Sample records for effect population growth

  1. [Economic growth with zero population growth and with declining population].

    PubMed

    Kurz, R

    1982-05-01

    The effects of both zero population growth and a declining population on economic growth are considered. Although the neoclassical theory of economic growth leads to optimistic results in such cases, the author suggests that this theory cannot be used as a basis for political action. The need for further research into the economic effects of a stationary or declining population is stressed. (summary in ENG)

  2. Human Population: Fundamentals of Growth and Change.

    ERIC Educational Resources Information Center

    Stauffer, Cheryl Lynn, Ed.

    This booklet focuses on eight elements of population dynamics: "Population Growth and Distribution"; "Natural Increase and Future Growth"; "Effect of Migration on Population Growth"; "Three Patterns of Population Change"; "Patterns of World Urbanization"; "The Status of Women";…

  3. Population Growth Types in India, 1961-71

    ERIC Educational Resources Information Center

    Chakravarti, A. K.

    1976-01-01

    An effective means of cartographic representation of India's population growth and its spatial characteristics is the focus of this paper. A population growth index and population growth types are discussed. (Author/ND)

  4. THE INFLUENCE OF MODEL TIME STEP ON THE RELATIVE SENSITIVITY OF POPULATION GROWTH TO SURVIVAL, GROWTH AND REPRODUCTION

    EPA Science Inventory

    Matrix population models are often used to extrapolate from life stage-specific stressor effects on survival and reproduction to population-level effects. Demographic elasticity analysis of a matrix model allows an evaluation of the relative sensitivity of population growth rate ...

  5. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  6. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  7. Making a stand: five centuries of population growth in colonizing populations of Pinus ponderosa.

    PubMed

    Lesser, Mark R; Jackson, Stephen T

    2012-05-01

    The processes underlying the development of new populations are important for understanding how species colonize new territory and form viable long-term populations. Life-history-mediated processes such as Allee effects and dispersal capability may interact with climate variability and site-specific factors to govern population success and failure over extended time frames. We studied four disjunct populations of ponderosa pine in the Bighorn Basin of north-central Wyoming to examine population growth spanning more than five centuries. The study populations are separated from continuous ponderosa pine forest by distances ranging from 15 to >100 km. Strong evidence indicates that the initial colonizing individuals are still present, yielding a nearly complete record of population history. All trees in each population were aged using dendroecological techniques. The populations were all founded between 1530 and 1655 cal yr CE. All show logistic growth patterns, with initial exponential growth followed by a slowing during the mid to late 20th century. Initial population growth was slower than expectations from a logistic regression model at all four populations, but increased during the mid-18th century. Initial lags in population growth may have been due to strong Allee effects. A combination of overcoming Allee effects and a transition to favorable climate conditions may have facilitated a mid-18th century pulse in population growth rate.

  8. Popullution: A Position Paper on Population.

    ERIC Educational Resources Information Center

    Durner, Mary Beth

    This position paper presents an interdisciplinary approach to the study of population. Six main sections are included in the paper: Introduction, The Growth of the Human Population, The Psychological Effects of Population Growth, Overpopulated America, Myths Concerning Population Growth and Control, and Population Education. Section 1, an…

  9. Social Effects of Prospective Population Changes in the United States.

    ERIC Educational Resources Information Center

    Kirk, Dudley

    Unlike many population forecasts, the thesis of this paper is that present and prospective effects of population growth in the United States have been exaggerated in comparison with other aspects of population change. The effects of national population growth have been confused with those of growing affluence, changing technology, and…

  10. Effect of experimental manipulation on survival and recruitment of feral pigs

    USGS Publications Warehouse

    Hanson, L.B.; Mitchell, M.S.; Grand, J.B.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.

    2009-01-01

    Lethal removal is commonly used to reduce the density of invasive-species populations, presuming it reduces population growth rate; the actual effect of lethal removal on the vital rates contributing to population growth, however, is rarely tested. We implemented a manipulative experiment of feral pig (Sus scrofa) populations at Fort Benning, Georgia, USA, to assess the demographic effects of harvest intensity. Using markrecapture data, we estimated annual survival, recruitment, and population growth rates of populations in a moderately harvested area and a heavily harvested area for 200406. Population growth rates did not differ between the populations. The top-ranked model for survival included a harvest intensity effect; model-averaged survival was lower for the heavily harvested population than for the moderately harvested population. Increased immigration and reproduction likely compensated for the increased mortality in the heavily harvested population. We conclude that compensatory responses in feral pig recruitment can limit the success of lethal control efforts. ?? 2009 CSIRO.

  11. Demographic and Component Allee Effects in Southern Lake Superior Gray Wolves

    PubMed Central

    Stenglein, Jennifer L.; Van Deelen, Timothy R.

    2016-01-01

    Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980–2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery. PMID:26930665

  12. Demographic and Component Allee Effects in Southern Lake Superior Gray Wolves.

    PubMed

    Stenglein, Jennifer L; Van Deelen, Timothy R

    2016-01-01

    Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980-2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery.

  13. World Population: Fundamentals of Growth. Student Chartbook. Third Edition.

    ERIC Educational Resources Information Center

    Kent, Mary Mederios

    This booklet is designed for K-12 students and educators to learn about world population growth factors. Data are shown through charts and graphs with brief explanations. The booklet contains: (1) "World Population Growth and Regional Distribution through History"; (2) "Population Growth through Natural Increase"; (3) "Effect of Migration on…

  14. Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J

    2014-09-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.

  15. Climate change and functional traits affect population dynamics of a long-lived seabird.

    PubMed

    Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal

    2018-07-01

    Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd oxn behalf of British Ecological Society.

  16. Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method

    PubMed Central

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J.; Munch, Stephan; Skaug, Hans J.

    2014-01-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish. PMID:25211603

  17. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    PubMed

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  18. Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep.

    PubMed

    Johnson, Heather E; Mills, L Scott; Wehausen, John D; Stephenson, Thomas R; Luikart, Gordon

    2011-12-01

    Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations. ©2011 Society for Conservation Biology.

  19. The effect of economic development on population health: a review of the empirical evidence.

    PubMed

    Lange, Simon; Vollmer, Sebastian

    2017-01-01

    Economic growth is considered an important determinant of population health. Relevant studies investigating the effect of economic growth on health outcomes were identified from Google Scholar and PubMed searches in economics and medical journals. Additional resources generated through economic growth are potentially useful for improving population health. The empirical evidence on the aggregate effect of economic growth on population health is rather mixed and inconclusive. The causal pathways from economic growth to population health are crucial and failure or success in completing the pathways explains differences in empirical findings. Future research should investigate how additional resources can more effectively reach those in need and how additional resources can be used more efficiently. It is particularly relevant to understand why preventive health care in developing countries is very price elastic whereas curative health care is very health inelastic and how this understanding can inform public health policy. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Social and Demographic Effects of Anthropogenic Mortality: A Test of the Compensatory Mortality Hypothesis in the Red Wolf

    PubMed Central

    Sparkman, Amanda M.; Waits, Lisette P.; Murray, Dennis L.

    2011-01-01

    Whether anthropogenic mortality is additive or compensatory to natural mortality in animal populations has long been a question of theoretical and practical importance. Theoretically, under density-dependent conditions populations compensate for anthropogenic mortality through decreases in natural mortality and/or increases in productivity, but recent studies of large carnivores suggest that anthropogenic mortality can be fully additive to natural mortality and thereby constrain annual survival and population growth rate. Nevertheless, mechanisms underlying either compensatory or additive effects continue to be poorly understood. Using long-term data on a reintroduced population of the red wolf, we tested for evidence of additive vs. compensatory effects of anthropogenic mortality on annual survival and population growth rates, and the preservation and reproductive success of breeding pairs. We found that anthropogenic mortality had a strong additive effect on annual survival and population growth rate at low population density, though there was evidence for compensation in population growth at high density. When involving the death of a breeder, anthropogenic mortality was also additive to natural rates of breeding pair dissolution, resulting in a net decrease in the annual preservation of existing breeding pairs. However, though the disbanding of a pack following death of a breeder resulted in fewer recruits per litter relative to stable packs, there was no relationship between natural rates of pair dissolution and population growth rate at either high or low density. Thus we propose that short-term additive effects of anthropogenic mortality on population growth in the red wolf population at low density were primarily a result of direct mortality of adults rather than indirect socially-mediated effects resulting in reduced recruitment. Finally, we also demonstrate that per capita recruitment and the proportion of adults that became reproductive declined steeply with increasing population density, suggesting that there is potential for density-dependent compensation of anthropogenically-mediated population regulation. PMID:21738589

  1. Population and prehistory III: food-dependent demography in variable environments.

    PubMed

    Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad

    2009-11-01

    The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.

  2. Analysis of the impact of population growth in Henan Province on its environment and ecosystem.

    PubMed

    Zhao, J

    1997-01-01

    "This paper analyzes the effects of population growth on the...environment and ecosystem [of China's Henan Province]. This paper also proposes a key countermeasure to deal with the population growth and environmental improvement of Henan Province." excerpt

  3. Effects of climate change on plant population growth rate and community composition change.

    PubMed

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  4. Growth and Competitive Effects of Centaurea stoebe Populations in Response to Simulated Nitrogen Deposition

    PubMed Central

    He, Wei-Ming; Montesinos, Daniel; Thelen, Giles C.; Callaway, Ragan M.

    2012-01-01

    Increased resource availability can promote invasion by exotic plants, raising concerns over the potential effects of global increases in the deposition of nitrogen (N). It is poorly understood why increased N favors exotics over natives. Fast growth may be a general trait of good invaders and these species may have exceptional abilities to increase growth rates in response to N deposition. Additionally, invaders commonly displace locals, and thus may have inherently greater competitive abilities. The mean growth response of Centaurea stoebe to two N levels was significantly greater than that of North American (NA) species. Growth responses to N did not vary among C. stoebe populations or NA species. Without supplemental N, NA species were better competitors than C. stoebe, and C. stoebe populations varied in competitive effects. The competitive effects of C. stoebe populations increased with N whereas the competitive effects of NA species decreased, eliminating the overall competitive advantage demonstrated by NA species in soil without N added. These results suggest that simulated N deposition may enhance C. stoebe invasion through increasing its growth and relative competitive advantage, and also indicate the possibility of local adaptation in competitive effects across the introduced range of an invader. PMID:22563451

  5. Growth and competitive effects of Centaurea stoebe populations in response to simulated nitrogen deposition.

    PubMed

    He, Wei-Ming; Montesinos, Daniel; Thelen, Giles C; Callaway, Ragan M

    2012-01-01

    Increased resource availability can promote invasion by exotic plants, raising concerns over the potential effects of global increases in the deposition of nitrogen (N). It is poorly understood why increased N favors exotics over natives. Fast growth may be a general trait of good invaders and these species may have exceptional abilities to increase growth rates in response to N deposition. Additionally, invaders commonly displace locals, and thus may have inherently greater competitive abilities. The mean growth response of Centaurea stoebe to two N levels was significantly greater than that of North American (NA) species. Growth responses to N did not vary among C. stoebe populations or NA species. Without supplemental N, NA species were better competitors than C. stoebe, and C. stoebe populations varied in competitive effects. The competitive effects of C. stoebe populations increased with N whereas the competitive effects of NA species decreased, eliminating the overall competitive advantage demonstrated by NA species in soil without N added. These results suggest that simulated N deposition may enhance C. stoebe invasion through increasing its growth and relative competitive advantage, and also indicate the possibility of local adaptation in competitive effects across the introduced range of an invader.

  6. Population Growth: Crisis and Challenge.

    ERIC Educational Resources Information Center

    Beaton, John R., Ed.; Doberenz, Alexander R., Ed.

    The proceedings of this first annual symposium on population growth considers the consequences of this growth, along with possible means of regulation. Topics of speeches include: Population Outlook in Asia (Irene Taeuber); Malnutrition is a Problem of Ecology (Paul Gyorgy); The Leisure Explosion (E. H. Storey); Effects of Pollution on Population…

  7. Learning-by-doing, population pressure, and the theory of demographic transition.

    PubMed

    Strulik, H

    1997-01-01

    The long-term effects of two interdependent relations between economic growth and population growth are discussed. The empirical work of Boserup (1981) was utilized, which focused on rural, sparsely populated economies with low income per capita. According to the formulation of the population-push hypothesis, learning-by-doing effects in production lead to increasing returns to scale and, therefore, to a positive correlation between economic and population growth. In accordance with the theory of demographic transition, the population growth rate initially increases with rising income levels and then declines. The approach originating from Cigno (1984) modified the economic model, which allowed the establishment of two different stable equilibria. Regarding this relationship, the existence and stability of low-income and high-income equilibrium was shown in a neoclassical growth model. Under plausible conditions a demo-economic transition from the first to the second steady-state took place. The instability of the Malthusian steady-state is also possible when a country develops along a path of economic growth which is compatible with the demographic transition. In this context, learning means the application of new techniques of agrarian production. In developed economies with a stable population the learning-or-doing decision lead to accumulation of human capital and the invention of new technologies and goods. The interdependence of income-determined population growth and learning-by-doing may serve as an explanation for the weak and partly controversial empirical support for an overall correlation between income and population growth. The result yielded a meaningful interpretation of the population-push hypothesis, which is consistent with the empirical findings on the correlation between economic and population growth.

  8. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies).

    PubMed

    Mølmann, Jørgen Alexander; Junttila, Olavi; Johnsen, Oystein; Olsen, Jorunn Elisabeth

    2006-02-01

    Seedlings of trees with a free growth pattern cease growth when night-lengths become shorter than a critical value, and this critical night-length (CNL) decreases with increasing latitude of origin. In northern populations, the light quality also appears to play an important role and a clinal variation in requirement for far-red (FR) light has been documented. In this study we dissected the light quality requirements for maintaining growth in different latitudinal populations of Norway spruce (Picea abies (L.) H. Karst.) using light emitting diodes for red (R), FR and blue (B) light, as 12 h day extension to provide 24 h photoperiod. At equal spectral photon flux, FR light was more effective than R light in maintaining growth, and the requirement of both R and FR increased with northern latitude of origin. One-to-one mixtures of R and FR light were more effective in maintaining growth than either FR or R light alone, indicating a possible interaction between R and FR light maintaining growth. Using the blue light as day extension could not prevent growth cessation in any of the populations, but delayed the bud set slightly in all populations. Our results suggest that phytochrome(s) are the primary photoreceptors in high irradiance responses maintaining growth in Norway spruce seedlings.

  9. Effects of stand age on the demography of a temperate forest herb in post-agricultural forests.

    PubMed

    Jacquemyn, Hans; Brys, Rein

    2008-12-01

    Changes in land use have been shown to have profound effects on forest plant community structure and diversity. Dispersal limitation has been invoked as a major factor hampering colonization of forest plant species, while seed-sowing experiments and performance observations have provided some evidence for recruitment limitation determining forest plant distribution in post-agricultural forests. However, most of these studies were relatively short-term, and very few studies have investigated long-term growth rates of populations occurring in recent and ancient forests. In this study, matrix models using demographic data collected for four consecutive years were used to study the effect of forest age on population dynamics of the temperate forest herb Primula elatior. A life table response experiment (LTRE) and elasticity analysis were used to analyze the effect of forest age on population growth rate (lambda) and to decompose the effect of forest age on lambda into contributions from each matrix element. Population growth increased logarithmically with increasing forest age. Bootstrap analyses showed that populations located in very recent forests (< 50-years-old) had growth rates that were significantly < 1, whereas populations located in forests > 150-years-old had growth rates that were significantly > 1. Summed elasticities for individual growth significantly decreased with increasing forest age, whereas summed elasticities for survival and fertility significantly increased with increasing forest age. The LTRE analysis showed that the increase in lambda with increasing forest age was mainly due to increased seedling and juvenile growth and increased juvenile and adult survival. Our results indicate that past agricultural land use has long-lasting effects on the demography of forest herbs and may provide an additional mechanistic explanation for the poor colonization capacity of many forest herbs in post-agricultural forests.

  10. Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus.

    PubMed

    Martins, Alexandra; Guilhermino, Lúcia

    2018-08-01

    The environmental contamination by microplastics is a global challenge to ecosystem and human health, and the knowledge on the long-term effects of such particles is limited. Thus, the effects of microplastics and post-exposure recovery were investigated over 4 generations (F 0 , F 1 , F 2 , F 3 ) using Daphnia magna as model. Effect criteria were parental mortality, growth, several reproductive parameters, and population growth rate. Microplastics exposure (0.1mg/l of pristine polymer microspheres 1-5μm diameter) caused parental mortality (10-100%), and significantly (p≤0.05) decreased growth, reproduction, and population growth rate leading to the extinction of the microplastics-exposed model population in the F 1 generation. Females descending from those exposed to microplastics in F 0 and exposed to clean medium presented some recovery but up to the F 3 generation they still had significantly (p≤0.05) reduced growth, reproduction, and population growth rate. Overall, these results indicate that D. magna recovery from chronic exposure to microplastics may take several generations, and that the continuous exposure over generations to microplastics may cause population extinction. These findings have implications to aquatic ecosystem functioning and services, and raise concern on the long-term animal and human exposure to microplastics through diverse routes. Copyright © 2018. Published by Elsevier B.V.

  11. Estimating Allee dynamics before they can be observed: polar bears as a case study.

    PubMed

    Molnár, Péter K; Lewis, Mark A; Derocher, Andrew E

    2014-01-01

    Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.

  12. Estimating Allee Dynamics before They Can Be Observed: Polar Bears as a Case Study

    PubMed Central

    Molnár, Péter K.; Lewis, Mark A.; Derocher, Andrew E.

    2014-01-01

    Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species. PMID:24427306

  13. Climate warming alters effects of management on population viability of threatened species: results from a 30-year experimental study on a rare orchid.

    PubMed

    Sletvold, Nina; Dahlgren, Johan P; Oien, Dag-Inge; Moen, Asbjørn; Ehrlén, Johan

    2013-09-01

    Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large-scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among-year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions. © 2013 John Wiley & Sons Ltd.

  14. Connectivity, passability and heterogeneity interact to determine fish population persistence in river networks.

    PubMed

    Samia, Yasmine; Lutscher, Frithjof; Hastings, Alan

    2015-09-06

    The movement of fish in watersheds is frequently inhibited by human-made migration barriers such as dams or culverts. The resulting lack of connectivity of spatial subpopulations is often cited as a cause for observed population decline. We formulate a matrix model for a spatially distributed fish population in a watershed, and we investigate how location and other characteristics of a single movement barrier impact the asymptotic growth rate of the population. We find that while population growth rate often decreases with the introduction of a movement obstacle, it may also increase due to a 'retention effect'. Furthermore, obstacle mortality greatly affects population growth rate. In practice, different connectivity indices are used to predict population effects of migration barriers, but the relation of these indices to population growth rates in demographic models is often unclear. When comparing our results with the dentritic connectivity index, we see that the index captures neither the retention effect nor the influences of obstacle mortality. We argue that structural indices cannot entirely replace more detailed demographic models to understand questions of persistence and extinction. We advocate the development of novel functional indices and characteristics. © 2015 The Author(s).

  15. The Between-Population Genetic Architecture of Growth, Maturation, and Plasticity in Atlantic Salmon

    PubMed Central

    Debes, Paul Vincent; Fraser, Dylan John; Yates, Matthew; Hutchings, Jeffrey A.

    2014-01-01

    The between-population genetic architecture for growth and maturation has not been examined in detail for many animal species despite its central importance in understanding hybrid fitness. We studied the genetic architecture of population divergence in: (i) maturation probabilities at the same age; (ii) size at age and growth, while accounting for maturity status and sex; and (iii) growth plasticity in response to environmental factors, using divergent wild and domesticated Atlantic salmon (Salmo salar). Our work examined two populations and their multigenerational hybrids in a common experimental arrangement in which salinity and quantity of suspended sediments were manipulated to mimic naturally occurring environmental variation. Average specific growth rates across environments differed among crosses, maturity groups, and cross-by-maturity groups, but a growth-rate reduction in the presence of suspended sediments was equal for all groups. Our results revealed both additive and nonadditive outbreeding effects for size at age and for growth rates that differed with life stage, as well as the presence of different sex- and size-specific maturation probabilities between populations. The major implication of our work is that estimates of the genetic architecture of growth and maturation can be biased if one does not simultaneously account for temporal changes in growth and for different maturation probabilities between populations. Namely, these correlated traits interact differently within each population and between sexes and among generations, due to nonadditive effects and a level of independence in the genetic control for traits. Our results emphasize the challenges to investigating and predicting phenotypic changes resulting from between-population outbreeding. PMID:24473933

  16. The between-population genetic architecture of growth, maturation, and plasticity in Atlantic salmon.

    PubMed

    Debes, Paul Vincent; Fraser, Dylan John; Yates, Matthew; Hutchings, Jeffrey A

    2014-04-01

    The between-population genetic architecture for growth and maturation has not been examined in detail for many animal species despite its central importance in understanding hybrid fitness. We studied the genetic architecture of population divergence in: (i) maturation probabilities at the same age; (ii) size at age and growth, while accounting for maturity status and sex; and (iii) growth plasticity in response to environmental factors, using divergent wild and domesticated Atlantic salmon (Salmo salar). Our work examined two populations and their multigenerational hybrids in a common experimental arrangement in which salinity and quantity of suspended sediments were manipulated to mimic naturally occurring environmental variation. Average specific growth rates across environments differed among crosses, maturity groups, and cross-by-maturity groups, but a growth-rate reduction in the presence of suspended sediments was equal for all groups. Our results revealed both additive and nonadditive outbreeding effects for size at age and for growth rates that differed with life stage, as well as the presence of different sex- and size-specific maturation probabilities between populations. The major implication of our work is that estimates of the genetic architecture of growth and maturation can be biased if one does not simultaneously account for temporal changes in growth and for different maturation probabilities between populations. Namely, these correlated traits interact differently within each population and between sexes and among generations, due to nonadditive effects and a level of independence in the genetic control for traits. Our results emphasize the challenges to investigating and predicting phenotypic changes resulting from between-population outbreeding.

  17. Populational Growth Models Proportional to Beta Densities with Allee Effect

    NASA Astrophysics Data System (ADS)

    Aleixo, Sandra M.; Rocha, J. Leonel; Pestana, Dinis D.

    2009-05-01

    We consider populations growth models with Allee effect, proportional to beta densities with shape parameters p and 2, where the dynamical complexity is related with the Malthusian parameter r. For p>2, these models exhibit a population dynamics with natural Allee effect. However, in the case of 1

  18. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.

    PubMed

    Prevéy, Janet S; Seastedt, Timothy R

    2015-11-01

    Shifting precipitation patterns resulting from global climate change will influence the success of invasive plant species. In the Front Range of Colorado, Bromus tectorum (cheatgrass) and other non-native winter annuals have invaded grassland communities and are becoming more abundant. As the global climate warms, more precipitation may fall as rain rather than snow in winter, and an increase in winter rain could benefit early-growing winter annuals, such as B. tectorum, to the detriment of native species. In this study we measured the effects of simulated changes in seasonal precipitation and presence of other plant species on population growth of B. tectorum in a grassland ecosystem near Boulder, Colorado, USA. We also performed elasticity analyses to identify life transitions that were most sensitive to precipitation differences. In both study years, population growth rates were highest for B. tectorum growing in treatments receiving supplemental winter precipitation and lowest for those receiving the summer drought treatment. Survival of seedlings to flowering and seed production contributed most to population growth in all treatments. Biomass of neighboring native plants was positively correlated with reduced population growth rates of B. tectorum. However, exotic plant biomass had no effect on population growth rates. This study demonstrates how interacting effects of climate change and presence of native plants can influence the population growth of an invasive species. Overall, our results suggest that B. tectorum will become more invasive in grasslands if the seasonality of precipitation shifts towards wetter winters and allows B. tectorum to grow when competition from native species is low.

  19. APPLICATION OF ELASTICITY ANALYSES AND PERTURBATION SIMULATIONS IN DETERMINING STRESSOR IMPACTS ON POPULATION GROWTH RATE AND EXTINCTION RISK

    EPA Science Inventory

    Population structure and life history strategies are determinants of how populations respond to stressor-induced impairments in individual-level responses, but a consistent and holistic analysis has not been reported. Effects on population growth rate were modeled using five theo...

  20. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate.

    PubMed

    Haase, Dagmar; Kabisch, Nadja; Haase, Annegret

    2013-01-01

    In European cities, the rate of population growth has declined significantly, while the number of households has increased. This increase in the number of households is associated with an increase in space for housing. To date, the effects of both a declining population and decreasing household numbers remain unclear. In this paper, we analyse the relationship between population and household number development in 188 European cities from 1990-2000 and 2000-2006 to the growth of urban land area and per capita living space. Our results support a trend toward decreasing population with simultaneously increasing household number. However, we also found cites facing both a declining population and a decreasing household number. Nevertheless, the urban land area of these "double-declining" cities has continued to spread because the increasing per capita living space counteracts a reduction in land consumption. We conclude that neither a decline in population nor in household number "automatically" solve the global problem of land consumption.

  1. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth

    Treesearch

    Kevin Ford; Joshua H. Ness; Judith L. Bronstein; William F. Morris

    2015-01-01

    The impact of mutualists on a partner’s demography depends on how they affect the partner’s multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and...

  2. Effect of population growth on changes in the agrarian structure of rural Bangladesh.

    PubMed

    Chaudhury, R H

    1981-01-01

    The author examines available information on the effect of population growth on the agrarian structure of Bangladesh. Trends and patterns of land distribution over time are reviewed. The effects of changes in land distribution on productivity are investigated, and the relationship between family size and land ownership is analyzed.

  3. Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree.

    PubMed

    Maclean, Janet E; Goheen, Jacob R; Doak, Daniel F; Palmer, Todd M; Young, Truman P

    2011-08-01

    Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.

  4. Roles of patch characteristics, drought frequency, and restoration in long-term trends of a widespread amphibian

    USGS Publications Warehouse

    Hossack, Blake R.; Adams, Michael J.; Pearl, Christopher A.; Pilliod, David S.; Corn, P. Stephen; , KRISTINE W. WILSON; , EVELYN L. BULL; , KRISTIN LOHR; , DEBRA PATLA; , JASON JONES

    2013-01-01

    Despite the high profile of amphibian declines and the increasing threat of drought and fragmentation to aquatic ecosystems, few studies have examined long-term rates of change for a single species across a large geographic area. We analyzed growth in annual egg-mass counts of the Columbia spotted frog (Rana luteiventris) across the northwestern United States, an area encompassing 3 genetic clades. On the basis of data collected by multiple partners from 98 water bodies between 1991 and 2011, we used state-space and linear-regression models to measure effects of patch characteristics, frequency of summer drought, and wetland restoration on population growth. Abundance increased in the 2 clades with greatest decline history, but declined where populations are considered most secure. Population growth was negatively associated with temporary hydroperiods and landscape modification (measured by the human footprint index), but was similar in modified and natural water bodies. The effect of drought was mediated by the size of the water body: populations in large water bodies maintained positive growth despite drought, whereas drought magnified declines in small water bodies. Rapid growth in restored wetlands in areas of historical population declines provided strong evidence of successful management. Our results highlight the importance of maintaining large areas of habitat and underscore the greater vulnerability of small areas of habitat to environmental stochasticity. Similar long-term growth rates in modified and natural water bodies and rapid, positive responses to restoration suggest pond construction and other forms of management can effectively increase population growth. These tools are likely to become increasingly important to mitigate effects of increased drought expected from global climate change.

  5. Managing the Cayo Santiago rhesus macaque population: The role of density.

    PubMed

    Hernandez-Pacheco, Raisa; Delgado, Diana L; Rawlins, Richard G; Kessler, Matthew J; Ruiz-Lambides, Angelina V; Maldonado, Elizabeth; Sabat, Alberto M

    2016-01-01

    Cayo Santiago is the oldest continuously operating free-ranging rhesus monkey colony in the world. Population control of this colony has historically been carried out by periodic live capture and removal of animals. However, the effect of such a strategy on the size, growth rate, age structure, and sex ratio of the population has not been analyzed. This study reviews past removal data and uses a population projection model to simulate the effects of different removal schemes based on Cayo Santiago demographic data from 2000-2012. The model incorporates negative density-dependence in female fertility, as well as male and female survival rates, to determine the population-level effects of selective removal by age and sex. Modeling revealed that removal of sexually immature individuals has negligible effects on the population dynamics explaining why with an initial population of 1309 in 2000 and annual removals of immature monkeys a mean annual population growth rate of 12% and a final population size of ∼1,435 individuals by 2012 (∼0.009 animal/m(2) ) was observed. With no removals, the population is expected to exhibit dampened oscillations until reaching equilibrium at ∼1,690 individuals (∼0.0111 animal/m(2) ) in 2,100. In contrast, removal of adult females (≥4 yrs) would significantly reduce the population size, but would also promote an increase in population growth rate due to density feedback. A maximum annual production of 275 births is expected when 550 adult females are present in the population. Sensitivity analyses showed that removing females, in contrast to controlling their fertility through invasive treatments would contribute the most to changes in population growth rate. Given the density compensation on fertility, stabilizing the population would require removing ∼80% of the current population of adult females. This study highlights the importance of addressing the population-level density effects, as well as sensitivity analyses, to optimize management strategies. © 2016 Wiley Periodicals, Inc.

  6. Hierarchical nuclear and cytoplasmic genetic architectures for plant growth and defense within Arabidopsis.

    PubMed

    Joseph, Bindu; Corwin, Jason A; Züst, Tobias; Li, Baohua; Iravani, Majid; Schaepman-Strub, Gabriela; Turnbull, Lindsay A; Kliebenstein, Daniel J

    2013-06-01

    To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis.

  7. Hierarchical Nuclear and Cytoplasmic Genetic Architectures for Plant Growth and Defense within Arabidopsis[C][W

    PubMed Central

    Joseph, Bindu; Corwin, Jason A.; Züst, Tobias; Li, Baohua; Iravani, Majid; Schaepman-Strub, Gabriela; Turnbull, Lindsay A.; Kliebenstein, Daniel J.

    2013-01-01

    To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis. PMID:23749847

  8. Profound Effects of Population Density on Fitness-Related Traits in an Invasive Freshwater Snail

    PubMed Central

    Zachar, Nicholas; Neiman, Maurine

    2013-01-01

    Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology. PMID:24278240

  9. Profound effects of population density on fitness-related traits in an invasive freshwater snail.

    PubMed

    Zachar, Nicholas; Neiman, Maurine

    2013-01-01

    Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology.

  10. Predicting Effects of Coastal Acidification on Marine Bivalve ...

    EPA Pesticide Factsheets

    The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survival and growth of early life stage bivalves. However, the effects that these impairments would have on whole populations of bivalves are unknown. In this study, these laboratory responses were incorporated into field-parameterized population models to assess population-level sensitivities to acidification for two northeast bivalve species with different life histories: Mercenaria mercenaria (hard clam) and Argopecten irradians (bay scallop). The resulting models permitted translation of laboratory pCO2 response functions into population-level responses to examine population sensitivity to future pCO2 changes. Preliminary results from our models indicate that if the current M. mercenaria negative population growth rate was attributed to the effects of pCO2 on early life stages, the population would decline at a rate of 50% per ten years at 420 microatmospheres (µatm) pCO2. If the current population growth rate was attributed to other additive factors (e.g., harvest, harmful algal blooms), M. mercenaria populations were predicted to decline at a rate of 50% per ten years at the preliminary estimate of 1010 µatm pCO2. The estimated population growth rate was positive for A. irradians,

  11. The Effect of Population Growth upon the Quantity of Education Children Receive.

    ERIC Educational Resources Information Center

    Simon, Julian L.; Pilarski, Adam M.

    1979-01-01

    There is indeed some negative effect of population growth on the amount of education in developing nations, but the effect is less severe than has been thought. This finding is in sharp contrast to previous conclusions drawn from similar cross-national data. Available from Review of Economics and Statistics, M-8 Littauer Center, Cambridge, MA…

  12. EFFECT OF FLUID SHEAR AND IRRADIANCE ON POPULATION GROWTH AND CELLULAR TOXIN CONTENT OF THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE.

    EPA Science Inventory

    The potential for in situ turbulence to inhibit dinoflagellate population growth has been demonstrated by experimentally exposing dinoflagellate cultures to quantified shear flow. However, despite interest in understanding environmental factors that affect the growth of toxic din...

  13. Evaluating anthropogenic threats to endangered killer whales to inform effective recovery plans.

    PubMed

    Lacy, Robert C; Williams, Rob; Ashe, Erin; Balcomb Iii, Kenneth C; Brent, Lauren J N; Clark, Christopher W; Croft, Darren P; Giles, Deborah A; MacDuffee, Misty; Paquet, Paul C

    2017-10-26

    Understanding cumulative effects of multiple threats is key to guiding effective management to conserve endangered species. The critically endangered, Southern Resident killer whale population of the northeastern Pacific Ocean provides a data-rich case to explore anthropogenic threats on population viability. Primary threats include: limitation of preferred prey, Chinook salmon; anthropogenic noise and disturbance, which reduce foraging efficiency; and high levels of stored contaminants, including PCBs. We constructed a population viability analysis to explore possible demographic trajectories and the relative importance of anthropogenic stressors. The population is fragile, with no growth projected under current conditions, and decline expected if new or increased threats are imposed. Improvements in fecundity and calf survival are needed to reach a conservation objective of 2.3% annual population growth. Prey limitation is the most important factor affecting population growth. However, to meet recovery targets through prey management alone, Chinook abundance would have to be sustained near the highest levels since the 1970s. The most optimistic mitigation of noise and contaminants would make the difference between a declining and increasing population, but would be insufficient to reach recovery targets. Reducing acoustic disturbance by 50% combined with increasing Chinook by 15% would allow the population to reach 2.3% growth.

  14. Linking vital rates to invasiveness of a perennial herb.

    PubMed

    Ramula, Satu

    2014-04-01

    Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.

  15. Population growth and global security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, S.

    A new threat to international and domestic security has emerged in the past three decades: uncontrolled world population growth. Current world population growth control efforts are ineffective. Unchecked growth will threaten global security by depleting food, energy, and other resources. Immigration is another complicating factor that is straining the carrying capacity of some overpopulated regions. Barriers to effective action include the desire of decision-makers to avoid the controversy of abortion and the role of the Catholic church in lobbying against birth control. (3 graphs, 12 photos, 2 tables)

  16. The Impact of Population Demography and Selection on the Genetic Architecture of Complex Traits

    PubMed Central

    Lohmueller, Kirk E.

    2014-01-01

    Population genetic studies have found evidence for dramatic population growth in recent human history. It is unclear how this recent population growth, combined with the effects of negative natural selection, has affected patterns of deleterious variation, as well as the number, frequency, and effect sizes of mutations that contribute risk to complex traits. Because researchers are performing exome sequencing studies aimed at uncovering the role of low-frequency variants in the risk of complex traits, this topic is of critical importance. Here I use simulations under population genetic models where a proportion of the heritability of the trait is accounted for by mutations in a subset of the exome. I show that recent population growth increases the proportion of nonsynonymous variants segregating in the population, but does not affect the genetic load relative to a population that did not expand. Under a model where a mutation's effect on a trait is correlated with its effect on fitness, rare variants explain a greater portion of the additive genetic variance of the trait in a population that has recently expanded than in a population that did not recently expand. Further, when using a single-marker test, for a given false-positive rate and sample size, recent population growth decreases the expected number of significant associations with the trait relative to the number detected in a population that did not expand. However, in a model where there is no correlation between a mutation's effect on fitness and the effect on the trait, common variants account for much of the additive genetic variance, regardless of demography. Moreover, here demography does not affect the number of significant associations detected. These findings suggest recent population history may be an important factor influencing the power of association tests and in accounting for the missing heritability of certain complex traits. PMID:24875776

  17. Potential effects of incorporating fertility control into typical culling regimes in wild pig populations

    PubMed Central

    Davis, Amy J.; Cunningham, Fred L.; VerCauteren, Kurt C.; Eckery, Doug C.

    2017-01-01

    Effective management of widespread invasive species such as wild pigs (Sus scrofa) is limited by resources available to devote to the effort. Better insight of the effectiveness of different management strategies on population dynamics is important for guiding decisions of resource allocation over space and time. Using a dynamic population model, we quantified effects of culling intensities and time between culling events on population dynamics of wild pigs in the USA using empirical culling patterns and data-based demographic parameters. In simulated populations closed to immigration, substantial population declines (50–100%) occurred within 4 years when 20–60% of the population was culled annually, but when immigration from surrounding areas occurred, there was a maximum of 50% reduction, even with the maximum culling intensity of 60%. Incorporating hypothetical levels of fertility control with realistic culling intensities was most effective in reducing populations when they were closed to immigration and when intrinsic population growth rate was too high (> = 1.78) to be controlled by culling alone. However, substantial benefits from fertility control used in conjunction with culling may only occur over a narrow range of net population growth rates (i.e., where net is the result of intrinsic growth rates and culling) that varies depending on intrinsic population growth rate. The management implications are that the decision to use fertility control in conjunction with culling should rely on concurrent consideration of achievable culling intensity, underlying demographic parameters, and costs of culling and fertility control. The addition of fertility control reduced abundance substantially more than culling alone, however the effects of fertility control were weaker than in populations without immigration. Because these populations were not being reduced substantially by culling alone, fertility control could be an especially helpful enhancement to culling for reducing abundance to target levels in areas where immigration can’t be prevented. PMID:28837610

  18. Incorporating Allee effects into the potential biological removal level

    USGS Publications Warehouse

    Hadier, Humza; Oldfield, Sarah; Tu, Tiffany; Moreno, Rosa; Diffendorfer, Jay E.; Eager, Eric A.; Erickson, Richard A.

    2017-01-01

    Potential biological removal (PBR) is an approach used to calculate sustainable harvest and “take” limits for populations. PBR was originally derived assuming logistic growth while ignoring the effects of small population size (i.e., an Allee effect). We derived a version of PBR that includes an Allee effect (i.e., small population size or densities limiting population growth rates). We found that PBR becomes less conservative when it fails to consider an Allee effect. Specifically, sustainable harvest and take levels based upon PBR with an Allee effect were between approximately 51% and 66% of levels based upon PBR without an Allee effect. Managers and biologists using PBR may need to consider the limitations if an Allee effect may be present in the species being modeled.

  19. Modeling tradeoffs in avian life history traits and consequences for population growth

    USGS Publications Warehouse

    Clark, M.E.; Martin, T.E.

    2007-01-01

    Variation in population dynamics is inherently related to life history characteristics of species, which vary markedly even within phylogenetic groups such as passerine birds. We computed the finite rate of population change (??) from a matrix projection model and from mark-recapture observations for 23 bird species breeding in northern Arizona. We used sensitivity analyses and a simulation model to separate contributions of different life history traits to population growth rate. In particular we focused on contrasting effects of components of reproduction (nest success, clutch size, number of clutches, and juvenile survival) versus adult survival on ??. We explored how changes in nest success or adult survival coupled to costs in other life history parameters affected ?? over a life history gradient provided by our 23 Arizona species, as well as a broader sample of 121 North American passerine species. We further examined these effects for more than 200 passeriform and piciform populations breeding across North America. Model simulations indicate nest success and juvenile survival exert the largest effects on population growth in species with moderate to high reproductive output, whereas adult survival contributed more to population growth in long-lived species. Our simulations suggest that monitoring breeding success in populations across a broad geographic area provides an important index for identifying neotropical migratory populations at risk of serious population declines and a potential method for identifying large-scale mechanisms regulating population dynamics. ?? 2007 Elsevier B.V. All rights reserved.

  20. Breeding site heterogeneity reduces variability in frog recruitment and population dynamics

    USGS Publications Warehouse

    McCaffery, Rebecca M.; Eby, Lisa A.; Maxell, Bryce A.; Corn, Paul Stephen

    2013-01-01

    Environmental stochasticity can have profound effects on the dynamics and viability of wild populations, and habitat heterogeneity provides one mechanism by which populations may be buffered against the negative effects of environmental fluctuations. Heterogeneity in breeding pond hydroperiod across the landscape may allow amphibian populations to persist despite variable interannual precipitation. We examined recruitment dynamics over 10 yr in a high-elevation Columbia spotted frog (Rana luteiventris) population that breeds in ponds with a variety of hydroperiods. We combined these data with matrix population models to quantify the consequences of heterogeneity in pond hydroperiod on net recruitment (i.e. number of metamorphs produced) and population growth rates. We compared our heterogeneous system to hypothetical homogeneous environments with only ephemeral ponds, only semi-permanent ponds, and only permanent ponds. We also examined the effects of breeding pond habitat loss on population growth rates. Most eggs were laid in permanent ponds each year, but survival to metamorphosis was highest in the semi-permanent ponds. Recruitment success varied by both year and pond type. Net recruitment and stochastic population growth rate were highest under a scenario with homogeneous semi-permanent ponds, but variability in recruitment was lowest in the scenario with the observed heterogeneity in hydroperiods. Loss of pond habitat decreased population growth rate, with greater decreases associated with loss of permanent and semi-permanent habitat. The presence of a diversity of pond hydroperiods on the landscape will influence population dynamics, including reducing variability in recruitment in an uncertain climatic future.

  1. Understanding the demographic drivers of realized population growth rates.

    PubMed

    Koons, David N; Arnold, Todd W; Schaub, Michael

    2017-10-01

    Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will strengthen our understanding of demography for many species as we aim to conserve biodiversity during an era of non-stationary global change. © 2017 by the Ecological Society of America.

  2. Estimating the effects of 17α-ethinylestradiol on stochastic population growth rate of fathead minnows: a population synthesis of empirically derived vital rates.

    PubMed

    Schwindt, Adam R; Winkelman, Dana L

    2016-09-01

    Urban freshwater streams in arid climates are wastewater effluent dominated ecosystems particularly impacted by bioactive chemicals including steroid estrogens that disrupt vertebrate reproduction. However, more understanding of the population and ecological consequences of exposure to wastewater effluent is needed. We used empirically derived vital rate estimates from a mesocosm study to develop a stochastic stage-structured population model and evaluated the effect of 17α-ethinylestradiol (EE2), the estrogen in human contraceptive pills, on fathead minnow Pimephales promelas stochastic population growth rate. Tested EE2 concentrations ranged from 3.2 to 10.9 ng L(-1) and produced stochastic population growth rates (λ S ) below 1 at the lowest concentration, indicating potential for population decline. Declines in λ S compared to controls were evident in treatments that were lethal to adult males despite statistically insignificant effects on egg production and juvenile recruitment. In fact, results indicated that λ S was most sensitive to the survival of juveniles and female egg production. More broadly, our results document that population model results may differ even when empirically derived estimates of vital rates are similar among experimental treatments, and demonstrate how population models integrate and project the effects of stressors throughout the life cycle. Thus, stochastic population models can more effectively evaluate the ecological consequences of experimentally derived vital rates.

  3. The influence of historical climate on the population dynamics of three dominant sagebrush steppe plants.

    USDA-ARS?s Scientific Manuscript database

    Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact...

  4. Population Growth and Global Security: Toward an American Strategic Commitment.

    ERIC Educational Resources Information Center

    Mumford, Steven

    1981-01-01

    Addresses the world population problem by highlighting three crucial areas: the relationship between population growth control and national security issues, the role of American leadership in resolving the problem, and the barriers to effective action. One barrier discussed in detail is the Roman Catholic Church's stand on abortion and…

  5. Herbivory, Predation, and Biological Control.

    ERIC Educational Resources Information Center

    Murphy, Terence M.; And Others

    1992-01-01

    Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…

  6. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    Seedborne fungi can reduce survival, growth, and yield of maize (Zea mays L.). Laboratory, field, and growth chamber experiments were conducted to determine the effects of the seed treatment fungicides fludioxonil, mefenoxam, and azoxystrobin on germination, plant population, and grain yield of maiz...

  7. Connectivity, passability and heterogeneity interact to determine fish population persistence in river networks

    PubMed Central

    Samia, Yasmine; Lutscher, Frithjof; Hastings, Alan

    2015-01-01

    The movement of fish in watersheds is frequently inhibited by human-made migration barriers such as dams or culverts. The resulting lack of connectivity of spatial subpopulations is often cited as a cause for observed population decline. We formulate a matrix model for a spatially distributed fish population in a watershed, and we investigate how location and other characteristics of a single movement barrier impact the asymptotic growth rate of the population. We find that while population growth rate often decreases with the introduction of a movement obstacle, it may also increase due to a ‘retention effect’. Furthermore, obstacle mortality greatly affects population growth rate. In practice, different connectivity indices are used to predict population effects of migration barriers, but the relation of these indices to population growth rates in demographic models is often unclear. When comparing our results with the dentritic connectivity index, we see that the index captures neither the retention effect nor the influences of obstacle mortality. We argue that structural indices cannot entirely replace more detailed demographic models to understand questions of persistence and extinction. We advocate the development of novel functional indices and characteristics. PMID:26311313

  8. Effects of urban growth controls on intercity commuting.

    PubMed

    Ogura, Laudo M

    2010-01-01

    This paper presents an empirical study of the effects of urban growth controls on the intercity commuting of workers. Growth controls (land use regulations that attempt to restrict population growth and urban sprawl) have increased housing prices and diverted population growth to uncontrolled cities. It has been suggested that resulting changes in local labour supply might stimulate intercity commuting from uncontrolled to controlled cities. To test this hypothesis, a gravity model of commuting flows between places in California is estimated using alternative econometric methods (OLS, Heckman selection and count-data). The possibility of spatial dependence in commuting flows is also taken into consideration. Results suggest larger commuting flows to destination places that restrict residential growth.

  9. Ester Boserup's theory of agrarian change: a critical review.

    PubMed

    Grigg, D

    1979-01-01

    As discussions of the positive effect of population growth upon agricutural change have been less common than focus on the negative effects, Ester Boserup's book, "The Conditions of Agricultural Growth," and her subsequent work in which it is argued that population growth is the prime cause of agricultural change is of great importance. The objective of this essay is to review earlier attempts to relate the intensification of agriculture to population growth, to outline Boserup's theory, and to examine the criticisms which have been made of the theory. Boserup maintains that population growth is the cause rather than the result of agricultural change and that the principal change is the intensification of land use. The theory of agricultural development posed by Boserup is more subtle and complex than that of any of her predecessors. She sees population pressure as a major cause of change in land use, agricultural technology, land tenure systems, and settlement form. Boserup argues that population growth is independent of food supply and that population increase is a cause of changes in agriculture. The principal means of increasing agricultural output is intensification. Boserup's work has had a varied response from readers; other economists have been less than enthusiastic. It might seem as if the critics of Boserup's theory have left it in tatters. Her central argument, that intensification reduces labor productivity, remains unproven. There are few who would agree that an increase in the frequency of cropping is the only possible response to population pressure; the extensive margin can be extended, higher yielding crops adopted, and methods that increase yields introduced independently of increases in the frequency of cropping. Emigration or the control of numbers may relieve population pressure. Intensification can also take place without population pressure, under the stimulus of urban growth or the development of trade. It is difficult to accept that population pressure is the only cause or agrarian change or that the increased frequency of cropping is the only response to population pressure, yet the thesis is a fruitful interpretation of agrarian change. Assuming population growth as a change mechanism can lead to important new conclusions regarding the nature of agrarian change in western European history.

  10. Memory and obesity affect the population dynamics of asexual freshwater planarians

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.

  11. A test of the compensatory mortality hypothesis in mountain lions: a management experiment in West-Central Montana

    USGS Publications Warehouse

    Robinson, Hugh S.; Desimone, Richard; Hartway, Cynthia; Gude, Justin A.; Thompson, Michael J.; Mitchell, Michael S.; Hebblewhite, Mark

    2014-01-01

    Mountain lions (Puma concolor) are widely hunted for recreation, population control, and to reduce conflict with humans, but much is still unknown regarding the effects of harvest on mountain lion population dynamics. Whether human hunting mortality on mountain lions is additive or compensatory is debated. Our primary objective was to investigate population effects of harvest on mountain lions. We addressed this objective with a management experiment of 3 years of intensive harvest followed by a 6-year recovery period. In December 2000, after 3 years of hunting, approximately 66% of a single game management unit within the Blackfoot River watershed in Montana was closed to lion hunting, effectively creating a refuge representing approximately 12% (915 km2) of the total study area (7,908 km2). Hunting continued in the remainder of the study area, but harvest levels declined from approximately 9/1,000 km2 in 2001 to 2/1,000 km2 in 2006 as a result of the protected area and reduced quotas outside. We radiocollared 117 mountain lions from 1998 to 2006. We recorded known fates for 63 animals, and right-censored the remainder. Although hunting directly reduced survival, parameters such as litter size, birth interval, maternity, age at dispersal, and age of first reproduction were not significantly affected. Sensitivity analysis showed that female survival and maternity were most influential on population growth. Life-stage simulation analysis (LSA) demonstrated the effect of hunting on the population dynamics of mountain lions. In our non-hunted population, reproduction (kitten survival and maternity) accounted for approximately 62% of the variation in growth rate, whereas adult female survival accounted for 30%. Hunting reversed this, increasing the reliance of population growth on adult female survival (45% of the variation in population growth), and away from reproduction (12%). Our research showed that harvest at the levels implemented in this study did not affect population productivity (i.e., maternity), but had an additive effect on mountain lion mortality, and therefore population growth. Through harvest, wildlife managers have the ability to control mountain lion populations.

  12. Economic consequences of population size, structure and growth.

    PubMed

    Lee, R

    1983-01-01

    There seems to be 4 major approaches to conceptualizing and modeling demographic influences on economic and social welfare. These approaches are combined in various ways to construct richer and more comprehensive models. The basic approaches are: demographic influences on household or family behavior; population growth and reproducible capital; population size and fixed factors; and population and advantages of scale. These 4 models emphasize the supply side effects of population. A few of the ways in which these theories have been combined are sketched. Neoclassical growth models often have been combined with age distributed populations of individuals (or households), assumed to pursue optimal life cycle consumption and saving. In some well known development models, neoclassical growth models for the modern sector are linked by labor markets and migration to fixed factor (land) models of the traditional (agricultural) sector. A whole series of macro simulation models for developed and developing countries was based on single sector neoclassical growth models with age distributed populations. Yet, typically the household level foundations of assumed age distribution effects were not worked out. Simon's (1977) simulation models are in a class by themselves, for they are the only models that attempt to incorporate all the kinds of effects discussed. The economic demography of the individual and family cycle, as it is affected by regimes of fertility, mortality, and nuptiality, taken as given, are considered. The examination touches on many of the purported consequences of aggregate population growth and age composition, since so many of these are based implicitly or explicitly on assertions about micro level behavior. Demographic influences on saving and consumption, on general labor supply and female labor supply, and on problems of youth and old age dependency frequently fall in this category. Finally, attention is focused specifically on macro economic issues in the consequences of population in both developed and developing countries. In general cross national studies have failed to provide rough and stylized depiction of the consequences of rapid population growth, unless the absence of significant results is itself the result.

  13. Population growth and consumption.

    PubMed

    Chalkley, K

    1997-04-01

    The relationship between population growth, resource consumption, and environmental degradation is complex. The rise in "greenhouse gases" that will cause climatic change is clearly due to human activity, and pollutants are often concentrated in densely populated areas. However, even an area with a negative population growth, such as Russia, can experience severe environmental degradation due to poor management. Consumption patterns have the most effect on ozone depletion, while population growth threatens biodiversity of and within species through the destruction of ecosystems. Migration joins population growth and social factors, such as land inequality, as major causes of deforestation, and global demand for water is expected to increase faster than the rate of population growth. Coastal development and over-fishing threaten to deplete the oceans, while soil quality is threatened by inappropriate land use. Estimates of the earth's carrying capacity range from less than 3 billion to more than 44 billion people, indicating how difficult it is to assess this figure. Development efforts throughout the world may lead to human gains that will ultimately be negated by environmental losses. These factors have led to growing support for environmentally sustainable development.

  14. Population and prehistory I: Food-dependent population growth in constant environments.

    PubMed

    Lee, Charlotte T; Tuljapurkar, Shripad

    2008-06-01

    We present a demographic model that describes the feedbacks between food supply, human mortality and fertility rates, and labor availability in expanding populations, where arable land area is not limiting. This model provides a quantitative framework to describe how environment, technology, and culture interact to influence the fates of preindustrial agricultural populations. We present equilibrium conditions and derive approximations for the equilibrium population growth rate, food availability, and other food-dependent measures of population well-being. We examine how the approximations respond to environmental changes and to human choices, and find that the impact of environmental quality depends upon whether it manifests through agricultural yield or maximum (food-independent) survival rates. Human choices can complement or offset environmental effects: greater labor investments increase both population growth and well-being, and therefore can counteract lower agricultural yield, while fertility control decreases the growth rate but can increase or decrease well-being. Finally we establish equilibrium stability criteria, and argue that the potential for loss of local stability at low population growth rates could have important consequences for populations that suffer significant environmental or demographic shocks.

  15. Chapter 8: Demographic characteristics and population modeling

    Treesearch

    Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge

    2000-01-01

    An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...

  16. The effects of declining population growth on the demand for housing.

    Treesearch

    Thomas C. Marcin

    1974-01-01

    Declining population growth and unprecedented changes in the age structure of the population in the next several decades will profoundly affect housing demand in the next 50 years. A decline in housing demand and substantial change in the type of housing in demand are likely to occur by 1990.

  17. Density dependence and climate effects in Rocky Mountain elk: an application of regression with instrumental variables for population time series with sampling error.

    PubMed

    Creel, Scott; Creel, Michael

    2009-11-01

    1. Sampling error in annual estimates of population size creates two widely recognized problems for the analysis of population growth. First, if sampling error is mistakenly treated as process error, one obtains inflated estimates of the variation in true population trajectories (Staples, Taper & Dennis 2004). Second, treating sampling error as process error is thought to overestimate the importance of density dependence in population growth (Viljugrein et al. 2005; Dennis et al. 2006). 2. In ecology, state-space models are used to account for sampling error when estimating the effects of density and other variables on population growth (Staples et al. 2004; Dennis et al. 2006). In econometrics, regression with instrumental variables is a well-established method that addresses the problem of correlation between regressors and the error term, but requires fewer assumptions than state-space models (Davidson & MacKinnon 1993; Cameron & Trivedi 2005). 3. We used instrumental variables to account for sampling error and fit a generalized linear model to 472 annual observations of population size for 35 Elk Management Units in Montana, from 1928 to 2004. We compared this model with state-space models fit with the likelihood function of Dennis et al. (2006). We discuss the general advantages and disadvantages of each method. Briefly, regression with instrumental variables is valid with fewer distributional assumptions, but state-space models are more efficient when their distributional assumptions are met. 4. Both methods found that population growth was negatively related to population density and winter snow accumulation. Summer rainfall and wolf (Canis lupus) presence had much weaker effects on elk (Cervus elaphus) dynamics [though limitation by wolves is strong in some elk populations with well-established wolf populations (Creel et al. 2007; Creel & Christianson 2008)]. 5. Coupled with predictions for Montana from global and regional climate models, our results predict a substantial reduction in the limiting effect of snow accumulation on Montana elk populations in the coming decades. If other limiting factors do not operate with greater force, population growth rates would increase substantially.

