold loss of function, TC299423 shows a modest loss, and acetylcholine shows no effect. Nicotine was further analyzed via a double-mutant cycle analysis utilizing N'-methylnicotinium, which indicated a hydrogen bond in α6β2 with a ΔΔG of 2.6 kcal/mol. Thus, even though nicotine does not make the conserved cation-π interaction with Trp149, it still makes a functional hydrogen bond to its associated backbone carbonyl.

  19. a Theoretical Investigation on 10-12 Potential of Hydrogen-Hydrogen Covalent Bond

    NASA Astrophysics Data System (ADS)

    Taneri, Sencer

    2013-05-01

    This is an analytical investigation of well-known 10-12 potential of hydrogen-hydrogen covalent bond. In this research, we will make an elaboration of the well-known 6-12 Lennard-Jones potential in case of this type of bond. Though the results are illustrated in many text books and literature, an analytical analysis for these potentials is missing almost everywhere. The power laws are valid for small radial distances, which are calculated to some extent. The internuclear separation as well as the binding energy of the hydrogen molecule are evaluated with success.

  20. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianzhuang; Nellas, Ricky B; Glover, Mary M

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained amore » detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.« less

  1. Hydrogen storage in engineered carbon nanospaces.

    PubMed

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  2. Transport hysteresis and hydrogen isotope effect on confinement

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  3. Interaction of Hydrogen with MOF-5.

    PubMed

    Bordiga, Silvia; Vitillo, Jenny G; Ricchiardi, Gabriele; Regli, Laura; Cocina, Donato; Zecchina, Adriano; Arstad, Bjørnar; Bjørgen, Morten; Hafizovic, Jasmina; Lillerud, Karl Petter

    2005-10-06

    Hydrogen storage is among the most demanding challenges in the hydrogen-based energy cycle. One proposed strategy for hydrogen storage is based on physisorption on high surface area solids such as metal-organic frameworks (MOFs). Within this class of materials, MOF-5 has been the first structure studied for hydrogen storage. The IR spectroscopy of adsorbed H2 performed at 15 K and ab initio calculations show that the adsorptive properties of this material are mainly due to dispersive interactions with the internal wall structure and to weak electrostatic forces associated with O13Zn4 clusters. Calculated and measured binding enthalpies are between 2.26 and 3.5 kJ/mol, in agreement with the H2 rotational barriers reported in the literature. A minority of binding sites with higher adsorption enthalpy (7.4 kJ/mol) is also observed. These species are probably associated with OH groups on the external surfaces present as termini of the microcrystals.

  4. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study.

    PubMed

    Brown, Craig M; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K; Kepert, Cameron J

    2009-05-20

    Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.

  5. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study

    NASA Astrophysics Data System (ADS)

    Brown, Craig M.; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K.; Kepert, Cameron J.

    2009-05-01

    Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.

  6. Effect of hydrogen radical on decomposition of chlorosilane source gases

    NASA Astrophysics Data System (ADS)

    Sumiya, Masatomo; Akizuki, Tomohiro; Itaka, Kenji; Kubota, Makoto; Tsubouchi, Kenta; Ishigaki, Takamasa; Koinuma, Hideomi

    2013-06-01

    The effect of hydrogen radical on production of Si from chlorosilane sources has been studied. We used hydrogen radical generated from pulsed thermal plasma to decompose SiHCl3 and SiCl4. Hydrogen radical was effective for lowering the temperature to produce Si from SiHCl3. SiCl4 source, which was chemically stable and by-product in Siemens process, was decomposed effectively by hydrogen radical. The decomposition of SiCl4 was consistent with the thermo-dynamical calculation predicting that the use of hydrogen radical could drastically enhance the yield of Si production rather than case of H2 gas.

  7. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base.

    PubMed

    Liu, Jian; Liu, Monica Yun; Nguyen, Jennifer B; Bhagat, Aditi; Mooney, Victoria; Yan, Elsa C Y

    2009-07-01

    Although thermal stability of the G protein-coupled receptor rhodopsin is directly related to its extremely low dark noise level and has recently generated considerable interest, the chemistry behind the thermal decay process of rhodopsin has remained unclear. Using UV-vis spectroscopy and HPLC analysis, we have demonstrated that the thermal decay of rhodopsin involves both hydrolysis of the protonated Schiff base and thermal isomerization of 11-cis to all-trans retinal. Examining the unfolding of rhodopsin by circular dichroism spectroscopy and measuring the rate of thermal isomerization of 11-cis retinal in solution, we conclude that the observed thermal isomerization of 11-cis to all-trans retinal happens when 11-cis retinal is in the binding pocket of rhodopsin. Furthermore, we demonstrate that solvent deuterium isotope effects are involved in the thermal decay process by decreasing the rates of thermal isomerization and hydrolysis, suggesting that the rate-determining step of these processes involves breaking hydrogen bonds. These results provide insight into understanding the critical role of an extensive hydrogen-bonding network on stabilizing the inactive state of rhodopsin and contribute to our current understanding of the low dark noise level of rhodopsin, which enables this specialized protein to function as an extremely sensitive biological light detector. Because similar hydrogen-bonding networks have also been suggested by structural analysis of two other GPCRs, beta1 and beta2 adrenergic receptors, our results could reveal a general role of hydrogen bonds in facilitating GPCR function.

  8. Metal-functionalized silicene for efficient hydrogen storage.

    PubMed

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Therapeutic effects of hydrogen on chronic graft-versus-host disease.

    PubMed

    Qian, Liren; Liu, Xiaopeng; Shen, Jianliang; Zhao, Defeng; Yin, Wenjie

    2017-10-01

    The incidence of chronic graft-versus-host disease (cGVHD) is rising recent years, which has been the leading cause of non-transplantation mortality post allogenetic hematopoietic stem cell transplantation (HSCT). Imbalance of inflammatory cytokines and fibrosis plays critical roles in the pathogenesis of cGVHD. Recent studies showed that molecular hydrogen has anti-inflammatory, antioxidant, anti-fibrosis effects. Therefore, we hypothesized that molecular hydrogen may have therapeutic effects on cGVHD. To determine whether hydrogen could protect mice from cGVHD in an MHC-incompatible murine bone marrow transplantation (BMT) model, survival rates of mice were calculated, and skin lesions were also evaluated after BMT. This article demonstrated that administration of hydrogen-rich saline increased survival rate of cGVHD mice. Administration of hydrogen-rich saline after transplantation also reduced skin lesions of cGVHD mice. Previously, we reported the therapeutic effects of hydrogen on acute GVHD. However, there was no report on the therapeutic effects of hydrogen on cGVHD mice. It is suggested that hydrogen has a potential as an effective and safe therapeutic agent on cGVHD. This study will provide new ideas on the treatment of cGVHD and has important theoretical values. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    NASA Astrophysics Data System (ADS)

    Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.

    2014-08-01

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+.(HCN)n and C4H4N2+.(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH..NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CHδ+⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  11. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.

    PubMed

    Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  12. Relativistic corrections for screening effects on the energies of hydrogen-like atoms embedded in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poszwa, A., E-mail: poszwa@matman.uwm.edu.p; Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-01-15

    The influence of relativistic and plasma screening effects on energies of hydrogen-like atoms embedded in plasmas has been studied. The Dirac equation with a more general exponential cosine screened potential has been solved numerically and perturbatively, by employing the direct perturbation theory. Properties of spectra corresponding to bound states and to different sets of the potential parameters have been studied both in nonrelativistic and relativistic approximations. Binding energies, fine-structure splittings, and relativistic energy shifts have been determined as functions of parameters of the potential. The results have been compared with the ones known from the literature.

  13. Effects of Internal and External Hydrogen on Inconel 718

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  14. Equilibrium and diffusion studies of metal-hydrogen systems

    NASA Astrophysics Data System (ADS)

    Maroevic, Petar

    Several new methods and models have been developed pertaining to equilibrium properties of hydrogen in random binary substitutional alloys at room and lower temperatures, describing both statistics and kinetics of hydrogen in them. They represent a solution to the problem of the complete Fermi-Dirac description which is physically appropriate for these systems. Hydrogen diffusion which proceeds via lattice assisted quantum tunneling at room and lower temperatures requires a new and different description from the one based on the thermal hopping picture, which pertains only to relatively high temperatures. It is also shown that the analogs of the solution to the Fermi-Dirac problem of hydrogen can be successfully applied to the description of vacancies in a hydrogenated system, a phenomena known to occur due to high hydrogen-vacancy binding energies and the creation of hydrogen-vacancy clusters. The solution based on this model applies to much lower temperatures and higher concentrations than the tradition alone. This methodology has also been applied to the surface problem where very large vacancy and hydrogen concentrations occur. This is of special importance since mechanical properties are known to be greatly affected by the surface. As another consequence of hydrogen induced vacancies, hydrogen induced lattice migration (HILM) occurs. This has been demonstrated in our electrical resistivity study of palladium wires where recrystallization and annealing effects were observed upon hydrogen-heat-treatment (HHT).

  15. Counterion effects in protein nanoparticle electrostatic binding: a theoretical study.

    PubMed

    Ghosh, Goutam

    2015-04-01

    Effects of counterions on the folding conformation of proteins, bound electrostatically on the surface of charge-ligand functionalized nanoparticles, have been investigated based on the protein folding energy calculation. The folding energy of a protein has been taken as a sum of the short range interaction energies, like, the van der Waals attraction and the hydrogen bond energies, and the long range coulomb interaction energy. On electrostatic binding, counterions associated with surface ligands of nanoparticles diffuse into bound proteins through the medium of dispersion. As a result, bound proteins partially unfold, as observed in circular dichroism experiments, which has been realized using the "charge-dipole" and the "charge-induced dipole" interactions of counterions with polar and non-polar residues, respectively. The effect of counterions solvation in the dispersing medium, e.g., water, which causes water molecules to polarize around the counterions, has also been considered. The folding energy of bound proteins has been seen to decrease proportionally with the increasing number of diffusion of counterions and their polarizability. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Interaction of hydrogen with palladium clusters deposited on graphene

    NASA Astrophysics Data System (ADS)

    Alonso, Julio A.; Granja, Alejandra; Cabria, Iván; López, María J.

    2015-12-01

    Hydrogen adsorption on nanoporous carbon materials is a promising technology for hydrogen storage. However, pure carbon materials do not meet the technological requirements due to the week binding of hydrogen to the pore walls. Experimental work has shown that doping with Pd atoms and clusters enhances the storage capacity of porous carbons. Therefore, we have investigated the role played by the Pd dopant on the enhancement mechanisms. By performing density functional calculations, we have found that hydrogen adsorbs on Pd clusters deposited on graphene following two channels, molecular adsorption and dissociative chemisorption. However, desorption of Pd-H complexes competes with desorption of hydrogen, and consequently desorption of Pd-H complexes would spoil the beneficial effect of the dopant. As a way to overcome this difficulty, Pd atoms and clusters can be anchored to defects of the graphene layer, like graphene vacancies. The competition between molecular adsorption and dissociative chemisorption of H2 on Pd6 anchored on a graphene vacancy has been studied in detail.

  17. Hydrogenic impurity bound polaron in an anisotropic quantum dot

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Hua

    2018-01-01

    The effect of the electron-phonon interaction on an electron bound to a hydrogenic impurity in a three-dimensional (3D) anisotropic quantum dot (QD) is studied theoretically. We use the Landau-Pekar variational approach to calculate the binding energy of ground state (GS) and first-excited state (ES) with considering electron-phonon interaction. The expressions of the GS and ES energies under investigation depict a rich variety of dependent relationship with the variational parameters in three different limiting cases. Numerical calculations were performed for ZnSe QDs with different confinement lengths in the xy-plane and the z-direction, respectively. It is illustrated that binding energies of impurity polarons corresponding to each level are larger in small QDs. Furthermore, the contribution to binding energy from phonon is about 15% of the total binding energy.

  18. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    PubMed

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    DOE PAGES

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; ...

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne + ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here,more » we find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less

  20. Hydrogen Diffusion and Trapping in α -Iron: The Role of Quantum and Anharmonic Fluctuations

    NASA Astrophysics Data System (ADS)

    Cheng, Bingqing; Paxton, Anthony T.; Ceriotti, Michele

    2018-06-01

    We investigate the thermodynamics and kinetics of a hydrogen interstitial in magnetic α -iron, taking account of the quantum fluctuations of the proton as well as the anharmonicities of lattice vibrations and hydrogen hopping. We show that the diffusivity of hydrogen in the lattice of bcc iron deviates strongly from an Arrhenius behavior at and below room temperature. We compare a quantum transition state theory to explicit ring polymer molecular dynamics in the calculation of diffusivity. We then address the trapping of hydrogen by a vacancy as a prototype lattice defect. By a sequence of steps in a thought experiment, each involving a thermodynamic integration, we are able to separate out the binding free energy of a proton to a defect into harmonic and anharmonic, and classical and quantum contributions. We find that about 30% of a typical binding free energy of hydrogen to a lattice defect in iron is accounted for by finite temperature effects, and about half of these arise from quantum proton fluctuations. This has huge implications for the comparison between thermal desorption and permeation experiments and standard electronic structure theory. The implications are even greater for the interpretation of muon spin resonance experiments.

  1. Exciton binding energy in GaAsBiN spherical quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Subhasis; Dhar, S.

    2017-03-01

    The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.

  2. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  3. A molecular dynamics study on sI hydrogen hydrate.

    PubMed

    Mondal, S; Ghosh, S; Chattaraj, P K

    2013-07-01

    A molecular dynamics simulation is carried out to explore the possibility of using sI clathrate hydrate as hydrogen storage material. Metastable hydrogen hydrate structures are generated using the LAMMPS software. Different binding energies and radial distribution functions provide important insights into the behavior of the various types of hydrogen and oxygen atoms present in the system. Clathrate hydrate cages become more stable in the presence of guest molecules like hydrogen.

  4. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    PubMed Central

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin

    2017-01-01

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites. PMID:28194014

  5. Optimizing Binding Energies of Key Intermediates for CO 2 Hydrogenation to Methanol over Oxide-Supported Copper

    DOE PAGES

    None, None

    2016-08-29

    Rational optimization of catalytic performance has been one of the major challenges in catalysis. We report a bottom-up study on the ability of TiO 2 and ZrO 2 to optimize the CO 2 conversion to methanol on Cu, using combined density functional theory (DFT) calculations, kinetic Monte Carlo (KMC) simulations, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements, and steady-state flow reactor tests. Furthermore, the theoretical results from DFT and KMC agree with in situ DRIFTS measurements, showing that both TiO 2 and ZrO 2 help to promote methanol synthesis on Cu via carboxyl intermediates and the reversemore » water–gas-shift (RWGS) pathway; the formate intermediates, on the other hand, likely act as a spectator eventually. The origin of the superior promoting effect of ZrO 2 is associated with the fine-tuning capability of reduced Zr 3+ at the interface, being able to bind the key reaction intermediates, e.g. *CO 2, *CO, *HCO, and *H 2CO, moderately to facilitate methanol formation. Our study demonstrates the importance of synergy between theory and experiments to elucidate the complex reaction mechanisms of CO 2 hydrogenation for the realization of a better catalyst by design.« less

  6. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.

    PubMed

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots.

  7. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots

    PubMed Central

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots. PMID:26675422

  8. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    PubMed

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  9. Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption.

    PubMed

    Andriamihaja, Mireille; Lan, Annaïg; Beaumont, Martin; Grauso, Marta; Gotteland, Martin; Pastene, Edgar; Cires, Maria Jose; Carrasco-Pozo, Catalina; Tomé, Daniel; Blachier, François

    2018-06-01

    Hydrogen sulfide (H 2 S), a metabolic end product synthesized by the microbiota from L-cysteine, has been shown to act at low micromolar concentration as a mineral oxidative substrate in colonocytes while acting as an inhibitor of oxygen consumption at higher luminal concentrations (65 µM and above). From the previous works showing that polyphenols can bind volatile sulfur compounds, we hypothesized that different dietary proanthocyanidin-containing polyphenol (PACs) plant extracts might modulate the inhibitory effect of H 2 S on colonocyte respiration. Using the model of human HT-29 Glc-/+ cell colonocytes, we show here that pre-incubation of 65 µM of the H 2 S donor NaHS with the different polyphenol extracts markedly reduced the inhibitory effect of NaHS on colonocyte oxygen consumption. Our studies on HT-29 Glc-/+ cell respiration performed in the absence or the presence of PACs reveal rapid binding of H 2 S with the sulfide-oxidizing unit and slower binding of H 2 S to the cytochrome c oxidase (complex IV of the respiratory chain). Despite acute inhibition of colonocyte respiration, no measurable effect of NaHS on paracellular permeability was recorded after 24 h treatment using the Caco-2 colonocyte monolayer model. The results are discussed in the context of the binding of excessive bacterial metabolites by unabsorbed dietary compounds and of the capacity of colonocytes to adapt to changing luminal environment.

  10. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  11. Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole

    PubMed Central

    Kraut, Daniel A; Sigala, Paul A; Pybus, Brandon; Liu, Corey W; Ringe, Dagmar; Petsko, Gregory A

    2006-01-01

    A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing p K a models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50–0.76 ppm/p K a unit, suggesting a bond shortening of ˜0.02 Å/p K a unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (ΔΔG = −0.2 kcal/mol/p K a unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (ΔΔH = −2.0 kcal/mol/p K a unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ˜300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution. PMID:16602823

  12. Side-chain conformational space analysis (SCSA): A multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A*0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  13. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  14. Probing the binding sites and the effect of berbamine on the structure of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Xia; Lui, Yi; Zhou, Bo; Xiao, Xiao-He; Liu, Yi

    2009-06-01

    Berbamine, a naturally occurring isoquinoline alkaloid extracted from Berberis sp., is the active constituent of some Chinese herbal medicines and exhibits a variety of pharmacological activities. The effects of berbamine on the structure of bovine serum albumin (BSA) were investigated by circular dichroism, fluorescence and absorption spectroscopy under physiological conditions. Berbamine caused a static quenching of the intrinsic fluorescence of BSA, and the quenching data were analyzed by application of the Stern-Volmer equation. There was a single primary berbamine-binding site on BSA with a binding constant of 2.577 × 10 4 L mol -1 at 298 K. The thermodynamic parameters, enthalpy change (Δ H0) and entropy change (Δ S0) for the reaction were -76.5 kJ mol -1 and -173.4 J mol -1 K -1 according to the van't Hoff equation. The results showed that the hydrogen bond and van der Waals interaction were the predominant forces in the binding process. Competitive experiments revealed a displacement of warfarin by berbamine, indicating that the binding site was located at Drug sites I. The distance r between the donor (BSA) and the acceptor (berbamine) was obtained according to the Förster non-radiation energy transfer theory. The results of three-dimensional fluorescence spectra, UV-vis absorption difference spectra and circular dichroism of BSA in the presence of berbamine showed that the conformation of BSA was changed. The results provide a quantitative understanding of the effect of berbamine on the structure of bovine serum albumin, providing a useful guideline for further drug design.

  15. Probing the binding sites and the effect of berbamine on the structure of bovine serum albumin.

    PubMed

    Cheng, Xiao-Xia; Lui, Yi; Zhou, Bo; Xiao, Xiao-He; Liu, Yi

    2009-06-01

    Berbamine, a naturally occurring isoquinoline alkaloid extracted from Berberis sp., is the active constituent of some Chinese herbal medicines and exhibits a variety of pharmacological activities. The effects of berbamine on the structure of bovine serum albumin (BSA) were investigated by circular dichroism, fluorescence and absorption spectroscopy under physiological conditions. Berbamine caused a static quenching of the intrinsic fluorescence of BSA, and the quenching data were analyzed by application of the Stern-Volmer equation. There was a single primary berbamine-binding site on BSA with a binding constant of 2.577x10(4)Lmol(-1) at 298K. The thermodynamic parameters, enthalpy change (DeltaH(0)) and entropy change (DeltaS(0)) for the reaction were -76.5kJmol(-1) and -173.4Jmol(-1)K(-1) according to the van't Hoff equation. The results showed that the hydrogen bond and van der Waals interaction were the predominant forces in the binding process. Competitive experiments revealed a displacement of warfarin by berbamine, indicating that the binding site was located at Drug sites I. The distance r between the donor (BSA) and the acceptor (berbamine) was obtained according to the Förster non-radiation energy transfer theory. The results of three-dimensional fluorescence spectra, UV-vis absorption difference spectra and circular dichroism of BSA in the presence of berbamine showed that the conformation of BSA was changed. The results provide a quantitative understanding of the effect of berbamine on the structure of bovine serum albumin, providing a useful guideline for further drug design.

  16. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the statemore » of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.« less

  17. The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.

    PubMed

    Rosenberg, Robert E

    2018-05-10

    Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.

  18. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation

    PubMed Central

    Fantini, Jacques; Yahi, Nouara; Garmy, Nicolas

    2013-01-01

    Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and ganglioside GM1. Recent data also suggested that cholesterol could stimulate the binding of Abeta to GM1 through conformational modulation of the ganglioside headgroup. Here we used a combination of physicochemical and molecular modeling approaches to decipher the mechanisms of cholesterol-assisted binding of Abeta to GM1. With the aim of decoupling the effect of cholesterol on GM1 from direct Abeta-cholesterol interactions, we designed a minimal peptide (Abeta5-16) containing the GM1-binding domain but lacking the amino acid residues involved in cholesterol recognition. Using the Langmuir technique, we showed that cholesterol (but not phosphatidylcholine or sphingomyelin) significantly accelerates the interaction of Abeta5-16 with GM1. Molecular dynamics simulations suggested that Abeta5-16 interacts with a cholesterol-stabilized dimer of GM1. The main structural effect of cholesterol is to establish a hydrogen-bond between its own OH group and the glycosidic-bond linking ceramide to the glycone part of GM1, thereby inducing a tilt in the glycolipid headgroup. This fine conformational tuning stabilizes the active conformation of the GM1 dimer whose headgroups, oriented in two opposite directions, form a chalice-shaped receptacle for Abeta. These data give new mechanistic insights into the stimulatory effect of cholesterol on Abeta/GM1 interactions. They also support the emerging concept that cholesterol is a universal modulator of protein-glycolipid interactions in the broader context of membrane recognition processes. PMID:23772214

  19. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Ahmed M.; El-Shall, M. Samy, E-mail: mselshal@vcu.edu; Hilal, Rifaat

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than themore » HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.« less

  20. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.

    PubMed

    Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J

    2009-01-01

    One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions.

  1. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions.

    PubMed

    Milenkovic, Stefan; Bondar, Ana-Nicoleta

    2016-02-01

    SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path. Copyright © 2015. Published by Elsevier B.V.

  2. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate.

    PubMed

    Khansari, Maryam Emami; Johnson, Corey R; Basaran, Ismet; Nafis, Aemal; Wang, Jing; Leszczynski, Jerzy; Hossain, Md Alamgir

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea ( L1 ) and tris([(4-cyanophenyl)amino]propyl)thiourea ( L2 ), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1 H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F - > H 2 PO 4 - > HCO 3 - > HSO 4 - > CH 3 COO - > SO 4 2- > Cl - > Br - > I in DMSO- d 6 . The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F - , H 2 PO 4 - , HCO 3 - , HSO 4 - or CH 3 COO - due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO 4 - than SO 4 2- is attributed to the proton transfer from HSO 4 - to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO- d 6 . In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2 ).

  3. Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses

    PubMed Central

    Hu, Qin; Si, Xiuhua April

    2018-01-01

    Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD) simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of high

  4. Synthesis, crystal structure, antimicrobial activity and DNA-binding of hydrogen-bonded proton-transfer complex of 2,6-diaminopyridine with picric acid.

    PubMed

    Khan, Ishaat M; Ahmad, Afaq; Ullah, M F

    2011-04-04

    A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst···acidic oxide surface binding geometry.

    PubMed

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P; Bhattacharyya, Alak; Motta, Alessandro; Gallagher, James R; Zhang, Guanghui; Miller, Jeffrey T; Kobayashi, Takeshi; Pruski, Marek; Delferro, Massimiliano; Marks, Tobin J

    2015-06-03

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ≫ AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.

  6. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.

    PubMed

    Laitinen, Tuomo; Kankare, Jussi A; Peräkylä, Mikael

    2004-04-01

    Antiestradiol antibody 57-2 binds 17beta-estradiol (E2) with moderately high affinity (K(a) = 5 x 10(8) M(-1)). The structurally related natural estrogens estrone and estriol as well synthetic 17-deoxy-estradiol and 17alpha-estradiol are bound to the antibody with 3.7-4.9 kcal mol(-1) lower binding free energies than E2. Free energy perturbation (FEP) simulations and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were applied to investigate the factors responsible for the relatively low cross-reactivity of the antibody with these four steroids, differing from E2 by the substituents of the steroid D-ring. In addition, computational alanine scanning of the binding site residues was carried out with the MM-PBSA method. Both the FEP and MM-PBSA methods reproduced the experimental relative affinities of the five steroids in good agreement with experiment. On the basis of FEP simulations, the number of hydrogen bonds formed between the antibody and steroids, which varied from 0 to 3 in the steroids studied, determined directly the magnitude of the steroid-antibody interaction free energies. One hydrogen bond was calculated to contribute about 3 kcal mol(-1) to the interaction energy. Because the relative binding free energies of estrone (two antibody-steroid hydrogen bonds), estriol (three hydrogen bonds), 17-deoxy-estradiol (no hydrogen bonds), and 17alpha-estradiol (two hydrogen bonds) are close to each other and clearly lower than that of E2 (three hydrogen bonds), the water-steroid interactions lost upon binding to the antibody make an important contribution to the binding free energies. The MM-PBSA calculations showed that the binding of steroids to the antiestradiol antibody is driven by van der Waals interactions, whereas specificity is solely due to electrostatic interactions. In addition, binding of steroids to the antiestradiol antibody 57-2 was compared to the binding to the antiprogesterone antibody DB3 and antitestosterone antibody 3

  7. Hydrogen-vacancy-dislocation interactions in α-Fe

    NASA Astrophysics Data System (ADS)

    Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.

    2017-02-01

    Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.

  8. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    DOE PAGES

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; ...

    2017-02-13

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here in this paper we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(V III) {[V III 2(OH) 2(L)], LH 4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(V IV), [V IV 2O 2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(V III) shows the second highest CO 2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g -1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO 2, which binds in an end-on manner, OH∙∙∙ =1.863(1) Å. In contrast, CO 2-loaded MFM-300(V IV) shows CO 2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique O COmore » $$_2$$···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. Lastly, the macroscopic packing of CO 2 in the pores is directly influenced by these primary binding sites.« less

  9. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-11-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm-1 μm) with metal-oxide core-shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg-Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  10. The binding cavity of mouse major urinary protein is optimised for a variety of ligand binding modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pertinhez, Thelma A.; Ferrari, Elena; Casali, Emanuela

    2009-12-25

    {sup 15}N and {sup 1}HN chemical shift data and {sup 15}N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the {beta}-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the {beta}-barrel cavity. These finding justify why MUPmore » is able to adapt to allow for many successful binding partners.« less

  11. Auroral zone effects on hydrogen geocorona structure and variability

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Biddle, A. P.; Waite, J. H., Jr.; Killeen, T. L.

    1985-01-01

    The effect of diurnal and magnetospheric modulations on the structure of the hydrogen geocorona is analyzed on the basis of recent observations. Particular attention is given to the enhancement of neutral escape by plasma effects, including the recently observed phenomenon of low-altitude ion acceleration. It is found that, while significant fluxes of neutral H should be produced by transverse ion acceleration in the auroral zone, the process is probably insufficient to account for the observed polar depletion of hydrogen atoms. Analysis of recent exospheric temperature measurements from the Dynamics Explorer-2 satellite suggest that neutral heating in and near the high latitude cusp may be the major contributor to depleted atomic hydrogen densities at high latitudes. Altitude profiles of the production rates for escaping neutral hydrogen atoms during periods of maximum, minimum, and typical solar activity are provided.

  12. Computational Modeling Approach in Probing the Effects of Cytosine Methylation on the Transcription Factor Binding to DNA.

    PubMed

    Tenayuca, John; Cousins, Kimberley; Yang, Shumei; Zhang, Lubo

    2017-01-01

    Cytosine methylation at CpG dinucleotides is a chief mechanism in epigenetic modification of gene expression patterns. Previous studies demonstrated that increased CpG methylation of Sp1 sites at -268 and -346 of protein kinase C ε promoter repressed the gene expression. The present study investigated the impact of CpG methylation on the Sp1 binding via molecular modeling and electrophoretic mobility shift assay. Each of the Sp1 sites contain two CpGs. Methylation of either CpG lowered the binding affinity of Sp1, whereas methylation of both CpGs produced a greater decrease in the binding affinity. Computation of van der Waals (VDW) energy of Sp1 in complex with the Sp1 sites demonstrated increased VDW values from one to two sites of CpG methylation. Molecular modeling indicated that single CpG methylation caused underwinding of the DNA fragment, with the phosphate groups at C1, C4 and C5 reoriented from their original positions. Methylation of both CpGs pinched the minor groove and increased the helical twist concomitant with a shallow, hydrophobic major groove. Additionally, double methylation eliminated hydrogen bonds on recognition helix residues located at positions -1 and 1, which were essential for interaction with O6/N7 of G-bases. Bonding from linker residues Arg565, Lys595 and Lys596 were also reduced. Methylation of single or both CpGs significantly affected hydrogen bonding from all three Sp1 DNA binding domains, demonstrating that the consequences of cytosine modification extend beyond the neighboring nucleotides. The results indicate that cytosine methylation causes subtle structural alterations in Sp1 binding sites consequently resulting in inhibition of side chain interactions critical for specific base recognition and reduction of the binding affinity of Sp1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Effects of weak/non-complement-binding HLA antibodies on C1q-binding.

    PubMed

    Hönger, G; Amico, P; Arnold, M-L; Spriewald, B M; Schaub, S

    2017-08-01

    It is unknown under what conditions and to what extent weak/non-complement (C)-binding IgG subclasses (IgG2/IgG4) can block C1q-binding triggered by C-binding IgG subclasses (IgG1/IgG3). Therefore, we investigated in vitro C1q-binding induced by IgG subclass mixtures targeting the same HLA epitope. Various mixtures of HLA class II specific monoclonal antibodies of different IgG subclasses but identical V-region were incubated with HLA DRB1*07:01 beads and monitored for C1q-binding. The lowest concentration to achieve maximum C1q-binding was measured for IgG3, followed by IgG1, while IgG2 and IgG4 did not show appreciable C1q-binding. C1q-binding occurred only after a critical amount of IgG1/3 has bound and sharply increased thereafter. When both, C-binding and weak/non-C-binding IgG subclasses were mixed, C1q-binding was diminished proportionally to the fraction of IgG2/4. A 2- to 4-fold excess of IgG2/4 inhibited C1q-binding by 50%. Very high levels (10-fold excess) almost completely abrogated C1q-binding even in the presence of significant IgG1/3 levels that would usually lead to strong C1q-binding. In sensitized renal allograft recipients, IgG subclass constellations with ≥ 2-fold excess of IgG2/4 over IgG1/3 were present in 23/66 patients (34.8%) and overall revealed slightly decreased C1q signals. However, spiking of patient sera with IgG2 targeting a different epitope than the patient's IgG1/3 synergistically increased C1q-binding. In conclusion, if targeting the same epitope, an excess of IgG2/4 is repressing the extent of IgG1/3 triggered C1q-binding in vitro. Such IgG subclass constellations are present in about a third of sensitized patients and their net effect on C1q-binding is slightly inhibitory. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Electronic and optical properties of hydrogenated silicon carbide nanosheets: A DFT study

    NASA Astrophysics Data System (ADS)

    Delavari, Najmeh; Jafari, Mahmoud

    2018-07-01

    Density-functional theory has been applied to investigate the effect of hydrogen adsorption on silicon carbide (SiC) nanosheets, considering six, different configurations for adsorption process. The chair-like configuration is found to be the most stable because of the adsorption of hydrogen atoms by silicon and carbon atoms on the opposite sides. The pure and hydrogenated SiC monolayers are also found to be sp2- and sp3-hybridized, respectively. The binding energy of the hydrogen atoms in the chair-like structure is calculated about -3.845 eV, implying the system to be much more stable than the same study based on graphene, though with nearly the same electronic properties, strongly proposing the SiC monolayer to be a promising material for next generation hydrogen storage. Optical properties presented in terms of the real and the imaginary parts of the dielectric function also demonstrate a decrease in the dielectric constant and the static refractive index due to hydrogen adsorption with the Plasmon frequency of the chair-like, hydrogenated monolayer, occurring at higher energies compared to that of the pure one.

  15. Analytical chemical kinetic investigation of the effects of oxygen, hydrogen, and hydroxyl radicals on hydrogen-air combustion

    NASA Technical Reports Server (NTRS)

    Carson, G. T., Jr.

    1974-01-01

    Quantitative values were computed which show the effects of the presence of small amounts of oxygen, hydrogen, and hydroxyl radicals on the finite-rate chemical kinetics of premixed hydrogen-air mixtures undergoing isobaric autoignition and combustion. The free radicals were considered to be initially present in hydrogen-air mixtures at equivalence ratios of 0.2, 0.6, 1.0, and 1.2. Initial mixture temperatures were 1100 K, 1200 K, and 1500 K, and pressures were 0.5, 1.0, 2.0, and 4.0 atm. Of the radicals investigated, atomic oxygen was found to be the most effective for reducing induction time, defined as the time to 5 percent of the total combustion temperature rise. The reaction time, the time between 5 percent and 95 percent of the temperature rise, is not decreased by the presence of free radicals in the initial hydrogen-air mixture. Fuel additives which yield free radicals might be used to effect a compact supersonic combustor design for efficient operation in an otherwise reaction-limited combustion regime.

  16. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  17. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE PAGES

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.; ...

    2015-04-17

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  18. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less

  19. Transition-metal dispersion on carbon-doped boron nitride nanostructures: Applications for high-capacity hydrogen storage

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao

    2012-07-01

    Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.

  20. A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs for On-Board Vehicular Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaghi, Omar M.; Goddard, William A.

    2013-06-29

    Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g/L) densities to be achieved by 2015. From our continuous efforts on hydrogen storage, it is believed that metalation of highly porous solids with high-valence metals is promising and provides a rational direction to realize high volumetric hydrogen density near room temperature. This grant was focusedmore » on the study of high surface area covalent organic frameworks (COFs) with these specific objectives (1) to introduce potential metal binding sites through the COF synthesis and (2) to implement metalation experiments and evaluate their respective hydrogen adsorption properties. To maximize our efforts, simulation calculations were also performed (prior to experiments) for the prediction of binding enthalpy of hydrogen for molecular building units containing transition metals and promising COF structures to increase volumetric hydrogen uptake at room temperature. In this effort, first molecular building units with optimal binding energy for hydrogen storage (20 kJ/mol) were designed by quantum mechanical (QM) methods. Employing these results, it was revealed that one of metalated COFs takes up 60 g/L (total) of H2 at 100 bar and 298 K. To realize proposed COF structures, chemistry of COF synthesis has been developed; for instance, new air stable COFs were synthesized via hydrazone (COF-41 to 43) and imine condensation (COF-301, 320, 340, and 366) and some of them were tested the effect on metalation. Finally, a new triazine COF with high volumetric hydrogen uptake capacity was presented as a proposed future direction.« less

  1. Stability of hydrogenated graphene: a first-principles study

    DOE PAGES

    Yi, Ding; Yang, Liu; Xie, Shijie; ...

