Sample records for effect potential energy

  1. Assessing wave energy effects on biodiversity: the wave hub experience.

    PubMed

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  2. Self-energy effect and Coulomb potential modulation of the exciton in monolayer MoS2 on polar substrate

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Wu; Xiao, Yao; Li, Run-Ze; Li, Wei-Ping; Li, Zhi-Qing

    2017-11-01

    We theoretically investigate the correction of exciton binding energy in monolayer MoS2 resulting from the exciton couples with surface optical (SO) phonons induced by polar substrate. The total correction of binding energy can be divided into the self-energy effect and modification of Coulomb potential using the unitary transformation method. We find that both the self-energy and Coulomb potential vary from tens of meV to several hundreds of meV depending on the cut-off wave vector of SO phonon modes, polarizability of substrate materials and internal distance between the monolayer MoS2 and polar substrate. An effective Coulomb potential is obtained by combining the modified term into the Coulomb potential. This potentially could be widely used in various two-dimensional materials. Our theoretical results not only propose the ways to externally control the exciton binding energy in experiment, but also enrich the understanding of the exciton properties in the dielectric environment.

  3. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016

    2003-01-01

    Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less

  4. Effects of energy conservation on equilibrium properties of hot asymmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Ko, Che Ming

    2018-01-01

    Based on the relativistic Vlasov-Uehling-Uhlenbeck transport model, which includes relativistic scalar and vector potentials on baryons, we consider an N -Δ -π system in a box with periodic boundary conditions to study the effects of energy conservation in particle production and absorption processes on the equilibrium properties of the system. The density and temperature of the matter in the box are taken to be similar to the hot dense matter formed in heavy ion collisions at intermediate energies. We find that to maintain the equilibrium numbers of N ,Δ , and π , which depend on the mean-field potentials of N and Δ , we must include these potentials in the energy conservation condition that determines the momenta of outgoing particles after a scattering or decay process. We further find that the baryon scalar potentials mainly affect the Δ and pion equilibrium numbers, while the baryon vector potentials have considerable effect on the effective charged pion ratio at equilibrium. Our results thus indicate that it is essential to include in the transport model the effect of potentials in the energy conservation of a scattering or decay process, which is ignored in most transport models, for studying pion production in heavy ion collisions.

  5. Forecasting and evaluating patterns of energy development in southwestern Wyoming

    USGS Publications Warehouse

    Garman, Steven L.

    2015-01-01

    The effects of future oil and natural gas development in southwestern Wyoming on wildlife populations are topical to conservation of the sagebrush steppe ecosystem. To aid in understanding these potential effects, the U.S. Geological Survey developed an Energy Footprint simulation model that forecasts the amount and pattern of energy development under different assumptions of development rates and well-drilling methods. The simulated disturbance patterns produced by the footprint model are used to assess the potential effects on wildlife habitat and populations. A goal of this modeling effort is to use measures of energy production (number of simulated wells), well-pad and road-surface disturbance, and potential effects on wildlife to identify build-out designs that minimize the physical and ecological footprint of energy development for different levels of energy production and development costs.

  6. Effect of the track potential on the motion and energy flow of secondary electrons created from heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Moribayashi, Kengo

    2018-05-01

    Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.

  7. Mode shift strategies in intercity transportation and their effect on energy consumption

    NASA Technical Reports Server (NTRS)

    Sokolsky, S.

    1975-01-01

    Policies are examined which, if implemented, could lead to significant energy savings in intercity travel in the northeast corridor arena, without restricting the traveler's freedom of mode choice. The effects on arena energy consumption of introducing new, more energy-efficient aircraft are investigated; and several strategies unrelated to the implementation of new aircraft are introduced to yield reductions in overall intercity energy use. In both parts of this analysis, resulting changes in patronage (modal share) and energy use are demonstrated, leading to new insights into the effectiveness of different potential policies for achieving energy conservation. Some observations on induced demand trends that could be associated with certain strategies and the resultant potential effect on energy conservation are provided.

  8. Higher Order Multipole Potentials and Electrostatic Screening Effects on Cohesive Energy and Bulk Modulus of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Barakat, T.

    2011-12-01

    Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dangling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively. The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.

  9. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel; Fita, Ignacio

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothingmore » effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.« less

  10. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    NASA Astrophysics Data System (ADS)

    Goethe, Martin; Fita, Ignacio; Rubi, J. Miguel

    2016-03-01

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  11. The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta

    2018-04-01

    In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.

  12. Analysis on Potential of Electric Energy Market based on Large Industrial Consumer

    NASA Astrophysics Data System (ADS)

    Lin, Jingyi; Zhu, Xinzhi; Yang, Shuo; Xia, Huaijian; Yang, Di; Li, Hao; Lin, Haiying

    2018-01-01

    The implementation of electric energy substitution by enterprises plays an important role in promoting the development of energy conservation and emission reduction in china. In order to explore alternative energy potential of industrial enterprises, to simulate and analyze the process of industrial enterprises, identify high energy consumption process and equipment, give priority to alternative energy technologies, and determine the enterprise electric energy substitution potential predictive value, this paper constructs the evaluation model of the influence factors of the electric energy substitution potential of industrial enterprises, and uses the combined weight method to determine the weight value of the evaluation factors to calculate the target value of the electric energy substitution potential. Taking the iron and steel industry as an example, this method is used to excavate the potential. The results show that the method can effectively tap the potential of the electric power industry

  13. Quantum vacuum effects from boundaries of designer potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Tomasz

    2009-04-15

    Vacuum energy in quantum field theory, being the sum of zero-point energies of all field modes, is formally infinite but yet, after regularization or renormalization, can give rise to finite observable effects. One way of understanding how these effects arise is to compute the vacuum energy in an idealized system such as a large cavity divided into disjoint regions by pistons. In this paper, this type of calculation is carried out for situations where the potential affecting a field is not the same in all regions of the cavity. It is shown that the observable parts of the vacuum energymore » in such potentials do not fall off to zero as the region where the potential is nontrivial becomes large. This unusual behavior might be interesting for tests involving quantum vacuum effects and for studies on the relation between vacuum energy in quantum field theory and geometry.« less

  14. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    NASA Astrophysics Data System (ADS)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  15. Low-energy effective action in two-dimensional SQED: a two-loop analysis

    NASA Astrophysics Data System (ADS)

    Samsonov, I. B.

    2017-07-01

    We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.

  16. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    PubMed

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  17. Mechanical energy expenditures and movement efficiency in full body reaching movements.

    PubMed

    Sha, Daohang; France, Christopher R; Thomas, James S

    2010-02-01

    The effect of target location, speed, and handedness on the average total mechanical energy and movement efficiency is studied in 15 healthy subjects (7 males and 8 females with age 22.9 +/- 1.79 years old) performing full body reaching movements. The average total mechanical energy is measured as the time average of integration of joint power, potential energy, and kinetic energy respectively. Movement efficiency is calculated as the ratio of total kinetic energy to the total joint power and potential energy. Results show that speed and target location have significant effects on total mechanical energy and movement efficiency, but reaching hand only effects kinetic energy. From our findings we conclude that (1) efficiency in whole body reaching is dependent on whether the height of the body center of mass is raised or lowered during the task; (2) efficiency is increased as movement speed is increased, in part because of greater changes in potential energy; and (3) the CNS does not appear to use movement efficiency as a primary planning variable in full body reaching. It may be dependent on a combination of other factors or constraints.

  18. Energy Efficiency Appliance Standards: Where do we stand, how far can we go and how do we get there? An analysis across several economies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie E.; de la Rue du Can, Stephane; McNeil, Michael A.

    This paper analyses several potential savings scenarios for minimum energy performance standard (MEPS) and comparable programs for governments participating i n the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, of the Clean Energy Ministerial, which represent over 60% of primary energy consumption in the world. We compare projected energy savings from the main end uses in the residential sector using three energy efficiency scenarios: (1) recent achievements, (2) cost-effective saving potential, and (3) energy efficiency technical potential. The recent achievement scenario (1) evaluates the future impact of MEPS enacted or under development between 2010 and 2012. The cost-effective potential scenariomore » (2) identifies the maximum potential for energy efficiency that results in net benefits to the consumer. The best available technology scenario (3) re presents the full potential of energy efficiency considering best available technologies as candidates for MEPS and incentive programs. We use the Bottom Up Energy Analysis System (BUENAS), developed by Lawrence Berkeley National Laboratory in collaboration with the Collaborative Labelling and Appliances Standards Program (CLASP), to provide a consistent methodology to com pare the different scenarios. This paper focuses on the main end uses in the residential sector. The comparison of the three scenarios for each economy provides possible opportunities for scaling up current policies or implementing additional policies. This comparison across economies reveals country best practices as well as end uses that present the greatest additional potential savings. The paper describes areas where methodologies and additional policy instruments can increase penetration of energy efficient technologies. First , we summarize the barriers and provide remedial policy tools/best practices, such as techno-economic analysis, in response to each barriers that prevent economies from capturing the full cost-effective potentials of MEPS (Scenario 1 to 2). Then, we consider the possible complementary policy options, such as incentive pro grams, to reach the full technical potential of energy efficiency in the residential sector (Scenario 2 to 3).« less

  19. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  20. Energy Efficiency Potential in the U.S. Single-Family Housing Stock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J.; Christensen, Craig B.; Horowitz, Scott G.

    Typical approaches for assessing energy efficiency potential in buildings use a limited number of prototypes, and therefore suffer from inadequate resolution when pass-fail cost-effectiveness tests are applied, which can significantly underestimate or overestimate the economic potential of energy efficiency technologies. This analysis applies a new approach to large-scale residential energy analysis, combining the use of large public and private data sources, statistical sampling, detailed building simulations, and high-performance computing to achieve unprecedented granularity - and therefore accuracy - in modeling the diversity of the single-family housing stock. The result is a comprehensive set of maps, tables, and figures showing themore » technical and economic potential of 50 plus residential energy efficiency upgrades and packages for each state. Policymakers, program designers, and manufacturers can use these results to identify upgrades with the highest potential for cost-effective savings in a particular state or region, as well as help identify customer segments for targeted marketing and deployment. The primary finding of this analysis is that there is significant technical and economic potential to save electricity and on-site fuel use in the single-family housing stock. However, the economic potential is very sensitive to the cost-effectiveness criteria used for analysis. Additionally, the savings of particular energy efficiency upgrades is situation-specific within the housing stock (depending on climate, building vintage, heating fuel type, building physical characteristics, etc.).« less

  1. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarius, Tilman, E-mail: tilman@santarius.de

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects,more » i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.« less

  2. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    NASA Technical Reports Server (NTRS)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  3. Two decision-support tools for assessing the potential effects of energy development on hydrologic resources as part of the Energy and Environment in the Rocky Mountain Area interactive energy atlas

    USGS Publications Warehouse

    Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.

    2014-01-01

    The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a site-specific basis and to explore the effectiveness of various mitigation practices.

  4. The Effect of a Tectonic Stress Field on Coal and Gas Outbursts

    PubMed Central

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions. PMID:24991648

  5. Effective fragment potential study of the interaction of DNA bases.

    PubMed

    Smith, Quentin A; Gordon, Mark S; Slipchenko, Lyudmila V

    2011-10-20

    Hydrogen-bonded and stacked structures of adenine-thymine and guanine-cytosine nucleotide base pairs, along with their methylated analogues, are examined with the ab inito based general effective fragment potential (EFP2) method. A comparison of coupled cluster with single, double, and perturbative triple (CCSD(T)) energies is presented, along with an EFP2 energy decomposition to illustrate the components of the interaction energy.

  6. The effect of a periodic absorptive strip arrangement on an interior sound field in a room.

    PubMed

    Park, Joo-Bae; Grosh, Karl; Kim, Yang-Hann

    2005-02-01

    In this paper we study the effect of periodically arranged sound absorptive strips on the mean acoustic potential energy density distribution of a room. The strips are assumed to be attached on the room's surface of interest. In order to determine their effect, the mean acoustic potential energy density variation is evaluated as the function of a ratio of the strip's arrangement period to wavelength. The evaluation demonstrates that the mean acoustic potential energy density tends to converge. In addition, a comparison with a case in which absorptive materials completely cover the selected absorptive plane shows that a periodic arrangement that uses only half of the absorptive material can be more efficient than a total covering, unless the frequency of interest does not coincide with the room's resonant frequencies. Consequently, the results prove that the ratio of the arrangement period to the wavelength plays an important role in the effectiveness of a periodic absorptive strip arrangement to minimize a room's mean acoustic potential energy density.

  7. Nuclear symmetry energy in terms of single-nucleon potential and its effect on the proton fraction of β-stable npeμ matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Babita, E-mail: patra-babita@rediffmail.com; Chakraborty, Suparna, E-mail: banerjee.suparna@hotmail.com; Sahoo, Sukadev, E-mail: sukadevsahoo@yahoo.com

    2016-01-15

    Momentum and density dependence of single-nucleon potential u{sub τ} (k, ρ, β) is analyzed using a density dependent finite range effective interaction of the Yukawa form. Depending on the choice of the strength parameters of exchange interaction, two different trends of the momentum dependence of nuclear symmetry potential are noticed which lead to two opposite types of neutron and proton effective mass splitting. The 2nd-order and 4th-order symmetry energy of isospin asymmetric nuclear matter are expressed analytically in terms of the single-nucleon potential. Two distinct behavior of the density dependence of 2nd-order and 4th-order symmetry energy are observed depending onmore » neutron and proton effective mass splitting. It is also found that the 4th-order symmetry energy has a significant contribution towards the proton fraction of β-stable npeμ matter at high densities.« less

  8. Relativistic corrections for screening effects on the energies of hydrogen-like atoms embedded in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poszwa, A., E-mail: poszwa@matman.uwm.edu.p; Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-01-15

    The influence of relativistic and plasma screening effects on energies of hydrogen-like atoms embedded in plasmas has been studied. The Dirac equation with a more general exponential cosine screened potential has been solved numerically and perturbatively, by employing the direct perturbation theory. Properties of spectra corresponding to bound states and to different sets of the potential parameters have been studied both in nonrelativistic and relativistic approximations. Binding energies, fine-structure splittings, and relativistic energy shifts have been determined as functions of parameters of the potential. The results have been compared with the ones known from the literature.

  9. Analysis of energy-saving potential in residential buildings in Xiamen City and its policy implications for southern China

    NASA Astrophysics Data System (ADS)

    Guo, Fei

    The buildings sector is the largest energy-consuming sector in the world. Residential buildings consume about three-quarters of the final energy in the buildings sector. Promoting residential energy savings is in consequence critical for addressing many energy-use-related environmental challenges, such as climate change and air pollution. Given China's robust economic growth and fast urbanization, it is now a critical time to develop policy interventions on residential energy use in the nation. With this as a background, this dissertation explores effective policy intervention opportunities in southern China through analyzing the residential energy-saving potential, using the city of Xiamen as a case study. Four types of residential energy-saving potential are analyzed: technical potential, economic potential, maximum achievable potential (MAP), and possible achievable potential (PAP). Of these, the first two types are characterized as static theoretical evaluation, while the last two represent dynamic evaluation within a certain time horizon. The achievable potential analyses are rarely seen in existing literature. The analytical results reveal that there exists a significant technical potential for residential energy savings of about 20.9-24.9% in the city of Xiamen. Of the technical potential, about two-thirds to four-fifths are cost-effective from the government or society perspective. The cost-effectiveness is evaluated by comparing the "Levelized Cost of Conserved Energy (LCOCE)" of available advanced technical measures with the "Actual Cost" of conserved energy. The "Actual Cost" of energy is defined by adding the environmental externalities costs and hidden government subsidies over the retail prices of energy. The achievable potential analyses are particularly based on two key realistic factors: 1) the gradual ramping-up adoption process of advanced technical measures; and 2) individuals' adoption-decision making on them. For implementing the achievable potential analyses in Xiamen, a residential energy consumption (REC) projection model specifically tailored for southern China is developed. This computational model builds on the Kastovich (1982) adoption-decision theory and the general logic used in the U.S. EIA's (2003) National Energy Modeling System (NEMS). Base on this projection model, Xiamen's REC from the base year 2011 to 2020 is projected. This model can be used as a policy analysis tool to quantitatively evaluate the real-world impact of diverse policy incentives on residential energy use in southern China. The projection results show that the MAP of residential energy savings in Xiamen will be about only 8.3-8.4% in 2020 from a business-as-usual projection. Ten current appropriate and feasible policy interventions are evaluated for analyzing the PAP in Xiamen, which reveals that only about one-fourth to one-half of Xiamen's MAP will possibly be achieved in 2020. Based on the potential analysis for the Xiamen case, a discussion on promoting energy-saving incentive policies for the residential buildings in southern China is given. It suggests that more new, innovative and market-based policies need to be introduced in China in order to realize larger achievable potential for residential energy savings.