  18. The Long-Term Relationship between Population Growth and Vegetation Cover: An Empirical Analysis Based on the Panel Data of 21 Cities in Guangdong Province, China

    PubMed Central

    Li, Chao; Kuang, Yaoqiu; Huang, Ningsheng; Zhang, Chao

    2013-01-01

    It is generally believed that there is an inverse relationship between population growth and vegetation cover. However, reports about vegetation protection and reforestation around the World have been continuously increasing in recent decades, which seems to indicate that this relationship may not be true. In this paper, we have taken 21 cities in Guangdong Province, China as the study area to test the long-term relationship between population growth and vegetation cover, using an AVHRR NDVI data set and the panel cointegrated regression method. The results show that there is a long-term inverted N-shaped curve relationship between population growth and vegetation cover in the region where there are frequent human activities and the influence of climate change on vegetation cover changes is relatively small. The two turning points of the inverted N-shaped curve for the case of Guangdong Province correspond to 2,200 persons·km−2 and 3,820 persons·km−2, and they can provide a reference range for similar regions of the World. It also states that the population urbanization may have a negative impact on the vegetation cover at the early stage, but have a positive impact at the later stage. In addition, the Panel Error Correction Model (PECM) is used to investigate the causality direction between population growth and vegetation cover. The results show that not only will the consuming destruction effect and planting construction effect induced by the population growth have a great impact on vegetation cover changes, but vegetation cover changes in turn will also affect the population growth in the long term. PMID:23435589

  19. Population growth and economic development: two new U.S. perspectives.

    PubMed

    Wulf, D; Klitsch, M

    1986-01-01

    This report compares the research paths of economic development reports by the US National Academy of Sciences (NAS) and the American Assembly of Columbia University. The NAS group, made up principally of economists and demographers, refrained from recommending population reduction targets, in contrast to the stronger terms of its 1971 report. A 1965 report by the Assembly spoke of population as a serious negative influence for economic development, political stability, and world peace, while the new report speaks of negative socioeconomic effects, and of the limiting of a person's right to control family size. The NAS agenda was established before the US delegation to the UN population conference in Mexico City retreated from declaring population growth to be a necessarily negative influencer of socioeconomic progress. The Assembly took the position that possible benefits of population growth would be far outweighed by factors such as resource depletion and women's health. The NAS maintained that growth might provide incentives for institutional adjustments (market development, investment in education) and control of growth should not be considered a substitute for such interventions. Both reports agree that control of fertility is a human right, but the NAS report examined the question of the acceptable degree of compulsion to be used to encourage couples. The Assembly objected to limiting access to family planning by defunding abortion programs oversease. Differences exist between the 2 reports in questins such as the negative impact of 1950's population growth, the synergistic effect of growth on many areas of human activity, the extent to which welfare of future generations is considered relevant today, and the adequacy of pure economic analysis in assessing need. Much study of population/development linkages is still required.

  20. Modeling the impact of the indigenous microbial population on the maximum population density of Salmonella on alfalfa.

    PubMed

    Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar

    2013-07-01

    Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.

  1. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.

    PubMed

    Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing

    2017-12-15

    By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.

  2. Roles of patch characteristics, drought frequency, and restoration in long-term trends of a widespread amphibian.

    PubMed

    Hossack, Blake R; Adams, Michael J; Pearl, Christopher A; Wilson, Kristine W; Bull, Evelyn L; Lohr, Kristin; Patla, Debra; Pilliod, David S; Jones, Jason M; Wheeler, Kevin K; McKay, Samuel P; Corn, Paul Stephen

    2013-12-01

    Despite the high profile of amphibian declines and the increasing threat of drought and fragmentation to aquatic ecosystems, few studies have examined long-term rates of change for a single species across a large geographic area. We analyzed growth in annual egg-mass counts of the Columbia spotted frog (Rana luteiventris) across the northwestern United States, an area encompassing 3 genetic clades. On the basis of data collected by multiple partners from 98 water bodies between 1991 and 2011, we used state-space and linear-regression models to measure effects of patch characteristics, frequency of summer drought, and wetland restoration on population growth. Abundance increased in the 2 clades with greatest decline history, but declined where populations are considered most secure. Population growth was negatively associated with temporary hydroperiods and landscape modification (measured by the human footprint index), but was similar in modified and natural water bodies. The effect of drought was mediated by the size of the water body: populations in large water bodies maintained positive growth despite drought, whereas drought magnified declines in small water bodies. Rapid growth in restored wetlands in areas of historical population declines provided strong evidence of successful management. Our results highlight the importance of maintaining large areas of habitat and underscore the greater vulnerability of small areas of habitat to environmental stochasticity. Similar long-term growth rates in modified and natural water bodies and rapid, positive responses to restoration suggest pond construction and other forms of management can effectively increase population growth. These tools are likely to become increasingly important to mitigate effects of increased drought expected from global climate change. Papeles de las Características del Fragmento, Frecuencia de Sequía y Restauración en las Tendencias a Largo Plazo de un Anfibio Ampliamente Distribuido. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Estimating the effects of 17α-ethinylestradiol on stochastic population growth rate of fathead minnows: a population synthesis of empirically derived vital rates

    USGS Publications Warehouse

    Schwindt, Adam R.; Winkelman, Dana L.

    2016-01-01

    Urban freshwater streams in arid climates are wastewater effluent dominated ecosystems particularly impacted by bioactive chemicals including steroid estrogens that disrupt vertebrate reproduction. However, more understanding of the population and ecological consequences of exposure to wastewater effluent is needed. We used empirically derived vital rate estimates from a mesocosm study to develop a stochastic stage-structured population model and evaluated the effect of 17α-ethinylestradiol (EE2), the estrogen in human contraceptive pills, on fathead minnow Pimephales promelas stochastic population growth rate. Tested EE2 concentrations ranged from 3.2 to 10.9 ng L−1 and produced stochastic population growth rates (λ S ) below 1 at the lowest concentration, indicating potential for population decline. Declines in λ S compared to controls were evident in treatments that were lethal to adult males despite statistically insignificant effects on egg production and juvenile recruitment. In fact, results indicated that λ S was most sensitive to the survival of juveniles and female egg production. More broadly, our results document that population model results may differ even when empirically derived estimates of vital rates are similar among experimental treatments, and demonstrate how population models integrate and project the effects of stressors throughout the life cycle. Thus, stochastic population models can more effectively evaluate the ecological consequences of experimentally derived vital rates.

  4. [Population and development].

    PubMed

    Castanon Romo, R; Sandoval Navarrete, J

    1996-01-01

    This broad survey of the debate concerning the relationship between population growth and economic development discusses the history and current status of world population growth, summarizes several influential theoretical positions on the topic, and proposes that redefinition of women's social role is indispensable if worldwide control of population growth is to be achieved. The introductory section discusses the acceleration of population growth in the second half of the 20th century and the increasing concentration of growth in the poor and developing countries. The positions of those who see in population control a means of promoting economic development and political stability are contrasted to the positions of those who believe that a large and growing population is the key to achieving economic and political progress. The international community, facing great uncertainty about the size, distribution, and well-being of the future world population, is increasingly concerned about the effect of growing numbers on the environment and natural resources. The second section summarizes the works of Malthus, Julian Simon, and the Club of Rome, and analyzes the propositions of demographic transition theory. The conclusion notes that despite uncertainty about the future of world population, development, and health, most of the poorest countries have become aware of the desirability of slowing population growth. A broad redefinition of the social role of women will inevitably accompany the worldwide demographic transition.

  5. Numerical solution of a logistic growth model for a population with Allee effect considering fuzzy initial values and fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Amarti, Z.; Nurkholipah, N. S.; Anggriani, N.; Supriatna, A. K.

    2018-03-01

    Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst’s logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.

  6. Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations

    PubMed Central

    Laver, Rebecca J.; Purwandana, Deni; Ariefiandy, Achmad; Imansyah, Jeri; Forsyth, David; Ciofi, Claudio; Jessop, Tim S.

    2012-01-01

    Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species. PMID:23028983

  7. Density-dependence as a size-independent regulatory mechanism.

    PubMed

    de Vladar, Harold P

    2006-01-21

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.

  8. Aridity weakens population-level effects of multiple species interactions on Hibiscus meyeri.

    PubMed

    Louthan, Allison M; Pringle, Robert M; Goheen, Jacob R; Palmer, Todd M; Morris, William F; Doak, Daniel F

    2018-01-16

    Predicting how species' abundances and ranges will shift in response to climate change requires a mechanistic understanding of how multiple factors interact to limit population growth. Both abiotic stress and species interactions can limit populations and potentially set range boundaries, but we have a poor understanding of when and where each is most critical. A commonly cited hypothesis, first proposed by Darwin, posits that abiotic factors (e.g., temperature, precipitation) are stronger determinants of range boundaries in apparently abiotically stressful areas ("stress" indicates abiotic factors that reduce population growth), including desert, polar, or high-elevation environments, whereas species interactions (e.g., herbivory, competition) play a stronger role in apparently less stressful environments. We tested a core tenet of this hypothesis-that population growth rate is more strongly affected by species interactions in less stressful areas-using experimental manipulations of species interactions affecting a common herbaceous plant, Hibiscus meyeri (Malvaceae), across an aridity gradient in a semiarid African savanna. Population growth was more strongly affected by four distinct species interactions (competition with herbaceous and shrubby neighbors, herbivory, and pollination) in less stressful mesic areas than in more stressful arid sites. However, contrary to common assumptions, this effect did not arise because of greater density or diversity of interacting species in less stressful areas, but rather because aridity reduced sensitivity of population growth to these interactions. Our work supports classic predictions about the relative strength of factors regulating population growth across stress gradients, but suggests that this pattern results from a previously unappreciated mechanism that may apply to many species worldwide.

  9. Soviet Marxism and population policy.

    PubMed

    Vonfrank, A

    1984-01-01

    American demographers have maintained that Marxism, notably Soviet Marxism, is consistently pronatalist. The Soviet view is said to be that population growth is not a problem and that birth control policies in either developed or developing societies are to be rejected; the "correct" (i.e., socialist) socioeconomic structure is the true solution to alleged population problems. Such representations of Soviet thought greatly oversimplify the Soviet position as well as fail to discern the changes in Soviet thought that have been occurring. Since the 1960s Soviet writers have increasingly acknowledged that population growth is, to a considerable degree, independent of the economic base of society and that conscious population policies may be needed to either increase or decrease the rate of population growth. Even socialist societies can have population problems. And where population growth is too rapid, as in the developing countries, policies to slow such growth are needed because of the threat to economic development. However, the Soviets continue to stress that birth control policies must go hand-in-hand with social and economic development policies if they are to be effective.

  10. From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework.

    PubMed

    Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine

    2010-05-01

    Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.

  11. Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants.

    PubMed

    Doubková, Pavla; Kohout, Petr; Sudová, Radka

    2013-10-01

    Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant's ability to adapt to nutrient deficiency/excess.

  12. Genetic Diversity in Introduced Populations with an Allee Effect

    PubMed Central

    Wittmann, Meike J.; Gabriel, Wilfried; Metzler, Dirk

    2014-01-01

    A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations. PMID:25009147

  13. An analysis of social consequences of rapid fertility decline in China.

    PubMed

    Liu, Z; Liu, L

    1988-12-01

    Rapid fertility decline in China has brought about 2 direct effects: 1) the natural increase of the population has slowed down, and 2) the age structure has changed from the young to the adult type. These 2 effects have caused a series of economic and social consequences. Rapid fertility decline increases the gross national product per capita and accelerates the improvement of people's lives. Rapid fertility decline slows population growth and speeds up the accumulation of capital and the development of the economy. Since 1981, accumulation growth has exceeded consumption growth. Fertility decline alleviates the enrollment pressure on primary and secondary schools, raises the efficiency of education funds, and promotes the popularization of education. The family planning program strengthens the maternal and child health care and the medical care systems. As the result of economic development, the people's nutritional levels are improving. The physical quality of teenagers has improved steadily. The change in the age structure will alleviate the tension of rapid population growth and benefit population control in the next century. Fertility decline forces the traditional attitude toward childbearing from "more children, more happiness" to improved quality of children. The rapid fertility decline has caused a great deal of concern both inside and outside China about the aging of the population. The labor force, however, will continue to grow for the next 60 years. At present, China's population problems are still those of population growth.

  14. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  15. Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years

    USGS Publications Warehouse

    Wann, Greg; Aldridge, Cameron L.; Braun, Clait E.

    2014-01-01

    Long-term datasets for high-elevation species are rare, and considerable uncertainty exists in understanding how high-elevation populations have responded to recent climate warming. We present estimates of demographic vital rates from a 43-year population study of white-tailed ptarmigan (Lagopus leucura), a species endemic to alpine habitats in western North America. We used capture-recapture models to estimate annual rates of apparent survival, population growth, and recruitment for breeding-age ptarmigan, and we fit winter weather covariates to models in an attempt to explain annual variation. There were no trends in survival over the study period but there was strong support for age and sex effects. The average rate of annual growth suggests a relatively stable breeding-age population ( λ ¯ = 1.036), but there was considerable variation between years for both population growth and recruitment rates. Winter weather covariates only explained a small amount of variation in female survival and were not an important predictor of male survival. Cumulative winter precipitation was found to have a quadratic effect on female survival, with survival being highest during years of average precipitation. Cumulative winter precipitation was positively correlated with population growth and recruitment rates, although this covariate only explained a small amount of annual variation in these rates and there was considerable uncertainty among the models tested. Our results provide evidence for an alpine-endemic population that has not experienced extirpation or drastic declines. However, more information is needed to understand risks and vulnerabilities of warming effects on juveniles as our analysis was confined to determination of vital rates for breeding-age birds.

  16. Critical patch size generated by Allee effect in gypsy moth, Lymantria dispar (L.)

    Treesearch

    E. Vercken; A.M. Kramer; P.C. Tobin; J.M. Drake

    2011-01-01

    Allee effects are important dynamical mechanisms in small-density populations in which per capita population growth rate increases with density. When positive density dependence is sufficiently severe (a 'strong' Allee effect), a critical density arises below which populations do not persist. For spatially distributed populations subject to dispersal, theory...

  17. Targeting the T-Lak cell originated protein kinase by OTS964 shrinks the size of power-law coded heterogeneous glioma stem cell populations

    PubMed Central

    Sugimori, Michiya; Hayakawa, Yumiko; Koh, Masaki; Hayashi, Tomohide; Tamura, Ryoi; Kuroda, Satoshi

    2018-01-01

    Glioblastoma resists chemoradiotherapy, then, recurs to be a fatal space-occupying lesion. The recurrence is caused by re-growing cell populations such as glioma stem cells (GSCs), suggesting that GSC populations should be targeted. This study addressed whether a novel anti-cancer drug, OTS964, an inhibitor for T-LAK cell originated protein kinase (TOPK), is effective in reducing the size of the heterogeneous GSC populations, a power-law coded heterogeneous GSC populations consisting of glioma sphere (GS) clones, by detailing quantitative growth properties. We found that OTS964 killed GS clones while suppressing the growth of surviving GS clones, thus identifying clone-eliminating and growth-disturbing efficacies of OTS964. The efficacies led to a significant size reduction in GS populations in a dose-dependent manner. The surviving GS clones reconstructed GS populations in the following generations; the recovery of GS populations fits a recurrence after the chemotherapy. The recovering GS clones resisted the clone-eliminating effect of OTS964 in sequential exposure during the growth recovery. However, surprisingly, the resistant properties of the recovered-GS clones had been plastically canceled during self-renewal, and then the GS clones had become re-sensitive to OTS964. Thus, OTS964 targets GSCs to eliminate them or suppress their growth, resulting in shrinkage of the power-law coded GSC populations. We propose a therapy focusing on long-term control in recurrence of glioblastoma via reducing the size of the GSC populations by OTS964. PMID:29423027

  18. Targeting the T-Lak cell originated protein kinase by OTS964 shrinks the size of power-law coded heterogeneous glioma stem cell populations.

    PubMed

    Sugimori, Michiya; Hayakawa, Yumiko; Koh, Masaki; Hayashi, Tomohide; Tamura, Ryoi; Kuroda, Satoshi

    2018-01-09

    Glioblastoma resists chemoradiotherapy, then, recurs to be a fatal space-occupying lesion. The recurrence is caused by re-growing cell populations such as glioma stem cells (GSCs), suggesting that GSC populations should be targeted. This study addressed whether a novel anti-cancer drug, OTS964, an inhibitor for T-LAK cell originated protein kinase (TOPK), is effective in reducing the size of the heterogeneous GSC populations, a power-law coded heterogeneous GSC populations consisting of glioma sphere (GS) clones, by detailing quantitative growth properties. We found that OTS964 killed GS clones while suppressing the growth of surviving GS clones, thus identifying clone-eliminating and growth-disturbing efficacies of OTS964. The efficacies led to a significant size reduction in GS populations in a dose-dependent manner. The surviving GS clones reconstructed GS populations in the following generations; the recovery of GS populations fits a recurrence after the chemotherapy. The recovering GS clones resisted the clone-eliminating effect of OTS964 in sequential exposure during the growth recovery. However, surprisingly, the resistant properties of the recovered-GS clones had been plastically canceled during self-renewal, and then the GS clones had become re-sensitive to OTS964. Thus, OTS964 targets GSCs to eliminate them or suppress their growth, resulting in shrinkage of the power-law coded GSC populations. We propose a therapy focusing on long-term control in recurrence of glioblastoma via reducing the size of the GSC populations by OTS964.

  19. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    NASA Astrophysics Data System (ADS)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  20. Energetics of growth and reproduction in a high-tidal population of the clam Ruditapes decussatus from Urdaibai Estuary (Basque Country, N. Spain)

    NASA Astrophysics Data System (ADS)

    Urrutia, M. B.; Ibarrola, I.; Iglesias, J. I. P.; Navarro, E.

    1999-08-01

    Energetics of growth and reproduction were studied in a high-tidal population of the clam Ruditapes decussatus living in the Mundaka Estuary in the Biosphere Reserve of Urdaibai (Basque Country, North Spain). The study included an analysis of growth rings on the shells to establish the growth curve as well as seasonal patterns of growth and body condition, and estimates of the breeding cycle including quantification of the reproductive output and reproductive effort. The simultaneous determination of the seasonal course of metabolism allowed estimates of assimilation, growth efficiency and reproductive costs. Growth rates were consistently lower in this population than in other populations from similar latitudes, and this effect is interpreted in terms of nutritional restrictions caused by the high tidal position of the population. Assimilation rapidly increased from March to July, as a consequence of optimal nutritional conditions and increasing water temperatures. Somatic growth (spring) and gonadal development (early summer) both took place during this period. Negative growth was restricted to the winter and late summer and was associated with poor nutritional conditions (winter) and high rates of metabolic expenditure induced by high temperatures (late summer). Net growth efficiencies (ranging from 27% in 1-y-old to 6% in 7-y-old individuals) ranked among the lowest recorded for populations of marine bivalves. Reduced reproductive-effort values were consistent with the poor growing conditions that appeared to characterise this population of clams.

  1. Han's model parameters for microalgae grown under intermittent illumination: Determined using particle swarm optimization.

    PubMed

    Pozzobon, Victor; Perre, Patrick

    2018-01-21

    This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    PubMed

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Sex-biased hatching order and adaptive population divergence in a passerine bird.

    PubMed

    Badyaev, Alexander V; Hill, Geoffrey E; Beck, Michelle L; Dervan, Anne A; Duckworth, Renee A; McGraw, Kevin J; Nolan, Paul M; Whittingham, Linda A

    2002-01-11

    Most species of birds can lay only one egg per day until a clutch is complete, and the order in which eggs are laid often has strong and sex-specific effects on offspring growth and survival. In two recently established populations of the house finch (Carpodacus mexicanus) in Montana and Alabama, breeding females simultaneously adjusted the sex and growth of offspring in relation to their position in the laying order, thereby reducing the mortality of sons and daughters by 10 to 20% in both environments. We show experimentally that the reduction in mortality is produced by persistent and sex-specific maternal effects on the growth and morphology of offspring. These strong parental effects may have facilitated the rapid adaptive divergence among populations of house finches.

  4. Construction and analysis of a giant gartersnake (Thamnophis gigas) population projection model

    USGS Publications Warehouse

    Rose, Jonathan P.; Ersan, Julia S. M.; Wylie, Glenn D.; Casazza, Michael L.; Halstead, Brian J.

    2018-03-19

    The giant gartersnake (Thamnophis gigas) is a state and federally threatened species precinctive to California. The range of the giant gartersnake has contracted in the last century because its wetland habitat has been drained for agriculture and development. As a result of this habitat alteration, giant gartersnakes now largely persist in and near rice agriculture in the Sacramento Valley, because the system of canals that conveys water for rice growing approximates historical wetland habitat. Many aspects of the demography of giant gartersnakes are unknown, including how individuals grow throughout their life, how size influences reproduction, and how survival varies over time and among populations. We studied giant gartersnakes throughout the Sacramento Valley of California from 1995 to 2016 using capture-mark-recapture to study the growth, reproduction, and survival of this threatened species. We then use these data to construct an Integral Projection Model, and analyze this demographic model to understand which vital rates contribute most to the growth rate of giant gartersnake populations. We find that giant gartersnakes exhibit indeterminate growth; growth slows as individuals’ age. Fecundity, probability of reproduction, and survival all increase with size, although survival may decline for the largest female giant gartersnakes. The population growth rate of giant gartersnakes is most influenced by the survival and growth of large adult females, and the size at which 1 year old recruits enter the population. Our results indicate that management actions benefitting these influential demographic parameters will have the greatest positive effect on giant gartersnake population growth rates, and therefore population persistence. This study informs the conservation and management of giant gartersnakes and their habitat, and illustrates the effectiveness of hierarchical Bayesian models for the study of rare and elusive species.

  5. Population growth and development of Liposcelis pearmani (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    PubMed

    Aminatou, B A; Gautam, S G; Opit, G P; Talley, J; Shakya, K

    2011-08-01

    Psocids of genus Liposcelis are now considered serious pests of stored products. We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis pearmani Lienhard. L. pearmani did not survive at 37.5 and 40.0°C, at all relative humidities tested; at 43% RH, at all temperatures tested; and at 55% RH, at 32.5 and 35°C. The greatest population growth was recorded at 32.5°C and 75% RH (32-fold growth). L. pearmani males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 17, 63, and 20%, respectively. Female L. pearmani have two to five instars, and the percentages of females with two, three, four, and five instars were 5, 39, 55, and 1%, respectively. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. pearmani cannot survive at temperatures >35.0°C; does not thrive at low relative humidities (55%), at temperatures above 25°C; and has a high optimum relative humidity for population growth (75%). Therefore, we expect it to have a more limited distribution compared with other Liposcelis species. These data provide a better understanding of how temperature and RH may influence L. pearmani population dynamics and can be used in population growth models to help develop effective management strategies for this psocid, and to predict its occurrence.

  6. Demographic responses of Pinguicula ionantha to prescribed fire: a regression-design LTRE approach.

    PubMed

    Kesler, Herbert C; Trusty, Jennifer L; Hermann, Sharon M; Guyer, Craig

    2008-06-01

    This study describes the use of periodic matrix analysis and regression-design life table response experiments (LTRE) to investigate the effects of prescribed fire on demographic responses of Pinguicula ionantha, a federally listed plant endemic to the herb bog/savanna community in north Florida. Multi-state mark-recapture models with dead recoveries were used to estimate survival and transition probabilities for over 2,300 individuals in 12 populations of P. ionantha. These estimates were applied to parameterize matrix models used in further analyses. P. ionantha demographics were found to be strongly dependent on prescribed fire events. Periodic matrix models were used to evaluate season of burn (either growing or dormant season) for fire return intervals ranging from 1 to 20 years. Annual growing and biannual dormant season fires maximized population growth rates for this species. A regression design LTRE was used to evaluate the effect of number of days since last fire on population growth. Maximum population growth rates calculated using standard asymptotic analysis were realized shortly following a burn event (<2 years), and a regression design LTRE showed that short-term fire-mediated changes in vital rates translated into observed increases in population growth. The LTRE identified fecundity and individual growth as contributing most to increases in post-fire population growth. Our analyses found that the current four-year prescribed fire return intervals used at the study sites can be significantly shortened to increase the population growth rates of this rare species. Understanding the role of fire frequency and season in creating and maintaining appropriate habitat for this species may aid in the conservation of this and other rare herb bog/savanna inhabitants.

  7. Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems

    USGS Publications Warehouse

    DeAngelis, Donald L.; Ming Ni, Wei; Zhang, Bo

    2016-01-01

    Theoretical models of populations on a system of two connected patches previously have shown that when the two patches differ in maximum growth rate and carrying capacity, and in the limit of high diffusion, conditions exist for which the total population size at equilibrium exceeds that of the ideal free distribution, which predicts that the total population would equal the total carrying capacity of the two patches. However, this result has only been shown for the Pearl-Verhulst growth function on two patches and for a single-parameter growth function in continuous space. Here, we provide a general criterion for total population size to exceed total carrying capacity for three commonly used population growth rates for both heterogeneous continuous and multi-patch heterogeneous landscapes with high population diffusion. We show that a sufficient condition for this situation is that there is a convex positive relationship between the maximum growth rate and the parameter that, by itself or together with the maximum growth rate, determines the carrying capacity, as both vary across a spatial region. This relationship occurs in some biological populations, though not in others, so the result has ecological implications.

  8. Bayesian Modeling of Prion Disease Dynamics in Mule Deer Using Population Monitoring and Capture-Recapture Data

    PubMed Central

    Geremia, Chris; Miller, Michael W.; Hoeting, Jennifer A.; Antolin, Michael F.; Hobbs, N. Thompson

    2015-01-01

    Epidemics of chronic wasting disease (CWD) of North American Cervidae have potential to harm ecosystems and economies. We studied a migratory population of mule deer (Odocoileus hemionus) affected by CWD for at least three decades using a Bayesian framework to integrate matrix population and disease models with long-term monitoring data and detailed process-level studies. We hypothesized CWD prevalence would be stable or increase between two observation periods during the late 1990s and after 2010, with higher CWD prevalence making deer population decline more likely. The weight of evidence suggested a reduction in the CWD outbreak over time, perhaps in response to intervening harvest-mediated population reductions. Disease effects on deer population growth under current conditions were subtle with a 72% chance that CWD depressed population growth. With CWD, we forecasted a growth rate near one and largely stable deer population. Disease effects appear to be moderated by timing of infection, prolonged disease course, and locally variable infection. Long-term outcomes will depend heavily on whether current conditions hold and high prevalence remains a localized phenomenon. PMID:26509806

  9. Trading Population for Productivity: Theory and Evidence

    PubMed Central

    Galor, Oded; Mountford, Andrew

    2013-01-01

    This research argues that the differential effect of international trade on the demand for human capital across countries has been a major determinant of the distribution of income and population across the globe. In developed countries the gains from trade have been directed towards investment in education and growth in income per capita, whereas a significant portion of these gains in less developed economies have been channeled towards population growth. Cross-country regressions establish that indeed trade has positive effects on fertility and negative effects on education in non-OECD economies, while inducing fertility decline and human capital formation in OECD economies. PMID:25089061

  10. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  11. Increased natural mortality at low abundance can generate an Allee effect in a marine fish.

    PubMed

    Kuparinen, Anna; Hutchings, Jeffrey A

    2014-10-01

    Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite-a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.

  12. Altitudinal variation in age and body size in Yunnan pond frog (Pelophylax pleuraden).

    PubMed

    Lou, Shang Ling; Jin, Long; Liu, Yan Hong; Mi, Zhi Ping; Tao, Gang; Tang, Yu Mei; Liao, Wen Bo

    2012-08-01

    Large-scale systematic patterns of body size are a basic concern of evolutionary biology. Identifying body size variation along altitudinal gradients may help us to understand the evolution of life history of animals. In this study, we investigated altitudinal variation in body size, age and growth rate in Chinese endemic frog, Pelophylax pleuraden. Data sampled from five populations covering an altitudinal span of 1413 to 1935 m in Sichuan province revealed that body size from five populations did not co-vary with altitudes, not following Bergmann's rule. Average adult SVL differed significantly among populations in males, but not in females. For both sexes, average adult age differed significantly among populations. Post-metamorphic growth rate did not co-vary with altitude, and females grew faster than males in all populations. When controlling the effect of age, body size did not differ among populations in both sexes, suggesting that age did not affect variation in body size among populations. For females, there may be other factors, such as the allocation of energy between growth and reproduction, that eliminated the effect of age on body size. To our minds, the major reason of body size variation among populations in male frogs may be related to individual longevity. Our findings also suggest that factors other than age and growth rate may contribute to size differences among populations.

  13. Human population growth and temperature increase along with the increase in urbanisation, motor vehicle numbers and green area amount in the sample of Erzurum city, Turkey.

    PubMed

    Yilmaz, Sevgi; Toy, Süleyman; Demircioglu Yildiz, Nalan; Yilmaz, Hasan

    2009-01-01

    In the study, main purpose was to determine the effect of population growth along with the increase in urbanisation, motor vehicle use and green area amount on the temperature values using a 55-year data set in Erzurum, which is hardly industrialised, and one of the coldest cities with highest elevation in Turkey. Although the semi-decadal increases, means of which are 0.1 degrees C for mean, minimum and maximum temperatures, are not clear enough to make a strong comment even in the lights of figures or tables, it was found as the result of the statistical analysis that population growth and increases in the number of vehicles, the number of buildings and the green area amount in the city have no significant effect on mean temperatures. However, the relationships between population growth and maximum temperature; and the number of vehicles and minimum temperature were found to be statistically significant.

  14. Population growth, interest rate, and housing tax in the transitional China

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Wen, Xing-Chun

    2017-03-01

    This paper combines and develops the models in Lastrapes (2002) and Mankiw and Weil (1989), which enables us to analyze the effects of interest rate and population growth shocks on housing price in one integrated framework. Based on this model, we carry out policy simulations to examine whether the housing (stock or flow) tax reduces the housing price fluctuations caused by interest rate or population growth shocks. Simulation results imply that the choice of housing tax tools depends on the kind of shock that housing market faces. In the situation where the housing price volatility is caused by the population growth shock, the flow tax can reduce the volatility of housing price while the stock tax makes no difference to it. If the shock is resulting from the interest rate, the policy maker should not impose any kind of the housing taxes. Furthermore, the effect of one kind of the housing tax can be strengthened by that of the other type of housing tax.

  15. Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris)

    Treesearch

    Chelcy R. Ford; Emily S. Minor; Gordon A. Fox

    2010-01-01

    We investigated the effect of fire and fire frequency on stand structure and longleaf pine (Pinus palustris P. Mill.) growth and population demography in an experimental research area in a southwest Florida sandhill community. Data were collected from replicated plots that had prescribed fire-return intervals of 1, 2, 5, or 7 years or were left...

  16. Staphylococci in Competition1

    PubMed Central

    Peterson, A. C.; Black, J. J.; Gunderson, M. F.

    1962-01-01

    In studies carried on in bacteriological media with selected cultures, definite repressive effects were noted on the growth of the Staphylococcus population by a mixture of saprophytic, psychrophilic bacterial species. This repressive effect became more pronounced as the relative proportion of the bacterial population which was staphylococcal became smaller. A varied saprophytic bacterial flora of some numbers apparently would offer definite protection to foods through repression of staphylococcal growth and by rendering the food inedible before the rise of appreciable numbers of staphylococci. It would appear that at the optimal temperature for staphylococcal growth, staphylococci could multiply rapidly in the mixed population due to the comparative shortness of the generation time of this species and because of the lengthened lag phase of the saprophytic bacterial species at this elevated temperature, especially when only cultures having psychrophilic characteristics were present. This temperature is substantially above that encountered in practical experience. With the passage of time, the staphylococcal population was completely overgrown by the saprohytes present. This effect might be eliminated in the presence of psychrophilic and mesophilic, saprophytic species. The repressive effect of competition by saprophytic, psychrophilic organisms is extremely effective up to room temperature on the staphylococcal population. Even when significant staphylococcal populations were achieved in the artificial media, such tremendous numbers of saprophytes were obtained either earlier or at the same time so that a frozen food containing this population would be organoleptically unacceptable due to the degradative action of enzymes from the saprophytic psychrophile population. PMID:14485778

  17. The role of density-dependent individual growth in the persistence of freshwater salmonid populations.

    PubMed

    Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A

    2008-06-01

    Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.

  18. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  19. Diffusion, Absorbing States, and Nonequilibrium Phase Transitions in Range Expansions and Evolution

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim Olegovich

    The spatial organization of a population plays a key role in its evolutionary dynamics and growth. In this thesis, we study the dynamics of range expansions, in which populations expand into new territory. Focussing on microbes, we first consider how nutrients diffuse and are absorbed in a population, allowing it to grow. These nutrients may be absorbed before reaching the population interior, and this "nutrient shielding'' can confine the growth to a thin region on the population periphery. A thin population front implies a small local effective population size and enhanced number fluctuations (or genetic drift). We then study evolutionary dynamics under these growth conditions. In particular, we calculate the survival probability of mutations with a selective advantage occurring at the population front for two-dimensional expansions (e.g., along the surface of an agar plate), and three-dimensional expansions (e.g., an avascular tumor). We also consider the effects of irreversible, deleterious mutations which can lead to the loss of the advantageous mutation in the population via a "mutational meltdown,'' or non-equilibrium phase transition. We examine the effects of an inflating population frontier on the phase transition. Finally, we discuss how spatial dimension and frontier roughness influence range expansions of mutualistic, cross-feeding variants. We find here universal features of the phase diagram describing the onset of a mutualistic phase in which the variants remain mixed at long times.

  20. The evolutionary and behavioral modification of consumer responses to environmental change.

    PubMed

    Abrams, Peter A

    2014-02-21

    How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.

  1. Trans-generational influences of sulfamethoxazole on lifespan, reproduction and population growth of Caenorhabditis elegans.

    PubMed

    Yu, Zhenyang; Sun, Guohua; Liu, Yanjun; Yin, Daqiang; Zhang, Jing

    2017-01-01

    Trans-generational effects are increasingly used to indicate long-term influences of environmental pollutants. However, such studies can be complex and yield inconclusive results. In this study, the trans-generational effects of sulfamethoxazole (SMX) on Caenorhabditis elegans on lifespan, reproduction and population growth were tested for 7 consecutive generations, which included gestating generation (F0), embryo-exposed generation (F1), germline-exposed generation (F2), the first non-exposed generation (F3) and the three following generations (F4-F6). Results showed that lifespan was significantly affected by embryo exposure (F1) at 400µm SMX with a value as low as 47% of the control. The reproduction (a total brood size as 49% of the control) and population growth (81% of the control) were significantly affected in germline exposure (F2). Lifespan and reproduction were severely inhibited in non-exposed generations, confirming the real trans-generational effects. Notably, initial reproduction and reproduction duration showed opposite generation-related changes, indicating their interplay in the overall brood size. The population growth rate was well correlated with median lethal time, brood size and initial reproduction, which indicated that the population would increase when the nematodes lived longer and reproduced more offspring within shorter duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effects of yearling, juvenile and adult survival on reef manta ray (Manta alfredi) demography

    PubMed Central

    van der Ouderaa, Isabelle B.C.; Tibiriçá, Yara

    2016-01-01

    Background The trade in manta ray gill plates has considerably increased over the last two decades. The resulting increases in ray mortality, in addition to mortality caused by by-catch, has caused many ray populations to decrease in size. The aim of this study was to ascertain how yearling and juvenile growth and survival, and adult survival and reproduction affect reef manta ray (Manta alfredi) population change, to increase our understanding of manta ray demography and thereby improve conservation research and measures for these fish. Methods We developed a population projection model for reef manta rays, and used published life history data on yearling and juvenile growth and adult reproduction to parameterise the model. Because little is known about reef manta ray yearling and juvenile survival, we conducted our analyses using a range of plausible survival rate values for yearlings, juveniles and adults. Results The model accurately captured observed variation in population growth rate, lifetime reproductive success and cohort generation time in different reef manta ray populations. Our demographic analyses revealed a range of population consequences in response to variation in demographic rates. For example, an increase in yearling or adult survival rates always elicited greater responses in population growth rate, lifetime reproductive success and cohort generation time than the same increase in juvenile survival rate. The population growth rate increased linearly, but lifetime reproductive success and cohort generation time increased at an accelerating rate with increasing yearling or adult survival rates. Hence, even a small increase in survival rate could increase lifetime reproductive success by one pup, and cohort generation time by several years. Elasticity analyses revealed that, depending on survival rate values of all life stages, the population growth rate is either most sensitive to changes in the rate with which juveniles survive but stay juveniles (i.e., do not mature into adults) or to changes in adult survival rate. However, when assessing these results against estimates on population growth and adult survival rates for populations off the coasts of Mozambique and Japan, we found that the population growth rate is predicted to be always most sensitive to changes in the adult survival rate. Discussion It is important to gain an in-depth understanding of reef manta ray life histories, particularly of yearling and adult survival rates, as these can influence reef manta ray population dynamics in a variety of ways. For declining populations in particular, it is crucial to know which life stage should be targeted for their conservation. For one such declining population off the coast of Mozambique, adult annual survival rate has the greatest effect on population growth, and by increasing adult survival by protecting adult aggregation sites, this population’s decline could be halted or even reversed. PMID:27635337

  3. Bayesian Inference on the Effect of Density Dependence and Weather on a Guanaco Population from Chile

    PubMed Central

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E.; Colchero, Fernando

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510

  4. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile.

    PubMed

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E; Colchero, Fernando

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation.

  5. Effects of elevated mean and extremely high temperatures on the physio-ecological characteristics of geographically distinctive populations of Cunninghamia lanceolata

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin

    2016-12-01

    Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.

  6. Population Growth: Family Planning Programs.

    ERIC Educational Resources Information Center

    Doberenz, Alexander R., Ed.; Taylor, N. Burwell G., Ed.

    These proceedings of the second annual symposium on population growth bring together speeches and panel discussions on family planning programs. Titles of speeches delivered are: Communicating Family Planning (Mrs. Jean Hutchinson); Effects of New York's Abortion Law Change (Dr. Walter Rogers); The Law and Birth Control, Sterilization and Abortion…

  7. Inheritable copper tolerance in the chlorophyte macroalga Enteromorpha intestinalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, S.; Williams, P.; Donkin, M.

    1995-12-31

    A study was carried out to determine if a population of Enteromorpha intestinalis, from a metal polluted site, exhibited copper tolerance. This work was in preparation for investigating stress protein patterns in copper tolerant and sensitive populations. The effects of copper on growth of E. intestinalis from three clean and one metal polluted site were compared. Growth was assessed by incubating thallus sections in a range of copper solutions and measuring increase in length. Offspring were cultured from clean and polluted sites and the effects of copper on their growth assessed, to determine if any tolerance was inheritable. Concentrations ofmore » the trace metals; copper, zinc and manganese in the populations were also determined. Over the range of copper concentrations tested (0--150 {micro}g/i), growth of the polluted site populations was not significantly affected (P > 0.05). However growth of the clean site populations was significantly depressed by exposure to 50 {micro}g/l. This pattern of response was also exhibited by the offspring. Trace metal concentrations in the clean site populations were very similar, however the polluted site population contained {sup {minus}}10 times the control site values of manganese and {approximately}35 times the values of zinc and copper. The results suggest that the polluted site population of E. intestinalis has developed a degree of copper tolerance which appears to have a genetic basis. This investigation is consistent with previous work into copper tolerance in ship-fouling populations of E. intestinalis var. compressa. A commercially available HSP70 antibody with a high degree of cross-reactivity to E. intestinalis has been identified and used to screen samples of the seaweed from the aforementioned populations.« less

  8. Variation in the local population dynamics of the short-lived Opuntia macrorhiza (Cactaceae).

    PubMed

    Haridas, C V; Keeler, Kathleen H; Tenhumberg, Brigitte

    2015-03-01

    Spatiotemporal variation in demographic rates can have profound effects for population persistence, especially for dispersal-limited species living in fragmented landscapes. Long-term studies of plants in such habitats help with understanding the impacts of fragmentation on population persistence but such studies are rare. In this work, we reanalyzed demographic data from seven years of the short-lived cactus Opuntia macrorhiza var. macrorhiza at five plots in Boulder, Colorado. Previous work combining data from all years and all plots predicted a stable population (deterministic log lamda approximately 0). This approach assumed that all five plots were part of a single population. Since the plots were located in a suburban-agricultural interface separated by highways, grazing lands, and other barriers, and O. macrorhiza is likely dispersal limited, we analyzed the dynamics of each plot separately using stochastic matrix models assuming each plot represented a separate population. We found that the stochastic population growth rate log lamdaS varied widely between populations (log lamdaS = 0.1497, 0.0774, -0.0230, -0.2576, -0.4989). The three populations with the highest growth rates were located close together in space, while the two most isolated populations had the lowest growth rates suggesting that dispersal between populations is critical for the population viability of O. macrorhiza. With one exception, both our prospective (stochastic elasticity) and retrospective (stochastic life table response experiments) analysis suggested that means of stasis and growth, especially of smaller plants, were most important for population growth rate. This is surprising because recruitment is typically the most important vital rate in a short-lived species such as O. macrorhiza. We found that elasticity to the variance was mostly negligible, suggesting that O. macrorhiza populations are buffered against large temporal variation. Finally, single-year elasticities to means of transitions to the smallest stage (mostly due to reproduction) and growth differed considerably from their long-term elasticities. It is important to be aware of this difference when using models to predict the effect of manipulating plant vital rates within the time frame of typical plant demographic studies.

  9. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    PubMed

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  10. Urban Ecology: Patterns of Population Growth and Ecological Effects

    Treesearch

    Wayne C. Zipperer; Steward T.A. Pickett

    2012-01-01

    Currently, over 50% of the world’s population lives in urban areas. By 2050, this estimate is expected to be 70%. This urban growth, however, is not uniformly distributed around the world. The majority of it will occur in developing nations and create megacities whose populations exceed at least 10 million people. Not all urban areas, however, are growing. Some are...

  11. Linking resources with demography to understand resource limitation for bears

    USGS Publications Warehouse

    Reynolds-Hogland, M. J.; Pacifici, L.B.; Mitchell, M.S.

    2007-01-01

    1. Identifying the resources that limit growth of animal populations is essential for effective conservation; however, resource limitation is difficult to quantify. Recent advances in geographical information systems (GIS) and resource modelling can be combined with demographic modelling to yield insights into resource limitation. 2. Using long-term data on a population of black bears Ursus americanus, we evaluated competing hypotheses about whether availability of hard mast (acorns and nuts) or soft mast (fleshy fruits) limited bears in the southern Appalachians, USA, during 1981-2002. The effects of clearcutting on habitat quality were also evaluated. Annual survival, recruitment and population growth rate were estimated using capture-recapture data from 101 females. The availability of hard mast, soft mast and clearcuts was estimated with a GIS, as each changed through time as a result of harvest and succession, and then availabilities were incorporated as covariates for each demographic parameter. 3. The model with the additive availability of hard mast and soft mast across the landscape predicted survival and population growth rate. Availability of young clearcuts predicted recruitment, but not population growth or survival. 4. Availability of hard mast stands across the landscape and availability of soft mast across the landscape were more important than hard mast production and availability of soft mast in young clearcuts, respectively. 5. Synthesis and applications. Our results indicate that older stands, which support high levels of hard mast and moderate levels of soft mast, should be maintained to sustain population growth of bears in the southern Appalachians. Simultaneously, the acreage of intermediate aged stands (10-25 years), which support very low levels of both hard mast and soft mast, should be minimized. The approach used in this study has broad application for wildlife management and conservation. State and federal wildlife agencies often possess long-term data on both resource availability and capture-recapture for wild populations. Combined, these two data types can be used to estimate survival, recruitment, population growth, elasticities of vital rates and the effects of resource availability on demographic parameters. Hence data that are traditionally used to understand population trends can be used to evaluate how and why demography changes over time. ?? 2007 The Authors.

  12. In situ reproduction, abundance, and growth of young-of-year and adult largemouth bass in a population exposed to polychlorinated biphenyls.

    PubMed

    Reiser, Dudley W; Greenberg, Emily S; Helser, Thomas E; Branton, Margaret; Jenkins, Kenneth D

    2004-07-01

    We conducted a two-year field study (2000-2001) in the Housatonic River, Massachusetts (USA) to determine if we could detect in situ population-level effects on largemouth bass (Micropterus salmoides) exposed to elevated levels of polychlorinated biphenyls (PCBs). Calculated whole-body PCB concentrations in adult bass in 2002 averaged 121 mg/kg (range = 34-556 mg/kg). Polychlorinated biphenyl concentrations in young-of-year (YOY) composites in 2000 and 2002 averaged 28 mg/kg (range = 21-41 mg/kg) and 19 mg/kg (range = 16-24 mg/kg), respectively. Laboratory studies of fish have reported PCB toxicity at exposure levels below and within the range of those found in the Housatonic River. We evaluated five field-derived metrics: reproductive activity, relative abundance of YOY, YOY growth rates, adult growth, and adult condition to determine whether we could detect effects of PCBs in the largemouth bass population. These computed metrics, when compared with data sets assembled for numerous largemouth bass populations in North America, provided no evidence of population-level impairment. Results of this study suggest that PCB tissue concentrations associated with effects in laboratory studies do not necessarily translate to detectable effects on largemouth bass populations in their natural environment.

  13. Demographic change and carbon dioxide emissions.

    PubMed

    O'Neill, Brian C; Liddle, Brant; Jiang, Leiwen; Smith, Kirk R; Pachauri, Shonali; Dalton, Michael; Fuchs, Regina

    2012-07-14

    Relations between demographic change and emissions of the major greenhouse gas carbon dioxide (CO(2)) have been studied from different perspectives, but most projections of future emissions only partly take demographic influences into account. We review two types of evidence for how CO(2) emissions from the use of fossil fuels are affected by demographic factors such as population growth or decline, ageing, urbanisation, and changes in household size. First, empirical analyses of historical trends tend to show that CO(2) emissions from energy use respond almost proportionately to changes in population size and that ageing and urbanisation have less than proportional but statistically significant effects. Second, scenario analyses show that alternative population growth paths could have substantial effects on global emissions of CO(2) several decades from now, and that ageing and urbanisation can have important effects in particular world regions. These results imply that policies that slow population growth would probably also have climate-related benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Early environment and recruitment of black brant (Branta bernicla nigricans) into the breeding population

    USGS Publications Warehouse

    Sedinger, James S.; Herzog, Mark P.; Ward, David H.

    2004-01-01

    In geese, growth regulates survival in the first year. We examined whether early growth, which is primarily governed by environmental conditions, also affects the probability that individuals that survive their first year enter the breeding population. We used logistic regression on a sample of Black Brant (Branta bernicla nigricans) that were weighed at a known age in their first summer and observed during winter (indicating that they had survived the principal mortality period in their first year) to study whether early growth influenced the probability that those individuals would be recruited into the breeding population. We also examined the effects of cohort (1986-1996), sex, age when measured, and area where individuals were reared. The model with the lowest Akaike's Information Criterion score contained body mass, age (days) at measurement, cohort, sex, and brood-rearing area. Models that included variable mass had 85% of the cumulative model weight of the models we considered, indicating that gosling mass had a substantial effect on probability of them entering the breeding population. Females were more likely to be detected breeding than males, which is consistent with the differential fidelity of the sexes. Of individuals that survived the first year, larger goslings were more likely to become breeders. More recent cohorts were less likely to have been detected as breeders. Our findings indicate that environment during the growth period affects the ability of individuals to enter the breeding population, even after accounting for the effects of growth on survival.

  15. Physiological, Behavioral and Maternal Factors That Contribute to Size Variation in Larval Amphibian Populations

    PubMed Central

    Warne, Robin W.; Kardon, Adam; Crespi, Erica J.

    2013-01-01

    Size variance among similarly aged individuals within populations is a pattern common to many organisms that is a result of interactions between intrinsic and extrinsic traits of individuals. While genetic and maternal effects, as well as physiological and behavioral traits have been shown to contribute to size variation in animal populations, teasing apart the influence of such factors on individual growth rates remain a challenge. Furthermore, tracing the effects of these interactions across life stages and in shaping adult phenotypes also requires further exploration. In this study we investigated the relationship between genetics, hatching patterns, behaviors, neuroendocrine stress axis activity and variance in growth and metamorphosis among same-aged larval amphibians. Through parallel experiments we found that in the absence of conspecific interactions, hatch time and to a lesser extent egg clutch identity (i.e. genetics and maternal effects) influenced the propensity for growth and development in individual tadpoles and determined metamorphic traits. Within experimental groups we found that variance in growth rates was associated with size-dependent foraging behaviors and responses to food restriction. We also found an inverse relationship between glucocorticoid (GC) hormone levels and body mass and developmental stage among group-reared tadpoles, which suggests that GC expression plays a role in regulating differing within-population growth trajectories in response to density-dependent conditions. Taken together these findings suggest that factors that influence hatching conditions can have long-term effects on growth and development. These results also raise compelling questions regarding the extent to which maternal and genetic factors influence physiological and behavioral profiles in amphibians. PMID:24143188

  16. Manual on Cost-Effectiveness of Training Modalities in Population Education. Population Education Programme Service Series.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This manual is the result of a regional training workshop on the cost-effectiveness of different training strategies in population education by Unesco in Kathmandu, Nepal, June 1-8, 1987. The purpose of the manual is to enable project staff to initiate studies to determine cost-effective training strategies in population growth control education.…

  17. The effects of population growth on timber management and inventories in Virginia

    Treesearch

    David N. Wear; Rei Liu; J. Michael Foreman; Raymond M. Sheffield

    1999-01-01

    Expanding human populations may have important effects on the availability of timber from private lands in the South. To examine the effects of development on timber supply, the authors compared the density of populations and various site variables with expert opinions on the future location of commercial timberland for a study site in Virginia. Population density is a...

  18. Considering transient population dynamics in the conservation of slow life-history species: An application to the sandhill crane

    USGS Publications Warehouse

    Gerber, Brian D.; Kendall, William L.

    2016-01-01

    The importance of transient dynamics of structured populations is increasingly recognized in ecology, yet these implications are not largely considered in conservation practices. We investigate transient and long-term population dynamics to demonstrate the process and utility of incorporating transient dynamics into conservation research and to better understand the population management of slow life-history species; these species can be theoretically highly sensitive to short- and long-term transient effects. We are specifically interested in the effects of anthropogenic removal of individuals from populations, such as caused by harvest, poaching, translocation, or incidental take. We use the sandhill crane (Grus canadensis) as an exemplar species; it is long-lived, has low reproduction, late maturity, and multiple populations are subject to sport harvest. We found sandhill cranes to have extremely high potential, but low likelihood for transient dynamics, even when the population is being harvested. The typically low population growth rate of slow life-history species appears to buffer against many perturbations causing large transient effects. Transient dynamics will dominate population trajectories of these species when stage structures are highly biased towards the younger and non-reproducing individuals, a situation that may be rare in established populations of long-lived animals. However, short-term transient population growth can be highly sensitive to vital rates that are relatively insensitive under equilibrium, suggesting that stage structure should be known if perturbation analysis is used to identify effective conservation strategies. For populations of slow life-history species that are not prone to large perturbations to their most productive individuals, population growth may be approximated by equilibrium dynamics.

  19. Effects of an invasive plant on population dynamics in toads.

    PubMed

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  20. The role of predation and food limitation on claims for compensation, reindeer demography and population dynamics

    PubMed Central

    Tveraa, Torkild; Stien, Audun; Brøseth, Henrik; Yoccoz, Nigel G

    2014-01-01

    A major challenge in biodiversity conservation is to facilitate viable populations of large apex predators in ecosystems where they were recently driven to ecological extinction due to resource conflict with humans. Monetary compensation for losses of livestock due to predation is currently a key instrument to encourage human–carnivore coexistence. However, a lack of quantitative estimates of livestock losses due to predation leads to disagreement over the practice of compensation payments. This disagreement sustains the human–carnivore conflict. The level of depredation on year-round, free-ranging, semi-domestic reindeer by large carnivores in Fennoscandia has been widely debated over several decades. In Norway, the reindeer herders claim that lynx and wolverine cause losses of tens of thousands of animals annually and cause negative population growth in herds. Conversely, previous research has suggested that monetary predator compensation can result in positive population growth in the husbandry, with cascading negative effects of high grazer densities on the biodiversity in tundra ecosystems. We utilized a long-term, large-scale data set to estimate the relative importance of lynx and wolverine predation and density-dependent and climatic food limitation on claims for losses, recruitment and population growth rates in Norwegian reindeer husbandry. Claims of losses increased with increasing predator densities, but with no detectable effect on population growth rates. Density-dependent and climatic effects on claims of losses, recruitment and population growth rates were much stronger than the effects of variation in lynx and wolverine densities. Synthesis and applications. Our analysis provides a quantitative basis for predator compensation and estimation of the costs of reintroducing lynx and wolverine in areas with free-ranging semi-domestic reindeer. We outline a potential path for conflict management which involves adaptive monitoring programmes, open access to data, herder involvement and development of management strategy evaluation (MSE) models to disentangle complex responses including multiple stakeholders and individual harvester decisions. PMID:25558085

  1. The Educational Effects of Rapid Rural Population Growth.

    ERIC Educational Resources Information Center

    Ross, Peggy J.; Green, Bernal L.

    Rapid population growth in rural areas has confronted rural communities and particularly rural educational systems with a number of problems. Sudden, large increases in students crowd school facilities and strain budgets. The different values, attitudes, and orientations toward education of the newcomers act as a catalyst for changes and can cause…

  2. Socio-Demographic Determinants of Economic Growth: Age-Structure, Preindustrial Heritage and Sociolinguistic Integration

    ERIC Educational Resources Information Center

    Crenshaw, Edward; Robison, Kristopher

    2010-01-01

    This study establishes a socio-demographic theory of international development derived from selected classical and contemporary sociological theories. Four hypotheses are tested: (1. population growth's effect on development depends on age-structure; (2. historic population density (used here as an indicator of preindustrial social complexity)…

  3. Prediction of microbial growth in fresh-cut vegetables treated with acidic electrolyzed water during storage under various temperature conditions.

    PubMed

    Koseki, S; Itoh, K

    2001-12-01

    Effects of storage temperature (1, 5, and 10 degrees C) on growth of microbial populations (total aerobic bacteria, coliform bacteria, Bacillus cereus, and psychrotrophic bacteria) on acidic electrolyzed water (AcEW)-treated fresh-cut lettuce and cabbage were determined. A modified Gompertz function was used to describe the kinetics of microbial growth. Growth data were analyzed using regression analysis to generate "best-fit" modified Gompertz equations, which were subsequently used to calculate lag time, exponential growth rate, and generation time. The data indicated that the growth kinetics of each bacterium were dependent on storage temperature, except at 1 degrees C storage. At 1 degrees C storage, no increases were observed in bacterial populations. Treatment of vegetables with AcEW produced a decrease in initial microbial populations. However, subsequent growth rates were higher than on nontreated vegetables. The recovery time required by the reduced microbial population to reach the initial (treated with tap water [TW]) population was also determined in this study, with the recovery time of the microbial population at 10 degrees C being <3 days. The benefits of reducing the initial microbial populations on fresh-cut vegetables were greatly affected by storage temperature. Results from this study could be used to predict microbial quality of fresh-cut lettuce and cabbage throughout their distribution.

  4. Allee effect and the uncertainty of population recovery.

    PubMed

    Kuparinen, Anna; Keith, David M; Hutchings, Jeffrey A

    2014-06-01

    Recovery of depleted populations is fundamentally important for conservation biology and sustainable resource harvesting. At low abundance, population growth rate, a primary determinant of population recovery, is generally assumed to be relatively fast because competition is low (i.e., negative density dependence). But population growth can be limited in small populations by an Allee effect. This is particularly relevant for collapsed populations or species that have not recovered despite large reductions in, or elimination of, threats. We investigated how an Allee effect can influence the dynamics of recovery. We used Atlantic cod (Gadus morhua) as the study organism and an empirically quantified Allee effect for the species to parameterize our simulations. We simulated recovery through an individual-based mechanistic simulation model and then compared recovery among scenarios incorporating an Allee effect, negative density dependence, and an intermediate scenario. Although an Allee effect significantly slowed recovery, such that population increase could be negligible even after 100 years or more, it also made the time required for biomass rebuilding much less predictable. Our finding that an Allee effect greatly increased the uncertainty in recovery time frames provides an empirically based explanation for why the removal of threat does not always result in the recovery of depleted populations or species. © 2014 Society for Conservation Biology.