    2015-02-10

    In order to explain the disagreement between present theoretical and experimental investigations on the stability of hydrogenated graphene, we have systematically studied hydrogenated graphene with different configurations from the consideration of single-side and double-side adsorption using first-principles calculations. Both binding energy and formation energy are calculated to characterize the stability of the system. It is found that single-side hydrogenated graphene is always unstable. However, for double-side hydrogenation, some configurations are stable due to the increased carbon–carbon sp 3 hybridization compared to single-side hydrogenation. Furthermore, it is found that the system is energetically favorable when an equal number of hydrogen atomsmore » are adsorbed on each side of the graphene.« less

  2. Lipin 2 binds phosphatidic acid by the electrostatic hydrogen bond switch mechanism independent of phosphorylation.

    PubMed

    Eaton, James M; Takkellapati, Sankeerth; Lawrence, Robert T; McQueeney, Kelley E; Boroda, Salome; Mullins, Garrett R; Sherwood, Samantha G; Finck, Brian N; Villén, Judit; Harris, Thurl E

    2014-06-27

    Lipin 2 is a phosphatidic acid phosphatase (PAP) responsible for the penultimate step of triglyceride synthesis and dephosphorylation of phosphatidic acid (PA) to generate diacylglycerol. The lipin family of PA phosphatases is composed of lipins 1-3, which are members of the conserved haloacid dehalogenase superfamily. Although genetic alteration of LPIN2 in humans is known to cause Majeed syndrome, little is known about the biochemical regulation of its PAP activity. Here, in an attempt to gain a better general understanding of the biochemical nature of lipin 2, we have performed kinetic and phosphorylation analyses. We provide evidence that lipin 2, like lipin 1, binds PA via the electrostatic hydrogen bond switch mechanism but has a lower rate of catalysis. Like lipin 1, lipin 2 is highly phosphorylated, and we identified 15 phosphosites. However, unlike lipin 1, the phosphorylation of lipin 2 is not induced by insulin signaling nor is it sensitive to inhibition of the mammalian target of rapamycin. Importantly, phosphorylation of lipin 2 does not negatively regulate either membrane binding or PAP activity. This suggests that lipin 2 functions as a constitutively active PA phosphatase in stark contrast to the high degree of phosphorylation-mediated regulation of lipin 1. This knowledge of lipin 2 regulation is important for a deeper understanding of how the lipin family functions with respect to lipid synthesis and, more generally, as an example of how the membrane environment around PA can influence its effector proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae)

    PubMed Central

    Li, Guangwei; Chen, Xiulin; Li, Boliao; Zhang, Guohui; Li, Yiping; Wu, Junxiang

    2016-01-01

    Background The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications. Methodology/Principal Finding Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition. Conclusion Two rGmolGOBPs exhibit different

  4. Elucidation of the binding sites of sodium dodecyl sulfate to β-lactoglobulin using hydrogen/deuterium exchange mass spectrometry combined with docking simulation.

    PubMed

    Hu, Wenbing; Liu, Jianan; Luo, Qun; Han, Yumiao; Wu, Kui; Lv, Shuang; Xiong, Shaoxiang; Wang, Fuyi

    2011-05-30

    Hydrogen/deuterium exchange mass spectrometry (H/DX MS) has become a powerful tool to investigate protein-protein and protein-ligand interactions, but it is still challenging to localize the interaction regions/sites of ligands with pepsin-resistant proteins such as lipocalins. β-Lactoglobulin (BLG), a member of the lipocalin family, can bind a variety of small hydrophobic molecules including retinols, retinoic acids, and long linear fatty acids. However, whether the binding site of linear molecules locates in the external groove or internal cavity of BLG is controversial. In this study we used H/DX MS combined with docking simulation to localize the interaction sites of a tested ligand, sodium dodecyl sulfate (SDS), binding to BLG. H/DX MS results indicated that SDS can bind to both the external and the internal sites in BLG. However, neither of the sites is saturated with SDS, allowing a dynamic ligand exchange to occur between the sites at equilibrium state. Docking studies revealed that SDS forms H-bonds with Lys69 in the internal site and Lys138 and Lys141 in the external site in BLG via the sulfate group, and interacts with the hydrophobic residues valine, leucine, isoleucine and methionine within both of the sites via its hydrocarbon tail, stabilizing the BLG-SDS complex. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Deep levels due to hydrogen in ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra; Weber, Marc; Lynn, Kelvin

    2009-05-01

    Hydrogen impurities and oxygen vacancies are involved in the ˜0.7 eV shift of the optical absorption edge of ZnO. Deuterium causes a smaller shift. Titanium metal is used to bind hydrogen as it diffuses out of ZnO. Positron annihilation spectroscopy coupled with other techniques point to the presence of oxygen vacancies. Removing hydrogen followed by annealing in oxygen reduces the carrier concentration.

  6. Chelate effects in sulfate binding by amide/urea-based ligands.

    PubMed

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-07

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  7. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate

    PubMed Central

    Khansari, Maryam Emami; Johnson, Corey R.; Basaran, Ismet; Nafis, Aemal; Wang, Jing

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea (L1) and tris([(4-cyanophenyl)amino]propyl)thiourea (L2), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F− > H2PO4− > HCO3− > HSO4− > CH3COO− > SO42− > Cl− > Br− > I in DMSO-d6. The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F−, H2PO4−, HCO3−, HSO4− or CH3COO− due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO4− than SO42− is attributed to the proton transfer from HSO4− to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO-d6. In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2). PMID:28184300

  8. Hydration structure of the α-chymotrypsin substrate binding pocket: the impact of constrained geometry

    NASA Astrophysics Data System (ADS)

    Carey, Christina; Cheng, Yuen-Kit; Rossky, Peter J.

    2000-08-01

    The concave substrate binding pocket of α-chymotrypsin binds specifically hydrophobic side chains. In order to understand the hydration structure present in the absence of substrate, and elucidate the character of the solvent displaced on binding, molecular dynamics computer simulation of the solvent in a fully hydrated protein has been carried out and analyzed. The pocket is found to be characterized in terms of a mixed polar and apolar macromolecular surface. It is shown that the simulated solvent structure within it is spatially consistent with that seen via crystallography. The solvent structure is energetically characterized by large losses in hydrogen bonding among solvent molecules except at the mouth of the pocket where exposure to bulk-like solvent is possible. The loss in hydrogen bonding is attributed to the highly constrained geometry available to the solvent, preventing formation of a hydrogen bonding network, with only partial compensation by interactions with the macromolecular surface. The solvent displacement concomitant with substrate binding will therefore be associated with a large enthalpic driving force. This result is at the extreme of a continuum of variable cases of "hydrophobic" hydration, which differ most basically in surface curvature. These range from convex solute surfaces, inducing clathrate-like structures, with negligible hydrogen bond loss, to flat surfaces with significant interfacial loss, to the present concave case with hydrogen bonding losses exceeding 50%.

  9. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  10. Effects of hydrogen-rich water on aging periodontal tissues in rats

    PubMed Central

    Tomofuji, Takaaki; Kawabata, Yuya; Kasuyama, Kenta; Endo, Yasumasa; Yoneda, Toshiki; Yamane, Mayu; Azuma, Tetsuji; Ekuni, Daisuke; Morita, Manabu

    2014-01-01

    Oxidative damage is involved in age-related inflammatory reactions. The anti-oxidative effects of hydrogen-rich water suppress oxidative damage, which may aid in inhibiting age-related inflammatory reactions. We investigated the effects of drinking hydrogen-rich water on aging periodontal tissues in healthy rats. Four-month-old male Fischer 344 rats (n = 12) were divided into two groups: the experimental group (hydrogen-rich water treatment) and the control group (distilled water treatment). The rats consumed hydrogen-rich water or distilled water until 16 months of age. The experimental group exhibited lower periodontal oxidative damage at 16 months of age than the control group. Although protein expression of interleukin-1β did not differ, gene expression of Nod-like receptor protein 3 inflammasomes was activated in periodontal tissues from the experimental group as compared with the control group. Drinking hydrogen-rich water is proposed to have anti-aging effects on periodontal oxidative damage, but not on inflammatory reactions in healthy rats. PMID:24985521

  11. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  12. Carbohydrate binding specificity of pea lectin studied by NMR spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee

    1999-02-01

    The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.

  13. Steroid ligands bind human sex hormone-binding globulin in specific orientations and produce distinct changes in protein conformation.

    PubMed

    Grishkovskaya, Irina; Avvakumov, George V; Hammond, Geoffrey L; Catalano, Maria G; Muller, Yves A

    2002-08-30

    The amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG) contains a single high affinity steroid-binding site. Crystal structures of this domain in complex with several different steroid ligands have revealed that estradiol occupies the SHBG steroid-binding site in an opposite orientation when compared with 5 alpha-dihydrotestosterone or C19 androgen metabolites (5 alpha-androstan-3 beta,17 beta-diol and 5 alpha-androstan-3 beta,17 alpha-diol) or the synthetic progestin levonorgestrel. Substitution of specific residues within the SHBG steroid-binding site confirmed that Ser(42) plays a key role in determining high affinity interactions by hydrogen bonding to functional groups at C3 of the androstanediols and levonorgestrel and the hydroxyl at C17 of estradiol. Among residues participating in the hydrogen bond network with hydroxy groups at C17 of C19 steroids or C3 of estradiol, Asp(65) appears to be the most important. The different binding mode of estradiol is associated with a difference in the position/orientation of residues (Leu(131) and Lys(134)) in the loop segment (Leu(131)-His(136)) that covers the steroid-binding site as well as others (Leu(171)-Lys(173) and Trp(84)) on the surface of human SHBG and may provide a basis for ligand-dependent interactions between SHBG and other macromolecules. These new crystal structures have also enabled us to construct a simple space-filling model that can be used to predict the characteristics of novel SHBG ligands.

  14. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    PubMed

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  15. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    PubMed

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  16. [Effect of aceclofenac on thyroid hormone binding and thyroid function].

    PubMed

    Nadler, K; Buchinger, W; Semlitsch, G; Pongratz, R; Rainer, F

    2000-01-01

    Influences of non-steroidal anti-inflammatory drugs (NSAID) on concentrations of thyroid hormones are known for a long time. These effects could be explained with interference between NSAIDs and thyroid hormone binding. We investigated the effects of a single dose of aceclofenac on thyroid function and thyroid hormone binding in 18 healthy volunteers. Serum levels of free thyroid hormones (FT3, FT4) and thyrotropin (TSH) were measured with commercial available kids and thyroid hormone binding was estimated with a specially modified horizontal argarose-gel-electrophoresis prior to and 2 hours after receiving a single dose of aceclofenac. We found a significant decrease in T3 binding on TBG and a significant increase of albumin-bound T3. All other investigated thyroid hormone binding parameters, FT3 and FT4, showed no significant changes. We conclude that aceclofenac leads to a significant redistribution of T3 protein binding. These effects seem to be explained by T3 displacement from TBG induced by aceclofenac.

  17. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Peter; Gillespie, Andrew; Stalla, David

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H 2) by adsorption in quantities and at conditions that outperform current compressed-gas H 2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H 2 tanks operate at pressures between 350 and 700 bar at ambient temperature and storemore » 3-4 percent of H 2 by weight (wt%) and less than 25 grams of H 2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H 2 at pressures less than 350 bar. Adsorption holds H 2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank (high pressure), or other tank shape without any waste of volume.« less

  18. A Conformational Investigation of Propeptide Binding to the Integral Membrane Protein γ-Glutamyl Carboxylase Using Nanodisc Hydrogen Exchange Mass Spectrometry

    PubMed Central

    2015-01-01

    Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the role of GGCX in the vitamin K cycle is of biological interest in the development of therapeutics for blood coagulation disorders. Historically, biophysical investigations and structural characterizations of GGCX have been limited due to complexities involving the availability of an appropriate model membrane system. In previous work, a hydrogen exchange mass spectrometry (HX MS) platform was developed to study the structural configuration of GGCX in a near-native nanodisc phospholipid environment. Here we have applied the nanodisc–HX MS approach to characterize specific domains of GGCX that exhibit structural rearrangements upon binding the high-affinity consensus propeptide (pCon; AVFLSREQANQVLQRRRR). pCon binding was shown to be specific for monomeric GGCX-nanodiscs and promoted enhanced structural stability to the nanodisc-integrated complex while maintaining catalytic activity in the presence of carboxylation co-substrates. Noteworthy modifications in HX of GGCX were prominently observed in GGCX peptides 491–507 and 395–401 upon pCon association, consistent with regions previously identified as sites for propeptide and glutamate binding. Several additional protein regions exhibited minor gains in solvent protection upon propeptide incorporation, providing evidence for a structural reorientation of the GGCX complex in association with VKD carboxylation. The results herein demonstrate that nanodisc–HX MS can be utilized to study molecular interactions of membrane-bound enzymes in the absence of a complete three-dimensional structure and to map dynamic rearrangements induced upon ligand binding. PMID:24512177

  19. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  20. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE PAGES

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.; ...

    2017-10-16

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  1. Effect of hydrogen on the mechanical properties of titanium and its alloys

    NASA Technical Reports Server (NTRS)

    Beck, F. H.

    1975-01-01

    Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.

  2. Influence of polarization and self-polarization charges on impurity binding energy in spherical quantum dot with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Sarkar, Supratik; Sarkar, Samrat; Bose, Chayanika

    2018-07-01

    We present a general formulation of the ground state binding energy of a shallow hydrogenic impurity in spherical quantum dot with parabolic confinement, considering the effects of polarization and self energy. The variational approach within the effective mass approximation is employed here. The binding energy of an on-center impurity is computed for a GaAs/AlxGa1-xAs quantum dot as a function of the dot size with the dot barrier as parameter. The influence of polarization and self energy are also treated separately. Results indicate that the binding energy increases due to the presence of polarization charge, while decreases due to the self energy of the carrier. An overall enhancement in impurity binding energy, especially for small dots is noted.

  3. Non-action effect binding: A critical re-assessment.

    PubMed

    Weller, Lisa; Kunde, Wilfried; Pfister, Roland

    2017-10-01

    Humans typically act to cause effects in their environment, but at times they also voluntarily omit an action to cause a predictable effect. These effects may become bound to the causing non-actions, just as actions and their effects can become associated. In three experiments, we provide a critical re-assessment of previous reports of non-action effect binding. Following this work, participants completed an acquisition phase to associate actions and non-actions with particular effects. In a subsequent test phase, the former effects were presented as stimuli and participants were allowed to choose an action or non-action freely as a response. Binding should lead to more effect-consistent choices than predicted by chance. Previous studies, however, did not control for deliberate strategies of participants that might inflate the consistency bias and, also, did not address overall preferences for either acting or non-acting, which might introduce additional artifacts. We show that these confounds have a strong impact in common experimental designs and introduce ways to mitigate these effects. This improved assessment still corroborated evidence of binding between non-actions and their effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The cluster Ir4 and its interaction with a hydrogen impurity. A density functional study.

    PubMed

    Bussai, Chuenchit; Krüger, Sven; Vayssilov, Georgi N; Rösch, Notker

    2005-07-07

    To contribute to the understanding of how iridium particles act as catalysts for hydrogenation and dehydrogenation of hydrocarbons, we have determined structures and binding energies of various isomers of Ir(4) as well as HIr(4) on the basis of relativistic density functional theory. The most stable isomer of Ir(4) showed a square planar structure with eight unpaired electrons. The tetrahedral structure, experimentally suggested for supported species, was calculated 49 kJ mol(-1) less stable. Hydrogen coordinates preferentially to a single Ir center of the planar cluster with a binding energy of up to 88 kJ mol(-1) with respect to the atom in the H(2) molecule. Terminal interaction of hydrogen with an Ir(4) tetrahedron causes the cluster to open to a butterfly structure. We calculated terminal binding of hydrogen at different Ir(4) isomers to be more stable than bridge coordination, at variance with earlier studies.

  5. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  6. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE PAGES

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.; ...

    2016-06-29

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  7. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  8. Platinum Monolayer Shell on Non-Noble Metal Core Electrocatalysts for the Hydrogen Oxidation Reaction

    NASA Astrophysics Data System (ADS)

    Teeluck, Krishani Malini

    According to the United States Environmental Protection Agency, as of 2015, transportation accounted for 32% of the carbon dioxide emissions in the United States (and all carbon dioxide emissions in the U.S. accounted for 82.2% of all greenhouse gases from human activity). A hydrogen fuel cell is a device that efficiently produces electrical energy directly from a chemical reaction, with zero carbon emissions, and therefore holds great promise in alleviating our dependence on harmful use of energy sources. Due to their clean emissions and high efficiencies, there has been focus on the hydrogen fuel cell for vehicle applications using proton exchange membrane and alkaline fuel cells. Although the proton exchange membrane fuel cell is currently being used in vehicles, their high cost limits their feasibility in the market. This has inspired the development of the alkaline fuel cell whose efficiency and simplicity suggest the possibility of manufacturing high power fuel cell vehicles at a low cost, since the electrocatalysts in the alkaline fuel cell can be made from non-noble metals. Although the hydrogen oxidation reaction is one of the fastest electrochemical reactions in acidic media, it is two orders of magnitude slower in alkaline media, which hinders the overall efficiency of the alkaline fuel cell. Pure platinum is currently the best catalyst for the hydrogen oxidation reaction, but platinum’s high cost and rarity yields economic issues, rendering the technology futile if it cannot be commercialized. Furthermore, platinum’s hydrogen binding energy is slightly stronger than the optimal hydrogen binding energy. As the hydrogen oxidation reaction happens only on the surface of the catalyst, there is no need for platinum content beyond the exterior. Since tungsten and nickel are cheap, as well as abundant, they are ideal elements to replace the core of the catalyst with, while leaving a platinum shell surrounding this core. The activity of the hydrogen

  9. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    NASA Astrophysics Data System (ADS)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  10. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  11. Effective and Durable Co Single Atomic Cocatalysts for Photocatalytic Hydrogen Production.

    PubMed

    Zhao, Qi; Yao, Weifeng; Huang, Cunping; Wu, Qiang; Xu, Qunjie

    2017-12-13

    This research reports for the first time that single cobalt atoms anchored in nitrogen-doped graphene (Co-NG) can serve as a highly effective and durable cocatalyst for visible light photocatalytic hydrogen production from water. Results show that, under identical conditions, the hydrogen production rate (1382 μmol/h) for 0.25 wt % Co-NG-loaded CdS photocatalyst (0.25 wt % Co-NG/CdS) is 3.42 times greater than that of nitrogen-doped graphene (NG) loaded CdS photocatalyst (NG/CdS) and about 1.3 times greater than the greatest hydrogen production rate (1077 μmol/h) for 1.5 wt % Pt nanoparticle loaded CdS photocatalyst (1.5 wt % Pt-NPs/CdS). At 420 nm irradiation, the quantum efficiency of the 0.25 wt % Co-NG/CdS photocatalyst is 50.5%, the highest efficiency among those literature-reported non-noble metal cocatalysts. The Co-NG/CdS nanocomposite-based photocatalyst also has an extended durability. No activity decline was detected during three cyclic photocatalytic life span tests. The very low cocatalyst loading, along with the facile preparation technology for this non-noble metal cocatalyst, will significantly reduce the hydrogen production costs and finally lead to the commercialization of the solar catalytic hydrogen production process. Based on experimental results, we conclude that Co-NG can successfully replace noble metal cocatalysts as a highly effective and durable cocatalyst for renewable solar hydrogen production. This finding will point to a new way for the development of highly effective, long life span, non-noble metal-based cocatalysts for renewable and cost-effective hydrogen production.

  12. Lithium-decorated oxidized graphyne for hydrogen storage by first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zeyu; Wang, Lang; Cheng, Julong

    2014-11-07

    The geometric stability and hydrogen storage capacity of Li decorated oxidized γ-graphyne are studied based on the first-principles calculations. It is found that oxygen atoms trend to bond with acetylenic carbons and form C=O double bonds on both sides of graphyne. The binding energy of single Li atom on oxidized graphyne is 3.29 eV, owning to the strong interaction between Li atom and O atom. Meanwhile, the dispersion of Li is stable even under a relatively high density. One attached Li atom can at least adsorb six hydrogen molecules around. Benefitting from the porous structure of graphyne and the high attachedmore » Li density, a maximum hydrogen storage density 12.03 wt. % is achieved with four Li atoms in graphyne cell. The corresponding average binding energy is 0.24 eV/H{sub 2}, which is suitable for reversible storage. These results indicate that Li decorated graphyne can serve as a promising hydrogen storage material.« less

  13. Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  14. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry.

    PubMed

    Baum, Bernhard; Muley, Laveena; Smolinski, Michael; Heine, Andreas; Hangauer, David; Klebe, Gerhard

    2010-04-09

    Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Magnetic resonance studies of atomic hydrogen at zero field and low temperature: Recombination and binding on liquid helium

    NASA Astrophysics Data System (ADS)

    Jochemsen, R.; Morrow, M.; Berlinsky, A. J.; Hardy, W. N.

    1982-07-01

    Magnetic resonance studies at zero field are reported for atomic hydrogen gas confined in a closed glass bulb with helium-coated walls for T < 1 K in a dilution refrigerator. Low-energy r.f. discharge pulses have been used to produce H atoms at temperatures as low as T = 0.06 K. The atom density nH (10 9 < nH < 10 13) measured by the strength of the free induction decay signal, follows a second-order rate equation {dn H}/{dt} = -Kn H2. At the lowest temperatures recombination is dominated by the process H + H+ wall → H 2 + wall. From the temperature dependence of the rate constant K we have determined the binding energy of H on liquid 4He and 3He, and also the cross section for recombination on the surface.

  16. Effect of the oxidation front penetration on in-clad hydrogen migration

    NASA Astrophysics Data System (ADS)

    Feria, F.; Herranz, L. E.

    2018-03-01

    In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.

  17. Hydrogen molecules and chains in a superstrong magnetic field

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Salpeter, Edwin E.; Shapiro, Stuart L.

    1992-01-01

    The electronic structures of hydrogen polymolecules H(n) (n = 2,3,4,...) is studied in a superstrong magnetic field (B greater than about 10 exp 12 G) typically found on the surface of a neutron star. Simple analytical scaling relations for several limiting cases (e.g., large n, high B field) are derived. The binding energies of H(n) molecules are numerically calculated for various magnetic-field strengths. For a given magnetic-field strength, the binding energy per atom in the H(n) molecules is found to approach a constant value as n increases. For typical field strengths of interest, energy saturation is essentially achieved once n exceeds 3 to 4. Also considered is the structure of negative H ions in a high magnetic field. For B about 10 exp 12 G, the dissociation energy of an atom in a hydrogen chain and the ionization potential of H(-) are smaller than the ionization potential of neutral atomic hydrogen.

  18. Kinetic study of the effects of calcium ions on cationic artichoke (Cynara scolymus L.) peroxidase: calcium binding, steady-state kinetics and reactions with hydrogen peroxide.

    PubMed

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2004-01-01

    The apparent catalytic constant (k(cat)) of artichoke (Cynara scolymus L.) peroxidase (AKPC) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) increased 130-fold in the presence of calcium ions (Ca2+) but the affinity (K(m)) of the enzyme for ABTS was 500 times lower than for Ca2+-free AKPC. AKPC is known to exhibit an equilibrium between 6-aquo hexa-coordinate and penta-coordinate forms of the haem iron that is modulated by Ca2+ and affects compound I formation. Measurements of the Ca2+ dissociation constant (K(D)) were complicated by the water-association/dissociation equilibrium yielding a global value more than 1000 times too high. The value for the Ca2+ binding step alone has now been determined to be K(D) approximately 10 nM. AKPC-Ca2+ was more resistant to inactivation by hydrogen peroxide (H(2)O(2)) and exhibited increased catalase activity. An analysis of the complex H(2)O(2) concentration dependent kinetics of Ca2+-free AKPC is presented.

  19. Binding of Nitrodiphenylamines to Reverse Micelles of AOT in n-Hexane and Carbon Tetrachloride: Solvent and Substituent Effects.

    PubMed

    Correa; Durantini; Silber

    1998-12-01

    The absorption spectra of N-[2-(trifluoromethyl)-4-nitrophenyl]-4-nitroaniline (1), N-[4-nitrophenyl]-4-nitroaniline (2), and N-[2-nitrophenyl]-4-nitroaniline (3) were analyzed in reversed micelles of AOT (sodium 1,4-bis (2-ethylhexyl sulfosuccinate) in n-hexane and carbon tetrachloride. For 1 and 2 the intensity of the band characteristic for the pure solvent decreases as the AOT concentration increases and a new band develops. This new band is attributed to the solute bound to the micelle. These changes allowed us to determine the binding constant (Kb) between these compounds and AOT. Kb at W0 = [H2O]/[AOT] = 0 in n-hexane varies from 81 for 1 to 5092 for 2. Although similar trends are observed for carbon tetrachloride, the values of Kb are smaller than those for n-hexane. The possible solute-solvent interactions of these compounds were analyzed by means of Taft and Kamlet's solvatochromic comparison method. The strength of binding is interpreted considering their hydrogen-bond donor ability as well as their solubility in the pure solvents. For 1 Kb decreases as W0 is increased, while for 2 no variation was observed. These effects are discussed in terms of nitrodiphenylamine-water competition for interfacial binding sites. Moreover, the effect of the solute size and the presence of the trifluoromethyl group in 1 are important factors to consider in explaining its binding behavior. The spectra of 3 change very little with AOT concentration and only a slight bathochromic shift is observed. Thus, 3 acts as nonhydrogen bond donor solute, merely sensing a slight change in the polarity of its microenvironment. Copyright 1998 Academic Press.

  20. Water's hydrogen bonds in the hydrophobic effect: a simple model.

    PubMed

    Xu, Huafeng; Dill, Ken A

    2005-12-15

    We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.

  1. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  2. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felten, A.; Nittler, L.; Pireaux, J.-J.

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values asmore » high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.« less

  3. Davisson-Germer Prize Talk: Hydrogen storage in nanoporous materials

    NASA Astrophysics Data System (ADS)

    Chabal, Yves

    2009-03-01

    To develop a hydrogen-based energy technology, several classes of materials are being considered to achieve the DOE targets for gravimetric and volumetric hydrogen densities for hydrogen storage, including liquids (e.g. ammonium borohydrides), clathrate structures, complex metal hydrides, nanostructured (e.g. carbon) an nanoporous materials. Fundamental studies are necessary to determine the ultimate hydrogen capacity of each system. Nanoporous Metal-organic Framework (MOF) materials are promising candidates for hydrogen storage because the chemical nature and size of their unit cell can be tailored to weakly attract and incorporate H2 molecules, with good volumetric and mass density. In this talk, we consider the structure M2(BDC)2(TED), where M is a metal atom (Zn, Ni, Cu), BDC is benzenedicarboxylate and TED triethylenediamine, to determine the location and interaction of H2 molecules within the MOF. These compounds are isostructural and crystallize in the tetragonal phase (space group P4/ncc), they construct 3D porous structures with relatively large pore size (˜7-8 A ), pore volume (˜0.63-0.84 cc/g) and BET surface area (˜1500-1900 m^2/g). At high pressures (300-800 psi), the perturbation of the H-H stretching mode can be measured with IR absorption spectroscopy, showing a 35 cm-1 redshift from the unperturbed ortho (4155 cm-1 ) and para (4161 cm-1 ) frequencies. Using a newly developed non empirical van der Waals DFT method vdW-DFT),ootnotetextJ.Y. Lee, D.H. Olson, L. Pan, T.J. Emge, J. Li, Adv. Func. Mater. 17, 1255 (2007) it can be shown that the locus of the deepest H2 binding positions lies within to types of narrow channels. The energies of the most stable binding sites, as well as the number of such binding sites, are consistent with the values obtained from experimental adsorption isotherms, and heat of adsorption) data.ootnotetextM. Dion, H. Ryberg, E. Schroder, D. C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). Importantly, the

  4. Effect of solid surface charge on the binding behaviour of a metal-binding peptide

    PubMed Central

    Donatan, Senem; Sarikaya, Mehmet; Tamerler, Candan; Urgen, Mustafa

    2012-01-01

    Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may probably play an important role, which then can be used as a potential tuning parameter of peptide adsorption. Here, we report quantitative investigation on the viscoelastic properties and binding kinetics of an engineered gold-binding peptide, 3RGBP1, adsorbed onto the gold surface at different surface charge densities. The experiments were performed in aqueous solutions using an electrochemical dissipative quartz crystal microbalance system. Hydrodynamic mass, hydration state and surface coverage of the adsorbed peptide films were determined as a function of surface charge density of the gold metal substrate. Under each charged condition, binding of 3rGBP1 displayed quantitative differences in terms of adsorbed peptide amount, surface coverage ratio and hydration state. Based on the intrinsically disordered structure of the peptide, we propose a possible mechanism for binding of the peptide that can be used for tuning surface adsorption in further studies. Controlled alteration of peptide binding on solid surfaces, as shown here, may provide novel methods for surface functionalization used for bioenabled processing and fabrication of future micro- and nanodevices. PMID:22491974

  5. Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme

    PubMed Central

    2004-01-01

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the haem biosynthetic pathway, catalyses the chelation of Fe(II) into the protoporphyrin IX ring. The energetics of the binding between murine ferrochelatase and mesoporphyrin were determined using isothermal titration calorimetry, which revealed a stoichiometry of one molecule of mesoporphyrin bound per protein monomer. The binding is strongly exothermic, with a large intrinsic enthalpy (ΔH=−97.1 kJ · mol−1), and is associated with the uptake of two protons from the buffer. This proton transfer suggests that hydrogen bonding between ferrochelatase and mesoporphyrin is a key factor in the thermodynamics of the binding reaction. Differential scanning calorimetry thermograms indicated a co-operative two-state denaturation process with a single transition temperature of 56 °C for wild-type murine ferrochelatase. An increase in the thermal stability of ferrochelatase is dependent upon mesoporphyrin binding. Similarly, murine ferrochelatase variants, in which the active site Glu-289 was replaced by either glutamine or alanine and, when purified, contained specifically-bound protoporphyrin, exhibited enhanced protein stability when compared with wild-type ferrochelatase. However, in contrast with the wild-type enzyme, the thermal denaturation of ferrochelatase variants was best described as a non-co-operative denaturation process. PMID:15496139

  6. In-Silico Analysis of Amotosalen Hydrochloride Binding to CD-61 of Platelets.

    PubMed

    Chaudhary, Hammad Tufail

    2016-11-01

    To determine the docking of Amotosalen hydrochloride (AH) at CD-61 of platelets, and to suggest the cause of bleeding in AH treated platelets transfusion. Descriptive study. Medical College, Taif University, Taif, Saudi Arabia, from October 2014 to May 2015. The study was carried out in-silico. PDB (protein data bank) code of Tirofiban bound to CD-61 was 2vdm. CD-61 was docked with Tirofiban using online docking tools, i.e. Patchdock and Firedock. Then, Amotosalen hydrochloride and CD-61 were also docked. Best docking poses to active sites of 2vdm were found. Ligplot of interactions of ligands and CD-61 were obtained. Then comparison of hydrogen bonds, hydrogen bond lengths, and hydrophobic bonds of 2vdm molecule and best poses of docking results were done. Patchdock and Firedock results of best poses were also analysed using SPSS version 16. More amino acids were involved in hydrogen and hydrophobic bonds in Patchdock and Firedock docking of Amotosalen hydrochloride with CD-61 than Patchdock and Firedock docking of CD-61 with Tirofiban. The binding energy was more in latter than former. Amotosalen hydrochloride binds to the active site of CD-61 with weaker binding force. Haemorrhage seen in Amotosalen hydrochloride-treated platelets might be due to binding of Amotosalen hydrochloride to CD-61.

  7. Partially ionized hydrogen plasma in strong magnetic fields.

    PubMed

    Potekhin, A Y; Chabrier, G; Shibanov, Y A

    1999-08-01

    We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.

  8. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  9. Effective field theories for muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Peset, Clara

    2017-03-01

    Experimental measurements of muonic hydrogen bound states have recently started to take place and provide a powerful setting in which to study the properties of QCD. We profit from the power of effective field theories (EFTs) to provide a theoretical framework in which to study muonic hydrogen in a model independent fashion. In particular, we compute expressions for the Lamb shift and the hyperfine splitting. These expressions include the leading logarithmic O(mμα6) terms, as well as the leading {\\cal O}≤ft( {{m_μ }{α ^5}{{m_μ ^2} \\over {Λ {{QCD}}^2}}} \\right) hadronic effects. Most remarkably, our analyses include the determination of the spin-dependent and spin-independent structure functions of the forward virtualphoton Compton tensor of the proton to O(p3) in HBET and including the Delta particle. Using these results we obtain the leading hadronic contributions to the Wilson coeffcients of the lepton-proton four fermion operators in NRQED. The spin-independent coeffcient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, which is the main source of uncertainty in our computation. The spindependent coeffcient yields the prediction of the hyperfine splitting. The use of EFTs crucially helps us organizing the computation, in such a way that we can clearly address the parametric accuracy of our result. Furthermore, we review in the context of NRQED all the contributions to the energy shift of O(mμα5, as well as those that scale like mrα6× logarithms.

  10. The effect of the hydrogen fluoride chain on the aromaticity of C6H6 in the C6H6...(HF)1-4 complexes

    NASA Astrophysics Data System (ADS)

    Jouypazadeh, Hamidreza; Farrokhpour, Hossein; Solimannejad, Mohammad

    2018-02-01

    The effect of the hydrogen fluoride chain ((HF)n) on the aromaticity and π character of C-C bonds of C6H6 in the C6H6...(HF)n (n = 1-4) complexes were investigated using density functional theory employing RM05 functional. It was found that the binding energy between C6H6 and different (HF)n chains showed a maximum at n = 3 (C6H6...(HF)3). Also, the π-hydrogen interaction (πHI) and the bifurcated fluorine interaction (BFI) increased and decreased the π character of the C-C bond of C6H6, respectively. In addition, the change of aromaticity of the C6H6 due to the interaction with the HF chains was also studied using three different aspects such as aromatic fluctuation index (FLU), average two centre index (ATI) and proton nuclear magnetic resonance (HNMR) spectrum. The most change in the aromaticity happens when the C6H6 interacts with (HF)3 chain. The variation of aromaticity with the binding energy and the summation of two-body terms were investigated and very good linear correlations were observed.