  10. Research on potential user identification model for electric energy substitution

    NASA Astrophysics Data System (ADS)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  11. Potential effects of energy development on environmental resources of the Williston Basin in Montana, North Dakota, and South Dakota

    USGS Publications Warehouse

    Post van der Burg, Max; Vining, Kevin C.; Frankforter, Jill D.

    2017-09-28

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States, has been a leading domestic oil and gas producing area. To better understand the potential effects of energy development on environmental resources in the Williston Basin, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, and in support of the needs identified by the Bakken Federal Executive Group (consisting of representatives from 13 Federal agencies and Tribal groups), began work to synthesize existing information on science topics to support management decisions related to energy development. This report is divided into four chapters (A–D). Chapter A provides an executive summary of the report and principal findings from chapters B–D. Chapter B provides a brief compilation of information regarding the history of energy development, physiography, climate, land use, demographics, and related studies in the Williston Basin. Chapter C synthesizes current information about water resources, identifies potential effects from energy development, and summarizes water resources research and information needs in the Williston Basin. Chapter D summarizes information about ecosystems, species of conservation concern, and potential effects to those species from energy development in the Williston Basin.

  12. The paradoxical zero reflection at zero energy

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Sharma, Vibhu; Sharma, Mayank; Singhal, Ankush; Kaiwart, Rahul; Priyadarshini, Pallavi

    2017-03-01

    Usually, the reflection probability R(E) of a particle of zero energy incident on a potential which converges to zero asymptotically is found to be 1: R(0)=1. But earlier, a paradoxical phenomenon of zero reflection at zero energy (R(0)=0) has been revealed as a threshold anomaly. Extending the concept of half-bound state (HBS) of 3D, here we show that in 1D when a symmetric (asymmetric) attractive potential well possesses a zero-energy HBS, R(0)=0 (R(0)\\ll 1). This can happen only at some critical values q c of an effective parameter q of the potential well in the limit E\\to {0}+. We demonstrate this critical phenomenon in two simple analytically solvable models: square and exponential wells. However, in numerical calculations, even for these two models R(0)=0 is observed only as extrapolation to zero energy from low energies, close to a precise critical value q c. By numerical investigation of a variety of potential wells, we conclude that for a given potential well (symmetric or asymmetric), we can adjust the effective parameter q to have a low reflection at a low energy.

  13. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions

    PubMed Central

    2016-01-01

    Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought “universal model” capable of describing the behavior of water under different conditions and in different environments. PMID:27186804

  14. Equiparatition of energy for turbulent astrophysical fluids: Accounting for the unseen energy in molecular clouds

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.; Mckee, Christopher F.

    1995-01-01

    Molecular clouds are observed to be partially supported by turbulent pressure. The kinetic energy of the turbulence is directly measurable, but the potential energy, which consists of magnetic, thermal, and gravitational potential energy, is largly unseen. We have extended previous results on equipartition between kinetic and potential energy to show that it is likely to be a very good approximation in molecular clouds. We have used two separate approaches to demonstrate this result: For small-amplitude perturbations of a static equilibrium, we have used the energy principle analysis of Bernstein et al. (1958); this derivation applies to perturbations of arbitary wavelength. To treat perturbations of a nonstatic equilibrium, we have used the Lagrangian analysis of Dewar (1970); this analysis applies only to short-wavelength perturbations. Both analysis assume conservation of energy. Wave damping has only a small effect on equipartition if the wave frequency is small compared to the neutral-ion collision frequency; for the particular case we considered, radiative losses have no effect on equipartition. These results are then incorporated in a simple way into analyses of cloud equilibrium and global stability. We discuss the effect of Alfvenic turbulence on the Jeans mass and show that it has little effect on the magnetic critical mass.

  15. Formation of superheavy elements in the capture of very heavy ions at high excitation energies

    NASA Astrophysics Data System (ADS)

    Royer, G.

    2013-05-01

    The potential barriers governing the reactions 58Fe+244Pu, 238U+64Ni, and 238U+72Ge have been determined from a liquid-drop model taking into account the proximity energy, shell energies, rotational energy, and deformation of the incoming nuclei in the quasimolecular shape valley. Double-humped potential barriers appear in these entrance channels. The external saddle-point corresponds to two touching ellipsoidal nuclei when the shell and pairing effects are taken into account, while the inner barrier is due to the shell effects at the vicinity of the spherical shape of the composite system. Between them, a large potential pocket exists and persists at very high angular momenta allowing the capture of very heavy ions at high excitation energies.

  16. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less

  17. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate themore » tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.« less

  18. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-04

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  19. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  20. Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States

    USDA-ARS?s Scientific Manuscript database

    Current quantification of Climate Warming Mitigation Potential (CWMP) of biomass-derived energy has focused primarily on its biogeochemical effects. This study used site-level observations of carbon, water, and energy fluxes of biofuel crops to parameterize and evaluate the Community Land Model (CLM...

  1. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less

  2. Post-Primary Education and Energy Literacy: An Analysis of the Potential for Geography Curricula to Contribute to Australian Students' Energy Literacy

    ERIC Educational Resources Information Center

    Maddock, Brad; Kriewaldt, Jeana

    2014-01-01

    Unparalleled amounts of energy derived from fossil fuels now drive societies and shape people's worldviews. Geography's unique perspectives have significant potential to expand understandings of the effects of production and consumption of energy by drawing on the concept of sustainability using an integrated systems approach. As citizens' energy…

  3. Influence of the contact potential and space-charge effect on the performance of a Stoffel-Johnson design electron source for inverse photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniraj, M.; Barman, Sudipta Roy

    By imaging the spatial intensity distribution of the electrons from a Stoffel-Johnson (SJ) type low energy electron source for inverse photoemission spectroscopy (IPES), we find that the focus is distorted when the beam current exceeds the limiting value due to space charge effect. The space charge effect and the contact potential difference suppress the beam current at low energies (<10 eV). In this work, we show that these limitations of the SJ source can be overcome by compensation of the contact potential difference between the cathode and the lens electrodes and an uniform well focused electron beam with the set kineticmore » energy can be obtained. The size of the electron beam is around 1 mm full width at half maximum over the whole energy range of 5 to 30 eV generally used for IPES. The compensation of the contact potential difference also enhances the beam current substantially at low energies (<10 eV) and uniform beam current is achieved for the whole energy range. We find that the drift in the electron beam position is sensitive to the lens electrode separation and it is about 1 mm over the whole energy range. By measuring the n = 1 image potential state on Cu(100), we show that the resolution is better when the cathode filament current is set to lower values.« less

  4. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-08

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less

  5. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  6. Pressure-strain energy redistribution in compressible turbulence: return-to-isotropy versus kinetic-potential energy equipartition

    NASA Astrophysics Data System (ADS)

    Lee, Kurnchul; Venugopal, Vishnu; Girimaji, Sharath S.

    2016-08-01

    Return-to-isotropy and kinetic-potential energy equipartition are two fundamental pressure-moderated energy redistributive processes in anisotropic compressible turbulence. Pressure-strain correlation tensor redistributes energy among various Reynolds stress components and pressure-dilatation is responsible for energy reallocation between dilatational kinetic and potential energies. The competition and interplay between these pressure-based processes are investigated in this study. Direct numerical simulations (DNS) of low turbulent Mach number dilatational turbulence are performed employing the hybrid thermal Lattice Boltzman method (HTLBM). It is found that a tendency towards equipartition precedes proclivity for isotropization. An evolution towards equipartition has a collateral but critical effect on return-to-isotropy. The preferential transfer of energy from strong (rather than weak) Reynolds stress components to potential energy accelerates the isotropization of dilatational fluctuations. Understanding of these pressure-based redistributive processes is critical for developing insight into the character of compressible turbulence.

  7. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshun; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.

    2018-04-01

    Nonlinear energy harvesters are frequently considered in preference to linear devices because they can potentially overcome the narrow frequency bandwidth limitations inherent to linear variants; however, the possibility of variable harvesting efficiency is raised for the nonlinear case. This paper proposes a rotational energy harvester which may be fitted into an automobile tyre, with the advantage that it may broaden the rotating frequency bandwidth and simultaneously stabilise high-energy orbit oscillations. By consideration of the centrifugal effects due to rotation, the overall restoring force will potentially be increased for a cantilever implemented within the harvester, and this manifests as an increase in its equivalent elastic stiffness. In addition, this study reveals that the initial potential well barriers become as shallow as those for a bistable system. When the rotational frequency increases beyond an identifiable boundary frequency, the system transforms into one with a potential barrier of a typical monostable system. On this basis, the inter-well motion of the bistable system can provide sufficient kinetic energy so that the cantilever maintains its high-energy orbit oscillation for monostable hardening behaviour. Furthermore, in a vehicle drive experiment, it has been shown that the effective rotating frequency bandwidth can be widened from 15 km/h-25 km/h to 10 km/h-40 km/h. In addition, it is confirmed that the centrifugal effects can improve the harvester performance, producing a mean power of 61 μW at a driving speed of 40 km/h, and this is achieved by stabilising the high-energy orbit oscillations of the rotational harvester.

  8. The Effects of Hydrogen-Like Impurity and Temperature on State Energies and Transition Frequency of Strong-Coupling Bound Polaron in an Asymmetric Gaussian Potential Quantum Well

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-lin

    2018-02-01

    In the present work, we study the ground state energy, the first excited state energy and the transition frequency (TF) between the two states of the strong-coupling impurity bound polaron in an asymmetric Gaussian potential quantum well (AGPQW) by using the variational method of the Pekar type. By employing quantum statistics theory, the temperature effect on the state energies (SEs) and the TF are also calculated with a hydrogen-like impurity at the coordinate origin of the AGPQW. According to the obtained results, we found that the SEs and the TF are increasing functions of the temperature, whereas they are decreasing ones of the Coulombic impurity potential.

  9. Piezothermal effect in a spinning gas

    NASA Astrophysics Data System (ADS)

    Geyko, V. I.; Fisch, N. J.

    2016-10-01

    A spinning gas, heated adiabatically through axial compression, is known to exhibit a rotation-dependent heat capacity. However, as equilibrium is approached, an effect is identified here wherein the temperature does not grow homogeneously in the radial direction, but develops a temperature differential with the hottest region on axis, at the maximum of the centrifugal potential energy. This phenomenon, which we call a piezothermal effect, is shown to grow bilinearly with the compression rate and the amplitude of the potential. Numerical simulations confirm a simple model of this effect, which can be generalized to other forms of potential energy and methods of heating.

  10. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases.

    PubMed

    Pielke, Roger A; Marland, Gregg; Betts, Richard A; Chase, Thomas N; Eastman, Joseph L; Niles, John O; Niyogi, Dev Dutta S; Running, Steven W

    2002-08-15

    Our paper documents that land-use change impacts regional and global climate through the surface-energy budget, as well as through the carbon cycle. The surface-energy budget effects may be more important than the carbon-cycle effects. However, land-use impacts on climate cannot be adequately quantified with the usual metric of 'global warming potential'. A new metric is needed to quantify the human disturbance of the Earth's surface-energy budget. This 'regional climate change potential' could offer a new metric for developing a more inclusive climate protocol. This concept would also implicitly provide a mechanism to monitor potential local-scale environmental changes that could influence biodiversity.

  11. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    PubMed

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  12. Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics.

    PubMed

    Filikhin, I; Kezerashvili, R Ya; Tsiklauri, Sh M; Vlahovic, B

    2018-03-23

    The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.

  13. Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics

    NASA Astrophysics Data System (ADS)

    Filikhin, I.; Kezerashvili, R. Ya; Tsiklauri, Sh M.; Vlahovic, B.

    2018-03-01

    The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.

  14. A review on technological options of waste to energy for effective management of municipal solid waste.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achievingmore » savings in non-building applications.« less

  16. Quantum Dynamics Study of the Potential Energy Minima Effect on Energy Efficiency for the F- + CH3Cl → FCH3 + Cl- Reaction.

    PubMed

    Li, Yida; Wang, Yuping; Wang, Dunyou

    2017-04-13

    The Polanyi rules on the energy efficiency on reactivity are summarized solely from the locations of barriers on the potential energy surfaces. Here, our quantum dynamics study for the F - + CH 3 Cl → FCH 3 + Cl - reaction shows that the two potential energy minima in the entrance channel on the potential energy surface play an essential role in energy efficiency on reactivity. The reactivity of this reaction is dominated by the low collision energies where two distinctive reaction mechanisms involve the two minima in the entrance channel. Overall, the Cl-CH 3 stretching motion and C-H 3 umbrella motion both are more efficient than the translational motion in promoting this reaction. Although this reaction has a negative energy barrier, our study shows that it is the minima in the entrance channel, together with the energy barrier relative to these minima, that determine the energy efficacy on reactivity.

  17. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    PubMed

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  18. Potential environmental effects of the leading edge hydrokinetic energy technology.

    DOT National Transportation Integrated Search

    2017-05-01

    The Volpe Center evaluated potential environmental challenges and benefits of the ARPA-E funded research project, Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems, led by Brown University. The Leading Edge research team develo...

  19. Antisymmetrization effects and the form factor of the real part of the. cap alpha. -nucleus potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majka, Z.; Budzanowski, A.; Grotowski, K.

    1978-07-01

    Antisymmetrization effects in the ..cap alpha..-nucleus interaction are investigated on the basis of a microscopic model in an one nucleon exchange approximation. It influences the form factor, increasing the halfway radius and decreasing the diffuseness as compared with the direct term of the potential only. Antisymmetrization preserves the shape of the potential which can be parametrized by a Woods-Saxon squared form. The phenomenological potential with the energy independent form factor of the above shape fits experimental data in a wide energy region.

  20. Bifurcations on Potential Energy Surfaces of Organic Reactions

    PubMed Central

    Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.

    2009-01-01

    A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086

  1. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

    PubMed Central

    Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.

    2013-01-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  2. Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain.

    PubMed

    Fang, Jiannong; Peringer, Alexander; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Buttler, Alexandre; Golay, Francois; Porté-Agel, Fernando

    2018-10-15

    Many mountainous regions with high wind energy potential are characterized by multi-scale variabilities of vegetation in both spatial and time dimensions, which strongly affect the spatial distribution of wind resource and its time evolution. To this end, we developed a coupled interdisciplinary modeling framework capable of assessing the shifts in wind energy potential following land-use driven vegetation dynamics in complex mountain terrain. It was applied to a case study area in the Romanian Carpathians. The results show that the overall shifts in wind energy potential following the changes of vegetation pattern due to different land-use policies can be dramatic. This suggests that the planning of wind energy project should be integrated with the land-use planning at a specific site to ensure that the expected energy production of the planned wind farm can be reached over its entire lifetime. Moreover, the changes in the spatial distribution of wind and turbulence under different scenarios of land-use are complex, and they must be taken into account in the micro-siting of wind turbines to maximize wind energy production and minimize fatigue loads (and associated maintenance costs). The proposed new modeling framework offers, for the first time, a powerful tool for assessing long-term variability in local wind energy potential that emerges from land-use change driven vegetation dynamics over complex terrain. Following a previously unexplored pathway of cause-effect relationships, it demonstrates a new linkage of agro- and forest policies in landscape development with an ultimate trade-off between renewable energy production and biodiversity targets. Moreover, it can be extended to study the potential effects of micro-climatic changes associated with wind farms on vegetation development (growth and patterning), which could in turn have a long-term feedback effect on wind resource distribution in mountainous regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, A.; Repac, B.; Gonder, J.

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates formore » the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.« less

  4. Energy gap in graphene nanoribbons with structured external electric potentials

    NASA Astrophysics Data System (ADS)

    Apel, W.; Pal, G.; Schweitzer, L.