  5. AIDS and population "control".

    PubMed

    Piel, G

    1994-02-01

    Many people believe that the AIDS pandemic will end the population explosion, especially in Africa, where population growth is very high and poverty reigns. Africans make up 10 million of all 15 million HIV- infected persons worldwide. Yet, the proposition that AIDS will sole population explosion does not stand up to reason. About 200 million people in Africa will be HIV infected by 2010, but the loss of 200 million people would not slow population growth. The 14th century's Black Death killed more than 50% of the European population, but by 1750 Europe had reached the population size it would have reached without the Black Death. The 200 million people who died violent deaths between the start and end of the two World Wars did not stop world population growth from peaking in 1970 at about 2%. When Malthus made his prediction that human population would crash, the industrial revolution had already helped production outrun population growth. Today all industrial countries are either at or near zero population growth and have completed the demographic transition (from near zero growth in 1600 with high births and death rates and a 25-year life expectancy, to near zero growth in 1990s at low death and birth rates with a 75-year life expectancy). Mass education, sanitation, primary medicine, and the green revolution have already reduced death rates and increased life expectancy in developing countries. Thus, they have entered the first phase of the demographic transition. Some developing countries are in the second phase; birth rate decline For example, in India and China, fertility has fallen from 6 to 4 in India and is at 2.3 in China. The AIDS pandemic is a diversion of physical and human resources from helping developing countries pass through the demographic transition more quickly to achieve sustainable development. This delay is likely to effect a larger maximum population. The industrial revolution has shifted the key to stopping population growth the people dying to people living.

  6. THE IMPACT OF HISPANIC POPULATION GROWTH ON THE OUTLOOK OF AFRICAN AMERICANS

    PubMed Central

    Taylor, Marylee C.; Schroeder, Matthew B.

    2014-01-01

    We know too little about the effects of immigration on black Americans. If prior research yields mixed evidence about immigration’s consequences for the objective well-being of African Americans, it is silent about effects of immigration on blacks’ subjective well-being. To fill that void, this paper assesses the impact of the expanding Hispanic population on black Americans from a social psychological perspective. We ask whether blacks’ self-reported distress, social distrust, or attitudes toward Hispanics and immigrants are affected by the size of the local Hispanic population or by the percentage growth in local Hispanic residents. Answers come from responses of non-Hispanic black participants in the 1998–2002 General Social Surveys, linked to 1990 and 2000 census data. Contrary to pessimistic claims, most social psychological outcomes, including measures of economic distress, manifest no impact of local Hispanic numbers. The four exceptions, significant effects of local Hispanic population share or percentage growth evenly split in valence, underscore the complexity of recent immigration’s effects on African Americans. PMID:25242830

  7. A Gompertz population model with Allee effect and fuzzy initial values

    NASA Astrophysics Data System (ADS)

    Amarti, Zenia; Nurkholipah, Nenden Siti; Anggriani, Nursanti; Supriatna, Asep K.

    2018-03-01

    Growth and population dynamics models are important tools used in preparing a good management for society to predict the future of population or species. This has been done by various known methods, one among them is by developing a mathematical model that describes population growth. Models are usually formed into differential equations or systems of differential equations, depending on the complexity of the underlying properties of the population. One example of biological complexity is Allee effect. It is a phenomenon showing a high correlation between very small population size and the mean individual fitness of the population. In this paper the population growth model used is the Gompertz equation model by considering the Allee effect on the population. We explore the properties of the solution to the model numerically using the Runge-Kutta method. Further exploration is done via fuzzy theoretical approach to accommodate uncertainty of the initial values of the model. It is known that an initial value greater than the Allee threshold will cause the solution rises towards carrying capacity asymptotically. However, an initial value smaller than the Allee threshold will cause the solution decreases towards zero asymptotically, which means the population is eventually extinct. Numerical solutions show that modeling uncertain initial value of the critical point A (the Allee threshold) with a crisp initial value could cause the extinction of population of a certain possibilistic degree, depending on the predetermined membership function of the initial value.

  8. The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions

    Treesearch

    Patrick C. Tobin; Christelle Robinet; Derek M. Johnson; Stefanie L. Whitmire; Ottar N. Bjornstad; Andrew M. Liebhold

    2009-01-01

    Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range...

  9. Population ecology of insect invasions and their management

    Treesearch

    Andrew M. Liebhold; Patrick C. Tobin

    2008-01-01

    During the establishment phase of a biological invasion, population dynamics are strongly influenced by Allee effects and stochastic dynamics, both of which may lead to extinction of low-density populations. Allee effects refer to a decline in population growth rate with a decline in abundance and can arise from various mechanisms. Strategies to eradicate newly...

  10. On valuing patches: Estimating contributions to metapopulation growth with reverse-time capture-recapture modelling

    USGS Publications Warehouse

    Sanderlin, J.S.; Waser, P.M.; Hines, J.E.; Nichols, J.D.

    2012-01-01

    Metapopulation ecology has historically been rich in theory, yet analytical approaches for inferring demographic relationships among local populations have been few. We show how reverse-time multi-state capture-recapture models can be used to estimate the importance of local recruitment and interpopulation dispersal to metapopulation growth. We use 'contribution metrics' to infer demographic connectedness among eight local populations of banner-tailed kangaroo rats, to assess their demographic closure, and to investigate sources of variation in these contributions. Using a 7 year dataset, we show that: (i) local populations are relatively independent demographically, and contributions to local population growth via dispersal within the system decline with distance; (ii) growth contributions via local survival and recruitment are greater for adults than juveniles, while contributions involving dispersal are greater for juveniles; (iii) central populations rely more on local recruitment and survival than peripheral populations; (iv) contributions involving dispersal are not clearly related to overall metapopulation density; and (v) estimated contributions from outside the system are unexpectedly large. Our analytical framework can classify metapopulations on a continuum between demographic independence and panmixia, detect hidden population growth contributions, and make inference about other population linkage forms, including rescue effects and source-sink structures. Finally, we discuss differences between demographic and genetic population linkage patterns for our system. ?? 2011 The Royal Society.

  11. Potential misuse of avian density as a conservation metric

    USGS Publications Warehouse

    Skagen, Susan K.; Yackel Adams, Amy A.

    2011-01-01

    Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. ?? 2010 Society for Conservation Biology.

  12. Main drivers of health expenditure growth in China: a decomposition analysis.

    PubMed

    Zhai, Tiemin; Goss, John; Li, Jinjing

    2017-03-09

    In past two decades, health expenditure in China grew at a rate of 11.6% per year, which is much faster than the growth of the country's economy (9.9% per year). As cost containment is a key aspect of China's new health system reform agenda, this study aims to identify the main drivers of past growth so that cost containment policies are focussed in the right areas. The analysis covered the period 1993-2012. To understand the drivers of past growth during this period, Das Gupta's decomposition method was used to decompose the changes in health expenditure by disease into five main components that include population growth, population ageing, disease prevalence rate, expenditure per case of disease, and excess health price inflation. Demographic data on population size and age-composition were obtained from the Department of Economic and Social Affairs of the United Nations. Age- and disease- specific expenditure and prevalence rates by age and disease were extracted from China's National Health Accounts studies and Global Burden of Disease 2013 studies of the Institute for Health Metrics and Evaluation, respectively. Growth in health expenditure in China was mainly driven by a rapid increase in real expenditure per prevalent case, which contributed 8.4 percentage points of the 11.6% annual average growth. Excess health price inflation and population growth contributed 1.3 and 1.3% respectively. The effect of population ageing was relatively small, contributing 0.8% per year. However, reductions in disease prevalence rates reduced the growth rate by 0.3 percentage points. Future policy in optimising growth in health expenditure in China should address growth in expenditure per prevalent case. This is especially so for neoplasms, and for circulatory and respiratory disease. And a focus on effective interventions to reduce the prevalence of disease in the country will ensure that changing disease rates do not lead to a higher growth in future health expenditure; Measures should be taken to strengthen the capacity of health personnel in grass-roots facilities and to establish an effective referral system, so as to reduce the growth in expenditure per case of disease and to ensure that excess health price inflation does not grow out of control.

  13. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  14. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  15. Latitudinal comparisons of walleye growth in North America and factors influencing growth of walleyes in Kansas reservoirs

    USGS Publications Warehouse

    Quist, M.C.; Guy, C.S.; Schultz, R.D.; Stephen, J.L.

    2003-01-01

    We compared the growth of walleyes Stizostedion vitreum in Kansas to that of other populations throughout North America and determined the effects of the abundance of gizzard shad Dorosoma cepedianum and temperature on the growth of walleyes in Kansas reservoirs. Age was estimated from scales and otoliths collected from walleyes (N = 2,072) sampled with gill nets from eight Kansas reservoirs during fall in 1991-1999. Age-0 gizzard shad abundance was indexed based on summer seining information, and temperature data were obtained from the National Oceanic and Atmospheric Administration. Parameter estimates of von Bertalanffy growth models indicated that the growth of walleyes in Kansas was more similar to that of southern latitude populations (e.g., Mississippi and Texas) than to that of northern (e.g., Manitoba, Minnesota and South Dakota) or middle latitude (e.g., Colorado and Iowa) populations. Northern and middle latitude populations had lower mean back-calculated lengths at age 1, lower growth coefficients, and greater longevity than southern and Kansas populations. A relative growth index (RGI; [Lt/Ls ] ?? 100, where Lt is the observed length at age and Ls is the age-specific standard length derived from a pooled von Bertalanffy growth model) and standardized percentile values (percentile values of mean back-calculated lengths at age) indicated that the growth of walleyes in Kansas was above average compared with that of other populations in North America. The annual growth increments of Kansas walleyes were more variable among years than among reservoirs. The growth increments of age-0 and age-1 walleyes were positively related to the catch rates of gizzard shad smaller than 80 mm, whereas the growth of age-2 and age-3 walleyes was inversely related to mean summer air temperature. Our results provide a framework for comparing North American walleye populations, and our proposed RGI provides a simple, easily interpreted index of growth.

  16. Using population models to evaluate management alternatives for Gulf Striped Bass

    USGS Publications Warehouse

    Aspinwall, Alexander P.; Irwin, Elise R.; Lloyd, M. Clint

    2017-01-01

    Interstate management of Gulf Striped Bass Morone saxatilis has involved a thirty-year cooperative effort involving Federal and State agencies in Georgia, Florida and Alabama (Apalachicola-Chattahoochee-Flint Gulf Striped Bass Technical Committee). The Committee has recently focused on developing an adaptive framework for conserving and restoring Gulf Striped Bass in the Apalachicola, Chattahoochee, and Flint River (ACF) system. To evaluate the consequences and tradeoffs among management activities, population models were used to inform management decisions. Stochastic matrix models were constructed with varying recruitment and stocking rates to simulate effects of management alternatives on Gulf Striped Bass population objectives. An age-classified matrix model that incorporated stock fecundity estimates and survival estimates was used to project population growth rate. In addition, combinations of management alternatives (stocking rates, Hydrilla control, harvest regulations) were evaluated with respect to how they influenced Gulf Striped Bass population growth. Annual survival and mortality rates were estimated from catch-curve analysis, while fecundity was estimated and predicted using a linear least squares regression analysis of fish length versus egg number from hatchery brood fish data. Stocking rates and stocked-fish survival rates were estimated from census data. Results indicated that management alternatives could be an effective approach to increasing the Gulf Striped Bass population. Population abundance was greatest under maximum stocking effort, maximum Hydrilla control and a moratorium. Conversely, population abundance was lowest under no stocking, no Hydrilla control and the current harvest regulation. Stocking rates proved to be an effective management strategy; however, low survival estimates of stocked fish (1%) limited the potential for population growth. Hydrilla control increased the survival rate of stocked fish and provided higher estimates of population abundances than maximizing the stocking rate. A change in the current harvest regulation (50% harvest regulation) was not an effective alternative to increasing the Gulf Striped Bass population size. Applying a moratorium to the Gulf Striped Bass fishery increased survival rates from 50% to 74% and resulted in the largest population growth of the individual management alternatives. These results could be used by the Committee to inform management decisions for other populations of Striped Bass in the Gulf Region.

  17. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet.

    PubMed

    McSweeney, C S; Denman, S E

    2007-11-01

    To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.

  18. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.

    PubMed

    Schiavo, S; Oliviero, M; Miglietta, M; Rametta, G; Manzo, S

    2016-04-15

    The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release into the aquatic environment where algae represent the basis of the trophic chain. NP effects upon algae population growth were indeed already reported in literature, but the concurrent effects at cellular and genomic levels are still largely unexplored. Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production and cell viability) of ZnO nanoparticles toward marine microalgae Dunaliella tertiolecta. A comparison at defined population growth inhibition levels (i.e. 50% Effect Concentration, EC50, and No Observed Effect Concentration, NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al., 2015) was performed in order to elucidate the possible diverse mechanisms leading to algae growth inhibition. After 72h exposure, ZnO particles act firstly at the level of cell division inhibition (EC50: 2mg Zn/L) while the genotoxic action is evident only starting from 5mg Zn/L. This outcome could be ascribable mainly to the release of toxic ions from the aggregate of ZnO particle in the proximity of cell membrane. In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic effect with respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with TiO2 and SiO2 that showed similar MI values at both NOEC and EC50 concentrations. The results presented herein suggest that up to TiO2 NOEC (7.5mg/L), the algae DNA repair mechanism is efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend for SiO2, although at lower effect level with respect to TiO2, is observable. The comparison among all the tested nanomaterial toxicity patterns highlighted that the algae population growth inhibition occurred through pathways specific for each NP also related to their different physicochemical behaviors in seawater. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. An evaluation of density-dependent and density-independent influences on population growth rates in Weddell seals

    USGS Publications Warehouse

    Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.

    2009-01-01

    Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both environmental covariates and the seal abundance estimates that were developed here. An improved understanding of why vital rates change with changing population abundance will only come as we develop a better understanding of the processes affecting marine food resources in the Southern Ocean.

  20. Food provisioning alters infection dynamics in populations of a wild rodent

    PubMed Central

    Forbes, Kristian M.; Henttonen, Heikki; Hirvelä-Koski, Varpu; Kipar, Anja; Mappes, Tapio; Stuart, Peter; Huitu, Otso

    2015-01-01

    While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations. PMID:26446813

  1. Meteorological limits on the growth and development of screwworm populations

    NASA Technical Reports Server (NTRS)

    Phinney, D. E.; Arp, G. K.

    1978-01-01

    A program to evaluate the use of remotely sensed data as an additional tool in existing and projected efforts to eradicate the screwworm began in 1973. Estimating weather conditions by use of remotely sensed data was part of the study. Next, the effect of weather on screwworm populations was modeled. A significant portion of the variation in screwworm population growth and development has been traced to weather-related parameters. This report deals with the salient points of the weather and the screwworm population interaction.

  2. A new ODE tumor growth modeling based on tumor population dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  3. Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R

    2012-03-15

    Coral reefs exhibit marked spatial and temporal variability, and coral reef organisms exhibit trade-offs in functional traits that influence demographic performance under different combinations of abiotic environmental conditions. In many systems, trait trade-offs are modelled using an energy and/or nutrient allocation framework. However, on coral reefs, differences in biomechanical vulnerability have major demographic implications, and indeed are believed to play an essential role in mediating species coexistence because highly competitive growth forms are vulnerable to physical dislodgment events that occur with high frequency (e.g. annual summer storms). Therefore, an integrated energy allocation and biomechanics framework is required to understand the effect of physical environmental gradients on species' demographic performance. However, on coral reefs, as in most ecosystems, the effects of environmental conditions on organisms are measured in different currencies (e.g. lipid accumulation, survival and number of gametes), and thus the relative contributions of these effects to overall capacity for population growth are not readily apparent. A comprehensive assessment of links between the environment and the organism, including those mediated by biomechanical processes, must convert environmental effects on individual-level performance (e.g. survival, growth and reproduction) into a common currency that is relevant to the capacity to contribute to population growth. We outline such an approach by considering the population-level performance of scleractinian reef corals over a hydrodynamic gradient, with a focus on the integrating the biomechanical determinants of size-dependent coral colony dislodgment as a function of flow, with the effects of flow on photosynthetic energy acquisition and respiration.

  4. Population growth and development of the psocid Liposcelis brunnea (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    PubMed

    Opit, G P; Throne, J E

    2009-06-01

    We studied the effects of temperature and relative humidity on population growth and development of the psocid Liposcelis brunnea Motschulsky. L. brunnea did not survive at 43% RH, but populations increased from 22.5 to 32.5 degrees C and 55-75% RH. Interestingly, we found population growth was higher at 63% RH than at 75% RH, and the greatest population growth was recorded at 32.5 degrees C and 63% RH. At 35 degrees C, L. brunnea nymphal survivorship was 33%, and populations declined or barely grew. L. brunnea males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 13, 82, and 5%, respectively. Female L. brunnea have three to five instars, and the percentages of females with three, four, and five instars were 18, 78, and 4%, respectively. The life cycle was shorter for males than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages and nymphal survivorship. The ability of L. brunnea to multiply rather rapidly at 55% RH may allow it to thrive under conditions of low relative humidity where other Liposcelis species may not. These data give us a better understanding of L. brunnea population dynamics and can be used to help develop effective management strategies for this psocid.

  5. Characterizing the effect of growth conditions and crystal habit on the distribution of imperfections amongst populations of crystals

    NASA Astrophysics Data System (ADS)

    Price, C. J.

    1993-03-01

    The distribution of gross imperfections amongst populations of copper sulphate pentahydrate crystals grown under different conditions of purity and temperature are examined. The frequency of imperfection increases with decreasing crystal size. The nature of the imperfections vary with growth temperature and impurities present.

  6. Urban growth in Korea, 1970-1980: an application of the human ecological perspective.

    PubMed

    Ko, S H

    1994-07-01

    This study supports the ecological perspective proposed by Duncan (population, environment, organization, and technology) explaining urban population growth. Data were obtained from the 1970 and 1980 Korean Population Census and Korean Municipal Yearbook on cities with a minimum size of 20,000-50,000 people (108 cities and towns). Urban growth is most strongly influenced by indigenous labor surplus and the population potential of the city to be in contact with another city. Nine multiple regression variables explained just under 66% of the variance in urban growth. Net migration was influential among those aged 15-24 years. The extent of differentiation of industry affected net migration only among those aged 15-24 years and those aged 35-44 years. Population redistribution was more affected directly by changes in industrial organization, and migration was affected indirectly by environmental and technological effects on organization. Urban growth through migration of older age groups was affected by government expenditure on public works. Urban growth was not much affected by transportation/communication concentration, manufacturing concentration, urban labor surplus, population size, and site. Urban growth was viewed as the interaction between the unemployment rate and the urban wage, following Todaro's equilibrium models. In Korea, larger cities only grew faster during the 1960s. By the 1970s, upper middle-sized cities grew faster. Location was not a significant factor in explaining urban growth, but growth was rapid along a corridor within 100 km from Seoul and 50 km from Pusan, the second largest city in Korea. Caution was urged in interpreting Korea's ecological urban growth patterns as indicative of developing countries.

  7. Metropolitan migration and population growth in selected developing countries.

    PubMed

    1983-01-01

    The purpose of this article is to estimate the components of metropolitan population growth in selected developing countries during 1960-1970 period. The study examines population growth in 26 cities: 5 are in Africa, 8 in Asia, and 13 in Latin America, using data from national census publications. These cities in general are the political capitals of their countries, but some additional large cities were selected in Brazil, Mexico, and South Africa. All cities, at the beginning of the 1960-1970 decade had over 500,000 population; Accra, the only exception, reached this population level during the 1960s. Some cities had over 4 million residents in 1970. Net migration contributed about 37% to total metropolitan population growth; the remainder of the growth is attributable to natural increase. Migration has a much stronger impact on metropolitan growth than suggested by the above figure: 1) Several metropolitan areas, for various reasons, are unlikely to receive many migrants; without those cities, the share of metropolitan growth from net migration is 44%. 2) Estimates of the natural increase of migrants after their arrival in the metropolitan areas, when added to migration itself, changes the total contribution of migration to 49% in some metropolitan areas. 3) Even where net migration contributes a smaller proportion to metropolitan growth than natural increase, the rates of net migration are generally high and should be viewed in the context of rapid metropolitan population growth from natural increase alone. Finally, the paper also compares the components of metropolitan growth with the components of growth in the remaining urban areas. The results show that the metropolitan areas, in general, grow faster than the remaining urban areas, and that this more rapid growth is mostly due to a higher rate of net migration. Given the significance of migration for metropolitan growth, further investigations of the effects of these migration streams, particularly with respect to in-migration and out-migration, would greatly benefit understanding of the detailed and interconnected process of population growth, migration, employment and social welfare of city residents.

  8. Direct and indirect effects of climate change on a prairie plant community.

    PubMed

    Adler, Peter B; Leiker, James; Levine, Jonathan M

    2009-09-03

    Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence. We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log) tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation x competition interactions. We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants.

  9. Effects of Soil Type on the Damage Potential of Meloidogyne incognita on Soybean.

    PubMed

    Windham, G L; Barker, K R

    1986-07-01

    Effects of soil type on the reproduction and damage potential of Meloidogyne incognita on soybean, Glycine max (L.) Merr., were determined at five locations in North Carolina, including one site where plots with six soil types were established. M. incognita reproduced readily on a susceptible soybean cultivar in most soil types, with somewhat limited reproduction in muck soils. The relationship between initial population densities and yield varied among soil types and nematode populations. Yield losses were greatest in sandy and muck soil types, with less nematode damage occurring in the clay soil types. A North Carolina and a Georgia population of M. incognita differed greatly in their ability to reproduce on soybean and suppress growth. The North Carolina population had a moderate effect on yield in 1981 and only a slight effect in 1982. In contrast, a Georgia population severely limited soybean growth and yield at lower initial population densities in 1983, Initial population densities of the nematodes and physical and chemical edaphic factors accounted for much of the variation of soybean yield and nematode reproduction.

  10. Trends and predicted trends in presentations of older people to Australian emergency departments: effects of demand growth, population aging and climate change.

    PubMed

    Burkett, Ellen; Martin-Khan, Melinda G; Scott, Justin; Samanta, Mayukh; Gray, Leonard C

    2017-07-01

    Objectives The aim of the present study was to describe trends in and age and gender distributions of presentations of older people to Australian emergency departments (EDs) from July 2006 to June 2011, and to develop ED utilisation projections to 2050. Methods A retrospective analysis of data collected in the National Non-admitted Patient Emergency Department Care Database was undertaken to assess trends in ED presentations. Three standard Australian Bureau of Statistics population growth models, with and without adjustment for current trends in ED presentation growth and effects of climate change, were examined with projections of ED presentations across three age groups (0-64, 65-84 and ≥85 years) to 2050. Results From 2006-07 to 2010-11, ED presentations increased by 12.63%, whereas the Australian population over this time increased by only 7.26%. Rates of presentation per head of population were greatest among those aged ≥85 years. Projections of ED presentations to 2050 revealed that overall ED presentations are forecast to increase markedly, with the rate of increase being most marked for older people. Conclusion Growth in Australian ED presentations from 2006-07 to 2010-11 was greater than that expected from population growth alone. The predicted changes in demand for ED care will only be able to be optimally managed if Australian health policy, ED funding instruments and ED models of care are adjusted to take into account the specific care and resource needs of older people. What is known about the topic? Rapid population aging is anticipated over coming decades. International studies and specific local-level Australian studies have demonstrated significant growth in ED presentations. There have been no prior national-level Australian studies of ED presentation trends by age group. What does this paper add? The present study examined national ED presentation trends from July 2006 to June 2011, with specific emphasis on trends in presentation by age group. ED presentation growth was found to exceed population growth in all age groups. The rate of ED presentations per head of population was highest among those aged ≥85 years. ED utilisation projections to 2050, using standard Australian Bureau of Statistics population modelling, with and without adjustment for current ED growth, were developed. The projections demonstrated linear growth in ED presentation for those aged 0-84 years, with growth in ED presentations of the ≥85 year age group demonstrating marked acceleration after 2030. What are the implications for practitioners? Growth in ED presentations exceeding population growth suggests that current models of acute health care delivery require review to ensure that optimal care is delivered in the most fiscally efficient manner. Trends in presentation of older people emphasise the imperative for ED workforce planning and education in care of this complex patient cohort, and the requirement to review funding models to incentivise investment in ED avoidance and substitutive care models targeting older people.

  11. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    PubMed

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.

  12. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.

    PubMed

    Budy, Phaedra; Luecke, Chris

    2014-09-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.

  13. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: A multi-faceted approach.

    USGS Publications Warehouse

    Budy, Phaedra; Luecke, Chris

    2014-01-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.

  14. The impact of invasive grasses on the population growth of Anemone patens, a long-lived native forb.

    PubMed

    Williams, Jennifer L; Crone, Elizabeth E

    2006-12-01

    Negative impacts of invasive plants on natives have been well documented, but much less is known about whether invasive plants can cause population level declines. We used demographic models to investigate the effects of two invasive grasses on the demography and population growth of Anemone patens, a long-lived native perennial of North American grasslands. Demographic data of A. patens growing in patches characterized by Bromus inermis, Poa pratensis, or native grasses were used to parameterize integral projection models. Models based on both average conditions and those allowing for environmental stochasticity indicate that A. patens is slowly increasing in patches of native grass (lambda = 1.02) and declining in patches of invasive grasses, particularly those dominated by B. inermis (lambda = 0.93). Extinction probabilities indicate that A. patens should persist in native grass patches, but has a much higher probability of extinction in Bromus patches compared to Poa patches. While sensitivity analyses showed that survival had the biggest effect on population growth rates in all habitats, results of a Life Table Response Experiment (LTRE) revealed that slower individual growth rates in patches of invasive grasses contributed the most to the observed reduction in population growth. These results suggest that invasive grasses may cause slow declines in A. patens, despite short-term coexistence, and that controlling B. inermis only would not be sufficient to ensure A. patens persistence.

  15. Impacts of Low Salinity on Growth and Calcification in Baltic Sea Mytilus edulis x trossulus

    NASA Astrophysics Data System (ADS)

    Sanders, T.; Melzner, F.

    2016-02-01

    The Baltic Sea is characterized by a steep salinity gradient (25 psu - <5 psu) which is predicted to increase in the future due to increased precipitation. This provides an excellent biological system to study the effects of salinity and inorganic carbon supply on animal physiology. Mytilus edulis x trossulus is adapted to the low saline Baltic Sea, at the cost of slow body growth and reduced shell thickness. The explanation for the small size of Baltic mytilids has been attributed to tradeoffs in energy partitioning due to high energetic costs associated with osmoregulation. However, salinity may effect calcification mechanisms and reduce calcification and thus, body size and growth. To understand the mechanistic effects salinity has on calcification, energy budgets were quantified in larvae, juveniles and adults from 3 populations of Baltic Sea Mytilus spp. at different salinities (6, 11 and 16 psu). Net CaCO3 production at varying salinities and bicarbonate concentrations was also measured. Larvae from low salinity adapted populations (6 psu) had a 3-fold higher respiration rate compared to higher salinity populations. This was also accompanied by a delay of 48 hours in early shell formation. Reductions in growth and increases in metabolism were largest between 11 psu and 6 psu indicating that the predicted desalination of the Baltic will go along with huge energetic costs for mussel populations, potentially leading to loss of reefs in the Eastern Baltic. To investigate the mechanisms behind increased metabolic cost and decreased allocation to growth, energy budgets are presently being constrained in our three populations using modulations in food supply and temperature.

  16. PROJECTED POPULATION-LEVEL EFFECTS OF THIOBENCARB EXPOSURE ON THE MYSID, AMERICAMYSIS BAHIA, AND EXTINCTION PROBABILITY IN A CONCENTRATION-DECAY EXPOSURE SYSTEM

    EPA Science Inventory



    Population-level effects of the mysid, Americamysis bahia, exposed to varying thiobencarb concentrations were estimated using stage-structured matrix models. A deterministic density-independent matrix model estimated the decrease in population growth rate, l, with increas...

  17. THE INFLUENCE OF MODEL TIME STEP ON THE RELATIVE SENSITIVIY OF POPULATION GROWTH RATE TO REPRODUCTION

    EPA Science Inventory

    In recent years there has been an increasing interest in using population models in environmental assessments. Matrix population models represent a valuable tool for extrapolating from life stage-specific stressor effects on survival and reproduction to effects on finite populati...

  18. Population modelling to compare chronic external radiotoxicity between individual and population endpoints in four taxonomic groups.

    PubMed

    Alonzo, Frédéric; Hertel-Aas, Turid; Real, Almudena; Lance, Emilie; Garcia-Sanchez, Laurent; Bradshaw, Clare; Vives I Batlle, Jordi; Oughton, Deborah H; Garnier-Laplace, Jacqueline

    2016-02-01

    In this study, we modelled population responses to chronic external gamma radiation in 12 laboratory species (including aquatic and soil invertebrates, fish and terrestrial mammals). Our aim was to compare radiosensitivity between individual and population endpoints and to examine how internationally proposed benchmarks for environmental radioprotection protected species against various risks at the population level. To do so, we used population matrix models, combining life history and chronic radiotoxicity data (derived from laboratory experiments and described in the literature and the FREDERICA database) to simulate changes in population endpoints (net reproductive rate R0, asymptotic population growth rate λ, equilibrium population size Neq) for a range of dose rates. Elasticity analyses of models showed that population responses differed depending on the affected individual endpoint (juvenile or adult survival, delay in maturity or reduction in fecundity), the considered population endpoint (R0, λ or Neq) and the life history of the studied species. Among population endpoints, net reproductive rate R0 showed the lowest EDR10 (effective dose rate inducing 10% effect) in all species, with values ranging from 26 μGy h(-1) in the mouse Mus musculus to 38,000 μGy h(-1) in the fish Oryzias latipes. For several species, EDR10 for population endpoints were lower than the lowest EDR10 for individual endpoints. Various population level risks, differing in severity for the population, were investigated. Population extinction (predicted when radiation effects caused population growth rate λ to decrease below 1, indicating that no population growth in the long term) was predicted for dose rates ranging from 2700 μGy h(-1) in fish to 12,000 μGy h(-1) in soil invertebrates. A milder risk, that population growth rate λ will be reduced by 10% of the reduction causing extinction, was predicted for dose rates ranging from 24 μGy h(-1) in mammals to 1800 μGy h(-1) in soil invertebrates. These predictions suggested that proposed reference benchmarks from the literature for different taxonomic groups protected all simulated species against population extinction. A generic reference benchmark of 10 μGy h(-1) protected all simulated species against 10% of the effect causing population extinction. Finally, a risk of pseudo-extinction was predicted from 2.0 μGy h(-1) in mammals to 970 μGy h(-1) in soil invertebrates, representing a slight but statistically significant population decline, the importance of which remains to be evaluated in natural settings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Development of disease-specific growth charts in Turner syndrome and Noonan syndrome.

    PubMed

    Isojima, Tsuyoshi; Yokoya, Susumu

    2017-12-01

    Many congenital diseases are associated with growth failure, and patients with these diseases have specific growth patterns. As the growth patterns of affected individuals differ from those of normal populations, it is challenging to detect additional conditions that can influence growth using standard growth charts. Disease-specific growth charts are thus very useful tools and can be helpful for understanding the growth pattern and pathogenesis of congenital diseases. In addition, disease-specific growth charts allow doctors to detect deviations from the usual growth patterns for early diagnosis of an additional condition and can be used to evaluate the effects of growth-promoting treatment for patients. When developing these charts, factors that can affect the reliability of the charts should be considered. These factors include the definition of the disease with growth failure, selection bias in the measurements used to develop the charts, secular trends of the subjects, the numbers of subjects of varying ages and ethnicities, and the statistical method used to develop the charts. In this review, we summarize the development of disease-specific growth charts for Japanese individuals with Turner syndrome and Noonan syndrome and evaluate the efforts to collect unbiased measurements of subjects with these diseases. These charts were the only available disease-specific growth charts of Turner syndrome and Noonan syndrome for Asian populations and were developed using a Japanese population. Therefore, when these charts are adopted for Asian populations other than Japanese, different growth patterns should be considered.

  20. Population demographics and genetic diversity in remnant and translocated populations of sea otters

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.; Cronin, M.A.; Scribner, K.T.

    1999-01-01

    The effects of small population size on genetic diversity and subsequent population recovery are theoretically predicted, but few empirical data are available to describe those relations. We use data from four remnant and three translocated sea otter (Enhydra lutris) populations to examine relations among magnitude and duration of minimum population size, population growth rates, and genetic variation. Metochondrial (mt)DNA haplotype diversity was correlated with the number of years at minimum population size (r = -0.741, p = 0.038) and minimum population size (r = 0.709, p = 0.054). We found no relation between population growth and haplotype diversity, altough growth was significantly greater in translocated than in remnant populations. Haplotype diversity in populations established from two sources was higher than in a population established from a single source and was higher than in the respective source populations. Haplotype frequencies in translocated populations of founding sizes of 4 and 28 differed from expected, indicating genetic drift and differential reproduction between source populations, whereas haplotype frequencies in a translocated population with a founding size of 150 did not. Relations between population demographics and genetic characteristics suggest that genetic sampling of source and translocated populations can provide valuable inferences about translocations.

  1. Weather-Related Hazards and Population Change: A Study of Hurricanes and Tropical Storms in the United States, 1980–2012

    PubMed Central

    FUSSELL, ELIZABETH; CURRAN, SARA R.; DUNBAR, MATTHEW D.; BABB, MICHAEL A.; THOMPSON, LUANNE; MEIJER-IRONS, JACQUELINE

    2017-01-01

    Environmental determinists predict that people move away from places experiencing frequent weather hazards, yet some of these areas have rapidly growing populations. This analysis examines the relationship between weather events and population change in all U.S. counties that experienced hurricanes and tropical storms between 1980 and 2012. Our database allows for more generalizable conclusions by accounting for heterogeneity in current and past hurricane events and losses and past population trends. We find that hurricanes and tropical storms affect future population growth only in counties with growing, high-density populations, which are only 2 percent of all counties. In those counties, current year hurricane events and related losses suppress future population growth, although cumulative hurricane-related losses actually elevate population growth. Low-density counties and counties with stable or declining populations experience no effect of these weather events. Our analysis provides a methodologically informed explanation for contradictory findings in prior studies. PMID:29326480

  2. Weather-Related Hazards and Population Change: A Study of Hurricanes and Tropical Storms in the United States, 1980-2012.

    PubMed

    Fussell, Elizabeth; Curran, Sara R; Dunbar, Matthew D; Babb, Michael A; Thompson, Luanne; Meijer-Irons, Jacqueline

    2017-01-01

    Environmental determinists predict that people move away from places experiencing frequent weather hazards, yet some of these areas have rapidly growing populations. This analysis examines the relationship between weather events and population change in all U.S. counties that experienced hurricanes and tropical storms between 1980 and 2012. Our database allows for more generalizable conclusions by accounting for heterogeneity in current and past hurricane events and losses and past population trends. We find that hurricanes and tropical storms affect future population growth only in counties with growing, high-density populations, which are only 2 percent of all counties. In those counties, current year hurricane events and related losses suppress future population growth, although cumulative hurricane-related losses actually elevate population growth. Low-density counties and counties with stable or declining populations experience no effect of these weather events. Our analysis provides a methodologically informed explanation for contradictory findings in prior studies.

  3. Harvesting, predation and competition effects on a red coral population

    NASA Astrophysics Data System (ADS)

    Abbiati, M.; Buffoni, G.; Caforio, G.; Di Cola, G.; Santangelo, G.

    A Corallium rubrum population, dwelling in the Ligurian Sea, has been under observation since 1987. Biometric descriptors of colonies (base diameter, weight, number of polyps, number of growth rings) have been recorded and correlated. The population size structure was obtained by distributing the colonies into diameter classes, each size class representing the average annual increment of diameter growth. The population was divided into ten classes, including a recruitment class. This size structure showed a fairly regular trend in the first four classes. The irregularity of survival in the older classes agreed with field observations on harvesting and predation. Demographic parameters such as survival, growth plasticity and natality coefficients were estimated from the experimental data. On this basis a discrete nonlinear model was implemented. The model is based on a kind of density-dependent Leslie matrix, where the feedback term only occurs in survival of the first class; the recruitment function is assumed to be dependent on the total biomass and related to inhibiting effects due to competitive interactions. Stability analysis was applied to steady-state solutions. Numerical simulations of population evolution were carried out under different conditions. The dynamics of settlement and the effects of disturbances such as harvesting, predation and environmental variability were studied.

  4. Effects of harvest and climate on population dynamics of northern bobwhites in south Florida

    USGS Publications Warehouse

    Rolland, V.; Hostetler, J.A.; Hines, T.C.; Johnson, F.A.; Percival, H.F.; Oli, M.K.

    2011-01-01

    Context Hunting-related (hereafter harvest) mortality is assumed to be compensatory in many exploited species. However, when harvest mortality is additive, hunting can lead to population declines, especially on public land where hunting pressure can be intense. Recent studies indicate that excessive hunting may have contributed to the decline of a northern bobwhite (Colinus virginianus) population in south Florida. Aims This study aimed to estimate population growth rates to determine potential and actual contribution of vital rates to annual changes in population growth rates, and to evaluate the role of harvest and climatic variables on bobwhite population decline. Methods We used demographic parameters estimated from a six-year study to parameterise population matrix models and conduct prospective and retrospective perturbation analyses. Key results The stochastic population growth rate (?? S=0.144) was proportionally more sensitive to adult winter survival and survival of fledglings, nests and broods from first nesting attempts; the same variables were primarily responsible for annual changes in population growth rate. Demographic parameters associated with second nesting attempts made virtually no contribution to population growth rate. All harvest scenarios consistently revealed a substantial impact of harvest on bobwhite population dynamics. If the lowest harvest level recorded in the study period (i.e. 0.08 birds harvested per day per km2 in 2008) was applied, S would increase by 32.1%. Winter temperatures and precipitation negatively affected winter survival, and precipitation acted synergistically with harvest in affecting winter survival. Conclusions Our results suggest that reduction in winter survival due to overharvest has been an important cause of the decline in our study population, but that climatic factors might have also played a role. Thus, for management actions to be effective, assessing the contribution of primary (e.g. harvesting) but also secondary factors (e.g. climate) to population decline may be necessary. Implications Reducing hunting pressure would be necessary for the recovery of the bobwhite population at our study site. In addition, an adaptive harvest management strategy that considers weather conditions in setting harvest quota would help reverse the population decline further. ?? 2011 CSIRO.

  5. [Effect of the development phase and growth rate of a Shigella sonnei population on the reproduction of homologous bacteriophage].

    PubMed

    Voroshilova, N N; Kazakova, T B

    1983-04-01

    This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.

  6. Global population trends and policy options.

    PubMed

    Ezeh, Alex C; Bongaarts, John; Mberu, Blessing

    2012-07-14

    Rapid population growth is a threat to wellbeing in the poorest countries, whereas very low fertility increasingly threatens the future welfare of many developed countries. The mapping of global trends in population growth from 2005-10 shows four distinct patterns. Most of the poorest countries, especially in sub-Saharan Africa, are characterised by rapid growth of more than 2% per year. Moderate annual growth of 1-2% is concentrated in large countries, such as India and Indonesia, and across north Africa and western Latin America. Whereas most advanced-economy countries and large middle-income countries, such as China and Brazil, are characterised by low or no growth (0-1% per year), most of eastern Europe, Japan, and a few western European countries are characterised by population decline. Countries with rapid growth face adverse social, economic, and environmental pressures, whereas those with low or negative growth face rapid population ageing, unsustainable burdens on public pensions and health-care systems, and slow economic growth. Countries with rapid growth should consider the implementation of voluntary family planning programmes as their main policy option to reduce the high unmet need for contraception, unwanted pregnancies, and probirth reproductive norms. In countries with low or negative growth, policies to address ageing and very low fertility are still evolving. Further research into the potential effect of demographic policies on other social systems, social groups, and fertility decisions and trends is therefore recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle.

    PubMed

    Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W

    2007-08-01

    Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.

  8. Age structure and capital dilution effects in neo-classical growth models.

    PubMed

    Blanchet, D

    1988-01-01

    Economists often over estimate capital dilution effects when applying neoclassical growth models which use age structured population and depreciation of capital stock. This occurs because capital stock is improperly characterized. A standard model which assumes a constant depreciation of capital intimates that a population growth rate equal to a negative constant savings ratio is preferable to any higher growth rate. Growth rates which are lower than a negative constant savings ratio suggest an ever growing capital/labor ratio and an ever growing standard of living, even if people do not save. This is suggested because the natural reduction of the capital stock through depreciation is slower than the population decrease which is simply unrealistic. This model overlooks the fact that low or negative growth rates result in an ageing of the capital stock, and this ageing subsequently results in an increase of the overall rate of capital depreciation. In that overly simplistic model, depreciation was assumed independent of the age of the captial stock. Incorporating depreciation as a variable into a model allows a more symmetric treatment of capital. Using models with heterogenous capital, this article explores what occurs when more than 1 kind of capital good is involved in production and when these various captial goods have different lengths of life. Applying economic models, it also examines what occurs when the length of life of capital may vary. These variations correct the negative impact that population growth can have on per capital production and consumption.

  9. A note on the status of women as a factor in population growth in less developed countries.

    PubMed

    Laidlaw, K A; Pugh, M D; Stockwell, E G

    1980-01-01

    The 1978 U.S. Bureau of the Census reported 4.3 billion as the world's population. 3.1 billion were living in the less developed areas where life is characterized by poverty and low levels of material well-being. In the develop countries the per capita income averaged $490, compared to $5,210 in developed areas. Little attention has been paid to the status of women in developing countries, where the impact of development often has a negative effect. As a measure of women's status, rates are given for male/female infant mortality. If the ratio is less than 1.14 the status of women is low. If the is 1.15-1.24 the status is medium. If the ratio is 1.25 and over, women enjoy high status. In countries where women have low status the population growth ra averages 3%. Where the status of women is medium, the growth rate is 2.5%. I countries of high status the population growth rate is 2.2. Further research is needed on correlations between population and economic growth, with particula emphasis on subtle factors behind population/economic development.

  10. Effects of habitat characteristics on the growth of carrier population leading to increased spread of typhoid fever: a model.

    PubMed

    Shukla, J B; Goyal, Ashish; Singh, Shikha; Chandra, Peeyush

    2014-06-01

    In this paper, a non-linear model is proposed and analyzed to study the effects of habitat characteristics favoring logistically growing carrier population leading to increased spread of typhoid fever. It is assumed that the cumulative density of habitat characteristics and the density of carrier population are governed by logistic models; the growth rate of the former increases as the density of human population increases. The model is analyzed by stability theory of differential equations and computer simulation. The analysis shows that as the density of the infective carrier population increases due to habitat characteristics, the spread of typhoid fever increases in comparison with the case without such factors. Copyright © 2013 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  11. A model of northern pintail productivity and population growth rate

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.; Rockwell, Robert F.

    1998-01-01

    Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokwim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (X) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (X = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on X for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.

  12. Microstructure development in Kolmogorov, Johnson-Mehl, and Avrami nucleation and growth kinetics

    NASA Astrophysics Data System (ADS)

    Pineda, Eloi; Crespo, Daniel

    1999-08-01

    A statistical model with the ability to evaluate the microstructure developed in nucleation and growth kinetics is built in the framework of the Kolmogorov, Johnson-Mehl, and Avrami theory. A populational approach is used to compute the observed grain-size distribution. The impingement process which delays grain growth is analyzed, and the effective growth rate of each population is estimated considering the previous grain history. The proposed model is integrated for a wide range of nucleation and growth protocols, including constant nucleation, pre-existing nuclei, and intermittent nucleation with interface or diffusion-controlled grain growth. The results are compared with Monte Carlo simulations, giving quantitative agreement even in cases where previous models fail.

  13. Climate Change and Integrodifference Equations in a Stochastic Environment.

    PubMed

    Bouhours, Juliette; Lewis, Mark A

    2016-09-01

    Climate change impacts population distributions, forcing some species to migrate poleward if they are to survive and keep up with the suitable habitat that is shifting with the temperature isoclines. Previous studies have analysed whether populations have the capacity to keep up with shifting temperature isoclines, and have mathematically determined the combination of growth and dispersal that is needed to achieve this. However, the rate of isocline movement can be highly variable, with much uncertainty associated with yearly shifts. The same is true for population growth rates. Growth rates can be variable and uncertain, even within suitable habitats for growth. In this paper, we reanalyse the question of population persistence in the context of the uncertainty and variability in isocline shifts and rates of growth. Specifically, we employ a stochastic integrodifference equation model on a patch of suitable habitat that shifts poleward at a random rate. We derive a metric describing the asymptotic growth rate of the linearised operator of the stochastic model. This metric yields a threshold criterion for population persistence. We demonstrate that the variability in the yearly shift and in the growth rate has a significant negative effect on the persistence in the sense that it decreases the threshold criterion for population persistence. Mathematically, we show how the persistence metric can be connected to the principal eigenvalue problem for a related integral operator, at least for the case where isocline shifting speed is deterministic. Analysis of dynamics for the case where the dispersal kernel is Gaussian leads to the existence of a critical shifting speed, above which the population will go extinct, and below which the population will persist. This leads to clear bounds on rate of environmental change if the population is to persist. Finally, we illustrate our different results for butterfly population using numerical simulations and demonstrate how increased variances in isocline shifts and growth rates translate into decreased likelihoods of persistence.

  14. Impact of population growth and population ethics on climate change mitigation policy

    PubMed Central

    Scovronick, Noah; Budolfson, Mark B.; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H.; Spears, Dean; Wagner, Fabian

    2017-01-01

    Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period’s discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing—rather than merely cost savings—again depends on the ethical approach to valuing population. PMID:29087298

  15. Impact of population growth and population ethics on climate change mitigation policy.

    PubMed

    Scovronick, Noah; Budolfson, Mark B; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H; Spears, Dean; Wagner, Fabian

    2017-11-14

    Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period's discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing-rather than merely cost savings-again depends on the ethical approach to valuing population. Copyright © 2017 the Author(s). Published by PNAS.

  16. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, Eastern White Pine (Pinus strobus) from Northern Ontario.

    PubMed

    Chhatre, Vikram E; Rajora, Om P

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (Ne) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and Ne than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and Ne between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance.

  17. Genetic Divergence and Signatures of Natural Selection in Marginal Populations of a Keystone, Long-Lived Conifer, Eastern White Pine (Pinus strobus) from Northern Ontario

    PubMed Central

    Chhatre, Vikram E.; Rajora, Om P.

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (N e) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and N e than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and N e between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance. PMID:24859159

  18. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community

    USGS Publications Warehouse

    Korfanta, N.M.; Newmark, W.D.; Kauffman, M.J.

    2012-01-01

    Tropical deforestation continues to cause population declines and local extinctions in centers of avian diversity and endemism. Although local species extinctions stem from reductions in demographic rates, little is known about how habitat fragmentation influences survival of tropical bird populations or the relative importance of survival and fecundity in ultimately shaping communities. We analyzed 22 years of mark-recapture data to assess how fragmentation influenced apparent survival, recruitment, and realized population growth rate within 22 forest understory bird species in the Usambara Mountains, Tanzania. This represents the first such effort, in either tropical or temperate systems, to characterize the effect of deforestation on avian survival across such a broad suite of species. Long-term demographic analysis of this suite of species experiencing the same fragmented environment revealed considerable variability in species' responses to fragmentation, in addition to general patterns that emerged from comparison among species. Across the understory bird community as a whole, we found significantly lower apparent survival and realized population growth rate in small fragments relative to large, demonstrating fragmentation effects to demographic rates long after habitat loss. Demographic rates were depressed across five feeding guilds, suggesting that fragmentation sensitivity was not limited to insectivores. Seniority analyses, together with a positive effect of fragmentation on recruitment, indicated that depressed apparent survival was the primary driver of population declines and observed extinctions. We also found a landscape effect, with lower vital rates in one mountain range relative to another, suggesting that fragmentation effects may add to other large-scale drivers of population decline. Overall, realized population growth rate (λ) estimates were < 1 for most species, suggesting that future population persistence even within large forest fragments is uncertain in this biodiversity hotspot.

  19. Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas.

    PubMed

    Bai, Xuemei; Chen, Jing; Shi, Peijun

    2012-01-03

    Accelerating urbanization has been viewed as an important instrument for economic development and reducing regional income disparity in some developing countries, including China. Recent studies (Bloom et al. 2008) indicate that demographic urbanization level has no causal effect on economic growth. However, due to the varying and changing definition of urban population, the use of demographic indicators as a sole representing indicator for urbanization might be misleading. Here, we re-examine the causal relationship between urbanization and economic growth in Chinese cities and provinces in recent decades, using built-up areas as a landscape urbanization indicator. Our analysis shows that (1) larger cities, both in terms of population size and built-up area, and richer cities tend to gain more income, have larger built-up area expansion, and attract more population, than poorer cities or smaller cities; and (2) that there is a long-term bidirectional causality between urban built-up area expansion and GDP per capita at both city and provincial level, and a short-term bidirectional causality at provincial level, revealing a positive feedback between landscape urbanization and urban and regional economic growth in China. Our results suggest that urbanization, if measured by a landscape indicator, does have causal effect on economic growth in China, both within the city and with spillover effect to the region, and that urban land expansion is not only the consequences of economic growth in cities, but also drivers of such growth. The results also suggest that under its current economic growth model, it might be difficult for China to control urban expansion without sacrificing economic growth, and China's policy to stop the loss of agricultural land, for food security, might be challenged by its policy to promote economic growth through urbanization.

  20. Landscape Urbanization and Economic Growth in China: Positive Feedbacks and Sustainability Dilemmas

    PubMed Central

    2011-01-01

    Accelerating urbanization has been viewed as an important instrument for economic development and reducing regional income disparity in some developing countries, including China. Recent studies (Bloom et al. 2008) indicate that demographic urbanization level has no causal effect on economic growth. However, due to the varying and changing definition of urban population, the use of demographic indicators as a sole representing indicator for urbanization might be misleading. Here, we re-examine the causal relationship between urbanization and economic growth in Chinese cities and provinces in recent decades, using built-up areas as a landscape urbanization indicator. Our analysis shows that (1) larger cities, both in terms of population size and built-up area, and richer cities tend to gain more income, have larger built-up area expansion, and attract more population, than poorer cities or smaller cities; and (2) that there is a long-term bidirectional causality between urban built-up area expansion and GDP per capita at both city and provincial level, and a short-term bidirectional causality at provincial level, revealing a positive feedback between landscape urbanization and urban and regional economic growth in China. Our results suggest that urbanization, if measured by a landscape indicator, does have causal effect on economic growth in China, both within the city and with spillover effect to the region, and that urban land expansion is not only the consequences of economic growth in cities, but also drivers of such growth. The results also suggest that under its current economic growth model, it might be difficult for China to control urban expansion without sacrificing economic growth, and China’s policy to stop the loss of agricultural land, for food security, might be challenged by its policy to promote economic growth through urbanization. PMID:22103244

  1. The interaction between the spatial distribution of resource patches and population density: consequences for intraspecific growth and morphology.

    PubMed

    Jacobson, Bailey; Grant, James W A; Peres-Neto, Pedro R

    2015-07-01

    How individuals within a population distribute themselves across resource patches of varying quality has been an important focus of ecological theory. The ideal free distribution predicts equal fitness amongst individuals in a 1 : 1 ratio with resources, whereas resource defence theory predicts different degrees of monopolization (fitness variance) as a function of temporal and spatial resource clumping and population density. One overlooked landscape characteristic is the spatial distribution of resource patches, altering the equitability of resource accessibility and thereby the effective number of competitors. While much work has investigated the influence of morphology on competitive ability for different resource types, less is known regarding the phenotypic characteristics conferring relative ability for a single resource type, particularly when exploitative competition predominates. Here we used young-of-the-year rainbow trout (Oncorhynchus mykiss) to test whether and how the spatial distribution of resource patches and population density interact to influence the level and variance of individual growth, as well as if functional morphology relates to competitive ability. Feeding trials were conducted within stream channels under three spatial distributions of nine resource patches (distributed, semi-clumped and clumped) at two density levels (9 and 27 individuals). Average trial growth was greater in high-density treatments with no effect of resource distribution. Within-trial growth variance had opposite patterns across resource distributions. Here, variance decreased at low-population, but increased at high-population densities as patches became increasingly clumped as the result of changes in the levels of interference vs. exploitative competition. Within-trial growth was related to both pre- and post-trial morphology where competitive individuals were those with traits associated with swimming capacity and efficiency: larger heads/bodies/caudal fins and less angled pectoral fins. The different degrees of within-population growth variance at the same density level found here, as a function of spatial resource distribution, provide an explanation for the inconsistencies in within-site growth variance and population regulation often noted with regard to density dependence in natural landscapes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  2. [The decline in population growth, income distribution, and economic recession].

    PubMed

    Banguero, H

    1983-05-01

    This work uses Keynesian principles and an analysis of the Colombian population in the 1970s to argue that the Colombian policy of slowing population growth, which was adopted with the aim of improving the general welfare of the population, has had shortterm negative effects on effective demand and thus on the level of employment and welfare. These negative effects were caused by the inflexibility of income distribution, which prevented expansion of the internal market, complicated by the stagnant condition of the external sector and the budget deficit. The results of the Colombian case study demonstrate how the deceleration of population growth beginning in the 1960s had a significant impact on the levels of consumption and savings and on the patterns of consumption, leading to low levels of investment and little dynamism. Although the current Colombian economic recession is aggravated by contextual factors such as the world economic recession, the high cost of capital, the industrial recession, and declining food production among others, at the core of the crisis are longer term structural determinants such as the decline in the rate of population growth and the highly unequal distribution of income and wealth, which have contributed to a shrinking of the internal market for some types of goods. Given the unlikelihood of renewed rapid population growth, the Keynesian model suggests that the only alternative for increasing aggregate demand is state intervention through public spending and investment and reorientation of the financial system to achieve a dynamic redistribution of income. Based on these findings and on proposals of other analysts, a stragegy for revitalization is proposed which would imply a gradual income redistribution to allow increased consumption of mass produced goods by the low income groups. Direct consumption subsidies would be avoided because of their inflationary and import-expanding tendencies; rather, incentives and support would be provided to 3 productive sectors: traditional agriculture, small factories producing mass consumption goods, and construction of low income housing. The strategy would promote economic growth and expansion without further deterioration of income distribution, employment, and price stability. A simulation study demonstrated the advantages of such a strategy in relation to alternative strategies.

  3. Dynamics of the double-crested cormorant population on Lake Ontario

    USGS Publications Warehouse

    Blackwell, Bradley F.; Stapanian, Martin A.; Weseloh, D.V. Chip

    2002-01-01

    After nearly 30 years of recolonization and expansion across North America, the double-crested cormorant (Phalacrocorax auritus) occupies the role of a perceived and, in some situations, realized threat to fish stocks and other resources. However, population data necessary to plan, defend, and implement management of this species are few. Our purpose was to gain insight into the relative contribution of various population parameters to the overall rate of population growth and identify data needs critical to improving our understanding of the dynamics of double-crested cormorant populations. We demonstrated the construction of a biologically reasonable representation of cormorant population growth on Lake Ontario (1979-2000) by referencing literature values for fertility, age at first breeding, and survival. These parameters were incorporated into a deterministic stage-classified matrix model. By calculating the elasticity of matrix elements (i.e., statgspecific fertility and survival), we found that cormorant population growth on Lake Ontario was most sensitive to survival of birds about to turn age 3 and older. Finally, we demonstrated how this information could be used to evaluate management scenarios and direct future research by simulating potential environmental effects on fertility and survival, as well as a 5-year egg-oiling program. We also demonstrated that survival of older birds exerts more effective population control than changes in fertility.