  11. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  12. Trifluoperazine Regulation of Calmodulin Binding to Fas: A Computational Study

    PubMed Central

    Pan, Di; Yan, Qi; Chen, Yabing; McDonald, Jay M; Song, Yuhua

    2011-01-01

    Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain (FADD) for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner. PMID:21656570

  13. Effects of Cavities at the Nicotinamide Binding Site of Liver Alcohol Dehydrogenase on Structure, Dynamics and Catalysis

    PubMed Central

    2015-01-01

    A role for protein dynamics in enzymatic catalysis of hydrogen transfer has received substantial scientific support, but the connections between protein structure and catalysis remain to be established. Valine residues 203 and 207 are at the binding site for the nicotinamide ring of the coenzyme in liver alcohol dehydrogenase and have been suggested to facilitate catalysis with “protein-promoting vibrations” (PPV). We find that the V207A substitution has small effects on steady-state kinetic constants and the rate of hydrogen transfer; the introduced cavity is empty and is tolerated with minimal effects on structure (determined at 1.2 Å for the complex with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to support a role for Val-207 in the dynamics of catalysis. The protein structures and ligand geometries (including donor–acceptor distances) in the V203A enzyme complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined at 1.1 Å) are very similar to those for the wild-type enzyme, except that the introduced cavity accommodates a new water molecule that contacts the nicotinamide ring. The structures of the V203A enzyme complexes suggest, in contrast to previous studies, that the diminished tunneling and decreased rate of hydride transfer (16-fold, relative to that of the wild-type enzyme) are not due to differences in ground-state ligand geometries. The V203A substitution may alter the PPV and the reorganization energy for hydrogen transfer, but the protein scaffold and equilibrium thermal motions within the Michaelis complex may be more significant for enzyme catalysis. PMID:24437493

  14. Covalent binding of aniline to humic substances. 1. Kinetic studies

    USGS Publications Warehouse

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  15. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats.

    PubMed

    Yan, Weiming; Chen, Tao; Long, Pan; Zhang, Zhe; Liu, Qian; Wang, Xiaocheng; An, Jing; Zhang, Zuoming

    2018-06-07

    BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P<0.05). The number of the infiltrating cells in the ICB of rats from the H-O group was not significantly different from that of the model or N-O group (P>0.05), while the activation of microglia cells in the H-O group was somewhat reduced (P<0.05). CONCLUSIONS Post-treatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.

  16. Hydrogen bonding-assisted interaction between amitriptyline hydrochloride and hemoglobin: spectroscopic and molecular dynamics studies.

    PubMed

    Maurya, Neha; Maurya, Jitendra Kumar; Kumari, Meena; Khan, Abbul Bashar; Dohare, Ravins; Patel, Rajan

    2017-05-01

    Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.

  17. How Does (E)-2-(Acetamidomethylene)succinate Bind to Its Hydrolase? From the Binding Process to the Final Result

    PubMed Central

    Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing

    2013-01-01

    The binding of (E)-2-(acetamidomethylene)succinate (E-2AMS) to E-2AMS hydrolase is crucial for biological function of the enzyme and the last step reaction of vitamin B6 biological degradation. In the present study, several molecular simulation methods, including molecular docking, conventional molecular dynamics (MD), steered MD (SMD), and free energy calculation methods, were properly integrated to investigate the detailed binding process of E-2AMS to its hydrolase and to assign the optimal enzyme-substrate complex conformation. It was demonstrated that the substrate binding conformation with trans-form amide bond is energetically preferred conformation, in which E-2AMS's pose not only ensures hydrogen bond formation of its amide oxygen atom with the vicinal oxyanion hole but also provides probability of the hydrophobic interaction between its methyl moiety and the related enzyme's hydrophobic cavity. Several key residues, Arg146, Arg167, Tyr168, Arg179, and Tyr259, orientate the E-2AMS's pose and stabilize its conformation in the active site via the hydrogen bond interaction with E-2AMS. Sequentially, the binding process of E-2AMS to E-2AMS hydrolase was studied by SMD simulation, which shows the surprising conformational reversal of E-2AMS. Several important intermediate structures and some significant residues were identified in the simulation. It is stressed that Arg146 and Arg167 are two pivotal residues responsible for the conformational reversal of E-2AMS in the binding or unbinding. Our research has shed light onto the full binding process of the substrate to E-2AMS hydrolase, which could provide more penetrating insight into the interaction of E-2AMS with the enzyme and would help in the further exploration on the catalysis mechanism. PMID:23308285

  18. Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding.

    PubMed

    Qiu, Yimin; Mekkat, Arya; Yu, Hongtao; Yigit, Sezin; Hamaia, Samir; Farndale, Richard W; Kaplan, David L; Lin, Yu-Shan; Brodsky, Barbara

    2018-05-11

    Gly missense mutations in type I collagen, which replace a conserved Gly in the repeating (Gly-Xaa-Yaa) n sequence with a larger residue, are known to cause Osteogenesis Imperfecta (OI). The clinical consequences of such mutations range from mild to lethal, with more serious clinical severity associated with larger Gly replacement residues. Here, we investigate the influence of the identity of the residue replacing Gly within and adjacent to the integrin binding 502 GFPGER 507 sequence on triple-helix structure, stability and integrin binding using a recombinant bacterial collagen system. Recombinant collagens were constructed with Gly substituted by Ala, Ser or Val at four positions within the integrin binding region. All constructs formed a stable triple-helix structure with a small decrease in melting temperature. Trypsin was used to probe local disruption of the triple helix, and Gly to Val replacements made the triple helix trypsin sensitive at three of the four sites. Any mutation at Gly505, eliminated integrin binding, while decreased integrin binding affinity was observed in the replacement of Gly residues at Gly502 following the order Val > Ser > Ala. Molecular dynamics simulations indicated that all Gly replacements led to transient disruption of triple-helix interchain hydrogen bonds in the region of the Gly replacement. These computational and experimental results lend insight into the complex molecular basis of the varying clinical severity of OI. Copyright © 2018. Published by Elsevier Inc.

  19. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging themore » ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.« less

  20. Quantum effects and anharmonicity in the H2-Li+-benzene complex: A model for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T.

    2013-12-01

    Quantum and anharmonic effects are investigated in H2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔHbind (0 K), being 16.5 kJ mol-1 and 12.4 kJ mol-1, respectively: 0.1 and 0.6 kJ mol-1 higher than harmonic values. Zero-point energy effects are 35% of the value of ΔHbind (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol-1. Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li+-benzene system at 0 K.

  1. Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.

    Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less

  2. Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn

    DOE PAGES

    Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.; ...

    2016-10-03

    Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less

  3. Physical origins of weak H 2 binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE PAGES

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.; ...

    2014-05-05

    Here, we have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH 2, COOH, NO 2, or H 2PO 3. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. Furthermore, the largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strongmore » functionalization” by H 2PO 3 (115 meV/H 2 versus 52 meV/H 2 on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. These results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the storage of hydrogen

  4. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    PubMed

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  5. Heterogeneous Metal-Free Hydrogenation over Defect-Laden Hexagonal Boron Nitride

    DOE PAGES

    Nash, David J.; Restrepo, David T.; Parra, Natalia S.; ...

    2016-12-21

    Catalytic hydrogenation is an important process used for the production of everything from foods to fuels. Current heterogeneous implementations of this process utilize metals as the active species. Until recently, catalytic heterogeneous hydrogenation over a metal-free solid was unknown; implementation of such a system would eliminate the health, environmental, and economic concerns associated with metal-based catalysts. We report good hydrogenation rates and yields for a metal-free heterogeneous hydrogenation catalyst as well as its unique hydrogenation mechanism. We achieved catalytic hydrogenation of olefins over defect-laden h-BN (dh-BN) in a reactor designed to maximize the defects in h-BN sheets. Good yields (>90%)more » and turnover frequencies (6 × 10 –5–4 × 10 –3) were obtained for the hydrogenation of propene, cyclohexene, 1,1-diphenylethene, (E)- and (Z)-1,2-diphenylethene, octadecene, and benzylideneacetophenone. Temperature-programmed desorption of ethene over processed h-BN indicates the formation of a highly defective structure. Solid-state NMR (SSNMR) measurements of dh-BN with high and low propene surface coverages show four different binding modes. The introduction of defects into h-BN creates regions of electronic deficiency and excess. Density functional theory calculations show that both the alkene and hydrogen-bond order are reduced over four specific defects: boron substitution for nitrogen (B N), vacancies (V B and V N), and Stone–Wales defects. SSNMR and binding-energy calculations show that V N are most likely the catalytically active sites. Our work shows that catalytic sites can be introduced into a material previously thought to be catalytically inactive through the production of defects.« less

  6. The effect of donor treatment with hydrogen on lung allograft function in rats.

    PubMed

    Kawamura, Tomohiro; Huang, Chien-Sheng; Peng, Ximei; Masutani, Kosuke; Shigemura, Norihisa; Billiar, Timothy R; Okumura, Meinoshin; Toyoda, Yoshiya; Nakao, Atsunori

    2011-08-01

    Because inhaled hydrogen provides potent anti-inflammatory and antiapoptotic effects against acute lung injury, we hypothesized that treatment of organ donors with inhaled hydrogen during mechanical ventilation would decrease graft injury after lung transplantation. Orthotopic left lung transplants were performed using a fully allogeneic Lewis to Brown Norway rat model. The donors were exposed to mechanical ventilation with 98% oxygen plus 2% nitrogen or 2% hydrogen for 3 h prior to harvest, and the lung grafts underwent 4 h of cold storage in Perfadex (Vitrolife, Göteborg, Sweden). The graft function, histomorphologic changes, and inflammatory reactions were assessed. The combination of mechanical ventilation and prolonged cold ischemia resulted in marked deterioration of gas exchange when the donors were ventilated with 2% nitrogen/98% oxygen, which was accompanied by upregulation of proinflammatory cytokines and proapoptotic molecules. These lung injuries were attenuated significantly by ventilation with 2% hydrogen. Inhaled hydrogen induced heme oxygenase-1, an antioxidant enzyme, in the lung grafts prior to implantation, which might contribute to protective effects afforded by hydrogen. Preloaded hydrogen gas during ventilation prior to organ procurement protected lung grafts effectively from ischemia/reperfusion-induced injury in a rat lung transplantation model. Copyright © 2011 Mosby, Inc. All rights reserved.

  7. InGaP/InGaAs field-effect transistor typed hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Liou, Syuan-Hao; Lin, Pao-Sheng; Chen, Yu-Chi

    2018-02-01

    In this article, the Pd-based mixture comprising silicon dioxide (SiO2) is applied as sensing material for the InGaP/InGaAs field-effect transistor typed hydrogen sensor. After wet selectively etching the SiO2, the mixture is turned into Pd nanoparticles on an interlayer. Experimental results depict that hydrogen atoms trapped inside the mixture could effectively decrease the gate barrier height and increase the drain current due to the improved sensing properties when Pd nanoparticles were formed by wet etching method. The sensitivity of the gate forward current from air (the reference) to 9800 ppm hydrogen/air environment approaches the high value of 1674. Thus, the studied device shows a good potential for hydrogen sensor and integrated circuit applications.

  8. Electrocatalytic Hydrogenation of Phenol over Platinum and Rhodium: Unexpected Temperature Effects Resolved

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirala; Song, Yang; Gutiérrez, Oliver Y.

    2016-11-04

    Both electrocatalytic hydrogenation (ECH) and thermal hydrogenation (TH) of phenol by Pt and Rh show a roll-over in rate with increasing temperature without changing the principal reaction pathways. The negative effect of temperature for aqueous-phase phenol H2 and electrocatalytic hydrogenation on Pt and Rh is deduced to be due to the unexpected buildup of dehydrogenated phenol adsorbates, which block active sites. Rates of ECH and TH increase similarly with increasing hydrogen chemical potential whether induced by applied potential or H2 pressure, both via increasing H coverage, and indirectly by removing site blockers, a very strong effect at high temperature. Thismore » enables unprecedented rates in the TH of phenol at these temperatures.« less

  9. Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles

    DOE PAGES

    Buttner, William; Rivkin, C.; Burgess, R.; ...

    2017-02-04

    Here, the United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 ( Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditionsmore » and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.« less

  10. Hydrogen effects in corrosion: discussion

    NASA Astrophysics Data System (ADS)

    Stopher, Miles A.; Simpson, E. Luke

    2017-06-01

    This session contained talks on the characterization of hydrogen-enhanced corrosion of steels and nickel-based alloys, emphasizing the different observations across length scales, from atomic-scale spectrographic to macro-scale fractographic examinations. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  11. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    PubMed

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  12. First principles study of hydrogen behaviors in hexagonal tungsten carbide

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.

    2011-11-01

    Understanding the behaviors of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Here, we have used first principles calculations to study the hydrogen behavior in WC. It is found that the most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon basal plane. The binding energy between two interstitial hydrogen atoms is negative, suggesting that hydrogen itself is not capable of trapping another hydrogen atoms to form hydrogen molecule. The calculated results on the interaction between hydrogen and vacancy indicate that hydrogen atom is preferably trapped by vacancy defects and hydrogen molecule can not be formed in mono-vacancy. In addition, the hydrogen atom bound to carbon is only found in tungsten vacancy. We also study the migrations of hydrogen in WC and find that the interstitial hydrogen atom prefers to diffuse along the c-axis. Our studies provide some explanations for the results of the thermal desorption process of energetic hydrogen ion implanted into WC.

  13. Effect Of Water On Permeation By Hydrogen

    NASA Technical Reports Server (NTRS)

    Tomazic, William A.; Hulligan, David

    1988-01-01

    Water vapor in working fluid equilibrates with permeability-reducing oxides in metal parts. Report describes study of effects of water on permeation of heater-head tubes by hydrogen in Stirling engine. Experiments performed to determine minimum concentration of oxygen and/or oxygen-bearing gas maintaining oxide coverage adequate for low permeability. Tests showed 750 ppm or more of water effective in maintaining stable, low permeability.

  14. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashlykova-Bushkevich, Iya I.

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defectmore » interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.« less

  15. The relationship between the boron dipyrromethene (BODIPY) structure and the effectiveness of homogeneous and heterogeneous solar hydrogen-generating systems as well as DSSCs.

    PubMed

    Luo, Geng-Geng; Lu, Hui; Zhang, Xiao-Long; Dai, Jing-Cao; Wu, Ji-Huai; Wu, Jia-Jia

    2015-04-21

    effective surface binding mode is allowed with this structure. This is also in contrast with the case of dye-sensitized solar H2 generation, in which B3 was the most efficient chromophore. The differences between dye-sensitized hydrogen-generating systems and DSSCs may be due to rates of electron transfer and the dye aggregation tendency.

  16. Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Le; Ghimire-Rijal, Sudipa; Lucas, Sarah L.

    Here, the ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimericmore » apo PBP leads to a tightening of the interface alpha-helices so that the hydrogen bonding pattern shifts to that of a 3 10 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.« less

  17. Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding

    DOE PAGES

    Li, Le; Ghimire-Rijal, Sudipa; Lucas, Sarah L.; ...

    2017-09-06

    Here, the ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimericmore » apo PBP leads to a tightening of the interface alpha-helices so that the hydrogen bonding pattern shifts to that of a 3 10 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.« less

  18. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    DOE PAGES

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; ...

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less

  19. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding.

    PubMed

    Newcomer, Rebecca L; Fraser, LaTasha C R; Teschke, Carolyn M; Alexandrescu, Andrei T

    2015-12-15

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding

    PubMed Central

    Newcomer, Rebecca L.; Fraser, LaTasha C.R.; Teschke, Carolyn M.; Alexandrescu, Andrei T.

    2015-01-01

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. PMID:26682823

  1. Physical origins of weak H{sub 2} binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.

    2014-05-07

    We have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH{sub 2}, COOH, NO{sub 2}, or H{sub 2}PO{sub 3}. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. The largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strong functionalization” bymore » H{sub 2}PO{sub 3} (115 meV/H{sub 2} versus 52 meV/H{sub 2} on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. Our results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the

  2. Hydrogen transport and hydrogen embrittlement in stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, T.P.

    1985-01-01

    In order to understand the kinetics of gaseous hydrogen-induced slow crack growth (SCG) in metastable austenitic stainless steels, hydrogen permeation and/or cracking velocity were measured and compared for three types of stainless steels. These included austenitic, ferritic, and duplex (..gamma../..cap alpha..) alloys. Deformation in AISI 301 resulted in various amounts of ..cap alpha..' martensite, which enhanced the effective hydrogen diffusivity and permeability. No phase transformation was observed in deformed AISI 310. The effective hydrogen diffusivity in this alloy was slightly reduced after plastic deformation, presumably by dislocation trapping. In either the dynamic or static tensile test, AISI 301 exhibited themore » greatest hydrogen embrittlement and therefore the highest SCG velocity among all the alloys tested in this work. The SCG velocity was believed to be controlled by the rate of accumulation of hydrogen in the embrittlement region ahead of the crack tip and therefore could be explained with the hydrogen transport parameters measured from the permeation experiments. The relatively high SCG velocity in AISI 301 was probably due to the fast transport of hydrogen through the primarily stress-induced ..cap alpha..' phase around the crack. No SCG was observed in AISI 310. The presence of H/sub 2/O vapor was found to reduce both the hydrogen permeation and SCG velocity.« less

  3. Effects of N-acetylimidazole on oxytocin binding in bovine mammary tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X.; Gorewit, R.C.; Currie, W.B.

    1990-01-01

    The effects of N-acetylimidazole on specific binding of oxytocin to microsomal fractions of bovine mammary gland were studied. N-acetylimidazole suppressed oxytocin binding, with time and concentration dependence. Decreased oxytocin binding activity appeared to be due to decreased affinity of the hormone for its receptor. Acetylation of oxytocin, rather than of oxytocin receptors, seemed to be responsible for the decreased binding.

  4. A DFT investigation on group 8B transition metal-doped silicon carbide nanotubes for hydrogen storage application

    NASA Astrophysics Data System (ADS)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob

    2018-05-01

    The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.

  5. Combining Crystallography and Hydrogen-Deuterium Exchange to Study Galectin-Ligand Complexes.

    PubMed

    Ruiz, Federico M; Gilles, Ulrich; Lindner, Ingo; André, Sabine; Romero, Antonio; Reusch, Dietmar; Gabius, Hans-Joachim

    2015-09-21

    The physiological significance arising from translating information stored in glycans into cellular effects explains the interest in structurally defining lectin-carbohydrate recognition. The relatively small set of adhesion/growth-regulatory galectins in chicken makes this system attractive to study the origins of specificity and divergence. Cell binding by using glycosylation mutants reveals binding of the N-terminal domain of chicken galectin-8 (CG-8N) to α-2,3-sialylated and galactose-terminated glycan chains. Cocrystals with lactose and its 3'-sialylated derivative disclose Arg58 as a key contact for the carboxylic acid and differences in loop lengths to the three homodimeric chicken galectins. Monitoring hydrogen-deuterium exchange by mass spectrometry revealed an effective reduction of deuteration after ligand binding within the contact area. In addition, evidence for changes in solvent accessibility of amide protons beyond this site was obtained. Their detection, which highlights the sensor capacity of this technique, encourages systematic studies on galectins and beyond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  7. Moisture contamination and welding parameter effects on flux cored arc welding diffusible hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefer, J.J.

    1994-12-31

    Gas metal arc (GMAW) and flux cored arc (FCAW) welding are gas shielded semiautomatic processes widely used for achieving high productivity in steel fabrication. Contamination of the shielding has can occur due to poorly maintained gas distribution systems. Moisture entering as a gas contaminant is a source of hydrogen that can cause delayed cold cracking in welds. Limiting heat-affected zone hardness is one method of controlling cracking. Even this is based on some assumptions about the hydrogen levels in the weld. A study was conducted to investigate the effect of shielding gas moisture contamination and welding parameters on the diffusiblemore » hydrogen content of gas shielded flux cored arc welding. The total wire hydrogen of various electrodes was also tested and compared to the diffusible weld hydrogen. An empirical equation has been developed that estimates the diffusible hydrogen in weld metal for gas shielded flux cored arc welding. The equation is suitable for small diameter electrodes and welding parameter ranges commonly used for out-of-position welding. by combining this with the results from the total wire hydrogen tests, it is possible to estimate diffusible hydrogen directly from measured welding parameters, shielding gas dew point, and total hydrogen of the consumable. These equations are also useful for evaluating the effect of welding procedure variations from known baseline conditions.« less

  8. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, themore » chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.« less

  9. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry

    PubMed Central

    Hochrein, James M.; Lerner, Edwina C.; Schiavone, Anthony P.; Smithgall, Thomas E.; Engen, John R.

    2006-01-01

    The ability of proteins to regulate their own enzymatic activity can be facilitated by changes in structure or protein dynamics in response to external regulators. Because many proteins contain SH2 and SH3 domains, transmission of information between the domains is a potential method of allosteric regulation. To determine if ligand binding to one modular domain may alter structural dynamics in an adjacent domain, allowing potential transmission of information through the protein, we used hydrogen exchange and mass spectrometry to measure changes in protein dynamics in the SH3 and SH2 domains of hematopoietic cell kinase (Hck). Ligand binding to either domain had little or no effect on hydrogen exchange in the adjacent domain, suggesting that changes in protein structure or dynamics are not a means of SH2/SH3 crosstalk. Furthermore, ligands of varying affinity covalently attached to SH3/SH2 altered dynamics only in the domain to which they bind. Such results demonstrate that ligand binding may not structurally alter adjacent SH3/SH2 domains and implies that other aspects of protein architecture contribute to the multiple levels of regulation in proteins containing SH3 and SH2 domains. PMID:16322569

  10. Quantifying the effect of hydrogen on dislocation dynamics: A three-dimensional discrete dislocation dynamics framework

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; El-Awady, Jaafar A.

    2018-03-01

    We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.

  11. Hydrogenated amorphous silicon formation by flux control and hydrogen effects on the growth mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.

    1986-06-01

    The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.

  12. Carbon dioxide hydrogenation on Ni(110).

    PubMed

    Vesselli, Erik; De Rogatis, Loredana; Ding, Xunlei; Baraldi, Alessandro; Savio, Letizia; Vattuone, Luca; Rocca, Mario; Fornasiero, Paolo; Peressi, Maria; Baldereschi, Alfonso; Rosei, Renzo; Comelli, Giovanni

    2008-08-27

    We demonstrate that the key step for the reaction of CO 2 with hydrogen on Ni(110) is a change of the activated molecule coordination to the metal surface. At 90 K, CO 2 is negatively charged and chemically bonded via the carbon atom. When the temperature is increased and H approaches, the H-CO 2 complex flips and binds to the surface through the two oxygen atoms, while H binds to the carbon atom, thus yielding formate. We provide the atomic-level description of this process by means of conventional ultrahigh vacuum surface science techniques combined with density functional theory calculations and corroborated by high pressure reactivity tests. Knowledge about the details of the mechanisms involved in this reaction can yield a deeper comprehension of heterogeneous catalytic organic synthesis processes involving carbon dioxide as a reactant. We show why on Ni the CO 2 hydrogenation barrier is remarkably smaller than that on the common Cu metal-based catalyst. Our results provide a possible interpretation of the observed high catalytic activity of NiCu alloys.

  13. Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS2.

    PubMed

    Lazar, Petr; Otyepka, Michal

    2017-04-06

    Molybdenum disulfide, in particular its edges, has attracted considerable attention as possible substitute for platinum catalysts in the hydrogen evolution reaction (HER). The complex nature of the reaction complicates its detailed experimental investigations, which are mostly indirect and sample dependent. Therefore, density functional theory calculations were employed to study how the properties of the MoS 2 Mo-edge influence the thermodynamics of hydrogen adsorption onto the edge. The effect of the computational model (one-dimensional nanostripe), border symmetry imposed by its length, sulfur saturation of the edge, and dimensionality of the material are discussed. Hydrogen adsorption was found to depend critically on the coverage of extra sulfur at the Mo edge. The bare Mo-edge and fully sulfur-covered Mo-edge are catalytically inactive. The most favorable hydrogen binding towards HER was found for the Mo-edge covered by sulfur monomers. This edge provides hydrogen adsorption free energies positioned around -0.25 eV at up to 50 % hydrogen coverage, close to the experimental values of overpotential needed for the HER reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantification of oil binding capacity of structuring fats: A novel method and its application.

    PubMed

    Omonov, Tolibjon S; Bouzidi, Laziz; Narine, Suresh S

    2010-09-01

    A robust, well-defined and reproducible method to accurately measure the oil binding capacity (OBC) of structuring fats was developed. The method was validated using two oil/fat model systems, i.e., fully hydrogenated canola oil (FHCO) in canola oil (CO) (FHCO/CO) and fully hydrogenated soybean oil (FHSO) in CO (FHSO/CO). The mixtures were crystallized from the melt down to three different temperatures (15, 25 and 35 degrees C) at constant rates of cooling and the OBC was measured after different periods of storage time. The critical concentration of hard fat at which the solid fat network is stable and effectively binds oil has been also measured for mixtures crystallized at temperatures close to room temperature, i.e., 25 degrees C. Crystal structure, melting behavior, microstructure, and solid fat content of these binary systems have been investigated in relation to the OBC of the solid fat network using X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and wide-line pulsed nuclear magnetic resonance (pNMR) techniques. The two model systems exhibited similar trends in OBC over time, a behavior attributed to their similar TAG composition and polymorphism. However, relatively smaller OBC values were achieved by the CO/FHSO compared to CO/FHCO samples, largely due to differences in their solid network structure. Four successive decreasing linear segments, identifying successive mechanisms of oil migration/binding, were observed in the experimental OBC versus fat weight fraction curves. The critical concentration of hard fat, at which the solid fat network is effective in binding oil, was also determined and found to be approximately 6wt% for both systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Analysis of the strength of interfacial hydrogen bonds between tubulin dimers using quantum theory of atoms in molecules.

    PubMed

    Ayoub, Ahmed T; Craddock, Travis J A; Klobukowski, Mariusz; Tuszynski, Jack

    2014-08-05

    Microtubules are key structural elements that, among numerous biological functions, maintain the cytoskeleton of the cell and have a major role in cell division, which makes them important cancer chemotherapy targets. Understanding the energy balance that brings tubulin dimers, the building blocks of microtubules, together to form a microtubule is especially important for revealing the mechanism of their dynamic instability. Several studies have been conducted to estimate various contributions to the free energy of microtubule formation. However, the hydrogen-bond contribution was not studied before as a separate component. In this work, we use concepts such as the quantum theory of atoms in molecules to estimate the per-residue strength of hydrogen bonds contributing to the overall stability that brings subunits together in pair of tubulin heterodimers, across both the longitudinal and lateral interfaces. Our study shows that hydrogen bonding plays a major role in the stability of tubulin systems. Several residues that are crucial to the binding of vinca alkaloids are shown to be strongly involved in longitudinal microtubule stabilization. This indicates a direct relation between the binding of these agents and the effect on the interfacial hydrogen-bonding network, and explains the mechanism of their action. Lateral contacts showed much higher stability than longitudinal ones (-462 ± 70 vs. -392 ± 59 kJ/mol), which suggests a dramatic lateral stabilization effect of the GTP cap in the β-subunit. The role of the M-loop in lateral stability in absence of taxol was shown to be minor. The B-lattice lateral hydrogen bonds are shown to be comparable in strength to the A-lattice ones (-462 ± 70 vs. -472 ± 46 kJ/mol). These findings establish the importance of hydrogen bonds to the stability of tubulin systems. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.

    PubMed

    Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E

    2016-11-01

    Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.

  17. Aryl C—H···Cl– Hydrogen Bonding in a Fluorescent Anion Sensor

    PubMed Central

    Tresca, Blakely W.; Zakharov, Lev N.; Carroll, Calden N.; Johnson, Darren W.; Haley, Michael M.

    2014-01-01

    A new phenyl-acetylene receptor containing a carbonaceous hydrogen bond donor activates anion binding in conjunction with two stabilizing ureas. The unusual CH···Cl– hydrogen bond is apparent in solution by large 1H NMR chemical shifts and by a short, linear contact in the solid state. PMID:23843050

  18. Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP-DNA aptamer complex.

    PubMed Central

    Nonin-Lecomte, S; Lin, C H; Patel, D J

    2001-01-01

    The solution structure of an adenosine monophosphate (AMP)-DNA aptamer complex has been determined previously [Lin, C. H., and Patel, D. J. (1997) Chem. Biol. 4:817-832]. On a symmetrical aptamer complex containing the same binding loop, but with better resolved spectra, we have identified two additional hydrogen bond-mediated associations in the binding loop. One of these involves a rapidly exchanging G imino proton. The phosphate group of the AMP ligand was identified as the acceptor by comparison with other aptamer complexes. Imino proton exchange measurements also yielded the dissociation constants of the stem and binding loop base pairs. This study shows that nuclear magnetic resonance-based imino proton exchange is a good probe for detection of weak hydrogen-bond associations. PMID:11721004

  19. Electron scattering effects at physisorbed hydrogen molecules on break-junction electrodes and nanowires formation in hydrogen environment

    NASA Astrophysics Data System (ADS)

    van der Maas, M.; Vasnyov, S.; Hendriksen, B. L. M.; Shklyarevskii, O. I.; Speller, S.

    2012-06-01

    Physisorption of hydrogen molecules on the surface of gold and other coinage metals has been studied using distance tunneling spectroscopy. We have observed that the distance dependence of the tunnel current (resistance) displays a strong N-shaped deviation from exponential behavior. Such deviations are difficult to explain within the Tersoff-Hamann approximation. We suggest the scattering of tunneling electrons by H2 molecules as an origin for the observed effect. We have found that this phenomenon is also common for strongly adsorbed organic molecules with a single anchoring group. Pulling Au, Cu and Pt nanowires at 22 K in hydrogen environment shows that the break-junction electrodes are still connected through hydrogen-metal monoatomic chains down to very low conductance values of 10-4-10-6 G0.

  20. Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency

    NASA Technical Reports Server (NTRS)

    Crampton, S. B.

    1979-01-01

    Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.

  1. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    PubMed Central

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  2. Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate

    PubMed Central

    Qiu, Linlin; Gulotta, Miriam; Callender, Robert

    2007-01-01

    Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169

  3. Effects of hydrogen bond on the melting point of azole explosives

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hua; Shen, Chen; Liu, Yu-Cun; Luo, Jin; Duan, Yingjie

    2018-07-01

    Melting point is an important index to determine whether an explosive can be a melt cast carrier. In this study, the relationship among the molecular structure, crystal structure, and melting point of explosives was investigated by using nitroazole compounds. Hydrogen bonds influence crystal packing modes in chemically understandable ways. Hydrogen bonds also affect the changes in entropy and enthalpy in balancing melting process. Hence, different types of hydrogen bonds in explosive crystal structures were compared when the relationship between the molecular structure and the melting point of nitroazole explosives were analyzed. The effects of methyl and amino groups on intermolecular hydrogen bonds were also compared. Results revealed that the methyl and amino groups connected on the N(1) of the heterocyclic compound can reduce the melting point of azole explosive. This finding is possible because methyl and amino groups destroy the intermolecular hydrogen bond of the heterocyclic compound.

  4. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    PubMed

    Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K

    2010-08-16

    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  5. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    PubMed Central

    Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.

    2010-01-01

    Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434

  6. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

  7. Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakawa, Takeshi; Okajima, Toshihide; Kuroda, Shun'ichi

    A key step decisively affecting the catalytic efficiency of copper amine oxidase is stereospecific abstraction of substrate {alpha}-proton by a conserved Asp residue. We analyzed this step by pre-steady-state kinetics using a bacterial enzyme and stereospecifically deuterium-labeled substrates, 2-phenylethylamine and tyramine. A small and temperature-dependent kinetic isotope effect (KIE) was observed with 2-phenylethylamine, whereas a large and temperature-independent KIE was observed with tyramine in the {alpha}-proton abstraction step, showing that this step is driven by quantum mechanical hydrogen tunneling rather than the classical transition-state mechanism. Furthermore, an Arrhenius-type preexponential factor ratio approaching a transition-state value was obtained in the reactionmore » of a mutant enzyme lacking the critical Asp. These results provide strong evidence for enzyme-enhanced hydrogen tunneling. X-ray crystallographic structures of the reaction intermediates revealed a small difference in the binding mode of distal parts of substrates, which would modulate hydrogen tunneling proceeding through either active or passive dynamics.« less

  8. Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui

    2017-09-11

    Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.

  9. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.

    PubMed

    Katayama, Kota; Furutani, Yuji; Iwaki, Masayo; Fukuda, Tetsuya; Imai, Hiroo; Kandori, Hideki

    2018-01-31

    Long-wavelength-sensitive (LWS) pigment possesses a chloride binding site in its protein moiety. The binding of chloride alters the absorption spectra of LWS; this is known as the chloride effect. Although the two amino acid substitutions of His197 and Lys200 influence the chloride effect, the molecular mechanism of chloride binding, which underlies the spectral tuning, has yet to be clarified. In this study, we applied ATR-FTIR spectroscopy to monkey green (MG) pigment to gain structural information of the chloride binding site. The results suggest that chloride binding stabilizes the β-sheet structure on the extracellular side loop with perturbation of the retinal polyene chain, promotes a hydrogen bonding exchange with the hydroxyl group of Tyr, and alters the protonation state of carboxylate. Combining with the results of the binding analyses of various anions (Br - , I - and NO 3 - ), our findings suggest that the anion binding pocket is organized for only Cl - (or Br - ) to stabilize conformation around the retinal chromophore, which is functionally relevant with absorbing long wavelength light.

  10. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  11. Proton-bound dimers of nitrogen heterocyclic molecules: Substituent effects on the structures and binding energies of homodimers of diazine, triazine, and fluoropyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attah, Isaac K.; Platt, Sean P.; Meot-Ner, Michael

    2014-03-21

    The bonding energies of proton-bound homodimers BH{sup +}B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G{sup **} level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°{sub dissoc}) of the proton-bound dimers (BH{sup +}B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°{sub dissoc} for (1,3-diazine){sub 2}H{sup +}, i.e., (pyrimidine){sub 2}H{sup +}more » and (3-F-pyridine){sub 2}H{sup +} are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°{sub dissoc} for the pyrimidine{sup ·+}(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine){sub 2}H{sup +}, (pyridine){sub 2}H{sup +}, (2-F-pyridine){sub 2}H{sup +}, (3-F-pyridine){sub 2}H{sup +}, (2,6-di-F-pyridine){sub 2}H{sup +}, (4-F-pyridine){sub 2}H{sup +}, (1,3-diazine){sub 2}H{sup +}, (1,4-diazine){sub 2}H{sup +}, (1,3,5-triazine){sub 2}H{sup +}, and (pentafluoropyridine){sub 2}H{sup +} are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH{sup +}B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the

  12. The effect of tensile stress on hydrogen diffusion in metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    The effect of tensile stress on hydrogen diffusion has been determined for Type 303 stainless steel, A286 CRES, and Waspaloy and IN100 nickel-base alloys. It was found that hydrogen diffusion coefficients are not significantly affected by stress, while the hydrogen permeabilities are greatly affected in Type 303 stainless steel and A286 CRES (iron-based alloys), but are affected little in Waspaloy (nickel-base) and not affected in all in IN100 (nickel base). These observations might be taken as an indication that hydrogen permeabilities are affected by stress in iron-based alloys, but only slightly affected in nickel-based alloys. However, it is too early to make such a generalization based on the study of only these four alloys.