    2011-03-01

    The electronic properties of graphene zigzag nanoribbons with electrostatic potentials along the edges are investigated. Using the Dirac-fermion approach, we calculate the energy spectrum of an infinitely long nanoribbon of finite width w, terminated by Dirichlet boundary conditions in the transverse direction. We show that a structured external potential that acts within the edge regions of the ribbon can induce a spectral gap and thus switch the nanoribbon from metallic to insulating behavior. The basic mechanism of this effect is the selective influence of the external potentials on the spinorial wave functions that are topological in nature and localized along the boundary of the graphene nanoribbon. Within this single-particle description, the maximal obtainable energy gap is Emax∝πℏvF/w, i.e., ≈0.12 eV for w=15 nm. The stability of the spectral gap against edge disorder and the effect of disorder on the two-terminal conductance is studied numerically within a tight-binding lattice model. We find that the energy gap persists as long as the applied external effective potential is larger than ≃0.55×W, where W is a measure of the disorder strength. We argue that there is a transport gap due to localization effects even in the absence of a spectral gap.

  5. EFFECT OF STRAIN FIELD ON THRESHOLD DISPLACEMENT ENERGY OF TUNGSTEN STUDIED BY MOLECULAR DYNAMICS SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D.; Gao, Ning; Setyawan, Wahyu

    The influence of hydrostatic strain on point defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten was studied with molecular dynamics simulations. Two different tungsten potentials (Fikar and Juslin) were used. The minimum Ed direction calculated with the Fikar-potential was <100>, but with the Juslin-potential it was <111>. The most stable self-interstitial (SIA) configuration was a <111>-crowdion for both potentials. The stable SIA configuration did not change with applied strain. Varying the strain from compression to tension increased the vacancy formation energy but decreased the SIA formation energy. The SIA formation energy changed more significantly thanmore » for a vacancy such that Ed decreased with applied strain from compression to tension.« less

  6. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Price, Lynn

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources formore » improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.« less

  7. S-Matrix to potential inversion of low-energy α-12C phase shifts

    NASA Astrophysics Data System (ADS)

    Cooper, S. G.; Mackintosh, R. S.

    1990-10-01

    The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for α-12C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect.

  8. Ab initio calculations of potential energy curves of Hg/sub 2/ and TlHg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celestino, K.C.; Ermler, W.C.

    1984-08-15

    Potential energy curves for electronic states of Hg/sub 2/ and TlHg are presented and analyzed. They are derived using large scale configuration interaction procedures for the valence electrons, with the core electrons represented by ab initio relativistic effective potentials. The effect of spin-orbit coupling are investigated for the low-lying excimer states. It is determined that neither system possesses strongly bound electronic states for which transitions to the repulsive ground states are optically allowed.

  9. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong; Gao, Ning; Setyawan, W.

    The influence of strain field on defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten (W) has been studied with molecular dynamics simulations. Two different W potentials (Fikar and Juslin) were compared and the results indicate that the connection distance and selected function linking the short-range and long-range portions of the potentials affects the threshold displacement energy and its direction-specific values. The minimum Ed direction calculated with the Fikar-potential is <100> and with the Juslin-potential is <111>. Nevertheless, the most stable self-interstitial configuration is found to be a <111>-crowdion for both potentials. This stable configuration doesmore » not change with applied strain. Varying the strain from compression to tension increases the vacancy formation energy but decreases the self-interstitial formation energy. The formation energy of a self-interstitial changes more significantly than a vacancy such that Ed decreases with applied hydrostatic strain from compression to tension.« less

  10. Residential Energy Efficiency Potential: Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip

    NASA Astrophysics Data System (ADS)

    Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long

    2018-05-01

    In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.

  8. Chapter 2: Assessing the Potential Energy Impacts of Clean Energy Initiatives

    EPA Pesticide Factsheets

    Chapter 2 of Assessing the Multiple Benefits of Clean Energy helps state energy, environmental, and economic policy makers identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energ

  9. Salt Power: Is Neptune's Ole Salt a Tiger in the Tank?

    ERIC Educational Resources Information Center

    Wick, Gerry Shishin

    1979-01-01

    Discussed is the utilization of salinity-gradient energy as a potential source of power. Detailed are the scientific principles, potential sources, latest research, and environmental effects associated with this alternative energy source. The future prospects are addressed. (BT)

  10. 76 FR 38416 - Notice of Segregation of Public Lands in the States of Arizona, California, Colorado, Nevada, New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... protecting potential sites for future solar energy development. DATES: Effective Date: This segregation is... public lands that have been identified by the BLM as having the potential for solar energy generation...

  11. Home Energy Saver

    Science.gov Websites

    Energy Saver (HES) Licensing Information The Home Energy Saver is a web-based residential energy calculator and web service that provides customized estimates of residential energy use, energy bills, and potential energy-saving strategies and ranks them in order of cost-effectiveness. Use of the web-services

  12. Boltzmann distribution in a nonequilibrium steady state: measuring local potential by granular Brownian particles.

    PubMed

    To, Kiwing

    2014-06-01

    We investigate experimentally the steady state motion of a millimeter-sized granular polyhedral object on vertically vibrating platforms of flat, conical, and parabolic surfaces. We find that the position distribution of the granular object is related to the shape of the platform, just like that of a Brownian particle trapped in a potential at equilibrium, even though the granular object is intrinsically not at equilibrium due to inelastic collisions with the platform. From the collision dynamics, we derive the Langevin equation which describes the motion of the object under an effective potential that equals the gravitational potential along the platform surface. The potential energy is found to agree with the equilibrium equipartition theorem while the kinetic energy does not. Furthermore, the granular temperature is found to be higher than the effective temperature associated with the average potential energy, suggesting the presence of heat transfer from the kinetic part to the potential part of the granular object.

  13. Boltzmann distribution in a nonequilibrium steady state: Measuring local potential by granular Brownian particles

    NASA Astrophysics Data System (ADS)

    To, Kiwing

    2014-06-01

    We investigate experimentally the steady state motion of a millimeter-sized granular polyhedral object on vertically vibrating platforms of flat, conical, and parabolic surfaces. We find that the position distribution of the granular object is related to the shape of the platform, just like that of a Brownian particle trapped in a potential at equilibrium, even though the granular object is intrinsically not at equilibrium due to inelastic collisions with the platform. From the collision dynamics, we derive the Langevin equation which describes the motion of the object under an effective potential that equals the gravitational potential along the platform surface. The potential energy is found to agree with the equilibrium equipartition theorem while the kinetic energy does not. Furthermore, the granular temperature is found to be higher than the effective temperature associated with the average potential energy, suggesting the presence of heat transfer from the kinetic part to the potential part of the granular object.

  14. Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Joshua R.

    2013-01-01

    A great deal has been published in the scientific literature regarding the effects of wind energy development and operation on volant (flying) wildlife including birds and bats, although knowledge of how to mitigate negative impacts is still imperfect. We reviewed the peer-reviewed scientific literature for information on the known and potential effects of utility-scale wind energy development and operation (USWEDO) on terrestrial and marine non-volant wildlife and found that very little has been published on the topic. Following a similar review for solar energy we identified known and potential effects due to construction and eventual decommissioning of wind energy facilities. Many of the effects are similar and include direct mortality, environmental impacts of destruction and modification of habitat including impacts of roads, and offsite impacts related to construction material acquisition, processing and transportation. Known and potential effects due to operation and maintenance of facilities include habitat fragmentation and barriers to gene flow, as well as effects due to noise, vibration and shadow flicker, electromagnetic field generation, macro- and micro-climate change, predator attraction, and increased fire risk. The scarcity of before-after-control-impact studies hinders the ability to rigorously quantify the effects of USWEDO on non-volant wildlife. We conclude that more empirical data are currently needed to fully assess the impact of USWEDO on non-volant wildlife.

  15. Energy drink usage among university students in a Caribbean country: Patterns of use and adverse effects.

    PubMed

    Reid, Sandra D; Ramsarran, Jonathan; Brathwaite, Rachel; Lyman, Sarika; Baker, Ariane; Cornish, D'Andra C; Ganga, Stefan; Mohammed, Zahrid; Sookdeo, Avinash T; Thapelo, Cathrine K

    2015-06-01

    There has been little inquiry addressing whether or not concerns about adverse effects of energy drink usage are relevant in the Caribbean. This survey investigated energy drink usage and adverse consequences among tertiary level students in Trinidad and Tobago. A cross-sectional survey of 1994 students from eight institutions was conducted using a de novo questionnaire based on findings from a focus group of students. Chi-squared analyses and logistic regression were used to assess relationships between energy drink usage, adverse effects and other factors affecting energy drink use, and to verify predictors of energy drink use. Prevalence of use was 86%; 38% were current users. Males were more likely to use, used more frequently and at an earlier age. Energy drinks were used most commonly to increase energy (50%), combat sleepiness (45%) and enhance academic performance (40%), and occurred during sports (23%) and mixed with alcohol (22.2%). The majority (79.6%) consumed one energy drink per sitting; 62.2% experienced adverse effects, most commonly restlessness (22%), jolt and crash (17.1%) and tachycardia (16.6%). Awareness of adverse effects was associated with no use (p=0.004), but adverse effects were not a deterrent to continued use. Energy drink usage is prevalent among students. The use is not excessive, but associated with high rates of adverse effects and occurs in potentially dangerous situations like during exercise and with alcohol. There is a need to educate students about the potential adverse effects of energy drinks. Copyright © 2014 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  16. Residential Energy Efficiency Potential: South Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    2017-11-02

    Energy used by South Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    2017-11-02

    Energy used by South Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Rhode Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Rhode Island single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Ocean Wave Energy Estimation Using Active Satellite Imagery as a Solution of Energy Scarce in Indonesia Case Study: Poteran Island's Water, Madura

    NASA Astrophysics Data System (ADS)

    Nadzir, Z. A.; Karondia, L. A.; Jaelani, L. M.; Sulaiman, A.; Pamungkas, A.; Koenhardono, E. S.; Sulisetyono, A.

    2015-10-01

    Ocean wave energy is one of the ORE (Ocean Renewable Energies) sources, which potential, in which this energy has several advantages over fossil energy and being one of the most researched energy in developed countries nowadays. One of the efforts for mapping ORE potential is by computing energy potential generated from ocean wave, symbolized by Watt per area unit using various methods of observation. SAR (Synthetic Aperture Radar) is one of the hyped and most developed Remote Sensing method used to monitor and map the ocean wave energy potential effectively and fast. SAR imagery processing can be accomplished not only in remote sensing data applications, but using Matrices processing application as well such as MATLAB that utilizing Fast Fourier Transform and Band-Pass Filtering methods undergoing Pre-Processing stage. In this research, the processing and energy estimation from ALOSPALSAR satellite imagery acquired on the 5/12/2009 was accomplished using 2 methods (i.e Magnitude and Wavelength). This resulted in 9 potential locations of ocean wave energy between 0-228 W/m2, and 7 potential locations with ranged value between 182-1317 W/m2. After getting through buffering process with value of 2 km (to facilitate the construction of power plant installation), 9 sites of location were estimated to be the most potential location of ocean wave energy generation in the ocean with average depth of 8.058 m and annual wind speed of 6.553 knot.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Xie, D.; Yan, G.

    Accurate knowledge of the potential energy surface (PES) and the spectroscopic properties of carbon dioxide plays an important role in understanding the greenhouse effect. The potential energy surface for the electronic ground state of CO{sub 2} is refined by means of a two-step variational procedure using the exact rovibrational Hamiltonian in the bond length-bond angle coordinates. In the refinement, the observed rovibrational energy levels for J = 0-4 below 16,000 cm {sup -1}, obtained from the effective spectroscopic constants of CO{sub 2} given by Rothman et al. (J Quant Spectrosc Radiat Transfer 1992, 48, 537) in HITRAN data base, aremore » used as the input data points. The accurate ab initio force constants of Martin et al. (Chem Phys Lett 1993, 205, 535) are taken as the initial guess for the potential. The root-mean-square error of this fit to the 431 observed rovibrational energy levels is 0.05 cm{sup {minus}1}. With the optimized potential energy surface, the authors also calculate the rovibrational energy levels of {sup 13}C{sup 16}O{sub 2} and {sup 12}C{sup 18}O{sub 2}. The results are in good agreement with experimental data.« less

  1. Analysis of state-energy-program capabilities

    NASA Astrophysics Data System (ADS)

    Tatar, J.; Clifford, D.; Gunnison, F.; Humphrey, B.

    1981-05-01

    The potential effects on state energy programs of a reduction in the financial assistance available through the state and local assistance programs and the distribution of those effects are assessed. The assessment is based on a survey of nine state energy offices (SEOs), which were selected on the basis of state support of energy programs weighted by state energy consumption. The nine SEOs surveyed were the Arizona Energy Office, Arkansas Department of Energy, California Energy Commission, Florida Governor's Energy Office, Illinois Institute of Natural Resources, Minnesota Energy Agency, New Jersey Department of Energy, South Carolina Governor's Division of Energy Resources, and Washington State Energy Office.

  2. Conformational Sampling of a Biomolecular Rugged Energy Landscape.

    PubMed

    Rydzewski, Jakub; Jakubowski, Rafal; Nicosia, Giuseppe; Nowak, Wieslaw

    2018-01-01

    The protein structure refinement using conformational sampling is important in hitherto protein studies. In this paper, we examined the protein structure refinement by means of potential energy minimization using immune computing as a method of sampling conformations. The method was tested on the x-ray structure and 30 decoys of the mutant of [Leu]Enkephalin, a paradigmatic example of the biomolecular multiple-minima problem. In order to score the refined conformations, we used a standard potential energy function with the OPLSAA force field. The effectiveness of the search was assessed using a variety of methods. The robustness of sampling was checked by the energy yield function which measures quantitatively the number of the peptide decoys residing in an energetic funnel. Furthermore, the potential energy-dependent Pareto fronts were calculated to elucidate dissimilarities between peptide conformations and the native state as observed by x-ray crystallography. Our results showed that the probed potential energy landscape of [Leu]Enkephalin is self-similar on different metric scales and that the local potential energy minima of the peptide decoys are metastable, thus they can be refined to conformations whose potential energy is decreased by approximately 250 kJ/mol.

  3. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    PubMed

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  4. Kinetic Super-Resolution Long-Wave Infrared (KSR LWIR) Thermography Diagnostic for Building Envelopes: Camp Lejeune, NC

    DTIC Science & Technology

    2015-08-18

    of Defense (DoD) to achieve cost-effective energy efficiency at much greater scale than other commercially available techniques of measuring energy...recommends specific energy conservation measures (ECMs), and quantifies significant potential return on investment. ERDC/CERL TR-15-18 iii...effective energy efficiency at much greater scale than other commercially available techniques of measuring energy loss due to envelope inefficien- cies

  5. Quantum Gravitational Force Between Polarizable Objects.

    PubMed

    Ford, L H; Hertzberg, Mark P; Karouby, J

    2016-04-15

    Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two-graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V(r)=-3987ℏcG^{2}α_{1S}α_{2S}/(4πr^{11}), where α_{1S}, α_{2S} are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect.

  6. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  7. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  8. Effect of non-parabolicity and confinement potential on exciton binding energy in a quantum well

    NASA Astrophysics Data System (ADS)

    Vignesh, G.; Nithiananthi, P.

    2018-04-01

    The effect of non-parabolicity(NP) (both conduction and valance band) on the binding energy(EB) of a ground state exciton in GaAs/AlxGa1-xAs single Quantum Well(QW) has been calculated using variational method. Confinement of a light hole(LH-CB1-X) and heavy hole(HH-CB1-X) exciton have been numerically evaluated as a function of well width and barrier heights by imposing three different confinement potentials such as square(SQW), parabolic(PQW) and triangular(TQW). Due to NP effects, EB of exciton is increasedin the narrow well region irrespective of the type of exciton, barrier height and nature of the confinement potentials applied. Non-parabolicity effect is prominent in abrupt(SQW) and linearlyvarying(TQW) confinement potentials. All these effects are attributed to be an inter-play between the Coulombic interaction and NP effects among the subband structures.