  4. Food provisioning alters infection dynamics in populations of a wild rodent.

    PubMed

    Forbes, Kristian M; Henttonen, Heikki; Hirvelä-Koski, Varpu; Kipar, Anja; Mappes, Tapio; Stuart, Peter; Huitu, Otso

    2015-10-07

    While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations. © 2015 The Author(s).

  5. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    PubMed

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  6. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate

    PubMed Central

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-01-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal. PMID:26078856

  7. A system dynamics feedback control model study of population of "India 2001" and policies for stabilizing growth.

    PubMed

    Patil, M K; Janahanlal, P S

    1978-06-01

    A mathematical population model is presented and diagrammed. The model is a nonlinear, higher order, self-regulating, goal-seeking system. In other words, the model treats the population system like a biological system which has positive and negative feedbacks. The model incorporates the effects of important economic factors that influence human birth and death rates. It calculates the total population size, which is a determinant of resource usage. It also indicates the demographic response, through a changing birth and death rate, to a changing resource supply. The model is illustrated with Indian population data, disaggregated by age into 15 levels each of which is, in turn, divided into 4 income levels. The effect on population growth of various alternative population policies is analyzed with the goal of stabilizing the population growth quickly without causing undue hardship. Different computer runs of the model are conducted, using different levels of family planning practice, different ages at marriage, and different distributions of income throughout the country. The policy which would result in the lowest population for the year 2001 is 1 in which family planning acceptance levels would increase from 15% in 1975 to 60% in 1980 and 100% from 1990 on. However, there is widespread opposition to this policy. It is felt that a much slower rise in family planning acceptance would be a more acceptable policy for stabilizing population in India.

  8. Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness.

    PubMed

    Cerulus, Bram; New, Aaron M; Pougach, Ksenia; Verstrepen, Kevin J

    2016-05-09

    The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Size matters: insights from an allometric approach to evaluate control methods for invasive Australian Rhinella marina.

    PubMed

    Beaty, Lynne E; Salice, Christopher J

    2013-10-01

    Invasive species are costly and difficult to control. In order to gain a mechanistic understanding of potential control measures, individual-based models uniquely parameterized to reflect the salient life-history characteristics of invasive species are useful. Using invasive Australian Rhinella marina as a case study, we constructed a cohort- and individual-based population simulation that incorporates growth and body size of terrestrial stages. We used this allometric approach to examine the efficacy of nontraditional control methods (i.e., tadpole alarm chemicals and native meat ants) that may have indirect effects on population dynamics mediated by effects on body size. We compared population estimates resulting from these control methods with traditional hand removal. We also conducted a sensitivity analysis to investigate the effect that model parameters, specifically those associated with growth and body size, had on adult population estimates. Incremental increases in hand removal of adults and juveniles caused nonlinear decreases in adult population estimates, suggesting less return with increased investment in hand-removal efforts. Applying tadpole alarm chemicals or meat ants decreased adult population estimates on the same level as removing 15-25% of adults and juveniles by hand. The combined application of tadpole alarm chemicals and meat ants resulted in approximately 80% decrease in adult abundance, the largest of any applied control method. In further support of the nontraditional control methods, which greatly affected the metamorph stage, our model was most sensitive to changes in metamorph survival, juvenile survival, metamorph growth rate, and adult survival. Our results highlight the use and insights that can be gained from individual-based models that incorporate growth and body size and the potential success that nontraditional control methods could have in controlling established, invasive Rhinella marina populations.

  10. Detecting population recovery using gametic disequilibrium-based effective population size estimates

    Treesearch

    David A. Tallmon; Robin S. Waples; Dave Gregovich; Michael K. Schwartz

    2012-01-01

    Recovering populations often must meet specific growth rate or abundance targets before their legal status can be changed from endangered or threatened. While the efficacy, power, and performance of population metrics to infer trends in declining populations has received considerable attention, how these same metrics perform when populations are increasing is less...

  11. Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic

    USGS Publications Warehouse

    Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.

    2013-01-01

    In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.

  12. Genetic variation, climate models and the ecological genetics of Larix occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehfeldt, G.E.

    1995-12-31

    Provenance tests of 138 populations of Larix occidentalis revealed genetic differentiation for eight variables describing growth, phenology, tolerance to spring frosts, effects of Meria laricis needle cast, and survival. Geographic variables accounted for as much as 34% of the variance among Rocky Mountain populations. Patterns of genetic variation were dominated by the effects of latitude and elevation, with populations from the north and from high elevations having the lowest growth potential, the least tolerance to the needle cast, and the lowest survival. However, the slope of the geographic clines was relatively flat. Populations in the same geographic area, for instance,more » need to be separated by about 500 m in elevation before genetic differentiation can be expected.« less

  13. Effect of solvent on crystallization behavior of xylitol

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  14. Uncertainty in Population Growth Rates: Determining Confidence Intervals from Point Estimates of Parameters

    PubMed Central

    Devenish Nelson, Eleanor S.; Harris, Stephen; Soulsbury, Carl D.; Richards, Shane A.; Stephens, Philip A.

    2010-01-01

    Background Demographic models are widely used in conservation and management, and their parameterisation often relies on data collected for other purposes. When underlying data lack clear indications of associated uncertainty, modellers often fail to account for that uncertainty in model outputs, such as estimates of population growth. Methodology/Principal Findings We applied a likelihood approach to infer uncertainty retrospectively from point estimates of vital rates. Combining this with resampling techniques and projection modelling, we show that confidence intervals for population growth estimates are easy to derive. We used similar techniques to examine the effects of sample size on uncertainty. Our approach is illustrated using data on the red fox, Vulpes vulpes, a predator of ecological and cultural importance, and the most widespread extant terrestrial mammal. We show that uncertainty surrounding estimated population growth rates can be high, even for relatively well-studied populations. Halving that uncertainty typically requires a quadrupling of sampling effort. Conclusions/Significance Our results compel caution when comparing demographic trends between populations without accounting for uncertainty. Our methods will be widely applicable to demographic studies of many species. PMID:21049049

  15. County-level analysis of the impact of temperature and population increases on California wildfire data

    USGS Publications Warehouse

    Baltar, M.; Keeley, Jon E.; Schoenberg, F.P.

    2013-01-01

    The extent to which the apparent increase in wildfire incidence and burn area in California from 1990 to 2006 is affected by population and temperature increases is examined. Using generalized linear models with random effects, we focus on the estimated impacts of increases in mean daily temperatures and populations in different counties on wildfire in those counties, after essentially controlling for the overall differences between counties in their overall mean temperatures and populations. We find that temperature increase appears to have a significant positive impact on both total burn area and number of observed wildfires. Population growth appears to have a much less pronounced impact on total burn area than do annual temperature increases, and population growth appears to be negatively correlated with the total number of observed wildfires. These effects are especially pronounced in the winter season and in Southern California counties.

  16. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  17. Resolving the interactions between population density and air pollution emissions controls in the San Joaquin Valley, USA.

    PubMed

    Hixson, Mark; Mahmud, Abdullah; Hu, Jianlin; Kleeman, Michael J

    2012-05-01

    The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).

  18. Projected effects of climate and development on California wildfire emissions through 2100.

    PubMed

    Hurteau, Matthew D; Westerling, Anthony L; Wiedinmyer, Christine; Bryant, Benjamin P

    2014-02-18

    Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios. Here we show that end-of-century wildfire emissions are projected to increase by 19-101% (median increase 56%) above the baseline period (1961-1990) in California for a medium-high temperature scenario, with the largest emissions increases concentrated in northern California. In contrast to other measures of wildfire impacts previously studied (e.g., structural loss), projected population growth and development patterns are unlikely to substantially influence the amount of projected statewide wildfire emissions. However, increases in wildfire emissions due to climate change may have detrimental impacts on air quality and, combined with a growing population, may result in increased population exposure to unhealthy air pollutants.

  19. [Effect of excess ethanol on the growth of yeasts of the genus Candida during continuous cultivation].

    PubMed

    Shkidchenko, A N; Shul'ga, A V; Gurina, L V

    1988-01-01

    The effect of flow rates and a specific ethanol load on the growth of Candida utilis and Candida krusei was studied in the process of one-step and three-step cultivation. The productive capacity of fermenters and the economic coefficient of yeast biomass production were shown to depend on the ability of microbial populations to assimilate a certain quantity of a carbon substrate per unit time. When a specific ethanol load exceeds the optimal one, the respiratory activity of a population and the economic coefficient of growth fall down whereas the accumulation of metabolites in the cultural broth increases. The steady state of biomass can be maintained in the process of continuous cultivation by inhibiting the yeast growth with an excess of ethanol.

  20. Current demographics suggest future energy supplies will be inadequate to slow human population growth.

    PubMed

    DeLong, John P; Burger, Oskar; Hamilton, Marcus J

    2010-10-05

    Influential demographic projections suggest that the global human population will stabilize at about 9-10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections.

  1. The earth: can it support 5.2 billion people?

    PubMed

    Sadik, N

    1989-12-01

    In the last 20 years the world's population has grown by 1.6 billion and has reached 5.2 billion. The gap in population growth between developing and developed areas will increase in the next decade: at present 77% of the earth's population lives in developing countries. A major demographic factor is the future of urban growth where the number of cities over 5 million will increase to 45 by the end of the century. The aging of the population is another demographic factor found worldwide. By the year 2000, 13% of the population will be over 60: 70% of those will be in developed areas. Most developing countries now have a population policy. The total fertility rate has dropped more than 20% in developing countries since 1970. The United Nations Population Fund (UNFPA) has devoted a recent report to the purpose of investing in women. The key to the future of mankind is related directly to the extent that women can make decisions affecting their lives. It is apparent that the effects of resource misuse, environmental damage, and population growth crosses national borders indiscriminately. The key elements to a new approach of development are population, environment, and the role and status of women. In the development of national conservation policies and in the implementing a world strategy, the population environmental relationship will need to be addressed. Since women are directly and indirectly related to the environment by the tasks they perform they are also the most directly effected by environmental degradation. A new approach is needed for balanced development that recognized social, economic, population and environmental relationships. A realistic set of goals for population policy would be to slow the rapid population growth, decrease infant, child and maternal mortality, raise the status of women, and regulate the migration and distribution of population.

  2. Potential misuse of avian density as a conservation metric.

    PubMed

    Skagen, Susan K; Yackel Adams, Amy A

    2011-02-01

    Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. Journal compilation ©2010 Society for Conservation Biology. No claim to original US government works.

  3. Battle of the bedroom.

    PubMed

    1992-08-21

    The Philippine government's position on aggressive population management is in conflict with the Catholic Church's opposition to artificial means of birth control, particularly sterilization. The Episcopal Commission for Family Life plans to increase its campaign against contraception at their local level. The government effort through the Department of health will provide access to contraception in a network of 600 hospitals and 1500 rural health units. Government support comes from 2 Protestant churches, the Church of Christ, which is the largest independent church in the Philippines, and the United Church of Christ. Leaders of both churches gave the Minister of Health letters of support which stated that family planning (FP) was necessary to curb population growth which was too high, and China and Thailand are countries which are economically better off with population planning. The government position is similar to former President Corazon Aquino's. The new President, Fidel Ramos, is a protestant and wants economic prosperity for the Philippines; part of the formula for achieving economic growth is slowing population growth. There is limited resources in a sluggish economy and the push for zero population growth can be accomplished through effective contraception. The birth rate fuels poverty is the position of Juan Flavier, Health Secretary. Annual population growth is 2.3% and family size is 4.8/couple while agricultural growth is only 1%. The ideal family size recommended is 2 children/family. The Philippine Commission on Population in its 6-year plan is hoping to obtain 200 million in foreign aid and involve a larger network of nongovernmental organizations. Choice is the key component. Women need to be convinced that birth spacing will reduce maternal and infant mortality. Flavier has reassured Cardinal Jaime Sin of the Catholic Church that Natural methods or the rhythm method would be taught. Health experts argue that the discipline and sacrifice necessary for effective natural methods is lacking.

  4. Exploring the effects of population growth on future land use change in the Las Vegas Wash watershed: an integrated approach of geospatial modeling and analytics

    EPA Science Inventory

    The Las Vegas Valley metropolitan area is one of the fastest growing areas in the southwestern United States. The rapid urbanization has led to many environmental problems. For instance, as population growth and urbanization continue, there will be a problem with water shortage. ...

  5. Height-growth response to climatic changes differs among populations of Douglas-fir: A novel analysis of historic data

    Treesearch

    Laura P. Leites; Andrew P. Robinson; Gerald E. Rehfeldt; John D. Marshall; Nicholas L. Crookston

    2012-01-01

    Projected climate change will affect existing forests, as substantial changes are predicted to occur during their life spans. Species that have ample intraspecific genetic differentiation, such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), are expected to display population-specific growth responses to climate change. Using a mixed-effects modeling approach,...

  6. Population growth and economic development.

    PubMed

    Corbridge, S

    1989-01-01

    The Malthusian and neo-Malthusian approaches to the role of population growth in economic development and resource depletion are briefly outlined. Three arguments are then presented that emphasize demographic determinism, empirical evidence, and cause and effect. The author concludes that non-coercive family planning programs may have a role to play in countries that are unable to reduce inequalities, particularly for the poor and for women.

  7. Population-regulating processes during the adult phase in flatfish

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, A. D.

    Flatfish support major fisheries and the study of regulatory processes are of paramount importance for evaluating the resilience of the resource to exploitation. This paper reviews the evidence for processes operating during the adult phase that may 1. generate interannual variability in recruitment; 2. contribute to population regulation through density-dependent growth, density-dependent ripening of adults and density-dependent egg production. With regard to (1), there is evidence that in the adult phase processes do occur that may generate recruitment variability through variation in size-specific fecundity, contraction of spawning season, reduction in egg quality, change in sex ratio and size composition of the adult population. However, time series of recruitment do not provide support for this hypothesis. With regard to (2), there is ample evidence that exploitation of flatfish coincides with an increase in growth, although the mechanisms involved are not always clear. The presence of density-dependent growth in the adult phase of unexploited populations appears to be the most likely explanation in some cases. From the early years of exploitation of flatfish stocks inhabiting cold waters, evidence exists that adult fish do not spawn each year. Fecundity schedules show annual variations, but the available information suggests that size-specific fecundity is stable over a broad range of population abundance and may only decrease at high population abundance. The analysis is complicated by the possibility of a trade-off between egg numbers and egg size. Nevertheless, a density-dependent decrease in growth will automatically result in a decrease in absolute fecundity because of the reduced body size. The potential contribution of these regulatory effects on population regulation is explored. Results indicate that density-dependent ripening and absolute fecundity, mediated through density-dependent growth, may control recruitment at high levels of population abundance. The effect of a density-dependent decrease in size-specific fecundity seems to play a minor role, although this role may become important at extremely high levels of population abundance.

  8. [The fear of numbers or the challenge of population growth?].

    PubMed

    Loriaux, M

    1991-12-01

    Africa, currently one of the least densely populated continents, is growing so rapidly that its population will comprise some 1.5 billion inhabitants around 2020, and Africans will be more numerous than the population of the developed world. Attitudes about Africa's population size vary widely; many educated Africans believe that low density is a greater disadvantage than overpopulation, but most specialists believe the population of the developing world, and of Africa especially, to be too large, the prospects of significant voluntary reduction are dim. The rate of population growth has thus attracted attention as a factor amenable to modification. Africa's demographic transition remains largely in the future. Its case is unique because of the rate of demographic growth and because the phase of rapid growth will apparently continue far longer in Africa than in any other continent. The widening gap between population growth rates and rates of economic development in Africa inspires great pessimism about the future wellbeing of the population. Population officials urge that demographic growth be slowed in order to reduce pressure on economic and ecological resources and to gain time for social and economic development. But despite the consensus of international organizations, such as the UN Fund for Population, on the desirability of slowing population growth to encourage and permit economic growth, there has actually been relatively little progress since the time of Malthus in understanding the relationship between population, development, and the environment. Some recent works suggest that demographic growth has benefits as well as disadvantages, and the net impact on development is uncertain. Demographic pressure is in this view a far more potent force for innovation than is usually recognized. Population is not just an exogenous variable in development, but it is at the heart of the process. There can be no true integration of population into development until the value of human resources everywhere is reaffirmed. The recognition by international organizations that per capita income or other economic indicators alone are not adequate measures of progress is a favorable sign. The failure of structural adjustment programs to attain their stated goals and the new resolve to lessen their effects on the most vulnerable population sectors are also promising. New orientations toward development in which human resources are given greater prominence may be as ideologically inspired as those they replaced, but they have the merit of greater neutrality concerning the content and form of development and they do not accept the process of development in the West as their sole reference.

  9. Potential demographic and genetic effects of a sterilant applied to wild horse mares

    USGS Publications Warehouse

    Roelle, James E.; Oyler-McCance, Sara J.

    2015-01-01

    Wild horse populations on western ranges can increase rapidly, resulting in the need for the Bureau of Land Management (BLM) to remove animals in order to protect the habitat that horses share with numerous other species. As an alternative to removals, BLM has sought to develop a long-term, perhaps even permanent, contraceptive to aid in reducing population growth rates. With long-term (perhaps even permanent) efficacy of contraception, however, comes increased concern about the genetic health of populations and about the potential for local extirpation. We used simulation modeling to examine the potential demographic and genetic consequences of applying a mare sterilant to wild horse populations. Using the VORTEX software package, we modeled the potential effects of a sterilant on 70 simulated populations having different initial sizes (7 values), growth rates (5 values), and genetic diversity (2 values). For each population, we varied the treatment rate of mares from 0 to 100 percent in increments of 10 percent. For each combination of these treatment levels, we ran 100 stochastic simulations, and we present the results in the form of tables and graphs showing mean population size after 20 years, mean number of removals after 20 years, mean probability of extirpation after 50 years, and mean heterozygosity after 50 years. By choosing one or two combinations of initial population size, population growth rate, and genetic diversity that best represent a herd of interest, a manager can assess the likely effects of a contraceptive program by examining the output tables and graphs representing the selected conditions.

  10. Comparative biology of zebra mussels in Europe and North America: an overview

    USGS Publications Warehouse

    Mackie, Gerald L.; Schloesser, Don W.

    1996-01-01

    SYNOPSIS. Since the discovery of the zebra mussel, Dreissena polymorpha, in the Great Lakes in 1988 comparisons have been made with mussel populations in Europe and the former Soviet Union. These comparisons include: Population dynamics, growth and mortality rates, ecological tolerances and requirements, dispersal rates and patterns, and ecological impacts. North American studies, mostly on the zebra mussel and a few on a second introduced species, the quagga mussel, Dreissena bugensis, have revealed some similarities and some differences. To date it appears that North American populations of zebra mussels are similar to European populations in their basic biological characteristics, population growth and mortality rates, and dispersal mechanisms and rates. Relative to European populations differences have been demonstrated for: (1) individual growth rates; (2) life spans; (3) calcium and pH tolerances and requirements; (4) potential distribution limits; and (5) population densities of veligers and adults. In addition, studies on the occurrence of the two dreissenid species in the Great Lakes are showing differences in their modes of life, depth distributions, and growth rates. As both species spread throughout North America, comparisons between species and waterbodies will enhance our ability to more effectively control these troublesome species.

  11. Using population demographic parameters to assess impacts of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the rotifer Brachionus plicatilis.

    PubMed

    Sha, Jingjing; Wang, You; Chen, Hongmei; Wang, Ming; Wang, Hong; Li, Xiaohong; Qi, Lei; Tang, Xuexi

    2015-09-01

    Polybrominated diphenyl ethers (PBDEs) are highly persistent anthropogenic contaminants found in the environment, posing a risk to aquatic ecosystems, whereas there is a lack of data concerning their impacts on marine invertebrates. The objective of this study was to assess the relative lethal and sublethal aquatic toxicity effects of two PBDEs, BDE-47 and BDE-209 congeners, on marine zooplankton rotifer Brachionus plicatilis associated with PBDE concentrations and time of exposure. Gas chromatography-mass spectrometry (GC-MS) analyses were performed to determine actual PBDE concentrations. Rotifer population demographic parameters from life tables, including age-specific survivorship (lx), age-specific fecundity (mx), net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), life expectancy (E0) and generation time (T), were used as measures of treatment effects. Results from this study have revealed increasingly intense negative effects on many of the rotifer demographic parameters with elevated PBDE concentrations. The population growth curves of B. plicatilis showed almost no lag phase and reached peak abundances within 11 days, while B. plicatilis exposed to BDE-209 had a lag phase of about 5 days. In addition, increased PBDE levels reduced the population abundances and peak population densities of B. plicatilis. The two PBDEs have caused the carrying capacity (K) suppressed and the negative influence turned more serious as the concentration rose. Results also revealed that the time to reach growth curve inflection point (Tp) was shortened by PBDEs to different degrees. This study not only indicated that life table demography and population growth curve studies were two important aspects used to evaluate toxicant PBDE effects, but also compared the two PBDE disruptions to the population growth and reproduction of the rotifer. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Growth Management and Agriculture: An Examination of Local Efforts to Manage Growth and Preserve Farmland in Wisconsin Cities, Villages, and Towns

    ERIC Educational Resources Information Center

    Diaz, Daniel; Green, Gary Paul

    2001-01-01

    In this paper we examine the effectiveness of growth management policies in Wisconsin cities, villages, and towns. Unlike most other studies, we consider the impact of growth management policies on agriculture, specifically the preservation of farmland, in addition to population growth. Our analysis examines these relationships separately in towns…

  13. Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer.

    PubMed

    Tyler, Nicholas J C; Forchhammer, Mads C; Øritsland, Nils Are

    2008-06-01

    Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.

  14. Population growth, human development, and deforestation in biodiversity hotspots.

    PubMed

    Jha, S; Bawa, K S

    2006-06-01

    Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.

  15. Dynamics of a small re-introduced population of wild dogs over 25 years: Allee effects and the implications of sociality for endangered species' recovery.

    PubMed

    Somers, Michael J; Graf, Jan A; Szykman, Micaela; Slotow, Rob; Gusset, Markus

    2008-11-01

    We analysed 25 years (1980-2004) of demographic data on a small re-introduced population of endangered African wild dogs (Lycaon pictus) in Hluhluwe-iMfolozi Park (HiP), South Africa, to describe population and pack dynamics. As small populations of cooperative breeders may be particularly prone to Allee effects, this extensive data set was used to test the prediction that, if Allee effects occur, aspects of reproductive success, individual survival and population growth should increase with pack and population size. The results suggest that behavioural aspects of wild dogs rather than ecological factors (i.e. competitors, prey and rainfall) primarily have been limiting the HiP wild dog population, particularly a low probability of finding suitable mates upon dispersal at low pack number (i.e. a mate-finding Allee effect). Wild dogs in HiP were not subject to component Allee effects at the pack level, most likely due to low interspecific competition and high prey availability. This suggests that aspects of the environment can mediate the strength of Allee effects. There was also no demographic Allee effect in the HiP wild dog population, as the population growth rate was significantly negatively related to population size, despite no apparent ecological resource limitation. Such negative density dependence at low numbers indicates that behavioural studies of the causal mechanisms potentially generating Allee effects in small populations can provide a key to understanding their dynamics. This study demonstrates how aspects of a species' social behaviour can influence the vulnerability of small populations to extinction and illustrates the profound implications of sociality for endangered species' recovery.

  16. Spatially implicit approaches to understand the manipulation of mating success for insect invasion management

    Treesearch

    Takehiko Yamanaka; Andrew M. Liebhold

    2009-01-01

    Recent work indicates that Allee effects (the positive relationship between population size and per capita growth rate) are critical in determining the successful establishment of invading species. Allee effects may create population thresholds, and failure to establish is likely if invading populations fall below these thresholds. There are many mechanisms that may...

  17. Approximate probabilistic cellular automata for the dynamics of single-species populations under discrete logisticlike growth with and without weak Allee effects.

    PubMed

    Mendonça, J Ricardo G; Gevorgyan, Yeva

    2017-05-01

    We investigate one-dimensional elementary probabilistic cellular automata (PCA) whose dynamics in first-order mean-field approximation yields discrete logisticlike growth models for a single-species unstructured population with nonoverlapping generations. Beginning with a general six-parameter model, we find constraints on the transition probabilities of the PCA that guarantee that the ensuing approximations make sense in terms of population dynamics and classify the valid combinations thereof. Several possible models display a negative cubic term that can be interpreted as a weak Allee factor. We also investigate the conditions under which a one-parameter PCA derived from the more general six-parameter model can generate valid population growth dynamics. Numerical simulations illustrate the behavior of some of the PCA found.

  18. [Doctoral thesis: Demographic growth and economic and social development in Mali].

    PubMed

    Dabo, K

    1999-12-01

    A doctoral thesis is described analyzing the relationships between demographic growth and economic and social development in Mali. The hypothesis is stated that demographic growth impedes economic development and any improvement in populations¿ standards of living. The hypothesis was verified using data for the period from 1960 to the present. Over that period, Mali conducted two general population censuses in 1976 and 1987, as well as several demographic research studies. The thesis is comprised of 4 parts, of which the first generally describes Mali. The second part analyzes the relationship between population growth and economic and social development in Mali. Study results are presented, followed by an analysis of the effects of economic and social development upon population growth in Mali through factors such as urbanization, education level, literacy, income, employment, occupation, gross domestic or gross national product by inhabitant, infant mortality rate, life expectancy at birth, contraceptive practice, fertility opinions and desires, women¿s status, and migration in Mali. Analysis indicates that Mali has not completely begun its demographic transition, but that traditional pronatalist behaviors are changing. Population policies and programs are explored in the third part of the thesis, followed by the fourth part which focuses upon methodological questions.

  19. The effect of newly induced mutations on the fitness of genotypes and populations of yeast (Saccharomyces cerevisiae).

    PubMed

    Orthen, E; Lange, P; Wöhrmann, K

    1984-12-01

    This paper analyses the fate of artificially induced mutations and their importance to the fitness of populations of the yeast, Saccharomyces cerevisiae, an increasingly important model organism in population genetics. Diploid strains, treated with UV and EMS, were cultured asexually for approximately 540 generations and under conditions where the asexual growth was interrupted by a sexual phase. Growth rates of 100 randomly sampled diploid clones were estimated at the beginning and at the end of the experiment. After the induction of sporulation the growth rates of 100 randomly sampled spores were measured. UV and EMS treatment decreases the average growth rate of the clones significantly but increases the variability in comparison to the untreated control. After selection over approximately 540 generations, variability in growth rates was reduced to that of the untreated control. No increase in mean population fitness was observed. However, the results show that after selection there still exists a large amount of hidden genetic variability in the populations which is revealed when the clones are cultivated in environments other than those in which selection took place. A sexual phase increased the reduction of the induced variability.

  20. Family Planning and Deforestation: Evidence from the Ecuadorian Amazon.

    PubMed

    Sellers, Samuel

    2017-06-01

    Despite an abundant body of literature exploring the relationship between population growth and forest cover change, comparatively little research has explored the forest cover impacts of family planning use, which is a key determinant of the rate of population growth in many developing country contexts. Using data from a farm-level panel survey in the Northern Ecuadorian Amazon, this paper addresses whether family planning use impacts forest cover change. Longitudinal model results show that after controlling for household life cycle and land use variables, family planning use did not have an independent effect on deforestation, reforestation, or net forest loss between 1990 and 2008. Forest cover change patterns appear indicative of farm life cycle effects. However, family planning use is associated with reduced subsequent fertility among households, suggesting that the relationship between population growth from births and forest cover change may be limited in this setting.

  1. Family Planning and Deforestation: Evidence from the Ecuadorian Amazon

    PubMed Central

    Sellers, Samuel

    2017-01-01

    Despite an abundant body of literature exploring the relationship between population growth and forest cover change, comparatively little research has explored the forest cover impacts of family planning use, which is a key determinant of the rate of population growth in many developing country contexts. Using data from a farm-level panel survey in the Northern Ecuadorian Amazon, this paper addresses whether family planning use impacts forest cover change. Longitudinal model results show that after controlling for household life cycle and land use variables, family planning use did not have an independent effect on deforestation, reforestation, or net forest loss between 1990 and 2008. Forest cover change patterns appear indicative of farm life cycle effects. However, family planning use is associated with reduced subsequent fertility among households, suggesting that the relationship between population growth from births and forest cover change may be limited in this setting. PMID:29056808

  2. Population pressures: threat to democracy.

    PubMed

    1992-06-01

    The desire for political freedom and representative government is spreading throughout the world. The stability of democratic bodies is dependent on wise leaders, foreign aid, and slowing population growth. Rapid population growth strains political institutions and increases pressure on services. A Population Crisis Committee study found that only a few democratic countries with serious demographic pressures remained stable. The most stable countries were ones with lower levels of population pressure. Most of the 31 unstable countries were in Africa and in a band stretching from the Middle East to South Asia, and almost all had serious demographic pressures. Only 5 stable countries had high or very high demographic pressures. Since countries in the world are interdependent, population pressures have adverse consequences everywhere. Population pressures in the developing world are considered enhanced by the rapid growth of cities. Both the developed and the developing world face the problems of clogged highways, loss of wilderness, polluted lakes and streams, and stifling smog and acid rain conditions. The sociopolitical implications of demographic changes vary from country to country, but rapid growth and maldistribution of population strains existing political, social, and economic structures and relations between nations. Urban areas are the arena for clashes of cultures, competition for scarce housing and jobs, the breakdown of traditional family and social structures, and juxtapositions of extreme wealth next to extreme poverty. The growth of independent nation states since the 1940s has not allowed much time for development of effective political institutions. There are many obstacles to national unity and popular political participation. The potential for political instability is correlated with a number of factors: large youth populations in overcrowded cities with too high expectations and limited opportunities, diverse and intense ethnic and religious factors, and oppressive governments which violate human rights. Rapid growth has a harmful impact on the environment.

  3. The anatomy of a (potential) disaster: Volcanoes, behavior, and population viability of the short-tailed albatross (Phoebastria albatrus)

    USGS Publications Warehouse

    Finkelstein, M.E.; Wolf, S.; Goldman, M.; Doak, D.F.; Sievert, P.R.; Balogh, G.; Hasegawa, H.

    2010-01-01

    Catastrophic events, either from natural (e.g., hurricane) or human-induced (e.g., forest clear-cut) processes, are a well-known threat to wild populations. However, our lack of knowledge about population-level effects of catastrophic events has inhibited the careful examination of how catastrophes affect population growth and persistence. For the critically endangered short-tailed albatross (Phoebastria albatrus), episodic volcanic eruptions are considered a serious catastrophic threat since approximately 80% of the global population of ???2500 birds (in 2006) currently breeds on an active volcano, Torishima Island. We evaluated how short-tailed albatross population persistence is affected by the catastrophic threat of a volcanic eruption relative to chronic threats. We also provide an example for overcoming the seemingly overwhelming problems created by modelling the population dynamics of a species with limited demographic data by incorporating uncertainty in our analysis. As such, we constructed a stochastic age-based matrix model that incorporated both catastrophic mortality due to volcanic eruptions and chronic mortality from several potential sources (e.g., contaminant exposure, fisheries bycatch) to determine the relative effects of these two types of threats on short-tailed albatross population growth and persistence. Modest increases (1%) in chronic (annual) mortality had a 2.5-fold greater effect on predicted short-tailed albatross stochastic population growth rate (lambda) than did the occurrence of periodic volcanic eruptions that follow historic eruption frequencies (annual probability of eruption 2.2%). Our work demonstrates that periodic catastrophic volcanic eruptions, despite their dramatic nature, are less likely to affect the population viability and recovery of short-tailed albatross than low-level chronic mortality. ?? 2009 Elsevier Ltd.

  4. Effects of different nitrite concentrations from a vegetable source with and without high hydrostatic pressure on the recovery of Listeria monocytogenes on ready-to-eat restructured ham.

    PubMed

    Lavieri, Nicolas A; Sebranek, Joseph G; Cordray, Joseph C; Dickson, James S; Horsch, Ashley M; Jung, Stephanie; Manu, David K; Brehm-Stecher, Byron F; Mendonça, Aubrey F

    2014-05-01

    Sodium nitrite exerts an inhibitory effect on the growth of Listeria monocytogenes. The objective of this study was to investigate the effects of various nitrite concentrations from a vegetable source with and without high hydrostatic pressure (HHP) on the recovery and growth of L. monocytogenes on ready-to-eat restructured ham. A preconverted celery powder was used as the vegetable source of nitrite. Targeted concentrations of natural nitrite investigated were 0, 50, and 100 mg/kg. HHP treatments evaluated were 400 MPa for 4 min and 600 MPa for 1 or 4 min at 12 ± 2 °C (initial temperature of the pressurization fluid). Viable L. monocytogenes populations were monitored on modified Oxford medium and thin agar layer medium through 98 days of storage at 4 ± 1 °C. Populations on both media did not differ. The HHP treatment at 600 MPa for 4 min resulted in L. monocytogenes populations below the detection limit of our sampling protocols throughout the storage period regardless of the natural nitrite concentration. The combination of HHP at 400 MPa for 4 min or 600 MPa for 1 min with natural nitrite resulted in initial inhibition of viable L. monocytogenes. Ham formulations that did not contain natural nitrite allowed faster growth of L. monocytogenes than did those with nitrite, regardless of whether they were treated with HHP. The results indicate that nitrite from a vegetable source at the concentrations used in this study resulted in slower growth of this microorganism. HHP treatments enhanced the inhibitory effects of natural nitrite on L. monocytogenes growth. Thus, the combination of natural nitrite plus HHP appears to have a synergistic inhibitory effect on L. monocytogenes growth.

  5. A BASIC Program for Use in Teaching Population Dynamics.

    ERIC Educational Resources Information Center

    Kidd, N. A. C.

    1984-01-01

    Describes an interactive simulation model which can be used to demonstrate population growth with discrete or overlapping populations and the effects of random, constant, or density-dependent mortality. The program listing (for Commodore PET 4032 microcomputer) is included. (Author/DH)

  6. Effect of dispersal at range edges on the structure of species ranges

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Range edges are of particular interest to ecology because they hold key insights into the limits of the realized niche and associated population dynamics. A recent feature of Oikos summarized the state of the art on range edge ecology. While the typical question is what causes range edges, another important question is how range edges influence the distribution of abundances across a species geographic range when dispersal is present. We used a single species population dynamics model on a coupled-lattice to determine the effects of dispersal on peripheral populations as compared to populations at the core of the range. In the absence of resource gradients, the reduced neighborhood and thus lower connectivity or higher isolation among populations at the range edge alone led to significantly lower population sizes in the periphery of the range than in the core. Lower population sizes mean higher extinction risks and lower adaptability at the range edge, which could inhibit or slow range expansions, and thus effectively stabilize range edges. The strength of this effect depended on the potential population growth rate and the maximum dispersal distance. Lower potential population growth rates led to a stronger effect of dispersal resulting in a higher difference in population sizes between the two areas. The differential effect of dispersal on population sizes at the core and periphery of the range in the absence of resource gradients implies that traditional, habitat-based distribution models could result in misleading conclusions about the habitat quality in the periphery. Lower population sizes at the periphery are also relevant to conservation, because habitat removal not only eliminates populations but also creates new edges. Populations bordering these new edges may experience declines, due to their increased isolation. ?? OIKOS.

  7. APPLICATION OF PERTURBATION SIMULATIONS IN POPULATION RISK ASSESSMENT FOR DIFFERENT LIFE HISTORY STRATEGIES AND ELASTICITY PATTERNS

    EPA Science Inventory

    Population structure and life history strategies are determinants of how populations respond to stressor-induced impairments in organism-level responses, but a consistent and holistic analysis has not been reported. Effects on population growth rate were modeled using seven theor...

  8. The use of Ampelisca abdita growth rate as an indicator of sediment quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, D.P.; Thompson, B.

    1995-12-31

    Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs.more » the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well.« less

  9. Metapopulation extinction risk: dispersal's duplicity.

    PubMed

    Higgins, Kevin

    2009-09-01

    Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation's extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation's extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation's extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation's extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation's extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation's extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.

  10. Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization.

    PubMed

    Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan

    2013-01-01

    Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m(2)), phosphorus (control or 0.5 g/m(2)), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however, an absence of soil biota or low phosphorus removed this advantage.

  11. Chinese Tallow Trees (Triadica sebifera) from the Invasive Range Outperform Those from the Native Range with an Active Soil Community or Phosphorus Fertilization

    PubMed Central

    Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan

    2013-01-01

    Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m2), phosphorus (control or 0.5 g/m2), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however, an absence of soil biota or low phosphorus removed this advantage. PMID:24023930

  12. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model.

    PubMed

    Johnson, Eric G; Swenarton, Mary Katherine

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader's life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish ( Pterois volitans/miles ) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water.

  13. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model

    PubMed Central

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader’s life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish (Pterois volitans/miles) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water. PMID:27920953

  14. Growth curves and the international standard: How children's growth reflects challenging conditions in rural Timor-Leste.

    PubMed

    Spencer, Phoebe R; Sanders, Katherine A; Judge, Debra S

    2018-02-01

    Population-specific growth references are important in understanding local growth variation, especially in developing countries where child growth is poor and the need for effective health interventions is high. In this article, we use mixed longitudinal data to calculate the first growth curves for rural East Timorese children to identify where, during development, deviation from the international standards occurs. Over an eight-year period, 1,245 children from two ecologically distinct rural areas of Timor-Leste were measured a total of 4,904 times. We compared growth to the World Health Organization (WHO) standards using z-scores, and modeled height and weight velocity using the SuperImposition by Translation And Rotation (SITAR) method. Using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method, we created the first growth curves for rural Timorese children for height, weight and body mass index (BMI). Relative to the WHO standards, children show early-life growth faltering, and stunting throughout childhood and adolescence. The median height and weight for this population tracks below the WHO fifth centile. Males have poorer growth than females in both z-BMI (p = .001) and z-height-for-age (p = .018) and, unlike females, continue to grow into adulthood. This is the most comprehensive investigation to date of rural Timorese children's growth, and the growth curves created may potentially be used to identify future secular trends in growth as the country develops. We show significant deviation from the international standard that becomes most pronounced at adolescence, similar to the growth of other Asian populations. Males and females show different growth responses to challenging conditions in this population. © 2017 Wiley Periodicals, Inc.

  15. Effect of Methyl Bromide on Mycorrhizae and Growth of Sweetgum Seedlings

    Treesearch

    T. H. Filer; E. R. Toole

    1968-01-01

    Fumigation of nursery beds with methyl bromide improved sweetgum, growth by reducing the population of soil-inhabiting pathogens . Although mycorrhizal fungi were reduced, sufficient inoculum survived for rapid mycorrhizal development

  16. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird.

    PubMed

    Townsend, Andrea K; Cooch, Evan G; Sillett, T Scott; Rodenhouse, Nicholas L; Holmes, Richard T; Webster, Michael S

    2016-02-01

    Although long-distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black-throated blue warbler (Setophaga caerulescens), a double-brooded long-distance migrant, we used Pradel models to analyze 25 years of mark-recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late-season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black-throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species. © 2015 John Wiley & Sons Ltd.

  17. Demographic and genetic status of an isolated population of bog turtles (Glyptemys muhlenbergii): Implications for managing small populations of long-lived animals

    USGS Publications Warehouse

    Pittman, Shannon E.; King, T.L.; Faurby, S.; Dorcas, M.E.

    2011-01-01

    In this study, we sought to determine the population stability and genetic diversity of one isolated population of the federally-threatened bog turtle (Glyptemys muhlenbergii) in North Carolina. Using capture-recapture data, we estimated adult survival and population growth rate from 1992 to 2007. We found that the population decreased from an estimated 36 adult turtles in 1994 to approximately 11 adult turtles in 2007. We found a constant adult survival of 0. 893 (SE = 0. 018, 95% confidence interval, 0. 853-0. 924) between 1992 and 2007. Using 18 microsatellite markers, we compared the genetic status of this population with five other bog turtle populations. The target population displayed allelic richness (4. 8 ?? 0. 5) and observed heterozygosity (0. 619 ?? 0. 064) within the range of the other bog turtle populations. Coalescent analysis of population growth rate, effective population size, and timing of population structuring event also indicated the genetics of the target population were comparable to the other populations studied. Estimates of effective population size were a proportion of the census size in all populations except the target population, in which the effective population size was larger than the census size (30 turtles vs. 11 turtles). We attribute the high genetic diversity in the target population to the presence of multiple generations of old turtles. This study illustrates that the demographic status of populations of long-lived species may not be reflected genetically if a decline occurred recently. Consequently, the genetic integrity of populations of long-lived animals experiencing rapid demographic bottlenecks may be preserved through conservation efforts effective in addressing demographic problems. ?? 2011 Springer Science+Business Media B.V.

  18. The Political Impact of the New Hispanic Second Generation

    PubMed Central

    Logan, John R.; Oh, Sookhee; Darrah, Jennifer

    2013-01-01

    The rapid growth of the Hispanic population in the United States, particularly those of the second generation, who have automatic rights of citizenship, could be expected to result in increased influence and representation in politics for this group. We show that the effect of a sheer growth in numbers at the national level is diminished by several factors: low probabilities of naturalisation by Hispanic immigrants; non-participation in voting, especially by the US-born generations; and concentration of growth in Congressional Districts that already have Hispanic Representatives. It is a challenge for public policy to reduce the lag between population growth and political representation. PMID:24009469

  19. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer

    PubMed Central

    Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C.; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region’s most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species’ total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi-faceted role that reindeer exert in Arctic ecosystems. PMID:27362499

  20. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    PubMed

    Uboni, Alessia; Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi-faceted role that reindeer exert in Arctic ecosystems.

  1. Assessment of the effects of Hirsutella minnesotensis on Soybean Cyst Nematode and growth of soybean

    USDA-ARS?s Scientific Manuscript database

    Hirsutella minnesotensis is a fungal endoparasite of nematodes juvenile and parasitizes soybean cyst nematodes (SCN) with high frequency. In this study, the effects of two H. minnesotensis isolates on population and distribution of SCN and growth of soybean were evaluated. Experiments were conducted...

  2. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Shoufu, E-mail: linshf2003@126.co; Zhao Dingtao, E-mail: box@ustc.edu.c; Marinova, Dora, E-mail: D.Marinova@curtin.edu.a

    Assuming that energy consumption is the main source of GHG emissions in China, this paper analyses the effect of population, urbanisation level, GDP per capita, industrialisation level and energy intensity on the country's environmental impact using the STIRPAT model with data for 1978-2006. The analysis shows that population has the largest potential effect on environmental impact, followed by urbanisation level, industrialisation level, GDP per capita and energy intensity. Hence, China's One Child Policy, which restrains rapid population growth, has been an effective way of reducing the country's environmental impact. However, due to the difference in growth rates, GDP per capitamore » had a higher effect on the environmental impact, contributing to 38% of its increase (while population's contribution was at 32%). The rapid decrease in energy intensity was the main factor restraining the increase in China's environmental impact but recently it has also been rising. Against this background, the future of the country looks bleak unless a change in human behaviour towards more ecologically sensitive economic choices occurs.« less

  4. Effective population size of korean populations.

    PubMed

    Park, Leeyoung

    2014-12-01

    Recently, new methods have been developed for estimating the current and recent changes in effective population sizes. Based on the methods, the effective population sizes of Korean populations were estimated using data from the Korean Association Resource (KARE) project. The overall changes in the population sizes of the total populations were similar to CHB (Han Chinese in Beijing, China) and JPT (Japanese in Tokyo, Japan) of the HapMap project. There were no differences in past changes in population sizes with a comparison between an urban area and a rural area. Age-dependent current and recent effective population sizes represent the modern history of Korean populations, including the effects of World War II, the Korean War, and urbanization. The oldest age group showed that the population growth of Koreans had already been substantial at least since the end of the 19th century.

  5. Synthesis of the expert group meetings convened as part of the substantive preparations for the International Conference on Population and Development.

    PubMed

    1993-01-01

    As part of the preparation for the 1994 International Conference on Population and Development to be sponsored by the UN in Cairo, 6 expert groups were convened to consider 1) population growth; 2) population policies and programs; 3) population, development, and the environment; 4) migration; 5) the status of women; and 6) family planning programs, health, and family well-being. Each group included 15 experts representing a full range of relevant scientific disciplines and geographic regions. Each meeting lasted 5 days and included a substantive background paper prepared by the Population Division as well as technical papers. Each meeting concluded with the drafting of between 18 and 37 recommendations (a total of 162). The meeting on population, the environment, and development focused on the implications of current trends in population and the environment for sustained economic growth and sustainable development. The meeting on population policies and programs observed that, since 1984, there has been a growing convergence of views about population growth among the nations of the world and that the stabilization of world population as soon as possible is now an internationally recognized goal. The group on population and women identified practical steps that agencies could take to empower women in order to achieve beneficial effects on health, population trends, and development. The meeting on FP, health, and family well-being reviewed policy-oriented issues emerging from the experience of FP programs. The meeting on population growth and development reviewed trends and prospects of population growth and age structure and their consequences for global sustainability. The population distribution and migration experts appraised current trends and their interrelationship with development. In nearly all of the group meetings, common issues emerged. Concern was universally voiced for sustainable development and sustained economic growth, relevance of past experience, human rights, the status of women, the family, accessibility and quality of services, the special needs of subpopulations, AIDS, the roles of governments and nongovernmental organizations, community participation, research and data collection, and international cooperation.

  6. Changes of scaling relationships in an evolving population: The example of "sedimentary" stylolites

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Korneva, I.; Nixon, C. W.; Rotevatn, A.

    2017-03-01

    Bed-parallel (;sedimentary;) stylolites are used as an example of a population that evolves by the addition of new components, their growth and their merger. It is shown that this style of growth controls the changes in the scaling relationships of the population. Stylolites tend to evolve in carbonate rocks through time, for example by compaction during progressive burial. The evolution of a population of stylolites, and their likely effects on porosity, are demonstrated using simple numerical models. Starting with a power-law distribution, the adding of new stylolites, the increase in their amplitudes and their merger decrease the slope of magnitude versus cumulative frequency of the population. The population changes to a non-power-law distribution as smaller stylolites merge to form larger stylolites. The results suggest that other populations can be forward- or backward-modelled, such as fault lengths, which also evolve by the addition of components, their growth and merger. Consideration of the ways in which populations change improves understanding of scaling relationships and vice versa, and would assist in the management of geofluid reservoirs.

  7. Colony patterning and collective hyphal growth of filamentous fungi

    NASA Astrophysics Data System (ADS)

    Matsuura, Shu

    2002-11-01

    Colony morphology of wild and mutant strains of Aspergillus nidulans at various nutrient and agar levels was investigated. Two types of colony patterning were found for these strains. One type produced uniform colonies at all nutrient and agar levels tested, and the other exhibited morphological change into disordered ramified colonies at low nutrient levels. Both types showed highly condensed compact colonies at high nutrient levels on low agar media that was highly diffusive. Disordered colonies were found to develop with low hyphal extension rates at low nutrient levels. To understand basic pattern selection rules, a colony model with three parameters, i.e., the initial nutrient level and the step length of nutrient random walk as the external parameters, and the frequency of nutrient uptake as an internal parameter, was constructed. At low nutrient levels, with decreasing nutrient uptake frequency under diffusive conditions, the model colony exhibited onsets of disordered ramification. Further, in the growth process of A. nidulans, reduction of hyphal extension rate due to a population effect of hyphae was found when hyphae form three-dimensional dense colonies, as compared to the case in which hyphal growth was restricted into two-dimensional space. A hyphal population effect was introduced in the colony model. Thickening of colony periphery due to the population effect became distinctive as the nutrient diffusion effect was raised at high nutrient levels with low hyphal growth rate. It was considered that colony patterning and onset of disorder were strongly governed by the combination of nutrient diffusion and hyphal growth rate.

  8. The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials

    PubMed Central

    Gough, Ethan K; Moodie, Erica E M; Prendergast, Andrew J; Johnson, Sarasa M A; Humphrey, Jean H; Stoltzfus, Rebecca J; Walker, A Sarah; Trehan, Indi; Gibb, Diana M; Goto, Rie; Tahan, Soraia; de Morais, Mauro Batista

    2014-01-01

    Objectives To determine whether antibiotic treatment leads to improvements in growth in prepubertal children in low and middle income countries, to determine the magnitude of improvements in growth, and to identify moderators of this treatment effect. Design Systematic review and meta-analysis. Data sources Medline, Embase, Scopus, the Cochrane central register of controlled trials, and Web of Science. Study selection Randomised controlled trials conducted in low or middle income countries in which an orally administered antibacterial agent was allocated by randomisation or minimisation and growth was measured as an outcome. Participants aged 1 month to 12 years were included. Control was placebo or non-antimicrobial intervention. Results Data were pooled from 10 randomised controlled trials representing 4316 children, across a variety of antibiotics, indications for treatment, treatment regimens, and countries. In random effects models, antibiotic use increased height by 0.04 cm/month (95% confidence interval 0.00 to 0.07) and weight by 23.8 g/month (95% confidence interval 4.3 to 43.3). After adjusting for age, effects on height were larger in younger populations and effects on weight were larger in African studies compared with other regions. Conclusion Antibiotics have a growth promoting effect in prepubertal children in low and middle income countries. This effect was more pronounced for ponderal than for linear growth. The antibiotic growth promoting effect may be mediated by treatment of clinical or subclinical infections or possibly by modulation of the intestinal microbiota. Better definition of the mechanisms underlying this effect will be important to inform optimal and safe approaches to achieving healthy growth in vulnerable populations. PMID:24735883

  9. Modeling the population-level effects of hypoxia on a coastal fish: implications of a spatially-explicit individual-based model

    NASA Astrophysics Data System (ADS)

    Rose, K.; Creekmore, S.; Thomas, P.; Craig, K.; Neilan, R.; Rahman, S.; Wang, L.; Justic, D.

    2016-02-01

    The northwestern Gulf of Mexico (USA) currently experiences a large hypoxic area ("dead zone") during the summer. The population-level effects of hypoxia on coastal fish are largely unknown. We developed a spatially-explicit, individual-based model to analyze how hypoxia effects on reproduction, growth, and mortality of individual Atlantic croaker could lead to population-level responses. The model follows the hourly growth, mortality, reproduction, and movement of individuals on a 300 x 800 spatial grid of 1 km2 cells for 140 years. Chlorophyll-a concentration and water temperature were specified daily for each grid cell. Dissolved oxygen (DO) was obtained from a 3-D water quality model for four years that differed in their severity of hypoxia. A bioenergetics model was used to represent growth, mortality was assumed stage- and age-dependent, and movement behavior was based on temperature preferences and avoidance of low DO. Hypoxia effects were imposed using exposure-effects sub-models that converted time-varying exposure to DO to reductions in growth and fecundity, and increases in mortality. Using sequences of mild, intermediate, and severe hypoxia years, the model predicted a 20% decrease in population abundance. Additional simulations were performed under the assumption that river-based nutrients loadings that lead to more hypoxia also lead to higher primary production and more food for croaker. Twenty-five percent and 50% nutrient reduction scenarios were simulated by adjusting the cholorphyll-a concentrations used as food proxy for the croaker. We then incrementally increased the DO concentrations to determine how much hypoxia would need to be reduced to offset the lower food production resulting from reduced nutrients. We discuss the generality of our results, the hidden effects of hypoxia on fish, and our overall strategy of combining laboratory and field studies with modeling to produce robust predictions of population responses to stressors under dynamic and multi-stressor conditions.

  10. Combining multiple sources of data to inform conservation of Lesser Prairie-Chicken populations

    USGS Publications Warehouse

    Ross, Beth; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2018-01-01

    Conservation of small populations is often based on limited data from spatially and temporally restricted studies, resulting in management actions based on an incomplete assessment of the population drivers. If fluctuations in abundance are related to changes in weather, proper management is especially important, because extreme weather events could disproportionately affect population abundance. Conservation assessments, especially for vulnerable populations, are aided by a knowledge of how extreme events influence population status and trends. Although important for conservation efforts, data may be limited for small or vulnerable populations. Integrated population models maximize information from various sources of data to yield population estimates that fully incorporate uncertainty from multiple data sources while allowing for the explicit incorporation of environmental covariates of interest. Our goal was to assess the relative influence of population drivers for the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) in the core of its range, western and southern Kansas, USA. We used data from roadside lek count surveys, nest monitoring surveys, and survival data from telemetry monitoring combined with climate (Palmer drought severity index) data in an integrated population model. Our results indicate that variability in population growth rate was most influenced by variability in juvenile survival. The Palmer drought severity index had no measurable direct effects on adult survival or mean number of offspring per female; however, there were declines in population growth rate following severe drought. Because declines in population growth rate occurred at a broad spatial scale, declines in response to drought were likely due to decreases in chick and juvenile survival rather than emigration outside of the study area. Overall, our model highlights the importance of accounting for environmental and demographic sources of variability, and provides a thorough method for simultaneously evaluating population demography in response to long-term climate effects.

  11. Multi-species coexistence in Lotka-Volterra competitive systems with crowding effects.

    PubMed

    Gavina, Maica Krizna A; Tahara, Takeru; Tainaka, Kei-Ichi; Ito, Hiromu; Morita, Satoru; Ichinose, Genki; Okabe, Takuya; Togashi, Tatsuya; Nagatani, Takashi; Yoshimura, Jin

    2018-01-19

    Classical Lotka-Volterra (LV) competition equation has shown that coexistence of competitive species is only possible when intraspecific competition is stronger than interspecific competition, i.e., the species inhibit their own growth more than the growth of the other species. Note that density effect is assumed to be linear in a classical LV equation. In contrast, in wild populations we can observed that mortality rate often increases when population density is very high, known as crowding effects. Under this perspective, the aggregation models of competitive species have been developed, adding the additional reduction in growth rates at high population densities. This study shows that the coexistence of a few species is promoted. However, an unsolved question is the coexistence of many competitive species often observed in natural communities. Here, we build an LV competition equation with a nonlinear crowding effect. Our results show that under a weak crowding effect, stable coexistence of many species becomes plausible, unlike the previous aggregation model. An analysis indicates that increased mortality rate under high density works as elevated intraspecific competition leading to the coexistence. This may be another mechanism for the coexistence of many competitive species leading high species diversity in nature.

  12. Creating a stage-based deterministic PVA model - the western prairie fringed orchid [Exercise 12

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    Contemporary efforts to conserve populations and species often employ population viability analysis (PVA), a specific application of population modeling that estimates the effects of environmental and demographic processes on population growth rates. These models can also be used to estimate probabilities that a population will fall below a certain level. This...

  13. TOPICAL PROBLEMS: The phenomenological theory of world population growth

    NASA Astrophysics Data System (ADS)

    Kapitza, Sergei P.

    1996-01-01

    Of all global problems world population growth is the most significant. Demographic data describe this process in a concise and quantitative way in its past and present. Analysing this development it is possible by applying the concepts of systems analysis and synergetics, to work out a mathematical model for a phenomenological description of the global demographic process and to project its trends into the future. Assuming self-similarity as the dynamic principle of development, growth can be described practically over the whole of human history, assuming the growth rate to be proportional to the square of the number of people. The large parameter of the theory and the effective size of a coherent population group is of the order of 105 and the microscopic parameter of the phenomenology is the human lifespan. The demographic transition — a transition to a stabilised world population of some 14 billion in a foreseeable future — is a systemic singularity and is determined by the inherent pattern of growth of an open system, rather than by the lack of resources. The development of a quantitative nonlinear theory of the world population is of interest for interdisciplinary research in anthropology and demography, history and sociology, for population genetics and epidemiology, for studies in evolution of humankind and the origin of man. The model also provides insight into the stability of growth and the present predicament of humankind, and provides a setting for discussing the main global problems.