  13. Effects of laser radiation field on energies of hydrogen atom in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less

  14. Computational Design of Ligand Binding Proteins with High Affinity and Selectivity

    PubMed Central

    Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David

    2014-01-01

    The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320

  15. Volatile anesthetic binding to proteins is influenced by solvent and aliphatic residues.

    PubMed

    Streiff, John H; Jones, Keith A

    2008-10-01

    The main objective of this work was to characterize VA binding sites in multiple anesthetic target proteins. A computational algorithm was used to quantify the solvent exclusion and aliphatic character of amphiphilic pockets in the structures of VA binding proteins. VA binding sites in the protein structures were defined as the pockets with solvent exclusion and aliphatic character that exceeded minimum values observed in the VA binding sites of serum albumin, firefly luciferase, and apoferritin. We found that the structures of VA binding proteins are enriched in these pockets and that the predicted binding sites were consistent with experimental determined binding locations in several proteins. Autodock3 was used to dock the simulated molecules of 1,1,1,2,2-pentafluoroethane, difluoromethyl 1,1,1,2-tetrafluoroethyl ether, and sevoflurane and the isomers of halothane and isoflurane into these potential binding sites. We found that the binding of the various VA molecules to the amphiphilic pockets is driven primarily by VDW interactions and to a lesser extent by weak hydrogen bonding and electrostatic interactions. In addition, the trend in Delta G binding values follows the Meyer-Overton rule. These results suggest that VA potencies are related to the VDW interactions between the VA ligand and protein target. It is likely that VA bind to sites with a high degree of solvent exclusion and aliphatic character because aliphatic residues provide favorable VDW contacts and weak hydrogen bond donors. Water molecules occupying these sites maintain pocket integrity, associate with the VA ligand, and diminish the unfavorable solvation enthalpy of the VA. Water molecules displaced into the bulk by the VA ligand may provide an additional favorable enthalpic contribution to VA binding. Anesthesia is a component of many health related procedures, the outcomes of which could be improved with a better understanding of the molecular targets and mechanisms of anesthetic action.

  16. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  17. Visual feature binding in younger and older adults: encoding and suffix interference effects.

    PubMed

    Brown, Louise A; Niven, Elaine H; Logie, Robert H; Rhodes, Stephen; Allen, Richard J

    2017-02-01

    Three experiments investigated younger (18-25 yrs) and older (70-88 yrs) adults' temporary memory for colour-shape combinations (binding). We focused upon estimating the magnitude of the binding cost for each age group across encoding time (Experiment 1; 900/1500 ms), presentation format (Experiment 2; simultaneous/sequential), and interference (Experiment 3; control/suffix) conditions. In Experiment 1, encoding time did not differentially influence binding in the two age groups. In Experiment 2, younger adults exhibited poorer binding performance with sequential relative to simultaneous presentation, and serial position analyses highlighted a particular age-related difficulty remembering the middle item of a series (for all memory conditions). Experiments 1-3 demonstrated small to medium binding effect sizes in older adults across all encoding conditions, with binding less accurate than shape memory. However, younger adults also displayed negative effects of binding (small to large) in two of the experiments. Even when older adults exhibited a greater suffix interference effect in Experiment 3, this was for all memory types, not just binding. We therefore conclude that there is no consistent evidence for a visual binding deficit in healthy older adults. This relative preservation contrasts with the specific and substantial deficits in visual feature binding found in several recent studies of Alzheimer's disease.

  18. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    NASA Astrophysics Data System (ADS)

    Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2015-08-01

    An acceptor and a single donor state of carbon-hydrogen defects (CHA and CHB) are observed by Laplace deep level transient spectroscopy at 90 K. CHA appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CHB can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CHA and 0.14 eV for CHB. Our results reconcile previous controversial experimental results. We attribute CHA to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CHB to another carbon-hydrogen defect.

  19. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.

    PubMed

    Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana

    2016-09-01

    The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016

  20. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  1. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  2. Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding

    PubMed Central

    2015-01-01

    Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505

  3. X-ray Diffraction and Density Functional Theory Provide Insight into Vanadate Binding to Homohexameric Bromoperoxidase II and the Mechanism of Bromide Oxidation.

    PubMed

    Radlow, Madlen; Czjzek, Mirjam; Jeudy, Alexandra; Dabin, Jerome; Delage, Ludovic; Leblanc, Catherine; Hartung, Jens

    2018-05-18

    X-ray diffraction of native bromoperoxidase II (EC 1.11.1.18) from the brown alga Ascophyllum nodosum reveals at a resolution of 2.26 Å details of orthovanadate binding and homohexameric protein organization. Three dimers interwoven in contact regions and tightened by hydrogen-bond-clamped guanidinium stacks along with regularly aligned water molecules form the basic structure of the enyzme. Intra- and intermolecular disulfide bridges further stabilize the enzyme preventing altogether the protein from denaturing up to a temperature of 90 °C, as evident from dynamic light scattering and the on-gel ortho-dianisidine assay. Every monomer binds one equivalent of orthovanadate in a cavity formed from side chains of three histidines, two arginines, one lysine, serine, and tryptophan. Protein binding occurs primarily through hydrogen bridges and superimposed by Coulomb attraction according to thermochemical model on density functional level of theory (B3LYP/6-311++G**). The strongest attractor is the arginine side chain mimic N-methylguanidinium, enhancing in positive cooperative manner hydrogen bridges toward weaker acceptors, such as residues from lysine and serine. Activating hydrogen peroxide occurs in the thermochemical model by side-on binding in orthovanadium peroxoic acid, oxidizing bromide with virtually no activation energy to hydrogen bonded hypobromous acid.

  4. Effect of gravity on the stability and structure of lean hydrogen-air flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1991-01-01

    Detailed, time-dependent, 2D numerical simulations with full hydrogen-oxygen chemistry are used to investigate the effects of gravity on the stability and structure of laminar flames in lean, premixed hydrogen-air mixtures. The calculations show that the effects of gravity becomes more important as the lean flammability limit is approached. In a 12 percent hydrogen-air mixture, gravity plays only a secondary role in determining the multidimensional structure of the flame with the stability and structure of the flame controlled primarily by the thermo-diffusive instability mechanism. However, in leaner hydrogen-air mixtures gravity becomes more important. Upward-propagating flames are highly curved and evolve into a bubble rising upwards in the tube. Downward-propagating flames are flat or even oscillate between structures with concave and convex curvatures. The zero-gravity flame shows only cellular structures. Cellular structures which are present in zero gravity can be suppressed by the effect of buoyancy for mixtures leaner than 11 percent hydrogen. These observations are explained on the basis of an interaction between the processes leading to buoyancy-induced Rayleigh-Taylor instability and the thermo-diffusive instability.

  5. Fine-tuned broad binding capability of human lipocalin-type prostaglandin D synthase for various small lipophilic ligands.

    PubMed

    Kume, Satoshi; Lee, Young-Ho; Nakatsuji, Masatoshi; Teraoka, Yoshiaki; Yamaguchi, Keisuke; Goto, Yuji; Inui, Takashi

    2014-03-18

    The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy-entropy compensation using combined effects of hydrophilic and hydrophobic interactions. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Probing the Low-Barrier Hydrogen Bond in Hydrogen Maleate in the Gas Phase: A Photoelectron Spectroscopy and ab Initio Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Hin-koon; Wang, Xue B.; Wang, Lai S.

    2005-12-01

    The strength of the low-barrier hydrogen bond in hydrogen maleate in the gas phase was investigated by low-temperature photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of maleic and fumaric acid monoanions (cis-/trans-HO2CCHdCHCO2 -) were obtained at low temperatures and at 193 nm photon energy. Vibrational structure was observed for trans-HO2CCHdCHCO2 - due to the OCO bending modes; however, cis-HO2CCHdCHCO2 - yielded a broad and featureless spectrum. The electron binding energy of cis-HO2CCHdCHCO2 - is about 1 eV blue-shifted relative to trans-HO2CCHdCHCO2 - due to the formation of intramolecular hydrogen bond in the cis-isomer. Theoretical calculations (CCSD(T)/ aug-cc-pVTZ and B3LYP/aug-cc-pVTZ)more » were carried out to estimate the strength of the intramolecular hydrogen bond in cis-HO2CCHdCHCO2 -. Combining experimental and theoretical calculations yields an estimate of 21.5 ( 2.0 kcal/mol for the intramolecular hydrogen bond strength in hydrogen maleate.« less

  7. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation

    PubMed Central

    Zheng, Zhong-liang; Ye, Mao-qing; Zuo, Zhen-yu; Liu, Zhi-gang; Tai, Keng-chang; Zou, Guo-lin

    2006-01-01

    Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33→Ala33, Asp60→Ala60, Ser62→Ala62, and Thr220→Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (ΔΔGT). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the Km values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations. PMID:16411898

  8. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Zheng, Zhong-liang; Ye, Mao-qing; Zuo, Zhen-yu; Liu, Zhi-gang; Tai, Keng-chang; Zou, Guo-lin

    2006-05-01

    Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33-->Ala33, Asp60-->Ala60, Ser62-->Ala62, and Thr220-->Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (DeltaDeltaG(T)). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the K(m) values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations.

  9. Magnetocaloric properties of distilled gadolinium: Effects of structural inhomogeneity and hydrogen impurity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhanov, G. S.; Kolchugina, N. B.; Chzhan, V. B.

    2014-06-16

    High-purity Gd prepared by distillation is a structurally inhomogeneous system consisting of needle-shaped crystals of cross section 0.5–2.5 μm with near-c-axis orientation embedded in a matrix of nanosized (30–100 nm) grains. By measuring the magnetocaloric effect (MCE) directly, we find that the MCE values differ markedly for the plate-shaped samples cut out of a distillate along and perpendicular to the crystals. The effect of small controlled amounts of impurity (hydrogen) on the properties of distilled Gd is further studied. We observe opposite trends in the MCE response to hydrogen charging with respect to the crystal's orientation within the samples and discuss mechanismsmore » interrelating the unique structural morphology with the impurity behavior. As an overall assessment, the Curie temperatures of α-GdH{sub x} solid solutions increase from 291 K up to 294 K when increasing hydrogen concentration x from 0 to 0.15. Hydrogenation is found to broaden the ferromagnetic-to-paramagnetic phase transition. Hydrogen-containing specimens demonstrate reversibility of MCE at these temperatures.« less

  10. [Protective effect of hydrogen against hyperoxia-induced type II alveolar epithelial cell injury].

    PubMed

    Yao, Lan; Xu, Feng; Luo, Chong; Yu, Pan; Dong, Xinxin; Sun, Xuejun; Liu, Chengjun

    2013-02-01

    To investigate the protective effect of hydrogen against hyperoxia-induced oxidative stress injury in premature rat type II alveolar epithelial cells (AECs). The type II AECs isolated from premature rats were randomly divided into air (21% oxygen) control group, hyperoxia (95% oxygen) control group, air + hydrogen group, and hyperoxia+ hydrogen group. The cells with hydrogen treatment were cultured in the presence of rich hydrogen. After the corresponding exposure for 24 h, the cell morphology was observed microscopically. MTT assay was used to evaluated the cell proliferation ability, and JC-1 fluorescence probe was used to detect the mitochondrial membrane potential (δφ) changes of the type II AECs. The concentration of maleic dialdehyde (MDA) and superoxide dismutase (SOD) activity in the cell supernatant were detected using colorimetric method. No significant differences were found in cell growth or measurements between air control and air + hydrogen groups. Compared with air control group, the cells exposed to hyperoxia showed significantly suppressed proliferation, reduced mitochondrial membrane potential, increased MDA content, and decreased SOD activity. Intervention with hydrogen resulted in significantly increased cell proliferation and SOD activity and lowered MDA content, and restored the mitochondrial membrane potential in the cells with hyperoxia exposure (P<0.05). Hydrogen can significantly reduce hyperoxia-induced oxidative stress injury in premature rat type II AECs, improve the cellular antioxidant capacity, stabilize the mitochondrial membrane potential, and reduce the inhibitory effect of hyperoxia on cell proliferation.

  11. Noncovalent Hydrogen Isotope Effects

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Breslavskaya, N. N.

    2018-02-01

    Zero-point energies (ZPE) and isotope effects, induced by intermolecular, noncovalent vibrations, are computed and tested by experimental data. The ZPE differences of H- and D-complexes of water with hydrogen, methane, and water molecules are about 100-300 cal/mol; they result to isotope effects IE of 1.20-1.70. Semi-ionic bonds between metal ions and water ligands in M(H2O) 6 2+ complexes are much stronger; their ZPEs are about 12-14 kcal/mol per molecule and result to IE of 1.9-2.1 at 300 K. Protonated (deuterated) water and biwater exhibit the largest ZPE differences and isotope effects; the latter are 25-28 and 12-13 for water and biwater, respectively. Noncovalent IEs contribute markedly into the experimentally measured effects and explain many anomalous and even magic properties of the effects, such as the dependence of IE on the solvents and on the presence of the third substances, enormously large isotope effects at the mild conditions, the difference between IEs measured in the reactions of individual protiated and deuterated compounds and those measured in their mixture. Noncovalent IEs are not negligible and should be taken into account to make correct and substantiated conclusions on the reaction mechanisms. The kinetic equations are derived for the total isotope effects, which include noncovalent IEs as additive factors.

  12. Exploring the binding mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus capsid combined 3D-QSAR and molecular dynamics.

    PubMed

    Tu, Jing; Li, Jiao Jiao; Shan, Zhi Jie; Zhai, Hong Lin

    2017-01-01

    The non-nucleoside drugs have been developed to treat HBV infection owing to their increased efficacy and lesser side effects, in which heteroaryldihydropyrimidines (HAPs) have been identified as effective inhibitors of HBV capsid. In this paper, the binding mechanism of HAPs targeting on HBV capsid protein was explored through three-dimensional quantitative structure-activity relationship, molecular dynamics and binding free energy decompositions. The obtained models of comparative molecular field analysis and comparative molecular similarity indices analysis enable the sufficient interpretation of structure-activity relationship of HAPs-HBV. The binding free energy analysis correlates with the experimental data. The computational results disclose that the non-polar contribution is the major driving force and Y132A mutation enhances the binding affinity for inhibitor 2 bound to HBV. The hydrogen bond interactions between the inhibitors and Trp102 help to stabilize the conformation of HAPs-HBV. The study provides insight into the binding mechanism of HAPs-HBV and would be useful for the rational design and modification of new lead compounds of HAP drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effectiveness and adverse effects of the use of apomorphine and 3% hydrogen peroxide solution to induce emesis in dogs.

    PubMed

    Khan, Safdar A; McLean, Mary Kay; Slater, Margaret; Hansen, Steven; Zawistowski, Stephen

    2012-11-01

    To determine the effectiveness and adverse effects of apomorphine and 3% hydrogen peroxide solution used for emesis in dogs. Prospective observational study. 147 dogs that received apomorphine (IV or placed in the conjunctival sac) or 3% hydrogen peroxide solution (PO) to induce emesis after exposure to toxic agents. Data regarding signalment; agent information; type, dose, route, and number of emetic administrations; whether emesis was successful; number of times emesis occurred; percentage of ingested agent recovered; and adverse effects were collected via telephone during American Society for the Prevention of Cruelty to Animals Animal Poison Control Center operations and stored in a database for analysis. Mann-Whitney and Fisher exact tests were used to evaluate emetic success rates. Apomorphine and 3% hydrogen peroxide solution successfully induced emesis in 59 of 63 (94%) and 76 of 84 (90%) of dogs, respectively. Mean time to onset of emesis after the first dose of emetic was 14.5 and 18.6 minutes when hydrogen peroxide (n = 37) and apomorphine (31) were used, respectively, with mean durations of 42 and 27 minutes, respectively. Mean estimates for recovery of ingested agents were 48% for hydrogen peroxide and 52% for apomorphine. Adverse effects were reported in 16 of 112 (14%) dogs for which information was available. 3% hydrogen peroxide solution and apomorphine effectively induced emesis in dogs when used as directed. Emesis occurred within minutes after administration and helped recover substantial amounts of ingested agents. Adverse effects of both emetics were considered mild and self-limiting.

  14. Effect of hydrogen on void initiation in tensile test of carbon steel JIS-S25C

    NASA Astrophysics Data System (ADS)

    Sugawa, S.; Tsutsumi, N.; Oda, K.

    2018-06-01

    In order to investigate the effect of hydrogen on tensile fracture mechanism of a carbon steel, tensile tests were conducted. Pre-strain specimens (0%, 5% and 10%) were used to study the effect of hydrogen content, since saturated hydrogen content in specimens increases in increasing dislocation density. The tensile strength and the yield stress of hydrogen specimens were almost the same as uncharged. In contrast, the reduction of area of hydrogen charged specimens was smaller than that of uncharged. To reveal the reasons of decrease of the reduction of area, the fracture surface and longitudinal cross section near the fracture surface were observed. On the fracture surface of uncharged specimens, only dimples were observed. On the other hand, dimples and flat fracture surface were observed on the fracture surface of hydrogen charged. On the longitudinal cross section of hydrogen charged specimens, many voids were observed compared to uncharged. From these observations, it is showed that hydrogen gives a rise to the increase of voids and the hydrogen charged specimens break without sufficient necking, thus hydrogen makes the reduction of area smaller.

  15. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force

    NASA Astrophysics Data System (ADS)

    Grubmuller, Helmut; Heymann, Berthold; Tavan, Paul

    1996-02-01

    The force required to rupture the streptavidin-biotin complex was calculated here by computer simulations. The computed force agrees well with that obtained by recent single molecule atomic force microscope experiments. These simulations suggest a detailed multiple-pathway rupture mechanism involving five major unbinding steps. Binding forces and specificity are attributed to a hydrogen bond network between the biotin ligand and residues within the binding pocket of streptavidin. During rupture, additional water bridges substantially enhance the stability of the complex and even dominate the binding inter-actions. In contrast, steric restraints do not appear to contribute to the binding forces, although conformational motions were observed.

  16. Effects of glycation on meloxicam binding to human serum albumin

    NASA Astrophysics Data System (ADS)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  17. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  18. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    NASA Astrophysics Data System (ADS)

    Pal'Chikov, V. G.

    2000-08-01

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  19. Binding effect of polychlorinated compounds and environmental carcinogens on rice bran fiber.

    PubMed

    Sera, Nobuyuki; Morita, Kunimasa; Nagasoe, Masami; Tokieda, Hisako; Kitaura, Taeko; Tokiwa, Hiroshi

    2005-01-01

    To accelerate the fecal excretion of polycyclic biphenyl (PCB), polychlorinated dibenzofurans (PCDFs), polychlorinated-p-dioxines (PCDDs) and various mutagens and carcinogens, their binding effect on rice bran fiber (RBF) was investigated for nine heterocyclic amines, six nitroarenes, 4-nitroquinoline-N-oxide, benzo[a]pyrene, furylfuramide, two kinds of flavonoid compounds and formaldehyde and ascorbic acid. PCBs, PCDFs and PCDDs suspended in nonane were incubated with RBF (10 mg/ml) at 37 degrees C and after centrifugation, unbound chemicals in the supernatant were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography (GC). The binding effects on RBF were enhanced more than other dietary fibers (DFs), which were tested including corn, wheat bran, spinach, Hijiki (a kind of seaweed), sweet potatoes and burdock fibers. It was found that the binding effects were related to lignin contents. Binding of 3-amino-1(or 1,4)-dimethyl-5H-pyrido[4,3-b]indole (Trp-p-1 and Trp-p-2), food-derived carcinogens and 1-nitropyrene (1-NP), suspended in methanol, to RBF occurred within 10 min of incubation at 37 degrees C at pH 5-7, and decreased below pH 4; binding of food-derived carcinogens was pH dependent. The binding effects to RBF and pulp lignin were obtained at ratio of over 90%, while corn fiber and cellulose were at ratios of 4-30%. Polycyclic aromatic compounds were related to the number of rings, showing high binding effects to chemical structures with triple rings. Binding of 1-NP and PCB to RBF was not influenced in any aerobic and anaerobic bacterial cultures. It was also found that RBF was capable of binding even conjugates containing mutagens such as glucuronides and sulfates, as well as metabolites in urine. It was suggested, therefore, that mutagens and carcinogens were available for the fecal excretion of residual chemicals and their metabolites, and also for the fecal excretion of PCBs, PCDFs and related compound residues in patients of

  20. Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.

    PubMed

    Silva, Daniel-Adriano; Domínguez-Ramírez, Lenin; Rojo-Domínguez, Arturo; Sosa-Peinado, Alejandro

    2011-07-01

    The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G-protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L-lysine, L-arginine, L-ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and it's more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr-14 and Phe-52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation-π interaction with Tyr-14 and Phe-52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand-dependent conformational plasticity not explained by the previous crystallographic data. Copyright © 2011 Wiley-Liss, Inc.

  1. On the binding determinants of the glutamate agonist with the glutamate receptor ligand binding domain.

    PubMed

    Speranskiy, Kirill; Kurnikova, Maria

    2005-08-30

    Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.

  2. On the effect of hydrogen on the mechanical behavior of Beta-C titanium in aged condition

    NASA Astrophysics Data System (ADS)

    Alvarez, Anna-Maria

    The effect of hydrogen in solid solution on the mechanical behavior of the metastable beta-titanium alloy Beta-C was studied. The samples were aged at 482°C for 28 h prior to hydrogen charging in order to obtain a microstructure of alpha-precipitates in a beta-phase matrix. The kinetics and thermodynamics of hydrogen uptake in the alloy were studied in order to determine the required parameters to gas charge the samples with hydrogen, without altering the microstructure. The mechanical samples were hydrogen charged at 350°C to hydrogen concentrations between 0.6 and 24 at%. The samples were thereafter tested under tensile and alternating loading in order to study the effect of hydrogen on the tensile properties, fatigue properties and crack propagation rate. The fracture surfaces were then studied by using SEM, TEM and X-ray diffraction techniques. The macroscopic mechanical properties were compared with the micromechanisms of deformation and fracture in order to obtain information about the operating hydrogen-enhanced fracture mechanism. It was found that the tensile behavior was sensitive to hydrogen. A sharp ductile-to-brittle transition (DBT) occurred when hydrogen in solid solution reached a concentration of about 3.5 at%. TEM and X-ray analysis showed that stress-induced hydrides form in areas of low stress intensities at hydrogen concentrations above the DBT, and it is therefore believed that this is the cause of the hydrogen embrittlement in this alloy. However, at higher stress intensities, slip localization and enhanced slip band fracture were observed. Since slip localization and hydrogen-induced slip band fracture have previously been connected with a large decrease in ductility it can not be excluded that these effects of hydrogen affects the DBT. The cyclic stress strain behavior was not affected by hydrogen; the non-linear elastic behavior and the cyclic softening did not change with introduction of hydrogen up to a level of 10.8 at%. The fatigue

  3. Multiple binding modes for palmitate to barley lipid transfer protein facilitated by the presence of proline 12.

    PubMed

    Smith, Lorna J; Gunsteren, Wilfred F Van; Allison, Jane R

    2013-01-01

    Molecular dynamics simulations have been used to characterise the binding of the fatty acid ligand palmitate in the barley lipid transfer protein 1 (LTP) internal cavity. Two different palmitate binding modes (1 and 2), with similar protein-ligand interaction energies, have been identified using a variety of simulation strategies. These strategies include applying experimental protein-ligand atom-atom distance restraints during the simulation, or protonating the palmitate ligand, or using the vacuum GROMOS 54B7 force-field parameter set for the ligand during the initial stages of the simulations. In both the binding modes identified the palmitate carboxylate head group hydrogen bonds with main chain amide groups in helix A, residues 4 to 19, of the protein. In binding mode 1 the hydrogen bonds are to Lys 11, Cys 13, and Leu 14 and in binding mode 2 to Thr 15, Tyr 16, Val 17, Ser 24 and also to the OH of Thr 15. In both cases palmitate binding exploits irregularity of the intrahelical hydrogen-bonding pattern in helix A of barley LTP due to the presence of Pro 12. Simulations of two variants of barley LTP, namely the single mutant Pro12Val and the double mutant Pro12Val Pro70Val, show that Pro 12 is required for persistent palmitate binding in the LTP cavity. Overall, the work identifies key MD simulation approaches for characterizing the details of protein-ligand interactions in complexes where NMR data provide insufficient restraints. Copyright © 2012 The Protein Society.

  4. Deformation and fracture of aluminum-lithium alloys: The effect of dissolved hydrogen

    NASA Technical Reports Server (NTRS)

    Rivet, F. C.; Swanson, R. E.

    1990-01-01

    The effects of dissolved hydrogen on the mechanical properties of 2090 and 2219 alloys are studied. The work done during this semi-annual period consists of the hydrogen charging study and some preliminary mechanical tests. Prior to SIMS analysis, several potentiostatic and galvanostatic experiments were performed for various times (going from 10 minutes to several hours) in the cathodic zone, and for the two aqueous solutions: 0.04N of HCl and 0.1N NaOH both combined with a small amount of As2O3. A study of the surface damage was conducted in parallel with the charging experiments. Those tests were performed to choose the best charging conditions without surface damage. Disk rupture tests and tensile tests are part of the study designed to investigate the effect of temperature, surface roughness, strain rate, and environment on the fracture behavior. The importance of the roughness and environment were shown using the disk rupture test as well as the importance of the strain rate under hydrogen environment. The tensile tests, without hydrogen effects, have not shown significant differences between low and room temperature.

  5. Competition between Hydrogen Bonding and Proton Transfer during Specific Anion Recognition by Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; González, Felipe J; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2016-08-05

    Competition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer. In particular, the 1,3-dinitrobenzene isomer showed a higher proton transfer rate constant (∼25 M(-1) s(-1)) compared to that of the 1,2-dinitrobenzene (∼5 M(-1) s(-1)), whereas the 1,4-dinitrobenzene did not show any proton transfer effect in the experimental conditions employed.

  6. Effect of Detergents on Galactoside Binding by Melibiose Permeases.

    PubMed

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-09-29

    The effect of various detergents on the stability and function of the melibiose permeases of Escherichia coli (MelBEc) and Salmonella typhimurium (MelBSt) was studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141 → Cys, Arg295 → Cys, or Arg363 → Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIA(Glc) is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all of the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from the relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent.

  7. Effect of detergents on galactoside binding by melibiose permeases

    PubMed Central

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-01-01

    The effect of various detergents on the stability and function of melibiose permeases of Escherichia coli (MelBEc) or Salmonella typhimurium (MelBSt) were studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141→Cys, Arg295→Cys or Arg363→Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIAGlc is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent. PMID:26352464

  8. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.

    PubMed

    Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah

    2016-01-01

    Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.

  9. F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF)

    PubMed Central

    Jiang, Chang-Jie; Weeds, Alan G.; Khan, Safina; Hussey, Patrick J.

    1997-01-01

    Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond. PMID:9275236

  10. Hydrogen in Mono-Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu

    2004-03-01

    Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.

  11. Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η.

    PubMed

    Ucisik, Melek N; Hammes-Schiffer, Sharon

    2017-04-20

    Human DNA polymerase η (Pol η) plays a vital role in protection against skin cancer caused by damage from ultraviolet light. This enzyme rescues stalled replication forks at cyclobutane thymine-thymine dimers (TTDs) by inserting nucleotides opposite these DNA lesions. Residue R61 is conserved in the Pol η enzymes across species, but the corresponding residue, as well as its neighbor S62, is different in other Y-family polymerases, Pol ι and Pol κ. Herein, R61 and S62 are mutated to their Pol ι and Pol κ counterparts. Relative binding free energies of dATP to mutant Pol η•DNA complexes with and without a TTD were calculated using thermodynamic integration. The binding free energies of dATP to the Pol η•DNA complex with and without a TTD are more similar for all of these mutants than for wild-type Pol η, suggesting that these mutations decrease the ability of this enzyme to distinguish between a TTD lesion and undamaged DNA. Molecular dynamics simulations of the mutant systems provide insights into the molecular level basis for the changes in relative binding free energies. The simulations identified differences in hydrogen-bonding, cation-π, and π-π interactions of the side chains with the dATP and the TTD or thymine-thymine (TT) motif. The simulations also revealed that R61 and Q38 act as a clamp to position the dATP and the TTD or TT and that the mutations impact the balance among the interactions related to this clamp. Overall, these calculations suggest that R61 and S62 play key roles in the specificity and effectiveness of Pol η for bypassing TTD lesions during DNA replication. Understanding the basis for this specificity is important for designing drugs aimed at cancer treatment.

  12. Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η

    PubMed Central

    2016-01-01

    Human DNA polymerase η (Pol η) plays a vital role in protection against skin cancer caused by damage from ultraviolet light. This enzyme rescues stalled replication forks at cyclobutane thymine–thymine dimers (TTDs) by inserting nucleotides opposite these DNA lesions. Residue R61 is conserved in the Pol η enzymes across species, but the corresponding residue, as well as its neighbor S62, is different in other Y-family polymerases, Pol ι and Pol κ. Herein, R61 and S62 are mutated to their Pol ι and Pol κ counterparts. Relative binding free energies of dATP to mutant Pol η•DNA complexes with and without a TTD were calculated using thermodynamic integration. The binding free energies of dATP to the Pol η•DNA complex with and without a TTD are more similar for all of these mutants than for wild-type Pol η, suggesting that these mutations decrease the ability of this enzyme to distinguish between a TTD lesion and undamaged DNA. Molecular dynamics simulations of the mutant systems provide insights into the molecular level basis for the changes in relative binding free energies. The simulations identified differences in hydrogen-bonding, cation−π, and π–π interactions of the side chains with the dATP and the TTD or thymine–thymine (TT) motif. The simulations also revealed that R61 and Q38 act as a clamp to position the dATP and the TTD or TT and that the mutations impact the balance among the interactions related to this clamp. Overall, these calculations suggest that R61 and S62 play key roles in the specificity and effectiveness of Pol η for bypassing TTD lesions during DNA replication. Understanding the basis for this specificity is important for designing drugs aimed at cancer treatment. PMID:28423907

  13. Protective Effects of Hydrogen-Rich Saline on Rats with Smoke Inhalation Injury

    PubMed Central

    Chen, Xing; Liu, Qi; Wang, Dawei; Feng, Shihai; Zhao, Yongjian; Shi, Yun; Liu, Qun

    2015-01-01

    Objective. To explore the protective effects of hydrogen-rich saline on rats with smoke inhalation injury. Methods. 36 healthy male Sprague-Dawley rats were randomly divided into 3 groups (n = 12 per group): sham group (S), inhalation injury plus normal saline treatment group (I+NS), and inhalation injury plus hydrogen-rich saline treatment group (I+HS). 30 min after injury, normal saline and hydrogen-rich saline were injected intraperitoneally (5 mL/kg) in I+NS group and I+HS group, respectively. All rats were euthanized and blood and organ specimens were collected for determination 24 h after inhalation injury. Results. Tumor necrosis factor-alpha (TNF-α) levels, malondialdehyde (MDA) concentrations, nuclear factor kappa B (NF-κB) p65 expression, and apoptosis index (AI) in I+HS group were significantly decreased (P < 0.05), while superoxide dismutase (SOD) activities were increased compared with those in I+NS group; and a marked improvement in alveolar structure was also found after hydrogen-rich saline treatment. Conclusions. Hydrogen-rich saline treatment exerts protective effects in acute lung injury induced by inhalation injury, at least in part through the activation of anti-inflammatory and antioxidant pathways and inhibition of apoptosis. PMID:26090070

  14. Protective Effects of Hydrogen Sulfide in the Ageing Kidney.

    PubMed

    Hou, Cui-Lan; Wang, Ming-Jie; Sun, Chen; Huang, Yong; Jin, Sheng; Mu, Xue-Pan; Chen, Ying; Zhu, Yi-Chun

    2016-01-01

    Aims . The study aimed to examine whether hydrogen sulfide (H 2 S) generation changed in the kidney of the ageing mouse and its relationship with impaired kidney function. Results . H 2 S levels in the plasma, urine, and kidney decreased significantly in ageing mice. The expression of two known H 2 S-producing enzymes in kidney, cystathionine γ -lyase (CSE) and cystathionine- β -synthase (CBS), decreased significantly during ageing. Chronic H 2 S donor (NaHS, 50  μ mol/kg/day, 10 weeks) treatment could alleviate oxidative stress levels and renal tubular interstitial collagen deposition. These protective effects may relate to transcription factor Nrf2 activation and antioxidant proteins such as HO-1, SIRT1, SOD1, and SOD2 expression upregulation in the ageing kidney after NaHS treatment. Furthermore, the expression of H 2 S-producing enzymes changed with exogenous H 2 S administration and contributed to elevated H 2 S levels in the ageing kidney. Conclusions . Endogenous hydrogen sulfide production in the ageing kidney is insufficient. Exogenous H 2 S can partially rescue ageing-related kidney dysfunction by reducing oxidative stress, decreasing collagen deposition, and enhancing Nrf2 nuclear translocation. Recovery of endogenous hydrogen sulfide production may also contribute to the beneficial effects of NaHS treatment.

  15. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, Theresa M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  16. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences.

    PubMed

    Das, Ranjita; Neese, Frank; van Gastel, Maurice

    2016-09-21

    In this work, a detailed quantum chemical study of the mechanism of [Ni(bdt)(dppf)] (Ni(II)L) catalyzed hydrogen formation [A. Gan, T. L. Groy, P. Tarakeshwar, S. K. S. Mazinani, J. Shearer, V. Mujica and A. K. Jones, J. Am. Chem. Soc., 2015, 137, 1109-1115] following an electro-chemical-electro-chemical (ECEC) pathway is reported. The complex exclusively catalyzes the reduction of protons to molecular hydrogen. The calculations suggest that the first one-electron reduction of the [Ni(II)L] catalyst is the rate limiting step of the catalytic cycle and hence, the buildup of detectable reaction intermediates is not expected. The catalytic activity of the [Ni(II)L] complex is facilitated by the flexibility of the ligand system, which allows the ligand framework to adapt to changes in the Ni oxidation state over the course of the reaction. Additionally, a comparison is made with the catalytic activity of [NiFe] hydrogenase. It is argued that the directionality of the reversible hydrogen formation reaction is controlled by the ligand field of the nickel ion and the possibility for side-on (η(2)) binding of H2: if the ligand framework does not allow for η(2) binding of H2, as is the case for [Ni(II)L], the catalyst irreversibly reduces protons. If the ligand field allows η(2) binding of H2, the catalyst can in principle work reversibly. The conditions for η(2) binding are discussed.