  9. Solar public engagement: the prospective study on FELDA community in Malaysia

    NASA Astrophysics Data System (ADS)

    Jamiah Tun Jamil, Siti; Azfahani Ahmad, Nur

    2017-05-01

    Malaysia Energy Outlook 2016 has highlighted that Malaysia's electricity generation mix has always been highly dependent on fossil fuels. There is a concern on energy security for Malaysia recently, since the depletion of fossil fuel occurs and its effect increases the price of electricity tariff. Nevertheless, the energy demand continues to increase, which make the non-fossil renewable energy sources is back on demand. Malaysia's highest potential for renewable energy comes from solar energy and the large roofs of rural houses offer potential to contribute solar electricity for the people. Indeed, the engagement of solar energy to the public is very important in allowing this energy to be accepted by the locals. The paper will review the related literature on public engagement for solar energy project. This paper also tries to prospect the potential of implementing solar electricity for a well-known rural organization in Malaysia, known as FELDA.

  10. The Effects of Hydration on Protein of Azurin using Coarse-Grained Method and The Free-Energy Analysis

    NASA Astrophysics Data System (ADS)

    Fitrasari, Dian; Purqon, Acep

    2017-07-01

    Proteins play important roles in body metabolism. However, to reveal hydration effects, it is cost computing especially for all-atom calculation. Coarse-grained method is one of potential solution to reduce the calculation and computable in longer timescale. Furthermore, the protein of Azurin is interesting protein and potentially applicable to cancer medicine for the stability property reason. We investigate the effects of hydration on Azurin, the conformation and the stabilities. Furthermore, we analyze the free-energy of the conformation system to find the favorable structure using free energy perturbation (FEP) calculation. Our calculation results show that free energy value of azurin is -136.9 kJ/mol. It shows a good agreement with experimental results with relative error index remained at 0.07%.

  11. Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1986-01-01

    Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.

  12. Effects of laser radiation field on energies of hydrogen atom in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less

  13. Landau free energy for a bcc-hcp reconstructive phase transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanati, Mahdi; Saxena, A.; Lookman, T.

    We study the bcc-hcp phase transition in Ti and Zr with the use of first-principles calculations. We have determined the complete energy surface from the bcc to hcp structure. The results are used to find an appropriate Landau free energy density for describing this transformation. The proposed Landau free energy density has two relevant order parameters: shear and shuffle. Through first-principles calculations, we show that the bcc structure is unstable with respect to the shuffle of atoms (TA{sub 1} N-point phonon) rather than the shear. Therefore, we reduce the two order parameter Landau free energy to an effective one ordermore » parameter (shuffle) potential, which is a reasonable approximation. In general, the effective Landau free energy is a triple-well potential. From the phonon dispersion data and the change in entropy at the transition temperature we find the free energy coefficients for Ti and Zr.« less

  14. The International Database of Efficient Appliances (IDEA): A New Resource for Global Efficiency Policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F; McNeil, Michael A; Tu, Thomas

    A major barrier to effective appliance efficiency program design and evaluation is a lack of data for determination of market baselines and cost-effective energy savings potential. The data gap is particularly acute in developing countries, which may have the greatest savings potential per unit GDP. To address this need, we are developing the International Database of Efficient Appliances (IDEA), which automatically compiles data from a wide variety of online sources to create a unified repository of information on efficiency, price, and features for a wide range of energy-consuming products across global markets. This paper summarizes the database framework and demonstratesmore » the power of IDEA as a resource for appliance efficiency research and policy development. Using IDEA data for refrigerators in China and India, we develop robust cost-effectiveness indicators that allow rapid determination of savings potential within each market, as well as comparison of that potential across markets and appliance types. We discuss implications for future energy efficiency policy development.« less

  15. Ab initio relativistic effective potentials with spin--orbit operators. III. Rb through Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaJohn, L.A.; Christiansen, P.A.; Ross, R.B.

    A refined version of the ''shape consistent'' effective potential procedure of Christiansen, Lee, and Pitzer was used to compute averaged relativistic effective potentials (AREP) and spin--orbit operators for the elements Rb through Xe. Particular attention was given to the partitioning of the core and valence space and, where appropriate, more than one set of potentials is provided. These are tabulated in analytic form. Gaussian basis sets with contraction coefficients for the lowest energy state of each atom are given. The reliability of the transition metal AREPs was examined by comparing computed atomic excitation energies with accurate all-electron relativistic values. Themore » spin--orbit operators were tested in calculations on selected atoms.« less

  16. D-ribose--an additive with caffeine.

    PubMed

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  17. Is Solar Energy the Fuel of the Future?

    ERIC Educational Resources Information Center

    Cetincelik, Mauammer

    1974-01-01

    Describes the present distribution of solar energy, traces its use through history, explores its potential utilization in the future, and presents the effects of the use of solar energy on pollution. (GS)

  18. Spontaneous Energy Concentration in Energetic Molecules, Interfaces and Composites: Response to Ultrasound and THz Radiation

    DTIC Science & Technology

    2015-12-21

    SUPPLEMENTARY NOTES 14. ABSTRACT The effects of weak energies, THz and ultrasound, on energetic materials, was studied experimentally using laser...project involves fundamental research to investigate the detailed effects of THz and ultrasound, so called " weak energies", on energetic materials...EM). The focus is on mechanisms that produce spontaneous energy concentration. The relevant Navy mission is the potential use of weak energies to

  19. Formal expressions and corresponding expansions for the exact Kohn-Sham exchange potential

    NASA Astrophysics Data System (ADS)

    Bulat, Felipe A.; Levy, Mel

    2009-11-01

    Formal expressions and their corresponding expansions in terms of Kohn-Sham (KS) orbitals are deduced for the exchange potential vx(r) . After an alternative derivation of the basic optimized effective potential integrodifferential equations is given through a Hartree-Fock adiabatic connection perturbation theory, we present an exact infinite expansion for vx(r) that is particularly simple in structure. It contains the very same occupied-virtual quantities that appear in the well-known optimized effective potential integral equation, but in this new expression vx(r) is isolated on one side of the equation. An orbital-energy modified Slater potential is its leading term which gives encouraging numerical results. Along different lines, while the earlier Krieger-Li-Iafrate approximation truncates completely the necessary first-order perturbation orbitals, we observe that the improved localized Hartree-Fock (LHF) potential, or common energy denominator potential (CEDA), or effective local potential (ELP), incorporates the part of each first-order orbital that consists of the occupied KS orbitals. With this in mind, the exact correction to the LHF, CEDA, or ELP potential (they are all equivalent) is deduced and displayed in terms of the virtual portions of the first-order orbitals. We close by observing that the newly derived exact formal expressions and corresponding expansions apply as well for obtaining the correlation potential from an orbital-dependent correlation energy functional.

  20. A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids

    NASA Astrophysics Data System (ADS)

    Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali

    2007-01-01

    Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.

  1. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Wang, J.; Brune, D. C.; Blankenship, R. E.

    1990-01-01

    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  2. Tunneling effect on double potential barriers GaAs and PbS

    NASA Astrophysics Data System (ADS)

    Prastowo, S. H. B.; Supriadi, B.; Ridlo, Z. R.; Prihandono, T.

    2018-04-01

    A simple model of transport phenomenon tunnelling effect through double barrier structure was developed. In this research we concentrate on the variation of electron energy which entering double potential barriers to transmission coefficient. The barriers using semiconductor materials GaAs (Galium Arsenide) with band-gap energy 1.424 eV, distance of lattice 0.565 nm, and PbS (Lead Sulphide) with band gap energy 0.41 eV distance of lattice is 18 nm. The Analysisof tunnelling effect on double potentials GaAs and PbS using Schrodinger’s equation, continuity, and matrix propagation to get transmission coefficient. The maximum energy of electron that we use is 1.0 eV, and observable from 0.0025 eV- 1.0 eV. The shows the highest transmission coefficient is0.9982 from electron energy 0.5123eV means electron can pass the barriers with probability 99.82%. Semiconductor from materials GaAs and PbS is one of selected material to design semiconductor device because of transmission coefficient directly proportional to bias the voltage of semiconductor device. Application of the theoretical analysis of resonant tunnelling effect on double barriers was used to design and develop new structure and combination of materials for semiconductor device (diode, transistor, and integrated circuit).

  3. Metallic bionanocatalysts: potential applications as green catalysts and energy materials.

    PubMed

    Macaskie, Lynne E; Mikheenko, Iryna P; Omajai, Jacob B; Stephen, Alan J; Wood, Joseph

    2017-09-01

    Microbially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low-grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio-catalytic upgrading of oils and manufacturing 'drop-in fuel' precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.J.; Stewart, D.L.

    1988-03-01

    The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology maymore » have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.« less

  5. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  6. Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.

    2013-05-20

    Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine andmore » hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).« less

  7. Fire behavior modeling to assess net benefits of forest treatments on fire hazard mitigation and bioenergy production in Northeastern California

    Treesearch

    David J. Ganz; David S. Saah; Klaus Barber; Mark Nechodom

    2007-01-01

    The fire behavior modeling described here, conducted as part of the Biomass to Energy (B2E) life cycle assessment, is funded by the California Energy Commission to evaluate the potential net benefits associated with treating and utilizing forest biomass. The B2E project facilitates economic, environmental, energy, and effectiveness assessments of the potential public...

  8. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  9. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  10. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE PAGES

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; ...

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  11. Effect of remote inductively coupled plasma (ICP) on the electron energy probability function of an in-tandem main ICP

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyung-Hyun; Chung, Chin-Wook

    2017-02-01

    The remote plasma has been generally used as the auxiliary plasma source for indirect plasma processes such as cleaning or ashing. When tandem plasma sources that contain main and remote plasma sources are discharged, the main plasma is affected by the remote plasma and vice versa. Charged particles can move between two chambers due to the potential difference between the two plasmas. For this reason, the electron energy possibility function of the main plasma can be controlled by adjusting the remote plasma state. In our study, low energy electrons in the main plasma are effectively heated with varying remote plasma powers, and high energy electrons which overcome potential differences between two plasmas—are exchanged with no remarkable change in the plasma density and the effective electron temperature.

  12. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO 2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiencymore » measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO 2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.« less

  13. Heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) and their cations.

    PubMed

    Lee, Edmond P F; Wright, Timothy G

    2005-10-08

    The heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) have been studied by high-level ab initio calculations. The RCCSD(T) method has been employed, combined with large flexible valence basis sets. All-electron basis sets are used for potassium and sulfur, with effective core potentials being used for the other metals, describing the core electrons. Potential-energy curves are calculated for the lowest two neutral and cationic states: all neutral monosulfide species have a (2)Pi ground state, in contrast with the alkali-metal monoxide species, which undergo a change in the electronic ground state from (2)Pi to (2)Sigma(+) as the group is descended. In the cases of KS, RbS, and CsS, spin-orbit curves are also calculated. We also calculate potential-energy curves for the lowest (3)Sigma(-) and (3)Pi states of the cations. From the potential-energy curves, spectroscopic constants are derived, and for KS the spectroscopic results are compared to experimental spectroscopic values. Ionization energies, dissociation energies, and heats of formation are also calculated; for KS, we explore the effects of relativity and basis set extrapolation on these values.

  14. Greenhouse Gas Mitigation in Chinese Eco-Industrial Parks by Targeting Energy Infrastructure: A Vintage Stock Model.

    PubMed

    Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun

    2016-10-03

    Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.

  15. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials

    NASA Astrophysics Data System (ADS)

    Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao

    2017-10-01

    The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.

  16. The Potential for Energy Storage to Provide Peaking Capacity in California Under Increased Penetration of Solar Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L; Margolis, Robert M

    In this report, we examine the potential for replacing conventional peaking capacity in California with energy storage, including analysis of the changing technical potential with increased storage deployment and the effect of PV deployment. We examine nine years of historic load data, a range of storage durations (2-8 hours), and a range of PV penetration levels (0%-30%). We demonstrate how PV increases the ability of storage to reduce peak net demand. In the scenarios analyzed, the expected penetration of PV in California in 2020 could more than double the potential for 4-hour energy storage to provide capacity services.

  17. Collecting and Analyzing At-Sea and Coastal Avian Data to Assess Potential Effects of Offshore Renewable Energy Development

    NASA Astrophysics Data System (ADS)

    Pereksta, D. M.

    2016-02-01

    The prospect of renewable energy development off the coasts of the United States has led to a scramble for data needs on potentially affected resources, particularly those related to avian species. The potential effects from renewable energy development to avian species are complex and varied including collision, displacement, barrier effects, and attraction. As the lead Federal agency for renewable energy development on the Federal outer continental shelf (OCS), the Bureau of Ocean Energy Management (BOEM) has initiated, in coordination with other agencies and partners, the collection and synthesizing of existing data, identification of data gaps, development and funding of studies to fill those gaps, and creation of products for assessing risk to birds from structures at sea. Through the Environmental Studies Program, BOEM collects a wide range of environmental information to provide an improved understanding of offshore ecosystems, a baseline for assessing cumulative effects, and the scientific basis for development of regulatory measures to mitigate adverse impacts. With broad-scale assessments of suitable areas for wind, wave, and tidal energy production offshore, the challenge has been to collect and compile information quickly and at as large a scale as possible. Assessing what we know, what we can predict, and how can we assess risk has led BOEM to develop and collaborate on a variety of studies including baseline data assessments, at-sea surveys, predictive modeling of seabird distribution and abundance, vulnerability and risk assessments, and technology testing for efficient ways to inventory birds on the OCS. These are being applied in both the Atlantic and Pacific, including the Main Hawaiian Islands, to provide for assessments of potential effects and data needs early in the planning process at regional and local scales with the goal of designing and implementing projects that will minimize effects to avian species to the greatest extent practicable.

  18. Alternative energy sources

    NASA Astrophysics Data System (ADS)

    Todd, R. W.

    1982-04-01

    Renewable energy sources and their potential contribution for solving energy needs are presented. Centralized supply technologies include those alternative fuels derived from biomass using solar energy, (supplying 57% of the energy supply in some countries), and those using directly collected solar energy to manufacture a fuel. Fuel utilization effects can be doubled by using combined heat and power stations, and other major sources include wind, wave, tidal, and solar. In terms of local supply technology, wood burning appliances are becoming more popular, and methane is being used for heating and to fuel spark ignition engines. Geothermal low temperature heating exists worldwide at a capacity of 7.2 GW, supplying heat, particularly in Hungary, parts of the U.S.S.R., and Iceland, and a geothermal research program has been established in the United States. Sweden has a potential hydroelectric capacity of 600 MW, and the United States has a 100 GW capacity. Many of these technologies are already cost effective.

  19. Sugar substitutes: their energy values, bulk characteristics, and potential health benefits.

    PubMed

    Levin, G V; Zehner, L R; Saunders, J P; Beadle, J R

    1995-11-01

    Restriction of dietary energy extends life and reduces incidences of disease in animals. These benefits would likely extend to humans. However, diet restriction in animals imposes reductions of 30-50% in food intake, which is probably unacceptable to humans. Low-energy sweeteners used in beverages offer minor reductions in energy intake. However, they lack the bulk required for baked goods and other sugar-rich foods. Full-bulk sweeteners providing about one-half the energy of sugar are under development for such uses. Laxation limits their acceptable dose. Even within such limitations, they can help achieve the health benefits for humans indicated by diet restriction. D-Tagatose, a new candidate sweetener, is nearly as sweet as sucrose and has the bulk of sucrose, yet provides zero available energy. We discuss its potential contribution to human diet restriction along with its specific effect in delaying the aging effects of glycosylation.

  20. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Park, Won Young; McNeil, Michael A.

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO 2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in themore » future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO 2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically feasible in the U.S. iron and steel sector with the current cost structure. In contrast, some of the demonstration technologies are adapted in the mid-term and their penetration levels increase as the prices go down with learning curve. We also observe large penetration of 225kg pulverized coal injection with the presence of learning.« less

  1. Phase I: energy conservation potential of Portland Cement particle size distribution control. Progress report, November 1978-January 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmuth, R.A.

    1979-03-01

    Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.

  2. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    NASA Astrophysics Data System (ADS)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  3. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate.