  14. Demographic consequences of greater clonal than sexual reproduction in Dicentra canadensis.

    PubMed

    Lin, Chia-Hua; Miriti, Maria N; Goodell, Karen

    2016-06-01

    Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter-genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well-forested landscape and two in isolated forest remnants. We constructed stage-based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well-forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade-offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.

  15. [Effect of the population density on growth and regeneration in the snail Achatina fulica].

    PubMed

    Sidel'nikov, A P; Stepanov, I I

    2000-01-01

    In the laboratory, the growth rate of the giant African snail Achatina fulica, as estimated by the weight and shell length was shown to decrease when the population density increased from 10 to 60 snails/m2 of the total terrarium area for five months. In the second experiment, when the population density increased from 48 to 193 snails/m2, the growth rate had already decreased by six weeks. In the groups with a high population density the feeding behavior was weakened, expressed by a greater amount of nonconsumed food, according to visual observations, than in the groups with lower population densities. At the population density of 10 to 60 snails/m2, the proliferative activity in the course of the optic tentacle regeneration, as expressed by the mitotic index, did not differ reliably within five months. In the second experiment, the mitotic indices at the population densities of 96 and 193 snails/m2 within 1.5 months exceeded that of 48 snails/m2. Recommendations are given concerning the population density from the viewpoint of commercial growth of the snails. It was proposed that, based on the analysis of the mechanism underlying the inhibition of feeding behavior in populations with extra high densities, one may develop a new approach to the production of chemical agents to control land snails as agricultural pests.

  16. Effects of uncertainty and variability on population declines and IUCN Red List classifications.

    PubMed

    Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M

    2018-01-22

    The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.

  17. Staphylococci in Competition1

    PubMed Central

    Peterson, A. C.; Black, J. J.; Gunderson, M. F.

    1964-01-01

    Foods containing large amounts of carbohydrate have frequently been involved in staphylococcal food poisoning. Custard has been considered to be a highly favorable culture medium for staphylococci; however, it may be a selective medium rather than an ideal one. The influence of dextrose, lactose, and sucrose in varying amounts from 0.25 to 18%, and of starch, on the growth of staphylococci in mixed populations with saprophytes was determined. The inhibitory effect of the sugars was much greater on the saprophyte population than on the staphylococci. Of the three sugars, sucrose was most inhibitory to the saprophytes. It greatly decreased their lag periods as the concentration of sugar increased. Dextrose was the least inhibitory; in fact, 0.5% dextrose gave considerable stimulus to saprophyte growth. This sharply repressed staphylococcal growth. Lactose occupied an intermediate position. Rapid onset of the death phase of the staphylococci was observed in all increased sugar concentrations and seemed to be a pH effect rather than a result of competition. Sucrose exerted an inhibitory effect on the growth of saprophytes at and above room temperature. In the presence of 2.5% corn starch, staphylococcal growth in mixed cultures was slightly inhibited, while the death phase was sharply accelerated. Thus, carbohydrates exert their influence on staphylococcal growth in mixed cultures through their effect on the saprophytes by decreasing or increasing competition. PMID:14106944

  18. Influence of plant species and environmental conditions on epiphytic and endophytic pink-pigmented facultative methylotrophic bacterial populations associated with field-grown rice cultivars.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Sa, Tongmin

    2007-10-01

    The total methylotrophic population associated with rice plants from different cultivars was enumerated at three different stages: vegetative, flowering, and harvesting. The bacterial population in the leaf, rhizosphere soil, endophytic in the stem and roots, and epiphytic in the florets and grains were determined from four rice cultivars, Il-mi, Nam-pyeoung, O-dae, and Dong-jin, sampled from three different field sites. The methylotrophic bacteria isolated on AMS media containing 0.5% methanol as the sole carbon source uniformly showed three distinct morphologies, which were recorded as separate groups and their distribution among the various samples was determined using the ecophysiological index. The growth stage at the time of sampling had a more significant effect on the methylotrophic population and their distribution than the field site or cultivar. A similar effect was also observed for the PPFMs, where their population in different plant parts increased from V10 to R4 and then decreased towards stage R9. A canonical discriminant analysis of the PPFM population from different parts of rice showed clear variations among the cultivars, sampled sites, and growth stages, although the variations were more prominent among the growth stages.

  19. Teaching Microbial Growth by Simulation.

    ERIC Educational Resources Information Center

    Ruiz, A. Fernandez; And Others

    1989-01-01

    Presented is a simulation program for Apple II computer which assays the effects of a series of variables on bacterial growth and interactions between microbial populations. Results of evaluation of the program with students are summarized. (CW)

  20. Drivers of climate change impacts on bird communities.

    PubMed

    Pearce-Higgins, James W; Eglington, Sarah M; Martay, Blaise; Chamberlain, Dan E

    2015-07-01

    Climate change is reported to have caused widespread changes to species' populations and ecological communities. Warming has been associated with population declines in long-distance migrants and habitat specialists, and increases in southerly distributed species. However, the specific climatic drivers behind these changes remain undescribed. We analysed annual fluctuations in the abundance of 59 breeding bird species in England over 45 years to test the effect of monthly temperature and precipitation means upon population trends. Strong positive correlations between population growth and both winter and breeding season temperature were identified for resident and short-distance migrants. Lagged correlations between population growth and summer temperature and precipitation identified for the first time a widespread negative impact of hot, dry summer weather. Resident populations appeared to increase following wet autumns. Populations of long-distance migrants were negatively affected by May temperature, consistent with a potential negative effect of phenological mismatch upon breeding success. There was evidence for some nonlinear relationships between monthly weather variables and population growth. Habitat specialists and cold-associated species showed consistently more negative effects of higher temperatures than habitat generalists and southerly distributed species associated with warm temperatures. Results suggest that previously reported changes in community composition represent the accumulated effects of spring and summer warming. Long-term population trends were more significantly correlated with species' sensitivity to temperature than precipitation, suggesting that warming has had a greater impact on population trends than changes in precipitation. Months where there had been the greatest warming were the most influential drivers of long-term change. There was also evidence that species with the greatest sensitivity to extremes of precipitation have tended to decline. Our results provide novel insights about the impact of climate change on bird communities. Significant lagged effects highlight the potential for altered species' interactions to drive observed climate change impacts, although some community changes may have been driven by more immediate responses to warming. In England, resident and short-distance migrant populations have increased in response to climate change, but potentially at the expense of long-distance migrants, habitat specialists and cold-associated species. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  1. Population differences in host use by a seed-beetle: local adaptation, phenotypic plasticity and maternal effects.

    PubMed

    Amarillo-Suárez, Angela R; Fox, Charles W

    2006-11-01

    For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus' diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in mediating diet evolution requires the consideration of evolutionary history.

  2. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader

    PubMed Central

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Background and Aims Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Methods Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. Key Results It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (QST) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F′ST), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. Conclusions The study suggests that although genetic variation may facilitate plant invasions by increasing seedling establishment, it may not necessarily affect the long-term population growth rate. Therefore, established invasions may be able to grow equally well regardless of their genetic diversity. PMID:26420202

  3. STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT.

    PubMed

    Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido

    2012-01-01

    A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

  4. The finite state projection approach to analyze dynamics of heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  5. Synergy of climate change and local pressures on saltwater intrusion in heterogeneous coastal aquifers

    NASA Astrophysics Data System (ADS)

    Abou Najm, M.; Safi, A.; El-Fadel, M.; Doummar, J.; Alameddine, I.

    2016-12-01

    The relative importance of climate change induced sea level rise on the salinization of a highly urbanized karstified coastal aquifers were compared with non-sustainable pumping. A 3D variable-density groundwater flow and solute transport model was used to predict the displacement of the saltwater-freshwater interface in a pilot aquifer located along the Eastern Mediterranean. The results showed that the influence of sea level rise was marginal when compared with the encroachment of salinity associated with anthropogenic abstraction. Model predictions of salinity mass and volumetric displacement of the interface corresponding to a long-term monthly transient model showed that the saltwater intrusion dynamic is highly sensitive to change in the abstraction rates which were estimated based on combinations of water consumption rates and population growth rates. Salinity encroachment, however, appeared to be more sensitive to water consumption rates in comparison to population growth rates, where a 50% increase in the rate of former led to four times more intrusion as compared to an equivalent increase in population growth rate over 20 years. Coupling both increase in population growth and increased consumption rates had a synergistic effect that aggravated the intrusion beyond the sum of the individual impacts. Adaptation strategies targeting a decrease in groundwater exploitation proved to be effective in retarding the intrusion.

  6. Population facts that can spur women's well being.

    PubMed

    Harrison, P

    1994-01-01

    Although women's rights proposals included in the International Conference on Population and Development deserve support on their own merit, governments are more likely to increase funding for human development if the environmental and economic advantages of investing in women are spelled out. A significant negative association between income growth and population growth emerged in the 1980s. During this decade, 41 countries where population was growing more slowly demonstrated an average income growth of 1.23% per year, while average income fell by an average of 1.25% per year in 41 countries where there was more rapid population growth. In the 1965-80 period, there was no such correlation. Moreover, population control is among the most effective measures for protecting the environment. If--through female education, women's rights, maternal-child health, and family planning--the United Nations' low population projection existed in the year 2050 as opposed to the medium projection (2.2 billion higher), 4.4 million square kilometers of land would be saved and there would be 9.3 billion tones less in carbon dioxide emissions per year. This would be equivalent to halting all current deforestation and a 26% improvement in global energy improvement. Achievement of the low projection would further result in 342 million fewer cases of malnutrition than the medium projection.

  7. Fetal Genotype for the Xenobiotic Metabolizing Enzyme "NQO1" Influences Intrauterine Growth among Infants Whose Mothers Smoked during Pregnancy

    ERIC Educational Resources Information Center

    Price, Thomas S.; Grosser, Tilo; Plomin, Robert; Jaffee, Sara R.

    2010-01-01

    Maternal smoking during pregnancy retards fetal growth and depresses infant birth weight. The magnitude of these effects may be moderated by fetal genotype. The current study investigated maternal smoking, fetal genotype, and fetal growth in a large population sample of dizygotic twins. Maternal smoking retarded fetal growth in a dose-dependent…

  8. Population dynamics of Greater Scaup breeding on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Grand, J. Barry; Fondell, Thomas F.; Morse, Julie A.

    2006-01-01

    Using a stochastic model, we estimated that, on average, breeding females produced 0.57 young females/nesting season. We combined this estimate of productivity with our annual estimates of adult survival and an assumed population growth rate of 1.0, then solved for an estimate of first-year survival (0.40). Under these conditions the predicted stable age distribution of breeding females (i.e., the nesting population) was 15.1% 1-year-old, 4.1% 2-year-old first-time breeders, and 80.8% 2-year-old and older, experienced breeders. We subjected this stochastic model to perturbation analyses to examine the relative effects of demographic parameters on k. The relative effects of productivity and adult survival on the population growth rate were 0.26 and 0.72, respectively. Thus, compared to productivity, proportionally equivalent changes in annual survival would have 2.8 times the effect on k. However, when we examined annual variation in predicted population size using standardized regression coefficients, productivity explained twice as much variation as annual survival. Thus, management actions focused on changes in survival or productivity have the ability to influence population size; however, substantially larger changes in productivity are required to influence population trends.

  9. A framework for estimating the determinants of spatial and temporal variation in vital rates and inferring the occurrence of unobserved extreme events

    PubMed Central

    Jesenšek, Dušan; Crivelli, Alain J.

    2018-01-01

    We develop a general framework that combines long-term tag–recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004–2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event. PMID:29657746

  10. A framework for estimating the determinants of spatial and temporal variation in vital rates and inferring the occurrence of unobserved extreme events.

    PubMed

    Vincenzi, Simone; Jesenšek, Dušan; Crivelli, Alain J

    2018-03-01

    We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.

  11. Population Blocks.

    ERIC Educational Resources Information Center

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  12. Response of fish population dynamics to mitigation activities in a large regulated river

    USGS Publications Warehouse

    Watkins, Carson J.; Ross, Tyler J.; Quist, Michael C.; Hardy, Ryan S.

    2017-01-01

    Extensive water development in large rivers has precipitated many negative ecological effects on native fish populations. Mitigation for such development often focuses on restoring biological integrity through remediation of the physical and chemical properties of regulated rivers. However, evaluating and defining the success of those programs can be difficult. We modeled the influence of mitigation-related environmental factors on growth and recruitment of two ecologically important native fish species (Largescale Sucker Catostomus macrocheilus and Mountain Whitefish Prosopium williamsoni) in the Kootenai River, Idaho. Artificial nutrient (phosphorus) addition best predicted the variability in annual growth of both species. Nutrient addition was positively related to Largescale Sucker growth but negatively related to Mountain Whitefish growth. The best model explained 82% of the annual variability in incremental growth for Largescale Suckers and 61% of the annual variability for Mountain Whitefish. Year-class strength of Largescale Suckers was not closely related to any of the environmental variables evaluated; however, year-class strength of Mountain Whitefish was closely associated with nutrient addition, discharge, and temperature. Most research has focused on biotic assemblages to evaluate the effects of mitigation activities on fishes, but there is an increased need to identify the influence of rehabilitation activities on fish population dynamics within those assemblages. Here, we demonstrate how fish growth can serve as an indicator of rehabilitation success in a highly regulated large river. Future fish restoration projects can likely benefit from a change in scope and from consideration of an evaluation framework involving the response of population rate functions to mitigation.

  13. Variation in freshwater growth and development among five New England Atlantic salmon (Salmo salar) populations reared in a common environment

    USGS Publications Warehouse

    Obedzinski, M.; Letcher, B.H.

    2004-01-01

    We examined phenotypic variation in growth and development from the eyed-egg stage to the age-1+ smolt stage among five New England populations of Atlantic salmon (Salmo salar: East Machias, Narraguagus, Sheepscot, Penobscot, Connecticut) reared in a common laboratory environment. Study populations originated from rivers varying in size, latitude, and level of hatchery supplementation and included one reintroduced population (Connecticut was a recipient of Penobscot origin stock). Phenotypic trait differences were found among populations, and the degree of stock variation depended on ontogeny. Eggs were smaller and hatched sooner in the Penobscot (a northern, intensively managed population), but no stock differences were detected in size or growth efficiency from the onset of exogenous feeding to age 0+ summer. Differences again emerged in age 0+ autumn, with the degree of bimodality in length-frequency distributions differing among stocks; the Connecticut had the highest proportion of upper-mode fish and, ultimately, age-1+ smolts. Although genetic effects could not be entirely separated from maternal effects for egg size variation, it is likely that differences in hatch timing and smolt age had a genetic basis. Early emphasis on age-1+ hatchery-reared smolts in the Connecticut may have led to divergence in smolt age between the Penobscot and Connecticut populations in less than eight generations. ?? 2004 NRC Canada.

  14. Population dynamics and climate change: what are the links?

    PubMed

    Stephenson, Judith; Newman, Karen; Mayhew, Susannah

    2010-06-01

    Climate change has been described as the biggest global health threat of the 21(st) century. World population is projected to reach 9.1 billion by 2050, with most of this growth in developing countries. While the principal cause of climate change is high consumption in the developed countries, its impact will be greatest on people in the developing world. Climate change and population can be linked through adaptation (reducing vulnerability to the adverse effects of climate change) and, more controversially, through mitigation (reducing the greenhouse gases that cause climate change). The contribution of low-income, high-fertility countries to global carbon emissions has been negligible to date, but is increasing with the economic development that they need to reduce poverty. Rapid population growth endangers human development, provision of basic services and poverty eradication and weakens the capacity of poor communities to adapt to climate change. Significant mass migration is likely to occur in response to climate change and should be regarded as a legitimate response to the effects of climate change. Linking population dynamics with climate change is a sensitive issue, but family planning programmes that respect and protect human rights can bring a remarkable range of benefits. Population dynamics have not been integrated systematically into climate change science. The contribution of population growth, migration, urbanization, ageing and household composition to mitigation and adaptation programmes needs urgent investigation.

  15. Listeria monocytogenes Growth Kinetics in Milkshakes Made from Naturally and Artificially Contaminated Ice Cream.

    PubMed

    Salazar, Joelle K; Bathija, Vriddi M; Carstens, Christina K; Narula, Sartaj S; Shazer, Arlette; Stewart, Diana; Tortorello, Mary Lou

    2018-01-01

    This study assessed the growth of Listeria monocytogenes in milkshakes made using the process-contaminated ice cream associated with a listeriosis outbreak in comparison to milkshakes made with artificially contaminated ice cream. For all temperatures, growth kinetics including growth rates, lag phases, maximum populations, and population increases were determined for the naturally and artificially derived contaminants at 5, 10, 15, and 25°C storage for 144 h. The artificially inoculated L. monocytogenes presented lower growth rates and shorter lag phases than the naturally contaminated populations at all temperatures except for 5°C, where the reverse was observed. At 25°C, lag phases of the naturally and artificially contaminated L. monocytogenes were 11.6 and 7.8 h, respectively. The highest increase in population was observed for the artificially inoculated pathogen at 15°C after 96 h (6.16 log CFU/mL) of storage. Growth models for both contamination states in milkshakes were determined. In addition, this study evaluated the antimicrobial effectiveness of flavoring agents, including strawberry, chocolate and mint, on the growth of the pathogen in milkshakes during 10°C storage. All flavor additions resulted in decreased growth rates of L. monocytogenes for both contamination states. The addition of chocolate and mint flavoring also resulted in significantly longer lag phases for both contamination states. This study provides insight into the differences in growth between naturally and artificially contaminated L. monocytogenes in a food product.

  16. Listeria monocytogenes Growth Kinetics in Milkshakes Made from Naturally and Artificially Contaminated Ice Cream

    PubMed Central

    Salazar, Joelle K.; Bathija, Vriddi M.; Carstens, Christina K.; Narula, Sartaj S.; Shazer, Arlette; Stewart, Diana; Tortorello, Mary Lou

    2018-01-01

    This study assessed the growth of Listeria monocytogenes in milkshakes made using the process-contaminated ice cream associated with a listeriosis outbreak in comparison to milkshakes made with artificially contaminated ice cream. For all temperatures, growth kinetics including growth rates, lag phases, maximum populations, and population increases were determined for the naturally and artificially derived contaminants at 5, 10, 15, and 25°C storage for 144 h. The artificially inoculated L. monocytogenes presented lower growth rates and shorter lag phases than the naturally contaminated populations at all temperatures except for 5°C, where the reverse was observed. At 25°C, lag phases of the naturally and artificially contaminated L. monocytogenes were 11.6 and 7.8 h, respectively. The highest increase in population was observed for the artificially inoculated pathogen at 15°C after 96 h (6.16 log CFU/mL) of storage. Growth models for both contamination states in milkshakes were determined. In addition, this study evaluated the antimicrobial effectiveness of flavoring agents, including strawberry, chocolate and mint, on the growth of the pathogen in milkshakes during 10°C storage. All flavor additions resulted in decreased growth rates of L. monocytogenes for both contamination states. The addition of chocolate and mint flavoring also resulted in significantly longer lag phases for both contamination states. This study provides insight into the differences in growth between naturally and artificially contaminated L. monocytogenes in a food product. PMID:29416531

  17. Effects of recruitment, growth, and exploitation on walleye population size structure in northern Wisconsin lakes

    USGS Publications Warehouse

    Hansen, Michael J.; Nate, Nancy A.

    2014-01-01

    We evaluated the dynamics of walleye Sander vitreus population size structure, as indexed by the proportional size distribution (PSD) of quality-length fish, in Escanaba Lake during 1967–2003 and in 204 other lakes in northern Wisconsin during 1990–2011. We estimated PSD from angler-caught walleyes in Escanaba Lake and from spring electrofishing in 204 other lakes, and then related PSD to annual estimates of recruitment to age-3, length at age 3, and annual angling exploitation rate. In Escanaba Lake during 1967–2003, annual estimates of PSD were highly dynamic, growth (positively) explained 35% of PSD variation, recruitment explained only 3% of PSD variation, and exploitation explained only 7% of PSD variation. In 204 other northern Wisconsin lakes during 1990–2011, PSD varied widely among lakes, recruitment (negatively) explained 29% of PSD variation, growth (positively) explained 21% of PSD variation, and exploitation explained only 4% of PSD variation. We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.

  18. Exploring the effects of population change on the costs of physician services.

    PubMed

    Denton, Frank T; Gafni, Amiram; Spencer, Byron G

    2002-09-01

    The effects of population aging on future health care costs are an important public policy concern in many countries. We focus in this paper on physician services and investigate how changes in the size and age distribution of a population can affect the aggregate and per capita costs of such services. The principal data set (unpublished, for Ontario) provides information about payments to physicians, by age and sex of patients. Using it, we derive age/cost profiles for 19 categories of physicians. Adopting an index-theoretic framework, we then use the profiles to analyse the "pure" effects of population change (historical and projected) on physician costs, and to decompose the effects into population growth effects and population aging effects. We present calculations for Ontario, for the population of 15 industrialized countries, and for four theoretical populations.

  19. Population stress: A spatiotemporal analysis of population change and land development at the county level in the contiguous United States, 2001-2011.

    PubMed

    Chi, Guangqing; Ho, Hung Chak

    2018-01-01

    The past century has witnessed rapidly increasing population-land conflicts due to exponential population growth and its many consequences. Although the measures of population-land conflicts are many, there lacks a model that appropriately considers both the social and physical contexts of population-land conflicts. In this study we introduce the concept of population stress , which identifies areas with populations growing faster than the lands available for sustainable development. Specifically, population stress areas are identified by comparing population growth and land development as measured by land developability in the contiguous United States from 2001 to 2011. Our approach is based on a combination of spatial multicriteria analysis, zonal statistics, and spatiotemporal modeling. We found that the population growth of a county is associated with the decrease of land developability, along with the spatial influences of surrounding counties. The Midwest and the traditional "Deep South" counties would have less population stress with future land development, whereas the Southeast Coast, Washington State, Northern Texas, and the Southwest would face more stress due to population growth that is faster than the loss of suitable lands for development. The factors contributing to population stress may differ from place to place. Our population stress concept is useful and innovative for understanding population stress due to land development and can be applied to other regions as well as global research. It can act as a basis towards developing coherent sustainable land use policies. Coordination among local governments and across different levels of governments in the twenty-first century is a must for effective land use planning.

  20. New roads toward North-South cooperation.

    PubMed

    Terpstra, E G

    1989-12-01

    A Netherlands Parliament member gives a European Perspective on population and development, problems in urban development, and methods of cooperation between industrialized and developing countries. On population and development, the relationship between population explosion and poverty, underdevelopment, environment, social infrastructure, and food shortages is pointed out. Most population growth in the years ahead will be in developing countries. Rampant population growth and burgeoning poverty strain the world's carrying capacity and environment, both in industrial and developing countries. Development policy and cooperation will fail in the absence of efforts to stem population growth. On this front, religious and political leaders have groundbreaking cooperative steps in supporting international family planning efforts through the global forum of Spiritual and Parliamentary Leaders on Human Survival. Economic development, environment, and population issues are inexorably tied together. The numerous problems faced by uncontrolled Third World urbanization are discussed with potential solutions for change. Incorporating women in the development process is strongly encouraged. The interdependent North-South relationship is discussed. All nations, the private sector, nongovernmental organizations, and women must cooperate to find solutions and effect positive change on a case-by-case basis.

  1. Pediatric Dysphagia: Physiology, Assessment, and Management.

    PubMed

    Dodrill, Pamela; Gosa, Memorie M

    2015-01-01

    Infancy and childhood represent a time of unparalleled physical growth and cognitive development. In order for infants and children to reach their linear and neurological growth potential, they must be able to reliably and safely consume sufficient energy and nutrients. Swallowing difficulties (dysphagia) in pediatric populations can have a detrimental effect on dietary intake and, thus, growth and development. As a result, it is imperative to accurately identify and appropriately manage dysphagia in pediatric populations. This article provides an overview of dysphagia in children, as well as common causes of childhood swallowing difficulties, populations at risk for pediatric dysphagia, techniques used to assess swallowing in pediatric patients, and the current treatment options available for infants and children with dysphagia. © 2015 S. Karger AG, Basel.

  2. Development of a Dynamic Energy Budget Modeling Approach to Investigate the Effects of Temperature and Resource Limitation on Mercury Bioaccumulation in Fundulus Heteroclitus

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population persistence and growth. To explore this approach, we are conducting growth and bioaccumulation studies that cont...

  3. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus-presentation

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are conducting growth and bioaccumulation studies that contrib...

  4. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus.

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are developing growth and bioaccumulation studies that contrib...

  5. Effect on Intestinal Growth of the Population of Cellobiose-Oligosaccharides Obtained by Enzymatic Reaction with Dextransucrase

    USDA-ARS?s Scientific Manuscript database

    Although the synthesis of oligosaccharides obtained by reactions catalyzed by dextransucrase using sucrose as donor and different carbohydrates as acceptors has been widely studied, the effect of many of these carbohydrates in the growth of intestinal flora has not yet been evaluated. Such is the c...

  6. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Noise effect in metabolic networks

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Yan; Xie, Zheng-Wei; Chen, Tong; Ouyang, Qi

    2009-12-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.

  7. Effects of wind energy production on growth, demography, and survivorship of a Desert Tortoise (Gopherus agassizii) population in Southern California with comparisons to natural populations

    USGS Publications Warehouse

    Lovich, J.E.; Ennen, J.R.; Madrak, S.; Meyer, K.; Loughran, C.; Bjurlin, C.; Arundel, T.; Turner, W.; Jones, C.; Groenendaal, G.M.

    2011-01-01

    We studied a Desert Tortoise (Gopherus agassizii) population at a large wind energy generation facility near Palm Springs, California over six field seasons from 1997 to 2010. We compared growth and demographic parameters to populations living in less disturbed areas; as well as populations of the closely-related and newly-described G. morafkai elsewhere in the Sonoran Desert of Arizona. We marked 69 individuals of all size classes and estimated a population size of 96 tortoises, or about 15.4/km2. Growth rates for males were lower than reported elsewhere, although maximum body size was larger. The smallest female with shelled eggs was 221 mm and males mature at over 200 mm. Mean male size was greater than that of females. The adult sex ratio was not significantly different from unity. Size frequency histograms were similar over time and when compared to most, but not all, G. morafkai populations in the Sonoran Desert. For a cohort of adult females, we estimated mortality at 8.4% annually due, in part, to site operations. This value was low in comparison to many other populations during the same time period. Other than possible differences in growth rate of males and the high survivorship of females, there appear to be few differences between this population and those in more natural areas. The high productivity of food plants at the site and its limited public access may contribute to the overall stability of the population. However, the effects of utility-scale renewable energy development on tortoises in other, less productive, areas are unknown. Additional research (especially controlled and replicated before and after studies) is urgently needed to address this deficiency because of forecasted expansion of utility-scale renewable energy development in the future.

  8. Efficacy of chlorine and calcinated calcium treatment of alfalfa seeds and sprouts to eliminate Salmonella.

    PubMed

    Gandhi, Megha; Matthews, Karl R

    2003-11-01

    The efficacy of a 20,000 ppm calcium hypochlorite treatment of alfalfa seeds artificially contaminated with Salmonella was studied. Salmonella populations reached >7.0 log on sprouts grown from seeds artificially contaminated with Salmonella and then treated with 20,000 ppm Ca(OCl)(2). The efficacy of spray application of chlorine (100 ppm) to eliminate Salmonella during germination and growth of alfalfa was assessed. Alfalfa seed artificially contaminated with Salmonella was treated at germination, on day 2 or day 4, or for the duration of the growth period. Spray application of 100 ppm chlorine at germination, day 2, or day 4 of growth was minimally effective resulting in approximately a 0.5-log decrease in population of Salmonella. Treatment on each of the 4 days of growth reduced populations of Salmonella by only 1.5 log. Combined treatment of seeds with 20,000 ppm Ca(OCl)(2) and followed by 100 ppm chlorine or calcinated calcium during germination and sprout growth did not eliminate Salmonella.

  9. Temperature alters the relative abundance and population growth rates of species within the Dendroctonus frontalis (Coleoptera: Curculionidae) community.

    Treesearch

    L. Evans; Richard Hoffstetter; Matthew Ayres; Kier Klepzig

    2011-01-01

    Temperature has strong effects on metabolic processes ofindividuals and demographics of populations, but effects on ecological communities are not well known. Many economically and ecologically important pest species have obligate associations with other organisms; therefore, effects of temperature on these species might be mediated by strong interactions. The southern...

  10. The Rise and Fall of a Yeast Community, An Environmental Investigation into the Dynamics of Population Growth.

    ERIC Educational Resources Information Center

    Minnesota Environmental Sciences Foundation, Inc., Minneapolis.

    In this unit students study populations by observing some of the activities that go on in one particular population. Specifically, yeast plants are examined and some of the effects which various environmental factors have on yeast plant populations are investigated. A population curve is developed showing how easily it is affected by the…

  11. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  12. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere.

    PubMed

    Kalam, Sadaf; Das, Subha Narayan; Basu, Anirban; Podile, Appa Rao

    2017-05-01

    Rhizosphere microbial community has diverse metabolic capabilities and plays a crucial role in maintaining plant health. Oligotrophic plant growth promoting rhizobacteria (PGPR), along with difficult-to-culture microbial fractions, might be involved synergistically in microbe-microbe and plant-microbe interactions in the rhizosphere. Among the difficult-to-culture microbial fractions, Acidobacteria constitutes the most dominant phylum thriving in rhizospheric soils. We selected effective PGPR for tomato and black gram and studied their effect on population densities of acidobacterial members. Three facultatively oligotrophic PGPR were identified through 16S rRNA gene sequencing as Sphingobacterium sp. (P3), Variovorax sp. (P4), and Roseomonas sp. (A2); the latter being a new report of PGPR. In presence of selected PGPR strains, the changes in population densities of Acidobacteria were monitored in metagenomic DNA extracted from bulk and rhizospheric soils of tomato and black gram using real time qPCR. A gradual increase in equivalent cell numbers of Acidobacteria members was observed over time along with a simultaneous increase in plant growth promotion by test PGPR. We report characterization of three effective PGPR strains and their effects on indigenous, underexplored difficult-to-culture phylum-Acidobacteria. We suggest that putative interactions between these two bacterial groups thriving in rhizospheric soils could be beneficial for plant growth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crash and rebound of indigenous populations in lowland South America

    NASA Astrophysics Data System (ADS)

    Hamilton, Marcus J.; Walker, Robert S.; Kesler, Dylan C.

    2014-04-01

    Lowland South America has long been a battle-ground between European colonization and indigenous survival. Initial waves of European colonization brought disease epidemics, slavery, and violence that had catastrophic impacts on indigenous cultures. In this paper we focus on the demography of 238 surviving populations in Brazil. We use longitudinal censuses from all known indigenous Brazilian societies to quantify three demographic metrics: 1) effects of European contact on indigenous populations; 2) empirical estimates of minimum viable population sizes; and 3) estimates of post-contact population growth rates. We use this information to conduct population viability analysis (PVA). Our results show that all surviving populations suffered extensive mortality during, and shortly after, contact. However, most surviving populations exhibit positive growth rates within the first decade post-contact. Our findings paint a positive demographic outlook for these indigenous populations, though long-term survival remains subject to powerful externalities, including politics, economics, and the pervasive illegal exploitation of indigenous lands.

  14. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    PubMed

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can provide valuable tools for science-based policy and management.

  15. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    USGS Publications Warehouse

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can provide valuable tools for science-based policy and management.

  16. Effects of an introduced pathogen and fire exclusion on the demography of sugar pine

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Keifer, MaryBeth; Keeley, Jon E.

    2004-01-01

    An introduced pathogen, white pine blister rust (Cronartium ribicola), has caused declines in five-needled pines throughout North America. Simultaneously, fire exclusion has resulted in dense stands in many forest types, which may create additional stress for these generally shade-intolerant pines. Fire exclusion also allows fuels to accumulate, and it is unclear how affected populations will respond to the reintroduction of fire. Although white pine blister rust and fire exclusion are widely recognized threats, long-term demographic data that document the effects of these stressors are rare. We present population trends from 2168 individuals over 5–15 years for an affected species, sugar pine (Pinus lambertiana), at several burned and unburned sites in the Sierra Nevada of California. Size-based matrix models indicate that most unburned populations have negative growth rates (λ range: 0.82–1.04). The growth rate of most populations was, however, indistinguishable from replacement levels (λ = 1.0), implying that, if populations are indeed declining, the progression of any such decline is slow, and longer observations are needed to clearly determine population trends. We found significant differences among population growth rates, primarily due to variation in recruitment rates. Deaths associated with blister rust and stress (i.e., resource competition) were common, suggesting significant roles for both blister rust and fire exclusion in determining population trajectories. Data from 15 prescribed fires showed that the immediate effect of burning was the death of many small trees, with the frequency of mortality returning to pre-fire levels within five years. In spite of a poor prognosis for sugar pine, our results suggest that we have time to apply and refine management strategies to protect this species.

  17. Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler

    2012-01-01

    Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.

  18. How Much Nutrition for How Much Growth?
.

    PubMed

    Hermanussen, Michael; Wit, Jan M

    2017-01-01

    Increasing agreement exists about the use of length-for-age as the indicator of choice in monitoring the long-term impact of chronic nutritional deficiency. Yet, already shortly after World War I, a causal link between nutrition and growth was questioned. Also, modern meta-analyses of controlled nutrition intervention studies show that the net effect of nutrition on body height is small. Broad evidence obtained from historic observations on human starvation made since the 19th century questions an obligatory association between nutrition and growth. Many additional explanations for the apparent shortness of people from developing countries have been published since, focusing on genetic factors, environment, economy, epigenetics, and, recently, psychosocial factors, such as strategic growth adjustments suggesting stature to be a social signal. The marked variability in average population height of up to 20 cm within a few generations complicates the use of normative growth charts, even though they have been widely propagated. We support the concept of local growth references, for example using the "Synthetic Growth References" methodology. These references combine local growth information obtained from a given population of interest and common features of human population growth, with LMS values for height, weight, and BMI from birth to maturity.
. © 2016 S. Karger AG, Basel.

  19. Effects of hatchery fish density on emigration, growth, survival, and predation risk of natural steelhead parr in an experimental stream channel

    USGS Publications Warehouse

    Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.

    2011-01-01

    Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.

  20. Variability in age and size at maturation, reproductive longevity, and long-term growth dynamics for Kemp's ridley sea turtles in the Gulf of Mexico

    PubMed Central

    Goshe, Lisa R.; Coggins, Lewis; Shaver, Donna J.; Higgins, Ben; Landry, Andre M.; Bailey, Rhonda

    2017-01-01

    Effective management of protected sea turtle populations requires knowledge not only of mean values for demographic and life-history parameters, but also temporal and spatial trends, variability, and underlying causes. For endangered Kemp’s ridley sea turtles (Lepidochelys kempii), the need for baseline information of this type has been emphasized during attempts to understand causes underlying the recent truncation in the recovery trajectory for nesting females. To provide insight into variability in age and size at sexual maturation (ASM and SSM) and long-term growth patterns likely to influence population trends, we conducted skeletochronological analysis of humerus bones from 333 Kemp’s ridleys stranded throughout the Gulf of Mexico (GOM) from 1993 to 2010. Ranges of possible ASMs (6.8 to 21.8 yr) and SSMs (53.3 to 68.3 cm straightline carapace length (SCL)) estimated using the “rapprochement” skeletal growth mark associated with maturation were broad, supporting incorporation of a maturation schedule in Kemp’s ridley population models. Mean ASMs estimated from rapprochement and by fitting logistic, generalized additive mixed, and von Bertalanffy growth models to age and growth data ranged from 11 to 13 yr; confidence intervals for the logistic model predicted maturation of 95% of the population between 11.9 and 14.8 yr. Early juvenile somatic growth rates in the GOM were greater than those previously reported for the Atlantic, indicating potential for differences in maturation trajectories between regions. Finally, long-term, significant decreases in somatic growth response were found for both juveniles and adults, which could influence recruitment to the reproductive population and observed nesting population trends. PMID:28333937

  1. Variability in age and size at maturation, reproductive longevity, and long-term growth dynamics for Kemp's ridley sea turtles in the Gulf of Mexico.

    PubMed

    Avens, Larisa; Goshe, Lisa R; Coggins, Lewis; Shaver, Donna J; Higgins, Ben; Landry, Andre M; Bailey, Rhonda

    2017-01-01

    Effective management of protected sea turtle populations requires knowledge not only of mean values for demographic and life-history parameters, but also temporal and spatial trends, variability, and underlying causes. For endangered Kemp's ridley sea turtles (Lepidochelys kempii), the need for baseline information of this type has been emphasized during attempts to understand causes underlying the recent truncation in the recovery trajectory for nesting females. To provide insight into variability in age and size at sexual maturation (ASM and SSM) and long-term growth patterns likely to influence population trends, we conducted skeletochronological analysis of humerus bones from 333 Kemp's ridleys stranded throughout the Gulf of Mexico (GOM) from 1993 to 2010. Ranges of possible ASMs (6.8 to 21.8 yr) and SSMs (53.3 to 68.3 cm straightline carapace length (SCL)) estimated using the "rapprochement" skeletal growth mark associated with maturation were broad, supporting incorporation of a maturation schedule in Kemp's ridley population models. Mean ASMs estimated from rapprochement and by fitting logistic, generalized additive mixed, and von Bertalanffy growth models to age and growth data ranged from 11 to 13 yr; confidence intervals for the logistic model predicted maturation of 95% of the population between 11.9 and 14.8 yr. Early juvenile somatic growth rates in the GOM were greater than those previously reported for the Atlantic, indicating potential for differences in maturation trajectories between regions. Finally, long-term, significant decreases in somatic growth response were found for both juveniles and adults, which could influence recruitment to the reproductive population and observed nesting population trends.

  2. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    PubMed

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  3. The relationship between population ageing and the economic growth in Asia

    NASA Astrophysics Data System (ADS)

    Brendan, Lo Rick; Sek, Siok Kun

    2017-08-01

    Asia has witnessed robust economic growth since the 1960s. Today, emerging markets in Asia have managed to maintain rapid growth even when the world's main economies suffer from debt and banking crises. However, declining total fertility rate, increasing life expectancy, continuous change of birth and death patterns, and increasing share of old age population in the age distribution in Asia exert significant pressure on its economies. This paper analyses the relationship between population ageing and economic growth using 2 different panels of countries; one Asian and another the from the oldest countries worldwide between 1970 and 2014. The analysis is based on the Auto Regression Distributed Lag models. The MG (Mean Group) and PMG (Pooled Mean Group) estimations are applied in this analysis. The Hausman Test is conducted to decide between the MG and PMG estimators. We find that ageing will negatively affect the economy in the long run. The growing number of youths will initially have a negative effect on the economy but would eventually lead to a positive growth in the future. The old age dependency ratio has yet to have affect the Asian economy but is expected eventually to impose a negative effect as seen in the oldest nations of the world.

  4. Population-specific life histories contribute to metapopulation viability

    USGS Publications Warehouse

    Halsey, Samniqueka J.; Bell, Timothy J.; McEachern, A. Kathryn; Pavlovic, Noel B.

    2016-01-01

    Restoration efforts can be improved by understanding how variations in life-history traits occur within populations of the same species living in different environments. This can be done by first understanding the demographic responses of natural occurring populations. Population viability analysis continues to be useful to species management and conservation with sensitivity analysis aiding in the understanding of population dynamics. In this study, using life-table response experiments and elasticity analyses, we investigated how population-specific life-history demographic responses contributed to the metapopulation viability of the Federally threatened Pitcher's thistle (Cirsium pitcheri). Specifically, we tested the following hypotheses: (1) Subpopulations occupying different environments within a metapopulation have independent demographic responses and (2) advancing succession results in a shift from a demographic response focused on growth and fecundity to one dominated by stasis. Our results showed that reintroductions had a positive contribution to the metapopulation growth rate as compared to native populations which had a negative contribution. We found no difference in succession on the contribution to metapopulation viability. In addition, we identified distinct population-specific contributions to metapopulation viability and were able to associate specific life-history demographic responses. For example, the positive impact of Miller High Dunes population on the metapopulation growth rate resulted from high growth contributions, whereas increased time of plant in stasis for the State Park Big Blowout population resulted in negative contributions. A greater understanding of how separate populations respond in their corresponding environment may ultimately lead to more effective management strategies aimed at reducing extinction risk. We propose the continued use of sensitivity analyses to evaluate population-specific demographic influences on metapopulation viability. In understanding the underlying causes of the projected extinction probabilities of each population and identifying broad-scale contributions of different populations to the metapopulation, the process of pinpointing target populations is simplified. More detailed analyses can then be applied to the target populations to increase population viability and consequently metapopulation viability. Based on our research, we suggest that the best approach to improve the overall metapopulation viability is to manage the contributions to population growth for each population separately.

  5. [Study of the growth and development of Chlorella on "Kosmos-1887"].

    PubMed

    Sychev, V N; Levinskikh, M A; Livanskaia, O G

    1989-01-01

    The growth, development and population characteristics of Chlorella cells flown for 13 days in space were investigated during their postflight cultivation. The growth rate of flown algae did not differ from that of ground-based controls in terms of increases in the cell number and biomass. All basic parameters of the specimens (generation time, number of developing autospores, time ratio of developmental phases) were ontogentically normal. Exposure of the algae to space flight as a component of the algobacterial cenosis--fish autotrophic-heterotrophic system produced no significant effect of the population or individual specimens during their postflight cultivation.

  6. Impaired reproduction and individual growth of the water flea Daphnia magna as consequence of exposure to the non-ester pyrethroid etofenprox.

    PubMed

    Sancho, Encarna; Banegas, Sandra; Villarroel, María José; Ferrando, Dolores

    2018-03-01

    The effect of the pesticide etofenprox (0.76, 0.95, 1.18, 1.48, and 1.85 μg L -1 ) on survival, reproduction, and growth of Daphnia magna organisms was monitored using 21-day exposure tests. In order to test pesticide effects on D. magna, survival, length, mean total neonates per female, mean brood size, time to first reproduction, mean number broods per female, cumulative molting, and the population parameter intrinsic rate of natural increase (r) were used. Reproduction was seriously affected by etofenprox. Concentrations of etofenprox higher than 1.18 μg L -1 affected all the reproductive parameters analyzed as well as individual length. However, daphnids' survival after 21 days of pesticide exposure did not exhibited differences among experimental and control groups. The no observed effect concentration (NOEC), the lowest observed effect concentration (LOEC), and the maximum acceptable toxicant concentration (MATC) were calculated for the different parameters. A MATC estimation of 1.32 μg L -1 was calculated for mean brood size, mean number of broods per female, mean number of neonates per female, and the intrinsic rate of growth population. Etofenprox effect on the algae Nannochloris oculata was also evaluated. The selected etofenprox concentrations did not affect algal growth rate (μ) after 24 h; however, N. oculata exposed during 48 and 72 h to the highest etofenprox concentration showed a decreased in its population rate.

  7. Population increase, economic growth, educational inequality, and income distribution: some recent evidence.

    PubMed

    Ram, R

    1984-04-01

    The relationship between population increase, economic growth, education and income inequality was examined in a cross-section study based on data from 26 developing and 2 developed countries. As other studies have noted, high population growth is associated with a less equal income distribution. A 1 percentage point reduction in the rate of population growth tends to raise the income share of the poorest 80% in the less developed world by almost 5 percentage points and is associated with a 1.7 percentage point increase in the income share of the poorest 40%. The relationship between short-run income growth and equality, on the other hand, is strong and positive. Estimates suggest that a 1 percentage point increase in the short-run rate of growth of the gross domestic product (GDP) increases the income share of the bottom 80% by about 2 percentage points and that of the poorest 40% by almost 1 percentage point. Although higher mean schooling appears to be a mild equalizer, educational inequality does not appear to have an adverse effect on income distribution. Overall, these results challenge the widely held belief that there must be a growth-equity trade-off. Moreover, they suggest that the impact of educational inequality on income distribution may be different from that observed in earlier studies, implying a need for caution in using these earlier results as a basis for educational policy development.

  8. The population threat.

    PubMed

    Teitelbaum, M S

    1992-01-01

    Commentary is provided on the challenges faced by the new Clinton administration in formulating US key foreign policy initiatives. There is an urgent need to provide balanced and effective foreign aid for reducing high fertility rates in the developing world. There is also a need to effectively monitor the large migrations of populations. Over the past 10 years, the US has not been actively practicing world leadership on population issues. 3 changes in 1993 give impetus to redirect foreign policy: 1) the waning influence of fringe groups who controlled population issues; 2) the campaign promises to restore UN population stabilization programs; and 3) the evidence from the Persian Gulf and Yugoslavia that demographic issues require planning and assessment. Global population growth has been concentrated in the past 40 years, in part due to mortality declines and sustained high fertility. Of significance is the rapidness and momentum of growth. A high percentage are and will be children. Urban population is also growing rapidly in high fertility countries. Countries with high fertility and significant rural-to-urban migration also have large international migrations. The evolution of policy since the 1950s, which for the most part ignored population issues, is discussed. The American debates have been charged with emotionalism: about human sexuality, legitimacy of voluntary fertility control, the role and status of women and men, abortion, intergenerational transfer of obligations, ethnic solidarity and the sovereignty of national borders, and the proper roles of the state versus the marketplace. There have been over 200 years of ideological argument over population issues. The Malthusian argument was that large population size did not increase prosperity, and growth should be limited. The Marxist-Leninist position was that contraception was Malthusian, abortion was a woman's right, and population growth was neutral. By late 1970 the Chinese Maoists adopted the moral contraints urged by Malthus. US policies in the 1980s amounted to defunding of population programs and ideological suppression. Seven steps in US policy change are indicated. Centralization of responsibilities for population issues should be determined within government; the Department of State or the National Security Council are likely choices.

  9. The intrinsic growth rate as a predictor of population viability under climate warming.

    PubMed

    Amarasekare, Priyanga; Coutinho, Renato M

    2013-11-01

    1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05°C per year) and to become negative, causing population extinction, well before 100 years when warming is fast (e.g. 0.1°C per year). The Euler-Lotka equation predicts a slower decrease in rm when warming is slow and a longer persistence time when warming is fast, with the deviation between the two metrics increasing with increasing developmental period. These results suggest that predictions of ectotherm population viability based on rm may be valid only for species with short developmental delays, and even then, only over short time-scales and under slow warming regimes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  10. Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas

    PubMed Central

    2017-01-01

    Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms’ production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities. PMID:28792949

  11. Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas.

    PubMed

    Muller, Nicholas Z; Jha, Akshaya

    2017-01-01

    Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms' production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities.

  12. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing.

  13. Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models

    PubMed Central

    Hisano, Mizue; Connolly, Sean R.; Robbins, William D.

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing. PMID:21966402

  14. Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer Brachionus plicatilis.

    PubMed

    Sha, Jingjing; Wang, You; Lv, Jianxia; Wang, Hong; Chen, Hongmei; Qi, Leilei; Tang, Xuexi

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs) are new kinds of persistent organic pollutants (POPs) and their potential threats to the equilibrium and sustainability of marine ecosystems have raised worldwide concerns. Here, two kinds of PBDEs, tetra-BDE (BDE-47) and deca-BDE (BDE-209) were applied, and their toxic effects on the swimming behavior, population growth and reproduction of Brachionus plicatilis were investigated. The results showed that: (1) The actual concentrations of BDE-47 and -209 in the seawater phase measured by GC-MS (Gas Chromatography-Mass Spectrometer) were much lower than their nominal concentrations. (2) In accordance with the 24-hr acute tests, BDE-209 did not show any obvious swimming inhibition to rotifers, but a good correlation did exist between the swimming inhibition rate and BDE-47 concentration suggesting that BDE-47 is more toxic than BDE-209. (3) Both BDE-47 and -209 had a significant influence on the population growth and reproduction parameters of B. plicatilis including the population growth rate, the ratio of ovigerous females/non-ovigerous females (OF/NOF), the ratio of mictic females/amictic females (MF/AF), resting egg production and the mictic rate, which indicate that these parameters in B. plicatilis population were suitable for monitoring and assessing PBDEs. Our results suggest that BDE-47 and -209 are not acute lethal toxicants and may pose a low risk to marine rotifers at environmental concentrations for short-term exposure. They also accumulate differently into rotifers. Further research data are needed to understand the mechanisms responsible for the effects caused by PBDEs and to assess their risks accurately. Copyright © 2014. Published by Elsevier B.V.

  15. Combination of a higher-tier flow-through system and population modeling to assess the effects of time-variable exposure of isoproturon on the green algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata.

    PubMed

    Weber, Denis; Schaefer, Dieter; Dorgerloh, Michael; Bruns, Eric; Goerlitz, Gerhard; Hammel, Klaus; Preuss, Thomas G; Ratte, Hans Toni

    2012-04-01

    A flow-through system was developed to investigate the effects of time-variable exposure of pesticides on algae. A recently developed algae population model was used for simulations supported and verified by laboratory experiments. Flow-through studies with Desmodesmus subspicatus and Pseudokirchneriella subcapitata under time-variable exposure to isoproturon were performed, in which the exposure patterns were based on the results of FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) model calculations for typical exposure situations via runoff or drain flow. Different types of pulsed exposure events were realized, including a whole range of repeated pulsed and steep peaks as well as periods of constant exposure. Both species recovered quickly in terms of growth from short-term exposure and according to substance dissipation from the system. Even at a peak 10 times the maximum predicted environmental concentration of isoproturon, only transient effects occurred on algae populations. No modified sensitivity or reduced growth was observed after repeated exposure. Model predictions of algal growth in the flow-through tests agreed well with the experimental data. The experimental boundary conditions and the physiological properties of the algae were used as the only model input. No calibration or parameter fitting was necessary. The combination of the flow-through experiments with the algae population model was revealed to be a powerful tool for the assessment of pulsed exposure on algae. It allowed investigating the growth reduction and recovery potential of algae after complex exposure, which is not possible with standard laboratory experiments alone. The results of the combined approach confirm the beneficial use of population models as supporting tools in higher-tier risk assessments of pesticides. Copyright © 2012 SETAC.

  16. Inter-class competition in stage-structured populations: effects of adult density on life-history traits of adult and juvenile common lizards.

    PubMed

    San-Jose, Luis M; Peñalver-Alcázar, Miguel; Huyghe, Katleen; Breedveld, Merel C; Fitze, Patrick S

    2016-12-01

    Ecological and evolutionary processes in natural populations are largely influenced by the population's stage-structure. Commonly, different classes have different competitive abilities, e.g., due to differences in body size, suggesting that inter-class competition may be important and largely asymmetric. However, experimental evidence states that inter-class competition, which is important, is rare and restricted to marine fish. Here, we manipulated the adult density in six semi-natural populations of the European common lizard, Zootoca vivipara, while holding juvenile density constant. Adult density affected juveniles, but not adults, in line with inter-class competition. High adult density led to lower juvenile survival and growth before hibernation. In contrast, juvenile survival after hibernation was higher in populations with high adult density, pointing to relaxed inter-class competition. As a result, annual survival was not affected by adult density, showing that differences in pre- and post-hibernation survival balanced each other out. The intensity of inter-class competition affected reproduction, performance, and body size in juveniles. Path analyses unravelled direct treatment effects on early growth (pre-hibernation) and no direct treatment effects on the parameters measured after hibernation. This points to allometry of treatment-induced differences in early growth, and it suggests that inter-class competition mainly affects the early growth of the competitively inferior class and thereby their future performance and reproduction. These results are in contrast with previous findings and, together with results in marine fish, suggest that the strength and direction of density dependence may depend on the degree of inter-class competition, and thus on the availability of resources used by the competing classes.

  17. Comparison of individual-based modeling and population approaches for prediction of foodborne pathogens growth.

    PubMed

    Augustin, Jean-Christophe; Ferrier, Rachel; Hezard, Bernard; Lintz, Adrienne; Stahl, Valérie

    2015-02-01

    Individual-based modeling (IBM) approach combined with the microenvironment modeling of vacuum-packed cold-smoked salmon was more effective to describe the variability of the growth of a few Listeria monocytogenes cells contaminating irradiated salmon slices than the traditional population models. The IBM approach was particularly relevant to predict the absence of growth in 25% (5 among 20) of artificially contaminated cold-smoked salmon samples stored at 8 °C. These results confirmed similar observations obtained with smear soft cheese (Ferrier et al., 2013). These two different food models were used to compare the IBM/microscale and population/macroscale modeling approaches in more global exposure and risk assessment frameworks taking into account the variability and/or the uncertainty of the factors influencing the growth of L. monocytogenes. We observed that the traditional population models significantly overestimate exposure and risk estimates in comparison to IBM approach when contamination of foods occurs with a low number of cells (<100 per serving). Moreover, the exposure estimates obtained with the population model were characterized by a great uncertainty. The overestimation was mainly linked to the ability of IBM to predict no growth situations rather than the consideration of microscale environment. On the other hand, when the aim of quantitative risk assessment studies is only to assess the relative impact of changes in control measures affecting the growth of foodborne bacteria, the two modeling approach gave similar results and the simplest population approach was suitable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Demographic response to rural restructuring and counterurbanisation in South Australia, 1981-1991.

    PubMed

    Smailes, P J

    1996-09-01

    "Using South Australia as a case study, this paper seeks to trace and demonstrate two processes (counterurbanisation and rural restructuring) whose effects overlap to differentiate and characterise the population geography of...two zones, separated by a transition along the outer fringe of Adelaide's urban field.... In the demographic core zone [rural restructuring] has been partly offset by continued counterurbanisation, resulting in demographic mixing and rural dilution. The 1981-91 population growth in rural communities is shown to be more a function of population density at the outset of the period than of initial population size. Demographic growth...is shown to conform to a simple unidimensional scale, allowing the production of a clear, easily interpretable typology of rural demographic change with few non-conforming statistical areas. At a local level within individual rural communities, demographic decline is shown to be accompanied by increased concentration of the population into small towns, while demographic growth is associated with deconcentration." excerpt

  19. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  20. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird

    PubMed Central

    Tompkins, Emily M.; Townsend, Howard M.

    2017-01-01

    Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies’ foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies’ island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate. PMID:28832597

  1. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird.

    PubMed

    Tompkins, Emily M; Townsend, Howard M; Anderson, David J

    2017-01-01

    Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies' foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies' island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate.

  2. Plastic rates of development and the effect of thermal extremes on offspring fitness in a cold-climate viviparous lizard.

    PubMed

    Cunningham, George D; Fitzpatrick, Luisa J; While, Geoffrey M; Wapstra, Erik

    2018-05-23

    Populations at the climatic margins of a species' distribution can be exposed to conditions that cause developmental stress, resulting in developmental abnormalities. Even within the thermal range of normal development, phenotypes often vary with developmental temperature (i.e., thermal phenotypic plasticity). These effects can have significant consequences for organismal fitness and, thus, population persistence. Reptiles, as ectotherms, are particularly vulnerable to thermal effects on development and are, therefore, considered to be at comparatively high risk from changing climates. Understanding the extent and direction of thermal effects on phenotypes and their fitness consequences is crucial if we are to make meaningful predictions of how populations and species will respond as climates warm. Here, we experimentally manipulated the thermal conditions experienced by females from a high-altitude, cold-adapted population of the viviparous skink, Niveoscincus ocellatus, to examine the consequences of thermal conditions at the margins of this population's normal temperature range. We found strong effects of thermal conditions on the development of key phenotypic traits that have implications for fitness. Specifically, we found that offspring born earlier as a result of high temperatures during gestation had increased growth over the first winter of life, but there was no effect on offspring survival, nor was there an effect of developmental temperature on the incidence of developmental abnormalities. Combined, our results suggest that advancing birth dates that result from warming climates may have positive effects in this population via increased growth. © 2018 Wiley Periodicals, Inc.

  3. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  4. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.

    PubMed

    Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark

    2014-08-01

    Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.