  17. Hydrogen depassivation of the magnesium acceptor by beryllium in p-type GaN

    NASA Astrophysics Data System (ADS)

    Wang, Chihsiang; Wang, Xiao; Zhang, Qiming

    2010-05-01

    Under nitrogen-rich growth conditions, the present ab initio study predicts that hydrogen passivation is more effective on the acceptor Be instead of Mg in a co-doped p-type GaN. The formation energy is 0.24 eV for (H-Be Ga) complex, and 0.46 eV for (H-Mg Ga) complex. Congruently, the binding energy is 1.40 eV for (H-Be Ga), and 0.60 eV for (H-Mg Ga). Owing to the lower binding energy, (H-Mg Ga) is not thermally stable. As Be is incorporated in Mg-doped GaN, a (H-Mg Ga) may release a H + cation at relatively elevated temperatures. Consequently, the H + diffuses swiftly away from a Mg -Ga, across a barrier of 1.17 eV, towards a Be -Ga and forms a stable (H-Be Ga) with it. The activation of Mg acceptors can be thus facilitated. In this view, the process of hydrogen depassivation of the Mg acceptor by Be can convert the as-grown high-resistivity Mg-doped GaN into a p-conducting material, as observed in the experiments.

  18. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    PubMed

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  19. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-05

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.

  20. Molecular modeling studies of substrate binding by penicillin acylase.

    PubMed

    Chilov, G G; Stroganov, O V; Svedas, V K

    2008-01-01

    Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in

  1. A hydrogen-bonding network modulating enzyme function: asparagine-194 and tyrosine-225 of Escherichia coli aspartate aminotransferase.

    PubMed

    Yano, T; Mizuno, T; Kagamiyama, H

    1993-02-23

    The electron distribution within the coenzyme or coenzyme-substrate conjugate needs to be properly regulated during the catalytic process of aspartate aminotransferase (AspAT). Asn194 and Tyr225 may function in regulating the electron distribution through hydrogen-bonding to O(3') of the coenzyme, pyridoxal 5'-phosphate (PLP) or pyridoxamine 5'-phosphate (PMP). The roles of Tyr225 have already been explored by site-directed mutagenesis (Inoue et al., 1991; Goldberg et al., 1991). In the present studies, the mutant enzymes Asn194-->Ala and Asn194-->Ala + Tyr225-->Phe were analyzed kinetically and spectroscopically and were compared with the wild-type and Tyr225-->Phe enzymes. The kinetic studies showed that Asn194 is not essential for AspAT catalysis, although the Kd values for the substrates were increased by 10- to 50-fold upon the replacement of Asn194. The measurements of the absorption and fluorescence excitation spectra revealed that the ratio of an enolimine to a ketoenamine form was considerably increased as a tautomeric form of the protonated PLP in the active site of the double mutant enzyme. The pH-pKd relationship for the binding of maleate to AspAT could be explained by a simple thermodynamic cycle where only one ionizing group (the imine nitrogen of the internal aldimine bond) affects the binding of maleate. The analyses of the pH-pKd curves for the wild-type and mutant enzymes showed that (i) the hydrogen bond between O(3') of PLP and Asn194 is weakened by the binding of maleate to AspAT, while the hydrogen bond between O(3') and Tyr225 is not changed, and that (ii) the replacement of Asn194 causes some effect hampering the binding of maleate.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The Sequence-specific Peptide-binding Activity of the Protein Sulfide Isomerase AGR2 Directs Its Stable Binding to the Oncogenic Receptor EpCAM.

    PubMed

    Mohtar, M Aiman; Hernychova, Lenka; O'Neill, J Robert; Lawrence, Melanie L; Murray, Euan; Vojtesek, Borek; Hupp, Ted R

    2018-04-01

    AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The effect of hydrogen on the deformation behavior of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Walston, W. S.; Thompson, A. W.; Bernstein, I. M.

    1989-01-01

    The effect of hydrogen on the tensile deformation behavior of PWA 1480 is presented. Tensile tests were interrupted at different plastic strain levels to observe the development of the dislocation structure. Transmission electron microscopy (TEM) foils were cut perpendicular to the tensile axis to allow the deformation of both phases to be simultaneously observed as well as parallel to zone axes (III) to show the superdislocations on their slip planes. Similar to other nickel-base superalloys, hydrogen was detrimental to the room temperature tensile properties of PWA 1480. There was little effect on strength, however the material was severely embrittled. Even without hydrogen, the elongation-to-failure was only approximately 3 percent. The tensile fracture surface was made up primarily of ductile voids with regions of cleavage fracture. These cleavage facets are the eutectic (gamma') in the microstructure. It was shown by quantitative fractography that hydrogen embrittles the eutectic (gamma') and causes the crack path to seek out and fracture through the eutectic (gamma'). There was two to three times the amount of cleavage on the fracture surface of the hydrogen-charged samples than on the surface of the uncharged samples. The effect of hydrogen can also be seen in the dislocation structure. There is a marked tendency for dislocation trapping in the gamma matrix with and without hydrogen at all plastic strain levels. Without hydrogen there is a high dislocation density in the gamma matrix leading to strain exhaustion in this region and failure through the matrix. The dislocation structure at failure with hydrogen is slightly different. The TEM foils cut parallel to zone axes (III) showed dislocations wrapping around gamma precipitates. Zone axes (001) foils show that there is a lower dislocation density in the gamma matrix which can be linked to the effects of hydrogen on the fracture behavior. The primary activity in the gamma precipitates is in the form of

  4. Development of hydrogen gas getters for TRU waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, J. P.; Mroz, E. J.; Peterson, E.

    2004-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For this reason, the flammable gas (hydrogen) concentration in waste shipment containers (Transuranic Package Transporter-II or TP-II containers) is limited to the lower explosion limit of hydrogen in air (5 vol%). The use of hydrogen getters is being investigated to prevent the build up of hydrogen during storage and transport of the TP-II containers (up to 60 days). Preferred hydrogen getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it in the solid state. One proven getter, 1,4-bis(phenylethynyl)benzenemore » or DEB, belongs to a class of compounds called alkynes, which are characterized by the presence of carbon-carbon triple bonds. These carbon atoms will, in the presence of suitable catalysts such as palladium, irreversibly react with hydrogen to form the corresponding saturated alkane compounds. Because DEB contains two triple bonds, one mole of DEB reacts with 4 moles of hydrogen. The standard formulation for the 'DEB getter' is a mixture of 75% DEB and 25% carbon catalyst (5% palladium on carbon). Certain chemicals such as volatile organic compounds (VOCs) are known to 'poison' and reduce the activity of the catalyst. Therefore, in addition to the standard formulation, a semi-permeable barrier that encapsulates and protects the getter and its catalyst from poisons was also developed. The uncoated and polymer coated getter formulations were subjected to tests that determined the performance of the getters with regard to capacity, operating temperature range (with hydrogen in nitrogen and in air), hydrogen concentration, poisons, aging, pressure, reversibility, and radiation effects. This testing program was designed to address the following performance requirements: (1) Minimum rate for hydrogen removal of 1.2E-5 moles hydrogen per second for 60 days; (2) Sufficient getter material

  5. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.

    PubMed

    Berry, Mark D

    2011-07-01

    2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.

  7. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  8. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    PubMed

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  9. Diffusion Study on Dissolved Hydrogen toward Effective Bioremediation of Chlorinated Ethenes in Aquitards

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Zhang, M.; Takeuchi, M.; Komai, T.

    2010-12-01

    In Japan, the demand for in-situ remediation of contaminated sediments is expected to increase in the future due to the recent amendment of Soil Contamination Countermeasures Act. The Japanese law requires remediating not only contaminated groundwater but also contaminated sediments including those in aquitards. In-situ remediation of contaminated aquitards has been a challenging issue and bioremediation is considered to be one of the effective techniques. In microbial degradation of chrolinated ethenes such as tetrachloroethene and trichloroethene under anaerobic environments, dissolved hydrogen plays an important role. The dechlorinating microbes utilize hydrogen and chlorinated ethenes as an electron donor and an electron accepter, respectively. The size of hydrogen molecule is extremely small and the diffusion rate of dissolved hydrogen in an aquitard would be the key factor that controls the process of microbial dechlorination. However, the diffusion behavior of dissolved hydrogen in subsurface sediments remains unclear. The purposes of this study are to develop a practically utilizable test apparatus, carry out a series of dissolved hydrogen diffusion tests on representative samples, and illustrate the applicability of bioremediation in aquitards. A completely leak-free apparatus was developed by using aluminum alloy and gas tight rubber. This apparatus is capable of testing specimens with a diameter as large as 100 mm by a length from 5 mm to 10 mm, depending on the maximum grain size within a test specimen. Preliminary tests have been performed with glass beads as an ideal material, commercially available kaolin clay, and core samples taken from a polluted site containing clay minerals. The effective diffusion coefficients of these samples were all on the order of 10E-10 m2/s, though their coefficients of permeability varied between the orders of 10E-2 and 10E-7 cm/s. These results showed that there was no obvious relationship between the effective

  10. Formation of a hydrogen-bonded barbiturate [2]-rotaxane.

    PubMed

    Tron, Arnaud; Thornton, Peter J; Rocher, Mathias; Jacquot de Rouville, Henri-Pierre; Desvergne, Jean-Pierre; Kauffmann, Brice; Buffeteau, Thierry; Cavagnat, Dominique; Tucker, James H R; McClenaghan, Nathan D

    2014-03-07

    Interlocked structures containing the classic Hamilton barbiturate binding motif comprising two 2,6-diamidopyridine units are reported for the first time. Stable [2]-rotaxanes can be accessed either through hydrogen-bonded preorganization by a barbiturate thread followed by a Cu(+)-catalyzed "click" stoppering reaction or by a Cu(2+)-mediated Glaser homocoupling reaction.

  11. Modeling Conformational Transitions and Energetics of Ligand Binding with the Glutamate Receptor Ligand Binding Domain

    NASA Astrophysics Data System (ADS)

    Kurnikova, Maria

    2009-03-01

    Understanding of protein motion and energetics of conformational transitions is crucial to understanding protein function. The glutamate receptor ligand binding domain (GluR2 S1S2) is a two lobe protein, which binds ligand at the interface of two lobes and undergoes conformational transition. The cleft closure conformational transition of S1S2 has been implicated in gating of the ion channel formed by the transmembrane domain of the receptor. In this study we present a composite multi-faceted theoretical analysis of the detailed mechanism of this conformational transition based on rigid cluster decomposition of the protein structure [1] and identifying hydrogen bonds that are responsible for stabilizing the closed conformation [2]. Free energy of the protein reorganization upon ligand binding was calculated using combined Thermodynamic Integration (TI) and Umbrella Sampling (US) simulations [3]. Ligand -- protein interactions in the binding cleft were analyzed using Molecular Dynamics, continuum electrostatics and QM/MM models [4]. All model calculations compare well with corresponding experimental measurements. [4pt] [1] Protein Flexibility using Constraints from Molecular Dynamics Simulations T. Mamonova, B. Hespenheide, R. Straub, M. F. Thorpe, M. G. Kurnikova , Phys. Biol., 2, S137 (2005)[0pt] [2] Theoretical Study of the Glutamate Receptor Ligand Binding Domain Flexibility and Conformational Reorganization T. Mamonova, K. Speranskiy, and M. Kurnikova , Prot.: Struct., Func., Bioinf., 73,656 (2008)[0pt] [3] Energetics of the cleft closing transition and glutamate binding in the Glutamate Receptor ligand Binding Domain T. Mamonova, M. Yonkunas, and M. Kurnikova Biochemistry 47, 11077 (2008)[0pt] [4] On the Binding Determinants of the Glutamate Agonist with the Glutamate Receptor Ligand Binding Domain K. Speranskiy and M. Kurnikova Biochemistry 44, 11208 (2005)

  12. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of thesemore » gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.« less

  13. Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liwei; Deng, Xunming; Abken, Anka

    2014-10-29

    The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and hasmore » an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency

  14. How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations.

    PubMed

    Xu, Yechun; Shen, Jianhua; Luo, Xiaomin; Silman, Israel; Sussman, Joel L; Chen, Kaixian; Jiang, Hualiang

    2003-09-17

    The entering and leaving processes of Huperzine A (HupA) binding with the long active-site gorge of Torpedo californica acetylcholinesterase (TcAChE) have been investigated by using steered molecular dynamics simulations. The analysis of the force required along the pathway shows that it is easier for HupA to bind to the active site of AChE than to disassociate from it, which for the first time interprets at the atomic level the previous experimental result that unbinding process of HupA is much slower than its binding process to AChE. The direct hydrogen bonds, water bridges, and hydrophobic interactions were analyzed during two steered molecular dynamics (SMD) simulations. Break of the direct hydrogen bond needs a great pulling force. The steric hindrance of bottleneck might be the most important factor to produce the maximal rupture force for HupA to leave the binding site but it has a little effect on the binding process of HupA with AChE. Residue Asp72 forms a lot of water bridges with HupA leaving and entering the AChE binding gorge, acting as a clamp to take out HupA from or put HupA into the active site. The flip of the peptide bond between Gly117 and Gly118 has been detected during both the conventional MD and SMD simulations. The simulation results indicate that this flip phenomenon could be an intrinsic property of AChE and the Gly117-Gly118 peptide bond in both HupA bound and unbound AChE structures tends to adopt the native enzyme structure. At last, in a vacuum the rupture force is increased up to 1500 pN while in water solution the greatest rupture force is about 800 pN, which means water molecules in the binding gorge act as lubricant to facilitate HupA entering or leaving the binding gorge.

  15. Second-generation supramolecular dendrimer with a defined structure due to orthogonal binding.

    PubMed

    Eckelmann, Jens; Dethlefs, Christiane; Brammer, Stefan; Doğan, Ahmet; Uphoff, Andreas; Lüning, Ulrich

    2012-07-02

    A second-generation supramolecular dendrimer has been prepared by orthogonal multiple hydrogen bonding. In the first (inner) recognition domain, the interaction of one bis-isocyanuric acid (25) with two branching units (21) that carry complementary Hamilton receptors has been exploited. In the second (outer) generation, the two ADDA (A=hydrogen-bond acceptor, D=donor) receptors of each branching unit (21) have bound complementary DAAD units (4). The problem of limited solubility of the building blocks has been overcome by the introduction of branched ethylhexyl residues and by the use of flexible alkylene or oligo(ethylene glycol) linking chains. The orthogonal binding of the two hydrogen-bonding pairs was elucidated by chemical induced shift NMR titrations, which proved that the two pairs, isocyanuric acid with the Hamilton receptor and ADDA with DAAD, bind preferentially. The formation of the supramolecular self-assembled 1:2:4 dendrimer with a molecular weight of 5065 g mol(-1) was investigated by diffusion NMR spectroscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Computational study of bindings of HK20 Fab and D5 Fab to HIV-1 gp41.

    PubMed

    Hartono, Yossa Dwi; Lazim, Raudah; Yip, Yew Mun; Zhang, Dawei

    2012-02-15

    Antibodies HK20 and D5 have been shown to target HIV-1 gp41, thereby inhibiting membrane fusion that facilitates viral entry. The binding picture is static, based on the X-ray crystal structures of the Fab regions and gp41 mimetic five-helix bundle. In this study, we carried out molecular dynamics simulation to provide the dynamic binding picture. Calculated binding free energies are within reasonable range of and follow the trend of the experimental values: -15.28 kcal/mol for HK20 Fab (expt. -11.60 kcal/mol) and -17.90 kcal/mol for D5 Fab (expt. -11.70 kcal/mol). Alanine scanning at protein-protein interface reveals that the highest contributors to binding for HK20 Fab are F54 and I56, both of V(H) region, as well as R30' of V(L) region; whereas for D5 Fab, F54 of V(H) region, as well as W32' and Y94' of V(L) region. HK20 F54 and I56, as well as D5 I52, F54, and T56, bind to the gp41 hydrophobic binding pocket, an important region targeted by many other fusion inhibitors. Hydrogen bonding analysis also identifies high-occupancy hydrogen bonds at the periphery of gp41 hydrophobic pocket. Considering that almost all interface residues are turn residues, further work may be directed to turn mimics. Pre-orientation by the hydrogen bonds to poise this particular turn towards the binding pocket may also be a point worth pursuing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Effect of Boron Microalloying Element on Susceptibility to Hydrogen Embrittlement in High Strength Mooring Chain Steel

    NASA Astrophysics Data System (ADS)

    Li, H.; Cheng, X. Y.; Shen, H. P.; Su, L. C.; Zhang, S. Y.

    The susceptibility to hydrogen embrittlement in high strength mooring chain steel with different boron content (0, 0.003 %, 0.008 %) were investigated by electrochemical hydrogen charging technique and tensile test. The results revealed that appropriate boron content can effectively depress hydrogen induced embrittlement. Precharged with a low current density, this effect seemed to be unobvious. It gradually became clearly with the increasing current density. The increase of resistance to the hydrogen embrittlement for 3B and 8B after adding appropriate boron was attributed to three facts. The first was that the segregation of boron atoms along grain boundaries reduced the grain boundary segregation of phosphorus, which prohibited hydrogen concentration at the grain boundaries, depressing the possibility of the intergranular fracture due to H. The second was that the segregation of boron increased intergranular cohesion, enhanced grain boundary strength, and refined the final microstructure. The third was that the addition of boron changed the state of hydrogen traps, leading to the small amount of diffusible hydrogen. That is to say, hydrogen transferred to these defects by dislocations was accordingly decreased, which led to the low sensitive of hydrogen induced cracking.

  18. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carrymore » out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts

  19. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.

    PubMed

    Hoang, Tuan K A; Webb, Michael I; Mai, Hung V; Hamaed, Ahmad; Walsby, Charles J; Trudeau, Michel; Antonelli, David M

    2010-08-25

    In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.

  20. Tamavidin 2-REV: an engineered tamavidin with reversible biotin-binding capability.

    PubMed

    Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako

    2013-03-10

    A biotin-binding protein with reversible biotin-binding capability is of great technical value in the affinity purification of biotinylated biomolecules. Although several proteins, chemically or genetically modified from avidin or streptavidin, with reversible biotin-binding have been reported, they have been problematic in one way or another. Tamavidin 2 is a fungal protein similar to avidin and streptavidin in biotin-binding. Here, a mutein, tamavidin 2-REV, was engineered from tamavidin 2 by replacing the serine at position 36 (S36) with alanine. S36 is thought to form a hydrogen bond with biotin in tamavidin 2/biotin complexes and two hydrogen bonds with V38 within the protein. Tamavidin 2-REV bound to biotin-agarose and was eluted with excess free biotin at a neutral pH. In addition, the model substrate biotinylated bovine serum albumin was efficiently purified from a crude extract from Escherichia coli by means of single-step affinity chromatography with tamavidin 2-REV-immobilized resin. Tamavidin 2-REV thus demonstrated reversible biotin-binding capability. The Kd value of tamavidin 2-REV to biotin was 2.8-4.4×10(-7)M.Tamavidin 2-REV retained other convenient characteristics of tamavidin 2, such as high-level expression in E. coli, resistance to proteases, and a neutral isoelectric point, demonstrating that tamavidin 2-REV is a powerful tool for the purification of biotinylated biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation.

    PubMed

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A; Jayaram, Hiremagalur N; Crabb, David W

    2008-12-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.

  2. DFT investigations of the hydrogenation effect on silicene/graphene hybrids.

    PubMed

    Drissi, L B; Saidi, E H; Bousmina, M; Fassi-Fehri, O

    2012-12-05

    We report here a study on the effect of hydrogenation on a new one-atom thick material made of silicon and carbon atoms (silicene/graphene (SG) hybrid) within density functional theory. The structural, electronic and magnetic properties are investigated for non-, semi- and fully hydrogenated SG hybrids in a chair configuration and are compared with their parent materials. Calculations reveal that pure SG is a non-zero band gap semi-conductor with stable planar honeycomb structure. So mixing C and Si in an alternating manner gives another way to generate a finite band gap in one-atom thick materials. Fully hydrogenation makes the gap larger; however half chemical modification with H reduces the gap in favor of ferromagnetism order. The findings of this work open a wide spectrum of possibilities for designing SG-based nanodevices with controlled and tuned properties.

  3. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  4. The effects of cations and anions on hydrogen chemisorption at Pt

    NASA Technical Reports Server (NTRS)

    Huang, J. C.; Ogrady, W. E.; Yeager, E.

    1977-01-01

    Experimental evidence based on linear sweep voltammetry is presented to substantiate the view that ionic adsorption substantially shifts electrode potentials in addition to the relative heights of the hydrogen adsorption peaks. HClO4 and HF are chosen as better reference electrolytes for anion studies. The voltammetry curves for 0.1M HF and 0.1M HClO4 as well as the effect of adding successively increasing amounts of H2SO4 to these electrolytes are discussed. The measurements are also extended to alkaline solutions. Mechanisms whereby the addition of various cations and anions to electrolytes such as HF and HClO4 can induce changes in the structure of the hydrogen adsorption region in the voltammetry curves are identified: (1) blocking of sites by anion adsorption and coupling of hydrogen adsorption and anion desorption, (2) modification in the hydrogen adsorption energies for sites adjacent to adsorbed anions, (3) changes in the potential distribution across the interface, and (4) surface restructuring.

  5. A Unitary Anesthetic Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  6. A Unitary Anesthetic Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L Vedula; G Brannigan; N Economou

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  7. A Unitary Anesthetic-Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedula, L.; Brannigan, G; Economou, N

    2009-01-01

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritinmore » also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  8. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  9. Effect of hydrogen addition on soot formation in an ethylene/air premixed flame

    NASA Astrophysics Data System (ADS)

    De Iuliis, S.; Maffi, S.; Migliorini, F.; Cignoli, F.; Zizak, G.

    2012-03-01

    The effect of hydrogen addition to fuel in soot formation and growth mechanisms is investigated in a rich ethylene/air premixed flame. To this purpose, three-angle scattering and extinction measurements are carried out in flames with different hydrogen contents. By applying the Rayleigh-Debye-Gans theory and the fractal-like description, soot concentration and morphology, with the evaluation of radius of gyration, volume-mean diameter and primary particle diameter are retrieved. To derive fractal parameters such as fractal dimension and fractal prefactor to be used for optical measurements, sampling technique and TEM analysis are performed. In addition, data concerning soot morphology obtained from TEM analysis are compared with the optical results. A good agreement in the value of the primary particle diameter between optical and ex-situ measurements is found. Significant effects of hydrogen addition are detected and presented in this work. In particular, hydrogen addition to fuel is responsible for a reduction in soot concentration, radius of gyration and primary particle diameter.

  10. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less

  11. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-05

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.

  12. A multispectroscopic and molecular docking investigation of the binding interaction between serum albumins and acid orange dye

    NASA Astrophysics Data System (ADS)

    Naveenraj, Selvaraj; Solomon, Rajadurai Vijay; Mangalaraja, Ramalinga Viswanathan; Venuvanalingam, Ponnambalam; Asiri, Abdullah M.; Anandan, Sambandam

    2018-03-01

    The interaction of Acid Orange 10 (AO10) with bovine serum albumin (BSA) was investigated comparatively with that of human serum albumin (HSA) using multispectroscopic techniques for understanding their toxic mechanism. Further, density functional theory calculations and docking studies have been carried out to gain more insights into the nature of interactions existing between AO10 and serum albumins. The fluorescence results suggest that AO10 quenched the fluorescence of BSA through the combination of static and dynamic quenching mechanism. The same trend was followed in the interaction of AO10 with HSA. In addition to the type of quenching mechanism, the fluorescence spectroscopic results suggest that the binding occurs near the tryptophan moiety of serum albumins and the binding. AO10 has more binding affinity towards BSA than HSA. An AO10-Trp model has been created to explicitly understand the Csbnd Htbnd π interactions from Bader's quantum theory of atoms in molecules analysis which confirmed that AO10 bind more strongly with BSA than that of HSA due to the formation of three hydrogen bonds with BSA whereas it forms two hydrogen bonds in the case of HSA. These obtained results provide an in-depth understanding of the interaction of the acid azo dye AO10 with serum albumins. This interaction study provides insights into the underlying reasons for toxicity of AO10 relevant to understand its effect on bovids and humans during the blood transportation process.

  13. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    PubMed

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  14. Effect of Binding on Enantioselectivity of Epoxide Hydrolase.

    PubMed

    Zaugg, Julian; Gumulya, Yosephine; Bodén, Mikael; Mark, Alan E; Malde, Alpeshkumar K

    2018-03-26

    Molecular dynamics simulations and free energy calculations have been used to investigate the effect of ligand binding on the enantioselectivity of an epoxide hydrolase (EH) from Aspergillus niger. Despite sharing a common mechanism, a wide range of alternative mechanisms have been proposed to explain the origin of enantiomeric selectivity in EHs. By comparing the interactions of ( R)- and ( S)-glycidyl phenyl ether (GPE) with both the wild type (WT, E = 3) and a mutant showing enhanced enantioselectivity to GPE (LW202, E = 193), we have examined whether enantioselectivity is due to differences in the binding pose, the affinity for the ( R)- or ( S)- enantiomers, or a kinetic effect. The two enantiomers were easily accommodated within the binding pockets of the WT enzyme and LW202. Free energy calculations suggested that neither enzyme had a preference for a given enantiomer. The two substrates sampled a wide variety of conformations in the simulations with the sterically hindered and unhindered carbon atoms of the GPE epoxide ring both coming in close proximity to the nucleophilic aspartic acid residue. This suggests that alternative pathways could lead to the formation of a ( S)- and ( R)-diol product. Together, the calculations suggest that the enantioselectivity is due to kinetic rather than thermodynamic effects and that the assumption that one substrate results in one product when interpreting the available experimental data and deriving E-values may be inappropriate in the case of EHs.

  15. Solubility of hydrogen in metals and its effect of pore-formation and embrittlement. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shahani, H. R.

    1984-01-01

    The effect of alloying elements on hydrogen solubility were determined by evaluating solubility equations and interaction coefficients. The solubility of dry hydrogen at one atmosphere was investigated in liquid aluminum, Al-Ti, Al-Si, Al-Fe, liquid gold, Au-Cu, and Au-Pd. The design of rapid heating and high pressure casting furnaces used in meta foam experiments is discussed as well as the mechanism of precipitation of pores in melts, and the effect of hydrogen on the shrinkage porosity of Al-Cu and Al-Si alloys. Hydrogen embrittlement in iron base alloys is also examined.

  16. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  17. Elucidation of conformational states, dynamics, and mechanism of binding in human κ-opioid receptor complexes.

    PubMed

    Leonis, Georgios; Avramopoulos, Aggelos; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Yurtsever, Mine; Papadopoulos, Manthos G

    2014-08-25

    Opioid G protein-coupled receptors (GPCRs) have been implicated in modulating pain, addiction, psychotomimesis, mood and memory, among other functions. We have employed the recently reported crystal structure of the human κ-opioid receptor (κ-OR) and performed molecular dynamics (MD), free energy, and ab initio calculations to elucidate the binding mechanism in complexes with antagonist JDTic and agonist SalA. The two systems were modeled in water and in DPPC lipid bilayers, in order to investigate the effect of the membrane upon conformational dynamics. MD and Atoms in Molecules (AIM) ab initio calculations for the complexes in water showed that each ligand was stabilized inside the binding site of the receptor through hydrogen bond interactions that involved residues Asp138 (with JDTic) and Gln115, His291, Leu212 (with SalA). The static description offered by the crystal structure was overcome to reveal a structural rearrangement of the binding pocket, which facilitated additional interactions between JDTic and Glu209/Tyr139. The role of Glu209 was emphasized, since it belongs to an extracellular loop that covers the binding site of the receptor and is crucial for ligand entrapment. The above interactions were retained in membrane complexes (SalA forms additional hydrogen bonds with Tyr139/312), except the Tyr139 interaction, which is abolished in the JDTic complex. For the first time, we report that JDTic alternates between a "V-shape" (stabilized via a water-mediated intramolecular interaction) and a more extended conformation, a feature that offers enough suppleness for effective binding. Moreover, MM-PBSA calculations showed that the more efficient JDTic binding to κ-OR compared to SalA (ΔGJDTic = -31.6 kcal mol(-1), ΔGSalA = -9.8 kcal mol(-1)) is attributed mostly to differences in electrostatic contributions. Importantly, our results are in qualitative agreement with the experiments (ΔGJDTic,exp = -14.4 kcal mol(-1), ΔGSalA,exp = -10.8 kcal mol(-1

  18. Effect of ultrasonic pre-treatment of thermomechanical pulp on hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Loranger, E.; Charles, A.; Daneault, C.

    2012-12-01

    Ultrasound pre-treatments of softwood TMP had been carried to evaluate its impact on the efficiency of hydrogen peroxide bleaching. The trials were performed after a factorial design of experiment using frequency, power and time as variables. The experiments were conducted in an ultrasonic bath and then bleached with hydrogen peroxide. Measurements such as brightness, L*A*B* color system coordinate, residual hydrogen peroxide and metal content were evaluated on bleached pulp. The results indicate that the effect of ultrasonic treatment on brightness was dependent on the ultrasound frequency used; the brightness increased slightly at 68 kHz and decreased at 40 and 170 kHz. These results were correlated to the ultrasound effect on the generation of transition metals (copper, iron and manganese) which are responsible for catalytic decomposition of hydrogen peroxide. The influence of metal interference was minimized by using a chelating agent such as diethylene triamine pentaacetic acid (DTPA). With the results obtained in this study we have identified a set of option conditions, e.g. 1000 W, 40 kHz, 1.5 % consistency and 0.2% addition of DTPA prior to the bleaching stage (after ultrasonic pre-treatment) who improve brightness by 2.5 %ISO.

  19. Effect of the chemical composition and the structural and phases states of materials on hydrogen retention

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Stal'tsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu.; Korshunov, S. N.

    2017-07-01

    The results of investigation of the effect of chemical composition and structural and phase states of reactor steels and vanadium alloys on their capture and retention of hydrogen introduced into the materials in various ways are presented. It is shown that, in the case of identical conditions of hydrogen introduction, the amount of hydrogen captured by austenitic steels is substantially higher than that captured by ferritic/ martensitic steels. At the same time, the EP450 ODS ferritic/martensitic steel dispersion-strengthened with nanosized yttrium oxide particles retains a substantially higher amount of hydrogen as compared to that retained in the EP450 matrix steel. The alloying of vanadium with tungsten, zirconium, and titanium leads to an increase in the amount of retained hydrogen. The effect of titanium content on hydrogen retention is found to be nonmonotonic; the phenomenon is explained from a physical view point.

  20. A theoretical study of the hydrogen bonding between the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride

    NASA Astrophysics Data System (ADS)

    Rusu, Victor H.; da Silva, João Bosco P.; Ramos, Mozart N.

    2009-04-01

    MP2/6-31++G(d,p) and B3LYP/6-31++G(d,p) theoretical calculations have been employed to investigate the hydrogen bonding formation involving the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride. Our calculations have revealed for each isomer the preferential existence of two possible hydrogen-bonded complexes: a non-cyclic complex and a cyclic complex. For all the three isomers the binding energies for the non-cyclic and cyclic hydrogen complexes are essentially equal using both the MP2 and B3LYP calculations, being that the cyclic structure is slightly more stable. For instance, the binding energies including BSSE and ZPE corrections for the non-cyclic and cyclic structures of cis-C 2H 2F···HF are 8.7 and 9.0 kJ mol -1, respectively, using B3LYP calculations. The cyclic complex formation reduces the polarity, in contrast to what occurs with the non-cyclic complex. This result is more accentuated in vic-C 2H 2F 2···HF. In this latter, Δ μ(cyclic) is -3.07 D, whereas Δ μ(non-cyclic) is +1.92 D using B3LYP calculations. Their corresponding MP2 values are +0.44 D and -1.89 D, respectively. As expected, the complexation produces an H sbnd F stretching frequency downward shift, whereas its IR intensity is enhanced. On the other hand, the vibrational modes of the vic-, cis- and trans-C 2H 2F 2 isomers are little affected by complexation. The new vibrational modes due to hydrogen bonding formation show several interesting features, in particular the HF bending modes which are pure rotations in the free molecule.

  1. Effect of quantum nuclear motion on hydrogen bonding

    NASA Astrophysics Data System (ADS)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-01

    This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  2. Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.

    PubMed

    Sarkar, A; Beard, D A; Franza, B R

    2006-07-01

    The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.

  3. Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene [The effects of hydrogenation on the volatility of organic hydrogen getters

    DOE PAGES

    Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.; ...

    2017-11-15

    Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less

  4. Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene [The effects of hydrogenation on the volatility of organic hydrogen getters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.

    Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less

  5. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Weber, J.

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbonmore » and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.« less

  6. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα.

    PubMed

    Li, Dong; Xiong, Qinghui; Peng, Jin; Hu, Bin; Li, Wanzhen; Zhu, Yizhun; Shen, Xiaoyan

    2016-04-29

    ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H₂S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H₂S regulates ABCA1 expression. The effect of H₂S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE(-/-) mice with a high-cholesterol diet. NaHS (an exogenous H₂S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H₂S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE(-/-) mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H₂S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H₂S. H₂S may be a promising potential drug candidate for the treatment of atherosclerosis.

  7. A ’Hydrogen Partitioning’ Model for Hydrogen Assisted Crack Growth.

    DTIC Science & Technology

    1984-09-01

    the change in Stage II crack growth rate from Region A to Region C in the 18NI maraging steels . It cannot, however, explain the sudden drop off in...Neither partitioning of hydrogen nor adsorption equilibrium can account for the observed "high" temperature response of l8Ni maraging steel in hydrogen...ment and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, p. 103 (in press). 11. R. P. Wei: in Hydrogen Effects in

  8. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    NASA Astrophysics Data System (ADS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  9. Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars.

    PubMed

    Murdin, B N; Li, Juerong; Pang, M L Y; Bowyer, E T; Litvinenko, K L; Clowes, S K; Engelkamp, H; Pidgeon, C R; Galbraith, I; Abrosimov, N V; Riemann, H; Pavlov, S G; Hübers, H-W; Murdin, P G

    2013-01-01

    Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10(5) T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H(2) analogues, and for investigation of He(2), a bound molecule predicted under extreme field conditions.

  10. The positive binding energy envelopes of low-mass helium stars

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.; Jeffery, C. Simon

    2018-04-01

    It has been hypothesized that stellar envelopes with positive binding energy may be ejected if the release of recombination energy can be triggered and the calculation of binding energy includes this contribution. The implications of this hypothesis for the evolution of normal hydrogen-rich stars have been investigated, but the implications for helium stars - which may represent mass-transfer or merger remnants in binary star systems - have not. Making a set of model helium stars, we find that those with masses between 0.9 and 2.4 M⊙ evolve to configurations with positive binding energy envelopes. We discuss consequences of the ejection hypothesis for such stars, and possible observational tests of these predictions.