    PubMed Central

    Andersen, P S; Fuchs, M

    1975-01-01

    Tetraphenylborate-induced current transients were studied in lipid bilayers formed from bacterial phosphatidylethanolamine in decane. This ion movement was essentially confined to the membrane in terior during the current transients. Charge movement through the interior of the membrane during the current transients was studied as a function of the applied potential. The transferred charge approached an upper limit with increasing potential, which is interpreted to be the amount of charge due to tetraphenylborate ions absorbed into the boundary regions of the bilayer. A further analysis of the charge transfer as a function of potential indicates that the movement of tetraphenylborate ions is only influenced by a certain farction of the applied potential. For bacterial phosphatidylethanolamine bilayers the effective potential is 77 +/- 4% of the applied potential. The initial conductance and the time constant of the current transients were studied as a function of the applied potential using a Nernst-Planck electrodiffusion regime. It was found that an image-force potential energy barrier gave a good prediction of the observed behavior, provided that the effective potential was used in the calculations. We could not get a satisfactory prediction of the observed behavior with an Eyring rate theory model or a trapezoidal potential energy barrier. PMID:1148364

  4. Enhanced Flexibility of the O2 + N2 Interaction and Its Effect on Collisional Vibrational Energy Exchange.

    PubMed

    Garcia, E; Laganà, A; Pirani, F; Bartolomei, M; Cacciatore, M; Kurnosov, A

    2016-07-14

    Prompted by a comparison of measured and computed rate coefficients of Vibration-to-Vibration and Vibration-to-Translation energy transfer in O2 + N2 non-reactive collisions, extended semiclassical calculations of the related cross sections were performed to rationalize the role played by attractive and repulsive components of the interaction on two different potential energy surfaces. By exploiting the distributed concurrent scheme of the Grid Empowered Molecular Simulator we extended the computational work to quasiclassical techniques, investigated in this way more in detail the underlying microscopic mechanisms, singled out the interaction components facilitating the energy transfer, improved the formulation of the potential, and performed additional calculations that confirmed the effectiveness of the improvement introduced.

  5. Semimicroscopic analysis of 6Li+28Si elastic scattering at 76 to 318 MeV

    NASA Astrophysics Data System (ADS)

    Hassanain, M. A.; Anwar, M.; Behairy, Kassem O.

    2018-04-01

    Using the α-cluster structure of colliding nuclei, the elastic scattering of 6Li+28Si at energies from 76 to 318 MeV has been investigated by the use of the real folding cluster approach. The results of the cluster analysis are compared with those obtained by the CDM3Y6 effective density- and energy-dependent nucleon-nucleon (NN) interaction based upon G -matrix elements of the M3Y-Paris potential. A Woods-Saxon (WS) form was used for the imaginary potential. For all energies and derived potentials, the diffraction region was well reproduced, except at Elab=135 and 154 MeV at large angle. These results suggest that the addition of the surface (DWS) imaginary potential term to the volume imaginary potential is essential for a correct description of the refractive structure of the 6Li elastic scattering distribution at these energies. The energy dependence of the total reaction cross sections and that of the real and imaginary volume integrals is also discussed.

  6. Saddle point localization of molecular wavefunctions.

    PubMed

    Mellau, Georg Ch; Kyuberis, Alexandra A; Polyansky, Oleg L; Zobov, Nikolai; Field, Robert W

    2016-09-15

    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN ↔ HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, ℓ) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states.

  7. State Policy Initiatives for Financing Energy Efficiency in Public Buildings.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Alternative financing methods (other than state financing) for developing cost-effective energy efficiency projects are discussed. It is suggested that by properly financing energy efficiency investments, state campuses can generate immediate positive cash savings. The following eight initiatives for maximizing energy savings potential are…

  8. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.

    2000-03-01

    In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City.more » This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate-payers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 133 MW and the reduction in annual carbon emissions at 41 kt. In Sacramento, the potential annual energy savings is estimated at $26M, with an avoidance of 486 MW in peak power and a reduction in annual carbon of 92 kt. In Salt Lake City, the potential annual energy savings is estimated at $4M, with an avoidance of 85 MW in peak power and a reduction in annual carbon of 20 kt.« less

  9. Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids

    NASA Astrophysics Data System (ADS)

    Cheng, Bingqing; Ceriotti, Michele

    2018-02-01

    The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures.

  10. Theoretical determination of the ionization potential and the electron affinity of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Susumu

    2017-11-01

    Ionization potential and electron affinity of organic semicondutors are important quantities, which are relevant to charge injection barriers. The electrostatic and dynamical contributions to the polarization energies for the injected charges in pentacene polymorphs were investigated. While the dynamical polarization induced narrowing of the energy gap, the electrostatic effect shifted up or down the frontier energy levels, which is sensitive to the molecular orientation at the surface.

  11. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies

    NASA Astrophysics Data System (ADS)

    Pollard, Travis P.; Beck, Thomas L.

    2018-06-01

    Attempts to establish an absolute single-ion hydration free energy scale have followed multiple strategies. Two central themes consist of (1) employing bulk pair thermodynamic data and an underlying interfacial-potential-free model to partition the hydration free energy into individual contributions [Marcus, Latimer, and tetraphenyl-arsonium/tetraphenyl-borate (TATB) methods] or (2) utilizing bulk thermodynamic and cluster data to estimate the free energy to insert a proton into water, including in principle an interfacial potential contribution [the cluster pair approximation (CPA)]. While the results for the hydration free energy of the proton agree remarkably well between the three approaches in the first category, the value differs from the CPA result by roughly +10 kcal/mol, implying a value for the effective electrochemical surface potential of water of -0.4 V. This paper provides a computational re-analysis of the TATB method for single-ion free energies using quasichemical theory. A previous study indicated a significant discrepancy between the free energies of hydration for the TA cation and the TB anion. We show that the main contribution to this large computed difference is an electrostatic artifact arising from modeling interactions in periodic boundaries. No attempt is made here to develop more accurate models for the local ion/solvent interactions that may lead to further small free energy differences between the TA and TB ions, but the results clarify the primary importance of interfacial potential effects for analysis of the various free energy scales. Results are also presented, related to the TATB assumption in the organic solvents dimethyl sulfoxide and 1,2-dichloroethane.

  12. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  13. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. I. Backbone potentials of coarse-grained polypeptide chains

    NASA Astrophysics Data System (ADS)

    Sieradzan, Adam K.; Makowski, Mariusz; Augustynowicz, Antoni; Liwo, Adam

    2017-03-01

    A general and systematic method for the derivation of the functional expressions for the effective energy terms in coarse-grained force fields of polymer chains is proposed. The method is based on the expansion of the potential of mean force of the system studied in the cluster-cumulant series and expanding the all-atom energy in the Taylor series in the squares of interatomic distances about the squares of the distances between coarse-grained centers, to obtain approximate analytical expressions for the cluster cumulants. The primary degrees of freedom to average about are the angles for collective rotation of the atoms contained in the coarse-grained interaction sites about the respective virtual-bond axes. The approach has been applied to the revision of the virtual-bond-angle, virtual-bond-torsional, and backbone-local-and-electrostatic correlation potentials for the UNited RESidue (UNRES) model of polypeptide chains, demonstrating the strong dependence of the torsional and correlation potentials on virtual-bond angles, not considered in the current UNRES. The theoretical considerations are illustrated with the potentials calculated from the ab initio potential-energy surface of terminally blocked alanine by numerical integration and with the statistical potentials derived from known protein structures. The revised torsional potentials correctly indicate that virtual-bond angles close to 90° result in the preference for the turn and helical structures, while large virtual-bond angles result in the preference for polyproline II and extended backbone geometry. The revised correlation potentials correctly reproduce the preference for the formation of β-sheet structures for large values of virtual-bond angles and for the formation of α-helical structures for virtual-bond angles close to 90°.

  14. Hydrology beyond closing the water balance: energy conservative scaling of gradient flux relations

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Loritz, Ralf; Jackisch, Conrad

    2017-04-01

    The value of physically-based models has been doubted since their idea was introduced by Freeze and Harlan. Physically-based models like typically rely on the Darcy-Richards concept for soil water dynamics, the Penman-Monteith equation for soil-vegetation-atmosphere exchange processes and hydraulic approaches for overland and stream flow. Each of these concepts is subject to limitations arising from our imperfect understanding of the related processes and is afflicted by the restricted transferability of process descriptions from idealized laboratory conditions to heterogeneous natural systems. Particularly the non-linearity of soil water characteristics in concert with the baffling heterogeneity subsurface properties is usually seen as the dead end for a meaningful application of physically based models outside of well observed research catchments and, more importantly, for an upscaling of point scale flux - gradient relation-ships. This study provides evidence that an energy conservative scaling of topographic gradients and soil water retention curves allows derivation of useful effective catchment scale topography and retention curve from distributed data, which allow successful simulations of the catchment water balance in two distinctly different landscapes. The starting point of our approach is that subsurface water fluxes are driven by differences in potential energy and chemical/capillary binding energy. The relief of a single hillslope controls the potential energy gradients driving downslope flows of free water, while catchment scale variability in hillslope relief is associated with differences in driving potential energy. It is more important to note that the soil water retention curve characterises the density of capillary binding energy of soil water (usually named soil water potential) at a given soil water content. Spatially variable soil water characteristics hence reflect fluctuations in capillary binding energy of soil water at a given soil water content among different sites. Essentially we propose that a meaning full effective representation of the driving topographic gradient needs to represent the mean distribution of geo-potential energy in a catchment, which leads us to the hypsometric integral. Similarly, we postulate that effective soil water characteristics should characterise the average relation between soil water content and capillary binding energy of soil water. For a given set of soil water retention curve derived from a set of undisturbed soil samples this can be achieved by grouping the observation points of all soil samples, averaging the soil water content at a given matric potential/binding energy density and fitting a parametric relation. We demonstrate that a single hillslope with the proposed effective topography and soil water retention curve is sufficient to simulate the water balance and runoff formation of two distinctly different catchments in the Attert experimental watershed.

  15. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory.

    PubMed

    Eich, F G; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.

  16. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eich, F. G., E-mail: eichf@missouri.edu; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state andmore » exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.« less

  17. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    PubMed

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less

  19. Photovoltaic energy technologies: Health and environmental effects document

    NASA Astrophysics Data System (ADS)

    Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.

    1980-09-01

    The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.

  20. Energy shift and conduction-to-valence band transition mediated by a time-dependent potential barrier in graphene

    NASA Astrophysics Data System (ADS)

    Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.

    2015-09-01

    We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.

  1. 75 FR 10551 - Notice of Rail Energy Transportation Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... the human environment or the conservation of energy resources. Authority: 49 U.S.C. 721, 49 U.S.C... discussion of emerging issues regarding the transportation by rail of energy resources, particularly, but not... development, and effective coordination among suppliers, carriers, and users of energy resources. Potential...

  2. Langevin model of low-energy fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierk, Arnold John

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less

  3. Langevin model of low-energy fission

    DOE PAGES

    Sierk, Arnold John

    2017-09-05

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less

  4. Polarization effects in low-energy electron-CH4 elastic collisions in an exact exchange treatment

    NASA Astrophysics Data System (ADS)

    Jain, Ashok; Weatherford, C. A.; Thompson, D. G.; McNaughten, P.

    1989-12-01

    We have investigated the polarization effects in very-low-energy (below 1 eV) electron- CH4 collisions in an exact-exchange treatment. The two models of the parameter-free polarization potential are employed; one, the VpolJT potential, introduced by Jain and Thompson [J. Phys. B 15, L631 (1982)], is based on an approximate polarized-orbital method, and two, the correlation-polarization potential VpolCP, first proposed by O'Connel and Lane [Phys. Rev. A 27, 1893 (1983)], is given as a simple analytic form in terms of the charge density of the target. In this rather very low-energy region, the polarization effects play a decisive role, particularly in creating structure in the differential cross section (DCS) and producing the Ramsauer-Townsend minimum in the total cross section. Our DCS at 0.2, 0.4, and 0.6 eV are compared with recent measurements. We found that a local parameter-free approximation for the polarization potential is quite successful if it is determined under the polarized-orbital-type technique rather than based on the correlation-polarization approach.

  5. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, III, William R.; Hasanbeigi, Ali; Xu, Tengfang

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives ofmore » energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.« less

  6. Potential for Increasing the Output of Existing Hydroelectric Plants.

    DTIC Science & Technology

    1981-06-01

    existing units to higher generating capacity by rehabilitating, modifying or replacing turbines and/or generators; increasing the effective...loss in converting fluid energy (flow and head) to mechanical energy ( turbine output) to electrical energy (generator output). The significant practical...opportunity is improvement of the energy conversion efficiency of the hydraulic turbine since the energy conversion efficiency of electrical

  7. Assessing the global potential and regional implications of promoting bio-energy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  8. Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects-A Narrative Review of Human and Animal Evidence.

    PubMed

    Harvie, Michelle; Howell, Anthony

    2017-01-19

    Intermittent energy restriction (IER) has become popular as a means of weight control amongst people who are overweight and obese, and is also undertaken by normal weight people hoping spells of marked energy restriction will optimise their health. This review summarises randomised comparisons of intermittent and isoenergetic continuous energy restriction for weight loss to manage overweight and obesity. It also summarises the potential beneficial or adverse effects of IER on body composition, adipose stores and metabolic effects from human studies, including studies amongst normal weight subjects and relevant animal experimentation. Six small short term (<6 month) studies amongst overweight or obese individuals indicate that intermittent energy restriction is equal to continuous restriction for weight loss, with one study reporting greater reductions in body fat, and two studies reporting greater reductions in HOMA insulin resistance in response to IER, with no obvious evidence of harm. Studies amongst normal weight subjects and different animal models highlight the potential beneficial and adverse effects of intermittent compared to continuous energy restriction on ectopic and visceral fat stores, adipocyte size, insulin resistance, and metabolic flexibility. The longer term benefits or harms of IER amongst people who are overweight or obese, and particularly amongst normal weight subjects, is not known and is a priority for further investigation.

  9. Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects—A Narrative Review of Human and Animal Evidence

    PubMed Central

    Harvie, Michelle; Howell, Anthony

    2017-01-01

    Intermittent energy restriction (IER) has become popular as a means of weight control amongst people who are overweight and obese, and is also undertaken by normal weight people hoping spells of marked energy restriction will optimise their health. This review summarises randomised comparisons of intermittent and isoenergetic continuous energy restriction for weight loss to manage overweight and obesity. It also summarises the potential beneficial or adverse effects of IER on body composition, adipose stores and metabolic effects from human studies, including studies amongst normal weight subjects and relevant animal experimentation. Six small short term (<6 month) studies amongst overweight or obese individuals indicate that intermittent energy restriction is equal to continuous restriction for weight loss, with one study reporting greater reductions in body fat, and two studies reporting greater reductions in HOMA insulin resistance in response to IER, with no obvious evidence of harm. Studies amongst normal weight subjects and different animal models highlight the potential beneficial and adverse effects of intermittent compared to continuous energy restriction on ectopic and visceral fat stores, adipocyte size, insulin resistance, and metabolic flexibility. The longer term benefits or harms of IER amongst people who are overweight or obese, and particularly amongst normal weight subjects, is not known and is a priority for further investigation. PMID:28106818

  10. Indirect Effects of Energy Development in Grasslands

    NASA Astrophysics Data System (ADS)

    Duquette, Cameron Albert

    Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not different between areas close to and far from well pads. Small-scale gradient results indicate vegetation effects around active drilling pads, potentially increasing erosion and decreasing nesting cover, decreasing carbon sequestration potential, and decreasing forage. Collectively, this research highlights the complexity and importance of impact thresholds in landscape fragmentation.

  11. Kinetic and geometric isotope effects originating from different adsorption potential energy surfaces: cyclohexane on Rh(111).

    PubMed

    Koitaya, Takanori; Shimizu, Sumera; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2012-06-07

    Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.