  5. Order of events matter: comparing discrete models for optimal control of species augmentation.

    PubMed

    Bodine, Erin N; Gross, Louis J; Lenhart, Suzanne

    2012-01-01

    We investigate optimal timing of augmentation of an endangered/threatened species population in a target region by moving individuals from a reserve or captive population. This is formulated as a discrete-time optimal control problem in which augmentation occurs once per time period over a fixed number of time periods. The population model assumes the Allee effect growth functions in both target and reserve populations and the control objective is to maximize the target and reserve population sizes over the time horizon while accounting for costs of augmentation. Two possible orders of events are considered for different life histories of the species relative to augmentation time: move individuals either before or after population growth occurs. The control variable is the proportion of the reserve population to be moved to the target population. We develop solutions and illustrate numerical results which indicate circumstances for which optimal augmentation strategies depend upon the order of events.

  6. The World Health Organization fetal growth charts: concept, findings, interpretation, and application.

    PubMed

    Kiserud, Torvid; Benachi, Alexandra; Hecher, Kurt; Perez, Rogelio González; Carvalho, José; Piaggio, Gilda; Platt, Lawrence D

    2018-02-01

    Ultrasound biometry is an important clinical tool for the identification, monitoring, and management of fetal growth restriction and development of macrosomia. This is even truer in populations in which perinatal morbidity and mortality rates are high, which is a reason that much effort is put onto making the technique available everywhere, including low-income societies. Until recently, however, commonly used reference ranges were based on single populations largely from industrialized countries. Thus, the World Health Organization prioritized the establishment of fetal growth charts for international use. New fetal growth charts for common fetal measurements and estimated fetal weight were based on a longitudinal study of 1387 low-risk pregnant women from 10 countries (Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand) that provided 8203 sets of ultrasound measurements. The participants were characterized by median age 28 years, 58% nulliparous, normal body mass index, with no socioeconomic or nutritional constraints (median caloric intake, 1840 calories/day), and had the ability to attend the ultrasound sessions, thus essentially representing urban populations. Median gestational age at birth was 39 weeks, and birthweight was 3300 g, both with significant differences among countries. Quantile regression was used to establish the fetal growth charts, which also made it possible to demonstrate a number of features of fetal growth that previously were not well appreciated or unknown: (1) There was an asymmetric distribution of estimated fetal weight in the population. During early second trimester, the distribution was wider among fetuses <50th percentile compared with those above. The pattern was reversed in the third trimester, with a notably wider variation >50th percentile. (2) Although fetal sex, maternal factors (height, weight, age, and parity), and country had significant influence on fetal weight (1-4.5% each), their effect was graded across the percentiles. For example, the positive effect of maternal height on fetal weight was strongest on the lowest percentiles and smallest on the highest percentiles for estimated fetal weight. (3) When adjustment was made for maternal covariates, there was still a significant effect of country as covariate that indicated that ethnic, cultural, and geographic variation play a role. (4) Variation between populations was not restricted to fetal size because there were also differences in growth trajectories. (5) The wide physiologic ranges, as illustrated by the 5th-95th percentile for estimated fetal weight being 2205-3538 g at 37 weeks gestation, signify that human fetal growth under optimized maternal conditions is not uniform. Rather, it has a remarkable variation that largely is unexplained by commonly known factors. We suggest this variation could be part of our common biologic strategy that makes human evolution extremely successful. The World Health Organization fetal growth charts are intended to be used internationally based on low-risk pregnancies from populations in Africa, Asia, Europe, and South America. We consider it prudent to test and monitor whether the growth charts' performance meets the local needs, because refinements are possible by a change in cut-offs or customization for fetal sex, maternal factors, and populations. In the same line, the study finding of variations emphasizes the need for carefully adjusted growth charts that reflect optimal local growth when public health issues are addressed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Population dynamics and mutualism: Functional responses of benefits and costs

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  8. Biased phylodynamic inferences from analysing clusters of viral sequences

    PubMed Central

    Xiang, Fei; Frost, Simon D. W.

    2017-01-01

    Abstract Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources. PMID:28852573

  9. Estimation of fitness from energetics and life-history data: An example using mussels.

    PubMed

    Sebens, Kenneth P; Sarà, Gianluca; Carrington, Emily

    2018-06-01

    Changing environments have the potential to alter the fitness of organisms through effects on components of fitness such as energy acquisition, metabolic cost, growth rate, survivorship, and reproductive output. Organisms, on the other hand, can alter aspects of their physiology and life histories through phenotypic plasticity as well as through genetic change in populations (selection). Researchers examining the effects of environmental variables frequently concentrate on individual components of fitness, although methods exist to combine these into a population level estimate of average fitness, as the per capita rate of population growth for a set of identical individuals with a particular set of traits. Recent advances in energetic modeling have provided excellent data on energy intake and costs leading to growth, reproduction, and other life-history parameters; these in turn have consequences for survivorship at all life-history stages, and thus for fitness. Components of fitness alone (performance measures) are useful in determining organism response to changing conditions, but are often not good predictors of fitness; they can differ in both form and magnitude, as demonstrated in our model. Here, we combine an energetics model for growth and allocation with a matrix model that calculates population growth rate for a group of individuals with a particular set of traits. We use intertidal mussels as an example, because data exist for some of the important energetic and life-history parameters, and because there is a hypothesized energetic trade-off between byssus production (affecting survivorship), and energy used for growth and reproduction. The model shows exactly how strong this trade-off is in terms of overall fitness, and it illustrates conditions where fitness components are good predictors of actual fitness, and cases where they are not. In addition, the model is used to examine the effects of environmental change on this trade-off and on both fitness and on individual fitness components.

  10. Analysing the natural population growth of a large marine mammal after a depletive harvest.

    PubMed

    Romero, M A; Grandi, M F; Koen-Alonso, M; Svendsen, G; Ocampo Reinaldo, M; García, N A; Dans, S L; González, R; Crespo, E A

    2017-07-13

    An understanding of the underlying processes and comprehensive history of population growth after a harvest-driven depletion is necessary when assessing the long-term effectiveness of management and conservation strategies. The South American sea lion (SASL), Otaria flavescens, is the most conspicuous marine mammal along the South American coasts, where it has been heavily exploited. As a consequence of this exploitation, many of its populations were decimated during the early 20th century but currently show a clear recovery. The aim of this study was to assess SASL population recovery by applying a Bayesian state-space modelling framework. We were particularly interested in understanding how the population responds at low densities, how human-induced mortality interplays with natural mechanisms, and how density-dependence may regulate population growth. The observed population trajectory of SASL shows a non-linear relationship with density, recovering with a maximum increase rate of 0.055. However, 50 years after hunting cessation, the population still represents only 40% of its pre-exploitation abundance. Considering that the SASL population in this region represents approximately 72% of the species abundance within the Atlantic Ocean, the present analysis provides insights into the potential mechanisms regulating the dynamics of SASL populations across the global distributional range of the species.

  11. Houston's Regional Forest

    Treesearch

    David J. Nowak; Peter D. Smith; Michael Merritt; John Giedraitis; Jeffrey T. Walton; Robert E. Hoehn; Jack C. Stevens; Daniel E. Crane; Mark Estes; Stephen Stetson; Charles Burditt; David Hitchcock; Wendee Holtcamp

    2005-01-01

    The population in and around Houston has grown rapidly over the past twenty years, now exceeding five million people. Studies of the area have noted that the loss of trees and changes to the forest makeup have generally accompanied this growth. Trees and urban forestry practices can be used effectively to reduce many of the negative effects of urban growth and other...

  12. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads

    USGS Publications Warehouse

    Pilliod, D.S.; Muths, E.; Scherer, R. D.; Bartelt, P.E.; Corn, P.S.; Hossack, B.R.; Lambert, B.A.; Mccaffery, R.; Gaughan, C.

    2010-01-01

    Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture-recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31-42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5-7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low-level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations. Journal compilation. ?? 2010 Society for Conservation Biology. No claim to original US government works.

  13. Simulating Population Growth.

    ERIC Educational Resources Information Center

    Byington, Scott

    1997-01-01

    Presents a strategy to help students grasp the important implications of population growth. Involves an interactive demonstration that allows students to experience exponential and logistic population growth followed by a discussion of the implications of population-growth principles. (JRH)

  14. Determinants of infant growth: Evidence from Hong Kong's "Children of 1997" birth cohort.

    PubMed

    Hui, L L; Leung, Gabriel M; Cowling, Benjamin J; Lam, T H; Schooling, C Mary

    2010-11-01

    A high rate of infant growth may be associated with adult cardiovascular disease. We investigated factors associated with infant weight growth in a large sample from the recently transitioned population of Hong Kong. We used a nonlinear shape invariant model with random effects among 5949 term, singletons (77% follow-up) from a population-representative Hong Kong Chinese birth cohort "Children of 1997" to investigate factors associated with weight growth in the first year of life. Overall birth weight was lower but infant growth was more rapid than the 2006 WHO standards. Shorter gestation and lower birth order were associated with lower birth weight and faster infant growth. Female sex, maternal smoking in pregnancy, and a mother born in Hong Kong were associated with lower birth weight, but not with faster growth. Higher maternal education was associated with faster infant growth, grades 10-11 (1.03, 95% confidence interval [CI] = 1.03-1.05), greater than or equal to grade12 (1.07, CI = 1.04-1.09) compared with less than or equal to grade 9. Infant growth may respond more rapidly to socio-economic development than birth weight. Whether mother's education is associated with rapid infant growth via current conditions or her own "constitution" is unclear, nevertheless we believe this study illustrates the importance of contextually specific research for understanding the determinants of population health. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Projecting the Population-level Effects of Mercury on the Common Loon in the Northeast

    NASA Astrophysics Data System (ADS)

    Evers, D. C.; Mitro, M. G.; Gleason, T. R.

    2001-05-01

    The Common Loon (Gavia immer) is a top-level predator in aquatic systems and is at risk to mercury contamination. This risk is of particular concern in the Northeast, the region of North America in which loons have the highest mean body concentration of methylmercury (MeHg). We used matrix population models to project the population-level effects of mercury on loons in four states in the Northeast (New York, Vermont, New Hampshire, and Maine) exhibiting different levels of risk to MeHg. Four categories of risk to MeHg (low, moderate, high, and extra high) were established based on MeHg levels observed in loons and associated effects observed at the individual and population levels in the field (e.g., behavior and reproductive success). We parameterized deterministic matrix population models using survival estimates from a 12-year band-resight data set and productivity estimates from a 25-year data set of nesting loon observations in NH. The juvenile loon survival rate was 0.55 (minimum) and 0.63 (maximum) (ages 1-3), and the adult loon survival rate was 0.95 (ages 4-30). The mean age at first reproduction was 7. The mean fertility was 0.26 fledgelings per individual at low to moderate risk; there were 53% fewer fledged young per individual at high to extra high risk. Productivity was weighted by risk for each state. The portion of the breeding population at high to extra high risk was 10% in NY, 15% in VT, 17% in NH, and 28% in ME. We also constructed a stochastic model in which productivity was randomly selected in each time step from the 25 estimates in the NH data set. Model results indicated a negative population growth rate for some states. There was a decreasing trend in population growth rate as the percentage of the loon population at high to extra high risk increased. The stochastic model showed that the population growth rate varied over a range of about 0.05 from year to year, and this range decreased as the percentage of the loon population at high to extra high risk increased. These results suggest that an increase in risk to mercury that effects a change in reproductive success may have a negative population-level effect on loons.

  16. Predicting the effects of polychlorinated biphenyls on cetacean populations through impacts on immunity and calf survival.

    PubMed

    Hall, Ailsa J; McConnell, Bernie J; Schwacke, Lori H; Ylitalo, Gina M; Williams, Rob; Rowles, Teri K

    2018-02-01

    The potential impact of exposure to polychlorinated biphenyls (PCBs) on the health and survival of cetaceans continues to be an issue for conservation and management, yet few quantitative approaches for estimating population level effects have been developed. An individual based model (IBM) for assessing effects on both calf survival and immunity was developed and tested. Three case study species (bottlenose dolphin, humpback whale and killer whale) in four populations were taken as examples and the impact of varying levels of PCB uptake on achievable population growth was assessed. The unique aspect of the model is its ability to evaluate likely effects of immunosuppression in addition to calf survival, enabling consequences of PCB exposure on immune function on all age-classes to be explored. By incorporating quantitative tissue concentration-response functions from laboratory animal model species into an IBM framework, population trajectories were generated. Model outputs included estimated concentrations of PCBs in the blubber of females by age, which were then compared to published empirical data. Achievable population growth rates were more affected by the inclusion of effects of PCBs on immunity than on calf survival, but the magnitude depended on the virulence of any subsequent encounter with a pathogen and the proportion of the population exposed. Since the starting population parameters were from historic studies, which may already be impacted by PCBs, the results should be interpreted on a relative rather than an absolute basis. The framework will assist in providing quantitative risk assessments for populations of concern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rapid population growth. Effects on the social infrastructures of southern Africa.

    PubMed

    Smith, J D

    1995-01-01

    Southern Africa's high rate of population growth and widespread poverty have serious implications for the region's social infrastructure. Large increases in the school-age population have undermined efforts to improve the quality of education since all resources are directed toward expansion of availability. To achieve a teacher-pupil ratio of 1:40 at the primary level and 1:35 at the secondary level, an estimated additional 50,000 classrooms would be required. Also jeopardized by high fertility is access to health services, safe water, and sanitation. In Mozambique, for example, where only 30% of the population has access to health services, the under-five years mortality rate is 297/1000 live births and the physician-population ratio is 1:37,970. Substandard housing, homelessness, congestion, deteriorating public services, pollution, and crime dominate urban areas. The single most effective intervention to reduce population growth in Southern Africa is female education. Women without a secondary education bear an average of seven children; if 40% of women attend secondary school, this drops to three children. Thus, governments must make gender equality a central focus of development planning and ensure that women are participants in this process. Property and inheritance laws that serve to increase the economic need for early marriage should be eliminated. Public health programs, including family planning, must be expanded. Finally, women's organizations should be strengthened and urged to foster female empowerment.

  18. Height and seasonal growth pattern of jack pine full-sib families

    Treesearch

    Don E. Riemenschneider

    1981-01-01

    Total tree height, seasonal shoot elongation, dates of growth initiation and cessation, and mean daily growth rate were measured and analyzed for a population of jack pine full-sib families derived from inter-provenance crosses. Parental provenance had no effect on these variables although this may have been due to small sample size. Progenies differed significantly...

  19. Post-Traumatic Growth in Mothers of Children with Autism: A Phenomenological Study

    ERIC Educational Resources Information Center

    Zhang, Wei; Yan, Ting Ting; Barriball, K. Louise; While, Alison E.; Liu, Xiao Hong

    2015-01-01

    While the adverse effects of raising a child with autism are well demonstrated, there have been few reports of the post-traumatic growth of mothers of children with autism. The purpose of this research was to explore dimensions of post-traumatic growth in this population in Mainland China and identify the factors facilitating post-traumatic…

  20. Population, internal migration, and economic growth: an empirical analysis.

    PubMed

    Moreland, R S

    1982-01-01

    The role of population growth in the development process has received increasing attention during the last 15 years, as manifested in the literature in 3 broad categories. In the 1st category, the effects of rapid population growth on the growth of income have been studied with the use of simulation models, which sometimes include endogenous population growth. The 2nd category of the literature is concerned with theoretical and empirical studies of the economic determinants of various demographic rates--most usually fertility. Internal migration and dualism is the 3rd population development category to recieve attention. An attempt is made to synthesize developments in these 3 categories by estimating from a consistent set of data a 2 sector economic demographic model in which the major demographic rates are endogenous. Due to the fact that the interactions between economic and demographic variables are nonlinear and complex, the indirect effects of changes in a particular variable may depend upon the balance of numerical coefficients. For this reason it was felt that the model should be empirically grounded. A brief overview of the model is provided, and the model is compared to some similar existing models. Estimation of the model's 9 behavior equations is discussed, followed by a "base run" simulation of a developing country "stereotype" and a report of a number of policy experiments. The relatively new field of economic determinants of demographic variables was drawn upon in estimating equations to endogenize demographic phenomena that are frequently left exogenous in simulation models. The fertility and labor force participation rate functions are fairly standard, but a step beyong existing literature was taken in the life expectancy and intersectorial migration equations. On the economic side, sectoral savings functions were estimated, and it was found that the marginal propensity to save is lower in agriculture than in nonagriculture. Testing to see the effect of a population's age structure on savings rather than assuming a particular direction as Coale-Hoover and Simon do in their models, it was found that a higher proportion of children compete with savings in agriculture but complement savings in industrial areas. This was consistent with the economic value of children in agricultural and nonagricultural regions of less developed countries. The estimated production functions showed that marginal products of labor were considerably higher in agriculture than in nonagriculture. As with other simulation models, the effect of reducing fertility was to accelerate income growth. Reductions in rural fertility were more equitable and raised the overall level of per capita income more than similar efforts directed to urban areas only.

  1. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1974-01-01

    Cellular response and cell population kinetics were studied during lymphopoiesis in the thymus of the mouse under continuous gamma irradiation using autoradiographic techniques and specific labeling with tritiated thymidine. On the basis of tissue weights, it is concluded that the response of both the thymus and spleen to continuous low dose-rate irradiation is multiphasic. That is, alternating periods of steady state growth, followed by collapse, which in turn is followed by another period of homeostasis. Since there are two populations of lymphocytes - short lived and long-lived, it may be that different phases of steady state growth are mediated by different lymphocytes. The spleen is affected to a greater extent with shorter periods of steady-state growth than exhibited by the thymus.

  2. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    DOE PAGES

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.; ...

    2016-11-18

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable,it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application,it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin,glucan,and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) amongmore » parental and hybrid populations,whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age,with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase),and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%,respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass,with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass,respectively),with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate,biomass composition,and further optimization of enzymatic saccharification yield,high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.« less

  3. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable,it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application,it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin,glucan,and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) amongmore » parental and hybrid populations,whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age,with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase),and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%,respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass,with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass,respectively),with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate,biomass composition,and further optimization of enzymatic saccharification yield,high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.« less

  4. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa.

    PubMed

    Healey, Adam L; Lee, David J; Lupoi, Jason S; Papa, Gabriella; Guenther, Joel M; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.

  5. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    PubMed Central

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.; Papa, Gabriella; Guenther, Joel M.; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A.; Henry, Robert J.

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production. PMID:27917179

  6. A diffusion-based approach to stochastic individual growth and energy budget, with consequences to life-history optimization and population dynamics.

    PubMed

    Filin, I

    2009-06-01

    Using diffusion processes, I model stochastic individual growth, given exogenous hazards and starvation risk. By maximizing survival to final size, optimal life histories (e.g. switching size for habitat/dietary shift) are determined by two ratios: mean growth rate over growth variance (diffusion coefficient) and mortality rate over mean growth rate; all are size dependent. For example, switching size decreases with either ratio, if both are positive. I provide examples and compare with previous work on risk-sensitive foraging and the energy-predation trade-off. I then decompose individual size into reversibly and irreversibly growing components, e.g. reserves and structure. I provide a general expression for optimal structural growth, when reserves grow stochastically. I conclude that increased growth variance of reserves delays structural growth (raises threshold size for its commencement) but may eventually lead to larger structures. The effect depends on whether the structural trait is related to foraging or defence. Implications for population dynamics are discussed.

  7. Linking resource selection and mortality modeling for population estimation of mountain lions in Montana

    USGS Publications Warehouse

    Robinson, Hugh S.; Ruth, Toni K.; Gude, Justin A.; Choate, David; DeSimone, Rich; Hebblewhite, Mark; Matchett, Marc R.; Mitchell, Michael S.; Murphy, Kerry; Williams, Jim

    2015-01-01

    To be most effective, the scale of wildlife management practices should match the range of a particular species’ movements. For this reason, combined with our inability to rigorously or regularly census mountain lion populations, several authors have suggested that mountain lions be managed in a source-sink or metapopulation framework. We used a combination of resource selection functions, mortality estimation, and dispersal modeling to estimate cougar population levels in Montana statewide and potential population level effects of planned harvest levels. Between 1980 and 2012, 236 independent mountain lions were collared and monitored for research in Montana. From these data we used 18,695 GPS locations collected during winter from 85 animals to develop a resource selection function (RSF), and 11,726 VHF and GPS locations from 142 animals along with the locations of 6343 mountain lions harvested from 1988–2011 to validate the RSF model. Our RSF model validated well in all portions of the State, although it appeared to perform better in Montana Fish, Wildlife and Parks (MFWP) Regions 1, 2, 4 and 6, than in Regions 3, 5, and 7. Our mean RSF based population estimate for the total population (kittens, juveniles, and adults) of mountain lions in Montana in 2005 was 3926, with almost 25% of the entire population in MFWP Region 1. Estimates based on a high and low reference population estimates produce a possible range of 2784 to 5156 mountain lions statewide. Based on a range of possible survival rates we estimated the mountain lion population in Montana to be stable to slightly increasing between 2005 and 2010 with lambda ranging from 0.999 (SD = 0.05) to 1.02 (SD = 0.03). We believe these population growth rates to be a conservative estimate of true population growth. Our model suggests that proposed changes to female harvest quotas for 2013–2015 will result in an annual statewide population decline of 3% and shows that, due to reduced dispersal, changes to harvest in one management unit may affect population growth in neighboring units where smaller or even no changes were made. Uncertainty regarding dispersal levels and initial population density may have a significant effect on predictions at a management unit scale (i.e. 2000 km2), while at a regional scale (i.e. 50,000 km2) large differences in initial population density result in relatively small changes in population growth rate, and uncertainty about dispersal may not be as influential. Doubling the presumed initial density from a low estimation of 2.19 total animals per 100 km2 resulted in a difference in annual population growth rate of only 2.6% statewide when compared to high density of 4.04 total animals per 100 km2 (low initial population estimate λ = 0.99, while high initial population estimate λ = 1.03). We suggest modeling tools such as this may be useful in harvest planning at a regional and statewide level.

  8. Microgeographic differentiation in thermal performance curves between rural and urban populations of an aquatic insect.

    PubMed

    Tüzün, Nedim; Op de Beeck, Lin; Brans, Kristien I; Janssens, Lizanne; Stoks, Robby

    2017-12-01

    The rapidly increasing rate of urbanization has a major impact on the ecology and evolution of species. While increased temperatures are a key aspect of urbanization ("urban heat islands"), we have very limited knowledge whether this generates differentiation in thermal responses between rural and urban populations. In a common garden experiment, we compared the thermal performance curves (TPCs) for growth rate and mortality in larvae of the damselfly Coenagrion puella from three urban and three rural populations. TPCs for growth rate shifted vertically, consistent with the faster-slower theoretical model whereby the cold-adapted rural larvae grew faster than the warm-adapted urban larvae across temperatures. In line with costs of rapid growth, rural larvae showed lower survival than urban larvae across temperatures. The relatively lower temperatures hence expected shorter growing seasons in rural populations compared to the populations in the urban heat islands likely impose stronger time constraints to reach a certain developmental stage before winter, thereby selecting for faster growth rates. In addition, higher predation rates at higher temperature may have contributed to the growth rate differences between urban and rural ponds. A faster-slower differentiation in TPCs may be a widespread pattern along the urbanization gradient. The observed microgeographic differentiation in TPCs supports the view that urbanization may drive life-history evolution. Moreover, because of the urban heat island effect, urban environments have the potential to aid in developing predictions on the impact of climate change on rural populations.

  9. Effects of water temperature on breeding phenology, growth, and metamorphosis of foothill yellow-legged frogs (Rana boylii): a case study of the regulated mainstem and unregulated tributaries of California's Trinity River

    Treesearch

    Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh

    2014-01-01

    Many riverine organisms are well adapted to seasonally dynamic environments, but extreme changes in flow and thermal regimes can threaten sustainability of their populations in regulated rivers. Altered thermal regimes may limit recruitment to populations by shifting the timing of breeding activities and affecting the growth and development of early life stages. Stream...

  10. Rates of urbanisation and the resiliency of air and water quality.

    PubMed

    Duh, Jiunn-Der; Shandas, Vivek; Chang, Heejun; George, Linda A

    2008-08-01

    Global human population and urban development are increasing at unprecedented rates and creating tremendous stress on local, regional, and global air and water quality. However, little is known about how urban areas vary in their capacity to address effectively air and water quality impacts associated to urban development. There exists a need to better understanding the factors that mediate the interactions between urbanisation and variations of environmental quality. By synthesizing literatures on the relationship between urban development and air and water quality, we assess the amount of scholarship for each of these cities, characterize population growth rates in one hundred of the largest global cities, and link growth trends to changes in air and water quality. Our results suggest that, while there is a growing literature linking urbanisation and environmental quality, some regions of the globe are better represented than others, and that these trends are consistent with our characterization of population growth rates. In addition, the comparison between population growth rates and air and water quality suggest that multiple factors affect the environmental quality, and that approaching rates of urbanisation through the lens of 'resiliency' can be an effective integrative concept for studying the capacity of urban areas to respond to rapid rates of change. Based on these results we offer a framework for systematically assessing changes in air and water quality in megacities.

  11. Effects of clustered transmission on epidemic growth Comment on "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    Merler, Stefano

    2016-09-01

    Characterizing the early growth profile of an epidemic outbreak is key for predicting the likely trajectory of the number of cases and for designing adequate control measures. Epidemic profiles characterized by exponential growth have been widely observed in the past and a grounding theoretical framework for the analysis of infectious disease dynamics was provided by the pioneering work of Kermack and McKendrick [1]. In particular, exponential growth stems from the assumption that pathogens spread in homogeneous mixing populations; that is, individuals of the population mix uniformly and randomly with each other. However, this assumption was readily recognized as highly questionable [2], and sub-exponential profiles of epidemic growth have been observed in a number of epidemic outbreaks, including HIV/AIDS, foot-and-mouth disease, measles and, more recently, Ebola [3,4].

  12. Losing a battle but winning the war: moving past preference-performance to understand native herbivore-novel host plant interactions.

    PubMed

    Brown, Leone M; Breed, Greg A; Severns, Paul M; Crone, Elizabeth E

    2017-02-01

    Introduced plants can positively affect population viability by augmenting the diet of native herbivores, but can negatively affect populations if they are subpar or toxic resources. In organisms with complex life histories, such as insects specializing on host plants, the impacts of a novel host may differ across life stages, with divergent effects on population persistence. Most research on effects of novel hosts has focused on adult oviposition preference and larval performance, but adult preference may not optimize offspring performance, nor be indicative of host quality from a demographic perspective. We compared population growth rates of the Baltimore checkerspot butterfly, Euphydryas phaeton, on an introduced host, Plantago lanceolata (English plantain), and the native host Chelone glabra (white turtlehead). Contrary to the previous findings suggesting that P. lanceolata could be a population sink, we found higher population growth rates (λ) on the introduced than the native host, even though some component parameters of λ were higher on the native host. Our findings illustrate the importance of moving beyond preference-performance studies to integrate vital rates across all life stages for evaluating herbivore-host plant relationships. Single measures of preference or performance are not sufficient proxies for overall host quality nor do they provide insights into longer term consequences of novel host plant use. In our system, in particular, P. lanceolata may buffer checkerspot populations when the native host is limiting, but high growth rates could lead to crashes over longer time scales.

  13. Relationships among walleye population characteristics and genetic diversity in northern Wisconsin Lakes

    USGS Publications Warehouse

    Waterhouse, Matthew D.; Sloss, Brian L.; Isermann, Daniel A.

    2014-01-01

    The maintenance of genetic integrity is an important goal of fisheries management, yet little is known regarding the effects of management actions (e.g., stocking, harvest regulations) on the genetic diversity of many important fish species. Furthermore, relationships between population characteristics and genetic diversity remain poorly understood. We examined relationships among population demographics (abundance, recruitment, sex ratio, and mean age of the breeding population), stocking intensity, and genetic characteristics (heterozygosity, effective number of alleles, allelic richness, Wright's inbreeding coefficient, effective population size [Ne], mean d2 [a measure of inbreeding], mean relatedness, and pairwise population ΦST estimates) for 15 populations of Walleye Sander vitreus in northern Wisconsin. We also tested for potential demographic and genetic influences on Walleye body condition and early growth. Combinations of demographic variables explained 47.1–79.8% of the variation in genetic diversity. Skewed sex ratios contributed to a reduction in Ne and subsequent increases in genetic drift and relatedness among individuals within populations; these factors were correlated to reductions in allelic richness and early growth rate. Levels of inbreeding were negatively related to both age-0 abundance and mean age, suggesting Ne was influenced by recruitment and generational overlap. A negative relationship between the effective number of alleles and body condition suggests stocking affected underlying genetic diversity of recipient populations and the overall productivity of the population. These relationships may result from poor performance of stocked fish, outbreeding depression, or density-dependent factors. An isolation-by-distance pattern of genetic diversity was apparent in nonstocked populations, but was disrupted in stocked populations, suggesting that stocking affected genetic structure. Overall, demographic factors were related to genetic diversity and stocking appeared to alter allelic frequencies and the genetic structure of Walleye populations in Wisconsin, possibly resulting in disruption of local adaptation.

  14. Effects of food conditions on the development of the population of Temora stylifera: A modeling approach

    NASA Astrophysics Data System (ADS)

    Mazzocchi, M. G.; Buffoni, G.; Carotenuto, Y.; Pasquali, S.; Ribera d'Alcalà, M.

    2006-08-01

    We integrated field and laboratory data with modeling to determine the extent to which the temporal patterns in population abundance of a copepod species as observed at sea may be explained by differences in production and mortality rates due to diet. A Lagrangian individual-based model utilizing birth and mortality rates whose values and variance were derived from the effects of dietary composition was implemented to simulate the growth of the multi-staged population of Temora stylifera. The four diets considered were represented by unialgal cultures of the dinoflagellate Prorocentrum minimum or the diatom Thalassiosira rotula, a mixture of the two species, and natural particle assemblages < 50 μm. The aim of this work was to set up an exemplary study on a debated issue, i.e., whether the insidious effect of a diatom diet demonstrated in laboratory experiments plays a role in the time course of copepod populations in situ. Our numerical simulations showed that differences in life history parameters, as mainly dependent on diet, caused remarkably different population growth rates. However, our model reproduced the pattern of an average seasonal cycle of T. stylifera in Mediterranean coastal waters only when it utilized time-dependent field data, which evidently integrate all conditions the animals experience at sea. Proper tuning of the mortality term of developmental stages was crucial to reproduce the pattern of the time course of T. stylifera abundance in situ, which confirms that this term plays a major role in shaping the copepod population dynamics. The model also showed that, while dietary composition affects the population growth, it is far from being the only determinant of the cycle of abundance of T. stylifera at sea.

  15. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula

    PubMed Central

    Moriuchi, Ken S.; Friesen, Maren L.; Cordeiro, Matilde A.; Badri, Mounawer; Vu, Wendy T.; Main, Bradley J.; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V.; Strauss, Sharon Y.; von Wettberg, Eric J. B.

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments. PMID:26943813

  16. How Immunocontraception Can Contribute to Elephant Management in Small, Enclosed Reserves: Munyawana Population as a Case Study

    PubMed Central

    Druce, Heleen C.; Mackey, Robin L.; Slotow, Rob

    2011-01-01

    Immunocontraception has been widely used as a management tool to reduce population growth in captive as well as wild populations of various fauna. We model the use of an individual-based rotational immunocontraception plan on a wild elephant, Loxodonta africana, population and quantify the social and reproductive advantages of this method of implementation using adaptive management. The use of immunocontraception on an individual, rotational basis stretches the inter-calving interval for each individual female elephant to a management-determined interval, preventing exposing females to unlimited long-term immunocontraception use (which may have as yet undocumented negative effects). Such rotational immunocontraception can effectively lower population growth rates, age the population, and alter the age structure. Furthermore, such structured intervention can simulate natural process such as predation or episodic catastrophic events (e.g., drought), which regulates calf recruitment within an abnormally structured population. A rotational immunocontraception plan is a feasible and useful elephant population management tool, especially in a small, enclosed conservation area. Such approaches should be considered for other long-lived, social species in enclosed areas where the long-term consequences of consistent contraception may be unknown. PMID:22174758

  17. High population density enhances recruitment and survival of a harvested coral reef fish.

    PubMed

    Wormald, Clare L; Steele, Mark A; Forrester, Graham E

    2013-03-01

    A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.

  18. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{submore » t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.« less

  19. The effects of hurricanes on birds, with special reference to Caribbean islands

    USGS Publications Warehouse

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover from damage.

  20. Context-dependent survival, fecundity and predicted population-level consequences of brucellosis in African buffalo

    USGS Publications Warehouse

    Gorsich, Erin E.; Ezenwa, Vanessa O.; Cross, Paul C.; Bengis, Roy G.; Jolles, Anna E.

    2015-01-01

    Our results suggest that brucellosis infection can potentially result in reduced population growth rates, but because these effects varied with demographic and environmental conditions, they may remain unseen without intensive, longitudinal monitoring.

  1. Brain size growth in wild and captive chimpanzees (Pan troglodytes).

    PubMed

    Cofran, Zachary

    2018-05-24

    Despite many studies of chimpanzee brain size growth, intraspecific variation is under-explored. Brain size data from chimpanzees of the Taï Forest and the Yerkes Primate Research Center enable a unique glimpse into brain growth variation as age at death is known for individuals, allowing cross-sectional growth curves to be estimated. Because Taï chimpanzees are from the wild but Yerkes apes are captive, potential environmental effects on neural development can also be explored. Previous research has revealed differences in growth and health between wild and captive primates, but such habitat effects have yet to be investigated for brain growth. Here, I use an iterative curve fitting procedure to estimate brain growth and regression parameters for each population, statistically comparing growth models using bootstrapped confidence intervals. Yerkes and Taï brain sizes overlap at all ages, although the sole Taï newborn is at the low end of captive neonatal variation. Growth rate and duration are statistically indistinguishable between the two populations. Resampling the Yerkes sample to match the Taï sample size and age group composition shows that ontogenetic variation in the two groups are remarkably similar despite the latter's limited size. Best fit growth curves for each sample indicate cessation of brain size growth at around 2 years, earlier than has previously been reported. The overall similarity between wild and captive chimpanzees points to the canalization of brain growth in this species. © 2018 Wiley Periodicals, Inc.

  2. [A brief discussion on the effect of religion and feudal superstitions on China's population growth].

    PubMed

    Chen, G

    1983-05-29

    According to Marxism, population development is subject to the determination of production means under certain social and historical conditions, but it is also influenced by ideology, religions, and other factors. China is a country with numerous religions and traditional superstitions. Their impact on China's population growth cannot be underestimated. All religions and feudal superstitions have a role in the increase of the population, and they oppose birth control and abortion. Similarly, traditional feudal concepts of having more children for good fortune, ancestral worship, and filial piety also encouraged early marriage and having more children, and they have contributed to population growth. On the contrary, "individualism" practiced by Buddhist monks and nuns, the "sacred war" believed by Islamic people, and the offering of human sacrifices by many primitive religions, and the murdering of baby twins have served to reduce the population. Most of the religions and feudal superstitions are in favor of increasing the population. The popularity of Buddhism in the past was caused by an oversupply of the labor force. Many farmers became Buddhist monks as a way to earn a living. Since liberation, unhealthy religions and feudal superstitions have been prohibited but their everlasting infulence upon the people cannot be ignored. Uncontrolled population growth is harmful to the nation's economy and improvement of people's livelihood. In family planning work, attention should also be given to the prevention of interference from religions and feudal superstitions in people's ideology.

  3. The effect of education on climate change risks

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; KC, S.; Jiang, L.; Fuchs, R.; Pachauri, S.; Ren, X.; Zhang, T.; Laidlaw, E.

    2017-12-01

    Changes in the demographic and socio-economic compositions of populations are relevant to the climate change issue because these characteristics can be important determinants both of the capacity to adapt to climate change impacts as well as of energy use and greenhouse gas emissions, and therefore climate change. However, the incorporation of major trends such as aging, urbanization, and changes in household size into projections of future energy use and emissions is rare. Here we build on our previous work in this area by exploring the implications of future changes in educational attainment for the climate issue. Changes in the educational composition of the population may reduce the vulnerability of the population to climate change impacts, reducing risks. However they may also have effects on energy use and land use, and the resulting greenhouse gas emissions that drive climate change and increase risks. The direction of the effect of education on emissions is itself ambiguous. On the one hand, improvements in education can be expected to lead to faster fertility decline and slower population growth which, all else equal, would be expected to reduce emissions. On the other hand, education can also be expected to lead to faster economic growth, which would tend to increase emissions, and also to changes in consumption patterns. We employ iPETS, an integrated assessment model that includes a multi-region model of the world economy, driven with a new set of country-specific projections of future educational composition, to test the net effect of education on energy use and emissions on four world regions (China, India, Latin America, and Rest of Asia + Middle East) and therefore on climate. We also calculate the Human Development Index (HDI) for each region resulting from these scenarios, as an indicator of vulnerability to climate impacts. We find that the net effect of improved education is to increase emissions in the medium term driven primarily by increased labor productivity, but decrease emissions in the long term primarily as a result of slower population growth. At the same time, improved education positively affects all aspects of the HDI at all time horizons. Important caveats include the uncertainty in the effect of education on economic growth.

  4. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  5. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring.

    PubMed

    Zheng, Benle; Wu, Zaifu; Xu, Baohua

    2014-01-01

    This study was conducted to investigate the effects of dietary protein levels on honey bee colonies, specifically the population growth, physiology, and longevity of honey bee workers during early spring. Diets containing four different levels of crude protein (25.0, 29.5, 34.0, or 38.5%) and pure pollen (control) were evaluated. Twenty-five colonies of honey bees with sister queens were used in the study. We compared the effects of the different bee diets by measuring population growth, emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland development, and survival. After 48 d, the cumulative number of workers produced by the colonies ranged from 22,420 to 29,519, providing a significant fit to a quadratic equation that predicts the maximum population growth when the diet contains 31.7% crude protein. Significantly greater emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland acini, and survival were observed in the colonies that were fed diets containing 34.0% crude protein compared with the other crude protein levels. Although higher emergent worker weight and survival were observed in the colonies that were fed the control diet, there were no significant differences between the control colonies and the colonies that were fed 34.0% crude protein. Based on these results, we concluded that a dietary crude protein content of 29.5-34.0% is recommended to maximize the reproduction rate of honey bee colonies in early spring. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader.

    PubMed

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. The study suggests that although genetic variation may facilitate plant invasions by increasing seedling establishment, it may not necessarily affect the long-term population growth rate. Therefore, established invasions may be able to grow equally well regardless of their genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. 75 FR 52547 - Endangered and Threatened Wildlife and Plants; Draft Ocelot (Leopardus pardalis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... populations of the ocelot in the borderlands of the United States and Mexico; Reduction of effects of human population growth and development to ocelot survival and mortality; Maintenance or improvement of genetic... are necessary for ocelot dispersal. In south Texas, 2 remaining ocelot populations of less than 25...

  8. POPULATION-LEVEL RESPONSE OF THE MYSID, AMERICAMYSIS BAHIA, TO VARYING THIOBENCARB CONCENTRATIONS BASED ON AGE-STRUCTURED POPULATION MODELS

    EPA Science Inventory

    To fully understand the potential long-term ecological impacts a pollutant has on a species, population-level effects must be estimated. Since long-term field experiments are typically not feasible, vital rates such as survival, growth, and reproduction of individual organisms ar...

  9. Simulation of Population Processes with a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Kidd, N. A. C.

    1979-01-01

    Presents a set of simulation models for use in teaching population dynamics. These models are designed specifically for use with a programmable pocket calculator, and can be used to demonstrate growth of populations with discrete or overlapping generations and also to explore effects of density-dependent and -independent mortality. (Author/CS)

  10. Predicting wolf (Canis lupus)-cattle (Bos Taurus) encounters and consequential effects on cattle resource selection patterns

    USDA-ARS?s Scientific Manuscript database

    The gray wolf population in Idaho has grown dramatically from the original 35 reintroduced individuals in 1995-1996 to 94 documented packs and a minimum population of 835 individuals in 2009. Wolf depredation on livestock has also increased dramatically with this population growth. Substantial spa...

  11. Biological control via "ecological" damping: An approach that attenuates non-target effects.

    PubMed

    Parshad, Rana D; Quansah, Emmanuel; Black, Kelly; Beauregard, Matthew

    2016-03-01

    In this work we develop and analyze a mathematical model of biological control to prevent or attenuate the explosive increase of an invasive species population, that functions as a top predator, in a three-species food chain. We allow for finite time blow-up in the model as a mathematical construct to mimic the explosive increase in population, enabling the species to reach "disastrous", and uncontrollable population levels, in a finite time. We next improve the mathematical model and incorporate controls that are shown to drive down the invasive population growth and, in certain cases, eliminate blow-up. Hence, the population does not reach an uncontrollable level. The controls avoid chemical treatments and/or natural enemy introduction, thus eliminating various non-target effects associated with such classical methods. We refer to these new controls as "ecological damping", as their inclusion dampens the invasive species population growth. Further, we improve prior results on the regularity and Turing instability of the three-species model that were derived in Parshad et al. (2014). Lastly, we confirm the existence of spatiotemporal chaos. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Bone growth, limb proportions and non-specific stress in archaeological populations from Croatia.

    PubMed

    Pinhasi, R; Timpson, A; Thomas, M; Slaus, M

    2014-01-01

    The effect of environmental factors and, in particular, non-specific stress on the growth patterns of limbs and other body dimensions of children from past populations is not well understood. This study assesses whether growth of mediaeval and post-mediaeval children aged between 0-11.5 years from Adriatic (coastal) and continental Croatia varies by region and by the prevalence and type of non-specific stress. Dental ages were estimated using the Moorrees, Fanning and Hunt (MFH) scoring method. Growth of long bone diaphyses (femur, tibia, humerus, radius and ulna) was assessed by using a composite Z-score statistic (CZS). Clavicular length was measured as a proxy for upper trunk width, distal metaphyseal width of the femur was measured as a proxy for body mass and upper and lower intra-limb indices were calculated. Differences between sub-sets sampled by (a) region and (b) active vs healed non-specific stress indicators and (c) intra-limb indices were tested by Mann--Whitney U-tests and Analysis of Covariance (ANCOVA). Adriatic children attained larger dimensions-per-age than continental children. Children with healed stress lesions had larger dimensions-per-age than those with active lesions. No inter-regional difference was found in intra-limb indices. These findings highlight the complexity of growth patterns in past populations and indicate that variation in environmental conditions such as diet and differences in the nature of non-specific stress lesions both exert a significant effect on long bone growth.

  14. Population growth and development: the case of Bangladesh.

    PubMed

    Nakibullah, A

    1998-04-01

    In a poor, overly populated country such as Bangladesh, some believe that a high rate of population growth is a cause of poverty which impedes economic development. Population growth would therefore be exogenous to economic development. However, others believe that rapid population growth is a consequence rather than a cause of poverty. Population growth is therefore endogenous to economic development. Findings are presented from an investigation of whether population growth has been exogenous or endogenous with respect to Bangladesh's development process during the past 3 decades. The increase in per capita real gross domestic product (GDP) is used as a measure of development. Data on population, real GDP per capita, and real investment share of GDP are drawn from the Penn World Table prepared by Summers and Heston in 1991. The data are annual and cover the period 1959-90. Analysis of the data indicate that population growth is endogenous to Bangladesh's development process. These findings are reflected both in the Granger causality tests and the decompositions of variances of detrended real GDP per capita and population growth.

  15. Population causes and consequences of leading chronic diseases: a comparative analysis of prevailing explanations.

    PubMed

    Stuckler, David

    2008-06-01

    The mortality numbers and rates of chronic disease are rising faster in developing than in developed countries. This article compares prevailing explanations of population chronic disease trends with theoretical and empirical models of population chronic disease epidemiology and assesses some economic consequences of the growth of chronic diseases in developing countries based on the experiences of developed countries. Four decades of male mortality rates of cardiovascular and chronic noncommunicable diseases were regressed on changes in and levels of country income per capita, market integration, foreign direct investment, urbanization rates, and population aging in fifty-six countries for which comparative data were available. Neoclassical economic growth models were used to estimate the effect of the mortality rates of chronic noncommunicable diseases on economic growth in high-income OECD countries. Processes of economic growth, market integration, foreign direct investment, and urbanization were significant determinants of long-term changes in mortality rates of heart disease and chronic noncommunicable disease, and the observed relationships with these social and economic factors were roughly three times stronger than the relationships with the population's aging. In low-income countries, higher levels of country income per capita, population urbanization, foreign direct investment, and market integration were associated with greater mortality rates of heart disease and chronic noncommunicable disease, less increased or sometimes reduced rates in middle-income countries, and decreased rates in high-income countries. Each 10 percent increase in the working-age mortality rates of chronic noncommunicable disease decreased economic growth rates by close to a half percent. Macrosocial and macroeconomic forces are major determinants of population rises in chronic disease mortality, and some prevailing demographic explanations, such as population aging, are incomplete on methodological, empirical, and policy grounds. Rising chronic disease mortality rates will significantly reduce economic growth in developing countries and further widen the health and economic gap between the developed and developing world.

  16. Population Causes and Consequences of Leading Chronic Diseases: A Comparative Analysis of Prevailing Explanations

    PubMed Central

    Stuckler, David

    2008-01-01

    Context The mortality numbers and rates of chronic disease are rising faster in developing than in developed countries. This article compares prevailing explanations of population chronic disease trends with theoretical and empirical models of population chronic disease epidemiology and assesses some economic consequences of the growth of chronic diseases in developing countries based on the experiences of developed countries. Methods Four decades of male mortality rates of cardiovascular and chronic noncommunicable diseases were regressed on changes in and levels of country income per capita, market integration, foreign direct investment, urbanization rates, and population aging in fifty-six countries for which comparative data were available. Neoclassical economic growth models were used to estimate the effect of the mortality rates of chronic noncommunicable diseases on economic growth in high-income OECD countries. Findings Processes of economic growth, market integration, foreign direct investment, and urbanization were significant determinants of long-term changes in mortality rates of heart disease and chronic noncommunicable disease, and the observed relationships with these social and economic factors were roughly three times stronger than the relationships with the population's aging. In low-income countries, higher levels of country income per capita, population urbanization, foreign direct investment, and market integration were associated with greater mortality rates of heart disease and chronic noncommunicable disease, less increased or sometimes reduced rates in middle-income countries, and decreased rates in high-income countries. Each 10 percent increase in the working-age mortality rates of chronic noncommunicable disease decreased economic growth rates by close to a half percent. Conclusions Macrosocial and macroeconomic forces are major determinants of population rises in chronic disease mortality, and some prevailing demographic explanations, such as population aging, are incomplete on methodological, empirical, and policy grounds. Rising chronic disease mortality rates will significantly reduce economic growth in developing countries and further widen the health and economic gap between the developed and developing world. PMID:18522614

  17. Economic development and population policy in Bangladesh.

    PubMed

    Khan, M R

    1984-09-01

    This paper deals with Bangladesh's growth rate and the policy implications for its economy. Despite its obvious influence on the economy, population has never been integrated as an endogenous variable in any planning model. Development planning is mostly supported by donor agencies, involving little micro-level planning and practically no trickle-down effect. This paper examines the interaction of population and other development variables in the country's planning process. Much of the rural population consists of landless farmers share croppers, so that the land ownership pattern contributes to low productivity. Population increase is making the rural masses even poorer. This process is further compounded by increasing foreign aid dependence, adverse terms of trade in the international market, low savings and investments, and the rural sector's worsening terms of trade. During 1950-1970 real per capita gross domestic product (GDP) increased only at a rate of 1% per annum and during 1950-1970 real growth of GDP fell behind the population growth rate. A cost benefit analysis of fertility reduction is needed. The cost benefit ratio of most countries varies between 1:10 to 1:30; for Bangladesh it is 1:16. Macro-model studies indicate that the higher the fertility reduction and shorter the period of required decline, the higher will be the benefits in terms of gains in per capita income. There is, however, a contradiction between national and household interests. The latter's decision to have more children has a negative spillover effect, which nullifies the gains of the community. The national family planning program suffered a serious setback during and after the liberation of Bangladesh, mainly due to lack of administrative leadership and support. In order for the population growth rate to be checked and to increase the quality of life for the entire population, the family planning program must be revitalized by mobilizing the entire government machinery and involving the people at the grass roots level.

  18. Bird population trends are linearly affected by climate change along species thermal ranges.

    PubMed

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake

    2010-12-07

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

  19. Density-dependent enhancement of methane oxidation activity and growth of Methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp.

    PubMed

    Jeong, So-Yeon; Cho, Kyung-Suk; Kim, Tae Gwan

    2014-12-01

    Methanotrophs are a biological resource as they degrade the greenhouse gas methane and various organic contaminants. Several non-methanotrophic bacteria have shown potential to stimulate growth of methanotrophs when co-cultured, and however, the ecology is largely unknown. Effects of Sphingopyxis sp. NM1 on methanotrophic activity and growth of Methylocystis sp. M6 were investigated in this study. M6 and NM1 were mixed at mixing ratios of 9:1, 1:1, and 1:9 (v/v), using cell suspensions of 7.5 × 10 11 cells L -1 . Methane oxidation of M6 was monitored, and M6 population was estimated using fluorescence in situ hybridization (FISH). Real-time PCR was applied to quantify rRNA and expression of transcripts for three enzymes involved in the methane oxidation pathway. NM1 had a positive effect on M6 growth at a 1:9 ratio ( p  < 0.05), while no significant effects were observed at 9:1 and 1:1 ratios. NM1 enhanced the methane oxidation 1.34-fold at the 1:9 ratio. NM1 increased the population density and relative rRNA level of M6 by 2.4-fold and 5.4-fold at the 1:9 ratio, indicating that NM1 stimulated the population growth of M6. NM1 increased the relative transcriptional expression of all mRNA targets only at the 1:9 ratio. These results demonstrated that NM1 enhanced the methanotrophic activity and growth of M6, which was dependent on the proportion of NM1 present in the culture. This stimulation can be used as management and enhancement strategies for methanotrophic biotechnological processes.

  20. Effects of syndyphalin-33 on feed intake and circulating measures of growth hormone, cortisol, and immune cell populations in the recently-weaned pig

    USDA-ARS?s Scientific Manuscript database

    The synthetic met-enkephalin syndyphalin-33 (SD-33) increases feed intake in sheep and transiently increases circulating growth hormone (GH) concentrations in sheep, rats, and pigs. Two experiments were performed to evaluate the effects of SD-33 on recently-weaned pigs. In a preliminary experiment, ...

  1. Carcass addition does not enhance juvenile salmonid biomass, growth, or retention in six Northwestern California streams.

    Treesearch

    Bret Harvey; Margaret A. Wilzbach

    2010-01-01

    Fisheries managers commonly consider the addition of salmon carcasses when seeking to enhance salmonid populations. However, the range of environmental conditions under which the technique is effective remains poorly defined. We addressed this issue by measuring the effects of wintertime addition of salmon carcasses on the biomass, growth, and retention of juvenile...

  2. Effects of Hydrostatic Pressure on Growth and Luminescence of a Moderately-Piezophilic Luminous Bacteria Photobacterium phosphoreum ANT-2200

    PubMed Central

    Martini, Séverine; Al Ali, Badr; Garel, Marc; Nerini, David; Grossi, Vincent; Pacton, Muriel; Casalot, Laurence; Cuny, Philippe; Tamburini, Christian

    2013-01-01

    Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean. PMID:23818946

  3. The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care.

    PubMed

    Papageorghiou, Aris T; Kennedy, Stephen H; Salomon, Laurent J; Altman, Douglas G; Ohuma, Eric O; Stones, William; Gravett, Michael G; Barros, Fernando C; Victora, Cesar; Purwar, Manorama; Jaffer, Yasmin; Noble, Julia A; Bertino, Enrico; Pang, Ruyan; Cheikh Ismail, Leila; Lambert, Ann; Bhutta, Zulfiqar A; Villar, José

    2018-02-01

    The purpose of the INTERGROWTH-21 st project was to develop international, prescriptive standards for fetal growth assessed by ultrasound and fundal height, preterm postnatal growth, newborn size and body composition, maternal weight gain, and infant development at the age of 2 years. Hence, we have produced, based on World Health Organization recommendations, the first comprehensive set of international standards of optimal fetal and newborn growth that perfectly match the existing World Health Organization child growth standards. Uniquely, the same population was followed up longitudinally from 9 weeks of fetal life to 2 years of age, with growth, health, and nutritional status assessment at 2 years supporting the appropriateness of the population for construction of growth standards. The resulting package of clinical tools allows, for the first time, growth and development to be monitored from early pregnancy to infancy. The INTERGROWTH-21 st fetal growth standards, which are based on observing >4500 healthy pregnancies, nested in a study of >59,000 pregnancies from populations with low rates of adverse perinatal outcomes, show how fetuses should grow-rather than the more limited objective of past references, which describe how they have grown at specific times and locations. Our work has confirmed the fundamental biological principle that variation in human growth across different populations is mostly dependent on environmental, nutritional, and socioeconomic factors. We found that when mothers' nutritional and health needs are met and there are few environmental constraints on growth, <3.5% of the total variability of skeletal growth was due to differences between populations. We propose that not recognizing the concept of optimal growth could deprive the most vulnerable mothers and their babies of optimal care, because local growth charts normalize those at highest risk for growth restriction and overweight, and can be valuable for policymakers to ensure rigorous evaluation and effective resource allocation. We strongly encourage colleagues to join efforts to provide integrated, evidence-based growth monitoring to pregnant women and their infants worldwide. Presently, there are 23.3 million infants born small for gestational age in low- to middle-income countries according to the INTERGROWTH-21 st newborn size standards. We suggest that misclassification of these infants by using local charts could affect the delivery of optimal health care. Copyright © 2018. Published by Elsevier Inc.

  4. Does the association between early life growth and later obesity differ by race/ethnicity or socioeconomic status? A systematic review.

    PubMed

    Andrea, Sarah B; Hooker, Elizabeth R; Messer, Lynne C; Tandy, Thomas; Boone-Heinonen, Janne

    2017-09-01

    Rapid growth during infancy predicts higher risk of obesity later in childhood. The association between patterns of early life growth and later obesity may differ by race/ethnicity or socioeconomic status (SES), but prior evidence syntheses do not consider vulnerable subpopulations. We systemically reviewed published studies that explored patterns of early life growth (0-24 months of age) as predictors of later obesity (>24 months) that were either conducted in racial/ethnic minority or low-SES study populations or assessed effect modification of this association by race/ethnicity or SES. Literature searches were conducted in PubMed and SocINDEX. Ten studies met the inclusion criteria. Faster growth during the first 2 years of life was consistently associated with later obesity irrespective of definition and timing of exposure and outcome measures. Associations were strongest in populations composed of greater proportions of racial/ethnic minority and/or low-SES children. For example, ORs ranged from 1.17 (95% CI: 1.11, 1.24) in a heterogeneous population to 9.24 (95% CI: 3.73, 22.9) in an entirely low-SES nonwhite population. The impact of rapid growth in infancy on later obesity may differ by social stratification factors such as race/ethnicity and family income. More robust and inclusive studies examining these associations are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sustainable water management in the southwestern United States: reality or rhetoric?

    PubMed

    Marshall, Robert M; Robles, Marcos D; Majka, Daniel R; Haney, Jeanmarie A

    2010-07-21

    While freshwater sustainability is generally defined as the provisioning of water for both people and the environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the southwestern United States that evaluates the potential impact of future population growth and water demand on streamflow depletion across multiple watersheds. We modeled population growth and water demand through 2050 and used four scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers from being dewatered. The window of opportunity to implement water management strategies is narrowing. Because impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management strategies should be implemented where groundwater will be used to support new municipal demand. Our approach provides a low-cost method to identify where alternative water and growth management strategies may have the most impact, and demonstrates that such strategies can maintain a continued water supply for both people and the environment.