  11. Elucidation of Hydrogen Bonding Patterns in Ligand-Free, Lactose- and Glycerol-Bound Galectin-3C by Neutron Crystallography to Guide Drug Design.

    PubMed

    Manzoni, Francesco; Wallerstein, Johan; Schrader, Tobias E; Ostermann, Andreas; Coates, Leighton; Akke, Mikael; Blakeley, Matthew P; Oksanen, Esko; Logan, Derek T

    2018-05-24

    The medically important drug target galectin-3 binds galactose-containing moieties on glycoproteins through an intricate pattern of hydrogen bonds to a largely polar surface-exposed binding site. All successful inhibitors of galectin-3 to date have been based on mono- or disaccharide cores closely resembling natural ligands. A detailed understanding of the H-bonding networks in these natural ligands will provide an improved foundation for the design of novel inhibitors. Neutron crystallography is an ideal technique to reveal the geometry of hydrogen bonds because the positions of hydrogen atoms are directly detected rather than being inferred from the positions of heavier atoms as in X-ray crystallography. We present three neutron crystal structures of the C-terminal carbohydrate recognition domain of galectin-3: the ligand-free form and the complexes with the natural substrate lactose and with glycerol, which mimics important interactions made by lactose. The neutron crystal structures reveal unambiguously the exquisite fine-tuning of the hydrogen bonding pattern in the binding site to the natural disaccharide ligand. The ligand-free structure shows that most of these hydrogen bonds are preserved even when the polar groups of the ligand are replaced by water molecules. The protonation states of all histidine residues in the protein are also revealed and correlate well with NMR observations. The structures give a solid starting point for molecular dynamics simulations and computational estimates of ligand binding affinity that will inform future drug design.

  12. Smart supramolecular sensing with cucurbit[n]urils: probing hydrogen bonding with SERS.

    PubMed

    de Nijs, Bart; Kamp, Marlous; Szabó, Istvan; Barrow, Steven J; Benz, Felix; Wu, Guanglu; Carnegie, Cloudy; Chikkaraddy, Rohit; Wang, Wenting; Deacon, William M; Rosta, Edina; Baumberg, Jeremy J; Scherman, Oren A

    2017-12-04

    Rigid gap nano-aggregates of Au nanoparticles formed using cucurbit[n]uril (CB[n]) molecules are used to investigate the competitive binding of ethanol and methanol in an aqueous environment. We show it is possible to detect as little as 0.1% methanol in water and a ten times higher affinity to methanol over ethanol, making this a useful technology for quality control in alcohol production. We demonstrate strong interaction effects in the SERS peaks, which we demonstrate are likely from the hydrogen bonding of water complexes in the vicinity of the CB[n]s.

  13. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  14. Pressure Effect on Hydrogen Tunneling and Vibrational Spectrum in α-Mn

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Alexander; Podlesnyak, Andrey; Sadykov, Ravil; Antonov, Vladimir; Kuzovnikov, Michail; Ehlers, Georg; Granroth, Garrett

    The pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimated tunneling splitting of the hydrogen ground state exceeds the barrier height. Acknowledgments: Research at ORNL SNS was supported by the Sci. User Facilities Division, Office BES, US DOE, and was sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the US DOE. It used resources of the Nat. Energy Res. Sci. Comp. Center, which is supported by the Office of Sci. US DOE under Contract No. DE-AC02-05CH11231. A support by a Grant of the Program on Elementary Particle Physics, Fundamental Nuclear Physics and Nuclear Techn. RAS is also acknowledged.

  15. Hydrogen effects on Ni-Ti fatigue performance by self -heating method

    NASA Astrophysics Data System (ADS)

    Rokbani, M.; Saint-Sulpice, L.; Arbab Chirani, S.; Bouraoui, T.

    2017-10-01

    Ni-Ti superelastic alloys are extensively used in manufacturing biomedical devices because of their high mechanical performance, good fatigue durability and biocompatibility compared to traditional metallic materials. During clinical use, most of these devices are intended to work under cyclic or repetitive loadings and may be in contact with corrosive environments leading to unexpected failures. It is however recognized that the fatigue-environment interaction, especially fatigue-hydrogen absorption, can be the main cause of these failures. The aim of this work is to investigate the fatigue behavior of superelastic Ni-Ti intended for manufacturing medical devices at high number of cycles (HCF) with a particular emphasis to the effect of hydrogen on fatigue properties. Fatigue tests were analyzed using self-heating measurements based on observing thermal effects during cyclic loadings. The results obtained with self-heating approach showed a trend of a decrease in the fatigue life of Ni-Ti alloys after hydrogen absorption and the fatigue limit extrapolated will be compared with the results obtained with the classical S-N curves method.

  16. Drug Resistance Mechanism of L10F, L10F/N88S and L90M mutations in CRF01_AE HIV-1 protease: Molecular dynamics simulations and binding free energy calculations.

    PubMed

    Vasavi, C S; Tamizhselvi, Ramasamy; Munusami, Punnagai

    2017-08-01

    HIV-1 protease plays a crucial role in viral replication and maturation, which makes it one of the most attractive targets for anti-retroviral therapy. The majority of HIV infections in developing countries are due to non-B subtype. Subtype AE is spreading rapidly and infecting huge population worldwide. The mutations in the active site of subtype AE directly impair the interactions with the inhibitor. The non-active site mutations influence the binding of the inhibitor indirectly and their resistance mechanism is not well understood. It is important to design new effective inhibitors that combat drug resistance in subtype AE protease. In this work, we examined the effect of non active site mutations L10F, L10F/N88S and L90M with nelfinavir using molecular dynamics simulation and binding free energy calculations. The simulations suggested that the L10F and L10F/N88S mutants decrease the binding affinity of nelfinavir, whereas the L90M mutant increases the binding affinity. The formation of hydrogen bonds between nelfinavir and Asp30 is crucial for effective binding. The benzamide moiety of nelfinavir shows large positional deviation in L10F and L10F/N88S complexes and the L10F/N88S mutation changes the hydrogen bond between the side chain atoms of 30th residue and the 88th residue. Consequently the hydrogen bond interaction between Asp30 and nelfinavir are destroyed leading to drug resistance. Our present study shed light on the resistance mechanism of the strongly linked mutation L10F/N88S observed experimentally in AE subtype. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-09-15

    Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.

  18. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  19. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  20. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  1. Hydrogen Basics | NREL

    Science.gov Websites

    greenhouse effect. Hydrogen has very high energy for its weight, but very low energy for its volume, so new make a hydrogen economy a reality include: Fuel Cells - Improving fuel cell technology and materials needed for fuel cells. Production - Developing technology to efficiently and cost-effectively make

  2. Strong vibronic coupling effects in polarized IR spectra of the hydrogen bond in N-methylthioacetamide crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Śmiszek-Lindert, Wioleta; Stadnicka, Katarzyna

    2007-06-01

    This paper presents the investigation results of the polarized IR spectra of the hydrogen bond in crystals of N-methylthioacetamide. The spectral studies were preceded by the determination of the crystal X-ray structure. The spectra were measured at 283 K and at 77 K by a transmission method, using polarized light. Theoretical analysis of the results concerned the linear dichroic effects, the H/D isotopic and temperature effects, observed in the solid-state IR spectra of the hydrogen and of the deuterium bond at the frequency ranges of the νN-H and the νN-D bands, respectively. The main spectral properties of the crystals can be interpreted satisfactorily in terms of the simple quantitative theory of the IR spectra of the hydrogen bond, i.e., the " strong-coupling" theory on the basis of the hydrogen bond centrosymmetric dimer model. The spectra revealed that the strongest vibrational exciton coupling involved the closely spaced hydrogen bonds, each belonging to a different chain of associated N-methylthioacetamide molecules. The crystal spectral properties, along with an abnormal H/D isotopic effect in the spectra, were found to be strongly influenced by vibronic coupling mechanisms in these dimers. These mechanisms were considered as responsible for the activation in IR of the totally symmetric proton stretching vibrations in the dimers. On analyzing the spectra of isotopically diluted crystalline samples of N-methylthioacetamide, it was proved that a non-random distribution of the protons and deuterons took place in the hydrogen bond lattices. In an individual hydrogen-bonded chain in the crystals distribution of the hydrogen isotope atoms H and D was fully random. The H/D isotopic " self-organization" mechanism, of a vibronic nature, involved a pair of hydrogen bonds from a unit cell, where each hydrogen bond belonged to a different chain of the associated molecules.

  3. Structure, recognition and adaptive binding in RNA aptamer complexes.

    PubMed

    Patel, D J; Suri, A K; Jiang, F; Jiang, L; Fan, P; Kumar, R A; Nonin, S

    1997-10-10

    Novel features of RNA structure, recognition and discrimination have been recently elucidated through the solution structural characterization of RNA aptamers that bind cofactors, aminoglycoside antibiotics, amino acids and peptides with high affinity and specificity. This review presents the solution structures of RNA aptamer complexes with adenosine monophosphate, flavin mononucleotide, arginine/citrulline and tobramycin together with an example of hydrogen exchange measurements of the base-pair kinetics for the AMP-RNA aptamer complex. A comparative analysis of the structures of these RNA aptamer complexes yields the principles, patterns and diversity associated with RNA architecture, molecular recognition and adaptive binding associated with complex formation.

  4. Water content and porosity effect on hydrogen radiolytic yields of geopolymers

    NASA Astrophysics Data System (ADS)

    Chupin, Frédéric; Dannoux-Papin, Adeline; Ngono Ravache, Yvette; d'Espinose de Lacaillerie, Jean-Baptiste

    2017-10-01

    The behavior of geopolymers under irradiation is a topic that has not been thoroughly investigated so far. However, if geopolymers are considered to be used as radioactive waste embedding matrices, their chemical and mechanical stability under ionizing radiation as well as low hydrogen production must be demonstrated. For that purpose, a particular focus is put on water radiolysis. Various formulations of geopolymers have been irradiated either with γ-rays (60Co source) or 95 MeV/amu 36Ar18+ ions beams and the hydrogen production has been quantified. This paper presents the results of radiolytic gas analysis in order to identify important structural parameters that influence confined water radiolysis. A correlation between geopolymers nature, water content on the one side, and the hydrogen radiolytic yield (G(H2)) on the other side, has been demonstrated. For both types of irradiations, a strong influence of the water content on the hydrogen radiolytic yield G(H2) is evidenced. The geopolymers porosity effect has been only highlighted under γ-rays irradiation.

  5. Influence of the protonation state on the binding mode of methyl orange with cucurbiturils

    NASA Astrophysics Data System (ADS)

    He, Suhang; Sun, Xuzhuo; Zhang, Haibo

    2016-03-01

    Binding modes of methyl orange (MO) with cucurbiturils (CBs) have been investigated by Single Crystal X-ray Diffraction and NMR Spectroscopy. Detailed study of intermolecular interactions was supported by the Hirshfeld surface analysis. Protonation state of the anionic part of methyl orange has greatly influenced the binding mode of the complex. Stabilized by hydrogen bonding at the portal, hydrophobic and dispersion interactions in the cavity, the protonated methyl orange was deeply inserted into the cavity. On the contrary, the anionic methyl orange has been pushed towards the outside of the cavity by the electrostatic repulsion between the azo group and the portal oxygen. A ;water bridge; was found in MO@CB8 linking both host and guest via hydrogen bonds.

  6. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  7. Hydrogen passivation and multiple hydrogen-Hg vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te

    NASA Astrophysics Data System (ADS)

    Xue, L.; Tang, D. H.; Qu, X. D.; Sun, L. Z.; Lu, Wei; Zhong, J. X.

    2011-09-01

    Using first-principles method within the framework of the density functional theory, we study the formation energies and the binding energies of multiple hydrogen-mercury vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te. We find that, when mercury vacancies exist in Hg0.75Cd0.25Te, the formation of the complex impurity between H and VHg (1H-VHg) is easy and its binding energy is up to 0.56 eV. In this case, the deep acceptor level of mercury vacancy is passivated. As the hydrogen concentration increases, we find that the complex impurity between VHg and two hydrogen atoms (2H-VHg) is more stable than 1H-VHg. This complex passivates both the two acceptor levels introduced by mercury vacancy and neutralizes the p-type dopant characteristics of VHg in Hg0.75Cd0.25Te. Moreover, we find that the complex impurities formed by one VHg and three or four H atoms (3H-VHg, 4H-VHg) are still stable in Hg0.75Cd0.25Te, changing the VHg doped p-type Hg0.75Cd0.25Te to n-type material.

  8. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  9. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases.

    PubMed

    Horowitz, Scott; Dirk, Lynnette M A; Yesselman, Joseph D; Nimtz, Jennifer S; Adhikari, Upendra; Mehl, Ryan A; Scheiner, Steve; Houtz, Robert L; Al-Hashimi, Hashim M; Trievel, Raymond C

    2013-10-16

    S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.

  10. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs

    NASA Astrophysics Data System (ADS)

    Böhm, Hans-Joachim

    1998-07-01

    A dataset of 82 protein-ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein-ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein-ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein-ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 Å in the length and up to 30 °Cs in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 × 10-2 M to 1 × 10-14 M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.

  11. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  12. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-08

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    van der Meer, Marcel T. J.; Benthien, Albert; French, Katherine L.; Epping, Eric; Zondervan, Ingrid; Reichart, Gert-Jan; Bijma, Jelle; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2015-07-01

    The hydrogen isotopic (δD) composition of long-chain alkenones produced by certain haptophyte algae has been suggested as a potential proxy for reconstructing paleo sea surface salinity. However, environmental parameters other than salinity may also affect the δD of alkenones. We investigated the impact of the level of irradiance on hydrogen isotopic fractionation of alkenones versus growth water by cultivating two strains of the cosmopolitan haptophyte Emiliania huxleyi at different light intensities. The hydrogen isotope fractionation decreased by approximately 40‰ when irradiance was increased from 15 to 200 μmol photons m-2 s-1 above which it was relatively constant. The response is likely a direct effect of photosystem I and II activity as the relationship of the fractionation factor α versus light intensity can be described by an Eilers-Peeters photosynthesis model. This irradiance effect is in agreement with published δD data of alkenones derived from suspended particulate matter collected from different depths in the photic zone of the Gulf of California and the eastern tropical North Pacific. However, haptophyte algae tend to bloom at relatively high light intensities (>500 μmol photons m-2 s-1) occurring at the sea surface, at which hydrogen isotope fractionation is relatively constant and not affected by changes in light intensity. Alkenones accumulating in the sediment are likely mostly derived from these surface water haptophyte blooms, when the largest amount of biomass is produced. Therefore, the observed irradiance effect is unlikely to affect the applicability of the hydrogen isotopic composition of sedimentary long chain alkenones as a proxy for paleosalinity.

  15. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  16. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization

  17. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of Neisseria gonorrhoeae.

    PubMed

    Fedarovich, Alena; Cook, Edward; Tomberg, Joshua; Nicholas, Robert A; Davies, Christopher

    2014-12-09

    A hallmark of penicillin-binding protein 2 (PBP2) from penicillin-resistant strains of Neisseria gonorrhoeae is insertion of an aspartate after position 345. The insertion resides on a loop near the active site and is immediately adjacent to an existing aspartate (Asp346) that forms a functionally important hydrogen bond with Ser363 of the SxN conserved motif. Insertion of other amino acids, including Glu and Asn, can also lower the rate of acylation by penicillin, but these insertions abolish transpeptidase function. Although the kinetic consequences of the Asp insertion are well-established, how it impacts the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution crystal structure of a truncated construct of PBP2 containing all five mutations present in PBP2 from the penicillin-resistant strain 6140, including the Asp insertion. Commensurate with the strict specificity for the Asp insertion over similar amino acids, the insertion does not cause disordering of the structure, but rather induces localized flexibility in the β2c-β2d loop. The crystal structure resolves the ambiguity of whether the insertion is Asp345a or Asp346a (due to the adjacent Asp) because the hydrogen bond between Asp346 and Ser362 is preserved and the insertion is therefore Asp346a. The side chain of Asp346a projects directly toward the β-lactam-binding site near Asn364 of the SxN motif. The Asp insertion may lower the rate of acylation by sterically impeding binding of the antibiotic or by hindering breakage of the β-lactam ring during acylation because of the negative charge of its side chain.

  18. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakobson, Boris I

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures ofmore » high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.« less

  19. Hydrogen behaviour at twist {110} grain boundaries in α-Fe

    NASA Astrophysics Data System (ADS)

    McEniry, Eunan J.; Hickel, Tilmann; Neugebauer, Jörg

    2017-06-01

    The behaviour of hydrogen at structural defects such as grain boundaries plays a critical role in the phenomenon of hydrogen embrittlement. However, characterization of the energetics and diffusion of hydrogen in the vicinity of such extended defects using conventional ab initio techniques is challenging due to the relatively large system sizes required when dealing with realistic grain boundary geometries. In order to be able to access the required system sizes, as well as high-throughput testing of a large number of configurations, while remaining within a quantum-mechanical framework, an environmental tight-binding model for the iron-hydrogen system has been developed. The resulting model is applied to study the behaviour of hydrogen at a class of low-energy {110}-terminated twist grain boundaries in α-Fe. We find that, for particular Σ values within the coincidence site lattice description, the atomic geometry at the interface plane provides extremely favourable trap sites for H, which also possess high escape barriers for diffusion. By contrast, via simulated tensile testing, weakly trapped hydrogen at the interface plane of the bulk-like Σ3 boundary acts as a `glue' for the boundary, increasing both the energetic barrier and the elongation to rupture. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  20. Selective C70 encapsulation by a robust octameric nanospheroid held together by 48 cooperative hydrogen bonds

    PubMed Central

    Markiewicz, Grzegorz; Jenczak, Anna; Kołodziejski, Michał; Holstein, Julian J.; Stefankiewicz, Artur R

    2017-01-01

    Self-assembly of multiple building blocks via hydrogen bonds into well-defined nanoconstructs with selective binding function remains one of the foremost challenges in supramolecular chemistry. Here, we report the discovery of a enantiopure nanocapsule that is formed through the self-assembly of eight amino acid functionalised molecules in nonpolar solvents through 48 hydrogen bonds. The nanocapsule is remarkably robust, being stable at low and high temperatures, and in the presence of base, presumably due to the co-operative geometry of the hydrogen bonding motif. Thanks to small pore sizes, large internal cavity and sufficient dynamicity, the nanocapsule is able to recognize and encapsulate large aromatic guests such as fullerenes C60 and C70. The structural and electronic complementary between the host and C70 leads to its preferential and selective binding from a mixture of C60 and C70. PMID:28488697

  1. STME Hydrogen Mixer Study

    NASA Technical Reports Server (NTRS)

    Blumenthal, Rob; Kim, Dongmoon; Bache, George

    1992-01-01

    The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.

  2. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Tao, Mo; Zhang, Guowen; Pan, Junhui; Xiong, Chunhong

    2016-02-01

    Tau-fluvalinate (TFL) and flumethrin (FL), widely used in agriculture and a class of synthetic pyrethroid pesticides with a similar structure, may cause a potential security risk. Herein, the modes of binding in vitro of TFL and FL with calf thymus DNA (ctDNA) were characterized by fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy with the aid of viscosity measurements, melting analyses and molecular docking studies. The fluorescence titration indicated that both TFL and FL bound to ctDNA forming complexes through hydrogen bonding and van der Waals forces. The binding constants of TFL and FL with ctDNA were in the range of 104 L mol- 1, and FL exhibited a higher binding propensity than TFL. The iodide quenching effect, single/double-stranded DNA effects, and ctDNA melting and viscosity measurements demonstrated that the binding of both TFL and FL to ctDNA was groove mode. The FT-IR analyses suggested the A-T region of the minor groove of ctDNA as the preferential binding for TFL and FL, which was confirmed by the displacement assays with Hoechst 33258 probe, and the molecular docking visualized the specific binding. The changes in CD spectra indicated that both FL and TFL induced the perturbation on the base stacking and helicity of B-DNA, but the disturbance caused by FL was more obvious. Gel electrophoresis analyses indicated that both TFL and FL did not cause significant DNA cleavage. This study provides novel insights into the binding properties of TFL/FL with ctDNA and its toxic mechanisms.

  3. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  4. Pyrrolic tripodal receptors for carbohydrates. Role of functional groups and binding geometry on carbohydrate recognition.

    PubMed

    Cacciarini, Martina; Nativi, Cristina; Norcini, Martina; Staderini, Samuele; Francesconi, Oscar; Roelens, Stefano

    2011-02-21

    The contribution from several H-bonding groups and the impact of geometric requirements on the binding ability of benzene-based tripodal receptors toward carbohydrates have been investigated by measuring the affinity of a set of structures toward octyl β-D-glucopyranoside, selected as a representative monosaccharide. The results reported in the present study demonstrate that a judicious choice of correct geometry and appropriate functional groups is critical to achieve the complementary hydrogen bonding interactions required for an effective carbohydrate recognition.

  5. Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.

    PubMed

    Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M

    2012-04-10

    Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society

  6. Binding of resveratrol with sodium caseinate in aqueous solutions.

    PubMed

    Acharya, Durga P; Sanguansri, Luz; Augustin, Mary Ann

    2013-11-15

    The interaction between resveratrol (Res) and sodium caseinate (Na-Cas) has been studied by measuring fluorescence quenching of the protein by resveratrol. Quenching constants were determined using Stern-Volmer equation, which suggests that both dynamic and static quenching occur between Na-Cas and Res. Binding constants for the complexation between Na-Cas and Res were determined at different temperatures. The large binding constants (3.7-5.1×10(5)M(-1)) suggest that Res has strong affinity for Na-Cas. This affinity decreases as the temperature is raised from 25 to 37°C. The binding involves both hydrogen bonding and hydrophobic interaction, as suggested by negative enthalpy change and positive entropy change for the binding reaction. The present study indicates that Na-Cas, a common food protein, may be used as a carrier of Res, a bioactive polyphenol which is insoluble in both water and oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis, characterization, and binding assessment with human serum albumin of three bipyridine lanthanide(III) complexes.

    PubMed

    Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam

    2018-05-18

    In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.

  8. Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ho; Cui, Ping; Lan, Haiping; Zhang, Zhenyu

    2015-08-01

    The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the G W -Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.

  9. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  10. Charged groups at binding interfaces of the PsbO subunit of photosystem II: A combined bioinformatics and simulation study.

    PubMed

    Del Val, Coral; Bondar, Ana-Nicoleta

    2017-06-01

    PsbO is an extrinsic subunit of photosystem II engaged in complex binding interactions within photosystem II. At the interface between PsbO, D1 and D2 subunits of photosystem II, a cluster of charged and polar groups of PsbO is part of an extended hydrogen-bond network thought to participate in proton transfer. The precise role of specific amino acid residues at this complex binding interface remains a key open question. Here, we address this question by carrying out extensive bioinformatics analyses and molecular dynamics simulations of PsbO proteins with mutations at the binding interface. We find that PsbO proteins from cyanobacteria vs. plants have specific preferences for the number and composition of charged amino acid residues that may ensure that PsbO proteins avoid aggregation and expose long unstructured loops for binding to photosystem II. A cluster of conserved charged groups with dynamic hydrogen bonds provides PsbO with structural plasticity at the binding interface with photosystem II. Copyright © 2017. Published by Elsevier B.V.

  11. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations.

    PubMed

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang

    2013-11-01

    To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.

  12. The interaction of flavonoid-lysozyme and the relationship between molecular structure of flavonoids and their binding activity to lysozyme.

    PubMed

    Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo

    2012-11-01

    In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.

  13. Hydrogen peroxide kinetics in water radiolysis

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.

    2018-04-01

    The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.

  14. Conformational stability of the propylene oxide-water adduct: direct spectroscopic detection of O-H...O hydrogen bonded conformers.

    PubMed

    Su, Zheng; Wen, Qing; Xu, Yunjie

    2006-05-24

    The 1:1 molecular adduct of propylene oxide and water (PO-H(2)O) was studied using Fourier transform microwave spectroscopy and high level ab initio methods. Two distinct structural conformers with the water molecule acting as a proton donor were detected experimentally: one with the water on the same side as the methyl group with respect to the ether ring, i.e., syn-PO-H(2)O, the other with the water molecule binding to the O-atom from the opposite side of the methyl group, i.e., anti-PO-H(2)O. The nonbonded hydrogen is entgegen to the ether ring in both conformers. Rotational spectra of four isotopic species, namely PO-H(2)O, PO-DOH, PO-HOD, and PO-D(2)O, were recorded for the two conformers. The hydrogen bond parameters: r(O(epoxy)...H), angle(ring-O(epoxy)...H), and angle(O(epoxy)...H-O) are 1.908 A, 112 degrees, and 177 degrees for syn-PO-H(2)O, and 1.885 A, 104.3 degrees, and 161.7 degrees for anti-PO-H(2)O, respectively. The experimental results suggest that the hydrogen bond in syn-PO-H(2)O is stronger and the monomer subunits are more rigidly locked in their positions than in the ethylene oxide-water adduct. The stabilizing effect of the methyl group to the intermolecular hydrogen bond is discussed in terms of the experimentally estimated binding energies, the structural parameters, and the ab initio calculations.

  15. Mechanism of Sulfide Binding by Ferric Hemeproteins.

    PubMed

    Boubeta, Fernando M; Bieza, Silvina A; Bringas, Mauro; Estrin, Darío A; Boechi, Leonardo; Bari, Sara E

    2018-06-19

    The reaction of hydrogen sulfide (H 2 S) with hemeproteins is a key physiological reaction; still, its mechanism and implications are not completely understood. In this work, we propose a combination of experimental and theoretical tools to shed light on the reaction in model system microperoxidase 11 (MP11-Fe III ) and myoglobin (Mb-Fe III ), from the estimation of the intrinsic binding constants of the species H 2 S and hydrosulfide (HS - ), and the computational description of the overall binding process. Our results show that H 2 S and HS - are the main reactive species in Mb-Fe III and MP11-Fe III , respectively, and that the magnitude of their intrinsic binding constants are similar to most of the binding constants reported so far for hemeproteins systems and model compounds. However, while the binding of HS - to Mb-Fe III was negligible, the binding of H 2 S to MP11-Fe III was significant, providing a frame for a discriminated analysis of both species and revealing differential mechanistic aspects. A joint inspection of the kinetic data and the free energy profiles of the binding processes suggests that a dissociative mechanism with the release of a coordinated water molecule as rate limiting step is operative in the binding of H 2 S to Mb-Fe III and that the binding of HS - is prevented in the access to the protein matrix. For the MP11-Fe III case, where no access restrictions for the ligands are present, an associative component in the mechanism seems to be operative. Overall, the results suggest that if accessing the active site then both H 2 S and HS - are capable of binding a ferric heme moiety.

  16. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{supmore » 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.« less

  17. Developing a Novel Hydrogen Sponge with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, T. C. Mike

    This Phase I (5 quarters) research project was to examine the validity of a new class of boron-containing polymer (B-polymer) frameworks, serving as the adsorbents for the practical onboard H2 storage applications. Three B-polymer frameworks were synthesized and investigated, which include B-poly(butyenylstyrene) (B-PBS) framework (A), B-poly(phenyldiacetyene) (B-PPDA) framework (B), and B-poly(phenyltriacetylene) (B-PPTA) framework (C). They are 2-D polymer structures with the repeating cyclic units that spontaneously form open morphology and the B-doped (p-type) π-electrons delocalized surfaces. The ideal B-polymer framework shall exhibit open micropores (pore size in the range of 1-1.5nm) with high surface area (>3000 m 2/g), and themore » B-dopants in the conjugated framework shall provide high surface energy for interacting with H 2 molecules (an ideal H 2 binding energy in the range of 15-25 kJ/mol). The pore size distribution and H2 binding energy were investigated at both Penn State and NREL laboratories. So far, the experimental results show the successful synthesis of B-polymer frameworks with the relatively well-defined planar (2-D) structures. The intrinsically formed porous morphology exhibits a broad pore size distribution (in the range of 0.5-10 nm) with specific surface area (~1000 m 2/g). The miss-alignment between 2-D layers may block some micropore channels and limit gas diffusion throughout the entire matrix. In addition, the 2-D planar conjugated structure may also allow free π-electrons delocalization throughout the framework, which significantly reduces the acidity of B-moieties (electron-deficiency).The resulting 2-D B-polymer frameworks only exhibit a small increase of H 2 binding energy in the range of 8-9 KJ/mole (quite constant over the whole sorption range).« less

  18. Geochemical Effects of Millimolar Hydrogen Concentrations in Groundwater: An Experimental Study in the Context of Subsurface Hydrogen Storage.

    PubMed

    Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Schäfer, Dirk; Dahmke, Andreas

    2018-04-17

    Hydrogen storage in geological formations is one of the most promising technologies for balancing major fluctuations between energy supply from renewable energy plants and energy demand of customers. If hydrogen gas is stored in a porous medium or if it leaks into a shallow aquifer, redox reactions can oxidize hydrogen and reduce electron acceptors such as nitrate, Fe III and Mn IV (hydro)oxides, sulfate, and carbonate. These reactions are of key significance, because they can cause unintentional losses in hydrogen stored in porous media and they also can cause unwanted changes in the composition of protected potable groundwater. To represent an aquifer environment enclosing a hydrogen plume, laboratory experiments using sediment-filled columns were constructed and percolated by groundwater in equilibrium with high (2-15 bar) hydrogen partial pressures. Here, we show that hydrogen is consumed rapidly in these experiments via sulfate reduction (18 ± 5 μM h -1 ) and acetate production (0.030 ± 0.006 h -1 ), while no methanogenesis took place. The observed reaction rates were independent from the partial pressure of hydrogen and hydrogen consumption only stopped in supplemental microcosm experiments where salinity was increased above 35 g L -1 . The outcomes presented here are implemented for planning the sustainable use of the subsurface space within the ANGUS+ project.

  19. Modeling of hydrogen effect on the superelastic behavior of Ni-Ti shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Lachiguer, Amani; Bouby, Céline; Gamaoun, Fehmi; Bouraoui, Tarak; Ben Zineb, Tarak

    2016-11-01

    Superelastic NiTi wires are widely used in orthodontic treatments, but sometimes fracture can be observed after few months of use in buccal cavity and attributed to the degradation of NiTi mechanical properties due to hydrogen absorption. In this paper, a modeling approach is proposed in order to describe the effect of hydrogen diffusion on the transformation properties of NiTi SMAs. In order to experimentally predict such effects, cathodic hydrogen charging was performed at a current density of 10 A/{m}2 for 6h, 24h, 48h and 72h in 0.9% NaCl aqueous solution at room temperature. Tensile tests were carried out shortly after hydrogen charging. The obtained stress-strain curves showed an increase of yield transformation stresses for forward and reverse martensitic transformations and a decrease of maximum transformation strain. Using Fick’s second law, the transformation temperatures variation can be expressed as a function of the mean concentration of absorbed hydrogen and then taked into account in the SMA constitutive model developed by Chemisky et al (2011). The numerical results are compared to the experimental ones to calibrate the proposed method. Simulations showed that hydrogen diffusion induces a shifting of transfomation temperatures, a decreasing of maximum transformation strain and an increasing of yield transfomation stresses.

  20. Spectroscopic characterization of furosemide binding to human carbonic anhydrase II.

    PubMed

    Ranjbar, Samira; Ghobadi, Sirous; Khodarahmi, Reza; Nemati, Houshang

    2012-05-01

    This study reports the interaction between furosemide and human carbonic anhydrase II (hCA II) using fluorescence, UV-vis and circular dichroism (CD) spectroscopy. Fluorescence data indicated that furosemide quenches the intrinsic fluorescence of the enzyme via a static mechanism and hydrogen bonding and van der Walls interactions play the major role in the drug binding. The binding average distance between furosemide and hCA II was estimated on the basis of the theory of Förster energy transfer. Decrease of protein surface hydrophobicity was also documented upon furosemide binding. Chemical modification of hCA II using N-bromosuccinimide indicated decrease of the number of accessible tryptophans in the presence of furosemide. CD results suggested the occurance of some alterations in α-helical content as well as tertiary structure of hCA II upon drug binding. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Computational Investigation of Glycosylation Effects on a Family 1 Carbohydrate-binding Module*

    PubMed Central

    Taylor, Courtney B.; Talib, M. Faiz; McCabe, Clare; Bu, Lintao; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.

    2012-01-01

    Carbohydrate-binding modules (CBMs) are ubiquitous components of glycoside hydrolases, which degrade polysaccharides in nature. CBMs target specific polysaccharides, and CBM binding affinity to cellulose is known to be proportional to cellulase activity, such that increasing binding affinity is an important component of performance improvement. To ascertain the impact of protein and glycan engineering on CBM binding, we use molecular simulation to quantify cellulose binding of a natively glycosylated Family 1 CBM. To validate our approach, we first examine aromatic-carbohydrate interactions on binding, and our predictions are consistent with previous experiments, showing that a tyrosine to tryptophan mutation yields a 2-fold improvement in binding affinity. We then demonstrate that enhanced binding of 3–6-fold over a nonglycosylated CBM is achieved by the addition of a single, native mannose or a mannose dimer, respectively, which has not been considered previously. Furthermore, we show that the addition of a single, artificial glycan on the anterior of the CBM, with the native, posterior glycans also present, can have a dramatic impact on binding affinity in our model, increasing it up to 140-fold relative to the nonglycosylated CBM. These results suggest new directions in protein engineering, in that modifying glycosylation patterns via heterologous expression, manipulation of culture conditions, or introduction of artificial glycosylation sites, can alter CBM binding affinity to carbohydrates and may thus be a general strategy to enhance cellulase performance. Our results also suggest that CBM binding studies should consider the effects of glycosylation on binding and function. PMID:22147693

  2. Hydrogen, socio-environmental impact

    NASA Technical Reports Server (NTRS)

    Gilmore, J. S.; Matthews, W. E.; Duff, M. K.

    1975-01-01

    The concept and logic flow of a hydrogen technology assessment are described along with a specific procedure for such an assessment. The development of hydrogen technology is discussed. Factors considered in the development and use of hydrogen include: stimulus of societal needs and technological innovations; economic factors; and social and environmental effects.

  3. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα

    PubMed Central

    Li, Dong; Xiong, Qinghui; Peng, Jin; Hu, Bin; Li, Wanzhen; Zhu, Yizhun; Shen, Xiaoyan

    2016-01-01

    ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H2S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H2S regulates ABCA1 expression. The effect of H2S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE−/− mice with a high-cholesterol diet. NaHS (an exogenous H2S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H2S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE−/− mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H2S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H2S. H2S may be a promising potential drug candidate for the treatment of atherosclerosis. PMID:27136542

  4. Autoradiographic analysis of tritiated imipramine binding in the human brain post mortem: effects of suicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross-Isseroff, R.; Israeli, M.; Biegon, A.