  12. Energy drink and energy shot use in the military.

    PubMed

    Stephens, Mark B; Attipoe, Selasi; Jones, Donnamaria; Ledford, Christy J W; Deuster, Patricia A

    2014-10-01

    Use of energy drinks and energy shots among military personnel is controversial. High amounts of caffeine (the primary active ingredient in these products) may impact performance of military duties. The impact of caffeine overconsumption and potential subsequent side effects that might be experienced by service members with unique roles and responsibilities is a concern. Reported here are the prevalence of use, reasons for use, and side effects associated with consumption of energy drinks and energy shots among several populations of active duty personnel in the US military. A snowball survey was sent to over 10,000 active duty personnel. A total of 586 (∼6% response rate) individuals completed a 30-item electronic survey. Over half of respondents (53%) reported consuming an energy drink at least once in the past 30 days. One in five (19%) reported energy shot consumption in the prior 30 days. One in five (19%) also reported consuming an energy drink in combination with an alcoholic beverage. Age and gender were significantly associated with energy drink consumption. Young male respondents (18-29 years) reported the highest use of both energy drinks and energy shots. Among those reporting energy drink and energy shot use, the most common reasons for consumption were to improve mental alertness (61%) and to improve mental (29%) and physical (20%) endurance. Nearly two-thirds (65%) of users self-reported at least one side effect. The most commonly reported side effects included increased pulse rate/palpitations, restlessness, and difficulty sleeping. Use of energy products among military personnel is common and has the potential to impact warrior health and military readiness. © 2014 International Life Sciences Institute.

  13. Estimation of the sustainable geothermal potential of Vienna

    NASA Astrophysics Data System (ADS)

    Tissen, Carolin; Benz, Susanne A.; Keck, Christiane A.; Bayer, Peter; Blum, Philipp

    2017-04-01

    Regarding the limited availability of fossil fuels and the absolute necessity to reduce CO2 emissions in order to mitigate the worldwide climate change, renewable resources and new energy systems are required to provide sustainable energy for the future. Shallow geothermal energy holds a huge untapped potential especially for heating and hot water, which represent up to 50% of the global energy demand. Previous studies quantified the capacity of shallow geothermal energy for closed and open systems in cities such as Vienna, London (Westminster) and Ludwigsburg in Germany. In the present study, these approaches are combined and also include the anthropogenic heat input by the urban heat island (UHI) effect. The objective of the present study is therefore to estimate the sustainable geothermal potential of Vienna. Furthermore, the amount of energy demand for heating and hot water that can be supplied by open and closed geothermal systems will be determined. The UHI effect in Vienna is reflected in higher ground water temperatures within the city centre (14 ˚ C to 18 ˚ C) in comparison to lower ones in rural areas (10 ˚ C to 13 ˚ C). A preliminary estimation of the anthropogenic heat flow into the ground water caused by elevated basement temperatures and land surface temperatures is 3,5 × 108 kWh/a. This additional heat flow leads to a total geothermal potential which is 2.5 times larger than the estimated annual energy demand for heating and hot water in Vienna.

  14. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices; Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2012 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropp, Roy K.

    2013-01-01

    A literature search was conducted by using the Web of Science® databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on seabirds and fish. Several relatively recent general review articles that included possible effects on seabirds and fish were examined to begin the search process. From these articles, several general topics of potential environmental effects on seabirds and fish were derived. These topics were used as the primary search factors. Additional sources were identified by cross-checking themore » Web of Science databases for articles that cited the review articles. It also became clear that the potential effects frequently w« less

  15. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    PubMed

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-04-01

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  16. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    NASA Astrophysics Data System (ADS)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading conditions. The third part investigates the response and performance of tri-stable energy harvesters possessing a symmetric hexic potential function under harmonic excitations and provides a detailed analysis to approximate their effective frequency bandwidth. As a platform to achieve these objectives, a piezoelectric nonlinear energy harvester consisting of a uni-morph cantilever beam is considered. Stiffness nonlinearities are introduced into the harvester's design by applying a static magnetic field near the tip of the beam. Experimental studies performed on the proposed harvester are presented to validate some of the theoretical findings. Since nonlinear energy harvesters exhibit complex and non-unique responses, it is demonstrated that a careful choice of the design parameters namely, the shape of the potential function and the electromechanical coupling is necessary to widen their effective frequency bandwidth. Specifically, it is shown that, decreasing the electromechanical coupling and/or designing the potential energy function to have shallow wells, widens the effective frequency bandwidth for a given excitation level. However, this comes at the expense of the output power which decreases under these design conditions. It is also shown that the ratio between the mechanical period and time constant of the harvesting circuit has negligible influence on the effective frequency bandwidth but has considerable effect on the associated magnitude of the output power.

  17. Accurate study on the quantum dynamics of the He + HeH(+) (X1Σ+) reaction on a new ab initio potential energy surface for the lowest 1(1)A' electronic singlet state.

    PubMed

    Xu, Wenwu; Zhang, Peiyu

    2013-02-21

    A time-dependent quantum wave packet method is used to investigate the dynamics of the He + HeH(+)(X(1)Σ(+)) reaction based on a new potential energy surface [Liang et al., J. Chem. Phys.2012, 136, 094307]. The coupled channel (CC) and centrifugal-sudden (CS) reaction probabilities as well as the total integral cross sections are calculated. A comparison of the results with and without Coriolis coupling revealed that the number of K states N(K) (K is the projection of the total angular momentum J on the body-fixed z axis) significantly influences the reaction threshold. The effective potential energy profiles of each N(K) for the He + HeH(+) reaction in a collinear geometry indicate that the barrier height gradually decreased with increased N(K). The calculated time evolution of CC and CS probability density distribution over the collision energy of 0.27-0.36 eV at total angular momentum J = 50 clearly suggests a lower reaction threshold of CC probabilities. The CC cross sections are larger than the CS results within the entire energy range, demonstrating that the Coriolis coupling effect can effectively promote the He + HeH(+) reaction.

  18. Dynamical importance of van der Waals saddle and excited potential surface in C(1D)+D2 complex-forming reaction

    PubMed Central

    Shen, Zhitao; Ma, Haitao; Zhang, Chunfang; Fu, Mingkai; Wu, Yanan; Bian, Wensheng; Cao, Jianwei

    2017-01-01

    Encouraged by recent advances in revealing significant effects of van der Waals wells on reaction dynamics, many people assume that van der Waals wells are inevitable in chemical reactions. Here we find that the weak long-range forces cause van der Waals saddles in the prototypical C(1D)+D2 complex-forming reaction that have very different dynamical effects from van der Waals wells at low collision energies. Accurate quantum dynamics calculations on our highly accurate ab initio potential energy surfaces with van der Waals saddles yield cross-sections in close agreement with crossed-beam experiments, whereas the same calculations on an earlier surface with van der Waals wells produce much smaller cross-sections at low energies. Further trajectory calculations reveal that the van der Waals saddle leads to a torsion then sideways insertion reaction mechanism, whereas the well suppresses reactivity. Quantum diffraction oscillations and sharp resonances are also predicted based on our ground- and excited-state potential energy surfaces. PMID:28094253

  19. Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers.

    PubMed

    Jacques, Eric; Lindbergh, Göran; Zenkert, Dan; Leijonmarck, Simon; Kjell, Maria Hellqvist

    2015-07-01

    The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study. Applying a tensile force to carbon fiber bundles used as Li-intercalating electrodes results in a response of the electrode potential of a few millivolts which allows, at low current densities, lithiation at higher electrode potential than delithiation. More electrical energy is thereby released from the cell at discharge than provided at charge, harvesting energy from the mechanical work of the applied force. The measured harvested specific electrical power is in the order of 1 μW/g for current densities in the order of 1 mA/g, but this has a potential of being increased significantly.

  20. INFLUENCE OF MASS ON DISPLACEMENT THRESHOLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Selby, A.; Nandipati, Giridhar

    2014-12-30

    Molecular dynamics simulations are performed to investigate the effect of mass on displacement threshold energy in Cr, Mo, Fe and W. For each interatomic potential, the mass of the atoms is varied among those metals for a total of 16 combinations. The average threshold energy over all crystal directions is calculated within the irreducible crystal directions using appropriate weighting factors. The weighting factors account for the different number of equivalent directions among the grid points and the different solid angle coverage of each grid point. The grid points are constructed with a Miller index increment of 1/24 for a totalmore » of 325 points. For each direction, 10 simulations each with a different primary-knock-on atom are performed. The results show that for each interatomic potential, the average threshold energy is insensitive to the mass; i.e., the values are the same within the standard error. In the future, the effect of mass on high-energy cascades for a given interatomic potential will be investigated.« less

  1. Known unknowns: indirect energy effects of information and communication technology

    NASA Astrophysics Data System (ADS)

    Horner, Nathaniel C.; Shehabi, Arman; Azevedo, Inês L.

    2016-10-01

    Background. There has been sustained and growing interest in characterizing the net energy impact of information and communication technology (ICT), which results from indirect effects offsetting (or amplifying) the energy directly consumed by ICT equipment. These indirect effects may be either positive or negative, and there is considerable disagreement as to the direction of this sign as well as the effect magnitude. Literature in this area ranges from studies focused on a single service (such as e-commerce versus traditional retail) to macroeconomic studies attempting to characterize the overall impact of ICT. Methods. We review the literature on the indirect energy effect of ICT found via Google Scholar, our own research, and input from other researchers in the field. The various studies are linked to an effect taxonomy, which is synthesized from several different hierarchies present in the literature. References are further grouped according to ICT service (e.g., e-commerce, telework) and summarized by scope, method, and quantitative and qualitative findings. Review results. Uncertainty persists in understanding the net energy effects of ICT. Results of indirect energy effect studies are highly sensitive to scoping decisions and assumptions made by the analyst. Uncertainty increases as the impact scope broadens, due to complex and interconnected effects. However, there is general agreement that ICT has large energy savings potential, but that the realization of this potential is highly dependent on deployment details and user behavior. Discussion. While the overall net effect of ICT is likely to remain unknown, this review suggests several guidelines for improving research quality in this area, including increased data collection, enhancing traditional modeling studies with sensitivity analysis, greater care in scoping, less confidence in characterizing aggregate impacts, more effort on understanding user behavior, and more contextual integration across the different levels of the effect taxonomy.

  2. Self-consistent many-electron theory of electron work functions and surface potential characteristics for selected metals

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1969-01-01

    Electron work functions, surface potentials, and electron number density distributions and electric fields in the surface region of 26 metals were calculated from first principles within the free electron model. Calculation proceeded from an expression of the total energy as a functional of the electron number density, including exchange and correlation energies, as well as a first inhomogeneity term. The self-consistent solution was obtained via a variational procedure. Surface barriers were due principally to many-body effects; dipole barriers were small only for some alkali metals, becoming quite large for the transition metals. Surface energies were inadequately described by this model, which neglects atomistic effects. Reasonable results were obtained for electron work functions and surface potential characteristics, maximum electron densities varying by a factor of over 60.

  3. Piezothermal effect in a spinning gas

    DOE PAGES

    Geyko, V. I.; Fisch, N. J.

    2016-10-13

    A spinning gas, heated adiabatically through axial compression, is known to exhibit a rotation-dependent heat capacity. However, as equilibrium is approached, an effect is identified here wherein the temperature does not grow homogeneously in the radial direction, but develops a temperature differential with the hottest region on axis, at the maximum of the centrifugal potential energy. This phenomenon, which we call a piezothermal effect, is shown to grow bilinearly with the compression rate and the amplitude of the potential. As a result, numerical simulations confirm a simple model of this effect, which can be generalized to other forms of potentialmore » energy and methods of heating.« less

  4. On a quantum particle in laser channels

    NASA Astrophysics Data System (ADS)

    Dik, A. V.; Frolov, E. N.; Dabagov, S. B.

    2018-02-01

    In this paper the effective potential describing interaction of a scalar quantum particle with arbitrary nonuniform laser field is derived for a wide spectrum of the particle energies. The presented method allows to take into account all the features of the effective potential for a scalar particle. The derived expression for effective potential for quantum particle has the same form as the one presented earlier for a classical particle. A special case for channeling of a quantum particle as well as accompanying channeling radiation in a field formed by two crossed plane laser waves is considered. It is shown that relativistic particles moving near the laser channel bottom should be examined as quantum ones at both arbitrarily large longitudinal energies and laser fields of accessible intensities.

  5. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  6. Effects of Locus of Control on Behavioral Intention and Learning Performance of Energy Knowledge in Game-Based Learning

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Lin, Yi Lung; Liu, Yi-Chun

    2017-01-01

    Game-based learning has been gradually adopted in energy education as an effective learning tool because digital games have the potential to increase energy literacy and encourage behavior change. However, not every learner can benefit from this support. There is a need to examine how human factors affect learners' reactions to digital games for…

  7. Building Energy Audit Report, for Hickam AFB, HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.

    2010-09-30

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  8. Building Energy Audit Report for Camp Smith, HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.

    2010-09-30

    A detailed energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Camp Smith, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This report documents the results of that assessment.

  9. ResStock - Targeting Energy and Cost Savings for U.S. Homes | NREL

    Science.gov Websites

    ResStock - Targeting Energy and Cost Savings for U.S. Homes Science and Technology Highlights Highlights in Research & Development ResStock - Targeting Energy and Cost Savings for U.S. Homes Key discovered $49 billion in potential annual utility bill savings through cost-effective energy efficiency

  10. Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines.

    PubMed

    Foster, Kenneth R; Glaser, Roland

    2007-06-01

    This article reviews thermal mechanisms of interaction between radiofrequency (RF) fields and biological systems, focusing on theoretical frameworks that are of potential use in setting guidelines for human exposure to RF energy. Several classes of thermal mechanisms are reviewed that depend on the temperature increase or rate of temperature increase and the relevant dosimetric considerations associated with these mechanisms. In addition, attention is drawn to possible molecular and physiological reactions that could be induced by temperature elevations below 0.1 degrees, which are normal physiological responses to heat, and to the so-called microwave auditory effect, which is a physiologically trivial effect resulting from thermally-induced acoustic stimuli. It is suggested that some reported "nonthermal" effects of RF energy may be thermal in nature; also that subtle thermal effects from RF energy exist but have no consequence to health or safety. It is proposed that future revisions of exposure guidelines make more explicit use of thermal models and empirical data on thermal effects in quantifying potential hazards of RF fields.

  11. Known unknowns: indirect energy effects of information and communication technology

    DOE PAGES

    Horner, Nathaniel C.; Shehabi, Arman; Azevedo, Ines L.

    2016-10-05

    There has been sustained and growing interest in characterizing the net energy impact of information and communication technology (ICT), which results from indirect effects offsetting (or amplifying) the energy directly consumed by ICT equipment. These indirect effects may be either positive or negative, and there is considerable disagreement as to the direction of this sign as well as the effect magnitude. Literature in this area ranges from studies focused on a single service (such as e-commerce versus traditional retail) to macroeconomic studies attempting to characterize the overall impact of ICT. Methods. We review the literature on the indirect energy effectmore » of ICT found via Google Scholar, our own research, and input from other researchers in the field. The various studies are linked to an effect taxonomy, which is synthesized from several different hierarchies present in the literature. References are further grouped according to ICT service (e.g., e-commerce, telework) and summarized by scope, method, and quantitative and qualitative findings. Review results. Uncertainty persists in understanding the net energy effects of ICT. Results of indirect energy effect studies are highly sensitive to scoping decisions and assumptions made by the analyst. Uncertainty increases as the impact scope broadens, due to complex and interconnected effects. However, there is general agreement that ICT has large energy savings potential, but that the realization of this potential is highly dependent on deployment details and user behavior. Discussion. While the overall net effect of ICT is likely to remain unknown, this review suggests several guidelines for improving research quality in this area, including increased data collection, enhancing traditional modeling studies with sensitivity analysis, greater care in scoping, less confidence in characterizing aggregate impacts, more effort on understanding user behavior, and more contextual integration across the different levels of the effect taxonomy.« less

  12. Known unknowns: indirect energy effects of information and communication technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horner, Nathaniel C.; Shehabi, Arman; Azevedo, Ines L.

    There has been sustained and growing interest in characterizing the net energy impact of information and communication technology (ICT), which results from indirect effects offsetting (or amplifying) the energy directly consumed by ICT equipment. These indirect effects may be either positive or negative, and there is considerable disagreement as to the direction of this sign as well as the effect magnitude. Literature in this area ranges from studies focused on a single service (such as e-commerce versus traditional retail) to macroeconomic studies attempting to characterize the overall impact of ICT. Methods. We review the literature on the indirect energy effectmore » of ICT found via Google Scholar, our own research, and input from other researchers in the field. The various studies are linked to an effect taxonomy, which is synthesized from several different hierarchies present in the literature. References are further grouped according to ICT service (e.g., e-commerce, telework) and summarized by scope, method, and quantitative and qualitative findings. Review results. Uncertainty persists in understanding the net energy effects of ICT. Results of indirect energy effect studies are highly sensitive to scoping decisions and assumptions made by the analyst. Uncertainty increases as the impact scope broadens, due to complex and interconnected effects. However, there is general agreement that ICT has large energy savings potential, but that the realization of this potential is highly dependent on deployment details and user behavior. Discussion. While the overall net effect of ICT is likely to remain unknown, this review suggests several guidelines for improving research quality in this area, including increased data collection, enhancing traditional modeling studies with sensitivity analysis, greater care in scoping, less confidence in characterizing aggregate impacts, more effort on understanding user behavior, and more contextual integration across the different levels of the effect taxonomy.« less

  13. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  14. Orthotic Body-Weight Support Through Underactuated Potential Energy Shaping with Contact Constraints

    PubMed Central

    Lv, Ge; Gregg, Robert D.