  6. As tall as my peers - similarity in body height between migrants and hosts.

    PubMed

    Bogin, Barry; Hermanussen, Michael; Scheffler, Christiane

    2018-01-12

    Background: We define migrants as people who move from their place of birth to a new place of residence. Migration usually is directed by "Push-Pull" factors, for example to escape from poor living conditions or to find more prosperous socio-economic conditions. Migrant children tend to assimilate quickly, and soon perceive themselves as peers within their new social networks. Differences exist between growth of first generation and second generation migrants. Methods: We review body heights and height distributions of historic and modern migrant populations to test two hypotheses: 1) that migrant and adopted children coming from lower social status localities to higher status localities adjust their height growth toward the mean of the dominant recipient social network, and 2) social dominant colonial and military migrants display growth that significantly surpasses the median height of both the conquered population and the population of origin. Our analytical framework also considered social networks. Recent publications indicate that spatial connectedness (community effects) and social competitiveness can affect human growth. Results: Migrant children and adolescents of lower social status rapidly adjust in height towards average height of their hosts, but tend to mature earlier, and are prone to overweight. The mean height of colonial/military migrants does surpass that of the conquered and origin population. Conclusion: Observations on human social networks, non-human animal strategic growth adjustments, and competitive growth processes strengthen the concept of social connectedness being involved in the regulation of human migrant growth.

  7. Dynamics of change in local physician supply: an ecological perspective.

    PubMed

    Jiang, H Joanna; Begun, James W

    2002-05-01

    The purpose of this study is to employ an ecological framework to identify factors that have an impact on change in local physician supply within the USA. A particular specialty type of patient care physicians in a local market is defined as a physician population. Four physician populations are identified: generalists, medical specialists, surgical specialists, and hospital-based specialists. Based on population ecology theory, the proposed framework explains the growth of a particular physician population by four mechanisms: the intrinsic properties of this physician population; the local market's carrying capacity, which is determined by three environmental dimensions (munificence, concentration, diversity); competition within the same physician population; and interdependence between different physician populations. Data at the level of Metropolitan Statistical Areas (MSAs) were compiled from the US Area Resources File, the American Hospital Association Annual Surveys of Hospitals, the American Medical Association Census of Medical Groups, the InterStudy National HMO Census, and the US County Business Patterns. Changes in the number and percentage of physicians in a particular specialty population from 1985 to 1994 were regressed, respectively, on 1985-94 changes in the explanatory variables as well as their levels in 1985. The results indicate that the population ecology framework is useful in explaining dynamics of change in the local physician workforce. Variables measuring the three environmental dimensions were found to have significant, and in some cases, differential effects on change in the size of different specialty populations. For example, both hospital consolidation and managed care penetration showed significant positive eflects on growth of the generalist population but suppressing effects on growth of the specialist population. The percentage of physicians in a particular specialty population in 1985 was negatively related to change in the size of that specialty population between 1985 and 1994, suggesting the existence of competition. Overall, the findings of this study facilitate a better understanding of the complexity of physician workforce supply.

  8. HMO Penetration, Hospital Competition, and Growth of Ambulatory Surgery Centers

    PubMed Central

    Bian, John; Morrisey, Michael A.

    2006-01-01

    Using metropolitan statistical area (MSA) panel data from 1992-2001 constructed from the 2002 Medicare Online Survey Certification and Reporting (OSCAR) System, we estimate the market effects of health maintenance organization (HMO) penetration and hospital competition on the growth of freestanding ambulatory surgery centers (ASCs). Our regression models with MSA and year fixed effects suggest that a 10-percentage-point increase in HMO penetration is associated with a decrease of 3 ASCs per 1 million population. A decrease from 5 to 4 equal-market-shared hospitals in a market is associated with an increase of 2.5 ASCs per 1 million population. PMID:17290661

  9. HMO penetration, hospital competition, and growth of ambulatory surgery centers.

    PubMed

    Bian, John; Morrisey, Michael A

    2006-01-01

    Using metropolitan statistical area (MSA) panel data from 1992-2001 constructed from the 2002 Medicare Online Survey Certification and Reporting (OSCAR) System, we estimate the market effects of health maintenance organization (HMO) penetration and hospital competition on the growth of freestanding ambulatory surgery centers (ASCs). Our regression models with MSA and year fixed effects suggest that a 10-percentage-point increase in HMO penetration is associated with a decrease of 3 ASCs per 1 million population. A decrease from 5 to 4 equal-market-shared hospitals in a market is associated with an increase of 2.5 ASCs per 1 million population.

  10. Effects of delayed mating on the reproductive biology of the vine mealybug, Planococcus ficus (Hemiptera: Pseudococcidae).

    PubMed

    Lentini, A; Mura, A; Muscas, E; Nuvoli, M T; Cocco, A

    2018-04-01

    The effect of increasing mating delay on the reproductive performance and population growth rates of the vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), was investigated under laboratory conditions. Virgin females were mated at 1, 3, 5, 7, 14, 21 and 28 days after emergence and reproductive and life table parameters were estimated. The pre-oviposition period (number of days between mating and the onset of oviposition) significantly decreased in females mated within 7 days, whereas females mated at older ages showed equivalent pre-oviposition periods (7 days, as shorter delays in mating did not reduce the population growth rates.

  11. Population Growth and Damage Caused by Rhopalosiphum padi (L.) (Hemiptera, Aphididae) on Different Cultivars and Phenological Stages of Wheat.

    PubMed

    Savaris, M; Lampert, S; Salvadori, J R; Lau, D; Pereira, P R V S; Smaniotto, M A

    2013-10-01

    Among the aphids associated with wheat and other winter cereals, Rhopalosiphum padi (L.) is currently the predominant species in the wheat growing region of southern Brazil. The damage caused by this aphid occurs by direct feeding and/or by the transmission of pathogenic viruses, such as the Barley/Cereal yellow dwarf virus. In order to estimate the direct damage caused by R. padi on wheat, we evaluated the population growth of this aphid during the tillering and elongation stages and its effects on grain yield components. The experiment was conducted in a screenhouse with three wheat cultivars (BRS Guabiju, BRS Timbaúva, and Embrapa 16). The effect of a period of 16 days, starting from an infestation of 40 aviruliferous aphids/plant, was evaluated and compared to non-infested plants. In both stages, the population growth of R. padi was lower on the BRS Timbaúva. Although infestation caused a reduction in the grain yield of the three cultivars, this effect was lower for BRS Timbaúva. The cultivar Embrapa 16 supported higher infestations and was more tolerant to damage than the BRS Guabiju.

  12. Possible secondary population-level effects of selective harvest of adult male muskoxen.

    PubMed

    Schmidt, Joshua H; Gorn, Tony S

    2013-01-01

    Selective harvest regimes are often focused on males resulting in skewed sex-ratios, and for many ungulate species this strategy is sustainable. However, muskoxen (Ovibos moschatus) are very social and mature bulls (≥4 years old), particularly prime-age bulls (6-10 years old), play important roles in predator defense and recruitment. A year-round social structure incorporating large males into mixed-sex groups could make this species more susceptible to the effects of selective harvest if population composition and sex-ratios influence overall survival and reproductive success. Using detailed data collected on the muskox population occupying the Seward Peninsula, Alaska during 2002-2012, we formulated the hypothesis that the selective harvest of mature bulls may be related to documented changes in population composition and growth rates in this species. In addition, we reviewed existing published information from two other populations in Alaska, the Cape Thompson and Northeastern populations, to compare population growth rates among the three areas under differential harvest rates relative to our hypothesis. We found that on the Seward Peninsula, mature bull:adult cow ratios declined 4-12%/year and short-yearling:adult cow ratios (i.e., recruitment) declined 8-9%/year in the most heavily harvested areas. Growth rates in all 3 populations decreased disproportionately after increases in the number of bulls harvested, and calf:cow ratios declined in the Northeastern population as harvest increased. While lack of appropriate data prevented us from excluding other potential causes such as density dependent effects and changes in predator densities, our results did align with our hypothesis, suggesting that in the interest of conservation, harvest of mature males should be restricted until causal factors can be more definitively identified. If confirmed by additional research, our findings would have important implications for harvest management and conservation of muskoxen and other ungulate species with similar life-histories.

  13. Potential population growth and harmful effects on humans from bed bug populations exposed to different feeding regimes.

    PubMed

    Pereira, R M; Taylor, A S; Lehnert, M P; Koehler, P G

    2013-06-01

    Effects of host availability and feeding period on bed bugs, Cimex lectularius (L.) (Hemiptera: Cimicidae), were measured. Population growth and the potential harmful effect of bed bug populations on human hosts were modelled. Bloodmeal sizes were affected by both feeding length and frequency, with >2-fold difference between insects fed daily or weekly. Blood consumption increased >2-fold between bed bugs fed occasionally and often, and 1.5-fold between occasional and daily feeding. Bed bugs fed more often than once a week, potentially every 2-4 days. Egg production was associated with nutrition, being strongly correlated with blood consumption in the previous week. Bed bug populations can grow under different feeding regimes and are hard to control with <80% mortality. Bed bugs can survive and grow even in locations with a limited blood supply, where bed bug persistence may be important for the continual spread of populations. Persistence in non-traditional locations and a potential association with human pathogens increase the health risks of bed bugs. Potential blood loss as a result of a bed bug can have serious consequences because uncontrolled populations can reach harmful levels in 3-8 months. The reproduction potential of bed bug populations suggests serious consequences to human health and the need for efficacious control measures. © 2012 The Royal Entomological Society.

  14. Do persistently fast-growing juveniles contribute disproportionately to population growth? A new analysis tool for matrix models and its application to rainforest trees.

    PubMed

    Zuidema, Pieter A; Brienen, Roel J W; During, Heinjo J; Güneralp, Burak

    2009-11-01

    Plants and animals often exhibit strong and persistent growth variation among individuals within a species. Persistently fast-growing individuals have a higher chance of reaching reproductive size, do so at a younger age, and therefore contribute disproportionately to population growth (lambda). Here we introduce a new approach to quantify this "fast-growth effect." We propose using age-size-structured matrix models in which persistently fast and slow growers are distinguished as they occur in relatively young and old age classes for a given size category. Life-cycle pathways involving fast growth can then be identified, and their contribution to lambda is quantified through loop analysis. We applied this approach to an example species, the tropical rainforest tree Cedrela odorata, that shows persistent growth variation among individuals. Loop analysis showed that juvenile trees reaching the 10-cm diameter class at below-median age contributed twice as much to lambda as slow juvenile growers. Fast growth to larger-diameter categories also contributed disproportionately to lambda. The results were robust to changes in parameter values and life-history trade-offs. These results show that the fast-growth effect can be strong in long-lived species. Persistent growth differences among individuals should therefore be accommodated for in demographic models and life-history studies.

  15. The Pediatric Anesthesiology Workforce: Projecting Supply and Trends 2015-2035.

    PubMed

    Muffly, Matthew K; Singleton, Mark; Agarwal, Rita; Scheinker, David; Miller, Daniel; Muffly, Tyler M; Honkanen, Anita

    2018-02-01

    A workforce analysis was conducted to predict whether the projected future supply of pediatric anesthesiologists is balanced with the requirements of the inpatient pediatric population. The specific aims of our analysis were to (1) project the number of pediatric anesthesiologists in the future workforce; (2) project pediatric anesthesiologist-to-pediatric population ratios (0-17 years); (3) project the mean number of inpatient pediatric procedures per pediatric anesthesiologist; and (4) evaluate the effect of alternative projections of individual variables on the model projections through 2035. The future number of pediatric anesthesiologists is determined by the current supply, additions to the workforce, and departures from the workforce. We previously compiled a database of US pediatric anesthesiologists in the base year of 2015. The historical linear growth rate for pediatric anesthesiology fellowship positions was determined using the Accreditation Council for Graduate Medical Education Data Resource Books from 2002 to 2016. The future number of pediatric anesthesiologists in the workforce was projected given growth of pediatric anesthesiology fellowship positions at the historical linear growth rate, modeling that 75% of graduating fellows remain in the pediatric anesthesiology workforce, and anesthesiologists retire at the current mean retirement age of 64 years old. The baseline model projections were accompanied by age- and gender-adjusted anesthesiologist supply, and sensitivity analyses of potential variations in fellowship position growth, retirement, pediatric population, inpatient surgery, and market share to evaluate the effect of each model variable on the baseline model. The projected ratio of pediatric anesthesiologists to pediatric population was determined using the 2012 US Census pediatric population projections. The projected number of inpatient pediatric procedures per pediatric anesthesiologist was determined using the Kids' Inpatient Database historical data to project the future number of inpatient procedures (including out of operating room procedures). In 2015, there were 5.4 pediatric anesthesiologists per 100,000 pediatric population and a mean (±standard deviation [SD]) of 262 ±8 inpatient procedures per pediatric anesthesiologist. If historical trends continue, there will be an estimated 7.4 pediatric anesthesiologists per 100,000 pediatric population and a mean (±SD) 193 ±6 inpatient procedures per pediatric anesthesiologist in 2035. If pediatric anesthesiology fellowship positions plateau at 2015 levels, there will be an estimated 5.7 pediatric anesthesiologists per 100,000 pediatric population and a mean (±SD) 248 ±7 inpatient procedures per pediatric anesthesiologist in 2035. If historical trends continue, the growth in pediatric anesthesiologist supply may exceed the growth in both the pediatric population and inpatient procedures in the 20-year period from 2015 to 2035.

  16. Effects of food type, feeding frequency, and temperature on juvenile survival and growth of Marisa cornuarietis (Mollusca: Gastropoda).

    PubMed

    Selck, Henriette; Aufderheide, John; Pounds, Nadine; Staples, Charles; Caspers, Norbert; Forbes, Valery

    2006-06-01

    The present experiments are part of a larger study designed to investigate the influence of husbandry parameters on the life history of the ramshorn snail, Marisa cornuarietis, in order to identify suitable husbandry conditions for maintaining multi-generation populations in the laboratory for use in ecotoxicological testing. In this paper we focus on the effects of a combination of food types and feeding frequencies (i.e., the frequency with which the snails were offered food) on juvenile growth and survival at different temperatures. Offspring produced in the laboratory by wild specimens of M. cornuarietis, from Puerto Rico, were used to test the effects of three types of food (lettuce, alginate with fish food, alginate with snail mix) fed at three frequencies (given ad libitum on 4/4, 2/4, or 1/4 d) on juvenile survival and growth. The 4-d feeding regimens were repeated four times, giving a total of 16 d for the experiments. The experiments were conducted at two temperatures (22 degrees and 25 degrees C) under a 12 h light:12 h dark photoperiod. Juvenile growth rates increased with increasing feeding frequency for all food types. The most rapid growth rates occurred in the high-frequency lettuce treatments and the slowest growth rates in the low-frequency lettuce and alginate with snail mix treatments. Juvenile snails grew faster at 25 degrees than at 22 degrees C, and mortality was about twice as high at the lower temperature. Growth rates were used to provide a rough estimate of time to maturity, which was determined to take about twice as long at 22 degrees than at 25 degrees C. The results showed that lettuce is the best food if supplied in abundance, but effects on growth are very dependent on feeding frequency and temperature. We conclude that 25 degrees C is a more appropriate temperature for maintaining populations than 22 degrees C, that lettuce provides a suitable food source, and that food should be supplied continuously for husbandry and toxicity testing of populations of M. cornuarietis.

  17. Life-history plasticity and sustainable exploitation: a theory of growth compensation applied to walleye management.

    PubMed

    Lester, Nigel P; Shuter, Brian J; Venturelli, Paul; Nadeau, Daniel

    2014-01-01

    A simple population model was developed to evaluate the role of plastic and evolutionary life-history changes on sustainable exploitation rates. Plastic changes are embodied in density-dependent compensatory adjustments to somatic growth rate and larval/juvenile survival, which can compensate for the reductions in reproductive lifetime and mean population fecundity that accompany the higher adult mortality imposed by exploitation. Evolutionary changes are embodied in the selective pressures that higher adult mortality imposes on age at maturity, length at maturity, and reproductive investment. Analytical development, based on a biphasic growth model, led to simple equations that show explicitly how sustainable exploitation rates are bounded by each of these effects. We show that density-dependent growth combined with a fixed length at maturity and fixed reproductive investment can support exploitation-driven mortality that is 80% of the level supported by evolutionary changes in maturation and reproductive investment. Sustainable fishing mortality is proportional to natural mortality (M) times the degree of density-dependent growth, as modified by both the degree of density-dependent early survival and the minimum harvestable length. We applied this model to estimate sustainable exploitation rates for North American walleye populations (Sander vitreus). Our analysis of demographic data from walleye populations spread across a broad latitudinal range indicates that density-dependent variation in growth rate can vary by a factor of 2. Implications of this growth response are generally consistent with empirical studies suggesting that optimal fishing mortality is approximately 0.75M for teleosts. This approach can be adapted to the management of other species, particularly when significant exploitation is imposed on many, widely distributed, but geographically isolated populations.

  18. Life histories and conservation of long-lived reptiles, an illustration with the American crocodile (Crocodylus acutus)

    USGS Publications Warehouse

    Briggs-Gonzalez, Venetia; Bonefant, Christophe; Basille, Mathieu; Cherkiss, Michael S.; Beauchamp, Jeff; Mazzotti, Frank J.

    2017-01-01

    Successful species conservation is dependent on adequate estimates of population dynamics, but age-specific demographics are generally lacking for many long-lived iteroparous species such as large reptiles. Accurate demographic information allows estimation of population growth rate, as well as projection of future population sizes and quantitative analyses of fitness trade-offs involved in the evolution of life-history strategies.Here, a long-term capture–recapture study was conducted from 1978 to 2014 on the American crocodile (Crocodylus acutus) in southern Florida. Over the study period, 7,427 hatchlings were marked and 380 individuals were recaptured for as many as 25 years. We estimated survival to be strongly age dependent with hatchlings having the lowest survival rates (16%) but increasing to nearly 90% at adulthood based on mark–recapture models. More than 5% of the female population were predicted to be reproductive by age 8 years; the age-specific proportion of reproductive females steadily increased until age 18 when more than 95% of females were predicted to be reproductive. Population growth rate, estimated from a Leslie–Lefkovitch stage-class model, showed a positive annual growth rate of 4% over the study period.Using a prospective sensitivity analysis, we revealed that the adult stage, as expected, was the most critical stage for population growth rate; however, the survival of younger crocodiles before they became reproductive also had a surprisingly high elasticity. We found that variation in age-specific fecundity has very limited impact on population growth rate in American crocodiles.We used a comparative approach to show that the original life-history strategy of American crocodiles is actually shared by other large, long-lived reptiles: while adult survival rates always have a large impact on population growth, this decreases with declining increasing growth rates, in favour of a higher elasticity of the juvenile stage.Crocodiles, as a long-lived and highly fecund species, deviate from the usual association of life histories of “slow” species. Current management practices are focused on nests and hatchling survival; however, protection efforts that extend to juvenile crocodiles would be most effective for conservation of the species, especially in an ever-developing landscape.

  19. Allee effect in polar bears: a potential consequence of polychlorinated biphenyl contamination.

    PubMed

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Sonne, Christian; Grimm, Volker

    2016-11-30

    Polar bears (Ursus maritimus) from East Greenland and Svalbard exhibited very high concentrations of polychlorinated biphenyls (PCBs) in the 1980s and 1990s. In Svalbard, slow population growth during that period was suspected to be linked to PCB contamination. In this case study, we explored how PCBs could have impacted polar bear population growth and/or male reproductive success in Svalbard during the mid-1990s by reducing the fertility of contaminated males. A dose-response relationship linking the effects of PCBs to male polar bear fertility was extrapolated from studies of the effects of PCBs on sperm quality in rodents. Based on this relationship, an individual-based model of bear interactions during the breeding season predicted fertilization success under alternative assumptions regarding male-male competition for females. Contamination reduced pregnancy rates by decreasing the availability of fertile males, thus triggering a mate-finding Allee effect, particularly when male-male competition for females was limited or when infertile males were able to compete with fertile males for females. Comparisons of our model predictions on age-dependent reproductive success of males with published empirical observations revealed that the low representation of 10-14-year-old males among breeding males documented in Svalbard in mid-1990s could have resulted from PCB contamination. We conclude that contamination-related male infertility may lead to a reduction in population growth via an Allee effect. The magnitude of the effect is largely dependent on the population-specific mating system. In eco-toxicological risk assessments, appropriate consideration should therefore be given to negative effects of contaminants on male fertility and male mating behaviour. © 2016 The Author(s).

  20. Allee effect in polar bears: a potential consequence of polychlorinated biphenyl contamination

    PubMed Central

    Nabe-Nielsen, Jacob; Dietz, Rune; Sonne, Christian; Grimm, Volker

    2016-01-01

    Polar bears (Ursus maritimus) from East Greenland and Svalbard exhibited very high concentrations of polychlorinated biphenyls (PCBs) in the 1980s and 1990s. In Svalbard, slow population growth during that period was suspected to be linked to PCB contamination. In this case study, we explored how PCBs could have impacted polar bear population growth and/or male reproductive success in Svalbard during the mid-1990s by reducing the fertility of contaminated males. A dose–response relationship linking the effects of PCBs to male polar bear fertility was extrapolated from studies of the effects of PCBs on sperm quality in rodents. Based on this relationship, an individual-based model of bear interactions during the breeding season predicted fertilization success under alternative assumptions regarding male–male competition for females. Contamination reduced pregnancy rates by decreasing the availability of fertile males, thus triggering a mate-finding Allee effect, particularly when male–male competition for females was limited or when infertile males were able to compete with fertile males for females. Comparisons of our model predictions on age-dependent reproductive success of males with published empirical observations revealed that the low representation of 10–14-year-old males among breeding males documented in Svalbard in mid-1990s could have resulted from PCB contamination. We conclude that contamination-related male infertility may lead to a reduction in population growth via an Allee effect. The magnitude of the effect is largely dependent on the population-specific mating system. In eco-toxicological risk assessments, appropriate consideration should therefore be given to negative effects of contaminants on male fertility and male mating behaviour. PMID:27903868

  1. Effects of consumption-oriented versus trophy-oriented fisheries on Muskellunge population size structure in northern Wisconsin

    USGS Publications Warehouse

    Faust, Matthew D.; Hansen, Michael J.

    2016-01-01

    To determine whether a consumption-oriented fishery was compatible with a trophy-oriented fishery for Muskellunge Esox masquinongy, we modeled effects of a spearing fishery and recreational angling fishery on population size structure (i.e., numbers of fish ≥ 102, 114, and 127 cm) in northern Wisconsin. An individual-based simulation model was used to quantify the effect of harvest mortality at currently observed levels of recreational angling and tribal spearing fishery exploitation, along with simulated increases in exploitation, for three typical growth potentials (i.e., low, moderate, and high) of Muskellunge in northern Wisconsin across a variety of minimum length limits (i.e., 71, 102, 114, and 127 cm). Populations with moderate to high growth potential and minimum length limits ≥ 114 cm were predicted to have lower declines in numbers of trophy Muskellunge when subjected to angling-only and mixed fisheries at observed and increased levels of exploitation, which suggested that fisheries with disparate motivations may be able to coexist under certain conditions such as restrictive length limits and low levels of exploitation. However, for most Muskellunge populations in northern Wisconsin regulated by a 102-cm minimum length limit, both angling and spearing fisheries may reduce numbers of trophy Muskellunge as larger declines were predicted across all growth potentials. Our results may be useful if Muskellunge management options in northern Wisconsin are re-examined in the future.

  2. Spatial variability and macro‐scale drivers of growth for native and introduced Flathead Catfish populations

    USGS Publications Warehouse

    Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler

    2018-01-01

    Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.

  3. Extending the durability of cultivar resistance by limiting epidemic growth rates.

    PubMed

    Carolan, Kevin; Helps, Joe; van den Berg, Femke; Bain, Ruairidh; Paveley, Neil; van den Bosch, Frank

    2017-09-27

    Cultivar resistance is an essential part of disease control programmes in many agricultural systems. The use of resistant cultivars applies a selection pressure on pathogen populations for the evolution of virulence, resulting in loss of disease control. Various techniques for the deployment of host resistance genes have been proposed to reduce the selection for virulence, but these are often difficult to apply in practice. We present a general technique to maintain the effectiveness of cultivar resistance. Derived from classical population genetics theory; any factor that reduces the population growth rates of both the virulent and avirulent strains will reduce selection. We model the specific example of fungicide application to reduce the growth rates of virulent and avirulent strains of a pathogen, demonstrating that appropriate use of fungicides reduces selection for virulence, prolonging cultivar resistance. This specific example of chemical control illustrates a general principle for the development of techniques to manage the evolution of virulence by slowing epidemic growth rates. © 2017 The Author(s).

  4. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin

    PubMed Central

    Kim, Hyeun Bum; Borewicz, Klaudyna; White, Bryan A.; Singer, Randall S.; Sreevatsan, Srinand; Tu, Zheng Jin; Isaacson, Richard E.

    2012-01-01

    Antimicrobials have been used extensively as growth promoters (AGPs) in agricultural animal production. However, the specific mechanism of action for AGPs has not yet been determined. The work presented here was to determine and characterize the microbiome of pigs receiving one AGP, tylosin, compared with untreated pigs. We hypothesized that AGPs exerted their growth promoting effect by altering gut microbial population composition. We determined the fecal microbiome of pigs receiving tylosin compared with untreated pigs using pyrosequencing of 16S rRNA gene libraries. The data showed microbial population shifts representing both microbial succession and changes in response to the use of tylosin. Quantitative and qualitative analyses of sequences showed that tylosin caused microbial population shifts in both abundant and less abundant species. Our results established a baseline upon which mechanisms of AGPs in regulation of health and growth of animals can be investigated. Furthermore, the data will aid in the identification of alternative strategies to improve animal health and consequently production. PMID:22955886

  5. Ecological relationships between xerophilic fungi and house-dust mites (Acarida: Pyroglyphidae).

    PubMed

    Lustgraaf, B V D

    1978-01-01

    At. 75 and 80% relative humidity (RH), on a wheat germ flake medium, Aspergillus penicilloides grew abundantly and suppressed the population growth of Dermatophagoides pteronyssiunus. At 71% RH, A. penicilloides grew moderately and was only antagonistic to D. pteronyssinus when the fungus was previously incubated on the medium.On a human dander medium and on mattress dust, A. penicilloides grew moderately at 71% and 75% RH and stimulated the development of D. pteronyssinus populations. Also a moderate growth of Eurotium repens on human dander positively influenced D. pteronyssinus. Wallemia sebi and Penicillium brevicompactum grew slightly or did not grow at all at 75% RH. No effect was observed on D. pteronyssinus.It appears that xerophilic fungi may stimulate, and occasionally may reduce, the growth of house-dust mite populations in the natural environment.

  6. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii

    NASA Astrophysics Data System (ADS)

    Davarpanah, Elham; Guilhermino, Lúcia

    2015-12-01

    As the accumulation of microplastics continues to rise in the marine environment, more knowledge on their potential toxic effects on marine organisms is needed to assess their risks to environmental and human health. Thus, the goal of the present study was to investigate the effects of fluorescent red polyethylene plastic micro-spheres 1-5 μm diameter (used as microplastic model and hereafter indicated as MP), alone and in mixture with copper, on the population growth of the marine microalgae Tetraselmis chuii. Two null hypotheses were tested: (H01) Exposure to MP concentrations in ppb range does not affect the average specific growth rate of T. chuii; (H02) MP do not interact with the toxicity of copper to T. chuii. In laboratory bioassays, T. chuii cultures were exposed for 96 h to MP concentrations ranging from 0.046 to 1.472 mg/l), concentrations of copper alone ranging from 0.02 to 0.64 mg/l, and the same concentrations of copper in the presence of 0.184 mg/l of MP in test media. No significant effects of MP on T. chuii population growth were found (p > 0.05), leading to the acceptance of H01. Copper alone significantly decreased the population growth of T. chuii with EC10, EC20 and EC50 of 0.009, 0.023 and 0.139 mg/l, respectively. The corresponding values in the presence of MP were 0.012, 0.029 and 0.145 mg/l, respectively. Moreover, the study found no significant differences between the toxicity curves of copper in the presence and absence of MP (p > 0.05), leading to the acceptance of H02. Despite these findings, because microplastics are known to adsorb and accumulate copper, aged pellets more than virgin ones, and the toxicity of smaller particles may be higher, further studies on the combined effects of copper and microplastics on microalgae should be performed, especially under long-term exposures to nano-sized aged microplastics.

  7. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon.

    PubMed

    Piou, Cyril; Prévost, Etienne

    2013-03-01

    Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history. © 2012 Blackwell Publishing Ltd.

  8. Impacts of a gape limited Brook Trout, Salvelinus fontinalis, on larval Northwestern salamander, Ambystoma gracile, growth: A field enclosure experiment

    USGS Publications Warehouse

    Currens, C.R.; Liss, W.J.; Hoffman, R.L.

    2007-01-01

    The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  9. As the raven flies: using genetic data to infer the history of invasive common raven (Corvus corax) populations in the Mojave Desert.

    PubMed

    Fleischer, Robert C; Boarman, William I; Gonzalez, Elena G; Godinez, Alvaro; Omland, Kevin E; Young, Sarah; Helgen, Lauren; Syed, Gracia; McIntosh, Carl E

    2008-01-01

    Common raven (Corvus corax) populations in Mojave Desert regions of southern California and Nevada have increased dramatically over the past five decades. This growth has been attributed to increased human development in the region, as ravens have a commensal relationship with humans and feed extensively at landfills and on road-killed wildlife. Ravens, as a partially subsidized predator, also represent a problem for native desert wildlife, in particular threatened desert tortoises (Gopherus agassizii). However, it is unclear whether the more than 15-fold population increase is due to in situ population growth or to immigration from adjacent regions where ravens have been historically common. Ravens were sampled for genetic analysis at several local sites within five major areas: the West Mojave Desert (California), East Mojave Desert (southern Nevada), southern coastal California, northern coastal California (Bay Area), and northern Nevada (Great Basin). Analyses of mtDNA control region sequences reveal an increased frequency of raven 'Holarctic clade' haplotypes from south to north inland, with 'California clade' haplotypes nearly fixed in the California populations. There was significant structuring among regions for mtDNA, with high F(ST) values among sampling regions, especially between the Nevada and California samples. Analyses of eight microsatellite loci reveal a mostly similar pattern of regional population structure, with considerably smaller, but mostly significant, values. The greater mtDNA divergences may be due to lower female dispersal relative to males, lower N(e), or effects of high mutation rates on maximal values of F(ST). Analyses indicate recent population growth in the West Mojave Desert and a bottleneck in the northern California populations. While we cannot rule out in situ population growth as a factor, patterns of movement inferred from our data suggest that the increase in raven populations in the West Mojave Desert resulted from movements from southern California and the Central Valley. Ravens in the East Mojave Desert are more similar to ones from northern Nevada, indicating movement between those regions. If this interpretation of high gene flow into the Mojave Desert is correct, then efforts to manage raven numbers by local control may not be optimally effective.

  10. [Effects of red tide microalgae Alexandrium tamarense on the life history of rotifer Brachionus plicatilis].

    PubMed

    Xie, Zhi-Hao; Xiao, Huh; Cai, Heng-Jiang; Wang, Ren-Jun; Tang, Xue-Xi

    2007-12-01

    In this paper, life-table method was used to study the effects of different concentration Alexandrium tamarense on the durations of different development stages of Brachionus plicatilis and the characters of its population growth. The results showed that A. tamarense had significant effects on the growth and development of B. plicatilis via prolonging the durations of the rotifer' s pre-reproduction and generation succession, shortening the durations of its reproduction and post-reproduction and its mean lifespan, and reducing its laying eggs and fecundity. The net reproduction rate and intrinsic increasing rate of B. plicatilis decreased significantly, in comparison with those of the control. B. plicatilis could maintain definite population increase at the presence of different concentration A. tamarense.

  11. Addressing global health, economic, and environmental problems through family planning.

    PubMed

    Speidel, J Joseph; Grossman, Richard A

    2011-06-01

    Although obstetrician-gynecologists recognize the importance of managing fertility for the reproductive health of individuals, many are not aware of the vital effect they can have on some of the world's most pressing issues. Unintended pregnancy is a key contributor to the rapid population growth that in turn impairs social welfare, hinders economic progress, and exacerbates environmental degradation. An estimated 215 million women in developing countries wish to limit their fertility but do not have access to effective contraception. In the United States, half of all pregnancies are unplanned. Voluntary prevention of unplanned pregnancies is a cost-effective, humane way to limit population growth, slow environmental degradation, and yield other health and welfare benefits. Family planning should be a top priority for our specialty.

  12. Some comments on the World Energy Conference (WEC) energy demand model

    NASA Astrophysics Data System (ADS)

    Brandell, L.

    1982-04-01

    The WEC model, relating the energy demand for a region in a year to gross national product (GNP), aggregated energy prices and elasticity constants, is generalized. The changes that result from the assumption that the elasticity factors are not constant are examined. The resulting differential equation contains the variables energy demand per capita and GNP per capita for the region considered. The effect of time lag in energy demand and the influence of the population growth rate are also included in the model. No projections of the future energy demand were made, but model sensitiveness to the modifications were studied. Time lag effects and population growth effects can raise the projected energy demand for a region by 10% or more.

  13. Can Ingestion of Lead Shot and Poisons Change Population Trends of Three European Birds: Grey Partridge, Common Buzzard, and Red Kite?

    PubMed Central

    Meyer, Carolyn B.; Meyer, Joseph S.; Francisco, Alex B.; Holder, Jennifer; Verdonck, Frederik

    2016-01-01

    Little is known about the magnitude of the effects of lead shot ingestion alone or combined with poisons (e.g., in bait or seeds/granules containing pesticides) on population size, growth, and extinction of non-waterbird avian species that ingest these substances. We used population models to create example scenarios demonstrating how changes in these parameters might affect three susceptible species: grey partridge (Perdix perdix), common buzzard (Buteo buteo), and red kite (Milvus milvus). We added or subtracted estimates of mortality due to lead shot ingestion (4–16% of mortality, depending on species) and poisons (4–46% of mortality) reported in the UK or France to observed mortality of studied populations after models were calibrated to observed population trends. Observed trends were decreasing for partridge (in continental Europe), stable for buzzard (in Germany), and increasing for red kite (in Wales). Although lead shot ingestion and poison at modeled levels did not change the trend direction for the three species, they reduced population size and slowed population growth. Lead shot ingestion at modeled rates reduced population size of partridges by 10%, and when combined with bait and pesticide poisons, by 18%. For buzzards, decrease in mean population size by lead shot and poisons combined was much smaller (≤ 1%). The red kite population has been recovering; however, modeled lead shot ingestion reduced its annual growth rate from 6.5% to 4%, slowing recovery. If mortality from poisoned baits could be removed, the kite population could potentially increase at a rapid annual rate of 12%. The effects are somewhat higher if ingestion of these substances additionally causes sublethal reproductive impairment. These results have uncertainty but suggest that declining or recovering populations are most sensitive to lead shot or poison ingestion, and removal of poisoned baits can have a positive impact on recovering raptor populations that frequently feed on carrion. PMID:26799815

  14. Can Ingestion of Lead Shot and Poisons Change Population Trends of Three European Birds: Grey Partridge, Common Buzzard, and Red Kite?

    PubMed

    Meyer, Carolyn B; Meyer, Joseph S; Francisco, Alex B; Holder, Jennifer; Verdonck, Frederik

    2016-01-01

    Little is known about the magnitude of the effects of lead shot ingestion alone or combined with poisons (e.g., in bait or seeds/granules containing pesticides) on population size, growth, and extinction of non-waterbird avian species that ingest these substances. We used population models to create example scenarios demonstrating how changes in these parameters might affect three susceptible species: grey partridge (Perdix perdix), common buzzard (Buteo buteo), and red kite (Milvus milvus). We added or subtracted estimates of mortality due to lead shot ingestion (4-16% of mortality, depending on species) and poisons (4-46% of mortality) reported in the UK or France to observed mortality of studied populations after models were calibrated to observed population trends. Observed trends were decreasing for partridge (in continental Europe), stable for buzzard (in Germany), and increasing for red kite (in Wales). Although lead shot ingestion and poison at modeled levels did not change the trend direction for the three species, they reduced population size and slowed population growth. Lead shot ingestion at modeled rates reduced population size of partridges by 10%, and when combined with bait and pesticide poisons, by 18%. For buzzards, decrease in mean population size by lead shot and poisons combined was much smaller (≤ 1%). The red kite population has been recovering; however, modeled lead shot ingestion reduced its annual growth rate from 6.5% to 4%, slowing recovery. If mortality from poisoned baits could be removed, the kite population could potentially increase at a rapid annual rate of 12%. The effects are somewhat higher if ingestion of these substances additionally causes sublethal reproductive impairment. These results have uncertainty but suggest that declining or recovering populations are most sensitive to lead shot or poison ingestion, and removal of poisoned baits can have a positive impact on recovering raptor populations that frequently feed on carrion.

  15. A summary analysis of the 3rd inquiry.

    PubMed

    1977-01-01

    20 ESCAP member countries responded to the "Third Population Inquiry among Governments: Population policies in the context of development in 1976." The questionnaire sent to the member countries covered economic and social development and population growth, mortality, fertility and family formation, population distribution and internal migration, international migration, population data collection and research, training, and institutional arrangements for the formulation of population policies within development. Most of the governments in the ESCAP region that responded indicate that the present rate of population growth constrains their social and economic development. Among the governments that consider the present rate of population growth to constrain economic and social development, 13 countries regarded the most appropriate response to the constraint would include an adjustment of both socioeconomic and demographic factors. 11 of the governments regarded their present levels of average life expectancy at birth "acceptable" and 7 identified their levels as "unacceptable." Most of the governments who responded consider that, in general, their present level of fertility is too high and constrains family well-being. Internal migration and population distribution are coming to be seen as concerns for government population policy. The most popular approaches to distributing economic and social activities are rural development, urban and regional development and industrial dispersion. There was much less concern among the governments returning the questionnaire about the effect of international migration than internal migration on social and economic development.

  16. Genetic determinants of prepubertal and pubertal growth and development.

    PubMed

    Thomis, Martine A; Towne, Bradford

    2006-12-01

    This article surveys the current general understanding of genetic influences on within- and between-population variation in growth and development in the context of establishing an International Growth Standard for Preadolescent and Adolescent Children. Traditional genetic epidemiologic analysis methods are reviewed, and evidence from family studies for genetic effects on different measures of growth and development is then presented. Findings from linkage and association studies seeking to identify specific genomic locations and allelic variants of genes influencing variation in growth and maturation are then summarized. Special mention is made of the need to study the interactions between genes and environments. At present, specific genes and polymorphisms contributing to variation in growth and maturation are only beginning to be identified. Larger genetic epidemiologic studies are needed in different parts of the world to better explore population differences in gene frequencies and gene-environment interactions. As advances continue to be made in molecular and statistical genetic methods, the genetic architecture of complex processes, including those of growth and development, will become better elucidated. For now, it can only be concluded that although the fundamental genetic underpinnings of the growth and development of children worldwide are likely to be essentially the same, there are also likely to be differences between populations in the frequencies of allelic gene variants that influence growth and maturation and in the nature of gene-environment interactions. This does not necessarily preclude an international growth reference, but it does have important implications for the form that such a reference might ultimately take.

  17. Impact of ammonium nitrate and sodium nitrate on tadpoles of Alytes obstetricans.

    PubMed

    Garriga, Núria; Montori, A; Llorente, G A

    2017-07-01

    The presence of pesticides, herbicides and fertilisers negatively affect aquatic communities in general, and particularly amphibians in their larval phase, even though sensitivity to pollutants is highly variable among species. The Llobregat Delta (Barcelona, Spain) has experienced a decline of amphibian populations, possibly related to the reduction in water quality due to the high levels of farming activity, but also to habitat loss and alteration. We studied the effects of increasing ammonium nitrate and sodium nitrate levels on the survival and growth rate of Alytes obstetricans tadpoles under experimental conditions. We exposed larvae to increasing concentrations of nitrate and ammonium for 14 days and then exposed them to water without pollutants for a further 14 days. Only the higher concentrations of ammonium (>33.75 mg/L) caused larval mortality. The growth rate of larvae was reduced at ≥22.5 mg/L NH 4 + , although individuals recovered and even increased their growth rate once exposure to the pollutant ended. The effect of nitrate on growth rate was detected at ≥80 mg/L concentrations, and the growth rate reduction in tadpoles was even observed during the post-exposure phase. The concentrations of ammonium with adverse effects on larvae are within the range levels found in the study area, while the nitrate concentrations with some adverse effect are close to the upper range limit of current concentrations in the study area. Therefore, only the presence of ammonium in the study area is likely to be considered of concern for the population of this species, even though the presence of nitrate could cause some sublethal effects. These negative effects could have an impact on population dynamics, which in this species is highly sensitive to larval mortality due to its small clutch size and prolonged larval period compared to other anuran amphibians.

  18. Intraspecific competition and density dependence of food consumption and growth in Arctic charr.

    PubMed

    Amundsen, Per-Arne; Knudsen, Rune; Klemetsen, Anders

    2007-01-01

    1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources.

  19. The role of density dependence in growth patterns of ceded territory walleye populations of northern Wisconsin: Effects of changing management regimes

    USGS Publications Warehouse

    Sass, G.G.; Hewett, S.W.; Beard, T.D.; Fayram, A.H.; Kitchell, J.F.

    2004-01-01

    We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.

  20. Postdispersal seed predation limits the abundance of a long-lived perennial forb (Lithospermum ruderale).

    PubMed

    Bricker, Mary; Maron, John

    2012-03-01

    Loss of seeds to consumers is common in plant communities, but the degree to which these losses influence plant abundance or population growth is often unclear. This is particularly the case for postdispersal seed predation by rodents, as most studies of rodent seed predation have focused on the sources of spatiotemporal variation in seed loss but not quantified the population consequences of this loss. In previous work we showed that seed predation by deer mice (Peromyscus maniculatus) substantially reduced seedling recruitment and establishment of Lithospermum ruderale (Boraginaceae), a long-lived perennial forb. To shed light on how rodent seed predation and the near-term effects on plant recruitment might influence longer-term patterns of L. ruderale population growth, we combined experimental results with demographic data in stage-based population models. Model outputs revealed that rodent seed predation had a significant impact on L. ruderale population growth rate (lambda). With the removal of postdispersal seed predation, the projected population growth rates increased between 0.06 and 0.12, depending on site (mean deltalambda across sites = 0.08). Seed predation shifted the projected stable stage distribution of populations from one with a high proportion of young plants to one in which larger adult size classes dominate. Elasticities of vital rates also changed, with germination and growth of seedlings and young plants becoming more important with the removal of seed predation. Simulations varying the magnitude of seed predation pressure while holding other vital rates constant showed that seed predation could lower lambda even if only 40% of available seeds were consumed. These results demonstrate that rodent granivory can be a potent force limiting the abundance of a long-lived perennial forb.

  1. Growing population causes of unemployment.

    PubMed

    1995-01-01

    At the March, 1995, International Meeting on Population and Social Development in Copenhagen, during the session on unemployment, underemployment, and population it was stated that the problem of employment was the extent to which a nation's labor supply was not matched by labor demand or job opportunities. Population was thus a supply factor, and the country's economic situation was a demand factor. The demographic variables that were considered important in the supply of labor were: a) the size and rate of growth of the population, which was a function of the birth rate, the death rate, and migration; and b) the age structure of the population, which was also a product of the rate of growth of the population and its distribution. An imbalance between the supply of labor and the demand for it gave rise to unemployment and underemployment. The vicious cycle generated by a high dependency burden associated with a young age-structure led to low savings and investments, which in turn led to low economic growth and a low standard of living. This produced high fertility rates, which in turn heightened the dependency burden perpetuating the cycle. This vicious cycle could be broken at only two points: at the high fertility stage, primarily by introducing family planning programs; and at the stage of low economic growth, by adopting policies to accelerate economic growth. To be successful, however, both actions had to be pursued simultaneously. Numerous participants emphasized the global nature of the issue of unemployment and underemployment; the effects of international competition and restrictive trade policies on employment opportunities. The growing disparity between North and South had created a social injustice between countries. Several participants called for more humane policies that favored democracy and promoted human development, and asked for assistance to help create an enabling environment for social and economic development.

  2. Overcrowding and Population Growth: The Nature and Relevance of Animal Behavior.

    ERIC Educational Resources Information Center

    Stettner, Laurence J.

    This paper provides a descriptive overview of research on the consequences of overcrowding and the development of high population densities in animals, and speculates on the relevance of these studies for similar human phenomena. Three major foci are distinguished: (1) the effect of high population densities on animal behavior; (2) the nature of…

  3. Atrazine and increased male production by Daphnia: the importance of combining field and laboratory approaches.

    PubMed

    Stoeckel, James A; González, María J; Oris, James T; Kovach, Mathew J; Mace, Kimberly M

    2008-11-01

    Atrazine is one of the most commonly applied herbicides in North America and annually pulses through many midwestern stream and reservoir systems. Previous studies have yielded conflicting results regarding the ability of atrazine to stimulate male production by Daphnia, an effect hypothesized to lower population growth rates during a period of intense larval fish predation. In the present study, populations of Daphnia parvula and Daphnia ambigua exhibited high proportions of males but no ephippial females when atrazine pulsed into Acton Lake, a small midwestern reservoir. Field results thus supported the hypothesis of excess male production by Daphnia during the spring herbicide pulse. In laboratory studies, dose-response studies, and population-level assays revealed no effect of atrazine on male production or population growth rate of multiple clones differing in reproductive strategy and exposure history. However, D. parvula increased male production in response to an endogenous crustacean hormone (methyl farnesoate). Excess male production observed in the field population was therefore not likely caused by atrazine, although we cannot rule out the possibility of interactive effects of atrazine and some other stressor. Apparent signs of endocrine disruption in the presence of high concentrations of a suspected agent should be viewed with caution in the absence of parallel laboratory studies involving individuals from the populations of interest.

  4. The Population Growth and Carrying Capacity in Semarang City

    NASA Astrophysics Data System (ADS)

    Hariyanto; Hadi, Sudharto P.; Buchori, Imam

    2018-02-01

    Population growth and development of city activities take some lands to carry them. As a result, land use competition happens among persons, society or sector. Land necessity for settlement, industry, or sector has taken over farm land, therefore farm land has been converted intensively and massively. Chronologically, population growth will cause land necessity increase. Unproductive land, especially farm land will be converted. Furthermore, farm land conversion will cause carrying capacity change. Carrying capacity has certain bio capacity. With the population growth, it will increase resource consumption; on the other side, farm land conversion will decrease carrying capacity. The objective of the study is to know about the influence of population growth towards carrying capacity (bio capacity) in Semarang city. Land consumption per capita is indeed influenced by city population, the higher the population is, the lower the land consumption per capita. With the population growth, it will influence carrying capacity. Carrying capacity here is the ratio of area to population. Analytical descriptive method is applied in the study with all sub-districts in Semarang city as the analysis unit. Population here is sub-district area and population per sub-district in Semarang city. Population growth data period is from 2000 until 2015. Main variables of the study are area per sub-district, population, population growth, carrying capacity. Result of the study shows significant influence of carrying capacity decrease, especially some outskirts in Semarang city. This condition happens because the outskirts in Semarang city tend to have dense population growth. Range of carrying capacity in Semarang city is from 0,007 to 0,117 of 0 to 1. Almost all sub-districts in Semarang city show miserable condition, except Mijen and Tugu. The conclusion of the study is that population will decrease carrying capacity. Therefore, the government should control population growth by paying attention to its distribution.

  5. Estimating age at a specified length from the von Bertalanffy growth function

    USGS Publications Warehouse

    Ogle, Derek H.; Isermann, Daniel A.

    2017-01-01

    Estimating the time required (i.e., age) for fish in a population to reach a specific length (e.g., legal harvest length) is useful for understanding population dynamics and simulating the potential effects of length-based harvest regulations. The age at which a population reaches a specific mean length is typically estimated by fitting a von Bertalanffy growth function to length-at-age data and then rearranging the best-fit equation to solve for age at the specified length. This process precludes the use of standard frequentist methods to compute confidence intervals and compare estimates of age at the specified length among populations. We provide a parameterization of the von Bertalanffy growth function that has age at a specified length as a parameter. With this parameterization, age at a specified length is directly estimated, and standard methods can be used to construct confidence intervals and make among-group comparisons for this parameter. We demonstrate use of the new parameterization with two data sets.

  6. [A Cellular Automata Model for a Community Comprising Two Plant Species of Different Growth Forms].

    PubMed

    Frolov, P V; Zubkova, E V; Komarov, A S

    2015-01-01

    A cellular automata computer model for the interactions between two plant species of different growth forms--the lime hairgrass Deschampsia caespitosa (L.) P. Beauv., a sod cereal, and the moneywort Lysimachia nummularia L., a ground creeping perennial herb--is considered. Computer experiments on the self-maintenance of the populations of each species against the background of a gradual increase in the share of randomly eliminated individuals, coexistence of the populations of two species, and the effect of the phytogenous field have been conducted. As has been shown, all the studied factors determine the number of individuals and self-sustainability of the simulated populations by the degree of their impact. The limits of action have been determined for individual factors; within these limits, the specific features in plant reproduction and dispersal provide sustainable coexistence of the simulated populations. It has been demonstrated that the constructed model allows for studying the long-term developmental dynamics of the plants belonging to the selected growth forms.

  7. Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance.

    PubMed

    Lavola, Anu

    1998-01-01

    A growth chamber experiment was conducted to examine the effects of UV-B exposure (4.9 kJ m(-2) day(-1) of biologically effective UV-B, 280-320 nm) on shoot growth and secondary metabolite production in Betula pendula (Roth) and B. resinifera (Britt.) seedlings originating from environments in Finland, Germany and Alaska differing in solar UV-B radiation and climate. Neither shoot growth nor the composition of secondary metabolites was affected by UV-B irradiance, but the treatment induced significant changes in the amounts of individual secondary metabolites in leaves. Leaves of seedlings exposed to UV-B radiation contained higher concentrations of several flavonoids, condensed tannins and some hydroxycinnamic acids than leaves of control seedlings that received no UV-B radiation. At the population level, there was considerable variation in secondary metabolite responses to UV-B radiation: among populations, the induced response was most prominent in Alaskan populations, which were adapted to the lowest ambient UV-B radiation environment. I conclude that solar UV-B radiation plays an important role in the formation of secondary chemical characteristics in birch trees.

  8. Effects of household dynamics on resource consumption and biodiversity.

    PubMed

    Liu, Jianguo; Daily, Gretchen C; Ehrlich, Paul R; Luck, Gary W

    2003-01-30

    Human population size and growth rate are often considered important drivers of biodiversity loss, whereas household dynamics are usually neglected. Aggregate demographic statistics may mask substantial changes in the size and number of households, and their effects on biodiversity. Household dynamics influence per capita consumption and thus biodiversity through, for example, consumption of wood for fuel, habitat alteration for home building and associated activities, and greenhouse gas emissions. Here we report that growth in household numbers globally, and particularly in countries with biodiversity hotspots (areas rich in endemic species and threatened by human activities), was more rapid than aggregate population growth between 1985 and 2000. Even when population size declined, the number of households increased substantially. Had the average household size (that is, the number of occupants) remained static, there would have been 155 million fewer households in hotspot countries in 2000. Reduction in average household size alone will add a projected 233 million additional households to hotspot countries during the period 2000-15. Rapid increase in household numbers, often manifested as urban sprawl, and resultant higher per capita resource consumption in smaller households pose serious challenges to biodiversity conservation.

  9. Mapping the Spread of Methamphetamine Abuse in California From 1995 to 2008

    PubMed Central

    Ponicki, William R.; Remer, Lillian G.; Waller, Lance A.; Zhu, Li; Gorman, Dennis M.

    2013-01-01

    Objectives. From 1983 to 2008, the incidence of methamphetamine abuse and dependence (MA) presenting at hospitals in California increased 13-fold. We assessed whether this growth could be characterized as a drug epidemic. Methods. We geocoded MA discharges to residential zip codes from 1995 through 2008. We related discharges to population and environmental characteristics using Bayesian Poisson conditional autoregressive models, correcting for small area effects and spatial misalignment and enabling an assessment of contagion between areas. Results. MA incidence increased exponentially in 3 phases interrupted by implementation of laws limiting access to methamphetamine precursors. MA growth from 1999 through 2008 was 17% per year. MA was greatest in areas with larger White or Hispanic low-income populations, small household sizes, and good connections to highway systems. Spatial misalignment was a source of bias in estimated effects. Spatial autocorrelation was substantial, accounting for approximately 80% of error variance in the model. Conclusions. From 1995 through 2008, MA exhibited signs of growth and spatial spread characteristic of drug epidemics, spreading most rapidly through low-income White and Hispanic populations living outside dense urban areas. PMID:23078474

  10. Evidence of continued effects from timber harvesting on lotic amphibians in redwood forests of northwestern California

    Treesearch

    Donald T. Ashton; Sharyn B. Marks; Hartwell H. Welsh Jr.

    2006-01-01

    We compared species richness and relative abundance of stream-associated amphibians in late-seral redwood forests with those in mid-seral, second-growth forests to examine the continued (as opposed to immediate) effects of timber harvest on amphibian populations. Lacking pre-harvest data on amphibian abundances for streams in the second-growth stands, we assumed that...

  11. Contribution of population growth to per capita income and sectoral output growth in Japan, 1880-1970.

    PubMed

    Yamaguchi, M; Kennedy, G

    1984-09-01

    The authors measured the positive and negative contributions of population and labor force growth to the growth of per capita income and sectoral output in Japan in the 1880-1970 period. A 2-sector growth accounting model that treats population and labor growth as separate variables was used. 3 alternative methods were used: the Residual method, the Verdoorn method, and the factor augmenting rate method. The total contribution of population cum labor growth to per capita income growth tended to be negative in the 1880-1930 period and positive in the 1930-40 and 1950-70. Over the 1880-1970 period as a whole, population cum labor growth made a positive contribution to per capita income growth under the Residual method (0.35%/year), the factor augmenting rate method (0.29%/year), and the Verdoorn method (0.01%/year). In addition, population cum labor growth contributed positively to sectoral output growth. The average contribution to agricultural output growth ranged from 1.03% (Verdoorn) - 1.46%/year (factor augmenting rate), while the average contribution to nonagricultural output growth ranged from 1.22% (Verdoorn) - 1.60%/year (Residual). Although these results are dependent on the model used, the fact that all 3 methods yielded consistent results suggests that population cum labor growth did make a positive contribution to per capita income and sectoral output growth in Japan. These findings imply that in economies where the rate of technical change in agricultural and nonagricultural sectors exceeds population growth, policies that reduce agricultural elasticities may be preferable; on the other hand, policies that reduce agricultural elasticities are to be avoided in economies with low rates of technical change. Moreover, in the early stages of economic development, policies that increase agricultural income and price elasticities should be considered.

  12. The effect of stochiastic technique on estimates of population viability from transition matrix models

    USGS Publications Warehouse

    Kaye, T.N.; Pyke, David A.

    2003-01-01

    Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.