    In vitro quantitative autoradiography of high-affinity tritiated imipramine binding sites was performed on brains of 12 suicide victims and 12 matched controls. Region-specific differences in imipramine binding were found between the two groups. Thus, the pyramidal and molecular layers of the cornu ammoni hippocampal fields and the hilus of the dentate gyrus exhibited 80%, 60%, and 90% increases in binding in the suicide group, respectively. The postcentral cortical gyrus, insular cortex, and claustrum had 45%, 28%, and 75% decreases in binding in the suicide group, respectively. No difference in imipramine binding was observed in prefrontal cortical regions, in the basalmore » ganglia, and in mesencephalic nuclei. No sex and postmortem delay effects on imipramine binding were found. Imipramine binding was positively correlated with age, the effect of age being most pronounced in portions of the basal ganglia and temporal cortex.« less

  5. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined formore » the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.« less

  6. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  7. The effect of hydrogenation on strain hardening and deformation mechanisms in <113> single crystals of Hadfield steel

    NASA Astrophysics Data System (ADS)

    Astafurova, Elena; Maier, Galina; Melnikov, Eugene; Koshovkina, Vera; Moskvina, Valentina; Smirnov, Alexander; Bataev, Vladimir

    2015-10-01

    The effect of hydrogenation on the strain-hardening behavior and the deformation mechanisms of <113>-oriented single crystals of Hadfield steel was investigated under tension at room temperature. The stages of plastic flow and deformation mechanisms for hydrogen-charged specimens are similar to one in hydrogen-free state: slip → slip + single twinning → slip + multiple twinning. Hydrogen alloying favors to mechanical twinning, micro- and macrolocalization of plastic flow.

  8. Effect of hydrogen-switchable mirrors on the Casimir force.

    PubMed

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-03-23

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials.

  9. Effect of hydrogen-switchable mirrors on the Casimir force

    PubMed Central

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-01-01

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  10. Lamb shift and the gravitational binding energy for binary black holes

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.

    2017-07-01

    We show that the correction to the gravitational binding energy for binary black holes due to the tail effect resembles the Lamb shift in the Hydrogen atom. In both cases a conservative effect arises from interactions with radiation modes, and moreover an explicit cancelation between near and far zone divergences is at work. In addition, regularization scheme-dependence may introduce "ambiguity parameters." This is remediated—within an effective field theory approach—by the implementation of the zero-bin subtraction. We illustrate the procedure explicitly for the Lamb shift, by performing an ambiguity-free derivation within the framework of nonrelativistic electrodynamics. We also derive the renormalization group equations from which we reproduce Bethe logarithm (at order αe5log αe), and likewise the contribution to the gravitational potential from the tail effect (proportional to v8log v ).

  11. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    PubMed

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  12. The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    Previously, the effect of hydrogen annealing on increasing the adhesion of Al2O3 scales had been related to the effective desulfurization that occurred during this process. The simultaneous reduction of other impurities has now been re-examined for up to 20 impurity elements in the case of five different alloys (NiCrAl, FeCrAl, PWA 1480, Rene'142, and Rene'N5). Hydrogen annealing produced measurable reductions in elemental concentration for B, C, Na, Mg, P, K, Sr, or Sn in varying degrees for at least one and up to three of these alloys. No single element was reduced by hydrogen annealing for all the alloys except sulfur. In many cases spalling occurred at low levels of these other impurities, while in other cases the scales were adherent at high levels of the impurities. No impurity besides sulfur was strongly correlated with adhesion.

  13. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  14. Effect of platinum nanoparticle deposition parameters on hydrogen peroxide transduction for applications in wearable electrochemical glucose biosensors

    NASA Astrophysics Data System (ADS)

    Cargill, Allison A.; Neil, Kathrine M.; Hondred, John A.; McLamore, Eric S.; Claussen, Jonathan C.

    2016-05-01

    Enhanced interest in wearable biosensor technology over the past decade is directly related to the increasing prevalence of diabetes and the associated requirement of daily blood glucose monitoring. In this work we investigate the platinum-carbon transduction element used in traditional first-generation glucose biosensors which rely on the concentration of hydrogen peroxide produced by the glucose-glucose oxidase binding scheme. We electrodeposit platinum nanoparticles on a commercially-available screen printed carbon electrode by stepping an applied current between 0 and 7.12 mA/cm2 for a varying number of cycles. Next, we examine the trends in deposition and the effect that the number of deposition cycles has on the sensitivity of electrochemical glucose sensing. Results from this work indicate that applying platinum nanoparticles to screen printed carbon via electrodeposition from a metal salt solution improves overall biosensor sensitivity. This work also pinpoints the amount of platinum (i.e., number of deposition cycles) that maximizes biosensor sensitivity in an effort to minimize the use of the precious metals, viz., platinum, in electrode fabrication. In summary, this work quantifies the relationship between platinum electrodeposition and sensor performance, which is crucial in designing and producing cost-effective sensors.

  15. Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study

    PubMed Central

    McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.

    2014-01-01

    Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190

  16. Neutron structure of human carbonic anhydrase II in complex with methazolamide: Mapping the solvent and hydrogen-bonding patterns of an effective clinical drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Mayank; Kovalevsky, Andrey Y.; Velazquez, Hector

    Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO 2 and HCO 3 –, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 Å with an R cryst of ~16.0%. Presented in this article, along with onlymore » the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity ( K i) for both of the drugs against hCA II is similar (~10 n M). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. Furthermore, this study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.« less

  17. Neutron structure of human carbonic anhydrase II in complex with methazolamide: Mapping the solvent and hydrogen-bonding patterns of an effective clinical drug

    DOE PAGES

    Aggarwal, Mayank; Kovalevsky, Andrey Y.; Velazquez, Hector; ...

    2016-07-22

    Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO 2 and HCO 3 –, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 Å with an R cryst of ~16.0%. Presented in this article, along with onlymore » the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity ( K i) for both of the drugs against hCA II is similar (~10 n M). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. Furthermore, this study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.« less

  18. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode

    PubMed Central

    Wagner, Tristan; Ermler, Ulrich; Shima, Seigo

    2016-01-01

    In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA–H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change. PMID:27324530

  19. Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing

    NASA Astrophysics Data System (ADS)

    Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren

    2017-03-01

    The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.

  20. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    PubMed

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (E b ) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the E b can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm -1 electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H 2 molecule when no strain or E-field is applied; however, the absorption increases to five H 2 molecules under 15% biaxial strain and six H 2 molecules under both 15% biaxial strain combined with a 5.14 V nm -1 E-field. The average adsorption energies for H 2 of BN-(Na-mH 2 ) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H 2 ) 4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H 2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  1. Sampling protein motion and solvent effect during ligand binding

    PubMed Central

    Limongelli, Vittorio; Marinelli, Luciana; Cosconati, Sandro; La Motta, Concettina; Sartini, Stefania; Mugnaini, Laura; Da Settimo, Federico; Novellino, Ettore; Parrinello, Michele

    2012-01-01

    An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one. PMID:22238423

  2. First-principles study of hydrogen adsorption in metal-doped COF-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Miaomiao; Sun Qiang; Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284

    2010-10-21

    Covalent organic frameworks (COFs), due to their low-density, high-porosity, and high-stability, have promising applications in gas storage. In this study we have explored the potential of COFs doped with Li and Ca metal atoms for storing hydrogen under ambient thermodynamic conditions. Using density functional theory we have performed detailed calculations of the sites Li and Ca atoms occupy in COF-10 and their interaction with hydrogen molecules. The binding energy of Li atom on COF-10 substrate is found to be about 1.0 eV and each Li atom can adsorb up to three H{sub 2} molecules. However, at high concentration, Li atomsmore » cluster and, consequently, their hydrogen storage capacity is reduced due to steric hindrance between H{sub 2} molecules. On the other hand, due to charge transfer from Li to the substrate, O sites provide additional enhancement for hydrogen adsorption. With increasing concentration of doped metal atoms, the COF-10 substrate provides an additional platform for storing hydrogen. Similar conclusions are reached for Ca doped COF-10.« less

  3. Pyrene-nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies.

    PubMed

    Jabłoński, Artur; Fritz, Yannic; Wagenknecht, Hans-Achim; Czerwieniec, Rafał; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof; Kowalski, Konrad

    2017-01-01

    Fluorescent pyrene-linker-nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene-C(O)CH 2 CH 2 -thymine ( 2 ) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T 10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base-base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T 10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA) 10 -T 10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells.

  4. Pyrene–nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies

    PubMed Central

    Jabłoński, Artur; Fritz, Yannic; Wagenknecht, Hans-Achim; Czerwieniec, Rafał; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof

    2017-01-01

    Fluorescent pyrene–linker–nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene–C(O)CH2CH2–thymine (2) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base–base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA)10–T10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells. PMID:29259662

  5. Hydrogen embrittlement in nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  6. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  7. Hydrogen behaviour at twist {110} grain boundaries in α-Fe.

    PubMed

    McEniry, Eunan J; Hickel, Tilmann; Neugebauer, Jörg

    2017-07-28

    The behaviour of hydrogen at structural defects such as grain boundaries plays a critical role in the phenomenon of hydrogen embrittlement. However, characterization of the energetics and diffusion of hydrogen in the vicinity of such extended defects using conventional ab initio techniques is challenging due to the relatively large system sizes required when dealing with realistic grain boundary geometries. In order to be able to access the required system sizes, as well as high-throughput testing of a large number of configurations, while remaining within a quantum-mechanical framework, an environmental tight-binding model for the iron-hydrogen system has been developed. The resulting model is applied to study the behaviour of hydrogen at a class of low-energy {110}-terminated twist grain boundaries in α -Fe. We find that, for particular Σ values within the coincidence site lattice description, the atomic geometry at the interface plane provides extremely favourable trap sites for H, which also possess high escape barriers for diffusion. By contrast, via simulated tensile testing, weakly trapped hydrogen at the interface plane of the bulk-like Σ3 boundary acts as a 'glue' for the boundary, increasing both the energetic barrier and the elongation to rupture.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  8. Progress on first-principles-based materials design for hydrogen storage.

    PubMed

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  9. Progress on first-principles-based materials design for hydrogen storage

    PubMed Central

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-01-01

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well. PMID:23161910

  10. Structural Effect of the Asp345a Insertion in Penicillin-Binding Protein 2 from Penicillin-Resistant Strains of Neisseria gonorrhoeae

    PubMed Central

    2015-01-01

    A hallmark of penicillin-binding protein 2 (PBP2) from penicillin-resistant strains of Neisseria gonorrhoeae is insertion of an aspartate after position 345. The insertion resides on a loop near the active site and is immediately adjacent to an existing aspartate (Asp346) that forms a functionally important hydrogen bond with Ser363 of the SxN conserved motif. Insertion of other amino acids, including Glu and Asn, can also lower the rate of acylation by penicillin, but these insertions abolish transpeptidase function. Although the kinetic consequences of the Asp insertion are well-established, how it impacts the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution crystal structure of a truncated construct of PBP2 containing all five mutations present in PBP2 from the penicillin-resistant strain 6140, including the Asp insertion. Commensurate with the strict specificity for the Asp insertion over similar amino acids, the insertion does not cause disordering of the structure, but rather induces localized flexibility in the β2c−β2d loop. The crystal structure resolves the ambiguity of whether the insertion is Asp345a or Asp346a (due to the adjacent Asp) because the hydrogen bond between Asp346 and Ser362 is preserved and the insertion is therefore Asp346a. The side chain of Asp346a projects directly toward the β-lactam-binding site near Asn364 of the SxN motif. The Asp insertion may lower the rate of acylation by sterically impeding binding of the antibiotic or by hindering breakage of the β-lactam ring during acylation because of the negative charge of its side chain. PMID:25403720

  11. Group Additivity in Ligand Binding Affinity: An Alternative Approach to Ligand Efficiency.

    PubMed

    Reynolds, Charles H; Reynolds, Ryan C

    2017-12-26

    Group additivity is a concept that has been successfully applied to a variety of thermochemical and kinetic properties. This includes drug discovery, where functional group additivity is often assumed in ligand binding. Ligand efficiency can be recast as a special case of group additivity where ΔG/HA is the group equivalent (HA is the number of non-hydrogen atoms in a ligand). Analysis of a large data set of protein-ligand binding affinities (K i ) for diverse targets shows that in general ligand binding is distinctly nonlinear. It is possible to create a group equivalent scheme for ligand binding, but only in the context of closely related proteins, at least with regard to size. This finding has broad implications for drug design from both experimental and computational points of view. It also offers a path forward for a more general scheme to assess the efficiency of ligand binding.

  12. Exploring the molecular basis of RNA recognition by the dimeric RNA-binding protein via molecular simulation methods.

    PubMed

    Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren

    2016-11-01

    RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain.

  13. Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule

    PubMed Central

    Sugahara, Kazuyuki; Thimmaiah, Kuntebommanahalli N.; Bid, Hemant K.; Houghton, Peter J.; Rangappa, Kanchugarakoppal S.

    2012-01-01

    The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor. PMID:22916091

  14. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  15. Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.; Misencik, J. A.

    1981-01-01

    The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated.

  16. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    PubMed

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  17. Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models.

    PubMed

    de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M

    2018-05-18

    Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often

  18. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  19. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  20. Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study.

    PubMed

    Sun, Hao; Lee, Hui Hui; Blakey, Idriss; Dargaville, Bronwin; Chirila, Traian V; Whittaker, Andrew K; Smith, Sean C

    2011-09-29

    In the present work, the electronic structures and properties of a series of 2-ureido-4[1H]-pyrimidinone(UPy)-based monomers and dimers in various environments (vacuum, chloroform, and water) are studied by density functional theoretical methods. Most dimers prefer to form a DDAA-AADD (D, H-bond donor; A, H-bond acceptor) array in both vacuum and solvents. Topological analysis proved that intramolecular and intermolecular hydrogen bonds coexist in the dimers. Frequency and NBO calculations show that all the hydrogen bonds exhibit an obvious red shift in their stretching vibrational frequencies. Larger substituents at position 6 of the pyrimidinone ring with stronger electron-donating ability favor the total binding energy and free energy of dimerization. Calculations on the solvent effect show that dimerization is discouraged by the stronger polarity of the solvent. Further computations show that Dimer-1 may be formed in chloroform, but water molecules may interact with the donor or acceptor sites and hence disrupt the hydrogen bonds of Dimer-1. © 2011 American Chemical Society

  1. Effective hydrogen generator testing for on-site small engine

    NASA Astrophysics Data System (ADS)

    Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.

    2009-07-01

    We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.

  2. Free-energy simulations reveal that both hydrophobic and polar interactions are important for influenza hemagglutinin antibody binding.

    PubMed

    Xia, Zhen; Huynh, Tien; Kang, Seung-gu; Zhou, Ruhong

    2012-03-21

    Antibodies binding to conserved epitopes can provide a broad range of neutralization to existing influenza subtypes and may also prevent the propagation of potential pandemic viruses by fighting against emerging strands. Here we propose a computational framework to study structural binding patterns and detailed molecular mechanisms of viral surface glycoprotein hemagglutinin (HA) binding with a broad spectrum of neutralizing monoclonal antibody fragments (Fab). We used rigorous free-energy perturbation (FEP) methods to calculate the antigen-antibody binding affinities, with an aggregate underlying molecular-dynamics simulation time of several microseconds (∼2 μs) using all-atom, explicit-solvent models. We achieved a high accuracy in the validation of our FEP protocol against a series of known binding affinities for this complex system, with <0.5 kcal/mol errors on average. We then introduced what to our knowledge are novel mutations into the interfacial region to further study the binding mechanism. We found that the stacking interaction between Trp-21 in HA2 and Phe-55 in the CDR-H2 of Fab is crucial to the antibody-antigen association. A single mutation of either W21A or F55A can cause a binding affinity decrease of ΔΔG > 4.0 kcal/mol (equivalent to an ∼1000-fold increase in the dissociation constant K(d)). Moreover, for group 1 HA subtypes (which include both the H1N1 swine flu and the H5N1 bird flu), the relative binding affinities change only slightly (< ±1 kcal/mol) when nonpolar residues at the αA helix of HA mutate to conservative amino acids of similar size, which explains the broad neutralization capability of antibodies such as F10 and CR6261. Finally, we found that the hydrogen-bonding network between His-38 (in HA1) and Ser-30/Gln-64 (in Fab) is important for preserving the strong binding of Fab against group 1 HAs, whereas the lack of such hydrogen bonds with Asn-38 in most group 2 HAs may be responsible for the escape of antibody

  3. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  4. Molecular mechanisms underlying the protective effects of hydrogen-saturated saline on noise-induced hearing loss.

    PubMed

    Chen, Liwei; Han, Mingkun; Lu, Yan; Chen, Daishi; Sun, Xuejun; Yang, Shiming; Sun, Wei; Yu, Ning; Zhai, Suoqiang

    2017-10-01

    This study aimed to explore the molecular mechanism of the protective effects of hydrogen-saturated saline on NIHL. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections 3 d before and 1 h before noise exposure. ABR were tested to examine cochlear physiology changes. The changes of 8-hydroxy-desoxyguanosine (8-HOdG), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and high mobility group box-1 protein (HMGB1) in the cochlea were also examined. The results showed that pre-treatment with hydrogen-saturated saline could significantly attenuate noise-induced hearing loss. The concentration of 8-HOdG was also significantly decreased in the hydrogen-saturated saline group compared with the normal saline group. After noise exposure, the concentrations of IL-1, IL-6, TNF-α, and ICAM-1 in the cochlea of guinea pigs in the hydrogen-saturated saline group were dramatically reduced compared to those in the normal saline group. The concentrations of HMGB-1 and IL-10 in the hydrogen-saturated saline group were significantly higher than in those in the normal saline group immediately and at 7 d after noise exposure. This study revealed for the first time the protective effects of hydrogen-saturated saline on noise-induced hearing loss (NIHL) are related to both the anti-oxidative activity and anti-inflammatory activity.

  5. Oxidation resistant organic hydrogen getters

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  6. Hydrodynamic and chemical effects of hydrogen dilution on soot evolution in turbulent nonpremixed bluff body ethylene flames

    NASA Astrophysics Data System (ADS)

    Deng, Sili; Mueller, Michael E.; Chan, Qing N.; Qamar, Nader H.; Dally, Bassam B.; Alwahabi, Zeyad T.; Nathan, Graham J.

    2015-11-01

    A turbulent nonpremixed bluff body ethylene/hydrogen (volume ratio 2:1) flame is studied and compared with the ethylene counterpart [Mueller et al., Combust. Flame, 160, 2013]. Similar to the ethylene buff body flame, a low-strain recirculation zone, a high-strain neck region, and a downstream jet-like region are observed. However, the maximum soot volume fraction in the recirculation zone of the hydrogen diluted case is significantly lower than the ethylene case. Large Eddy Simulation is used to further investigate soot evolution in the recirculation zone and to elucidate the role of hydrogen dilution. Since the central jet Reynolds numbers in both cases are the same (approximately 30,900), the jet velocity of the hydrogen diluted case is higher, resulting in a shorter and leaner recirculation zone. In addition, hydrogen dilution chemically suppresses soot formation due to the reduction of C/H ratio. Consequently, the reduction of the soot volume fraction for the hydrogen diluted ethylene flame is attributed to two major effects: hydrodynamic and chemical effects.

  7. Reversible geminate recombination of hydrogen-bonded water molecule pair

    NASA Astrophysics Data System (ADS)

    Markovitch, Omer; Agmon, Noam

    2008-08-01

    The (history independent) autocorrelation function for a hydrogen-bonded water molecule pair, calculated from classical molecular dynamics trajectories of liquid water, exhibits a t-3/2 asymptotic tail. Its whole time dependence agrees quantitatively with the solution for reversible diffusion-influenced geminate recombination derived by Agmon and Weiss [J. Chem. Phys. 91, 6937 (1989)]. Agreement with diffusion theory is independent of the precise definition of the bound state. Given the water self-diffusion constant, this theory enables us to determine the dissociation and bimolecular recombination rate parameters for a water dimer. (The theory is indispensable for obtaining the bimolecular rate coefficient.) Interestingly, the activation energies obtained from the temperature dependence of these rate coefficients are similar, rather than differing by the hydrogen-bond (HB) strength. This suggests that recombination requires displacing another water molecule, which meanwhile occupied the binding site. Because these activation energies are about twice the HB strength, cleavage of two HBs may be required to allow pair separation. The autocorrelation function without the HB angular restriction yields a recombination rate coefficient that is larger than that for rebinding to all four tetrahedral water sites (with angular restrictions), suggesting the additional participation of interstitial sites. Following dissociation, the probability of the pair to be unbound but within the reaction sphere rises more slowly than expected, possibly because binding to the interstitial sites delays pair separation. An extended diffusion model, which includes an additional binding site, can account for this behavior.

  8. The influence of Cu+ binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: A DFT study.

    PubMed

    Masoodi, Hamid Reza; Bagheri, Sotoodeh; Ghaderi, Zahra

    2018-05-14

    In the present work, the influence of Cu + binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu + binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu + binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu + on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses.

  9. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    NASA Astrophysics Data System (ADS)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  10. The effects of rare earth elements on an anaerobic hydrogen producing microorganism

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; St Jeor, J. D.; Reed, D. W.

    2016-12-01

    Rapid growth of new energy technologies and consumer electronics is leading to increased fluxes of rare earth elements (REE), during the phases of resource extraction, product usage, recycling, and disposal. However, little is known about the impacts of these increased REE fluxes on environmental ecosystems, whether natural or engineered (e.g., biological waste treatment systems). We have been evaluating the effects of europium and yttrium on hydrogen production by an anaerobic fermenting microorganism, Sporacetigenium mesophilum, originally isolated from an anaerobic digester at a wastewater treatment plant.1 Europium and yttrium are important components of phosphors used in fluorescent lighting, and are expected to be recycled in larger quantities in the future. Also tested was the compound tributyl phosphate (TBP), a widely used complexing agent in lanthanide and actinide separations. TBP and related compounds may be used in recycling processes for REE. S. mesophilumcultures were amended with Eu at 100 ppb, 1 ppm and 10 ppm and hydrogen production was measured. While the lowest Eu concentration had minimal effect on hydrogen production compared to the no Eu control, the two higher Eu amendment levels appeared to enhance hydrogen production. TBP at 0.1 g/L completely inhibited hydrogen production. Measurements of aqueous Eu concentrations indicated that >85% of the added Eu remained soluble at all three of the Eu addition levels tested. Experiments to ascertain whether enhancement (or inhibition) occurs at even higher Eu concentrations are underway, as are corresponding experiments with yttrium. This work contributes to the assessment of the potential impacts of increased REE recycling and processing on ecosystems, and supports decision making with respect to disposal of wastewaters generated during these industrial practices. 1Chen, S., Song, L. and X. Dong. Int J. Syst. Evol. Microbiol. 56, 721-725, doi: 10.1099/ijs.0.63686-0 (2006).

  11. Neuroprotective effects of hydrogen sulfide on sodium azide‑induced autophagic cell death in PC12 cells.

    PubMed

    Shan, Haiyan; Chu, Yang; Chang, Pan; Yang, Lijun; Wang, Yi; Zhu, Shaohua; Zhang, Mingyang; Tao, Luyang

    2017-11-01

    Sodium azide (NaN3) is a chemical of rapidly growing commercial importance. It is very acutely toxic and inhibits cytochrome oxidase (COX) by binding irreversibly to the heme cofactor. A previous study from our group demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator identified, had protective effects against neuronal damage induced by traumatic brain injury (TBI). It is well‑known that TBI can reduce the activity of COX and have detrimental effects on the central nervous system metabolism. Therefore, in the present study, it was hypothesized that H2S may provide neuroprotection against NaN3 toxicity. The current results revealed that NaN3 treatment induced non‑apoptotic cell death, namely autophagic cell death, in PC12 cells. Expression of the endogenous H2S‑producing enzymes, cystathionine‑β‑synthase and 3‑mercaptopyruvate sulfurtransferase, decreased in a dose‑dependent manner following NaN3 treatment. Pretreatment with H2S markedly attenuated the NaN3‑induced cell viability loss and autophagic cell death in a dose‑dependent manner. The present study suggests that H2S‑based strategies may have future potential in the prevention and/or therapy of neuronal damage following NaN3 exposure.

  12. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide rangemore » of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to

  13. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  14. Hydrogen diffusion in the elastic fields of dislocations in iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivak, A. B., E-mail: Sivak-AB@nrcki.ru; Sivak, P. A.; Romanov, V. A.

    2016-12-15

    The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 10{sup 14} m{sup –2} in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉(110), 〈111〉(112), 〈100〉(100), and 〈100〉(110) are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change ofmore » the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.« less

  15. Elucidation of the binding mechanism of renin using a wide array of computational techniques and biological assays.

    PubMed

    Tzoupis, Haralambos; Leonis, Georgios; Avramopoulos, Aggelos; Reis, Heribert; Czyżnikowska, Żaneta; Zerva, Sofia; Vergadou, Niki; Peristeras, Loukas D; Papavasileiou, Konstantinos D; Alexis, Michael N; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2015-11-01

    We investigate the binding mechanism in renin complexes, involving three drugs (remikiren, zankiren and enalkiren) and one lead compound, which was selected after screening the ZINC database. For this purpose, we used ab initio methods (the effective fragment potential, the variational perturbation theory, the energy decomposition analysis, the atoms-in-molecules), docking, molecular dynamics, and the MM-PBSA method. A biological assay for the lead compound has been performed to validate the theoretical findings. Importantly, binding free energy calculations for the three drug complexes are within 3 kcal/mol of the experimental values, thus further justifying our computational protocol, which has been validated through previous studies on 11 drug-protein systems. The main elements of the discovered mechanism are: (i) minor changes are induced to renin upon drug binding, (ii) the three drugs form an extensive network of hydrogen bonds with renin, whilst the lead compound presented diminished interactions, (iii) ligand binding in all complexes is driven by favorable van der Waals interactions and the nonpolar contribution to solvation, while the lead compound is associated with diminished van der Waals interactions compared to the drug-bound forms of renin, and (iv) the environment (H2O/Na(+)) has a small effect on the renin-remikiren interaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding

    NASA Astrophysics Data System (ADS)

    Chen, Tingting; Cao, Hui; Zhu, Shajun; Lu, Yapeng; Shang, Yanfang; Wang, Miao; Tang, Yanfeng; Zhu, Li

    2011-10-01

    The studies on the interaction between HSA and drugs have been an interesting research field in life science, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, the interaction of Salvianolic acid B (Sal B) with human serum albumin (HSA) was investigated by the steady-state, synchronous fluorescence and circular dichroism (CD) spectroscopies. The results showed that Sal B had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Binding parameters calculated showed that Sal B was bound to HSA with the binding affinities of 10 5 L mol -1. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes, and hydrophobic interactions were the predominant intermolecular forces to stabilize the complex. The specific binding distance r (2.93 nm) between donor (HSA) and acceptor (Sal B) was obtained according to Förster non-radiative resonance energy transfer theory. The synchronous fluorescence experiment revealed that Sal B cannot lead to the microenvironmental changes around the Tyr and Trp residues of HSA, and the binding site of Sal B on HSA is located in hydrophobic cavity of subdomain IIA. The CD spectroscopy indicated the secondary structure of HSA is not changed in the presence of Sal B. Furthermore, The effect of metal ions (e.g. Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 3+) on the binding constant of Sal B-HSA complex was also discussed.

  17. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  18. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  19. Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Trong, Isolde; University of Washington, Box 357742, Seattle, WA 98195-7742; Chu, Vano

    2013-06-01

    The crystal structures of two circularly permuted streptavidins probe the role of a flexible loop in the tight binding of biotin. Molecular-dynamics calculations for one of the mutants suggests that increased fluctuations in a hydrogen bond between the protein and biotin are associated with cleavage of the binding loop. Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing themore » biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide–biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the β-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin–biotin complex.« less

  20. Impact of strain on electronic and transport properties of 6 nm hydrogenated germanane nano-ribbon channel double gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Meher Abhinav, E.; Sundararaj, Anuraj; Gopalakrishnan, Chandrasekaran; Kasmir Raja, S. V.; Chokhra, Saurabh

    2017-11-01

    In this work, chair like fully hydrogenated germanane (CGeH) nano-ribbon 6 nm short channel double gate field effect transistor (DG-FET) has been modeled and the impact of strain on the I-V characteristics of CGeH channel has been examined. The bond lengths, binding and formation energies of various hydrogenated geometries of buckled germanane channel were calculated using local density approximation (LDA) with Perdew-Zunger (PZ) and generalized gradient approximation (GGA) with Perdew Burke Ernzerhof (PBE) parameterization. From four various geometries, chair like structure is found to be more stable compared to boat like obtuse, stiruup structure and table like structure. The bandgap versus width, bandgap versus strain characteristics and I-V characteristics had been analyzed at room temperature using density functional theory (DFT). Using self consistent calculation it was observed that the electronic properties of nano-ribbon is independent of length and band structure, but dependent on edge type, strain [Uni-axial (ɛ xx ), bi-axial (ɛ xx   =  ɛ yy )] and width of the ribbon. The strain engineered hydrogenated germanane (GeH) showed wide direct bandgap (2.3 eV) which could help to build low noise electronic devices that operates at high frequencies. The observed bi-axial compression has high impact on the device transport characteristics with peak to valley ratio (PVR) of 2.14 and 380% increase in peak current compared to pristine CGeH device. The observed strain in CGeH DG-FET could facilitate in designing novel multiple-logic memory devices due to multiple negative differential resistance (NDR) regions.

  1. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  2. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE PAGES

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  3. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations

    PubMed Central

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-kang

    2013-01-01

    Aim: To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Methods: Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Results: Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π–π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. Conclusion: The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met. PMID:24056705

  4. Hydrogen bonding in the mechanism of GDP-mannose mannosyl hydrolase

    NASA Astrophysics Data System (ADS)

    Mildvan, A. S.; Xia, Z.; Azurmendi, H. F.; Legler, P. M.; Balfour, M. R.; Lairson, L. L.; Withers, S. G.; Gabelli, S. B.; Bianchet, M. A.; Amzel, L. M.

    2006-06-01

    GDP-mannose mannosyl hydrolase (GDPMH) from E. coli catalyzes the hydrolysis of GDP-α- D-sugars to GDP and β- D-sugars by nucleophilic substitution with inversion at the anomeric C1 of the sugar, with general base catalysis by His-124. The 1.3 Å X-ray structure of the GDPMH-Mg 2+-GDP complex was used to model the complete substrate, GDP-mannose into the active site. The substrate is linked to the enzyme by 12 hydrogen bonds, as well as by the essential Mg 2+. In addition, His-124 was found to participate in a hydrogen bonded triad: His-124-NδH⋯Tyr-127-OH⋯Pro-120(C dbnd6 O). The contributions of these hydrogen bonds to substrate binding and to catalysis were investigated by site-directed mutagenesis. The hydrogen bonded triad detected in the X-ray structure was found to contribute little to catalysis since the Y127F mutation of the central residue shows only 2-fold decreases in both kcat and Km. The GDP leaving group is activated by the essential Mg 2+ which contributes at least 10 5-fold to kcat, and by nine hydrogen bonds, including those from Tyr-103, Arg-37, Arg-52, and Arg-65 (via an intervening water), each of which contribute factors to kcat ranging from 24- to 309-fold. Both Arg-37 and Tyr-103 bind the β-phosphate of the leaving GDP and are only 5.0 Å apart. Accordingly, the R37Q/Y103F double mutant shows partially additive effects of the two single mutants on kcat, indicating cooperativity of Arg-37 and Tyr-103 in promoting catalysis. The extensive activation of the GDP leaving group suggests a mechanism with dissociative character with a cationic oxocarbenium-like transition state and a half-chair conformation of the sugar ring, as found with glycosidase enzymes. Accordingly, Asp-22 which contributes 10 2.1- to 10 2.6-fold to kcat, is positioned to both stabilize a developing cationic center at C1 and to accept a hydrogen bond from the C2-OH of the mannosyl group, and His-88, which contributes 10 2.3-fold to kcat, is positioned to accept

  5. Composition and method for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  6. Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen

    PubMed Central

    Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur

    2008-01-01

    The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899

  7. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO. Copyright © 2011. Published by Elsevier B.V.

  8. Hydrogen-related defects in hydrogenated amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Jin, Shu; Ley, Lothar

    1991-07-01

    One of the key steps in the formation of glow-discharge-deposited (GD) a-Si:H or a-Ge:H films by plasma deposition from the gas phase is the elimination of excess hydrogen from the growth surface which is necessary for the cross linking of the Si or Ge network and the reduction of the defect density associated with the hydrogen-rich surface layer. The high defect density (~1018 cm-3) in a growing surface layer can, depending on preparation conditions, be either reduced (to ~1016 cm-3) or be trapped in the bulk upon subsequent growth, as evidenced by a great deal of data. However, little is known about its origin and implication. We have investigated the change in electronic structure related with this process using UHV-evaporated a-Ge as a model system, subjected to thermal hydrogenation, plasma hydrogenation, and various annealing cycles. The density of occupied states in the pseudogap of the a-Ge(:H) surface (probing depth ~50 Å) was determined with total-yield photoelectron spectroscopy. In this way, effects of thermal annealing, hydrogenation, and ion bombarding on the near-surface defect density could be studied. We identify in room-temperature (RT) hydrogenated a-Ge:H another defect at about Ev+0.45 eV in addition to the dangling-bond defect. This defect exists at the initial stage of hydrogen incorporation, decreases upon ~250 °C annealing, and is restored upon RT rehydrogenation. Therefore we suspect that this defect is hydrogen induced and concomitant with the formation of unexpected bondings [both multiply bonded XHx (X=Si or Ge and x=2 and 3) and polyhydride (XH2)n configurations] favored at RT hydrogenation. As a possible candidate we suggest the Ge-H-Ge three-center bond in which one electron is placed in a nonbonding orbital that gives rise to the paramagnetic state in the gap of a-Ge:H observed here. This defect also accounts for the large defect density at the growing surface in the optimized plasma chemical-vapor-deposition process, where the

  9. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  10. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    NASA Astrophysics Data System (ADS)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  11. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.

    PubMed

    Halder, Swagata; Mukhopadhyay, Chaitali

    2017-12-01

    Antifreeze proteins (AFPs), found in certain vertebrates, plants, fungi and bacteria have the ability to permit their survival in subzero environments by thermal hysteresis mechanism. However, the exact mechanism of ice growth inhibition is still not clearly understood. Here, four long explicit molecular dynamics (MD) simulations have been carried out at two different temperatures (277 and 298 K) with and without glycan to study the conformational rigidity of the Ocean pout type III antifreeze protein in aqueous medium and the structural arrangements of water molecules hydrating its ice-binding surface. It is found that irrespective of the temperature the ice-binding surface (IBS) of the protein is relatively more rigid than its non ice-binding surface (NonIBS) in its native and glycosylated form. Hydrophilic residues N14, T18 and Q44 are essential to antifreeze activity. Radial distribution, density distribution function and nearest neighbor orientation plots with respect to individual two surfaces confirm that density of water molecule near these binding surface in native and glycosylated form are relatively more than the nonbinding surface. The glycosylated form shows a strong peak than the native one. From rotational auto correlation function of water molecules around ice-binding sites, it is prominent that with increase in temperature, strong interaction between the water oxygen and the hydrogen bond acceptor group on the protein-binding surface decreases. This provides a possible molecular reason behind the ice-binding activity of ocean pout at the prism plane of ice.