    2015-01-01

    Body-weight support is an effective clinical tool for gait rehabilitation after neurological impairment. Body-weight supported training systems have been developed to help patients regain mobility and confidence during walking, but conventional systems constrain the patient's treatment in clinical environments. We propose that this challenge could be addressed by virtually providing patients with body-weight support through the actuators of a powered orthosis (or exoskeleton) utilizing potential energy shaping control. However, the changing contact conditions and degrees of underactuation encountered during human walking present significant challenges to consistently matching a desired potential energy for the human in closed loop. We therefore introduce a generalized matching condition for shaping Lagrangian systems with holonomic contact constraints. By satisfying this matching condition for four phases of gait, we derive control laws to achieve virtual body-weight support through a powered knee-ankle orthosis. We demonstrate beneficial effects of virtual body-weight support in simulations of a human-like biped model, indicating the potential clinical value of this proposed control approach. PMID:26900254

  15. Calculations of the free energy of interaction of the c-Fos-c-Jun coiled coil: effects of the solvation model and the inclusion of polarization effects.

    PubMed

    Zuo, Zhili; Gandhi, Neha S; Mancera, Ricardo L

    2010-12-27

    The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.

  16. A perspective on forward research and development paths for cost-effective solar energy utilization.

    PubMed

    Lewis, Nathan S

    2009-01-01

    Solar electricity has long been recognized as a potential energy source that holds great promise. Several approaches towards converting sunlight into energy are elaborated in this Viewpoint, and discussed with respect to their feasibility for large-scale application.

  17. Regional prediction of long-term landfill gas to energy potential.

    PubMed

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  19. Theoretical studies for the rates and kinetic isotope effects of the excited-state double proton transfer in the 1:1 7-azaindole:H2O complex using variational transition state theory including multidimensional tunneling.

    PubMed

    Duong, My Phu Thi; Kim, Yongho

    2010-03-18

    Variational transition state theory calculations including multidimensional tunneling (VTST/MT) for excited-state tautomerization in the 1:1 7-azaindole:H(2)O complex were performed. Electronic structures and energies for reactant, product, transition state, and potential energy curves along the reaction coordinate were computed at the CASSCF(10,9)/6-31G(d,p) level of theory. The potential energies were corrected by second-order multireference perturbation theory to take the dynamic electron correlation into consideration. The final potential energy curves along the reaction coordinate were generated at the MRPT2//CASSCF(10,9)/6-31G(d,p) level. Two protons in the excited-state tautomerization are transferred concertedly, albeit asynchronously. The position of the variational transition state is very different from the conventional transition state, and is highly dependent on isotopic substitution. Rate constants were calculated using VTST/MT, and were on the order of 10(-6) s(-1) at room temperature. The HH/DD kinetic isotope effects are consistent with experimental observations; consideration of both tunneling and variational effects was essential to predict the experimental values correctly.

  20. In Brief: Impacts of wind energy assessed

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    By 2020, greater use of wind energy could reduce carbon dioxide emissions by the U.S. energy sector by about 4.5%. However, greater effort is needed to address potentially negative impacts of this growing energy source, according to a new report from a committee of the U.S. National Research Council. Potential impacts of wind energy projects include deaths of birds and bats, reduced value of property located near a turbine, and habitat loss and fragmentation. However, because these are generally local projects, there is little information available to determine the cumulative effects of wind turbines over a whole region. The report makes several recommendations on how to improve regulation at the local, state, and federal levels. The report also sets out a guide for evaluating wind-energy projects, which includes questions about potential environmental, economic, cultural, and aesthetic impacts. The report, ``Environmental Impacts of Wind-Energy Projects,'' is available at http://books.nap.edu/catalog.php?record_id=11935

  1. Assessment of wave energy potential along the south coast of Java Island

    NASA Astrophysics Data System (ADS)

    Song, Qingyang; Mayerle, Roberto

    2018-04-01

    The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.

  2. Renormalization group method based on the ionization energy theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006

    2011-03-15

    Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sairam, T., E-mail: sairamtvv@gmail.com; Bhatt, Pragya; Safvan, C. P.

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  4. Binding energy of the donor impurities in GaAs-Ga 1- x Al x As quantum well wires with Morse potential in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Aciksoz, Esra; Bayrak, Orhan; Soylu, Asim

    2016-10-01

    The behavior of a donor in the GaAs-Ga1-x Al x As quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (D e, r e, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential. Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.

  5. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropp, Roy K.

    2011-09-30

    A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects onmore » marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog« less

  6. Effect of the corrected ionization potential and spatial distribution on the angular and energy distribution in tunnel ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrović, V. M.; Miladinović, T. B., E-mail: tanja.miladinovic@gmail.com

    2016-05-15

    Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.

  7. Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.

    PubMed

    Vienken, T; Schelenz, S; Rink, K; Dietrich, P

    2015-01-01

    Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.

  8. Effect of Organic Blocking Layer on the Energy Storage Characteristics of High-Permittivity Sol-Gel Thin Film Based on Neat 2-Cyanoethyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Kim, Yunsang; Kathaperumal, Mohanalingam; Pan, Ming-Jen; Perry, Joseph

    2014-03-01

    Organic-inorganic hybrid sol-gel materials with polar groups that can undergo reorientational polarization provide a potential route to dielectric materials for energy storage. We have investigated the influence of nanoscale polymeric layer on dielectric and energy storage properties of 2-cyanoethyltrimethoxysilane (CNETMS) films. Two polymeric materials, fluoropolymer (CYTOP) and poly(p-phenylene oxide, PPO), are examined as potential materials to control charge injection from electrical contacts into CNETMS films by means of a potential barrier, whose width and height are defined by thickness and permittivity. Blocking layers ranging from 20 nm to 200 nm were deposited on CNETMS films by spin casting and subjected to thermal treatment. Polarization-electric field measurements show 30% increase in extractable energy density with PPO/CNETMS bilayers, relative to CNETMS alone, due to improved breakdown strength. Conduction current of the bilayers indicate that onset of charge conduction at high field is much delayed, which can be translated into effective suppression of charge injection and probability of breakdown events. The results will be discussed in regards to film morphology, field partitioning, width and height of potential barrier, charge trapping and loss of bilayers.

  9. Dark gap solitons in exciton-polariton condensates in a periodic potential.

    PubMed

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  10. Dark gap solitons in exciton-polariton condensates in a periodic potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  11. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burman, K.; Kandt, A.; Lisell, L.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaiimore » Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.« less

  12. Design of State-of-the-art Flow Cells for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device where energy is storedmore » in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible. In order to address the second challenge of reducing cost of the RFCs, we plan to use iron (Fe) metal as it regularly occupies multiple oxidation states and is the second most abundant metal in the earth’s crust that makes it an ideal metal for improved energy densities, higher potentials, and numbers of electrons per molecule while maintaining potential cost competitiveness. Density functional theory calculations considering solvation effects will be performed to yield accurate predictions of redox potentials.« less

  13. Modeling the Energy Use of a Connected and Automated Transportation System (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.; Brown, A.

    Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing trafficmore » flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.« less

  14. The outlook for transportation energy : an overview and summary of conservation plans in Virginia.

    DOT National Transportation Integrated Search

    1977-01-01

    This report gives a preliminary evaluation of some of the factors involved in transportation energy and the potential effect of expected changes in the energy situation on the programs and the operations of the Virginia Department of Highways and Tra...

  15. Improvement of energy conversion effectiveness and maximum output power of electrostatic induction-type MEMS energy harvesters by using symmetric comb-electrode structures

    NASA Astrophysics Data System (ADS)

    Honma, H.; Mitsuya, H.; Hashiguchi, G.; Fujita, H.; Toshiyoshi, H.

    2018-06-01

    We introduce symmetric comb-electrode structures for the electrostatic vibrational MEMS energy harvester to lower the electrostatic constraint force attributed to the built-in electret potential, thereby allowing the harvester device to operate in a small acceleration range of 0.05 g or lower (1 g  =  9.8 m s‑2). Given the same device structure, two different potentials for the electret are tested to experimentally confirm that the output induction current is enhanced 4.2 times by increasing the electret potential from  ‑60 V to  ‑250 V. At the same time, the harvester effectiveness has been improved to as high as 93%. The device is used to swiftly charge a 470 µF storage capacitor to 3.3 V in 120 s from small sinusoidal vibrations of 0.6 g at 124 Hz.

  16. Fossil energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks

    Treesearch

    Christina E. Canter; Zhangcai Qin; Hao Cai; Jennifer B. Dunn; Michael Wang; D. Andrew Scott

    2017-01-01

    The GHG emissions and fossil energy consumption associated with producing potential biomass sup­ply in the select BT16 scenarios include emissions and energy consumption from biomass production, harvest/collection, transport, and pre-processing activities to the reactor throat. Emissions associated with energy, fertilizers, and...

  17. Generalized essential energy space random walks to more effectively accelerate solute sampling in aqueous environment

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Zheng, Lianqing; Yang, Wei

    2012-01-01

    Molecular dynamics sampling can be enhanced via the promoting of potential energy fluctuations, for instance, based on a Hamiltonian modified with the addition of a potential-energy-dependent biasing term. To overcome the diffusion sampling issue, which reveals the fact that enlargement of event-irrelevant energy fluctuations may abolish sampling efficiency, the essential energy space random walk (EESRW) approach was proposed earlier. To more effectively accelerate the sampling of solute conformations in aqueous environment, in the current work, we generalized the EESRW method to a two-dimension-EESRW (2D-EESRW) strategy. Specifically, the essential internal energy component of a focused region and the essential interaction energy component between the focused region and the environmental region are employed to define the two-dimensional essential energy space. This proposal is motivated by the general observation that in different conformational events, the two essential energy components have distinctive interplays. Model studies on the alanine dipeptide and the aspartate-arginine peptide demonstrate sampling improvement over the original one-dimension-EESRW strategy; with the same biasing level, the present generalization allows more effective acceleration of the sampling of conformational transitions in aqueous solution. The 2D-EESRW generalization is readily extended to higher dimension schemes and employed in more advanced enhanced-sampling schemes, such as the recent orthogonal space random walk method.

  18. Energy Drinks and Their Impact on the Cardiovascular System: Potential Mechanisms.

    PubMed

    Grasser, Erik Konrad; Miles-Chan, Jennifer Lynn; Charrière, Nathalie; Loonam, Cathríona R; Dulloo, Abdul G; Montani, Jean-Pierre

    2016-09-01

    Globally, the popularity of energy drinks is steadily increasing. Scientific interest in their effects on cardiovascular and cerebrovascular systems in humans is also expanding and with it comes a growing number of case reports of adverse events associated with energy drinks. The vast majority of studies carried out in the general population report effects on blood pressure and heart rate. However, inconsistencies in the current literature render it difficult to draw firm conclusions with regard to the effects of energy drinks on cardiovascular and cerebrovascular variables. These inconsistencies are due, in part, to differences in methodologies, volume of drink ingested, and duration of postconsumption measurements, as well as subject variables during the test. Recent well-controlled, randomized crossover studies that used continuous beat-to-beat measurements provide evidence that cardiovascular responses to the ingestion of energy drinks are best explained by the actions of caffeine and sugar, with little influence from other ingredients. However, a role for other active constituents, such as taurine and glucuronolactone, cannot be ruled out. This article reviews the potentially adverse hemodynamic effects of energy drinks, particularly on blood pressure and heart rate, and discusses the mechanisms by which their active ingredients may interact to adversely affect the cardiovascular system. Research areas and gaps in the literature are discussed with particular reference to the use of energy drinks among high-risk individuals. © 2016 American Society for Nutrition.

  19. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; DeFlorio, J.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  20. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; DeFlorio, J.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  1. Resolving Environmental Effects of Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C; DeGeorge, Elise M; Copping, Andrea E.

    Concerns for potential wildlife impacts resulting from land-based and offshore wind energy have created challenges for wind project development. Research is not always adequately supported, results are neither always readily accessible nor are they satisfactorily disseminated, and so decisions are often made based on the best available information, which may be missing key findings. The potential for high impacts to avian and bat species and marine mammals have been used by wind project opponents to stop, downsize, or severely delay project development. The global nature of the wind industry - combined with the understanding that many affected species cross-national boundaries,more » and in many cases migrate between continents - also points to the need to collaborate on an international level. The International Energy Agency (IEA) Wind Technology Collaborative Programs facilitates coordination on key research issues. IEA Wind Task 34 - WREN: Working Together to Resolve Environmental Effects of Wind Energy-is a collaborative forum to share lessons gained from field research and modeling, including management methods, wildlife monitoring methods, best practices, study results, and successful approaches to mitigating impacts and addressing the cumulative effects of wind energy on wildlife.« less

  2. Studying wind energy/bird interactions: a guidance document. Metrics and methods for determining or monitoring potential impacts on birds at existing and proposed wind energy sites

    USGS Publications Warehouse

    Anderson, R.; Morrison, M.; Sinclair, K.; Strickland, D.; Davis, H.; Kendall, W.

    1999-01-01

    In the 1980s little was known about the potential environmental effects associated with large scale wind energy development. Although wind turbines have been used in farming and remote location applications throughout this country for centuries, impacts on birds resulting from these dispersed turbines had not been reported. Thus early wind energy developments were planned, permitted, constructed, and operated with little consideration for the potential effects on birds. In the ensuing years wind plant impacts on birds became a source of concern among a number of stakeholder groups. Based on the studies that have been done to date, significant levels of bird fatalities have been identified at only one major commercial wind energy development in the United States. Research on wind energy/bird interactions has spanned such a wide variety of protocols and vastly different levels of study effort that it is difficult to make comparisons among study findings. As a result there continues to be interest, confusion, and concern over wind energy development's potential impacts on birds. Some hypothesize that technology changes, such as less dense wind farms with larger, slower-moving turbines, will decrease the number of bird fatalities from wind turbines. Others hypothesize that, because the tip speed may be the same or faster, new turbines will not result in decreased bird fatalities but may actually increase bird impacts. Statistically significant data sets from scientifically rigorous studies will be required before either hypothesis can be tested.

  3. Interfacially Optimized, High Energy Density Nanoparticle-Polymer Composites for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas

    Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).

  4. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their apartment, and develop the Energy Saving Alignment Strategy to be considered in public housing assignment policy. This strategy and the inter-building level energy management strategies developed in my preceding research possess large-scale cost-effectiveness and may engender long-lasting influence compared with existing energy saving approaches. Building from the holistic framework of coupled human-environment systems, the findings of this research will advance knowledge of energy efficiency in the built environment and lead to the development of novel strategies to conserve energy in residential buildings.

  5. Cumulative biological impacts framework for solar energy projects in the California Desert

    USGS Publications Warehouse

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  6. A study of density effects in plasmas using analytical approximations for the self-consistent potential

    NASA Astrophysics Data System (ADS)

    Poirier, M.

    2015-06-01

    Density effects in ionized matter require particular attention since they modify energies, wavefunctions and transition rates with respect to the isolated-ion situation. The approach chosen in this paper is based on the ion-sphere model involving a Thomas-Fermi-like description for free electrons, the bound electrons being described by a full quantum mechanical formalism. This permits to deal with plasmas out of thermal local equilibrium, assuming only a Maxwell distribution for free electrons. For H-like ions, such a theory provides simple and rather accurate analytical approximations for the potential created by free electrons. Emphasis is put on the plasma potential rather than on the electron density, since the energies and wavefunctions depend directly on this potential. Beyond the uniform electron gas model, temperature effects may be analyzed. In the case of H-like ions, this formalism provides analytical perturbative expressions for the energies, wavefunctions and transition rates. Explicit expressions are given in the case of maximum orbital quantum number, and compare satisfactorily with results from a direct integration of the radial Schrödinger equation. Some formulas for lower orbital quantum numbers are also proposed.