  13. Scale-dependent portfolio effects explain growth inflation and volatility reduction in landscape demography

    PubMed Central

    2017-01-01

    Population demography is central to fundamental ecology and for predicting range shifts, decline of threatened species, and spread of invasive organisms. There is a mismatch between most demographic work, carried out on few populations and at local scales, and the need to predict dynamics at landscape and regional scales. Inspired by concepts from landscape ecology and Markowitz’s portfolio theory, we develop a landscape portfolio platform to quantify and predict the behavior of multiple populations, scaling up the expectation and variance of the dynamics of an ensemble of populations. We illustrate this framework using a 35-y time series on gypsy moth populations. We demonstrate the demography accumulation curve in which the collective growth of the ensemble depends on the number of local populations included, highlighting a minimum but adequate number of populations for both regional-scale persistence and cross-scale inference. The attainable set of landscape portfolios further suggests tools for regional population management for both threatened and invasive species. PMID:29109261

  14. An SNP in the MyoD1 gene intron 2 associated with growth and carcass traits in three duck populations.

    PubMed

    Wu, Y; Pi, J S; Pan, A L; Pu, Y J; Du, J P; Shen, J; Liang, Z H; Zhang, J R

    2012-12-01

    Myogenic differentiation 1 (MyoD1) genes belong to the MyoD gene family and play key roles in growth and muscle development. This study was designed to investigate the effects of variants in the MyoD1 gene on duck growth and carcass traits. Three duck populations (Cherry Valley, Jingjiang, and Muscovy) were sampled, their growth and carcass traits were measured, and they were genotyped using the PCR-RFLP method. The results showed one novel polymorphism, an alteration in intron 2 of the MyoD1 gene (A to T). It was associated with the traits of weight at 8 weeks, carcass weight, breast muscle weight, leg muscle weight, eviscerated percentage, percentage of leg muscle weight, dressing percentage, and lean meat percentage. This alteration in intron 2 of MyoD1 may be linked with potential major loci or genes affecting some growth and carcass traits.

  15. The shadow of the future.

    PubMed

    Caldwell, J C

    1984-01-01

    This article focuses on the need for care in evaluating current demographic conditions in Australia and planning for the future. After noting that Australia is basically a nation of immigrants, the author reviews the country's demographic history. Comparisons with other countries and explanations for major changes are included. It is suggested that long-term fertility has probably stabilized just below replacement level. The changing composition of the immigrant population is also analyzed. The author accepts official 1983 population projections in which declines in the rate of population growth are predicted through the year 2021, although the actual population is expected to increase. In the last section, effects of this population growth on the environment are considered. It is concluded that there are no economic or environmental factors precluding continued immigration at the rate of 75,000-100,000 people per year.

  16. The effect of supplemental food on the growth rates of neonatal, young, and adult cotton rats ( Sigmodon hispidus) in northeastern Kansas, USA

    NASA Astrophysics Data System (ADS)

    Eifler, Maria A.; Slade, Norman A.; Doonan, Terry J.

    2003-09-01

    In food-limited populations, the presence of extra food resources can influence the way individuals allocate energy to growth and reproduction. We experimentally increased food available to cotton rats ( Sigmodon hispidus) near the northern limit of their range over a 2-year period and tested the hypothesis that seasonal growth rates would be enhanced by supplemental food during winter and spring when natural food levels are low. We also examined whether additional food resources were allocated to somatic growth or reproductive effort by pregnant and lactating females. The effect of supplemental food on growth varied with mass and season, but did not influence the growth rates of most cotton rats during spring and winter. In winter, small animals on supplemented grids had higher growth rates than small animals on control grids, but females in spring had lower growth rates under supplemented conditions. Growth rates of supplemented cotton rats were enhanced in summer. Northern cotton rat populations may use season-specific foraging strategies, maximizing energy intake during the reproductive season and minimizing time spent foraging in winter. Adult females invest extra resources in reproduction rather than in somatic growth. Pregnant females receiving supplemental food had higher growth rates than control females, and dependent pups (≤ 1 month of age) born to supplemented mothers had higher growth rates than those born to control mothers. Increased body size seems to confer an advantage during the reproductive season, but has no concomitant advantage to overwinter survival.

  17. Regional Growth and income convergence in the western black belt counties of Alabama: evidence from census block group data

    Treesearch

    Buddhi Gyawali; Rory Fraser; James Bukenya; John Schelhas

    2010-01-01

    This paper examines the effects of growth in African Ameriocan population, employment, and human capital on growth in per capita income at the census block group (CBG) level using ordinary least square and spatial reqression models. The results indicate the presence of conditional incaom conbergence between 1980 and 2000 with poorer CBGs growing faster than the...

  18. Population Growth and Development of the Psocid Liposcelis fusciceps (Psocoptera: Liposcelididae) at Constant Temperatures and Relative Humidities.

    PubMed

    Gautam, S G; Opit, G P; Shakya, K

    2016-02-01

    We investigated the effects of seven temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, and 37.5°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis fusciceps Badonnel (Psocoptera: Liposcelididae). Results demonstrated that L. fusciceps did not survive at 43% RH, at all temperatures tested. At 55% RH, L. fusciceps did not survive at the highest three temperatures and no psocids survived at 37.5°C and 63% RH. The highest population growth was recorded at 30.0°C and 75% RH where populations increased 16-fold from an initial population of five females. L. fusciceps males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 28, 70, and 2%, respectively. Female L. fusciceps have two to five instars, and the percentages of females with two, three, four, and five instars were 2, 33, 63, and 2%, respectively. The total developmental time for males was shorter than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. fusciceps can survive and multiply at a relative humidity of 55% at 22.5-30.0°C, but does better at 27.5-32.5°C and a higher relative humidity of 75%. Relative humidities of ≤ 63% and temperatures of ≥ 32.5°C are detrimental to L. fusciceps. These data provide a better understanding of L. fusciceps population dynamics and can be used to develop effective management strategies for this psocid. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Successional changes in trophic interactions support a mechanistic model of post-fire population dynamics.

    PubMed

    Smith, Annabel L

    2018-01-01

    Models based on functional traits have limited power in predicting how animal populations respond to disturbance because they do not capture the range of demographic and biological factors that drive population dynamics, including variation in trophic interactions. I tested the hypothesis that successional changes in vegetation structure, which affected invertebrate abundance, would influence growth rates and body condition in the early-successional, insectivorous gecko Nephrurus stellatus. I captured geckos at 17 woodland sites spanning a succession gradient from 2 to 48 years post-fire. Body condition and growth rates were analysed as a function of the best-fitting fire-related predictor (invertebrate abundance or time since fire) with different combinations of the co-variates age, sex and location. Body condition in the whole population was positively affected by increasing invertebrate abundance and, in the adult population, this effect was most pronounced for females. There was strong support for a decline in growth rates in weight with time since fire. The results suggest that increased early-successional invertebrate abundance has filtered through to a higher trophic level with physiological benefits for insectivorous geckos. I integrated the new findings about trophic interactions into a general conceptual model of mechanisms underlying post-fire population dynamics based on a long-term research programme. The model highlights how greater food availability during early succession could drive rapid population growth by contributing to previously reported enhanced reproduction and dispersal. This study provides a framework to understand links between ecological and physiological traits underlying post-fire population dynamics.

  20. Are whooping cranes destined for extinction? Climate change imperils recruitment and population growth.

    PubMed

    Butler, Matthew J; Metzger, Kristine L; Harris, Grant M

    2017-04-01

    Identifying climatic drivers of an animal population's vital rates and locating where they operate steers conservation efforts to optimize species recovery. The population growth of endangered whooping cranes ( Grus americana ) hinges on juvenile recruitment. Therefore, we identify climatic drivers (solar activity [sunspots] and weather) of whooping crane recruitment throughout the species' life cycle (breeding, migration, wintering). Our method uses a repeated cross-validated absolute shrinkage and selection operator approach to identify drivers of recruitment. We model effects of climate change on those drivers to predict whooping crane population growth given alternative scenarios of climate change and solar activity. Years with fewer sunspots indicated greater recruitment. Increased precipitation during autumn migration signified less recruitment. On the breeding grounds, fewer days below freezing during winter and more precipitation during breeding suggested less recruitment. We predicted whooping crane recruitment and population growth may fall below long-term averages during all solar cycles when atmospheric CO 2 concentration increases, as expected, to 500 ppm by 2050. Species recovery during a typical solar cycle with 500 ppm may require eight times longer than conditions without climate change and the chance of population decline increases to 31%. Although this whooping crane population is growing and may appear secure, long-term threats imposed by climate change and increased solar activity may jeopardize its persistence. Weather on the breeding grounds likely affects recruitment through hydrological processes and predation risk, whereas precipitation during autumn migration may influence juvenile mortality. Mitigating threats or abating climate change should occur within ≈30 years or this wild population of whooping cranes may begin declining.

  1. Effective Perron-Frobenius eigenvalue for a correlated random map

    NASA Astrophysics Data System (ADS)

    Pool, Roman R.; Cáceres, Manuel O.

    2010-09-01

    We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.

  2. Population growth, inequality and poverty.

    PubMed

    Rodgers, G

    1983-01-01

    In this discussion of population growth, inequality, and poverty, the type of relationships that can be observed in intercountry comparisons are explored, reviewing the findings of several other authors, presenting some new estimates using an International Labor Office data bank, considering some basic conceptual problems, and examining some of the theoretical and empirical issues that call for investigation at the national level. Intercountry comparisons, despite their limitations, appear to be the easiest starting point for empirical analysis. The approach adopted by most researchers has been to select 1 or more population indicators and a measure of national income inequality and to explain intercountry differences in 1 or both of these variables in terms of each other and of other indicators of economic and social development. Underlying this methodology is the assumption that there are aspects of demographic and economic change that are common to all countries included in the study, so that differences between countries give some guide to the likely evolution over time within any 1 country. This can be accepted at best with reservations, but given the scarcity of data on the evolution of inequality over time, a working hypothesis of this type appears unavoidable. But, as many of the factors likely to cause population growth and inequality operate over extended periods of time, a dynamic model is indicated. A simpler model, which pays particular attention to lags and variations over time, may generate new insights. A summary of the results of a new international cross-section analysis set up on these lines is presented. Results suggest that contrary to expectations, reducing population growth does not seem to generate longterm benefits for the poor in this model, though some short term gains are found. Increasing equality does appear to generate some decline in population growth, as well as persistent gains in incomes among the poor, but the reductions in population growth look small when set against the substantial reduction in inequality assumed. The central problem is that inequality and poverty are complex variables conceptually and empirically. 3 major sets of issues are particularly relevant: the nature of the unit of analysis; the reference period; and the conceptualization and measurement of welfare in relation to inequality and demographic change. In interpreting empirical findings, it is necessary to be aware of the different aspects of inequality and the correspondingly varied links with demographic change. The issues raised by the effects of inequality on population growth are distinct from those of population growth on the generation of inequality, and these are separated. Future research possibly will be most productive if it concentrates on the multiple roles of population growth in the transformation of systems of production.

  3. Climate-driven vital rates do not always mean climate-driven population.

    PubMed

    Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel

    2016-12-01

    Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.

  4. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens.

    PubMed

    Jazi, V; Boldaji, F; Dastar, B; Hashemi, S R; Ashayerizadeh, A

    2017-08-01

    1. This experiment was conducted to evaluate the effects of replacing dietary cottonseed meal (CSM) or fermented cottonseed meal (FCSM) for soya bean meal (SBM) on growth performance, carcass characteristics, gastrointestinal microbial populations, and intestinal morphology of broiler chickens. 2. CSM was fermented with Bacillus subtilis, Aspergillus niger and A. oryzae for 7 d. A total of 300 one-d-old male Ross 308 broiler chickens were used in a 42-d experiment in which the birds were randomly allotted to one of 5 dietary treatments (containing 0%, 10% and 20% CSM or FCSM) in a completely randomised design. Birds were reared on litter floor and had free access to feed and water during the experiment. 3. Results indicated that the fermentation process significantly reduced crude fibre and free gossypol, while it increased crude protein content and lactic acid bacteria (LAB) count in CSM. 4. The use of FCSM instead of CSM significantly improved growth performance of broilers. The abdominal fat yield in treatments containing FCSM was significantly lower than in the other treatments. The increase in the population of LAB in the crop and decrease in the population of coliforms in the ileum of birds fed on diets containing FCSM were more significant than in other birds. Villi in the duodenum and jejunum of the birds fed on diets containing FCSM were significantly higher than for the other experimental groups. 5. The positive effects of diets containing FCSM on growth performance and intestinal health of broiler chickens showed that this processed source of protein can serve as an appropriate alternative for SBM in diets for broiler chickens.

  5. Effects of elevated atmospheric CO2 on competition between the mosquitoes Aedes albopictus and Ae. triseriatus via changes in litter quality and production.

    PubMed

    Smith, C; Baldwin, A H; Sullivan, J; Leisnham, P T

    2013-05-01

    Elevated atmospheric CO2 can alter aquatic communities via changes in allochthonous litter inputs. We tested effects of atmospheric CO2 on the invasive Aedes albopictus (Skuse) and native Aedes triseriatus (Say) (Diptera: Culicidae) via changes in competition for microbial food or resource inhibition/toxicity. Quercus alba L. litter was produced under elevated (879 ppm) and ambient (388 ppm) atmospheric CO2. Saplings grown at elevated CO2 produced greater litter biomass, which decayed faster and leached more tannins than saplings at ambient CO2. Competition was tested by raising larvae in different species and density combinations provisioned with elevated- or ambient-CO2 litter. Species-specific performance to water conditions was tested by providing single-species larval cohorts with increasing amounts of elevated- or ambient-CO2 litter, or increasing concentrations of tannic acid. Larval densities affected some fitness parameters of Ae. albopictus and Ae. triseriatus, but elevated-CO2 litter did not modify the effects of competition on population growth rates or any fitness parameters. Population growth rates and survival of each species generally were affected negatively by increasing amounts of both elevated- and ambient-CO2 litter from 0.252 to 2.016 g/liter, and tannic acid concentrations above 100 mg/liter were entirely lethal to both species. Aedes albopictus had consistently higher population growth rates than Ae. triseriatus. These results suggest that changes to litter production and chemistry from elevated CO2 are unlikely to affect the competitive outcome between Ae. albopictus and Ae. triseriatus, but that moderate increases in litter production increase population growth rates of both species until a threshold is exceeded that results in resource inhibition and toxicity.

  6. Population ecology of feral horses in an era of fertility control management

    USGS Publications Warehouse

    Ransom, J.I.

    2012-01-01

    Management of wildlife often requires intervention to regulate growth of populations that would otherwise become overabundant. Controlling fecundity using contraceptives has become an increasingly popular tool for attempting to manage locally overabundant wildlife species, but the population-level effects of such applications are largely unknown. Contraceptive treatments can produce unexpected feedbacks that act on births, survival, immigration, and emigration. Such feedbacks may considerably influence our ability to regulate populations using fertility control. I followed feral horses (Equus caballus) in three intensively managed populations to assess longitudinal treatment effects on demography. The transient contraceptive porcine zona pellucida (PZP) produced longer duration of infertility than intended. Repeated PZP vaccinations of females extended the duration of infertility far beyond the targeted management period, with time to first post-treatment parturition increasing 411days for every annual inoculation received. When these animals did conceive and give birth, parturition was later in the year and temporally asynchronous with forage abundance. An average of 30% (range=11–77%) of females were contracepted annually during the treatment period in all three populations and apparent annual population growth rate was 4–9% lower in the post-treatment years as compared to pretreatment years. Population growth was positive, however, and increased steadily every year that a management removal did not occur. The observed number of births was 33% fewer than the expected number of births, based on number of treated females, individual efficacy of treatment, and number of untreated females and their age-specific fecundity rates. Only half of this difference was explained by the apparent residual effect of treatment. Birth rate in the youngest untreated females (age 2–5 years old) was reduced in years when their conspecifics were treated, enhancing the effects of treatment at the population-level. This was partially offset by increased survival in adults, including a 300% increase in presence of horses ≥20 years old during the post-treatment period. In closed populations of feral horses, the positive feedbacks appear to outweigh the negative feedbacks and generate a larger contraceptive effect than the sum of individual treatments. The role of fertility control is uncertain for open populations of many wildlife species, with broad consensus across a synthesis of research that negative feedbacks on fertility control performance are occurring, and in many cases increased survival and increased immigration can compensate entirely for the reduction in births attributed to treatment. Understanding species‘ life-history strategies, biology, behavioral ecology, and ecological context is critical to developing realistic expectations of regulating wildlife populations using fertility control.

  7. Effects of forest management on density, survival, and population growth of wood thrushes

    USGS Publications Warehouse

    Powell, L.A.; Lang, J.D.; Conroy, M.J.; Krementz, D.G.

    2000-01-01

    Loss and alteration of breeding habitat have been proposed as causes of declines in several Neotropical migrant bird populations. We conducted a 4-year study to determine the effects of winter prescribed burning and forest thinning on breeding wood thrush (Hylocichla mustelina) populations at the Piedmont National Wildlife Refuge (PNWR) in Georgia. We estimated density, adult and juvenile survival rates, and apparent annual survival using transect surveys, radiotelemetry, and mist netting. Burning and thinning did not cause lower densities (P = 0.25); wood thrush density ranged from 0.15 to 1.30 pairs/10 ha. No radiomarked male wood thrushes (n = 68) died during the 4 years, but female (n = 63) weekly survival was 0.981 ? 0.014 (SE) for females (n = 63) and 0.976 ? 0.010 for juveniles (n = 38). Apparent annual adult survival was 0.579 (SE = 0.173). Thinning and prescribed burning did not reduce adult or juvenile survival during the breeding season or apparent annual adult survival. Annual population growth (lambda) at PNWR was 1.00 (95% confidence interval = 0.32--1.63), and the considerable uncertainty in this prediction underscores the need for long term monitoring to effectively manage Neotropical migrants. Population growth increased on experimental compartments after the burn and thin (95% CI before = 0.91--0.97, after = 0.98--1.05), while control compartment declined (before = 0.98--1.05, after = 0.87--0.92). We found no evidence that the current management regime at PNWR, designed to improve red-cockaded woodpecker (Picoides borealis) habitat, negatively affected wood thrushes.

  8. Comparison of the life cycle and photoperiodic response between northern and southern populations of the terrestrial slug Lehmannia valentiana in Japan.

    PubMed

    Udaka, Hiroko; Numata, Hideharu

    2010-09-01

    The terrestrial slug Lehmannia valentiana was first recorded in Japan in the late 1950s and is now distributed throughout the country. Previous studies have revealed that in Osaka, southwestern Japan, L. valentiana reproduces from November to April. In the present study, in order to clarify the climatic adaptations of L. valentiana in Japan, we examined the life cycle of this slug in Sapporo, northern Japan. In the Sapporo population, the ratio of gonad weight to body weight reached a maximum in September. Most slugs had mature sperm from late August to April and large oocytes from September to April. Thus, the Sapporo population of L. valentiana commenced reproduction two months earlier than the Osaka population. We also examined the effect of various photoperiodic conditions on growth and reproductive maturation in both the Osaka and Sapporo populations. The effect of photoperiod on growth was different in the two populations. In both populations, however, reproductive maturation was induced by short days of photophase 14 h or less, and there was no obvious difference between the two populations, even though reproductive maturation in the wild commences in different seasons. This indicates the possibility that L. valentiana adapts to climatically different regions without changes in its critical daylength in photoperiodic response.

  9. Potential impacts of blooms of the toxic dinoflagellate Karenia brevis on the growth, survival and juvenile recruitment of the non-native green mussel Perna viridis in southeastern United States.

    PubMed

    McFarland, Katherine; Jean, Fred; Thébault, Julien; Volety, Aswani K

    2016-01-01

    Red tide blooms formed by Karenia brevis are frequent along the Gulf coast of Florida and it is unclear what tolerance the green mussel Perna viridis, a recently introduced species to coastal waters, has toward these events. Established populations of P. viridis were monitored along the coastal waters of Estero Bay, Florida before, during and following two consecutive red tide blooms to assess the potential effects on growth, survival and juvenile recruitment. Upon onset of the bloom, growth rates fell from 6 to 10 mm month(-1) (March 2011-November 2011) to less than 3 mm month(-1). In the succeeding years, K. brevis blooms were present, and average growth of individually tagged mussels remained below 3 mm month(-1). During growth monitoring the use of calcein as an internal marker was tested with positive staining results and no observed effect on growth or survival. In March 2012, following the first red tide bloom, a population-wide mortality event was observed. Following this event, increased mortality rates were observed with peaks during onset of the bloom in the fall of 2012 and 2013. Juvenile recruitment was also limited during years in which blooms persisted into the spring spawning period suggesting gamete and/or larval sensitivity to K. brevis. Although it cannot be conclusively determined that the cause of reduced growth and survival is due to red tide events, the parallels observed suggest that K. brevis is a factor in the observed changes in population structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bot fly parasitism of the red-backed vole: host survival, infection risk, and population growth.

    PubMed

    Lemaître, Jérôme; Fortin, Daniel; Montiglio, Pierre-Olivier; Darveau, Marcel

    2009-03-01

    Parasites can play an important role in the dynamics of host populations, but empirical evidence remains sparse. We investigated the role of bot fly (Cuterebra spp.) parasitism in red-backed voles (Myodes gapperi) by first assessing the impacts of the parasite on the probability of vole survival under stressful conditions as well as on the reproductive activity of females. We then identified the main factors driving both the individual risk of infection and the abundance of bot flies inside red-backed voles. Finally, we evaluated the impacts of bot fly prevalence on the growth rate of vole populations between mid-July and mid-August. Thirty-six populations of red-backed voles were sampled in the boreal forest of Québec, Canada. The presence and the abundance of parasites in voles, two host life history traits (sex and body condition), three indices of habitat complexity (tree basal area, sapling basal area, coarse woody debris volume), and vole abundance were considered in models evaluating the effects of bot flies on host populations. We found that the probability of survival of red-backed voles in live traps decreased with bot fly infection. Both the individual risk of infection and the abundance of bot flies in red-backed voles were driven mainly by vole abundance rather than by the two host life history traits or the three variables of habitat complexity. Parasitism had population consequences: bot fly prevalence was linked to a decrease in short-term growth rate of vole populations over the summer. We found that bot flies have the potential to reduce survival of red-backed voles, an effect that may apply to large portions of populations.

  11. Sink populations in carnivore management: cougar demography and immigration in a hunted population.

    PubMed

    Robinson, Hugh S; Wielgus, Robert B; Cooley, Hilary S; Cooley, Skye W

    2008-06-01

    Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (> 2000 km2) has reduced densities, hunting of smaller areas (i.e., game management units, < 1000 km2), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (< 1000 km2) and to gauge whether population control was achieved (lambda < or = 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (lambda > or = 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, lambda(OM) = 1.09), masking a decrease in the female component (lambda(OF) = 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas.

  12. The relative contributions of disease and insects in the decline of a long-lived tree: a stochastic demographic model of whitebark pine (Pinus albicaulis)

    USGS Publications Warehouse

    Jules, Erik S; Jackson, Jenell I.; van Mantgem, Phillip J.; Beck, Jennifer S.; Murray, Michael P.; Sahara, E. April

    2016-01-01

    Pathogens and insect pests have become increasingly important drivers of tree mortality in forested ecosystems. Unfortunately, understanding the relative contributions of multiple mortality agents to the population decline of trees is difficult, because it requires frequent measures of tree survival, growth, and recruitment, as well as the incidence of mortality agents. We present a population model of whitebark pine (Pinus albicaulis), a high-elevation tree undergoing rapid decline in western North America. The loss of whitebark pine is thought to be primarily due to an invasive pathogen (white pine blister rust; Cronartium ribicola) and a native insect (mountain pine beetle; Dendroctonus ponderosae). We utilized seven plots in Crater Lake National Park (Oregon, USA) where 1220 trees were surveyed for health and the presence of blister rust and beetle activity annually from 2003–2014, except 2008. We constructed size-based projection matrices for nine years and calculated the deterministic growth rate (λ) using an average matrix and the stochastic growth rate (λs) by simulation for whitebark pine in our study population. We then assessed the roles of blister rust and beetles by calculating λ and λsusing matrices in which we removed trees with blister rust and, separately, trees with beetles. We also conducted life-table response experiments (LTRE) to determine which demographic changes contributed most to differences in λ between ambient conditions and the two other scenarios. The model suggests that whitebark pine in our plots are currently declining 1.1% per year (λ = 0.9888, λs = 0.9899). Removing blister rust from the models resulted in almost no increase in growth (λ = 0.9916, λs = 0.9930), while removing beetles resulted in a larger increase in growth (λ = 1.0028, λs = 1.0045). The LTRE demonstrated that reductions in stasis of the three largest size classes due to beetles contributed most to the smaller λ in the ambient condition. Our work demonstrates a method for assessing the relative effects of different mortality agents on declining tree populations, and it shows that the effects of insects and pathogens can be markedly different from one another. In our study, beetle activity significantly reduced tree population growth while a pathogen had minimal effect, thus management actions to stabilize our study population will likely need to include reducing beetle activity.

  13. The Contribution of Population Health and Demographic Change to Economic Growth in China and India

    PubMed Central

    Bloom, David E.; Canning, David; Hu, Linlin; Liu, Yuanli; Mahal, Ajay; Yip, Winnie

    2010-01-01

    We find that a cross-country model of economic growth successfully tracks the growth takeoffs in China and India. The major drivers of the predicted takeoffs are improved health, increased openness to trade, and a rising labor force-to-population ratio due to fertility decline. We also explore the effect of the reallocation of labor from low-productivity agriculture to the higher-productivity industry and service sectors. Including the money value of longevity improvements in a measure of full income reduces the gap between the magnitude of China's takeoff relative to India's due to the relative stagnation in life expectancy in China since 1980. PMID:20419074

  14. Africa's Agenda for Action: Reform Policies, Renew Progress.

    ERIC Educational Resources Information Center

    Johanson, Richard K., Ed.

    1987-01-01

    Unprecedented population growth and mounting fiscal austerity in Africa is causing a decline in the significant increases in educational progress, especially as measured by the median literacy rate, which were made between 1962 and 1985. Planning and implementation of educational programs carefully designed to effect economic growth is one path…

  15. Ecological feedbacks can reduce population-level efficacy of wildlife fertility control

    USGS Publications Warehouse

    Ransom, Jason I.; Powers, Jenny G.; Hobbs, N. Thompson; Baker, Dan L.

    2014-01-01

    1. Anthropogenic stress on natural systems, particularly the fragmentation of landscapes and the extirpation of predators from food webs, has intensified the need to regulate abundance of wildlife populations with management. Controlling population growth using fertility control has been considered for almost four decades, but nearly all research has focused on understanding effects of fertility control agents on individual animals. Questions about the efficacy of fertility control as a way to control populations remain largely unanswered. 2. Collateral consequences of contraception can produce unexpected changes in birth rates, survival, immigration and emigration that may reduce the effectiveness of regulating animal abundance. The magnitude and frequency of such effects vary with species-specific social and reproductive systems, as well as connectivity of populations. Developing models that incorporate static demographic parameters from populations not controlled by contraception may bias predictions of fertility control efficacy. 3. Many population-level studies demonstrate that changes in survival and immigration induced by fertility control can compensate for the reduction in births caused by contraception. The most successful cases of regulating populations using fertility control come from applications of contraceptives to small, closed populations of gregarious and easily accessed species. 4. Fertility control can result in artificial selection pressures on the population and may lead to long-term unintentional genetic consequences. The magnitude of such selection is dependent on individual heritability and behavioural traits, as well as environmental variation. 5. Synthesis and applications. Understanding species' life-history strategies, biology, behavioural ecology and ecological context is critical to developing realistic expectations of regulating populations using fertility control. Before time, effort and funding are invested in wildlife contraception, managers may need to consider the possibility that many species and populations can compensate for reduction in fecundity, and this could minimize any reduction in population growth rate.

  16. Ecological feedbacks can reduce population-level efficacy of wildlife fertility control

    PubMed Central

    Ransom, Jason I; Powers, Jenny G; Thompson Hobbs, N; Baker, Dan L

    2014-01-01

    Anthropogenic stress on natural systems, particularly the fragmentation of landscapes and the extirpation of predators from food webs, has intensified the need to regulate abundance of wildlife populations with management. Controlling population growth using fertility control has been considered for almost four decades, but nearly all research has focused on understanding effects of fertility control agents on individual animals. Questions about the efficacy of fertility control as a way to control populations remain largely unanswered. Collateral consequences of contraception can produce unexpected changes in birth rates, survival, immigration and emigration that may reduce the effectiveness of regulating animal abundance. The magnitude and frequency of such effects vary with species-specific social and reproductive systems, as well as connectivity of populations. Developing models that incorporate static demographic parameters from populations not controlled by contraception may bias predictions of fertility control efficacy. Many population-level studies demonstrate that changes in survival and immigration induced by fertility control can compensate for the reduction in births caused by contraception. The most successful cases of regulating populations using fertility control come from applications of contraceptives to small, closed populations of gregarious and easily accessed species. Fertility control can result in artificial selection pressures on the population and may lead to long-term unintentional genetic consequences. The magnitude of such selection is dependent on individual heritability and behavioural traits, as well as environmental variation. Synthesis and applications. Understanding species' life-history strategies, biology, behavioural ecology and ecological context is critical to developing realistic expectations of regulating populations using fertility control. Before time, effort and funding are invested in wildlife contraception, managers may need to consider the possibility that many species and populations can compensate for reduction in fecundity, and this could minimize any reduction in population growth rate. PMID:25558083

  17. Buprenorphine physician supply: Relationship with state-level prescription opioid mortality

    PubMed Central

    Havens, Jennifer R.; Lofwall, Michelle R.; Studts, Jamie L.; Walsh, Sharon L.

    2017-01-01

    Background Buprenorphine is an effective treatment for opioid use disorder but the supply of buprenorphine physicians is currently inadequate to address the nation’s prescription opioid crisis. Perception of need due to rising opioid overdose rates is one possible reason for physicians to adopt buprenorphine. This study examined associations between rates of growth in buprenorphine physicians and prescription opioid overdose mortality rates in US states. Methods The total buprenorphine physician supply and number of physicians approved to treat 100 patients (per 100,000 population) were measured from June, 2013 to January, 2016. States were divided into two groups: those with rates of prescription opioid overdose mortality in 2013 at or above the median (>5.5 deaths per 100,000 population) and those with rates below the median. State-level growth curves were estimated using mixed-effects regression to compare rates of growth between high and low overdose states. Results The total supply and the supply of 100-patient buprenorphine physicians grew significantly (total supply from 7.7 to 9.9 per 100,000 population, p<.001; 100-patient supply from 2.2 to 3.4 per 100,000 population, p<.001). Rates of growth were significantly greater in high overdose states when compared to low overdose states (total supply b=.033, p<.01; 100-patient b=.022, p<.01). Conclusions The magnitude of the US prescription opioid crisis, as measured by the rate of prescription opioid overdose mortality, is associated with growth in the number of buprenorphine physicians. Because this observational design cannot establish causality, further research is needed to elucidate the factors influencing physicians’ decisions to begin prescribing buprenorphine. PMID:28363321

  18. Buprenorphine physician supply: Relationship with state-level prescription opioid mortality.

    PubMed

    Knudsen, Hannah K; Havens, Jennifer R; Lofwall, Michelle R; Studts, Jamie L; Walsh, Sharon L

    2017-04-01

    Buprenorphine is an effective treatment for opioid use disorder but the supply of buprenorphine physicians is currently inadequate to address the nation's prescription opioid crisis. Perception of need due to rising opioid overdose rates is one possible reason for physicians to adopt buprenorphine. This study examined associations between rates of growth in buprenorphine physicians and prescription opioid overdose mortality rates in US states. The total buprenorphine physician supply and number of physicians approved to treat 100 patients (per 100,000 population) were measured from June 2013 to January 2016. States were divided into two groups: those with rates of prescription opioid overdose mortality in 2013 at or above the median (>5.5 deaths per 100,000 population) and those with rates below the median. State-level growth curves were estimated using mixed-effects regression to compare rates of growth between high and low overdose states. The total supply and the supply of 100-patient buprenorphine physicians grew significantly (total supply from 7.7 to 9.9 per 100,000 population, p<0.001; 100-patient supply from 2.2 to 3.4 per 100,000 population, p<0.001). Rates of growth were significantly greater in high overdose states when compared to low overdose states (total supply b=0.033, p<0.01; 100-patient b=0.022, p<0.01). The magnitude of the US prescription opioid crisis, as measured by the rate of prescription opioid overdose mortality, is associated with growth in the number of buprenorphine physicians. Because this observational design cannot establish causality, further research is needed to elucidate the factors influencing physicians' decisions to begin prescribing buprenorphine. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Dally Proteoglycan Mediates the Autonomous and Nonautonomous Effects on Tissue Growth Caused by Activation of the PI3K and TOR Pathways

    PubMed Central

    Ferreira, Ana; Milán, Marco

    2015-01-01

    How cells acquiring mutations in tumor suppressor genes outcompete neighboring wild-type cells is poorly understood. The phosphatidylinositol 3-kinase (PI3K)–phosphatase with tensin homology (PTEN) and tuberous sclerosis complex (TSC)-target of rapamycin (TOR) pathways are frequently activated in human cancer, and this activation is often causative of tumorigenesis. We utilized the Gal4-UAS system in Drosophila imaginal primordia, highly proliferative and growing tissues, to analyze the impact of restricted activation of these pathways on neighboring wild-type cell populations. Activation of these pathways leads to an autonomous induction of tissue overgrowth and to a remarkable nonautonomous reduction in growth and proliferation rates of adjacent cell populations. This nonautonomous response occurs independently of where these pathways are activated, is functional all throughout development, takes place across compartments, and is distinct from cell competition. The observed autonomous and nonautonomous effects on tissue growth rely on the up-regulation of the proteoglycan Dally, a major element involved in modulating the spreading, stability, and activity of the growth promoting Decapentaplegic (Dpp)/transforming growth factor β(TGF-β) signaling molecule. Our findings indicate that a reduction in the amount of available growth factors contributes to the outcompetition of wild-type cells by overgrowing cell populations. During normal development, the PI3K/PTEN and TSC/TOR pathways play a major role in sensing nutrient availability and modulating the final size of any developing organ. We present evidence that Dally also contributes to integrating nutrient sensing and organ scaling, the fitting of pattern to size. PMID:26313758

  20. Do Biopesticides Affect the Demographic Traits of a Parasitoid Wasp and Its Biocontrol Services through Sublethal Effects?

    PubMed Central

    Biondi, Antonio; Zappalà, Lucia; Stark, John D.; Desneux, Nicolas

    2013-01-01

    Pesticide risk assessments are usually based on short-term acute toxicity tests, while longer-term population dynamic related traits, critical to the success of biological control and Integrated Pest Management (IPM) programs, are often overlooked. This is increasingly important with respect to new biopesticides that frequently cause no short-term acute effects, but that can induce multiple physiological and behavioral sublethal effects, leading to a decrease in population growth and ecosystem services. In this study we assessed the lethal and sublethal effects of six biopesticides [abamectin, azadirachtin, Bacillus thuringiensis, borax plus citrus oil (Prev-Am®), emamectin benzoate, and spinosad], used in tomato crops to control the invasive pest Tuta absoluta (Lepidoptera: Gelechiidae), on adults and pupae of the parasitoid Bracon nigricans (Hymenoptera: Braconidae). Data on female survival and production of female offspring were used to calculate population growth indexes as a measure of population recovery after pesticide exposure. Spinosad caused 100% and 80% mortality in exposed adults (even 10 d after the treatment) and pupae, respectively. Although most of the biopesticides had low levels of acute toxicity, multiple sublethal effects were observed. The biocontrol activity of both females that survived 1-h and 10-d old residues, and females that emerged from topically treated pupae was significantly affected by the application of the neurotoxic insecticides emamectin benzoate and abamectin. Furthermore, very low B. nigricans demographic growth indices were estimated for these two insecticides, indicating potential local extinction of the wasp populations. Among the tested products, Bt proved to be the safest for B. nigricans adults and pupae. Our findings emphasize that acute toxicity assessment alone cannot fully predict the actual impact of pesticides on non-target parasitoids. Thus, sublethal effects related to the species specific life-history variables must be carefully considered in order to assess pesticide risks and to incorporate new pesticides, including biopesticides, into IPM programmes. PMID:24098793

  1. Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments.

    PubMed

    Ritzinger, C H; McSorley, R; Gallaher, R N

    1998-12-01

    The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop.

  2. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    USGS Publications Warehouse

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  3. The state of world population and its implications for the US.

    PubMed

    Fornos, W

    1987-07-01

    Before the end of the century, annual world population growth is expected to exceed 90 million. Among the consequences of this rapid population growth--most of which will take place in developing countries-- are environmental degradation, urban deterioration, unemployment, hunger, resource depletion, and economic stagnation. Despite this alarming situation, the US Government has reduced appropriations for international population aid from US$290 million in 1985 to $200 million in 1988. In addition, the US has stopped funding the 2 organizations that have been most effective in providing family planning assistance to developing countries: the United Nations Fund for Population Activities and the International Planned Parenthood Federation. The US has adapted a policy that asserts that population is a neutral factor in development and promotes capitalism as a means of lowering fertility. However, experience in developing countries such as Thailand, China, and the Philippines that have undergone dramatic fertility declines attests that family planning efforts can result in economic growth. Over 80% of developing countries have established population control policies yet they will require substantial financial and technical aid from industrialized nations. It is ironic that the US has turned away from a commitment to helping poor countries to voluntarily reduce their high fertility rates at a time when such countries have accepted the necessity of such a goal. It is further ironic that the US expresses concern about the threat of revolution in areas such as Central America, yet fails to comprehend the social unrest and threats to global stability that will emerge as a result of continued population growth. At least a doubling--preferably a tripling--of US population assistance is needed.

  4. The Importance of Human Ecology at the Threshold of the Next Millennium: How Can Population Growth Be Stopped?

    NASA Astrophysics Data System (ADS)

    Nentwig, W.

    Ecology is defined as the set of complex interactions between the biotic and abiotic environments. Human ecology concerns principally the population ecology "only" of Homo sapiens, but it also includes all aspects of global ecology because humans are the most important species. Human demography is characterized by a recent decline in mortality and fertility rates. These demographic transitions have largely been completed in industrialized countries, but not in the 140 developing countries. Approximately 100 countries are following the same demographic pattern as industrialized countries, however with a time delay of several generations. China has effectively reduced its population increase by means that would be unacceptable in Western democracies. Some 44 developing countries still show increasing population growth and no detectable demographic transition in birth rate. Thus one part of the world shows limited (and, in the long run, shrinking) population growth, and another continues with a strong increase. All populations are limited in their development by their sustainability by their environment, for example, food and energy resources, and the extent of pollution which the use of these resources produces. It is argued that in the case of human population the limits of sustainability have already been reached with the 6 billion humans alive today, since at least 20% of these suffer from hunger, natural resources are overexploited, and biodiversity is threatened. In the coming 200years it is more likely that the total population will substantially oscillate rather than approach the predicted 12 billion. The most important goal of human ecology should therefore be to slow population growth as far as possible.

  5. Large Impact of Eurasian Lynx Predation on Roe Deer Population Dynamics

    PubMed Central

    Andrén, Henrik; Liberg, Olof

    2015-01-01

    The effects of predation on ungulate populations depend on several factors. One of the most important factors is the proportion of predation that is additive or compensatory respectively to other mortality in the prey, i.e., the relative effect of top-down and bottom-up processes. We estimated Eurasian lynx (Lynx lynx) kill rate on roe deer (Capreolus capreolus) using radio-collared lynx. Kill rate was strongly affected by lynx social status. For males it was 4.85 ± 1.30 S.E. roe deer per 30 days, for females with kittens 6.23 ± 0.83 S.E. and for solitary females 2.71 ± 0.47 S.E. We found very weak support for effects of prey density (both for Type I (linear) and Type II (non-linear) functional responses) and of season (winter, summer) on lynx kill rate. Additionally, we analysed the growth rate in a roe deer population from 1985 to 2005 in an area, which lynx naturally re-colonized in 1996. The annual roe deer growth rate was lower after lynx re-colonized the study area, but it was also negatively influenced by roe deer density. Before lynx colonized the area roe deer growth rate was λ = 1.079 (± 0.061 S.E.), while after lynx re-colonization it was λ = 0.94 (± 0.051 S.E.). Thus, the growth rate in the roe deer population decreased by Δλ = 0.14 (± 0.080 S.E.) after lynx re-colonized the study area, which corresponded to the estimated lynx predation rate on roe deer (0.11 ± 0.042 S.E.), suggesting that lynx predation was mainly additive to other mortality in roe deer. To conclude, this study suggests that lynx predation together with density dependent factors both influence the roe deer population dynamics. Thus, both top-down and bottom-up processes operated at the same time in this predator-prey system. PMID:25806949

  6. "Peer Review: Nonroad (NR) Updates to Population Growth, Compression Ignition (CI) Criteria, Toxic Emission Factors and Speciation Profiles"

    EPA Science Inventory

    This report focuses on the methodology for estimating growth in NR engine populations as used in the MOVES201X-NONROAD emission inventory model. MOVES NR growth rates start with base year engine populations and estimate growth in the populations of NR engines, while applying cons...

  7. Effectiveness of two insect growth regulators against Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and their impact on population densities of arthropod predators in cotton in Pakistan.

    PubMed

    Gogi, Muhammad D; Sarfraz, Rana M; Dosdall, Lloyd M; Arif, Muhammad J; Keddie, Andrew B; Ashfaq, Muhammad

    2006-10-01

    Field efficacies of two insect growth regulators (IGRs) at two recommended application rates, buprofezin at 370 and 555 g AI ha(-1) and lufenuron at 37 and 49 g AI ha(-1), were determined against the sweet potato whitefly, Bemisia tabaci (Gennadius), and the cotton bollworm, Helicoverpa armigera (Hübner), in experimental plots of cotton at the Directorate of Cotton Research, Faisalabad, Pakistan. Adverse effects of the IGRs on populations of associated arthropod predators, namely geocorids, chrysopids, coccinellids, formicids and arachnids, were also assessed. Both IGRs significantly reduced populations of B. tabaci at each application rate 24, 48 and 72 h after treatment, and higher doses were more effective than lower doses. Buprofezin was not effective against H. armigera at any tested dose for any time of treatment in any spray. Lufenuron applied at 37 and 49 g AI ha(-1) effectively suppressed H. armigera populations, resulting in significant reductions in crop damage. At lower doses, both IGRs appeared safe to predator populations, which did not differ significantly in IGR-treated versus untreated control plots. Population densities of formicids and coccinellids were significantly lower at high concentrations of both IGRs in treatment plots, possibly as a result of reduced prey availability. The potential role of buprofezin and lufenuron for control of B. tabaci and H. armigera in a spray programme and the likelihood of direct toxic effects of IGRs on predatory fauna of cotton are discussed.

  8. A cat's tale: the impact of genetic restoration on Florida panther population dynamics and persistence.

    PubMed

    Hostetler, Jeffrey A; Onorato, David P; Jansen, Deborah; Oli, Madan K

    2013-05-01

    1. Genetic restoration has been suggested as a management tool for mitigating detrimental effects of inbreeding depression in small, inbred populations, but the demographic mechanisms underlying population-level responses to genetic restoration remain poorly understood. 2. We studied the dynamics and persistence of the endangered Florida panther Puma concolor coryi population and evaluated the potential influence of genetic restoration on population growth and persistence parameters. As part of the genetic restoration programme, eight female Texas pumas P. c. stanleyana were released into Florida panther habitat in southern Florida in 1995. 3. The overall asymptotic population growth rate (λ) was 1.04 (5th and 95th percentiles: 0.95-1.14), suggesting an increase in the panther population of approximately 4% per year. Considering the effects of environmental and demographic stochasticities and density-dependence, the probability that the population will fall below 10 panthers within 100 years was 0.072 (0-0.606). 4. Our results suggest that the population would have declined at 5% per year (λ = 0.95; 0.83-1.08) in the absence of genetic restoration. Retrospective life table response experiment analysis revealed that the positive effect of genetic restoration on survival of kittens was primarily responsible for the substantial growth of the panther population that would otherwise have been declining. 5. For comparative purposes, we also estimated probability of quasi-extinction under two scenarios - implementation of genetic restoration and no genetic restoration initiative - using the estimated abundance of panthers in 1995, the year genetic restoration was initiated. Assuming no density-dependence, the probability that the panther population would fall below 10 panthers by 2010 was 0.098 (0.002-0.332) for the restoration scenario and 0.445 (0.032-0.944) for the no restoration scenario, providing further evidence that the panther population would have faced a substantially higher risk of extinction if the genetic restoration initiative had not been implemented. 6. Our results, along with those reporting increases in population size and improvements in biomedical correlates of inbreeding depression, provide strong evidence that genetic restoration substantially contributed to the observed increases in the Florida panther population. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  9. Population demographics of catostomids in large river ecosystems: effects of discharge and temperature on recruitment dynamics and growth

    USGS Publications Warehouse

    Quist, M.C.; Spiegel, J.R.

    2011-01-01

    Catostomids are among the most widespread and ecologically important groups of fishes in North America, particularly in large river systems. Despite their importance, little information is available on their population demographics and even less is known about factors influencing their population dynamics. The objectives of this study were to describe annual mortality, recruitment variation, and growth of eight catostomid species, and to evaluate the effects of discharge and temperature on year-class strength and growth in Iowa rivers. Catostomids were sampled from 3-km reaches in four nonwadable rivers during June–August 2009. Northern hogsucker, Hypentelium nigricans, golden redhorse, Moxostoma erythrurum, and shorthead redhorse, M. macrolepidotum, typically lived 6–8 years, had very stable recruitment, and had high total annual mortality (i.e., 40–60%). Golden redhorse exhibited the fastest growth of all species. Growth of northern hogsucker and shorthead redhorse was intermediate to the other catostomids. Highfin carpsucker, Carpiodes velifer, quillback, Carpiodes cyprinus, and white sucker, Catostomus commersonii, had high growth rates, low mortality (i.e., 25–30%), and relatively stable recruitment. River carpsucker, Carpiodes carpio, and silver redhorse, M. anisurum, had higher maximum ages (up to age 11), slower growth, lower total annual mortality (20–25%), and higher recruitment variability than the other species. Neither discharge nor temperature was strongly related to recruitment of catostomids. In contrast, several interesting patterns were observed with regard to growth. Species (e.g., carpsuckers, Carpiodes spp.) that typically consume prey items most common in fine substrates (e.g., chironomids) had higher growth rates in reaches dominated by sand and silt substrate. Species (e.g., northern hogsucker) that consume prey associated with large substrates (e.g., plecopterans) had much faster growth in reaches with a high proportion of rocky substrates. Temperature was weakly related to growth of catostomids; however, discharge explained a substantial amount of the variation in growth of nearly all species. Results of this study provide important information on the autecology of catostomids that can be used for comparison among species and systems. These data also suggest that connection of rivers with their floodplain is an important feature for catostomids in temperate river systems.

  10. Effects of binge drinking on infant growth and development in an Inuit sample.

    PubMed

    Fraser, Sarah L; Muckle, Gina; Abdous, Belkacem B; Jacobson, Joseph L; Jacobson, Sandra W

    2012-05-01

    Prenatal exposure to an average of 0.5 oz absolute alcohol per day (the equivalent of 7 standard drinks per week) during pregnancy has been found to be associated with numerous adverse effects on pre- and postnatal development. In the animal model, concentrated alcohol exposure has been found to lead to more adverse effects than exposure to the same total quantity of alcohol ingested in smaller doses over a longer period of time. The primary aim of this study is to determine whether, in a population where binge drinking is common but total alcohol consumption across pregnancy is low, prenatal exposure to alcohol is associated with effects on prenatal growth, visual acuity and cognitive development during infancy. The second aim is to determine which of several indicators of alcohol consumption best predicts pre- and postnatal outcomes. Data were collected from 216 Inuit women and their infants living in Nunavik, the northern region of Québec. Maternal interviews were conducted during mid-pregnancy and at 1 and 6 months postpartum. Birth weight, length, and head circumference were assessed at delivery. Visual acuity and cognitive development were assessed at 6 months of age. In this population in which infrequent heavy episodic drinking is common, even occasional binge exposure was associated with reduced prenatal growth and poorer visual acuity at 6 months of age. A simple dichotomous measure of binge drinking during pregnancy provided the best predictor of fetal growth and 6-month acuity. The population studied here is unusual in terms of its pattern of binge alcohol consumption. To our knowledge, this is the first study to observe effects of binge drinking during pregnancy on infant growth and development in a sample where the average daily alcohol intake is low (<0.5 ounces). Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Consequences of the Allee effect and intraspecific competition on population persistence under adverse environmental conditions.

    PubMed

    Petrovskii, Sergei; Blackshaw, Rod; Li, Bai-Lian

    2008-02-01

    The impact of intraspecific interactions on ecological stability and population persistence in terms of steady state(s) existence is considered theoretically based on a general competition model. We compare persistence of a structured population consisting of a few interacting (competitive) subpopulations, or groups, to persistence of the corresponding unstructured population. For a general case, we show that if the intra-group competition is stronger than the inter-group competition, then the structured population is less prone to extinction, i.e. it can persist in a parameter range where the unstructured population goes extinct. For a more specific case of a population with hierarchical competition, we show that relative viability of structured and unstructured populations depend on the type of density dependence in the population growth. Namely, while in the case of logistic growth, structured and unstructured populations exhibit equivalent persistence; in the case of Allee dynamics, the persistence of a hierarchically structured population is shown to be higher. We then apply these results to the case of behaviourally structured populations and demonstrate that an extreme form of individual aggression can be beneficial at the population level and enhance population persistence.

  12. The Effects of Targeted, Connectivism-Based Information Literacy Instruction on Latino Students Information Literacy Skills and Library Usage Behavior

    ERIC Educational Resources Information Center

    Walsh, John

    2013-01-01

    The United States is experiencing a socio-demographic shift in population and education. Latinos are the fastest growing segment of the population on the national level and in higher education. The Latino student population growth rate and Latino college completion rate are not reciprocal. While Latino students are the fastest growing demographic…

  13. Livestock and elk grazing effects on stream morphology, brown trout population dynamics, movement, and growth rate, Valles Caldera National Preserve, New Mexico

    Treesearch

    Michael C. Anderson

    2009-01-01

    Ungulate grazing in riparian areas has been shown to detrimentally impact stream morphology and fish populations. Goals of this research were to assess changes in stream morphology and responses of a brown trout (Salmo trutta) population to exclusion of cattle (Bos taurus) and elk (Cervus elaphus) from riparian...

  14. Population growth and development of the psocid Liposcelis rufa (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    PubMed

    Gautam, S G; Opit, G P; Giles, K L

    2010-10-01

    We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0 degrees C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis rufa Broadhead (Psocoptera: Liposcelididae). L. rufa did not survive at 43% RH, at all temperatures tested; at 55% RH, at the highest four temperatures; and at 63% RH and 40.0 degrees C. The greatest population growth was recorded at 35.0 degrees C and 75% RH (73-fold growth). At 40.0 degrees C, L. rufa populations declined or barely grew. L. rufa males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 31, 54, and 15%, respectively. Female L. rufa have two to five instars, and the percentages of females with two, three, four, and five instars were 2, 44, 42, and 12%, respectively. The life cycle was shorter for males than females. We developed temperature-dependent developmental equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. The ability of L. rufa to reproduce at a relative humidity of 55% and temperatures of 22.5-30.0 degrees C and at relative humidities of 63-75% and temperatures of 22.5-37.5 degrees C, in addition to being able to survive at 40.0 degrees C, suggests that this species would be expected to have a broader distribution than other Liposcelis species. These data provide a better understanding of L. rufa population dynamics and can be used to help develop effective management strategies for this psocid.

  15. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis).

    PubMed

    Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A

    2018-02-09

    It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Improving Estimation of Ground Casualty Risk From Reentering Space Objects

    NASA Technical Reports Server (NTRS)

    Ostrom, Chris L.

    2017-01-01

    A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the Earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.

  17. A fuzzy mathematical model of West Java population with logistic growth model

    NASA Astrophysics Data System (ADS)

    Nurkholipah, N. S.; Amarti, Z.; Anggriani, N.; Supriatna, A. K.

    2018-03-01

    In this paper we develop a mathematics model of population growth in the West Java Province Indonesia. The model takes the form as a logistic differential equation. We parameterize the model using several triples of data, and choose the best triple which has the smallest Mean Absolute Percentage Error (MAPE). The resulting model is able to predict the historical data with a high accuracy and it also able to predict the future of population number. Predicting the future population is among the important factors that affect the consideration is preparing a good management for the population. Several experiment are done to look at the effect of impreciseness in the data. This is done by considering a fuzzy initial value to the crisp model assuming that the model propagates the fuzziness of the independent variable to the dependent variable. We assume here a triangle fuzzy number representing the impreciseness in the data. We found that the fuzziness may disappear in the long-term. Other scenarios also investigated, such as the effect of fuzzy parameters to the crisp initial value of the population. The solution of the model is obtained numerically using the fourth-order Runge-Kutta scheme.

  18. Improving Estimation of Ground Casualty Risk from Reentering Space Objects

    NASA Technical Reports Server (NTRS)

    Ostrom, C.

    2017-01-01

    A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination, and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.

  19. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut "Granny Smith" apples.

    PubMed

    Guan, Wenqiang; Fan, Xuetong

    2010-03-01

    Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. "Granny Smith" apple slices, dipped for 5 min in CP solutions at 0%, 0.5%, 1%, and 2% (w/v) either alone or in combination with 0.05% (w/v) SC, were stored at 3 and 10 degrees C for up to 14 d. Color, firmness, and microflora population were measured at 1, 7, and 14 d of storage. Results showed that CP alone had no significant effect on the browning of cut apples. Even though SC significantly inhibited tissue browning initially, the apple slices turned brown during storage at 10 degrees C. The combination of CP and SC was able to inhibit apple browning during storage. Samples treated with the combination of SC with CP did not show any detectable yeast and mold growth during the entire storage period at 3 degrees C. At 10 degrees C, yeast and mold count increased on apple slices during storage while CP reduced the increase. However, high concentrations of CP reduced the efficacy of SC in inactivating E. coli inoculated on apples. Overall, our results suggested that combination of SC with 0.5% and 1% CP could be used to inhibit tissue browning and maintain firmness while reducing microbial population. Practical Application: Apple slices, which contain antioxidants and other nutrient components, have emerged as popular snacks in food service establishments, school lunch programs, and for family consumption. However, the further growth of the industry is limited by product quality deterioration caused by tissue browning, short shelf-life due to microbial growth, and possible contamination with human pathogens during processing. Therefore, this study was conducted to develop treatments to reduce microbial population and tissue browning of "Granny Smith" apple slices. Results showed that an antimicrobial compound, sodium chlorite, is effective in not only eliminating microbes but also inhibiting tissue browning of apple slices. However, the compound caused tissue softening and its antibrowning effect was short-lived, lasting only for a few days. Combination of the compound with a calcium-containing food additive was able to improve firmness and freshness of apple slices while reducing population of Escherichia coli artificially inoculated on samples and inhibiting the growth of yeast and mold during storage.

  20. Response of terrestrial microorganisms to a simulated Martian environment.

    PubMed Central

    Foster, T L; Winans, L; Casey, R C; Kirschner, L E

    1978-01-01

    Soil samples from Cape Canaveral were subjected to a simulated Martian environment and assayed periodically over 45 days to determine the effect of various environmental parameters on bacterial populations. The simulated environment was based on the most recent available data, prior to the Viking spacecraft, describing Martian conditions and consisted of a pressure of 7 millibars, an atmosphere of 99.9% CO2 and 0.1% O2, a freeze-thaw cycle of -65 degrees C for 16 h and 24 degrees C for 8 h, and variable moisture and nutrients. Reduced pressure had a significant effect, reducing growth under these conditions. Slight variations in gaseous composition of the simulated atmosphere had negligible effect on growth. The freeze-thaw cycle did not inhibit growth but did result in a slower rate of decline after growth had occurred. Dry samples exhibited no change during the 45-day experiment, indicating that the simulated Martian environment was not toxic to bacterial populations. Psychotrophic organisms responded more favorably to this environment than mesophiles, although both types exhibited increases of approximately 3 logs in 7 to 14 days when moisture and nutrients were available. PMID:646358

Top