  12. Effect of water on hydrogen permeability. [Stirling engines

    NASA Technical Reports Server (NTRS)

    Hulligan, D. D.; Tomazic, W. A.

    1984-01-01

    Doping of hydrogen with CO or CO2 was developed to reduce hydrogen permeation in Stirling engines by forming low permeability oxide coatings in the heater tubes. An end product of this process is water - which can condense in the cold parts of the engine system. If the water vapor is reduced to a low enough level, the hydrogen can reduce the oxide coating resulting in increased permeability. The equilibrium level of water (oxygen bearing gas) required to avoid reduction of the oxide coating was investigated. Results at 720 C and 13.8 MPa have shown that: (1) pure hydrogen will reduce the coating; (2) 500 ppm CO (500 ppm water equivalent) does not prevent the reduction; and (3) 500 ppm CO2 (1000 ppm water) appears to be close to the equilibrium level. Further tests are planned to define the equilibrium level more precisely and to extend the data to 820 C and 3.4, 6.9, and 13.8 MPa.

  13. Polarization IR spectra of hydrogen bonded pyrazole crystals: self-organization effects in proton and deuteron mixture systems. Long-range H/D isotopic effects

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Machelska, Aleksandra

    2002-02-01

    This paper deals with experimental studies of the polarization IR spectra of solid-state pyrazole H1345, as well as of its H1D345, D1H345 and D1345 deuterium derivatives. Spectra were measured for the νNH and νND band frequency ranges at temperatures of 298 and 77 K. The spectra were found to strongly change their intensity distribution and their polarization properties with the decrease of temperature. These effects were ascribed to some temperature-induced conformational changes in the hydrogen bond lattices. The studies reported allowed the finding of new kind of isotopic effects H/D in the open-chain hydrogen bond systems, i.e. the self-organization effects. It was found that the spectrally active aggregates of hydrogen bonds remain unchanged despite the growing isotope H/D exchange rate. This statement was supported by analysis of the residual polarized νNH and νND band properties, measured for the isotopically diluted crystalline samples. Analysis of the band shapes of the four hydrogen isotope derivative crystals proved the existence of another kind of H/D isotopic effect, i.e. the long-range isotopic effect. It depends on an influence of the pyrazole ring hydrogen atoms onto the νNH and νND band widths and onto the band fine structures.

  14. Lamb Shift Measurement in Hydrogen by the Anisotropy Method

    NASA Astrophysics Data System (ADS)

    Drake, G. W. F.; van Wijngaarden, A.; Holuj, F.

    1998-05-01

    The Lamb shift in hydrogen and hydrogenic ions continues to provide one of the most important tests of quantum electrodynamics. A previous measurement in He^+ by the anisotropy method( A. van Wijngaarden, J. Kwela and G. W. F. Drake, Phys. Rev. A 43), 3325 (1991). yields a value that is 70(12) parts per million higher than theory when two-loop binding corrections are included (K. Pachucki et al.), J. Phys. B 29, 117 (1996).. A new high-precision measurement of the Lamb shift in hydrogen by the same method will be reported( Can. J. Phys. 76), February (1998).. The result of 1057.852(15) MHz is consistent with theory and other measurements, thereby confirming that the anisotropy method and its interpretation are valid at the 15 parts per million level of accuracy. The remaining discrepancy for He^+ could be explained by an additional contribution to theory that scales as Z^6.

  15. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    PubMed

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Dynamic Kinetic Resolution of Allylic Sulfoxides by Rh-Catalyzed Hydrogenation: A Combined Theoretical and Experimental Mechanistic Study

    PubMed Central

    Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.

    2014-01-01

    A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903

  17. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  18. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein

  19. Effects of Plasma Hydrogenation on Trapping Properties of Dislocations in Heteroepitaxial InP/GaAs

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Chatterjee, B.

    1994-01-01

    In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approx. 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual deep levels after hydrogen passivation. It is further shown that the "apparent" activation energies of dislocation related deep levels, before and after passivation, reduce by approx. 70 meV as DLTS fill pulse times are increased from 1 usec. to 1 msec. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.

  20. Hydrogen environment embrittlement of metals

    NASA Technical Reports Server (NTRS)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P.

    1973-01-01

    Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base allows are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking that occurs appears to be a surface phenomenon, is unlike that of internal hydrogen embrittlement.

  1. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase

    DOE PAGES

    Fox, Jerome M.; Kang, Kyungtae; Sastry, Madhavi; ...

    2017-03-02

    In this study we use mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein–ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetrymore » in protein–ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.« less

  2. Understanding peptide competitive inhibition of botulinum neurotoxin A binding to SV2 protein via molecular dynamics simulations.

    PubMed

    Chang, Shan; He, Hong-Qiu; Shen, Lin; Wan, Hua

    2015-10-01

    Botulinum neurotoxins (BoNTs) are known as the most toxic natural substances. Synaptic vesicle protein 2 (SV2) has been proposed to be a protein receptor for BoNT/A. Recently, two short peptides (BoNT/A-A2 and SV2C-A3) were designed to inhibit complex formation between the BoNT/A receptor-binding domain (BoNT/A-RBD) and the synaptic vesicle protein 2C luminal domain (SV2C-LD). In this article, the two peptide complex systems are studied by molecular dynamics (MD) simulations. The structural stability analysis indicates that BoNT/A-A2 system is more stable than SV2C-A3 system. The conformational analysis implies that the β-sheet in BoNT/A-A2 system maintains its secondary structure but the two β-strands in SV2C-A3 system have remarkable conformational changes. Based on the calculation of hydrogen bonds, hydrophobic interactions and cation-π interactions, it is found that the internal hydrogen bonds play crucial roles in the structural stability of the peptides. Because of the stable secondary structure, the β-sheet in BoNT/A-A2 system establishes effective interactions at the interface and inhibits BoNT/A-RBD binding to SV2C-LD. In contrast, without other β-strands forming internal hydrogen bonds, the two isolated β-strands in SV2C-A3 system become the random coil. This conformational change breaks important hydrogen bonds and weakens cation-π interaction in the interface, so the complex formation is only partially inhibited by the two β-strands. These results are consistent with experimental studies and may be helpful in understanding the inhibition mechanisms of peptide inhibitors. © 2015 Wiley Periodicals, Inc.

  3. Exploring the molecular basis of RNA recognition by the dimeric RNA-binding protein via molecular simulation methods

    PubMed Central

    Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren

    2016-01-01

    ABSTRACT RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain. PMID:27592836

  4. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    PubMed

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  5. Shock-Compressed Hydrogen

    NASA Astrophysics Data System (ADS)

    Bickham, S. R.; Collins, L. A.; Kress, J. D.; Lenosky, T. J.

    1999-06-01

    To investigate recent gas-gun and laser experiments on hydrogen at elevated temperatures and high densities, we have performed quantum molecular dynamics simulations using a variety of sophisticated models, ranging from tight-binding(TB) to density functional(DF)(T.J. Lenosky, J.D. Kress, L.A. Collins, and I. Kwon Phys. Rev. B 55), R11907(1997) and references therein.. The TB models have been especially tailored to reproduce experimental findings, such as Diamond-Anvil Cell data, and ab initio calculations, such as H_2, H_3, and H4 potential energy surfaces. The DF calculations have employed the local-density approximation(LDA) as well as generalized gradient corrections(GGA) with large numbers of plane-waves ( ~10^5) that represent a very broad range of excited and continuum electronic states. Good agreement obtains among all these models. The simulations exhibit a rapidly rising electrical conductivity at low temperatures and high pressures in good agreement with the gas-gun results. This conduction property stems from a mobility of the electrons provided principally by the dissociated monomers. The Hugoniot for the conditions of the laser experiment, generated from the TB Equation-of-State, shows a maximum compression of around four instead of the observed six. We also report optical properties of the hydrogen media.

  6. Virtual Excitation and Multiple Scattering Correction Terms to the Neutron Index of Refraction for Hydrogen.

    PubMed

    Schoen, K; Snow, W M; Kaiser, H; Werner, S A

    2005-01-01

    The neutron index of refraction is generally derived theoretically in the Fermi approximation. However, the Fermi approximation neglects the effects of the binding of the nuclei of a material as well as multiple scattering. Calculations by Nowak introduced correction terms to the neutron index of refraction that are quadratic in the scattering length and of order 10(-3) fm for hydrogen and deuterium. These correction terms produce a small shift in the final value for the coherent scattering length of H2 in a recent neutron interferometry experiment.

  7. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  8. Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces

    DOE PAGES

    Kaghazchi, Payam; Jacob, Timo; Chen, Wenhua; ...

    2013-06-03

    Here, we report adsorption and desorption of hydrogen on planar Ir(210) and faceted Ir(210), consisting of nanoscale {311} and (110) facets, by means of temperature programmed desorption (TPD) and density functional theory (DFT) in combination with the ab initio atomistic thermodynamics approach. TPD spectra show that only one H 2 peak is seen from planar Ir(210) at all coverages whereas a single H 2 peak is observed at around 440 K (F1) at fractional monolayer (ML) coverage and an additional H 2 peak appears at around 360 K (F2) at 1 ML coverage on faceted Ir(210), implying structure sensitivity inmore » recombination and desorption of hydrogen on faceted Ir(210) versus planar Ir(210), but no evidence is found for size effects in recombination and desorption of hydrogen on faceted Ir(210) for average facet sizes of 5-14 nm. Calculations indicate that H prefers to bind at the two-fold short-bridge sites of the Ir surfaces. In addition, we studied the stability of the Ir surfaces in the presence of hydrogen at different H coverages through surface free energy plots as a function of the chemical potential, which is also converted to a temperature scale. Moreover, the calculations revealed the origin of the two TPD peaks of H 2 from faceted Ir(210): F1 from desorption of H 2 on {311} facets while F2 from desorption of H 2 on (110) facets.« less

  9. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    PubMed

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  10. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.

    PubMed

    Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan

    2017-08-30

    Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.

  11. Nickel hydrogen capacity loss

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques; Paugam, D.; Borthomieu, Y.

    1993-01-01

    The results of tests to assess capacity loss in nickel hydrogen cells are presented in outline form. The effects of long storage (greater than 1 month), high hydrogen pressure storage, high cobalt content, and recovery actions are addressed.

  12. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  13. Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells.

    PubMed

    Guan, Zhong; Li, Huai-Fang; Guo, Li-Li; Yang, Xiang

    2015-08-01

    This study aimed to investigate the effects of three different antioxidants, namely vitamin C, vitamin E, and molecular hydrogen, on cytotrophoblasts in vitro. Two trophoblast cell lines, JAR and JEG-3, were exposed to different concentrations of vitamin C (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), vitamin E (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), and molecular hydrogen (0, 25, 50, 100, 500 μmol/L) for 48 h. The cell viability was detected using the MTS assay. The secretion of human chorionic gonadotropin (hCG) and the tumor necrosis factor-α (TNF-α) were assessed and the expression of TNF-α mRNA was observed by real-time RT-PCR. Cell viability was significantly suppressed by 500 μmol/L vitamins C and E (P < 0.05), but not by 500 μmol/L molecular hydrogen (P > 0.05). The expression of TNF-α was increased by 100 μmol/L vitamin C and 50 μmol/L vitamins E, separately or combined (P < 0.05), but not by molecular hydrogen (0-500 μmol/L), as validated by real-time RT-PCR. But the secretion of hCG was both inhibited by 50-500 μmol/L molecular hydrogen and high levels of vitamin C and E, separately or combined. High levels of antioxidant vitamins C and E may have significant detrimental effects on placental function, as reflected by decreased cell viability and secretion of hCG; and placental immunity, as reflected by increased production of TNF-a. Meanwhile hydrogen showed no such effects on cell proliferation and TNF-α expression, but it could affect the level of hCG, indicating hydrogen as a potential candidate of antioxidant in the management of preeclampsia (PE) should be further studied.

  14. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes.

    PubMed

    Woll, Kellie A; Murlidaran, Sruthi; Pinch, Benika J; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P; Brannigan, Grace; Garcia, Benjamin A; Eckenhoff, Roderic G

    2016-09-23

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes*

    PubMed Central

    Woll, Kellie A.; Murlidaran, Sruthi; Pinch, Benika J.; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P.; Brannigan, Grace; Garcia, Benjamin A.; Eckenhoff, Roderic G.

    2016-01-01

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. PMID:27462076

  16. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattiroli, Francesca; Gu, Yajie; Balsbaugh, Jeremy L.

    Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a compositemore » interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.« less

  17. Probing the Allosteric Modulator Binding Site of GluR2 with Thiazide Derivatives

    PubMed Central

    Ptak, Christopher P.; Ahmed, Ahmed H.; Oswald, Robert E.

    2009-01-01

    Ionotropic glutamate receptors mediate the majority of vertebrate excitatory synaptic transmission and are therapeutic targets for cognitive enhancement and treatment of schizophrenia. The binding domains of these tetrameric receptors consist of two dimers, and the dissociation of the dimer interface of the ligand-binding domain leads to desensitization in the continued presence of agonist. Positive allosteric modulators act by strengthening the dimer interface and reducing desensitization, thereby increasing steady-state activation. Removing the desensitized state for simplified analysis of receptor activation is commonly achieved using cyclothiazide (CTZ), the most potent modulator of the benzothiadiazide class, with the flip form of the AMPA receptor subtype. IDRA-21, the first benzothiadiazide to have an effect in behavioral tests, is an important lead compound in clinical trials for cognitive enhancement as it can cross the blood-brain barrier. Intermediate structures between CTZ and IDRA-21 show reduced potency suggesting that these two compounds have different contact points associated with binding. To understand how benzothiadiazides bind to the pocket bridging the dimer interface, we generated a series of crystal structures of the GluR2 ligand-binding domain complexed with benzothiadiazide derivatives (IDRA-21, hydroflumethiazide, hydrochlorothiazide, chlorothiazide, trichlormethiazide, and althiazide) for comparison with an existing structure for cyclothiazide. The structures detail how changes in the substituents in the 3- and 7-positions of the hydrobenzothiadiazide ring shift the orientation of the drug in the binding site and, in some cases, change the stoichiometry of binding. All derivatives maintain a hydrogen bond with the Ser754 hydroxyl, affirming the partial selectivity of the benzothiadiazides for the flip form of AMPA receptors. PMID:19673491

  18. Supramolecular binding and release of sulfide and hydrosulfide anions in water.

    PubMed

    Vázquez, J; Sindelar, V

    2018-06-05

    Hydrogen sulfide (H2S) has become an important target for research due to its physiological properties as well as its potential applications in medicine. In this work, supramolecular binding of sulfide (S2-) and hydrosulfide (HS-) anions in water is presented for the first time. Bambusurils were used to slow down the release of these anions in water.

  19. A Lysine at the C-Terminus of an Odorant-Binding Protein is Involved in Binding Aldehyde Pheromone Components in Two Helicoverpa Species

    PubMed Central

    Sun, Ya-Lan; Huang, Ling-Qiao; Pelosi, Paolo; Wang, Chen-Zhu

    2013-01-01

    Odorant-binding proteins (OBPs) are soluble proteins, whose role in olfaction of insects is being recognized as more and more important. We have cloned, expressed and purified an OBP (HarmOBP7) from the antennae of the moth Helicoverpa armigera. Western blot experiments indicate specific expression of this protein in the antennae of adults. HarmOBP7 binds both pheromone components Z-11-hexadecenal and Z-9-hexadecenal with good affinity. We have also performed a series of binding experiments with linear aldehydes, alcohols and esters, as well as with other compounds and found a requirement of medium size for best affinity. The affinity of OBP7, as well as that of a mutant lacking the last 6 residues does not substantially decrease in acidic conditions, but increases at basic pH values with no significant differences between wild-type and mutant. Binding to both pheromone components, instead, is negatively affected by the lack of the C-terminus. A second mutant, where one of the three lysine residues in the C-terminus (Lys123) was replaced by methionine showed reduced affinity to both pheromone components, as well as to their analogues, thus indicating that Lys123 is involved in binding these compounds, likely forming hydrogen bonds with the functional groups of the ligands. PMID:23372826

  20. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  1. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE PAGES

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...

    2018-04-11

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  2. Label-free sensing of the binding state of MUC1 peptide and anti-MUC1 aptamer solution in fluidic chip by terahertz spectroscopy.

    PubMed

    Zhao, Xiang; Zhang, Mingkun; Wei, Dongshan; Wang, Yunxia; Yan, Shihan; Liu, Mengwan; Yang, Xiang; Yang, Ke; Cui, Hong-Liang; Fu, Weiling

    2017-10-01

    The aptamer and target molecule binding reaction has been widely applied for construction of aptasensors, most of which are labeled methods. In contrast, terahertz technology proves to be a label-free sensing tool for biomedical applications. We utilize terahertz absorption spectroscopy and molecular dynamics simulation to investigate the variation of binding-induced collective vibration of hydrogen bond network in a mixed solution of MUC1 peptide and anti-MUC1 aptamer. The results show that binding-induced alterations of hydrogen bond numbers could be sensitively reflected by the variation of terahertz absorption coefficients of the mixed solution in a customized fluidic chip. The minimal detectable concentration is determined as 1 pmol/μL, which is approximately equal to the optimal immobilized concentration of aptasensors.

  3. Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor.

    PubMed

    Lu, Chaoyang; Zhang, Zhiping; Zhou, Xuehua; Hu, Jianjun; Ge, Xumeng; Xia, Chenxi; Zhao, Jia; Wang, Yi; Jing, Yanyan; Li, Yameng; Zhang, Quanguo

    2018-01-01

    Effect of substrate concentration on photo-fermentative hydrogen production was studied with a self-designed 4m 3 pilot-scale baffled photo-fermentative hydrogen production reactor (BPHR). The relationships between parameters, such as hydrogen production rate (HPR, mol H 2 /m 3 /d), hydrogen concentration, pH value, oxidation-reduction potential, biomass concentration (volatile suspended solids, VSS) and reducing sugar concentration, during the photo-fermentative hydrogen production process were investigated. The highest HPR of 202.64±8.83mol/m 3 /d was achieved in chamber #3 at a substrate concentration of 20g/L. Hydrogen contents were in the range of 42.19±0.94%-49.71±0.27%. HPR increased when organic loading rate was increased from 3.3 to 20g/L/d, then decreased when organic loading rate was further increased to 25g/L/d. A maximum HPR of 148.65±4.19mol/m 3 /d was obtained when organic loading rate was maintained at 20g/L/d during continuous bio-hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Binding of methacycline to human serum albumin at subdomain IIA using multispectroscopic and molecular modeling methods.

    PubMed

    Dong, Chengyu; Lu, Ningning; Liu, Ying

    2013-01-01

    This study was designed to examine the interaction of methacyline (METC) with human serum albumin (HSA) by multispectroscopy and a molecular modeling method under simulative physiological conditions. The quenching mechanism was suggested to be static quenching based on fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. According to the Vant' Hoff equation, the values of enthalpy (∆H) and entropy change (∆S) were calculated to be -95.29 kJ/mol and -218.13 J/mol/K, indicating that the main driving force of the interaction between HSA and METC were hydrogen bonds and van der Waals's forces. By performing displacement measurements, the specific binding of METC in the vicinity of Sudlow's site I of HSA was clarified. An apparent distance of 3.05 nm between Trp214 and METC was obtained via the fluorescence resonance energy transfer (FRET) method. Furthermore, the binding details between METC and HSA were further confirmed by molecular docking studies, which revealed that METC was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, polar forces, hydrogen bonding, etc. The results of three-dimensional fluorescence and Fourier transform infrared (FTIR) spectroscopy showed that METC caused conformational and some microenvironmental changes in HSA and reduced the α-helix significantly in the range of 52.3-40.4% in HSA secondary structure. Moreover, the coexistence of metal ions such as Ca(2+), Al(3+), Fe(3+), Zn(2+), Cu(2+), Cr(3+) and Cd(2+) can decrease the binding constants of METC-HSA. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Influence of halide binding on the hydrogen bonding network in the active site of Salinibacter sensory rhodopsin I.

    PubMed

    Reissig, Louisa; Iwata, Tatsuya; Kikukawa, Takashi; Demura, Makoto; Kamo, Naoki; Kandori, Hideki; Sudo, Yuki

    2012-11-06

    In nature, organisms are subjected to a variety of environmental stimuli to which they respond and adapt. They can show avoidance or attractive behaviors away from or toward such stimuli in order to survive in the various environments in which they live. One such stimuli is light, to which, for example, the receptor sensory rhodopsin I (SRI) has been found to respond by regulating both negative and positive phototaxis in, e.g., the archaeon Halobacterium salinarum. Interestingly, to date, all organisms having SRI-like proteins live in highly halophilic environments, suggesting that salt significantly influences the properties of SRIs. Taking advantage of the discovery of the highly stable SRI homologue from Salinibacter ruber (SrSRI), which maintains its color even in the absence of salt, the importance of the chloride ion for the color tuning and for the slow M-decay, which is thought to be essential for the phototaxis function of SRIs, has been reported previously [Suzuki, D., et al. (2009) J. Mol. Biol.392, 48-62]. Here the effects of the anion binding on the structure and structural changes of SRI during its photocycle are investigated by means of Fourier transform infrared (FTIR) spectroscopy and electrochemical experiments. Our results reveal that, among other things, the structural change and proton movement of a characteristic amino acid residue, Asp102 in SrSRI, is suppressed by the binding of an anion in its vicinity, both in the K- and M-intermediate. The presence of this anion also effects the extent of chromophore distrotion, and tentative results indicate an influence on the number and/or properties of internal water molecules. In addition, a photoinduced proton transfer could only be observed in the absence of the bound anion. Possible proton movement pathways, including the residues Asp102 and the putative Cl binding site His131, are discussed. In conclusion, the results show that the anion binding to SRI is not only important for the color tuning

  6. Effect of silane/hydrogen ratio on microcrystalline silicon thin films by remote inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Guo, Y. N.; Wei, D. Y.; Xiao, S. Q.; Huang, S. Y.; Zhou, H. P.; Xu, S.

    2013-05-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by remote low frequency inductively coupled plasma (ICP) chemical vapor deposition system, and the effect of silane/hydrogen ratio on the microstructure and electrical properties of μc-Si:H films was systematically investigated. As silane/hydrogen ratio increases, the crystalline volume fraction Fc decreases and the ratio of the intensity of (220) peak to that of (111) peak drops as silane flow rate is increased. The FTIR result indicates that the μc-Si:H films prepared by remote ICP have a high optical response with a low hydrogen content, which is in favor of reducing light-induced degradation effect. Furthermore, the processing window of the phase transition region for remote ICP is much wider than that for typical ICP. The photosensitivity of μc-Si:H films can exceed 100 at the transition region and this ensures the possibility of the fabrication of microcrystalline silicon thin film solar cells with a open-circuit voltage of about 700 mV.

  7. The effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symons, D.M.

    1998-04-01

    Alloy 690 is susceptible to hydrogen embrittlement where hydrogen reduces the ductility and causes the fracture morphology to change to predominantly intergranular. The role of carbide precipitation in the embrittlement behavior is not well defined. The objective of this work is to understand the effect of intergranular carbide precipitation on the hydrogen embrittlement of alloy 690. The work reported herein used tensile and compact-tension specimens in both the solution-annealed condition (minimal grain-boundary carbide precipitation) and in the solution-annealed condition followed by an aging treatment to precipitate grain-boundary carbides. By performing the mechanical tests on materials in both uncharged and hydrogen-chargedmore » conditions, it was possible to evaluate the degree of embrittlement as a function of the carbide precipitation. It is shown that the embrittlement due to hydrogen increased as the material was aged to allow grain-boundary carbide precipitation. It is proposed that the increase in embrittlement was caused by increased hydrogen at the carbide/matrix interface due to the trapping and increased stresses at the precipitate interface, which developed from strain incompatibility of the precipitate with the matrix. It is further shown that increasing the hydrostatic stress increased the tendency for intergranular fracture, as is consistent with other nickel-base alloys.« less

  8. Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeson, P.D.; Carling, R.W.; James, K.

    1990-05-01

    Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of themore » nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.« less

  9. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    NASA Astrophysics Data System (ADS)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  10. Effect of urea deproteinization on catalytic hydrogenation of natural rubber latex

    NASA Astrophysics Data System (ADS)

    Cifriadi, A.; Chalid, M.; Puspitasari, S.

    2017-07-01

    Natural rubber is unsaturated biopolymer which has low resistance to heat, oxygen, and ozone. Chemical modification of natural rubber by catalytic hydrogenation can improve its oxidative property. In this study, the catalytic hydrogenation of natural rubber was investigated in latex phase after reduction of protein content with urea. Hydrogenation of deproteinized natural rubber latex was performed by using diimide which generated insitu from hydrazine hydrate/hydrogen peroxide and catalyst (boric acid, cupric sulfate and cupric acetate) at 70°C for 5 h. The hydrogenation system was stabilized with sodium dodecyl sulphate. The hydrogenation of deproteinized natural rubber (HDPNR) was confirmed by FTIR analysis. The result indicated that cupric sulphate was extremely active catalyst which was showed by the elimination of C=C transmittance bands at 1660 cm-1 on HDPNR spectra and highest degree of hydrogenation. Furthermore, urea deproteinization increased possibility of side reactions during catalytic hydrogenation as seen on the reduction of gel content compared to undeproteinized natural rubber.

  11. Binding sites of resveratrol, genistein, and curcumin with milk α- and β-caseins.

    PubMed

    Bourassa, P; Bariyanga, J; Tajmir-Riahi, H A

    2013-02-07

    The binding sites of antioxidant polyphenols resveratrol, genistein, and curcumin are located with milk α- and β-caseins in aqueous solution. FTIR, CD, and fluorescence spectroscopic methods and molecular modeling were used to analyze polyphenol binding sites, the binding constant, and the effects of complexation on casein stability and conformation. Structural analysis showed that polyphenols bind casein via hydrophilic and hydrophobic interactions with the number of bound polyphenol molecules (n) 1.20 for resveratrol, 1.42 for genistein, and 1.43 for curcumin with α-casein and 1.14 for resveratrol, 1.27 for genistein, and 1.27 for curcumin with β-casein. The overall binding constants of the complexes formed are K(res-α-casein) = 1.9 (±0.6) × 10(4) M(-1), K(gen-α-casein) = 1.8 (±0.4) × 10(4) M(-1), and K(cur-α-casein) = 2.8 (±0.8) × 10(4) M(-1) with α-casein and K(res-β-casein) = 2.3 (±0.3) × 10(4) M(-1), K(gen-β-casein) = 3.0 (±0.5) × 10(4) M(-1), and K(cur-β-casein) = 3.1 (±0.5) × 10(4) M(-1) for β-casein. Molecular modeling showed the participation of several amino acids in polyphenol-protein complexes, which were stabilized by the hydrogen bonding network with the free binding energy of -11.56 (resveratrol-α-casein), -12.35 (resveratrol-β-casein), -9.68 (genistein-α-casein), -9.97 (genistein-β-casein), -8.89 (curcumin-α-casein), and -10.70 kcal/mol (curcumin-β-casein). The binding sites of polyphenols are different with α- and β-caseins. Polyphenol binding altered casein conformation with reduction of α-helix, indicating a partial protein destabilization. Caseins might act as carriers to transport polyphenol in vitro.

  12. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our

  13. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S.; Kannan, R.

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% atmore » 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.« less

  14. Differential effects of chronic lorazepam and alprazolam on benzodiazepine binding and GABAA-receptor function.

    PubMed Central

    Galpern, W. R.; Miller, L. G.; Greenblatt, D. J.; Shader, R. I.

    1990-01-01

    1. Chronic benzodiazepine administration has been associated with tolerance and with downregulation of gamma-aminobutyric acidA (GABAA)-receptor binding and function. However, effects of individual benzodiazepines on brain regions have varied. 2. To compare the effects of chronic lorazepam and alprazolam, we have administered these drugs to mice for 1 and 7 days (2 mg kg-1 day-1) and determined benzodiazepine receptor binding in vivo with and without administration of CL 218,872, 25 mg kg-1 i.p., and GABA-dependent chloride uptake in 3 brain regions at these time points. 3. Benzodiazepine binding was decreased in the cortex and hippocampus at day 7 compared to day 1 of lorazepam, with an increase in CL 218,872-resistant (Type 2) sites in both regions. Maximal GABA-dependent chloride uptake was also decreased in the cortex and hippocampus at day 7. 4. Binding was decreased only in the cortex after 7 days of alprazolam, with no significant change in Type 2 binding. Maximal GABA-dependent chloride uptake was also decreased only in the cortex. 5. These data suggest that the effects of chronic benzodiazepine administration on the GABAA-receptor may be both region-specific and receptor subtype-specific. PMID:1964820

  15. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High levels of hydrogen peroxide in overnight tooth-whitening formulas: effects on enamel and pulp.

    PubMed

    Pugh, George; Zaidel, Lynette; Lin, Nora; Stranick, Michael; Bagley, Daniel

    2005-01-01

    Limited data are available to assess the safety of high levels of hydrogen peroxide in overnight tooth-whitening formulas. The purpose of this study was to assess the effects of hydrogen peroxide on enamel microhardness, pulp penetration, and enamel morphology. Colgate Platinum Professional Overnight Whitening System (Colgate Oral Pharmaceuticals, Inc., Canton, MA, USA) (10% carbamide peroxide, equivalent to 3.5% hydrogen peroxide) was compared with two prototype formulations containing either 7.0% or 12.0% hydrogen peroxide. In the pulp chamber studies, human extracted teeth were exposed to 3.5%, 7.0%, or 12.0% hydrogen peroxide for 30 minutes, 4 hours, or 7 hours. Microhardness, electron spectroscopy for chemical analysis, and atomic force microscopy evaluations were made from enamel blocks cut from human extracted molars. The enamel blocks were evaluated following 14 7-hour treatments (98 h total). At 7 hours' post-treatment, hydrogen peroxide penetrated the pulp chamber at 23.12 +/- 10.09, 24.58 +/- 6.90, and 26.39 +/- 5.43 microg for 3.5%, 7.0%, and 12.0% hydrogen peroxide, respectively. With regard to enamel morphology, pulp penetration, microhardness, and elemental composition, no statistically significant differences were observed between treatment groups following 98 hours of treatment. Hydrogen peroxide does not adversely affect enamel morphology or microhardness. The levels recovered in pulp indicate that hydrogen peroxide is not expected to inhibit pulpal enzymes. Overnight tray products containing levels of hydrogen peroxide of 3.5%, 7.0%, and 12.0% are not expected to adversely affect the enamel or pulpal enzymes. Additional safety studies are needed to assess the potential for tooth sensitivity and gingival irritation.

  17. Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.

    PubMed

    Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B

    2005-05-03

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.

  18. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  19. Beneficial Effects of Hydrogen-Rich Saline on Early Burn-Wound Progression in Rats

    PubMed Central

    Guo, Song Xue; Jin, Yun Yun; Fang, Quan; You, Chuan Gang; Wang, Xin Gang; Hu, Xin Lei; Han, Chun-Mao

    2015-01-01

    Introduction Deep burn wounds undergo a dynamic process known as wound progression that results in a deepening and extension of the initial burn area. The zone of stasis is more likely to develop more severe during wound progression in the presence of hypoperfusion. Hydrogen has been reported to alleviate injury triggered by ischaemia/reperfusion and burns in various organs by selectively quenching oxygen free radicals. The aim of this study was to investigate the possible protective effects of hydrogen against early burn-wound progression. Methods Deep-burn models were established through contact with a boiled, rectangular, brass comb for 20 s. Fifty-six Sprague-Dawley rats were randomly divided into sham, burn plus saline, and burn plus hydrogen-rich saline (HS) groups with sacrifice and analysis at various time windows (6 h, 24 h, 48 h) post burn. Indexes of oxidative stress, apoptosis and autophagy were measured in each group. The zone of stasis was evaluated using immunofluorescence staining, ELISA, and Western blot to explore the underlying effects and mechanisms post burn. Results The burn-induced increase in malondialdehyde was markedly reduced with HS, while the activities of endogenous antioxidant enzymes were significantly increased. Moreover, HS treatment attenuated increases in apoptosis and autophagy postburn in wounds, according to the TUNEL staining results and the expression analysis of Bax, Bcl-2, caspase-3, Beclin-1 and Atg-5 proteins. Additionally, HS lowered the level of myeloperoxidase and expression of TNF-α, IL-1β, and IL-6 in the zone of stasis while augmenting IL-10. The elevated levels of Akt phosphorylation and NF-κB p65 expression post burn were also downregulated by HS management. Conclusion Hydrogen can attenuate early wound progression following deep burn injury. The beneficial effect of hydrogen was mediated by attenuating oxidative stress, which inhibited apoptosis and inflammation, and the Akt/NF-κB signalling pathway may be

  20. Different binding mechanisms of neutral and anionic poly-/perfluorinated chemicals to human transthyretin revealed by In silico models.

    PubMed

    Yang, Xianhai; Lyakurwa, Felichesmi; Xie, Hongbin; Chen, Jingwen; Li, Xuehua; Qiao, Xianliang; Cai, Xiyun

    2017-09-01

    Chemical forms-dependent binding interactions between phenolic compounds and human transthyretin (hTTR) have been elaborated previously. However, it is not known whether the binding interactions between ionizable halogenated alphatic compounds and hTTR also have the same manner. In this study, poly-/perfluorinated chemicals (PFCs) were selected as model compounds and molecular dynamic simulation was performed to investigate the binding mechanisms between PFCs and hTTR. Results show the binding interactions between the halogenated aliphatic compounds and hTTR are related to the chemical forms. The ionized groups of PFCs can form electrostatic interactions with the -NH + 3 groups of Lys 15 residues in hTTR and form hydrogen bonds with the residues of hTTR. By analyzing the molecular orbital energies of PFCs, we also found that the anionic groups (nucleophile) in PFCs could form electron donor - acceptor interactions with the -NH + 3 groups (electrophile) in Lys 15. The aforementioned orientational interactions make the ionized groups of the PFCs point toward the entry port of the binding site. The roles of fluorine atoms in the binding interactions were also explored. The fluorine atoms can influence the binding interactions via inductive effects. Appropriate molecular descriptors were selected to characterize these interactions, and two quantitative structure-activity relationship models were developed. Copyright © 2017 Elsevier Ltd. All rights reserved.