  7. Critical insight into the influence of the potential energy surface on fission dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazurek, K.; Grand Accelerateur National d'Ions Lourds; Schmitt, C.

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. Whenmore » utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.« less

  8. Photopions from nuclei in the distorted-wave impulse approximation

    NASA Astrophysics Data System (ADS)

    Girija, V.; Devanathan, V.

    1982-11-01

    The formalism for photoproduction of pions from nuclei has been developed in the distorted-wave impulse approximation, taking into account the effect of the change in pion momentum in nuclear medium. Detailed calculations have been done for the reaction 16O(γ, π+)16N for photon energies from 170 to 380 MeV, with a view to investigate the effect due to the gradient operator ∇-->π for momentum of the pion and test the sensitivity of the photopion cross sections to the details of the pion-nucleus optical potential. The results clearly establish that the gradient operator increases the cross sections throughout the energy region considered, the increase being small at lower energies. Also with ∇-->π, the cross sections are rendered less sensitive to the optical potential. The calculated differential cross sections agree very well with the recent experimental data of Shoda et al. for γ-ray energy of 200 MeV. However, the cross sections obtained at medium energies are higher when compared to the available experimental data. NUCLEAR REACTIONS π+ photoproduction from 16O; distorted wave impulse approximation; pion-nucleus optical potentials; gradient operator for the pion momentum.

  9. VTST/MT studies of the catalytic mechanism of C-H activation by transition metal complexes with [Cu2(μ-O2)], [Fe2(μ-O2)] and Fe(IV)-O cores based on DFT potential energy surfaces.

    PubMed

    Kim, Yongho; Mai, Binh Khanh; Park, Sumin

    2017-04-01

    High-valent Cu and Fe species, which are generated from dioxygen activation in metalloenzymes, carry out the functionalization of strong C-H bonds. Understanding the atomic details of the catalytic mechanism has long been one of the main objectives of bioinorganic chemistry. Large H/D kinetic isotope effects (KIEs) were observed in the C-H activation by high-valent non-heme Cu or Fe complexes in enzymes and their synthetic models. The H/D KIE depends significantly on the transition state properties, such as structure, energies, frequencies, and shape of the potential energy surface, when the tunneling effect is large. Therefore, theoretical predictions of kinetic parameters such as rate constants and KIEs can provide a reliable link between atomic-level quantum mechanical mechanisms and experiments. The accurate prediction of the tunneling effect is essential to reproduce the kinetic parameters. The rate constants and HD/KIE have been calculated using the variational transition-state theory including multidimensional tunneling based on DFT potential energy surfaces along the reaction coordinate. Excellent agreement was observed between the predicted and experimental results, which assures the validity of the DFT potential energy surfaces and, therefore, the proposed atomic-level mechanisms. The [Cu 2 (μ-O) 2 ], [Fe 2 (μ-O) 2 ], and Fe(IV)-oxo species were employed for C-H activation, and their role as catalysts was discussed at an atomic level.

  10. High-level ab initio potential energy surface and dynamics of the F- + CH3I SN2 and proton-transfer reactions.

    PubMed

    Olasz, Balázs; Szabó, István; Czakó, Gábor

    2017-04-01

    Bimolecular nucleophilic substitution (S N 2) and proton transfer are fundamental processes in chemistry and F - + CH 3 I is an important prototype of these reactions. Here we develop the first full-dimensional ab initio analytical potential energy surface (PES) for the F - + CH 3 I system using a permutationally invariant fit of high-level composite energies obtained with the combination of the explicitly-correlated CCSD(T)-F12b method, the aug-cc-pVTZ basis, core electron correlation effects, and a relativistic effective core potential for iodine. The PES accurately describes the S N 2 channel producing I - + CH 3 F via Walden-inversion, front-side attack, and double-inversion pathways as well as the proton-transfer channel leading to HF + CH 2 I - . The relative energies of the stationary points on the PES agree well with the new explicitly-correlated all-electron CCSD(T)-F12b/QZ-quality benchmark values. Quasiclassical trajectory computations on the PES show that the proton transfer becomes significant at high collision energies and double-inversion as well as front-side attack trajectories can occur. The computed broad angular distributions and hot internal energy distributions indicate the dominance of indirect mechanisms at lower collision energies, which is confirmed by analyzing the integration time and leaving group velocity distributions. Comparison with available crossed-beam experiments shows usually good agreement.

  11. Improved continuum lowering calculations in screened hydrogenic model with l-splitting for high energy density systems

    NASA Astrophysics Data System (ADS)

    Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.

    2018-03-01

    The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.

  12. A convenient and accurate wide-range parameter relationship between Buckingham and Morse potential energy functions

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng; Dawson, James Alexander

    2018-05-01

    This study explores the close-range, short-range and long-range relationships between the parameters of the Morse and Buckingham potential energy functions. The results show that the close-range and short-range relationships are valid for bond compression and for very small changes in bond length, respectively, while the long-range relationship is valid for bond stretching. A wide-range relationship is proposed to combine the comparative advantages of the close-range, short-range and long-range parameter relationships. The wide-range relationship is useful for replacing the close-range, short-range and long-range parameter relationships, thereby preventing the undesired effects of potential energy jumps resulting from functional switching between the close-range, short-range and long-range interaction energies.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin Brown, Brittany Repac, Jeff Gonder

    Self-driving or “autonomous” vehicles (AVs) have leapt from science fiction into the forefront of transportation technology news. The technology is likely still years away from widespread commercial adoption, but the recent progress makes it worth considering the potential national impacts of widespread implementation. This poster makes an initial assessment of the energy impacts of AV adoptionon a per-vehicle basis and on total personal vehicle fuel use. While AVs offer numerous potential advantages in energy use, there are significant factors that could decrease or even eliminate the energy benefits under some circumstances. This analysis attempts to describe, quantify, and combine manymore » of the possible effects. The nature and magnitude of these effects remain highly uncertain. This set of effects is very unlikely to be exhaustive, but this analysis approach can serve as a base for future estimates.« less

  14. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  15. Optimised effective potential for ground states, excited states, and time-dependent phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, E.K.U.

    1996-12-31

    (1) The optimized effective potential method is a variant of the traditional Kohn-Sham scheme. In this variant, the exchange-correlation energy E{sub xc} is an explicit functional of single-particle orbitals. The exchange-correlation potential, given as usual by the functional derivative v{sub xc} = {delta}E{sub xc}/{delta}{rho}, then satisfies as integral equation involving the single-particle orbitals. This integral equation in solved semi-analytically using a scheme recently proposed by Krieger, Li and Iafrate. If the exact (Fock) exchange-energy functional is employed together with the Colle-Salvetti orbital functional for the correlation energy, the mean absolute deviation of the resulting ground-state energies from the exact nonrelativisticmore » values is CT mH for the first-row atoms, as compared to 4.5 mH in a state-of-the-art CI calculation. The proposed scheme is thus significantly more accurate than the conventional Kohn-Sham method while the numerical effort involved is about the same as for an ordinary Hanree-Fock calculation. (2) A time-dependent generalization of the optimized-potential method is presented and applied to the linear-response regime. Since time-dependent density functional theory leads to a formally exact representation of the frequency-dependent linear density response and since the latter, as a function of frequency, has poles at the excitation energies of the fully interacting system, the formalism is suitable for the calculation of excitation energies. A simple additive correction to the Kohn-Sham single-particle excitation energies will be deduced and first results for atomic and molecular singlet and triplet excitation energies will be presented. (3) Beyond the regime of linear response, the time-dependent optimized-potential method is employed to describe atoms in strong emtosecond laser pulses. Ionization yields and harmonic spectra will be presented and compared with experimental data.« less

  16. FLASTAR: Florida Alliance for Saving Taxes and Energy Resources. Final Report.

    ERIC Educational Resources Information Center

    Sherwin, John R.; Parker, Danny S.

    A study of the Florida Public Building Loan Concept pilot program determined its effectiveness in helping to upgrade building energy systems. The pilot program, termed FLASTAR (Florida Alliance for Saving Taxes and Resources), involved the comprehensive metering of an elementary school to demonstrate energy savings potential after retrofitting…

  17. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  18. Simultaneous effects of pressure and temperature on donor binding energy in Pöschl-Teller quantum well

    NASA Astrophysics Data System (ADS)

    Hakimyfard, Alireza; Barseghyan, M. G.; Duque, C. A.; Kirakosyan, A. A.

    2009-12-01

    In the frame of the variational method and the effective-mass approximation, the effects of hydrostatic pressure and temperature on the binding energy for donor impurities in the Pöschl-Teller quantum well are studied. The binding energy dependencies on the width of the quantum well, the hydrostatic pressure, the impurity position, the temperature, and the parameters of the confining potential are reported. The results show that the binding energy increases (decreases) with the increasing of the hydrostatic pressure (temperature). It is also found that, associated with the symmetry breaking in the Pöschl-Teller quantum well, and depending on the impurity position, the binding energy can increase or decrease.

  19. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  20. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    PubMed

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  1. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    NASA Astrophysics Data System (ADS)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  2. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  3. Wildlife conservation and solar energy development in the Desert Southwest, United States

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Josua R.

    2011-01-01

    Large areas of public land are currently being permitted or evaluated for utility-scale solar energy development (USSED) in the southwestern United States, including areas with high biodiversity and protected species. However, peer-reviewed studies of the effects of USSED on wildlife are lacking. The potential effects of the construction and the eventual decommissioning of solar energy facilities include the direct mortality of wildlife; environmental impacts of fugitive dust and dust suppressants; destruction and modification of habitat, including the impacts of roads; and off-site impacts related to construction material acquisition, processing, and transportation. The potential effects of the operation and maintenance of the facilities include habitat fragmentation and barriers to gene flow, increased noise, electromagnetic field generation, microclimate alteration, pollution, water consumption, and fire. Facility design effects, the efficacy of site-selection criteria, and the cumulative effects of USSED on regional wildlife populations are unknown. Currently available peer-reviewed data are insufficient to allow a rigorous assessment of the impact of USSED on wildlife.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.D.; Bharadwaj, R.K.

    The molecular geometries and conformational energies of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 1,3-dimethyl-1,3-dinitro methyldiamine (DDMD) and have been determined from high-level quantum chemistry calculations and have been used in parametrizing a classical potential function for simulations of HMX. Geometry optimizations for HMX and DDMD and rotational energy barrier searches for DDMD were performed at the B3LYP/6-311G** level, with subsequent single-point energy calculations at the MP2/6-311G** level. Four unique low-energy conformers were found for HMX, two whose conformational geometries correspond closely to those found in HMX polymorphs from crystallographic studies and two additional, lower energy conformers that are not seen in the crystallinemore » phases. For DDMD, three unique low-energy conformers, and the rotational energy barriers between them, were located. In parametrizing the classical potential function for HMX, nonbonded repulsion/dispersion parameters, valence parameters, and parameters describing nitro group rotation and out-of-plane distortion at the amine nitrogen were taken from the previous studies of dimethylnitramine. Polar effects in HMX and DDMD were represented by sets of partial atomic charges that reproduce the electrostatic potential and dipole moments for the low-energy conformers of these molecules as determined from the quantum chemistry wave functions. Parameters describing conformational energetics for the C-N-C-N dihedrals were determined by fitting the classical potential function to reproduce relative conformational energies in HMX as found from quantum chemistry. The resulting potential was found to give a good representation of the conformer geometries and relative conformer energies in HMX and a reasonable description of the low-energy conformers and rotational energy barriers in DDMD.« less

  5. Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.

    PubMed

    Wasserscheid, Peter; Seiler, Matthias

    2011-04-18

    One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  7. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  8. Energy drinks: Getting wings but at what health cost?

    PubMed

    Ibrahim, Nahla Khamis; Iftikhar, Rahila

    2014-01-01

    Energy drink consumption represents a global public health problem, especially among adolescents and young adults. The consumption of energy drinks has seen a substantial increase during the past few decades, especially in the Western and Asian countries. Although manufacturers of energy drinks claim that these beverages are beneficial in that they can boost energy, physical performance, and improve cognitive performance, there is insufficient scientific evidence to support these claims. The known and unknown pharmacology of the constituents of energy drinks, supplemented with reports of toxicity, raise concern for the potentially severe adverse events linked with energy drink use. Limited numbers of reviews have been published on this important subject..The aim of this review was to identify the major ingredients in energy drinks and to delineate the adverse effects related to their consumption. Electronic databases of PubMed, Clinical Key, and Google and Cochrane library were extensively searched for energy drink articles. More than hundred articles were reviewed, scrutinized and critically appraised and the most relevant forty articles were used Conclusion: Energy drinks & its ingredients are potentially dangerous to many aspects of health. Measures should be taken to improve awareness among adolescents and their parents regarding the potential hazards of energy drinks. Furthermore, the sale of energy drinks on college and university campuses and to adolescents below 16 years should be prohibited.

  9. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems.

    PubMed

    Jorgensen, William L; Tirado-Rives, Julian

    2005-05-10

    An overview is provided on the development and status of potential energy functions that are used in atomic-level statistical mechanics and molecular dynamics simulations of water and of organic and biomolecular systems. Some topics that are considered are the form of force fields, their parameterization and performance, simulations of organic liquids, computation of free energies of hydration, universal extension for organic molecules, and choice of atomic charges. The discussion of water models covers some history, performance issues, and special topics such as nuclear quantum effects.

  10. Absolute vibrational numbering from isotope shifts in fragmentary spectroscopic data

    NASA Astrophysics Data System (ADS)

    Pashov, A.; Kowalczyk, P.; Jastrzebski, W.

    2018-05-01

    We discuss application of the isotope effect to establish the absolute vibrational numbering in electronic states of diatomic molecules. This is illustrated by examples of states with potential energy curves of both regular and irregular shape, with one or two potential minima. The minimum number of spectroscopic data (either term values or spectral line positions) necessary to provide a unique numbering is considered. We show that at favourable conditions just four term energies (or spectral lines) in one isotopologue and one term energy in the other suffice.

  11. Spectra of helium clusters with up to six atoms using soft-core potentials

    NASA Astrophysics Data System (ADS)

    Gattobigio, M.; Kievsky, A.; Viviani, M.

    2011-11-01

    In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.

  12. DLA Energy Biofuel Feedstock Metrics Study

    DTIC Science & Technology

    2012-12-11

    mission is to “provide the Depart- ment of Defense [DoD] and other government agencies with comprehensive ener- gy solutions in the most effective and...strategic imperative to consider energy security and climate change because of their potential effect on national security and mission readiness.8 For...mobility fuel costs have an adverse effect on military service programs and capa- bilities, particularly when combined with a tough appropriations

  13. Betaine is a positive regulator of mitochondrial respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro.more » Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.« less

  14. Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1990-09-01

    The molecular dynamics of vibrationally excited 1,2-difluoroethane-d4 isolated in Ar, Kr, and Xe matrices at 12 K are investigated using trajectory methods. The matrix model is an fcc crystal containing 125 unit cells with 666 atoms in a cubic (5×5×5) arrangement. It is assumed that 1,2-difluoroethane-d4 is held interstitially within the volume bounded by the innermost unit cell of the crystal. The transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The system potential is written as the separable sum of a lattice potential, a lattice-molecule interaction and a gas-phase potential for 1,2-difluoroethane. The first two of these are assumed to have pairwise form while the molecular potential is a modified form of the global potential previously developed for 1,2-difluoroethane [J. Phys. Chem. 91, 3266 (1987)]. Calculated sublimation energies for the pure crystals are in good accord with the experimental data. The distribution of metastable-state energies for matrix-isolated 1,2-difluoroethane-d4 is Gaussian in form. In krypton, the full width at half maximum for the distribution is 0.37 eV. For a total excitation energy of 6.314 eV, the observed dynamic processes are vibrational relaxation, orientational exchange, and four-center DF elimination reactions. The first of these processes is characterized by a near linear, first-order decay curve with rate coefficients in the range 1.30-1.48×1011 s-1. The average rates in krypton and xenon are nearly equal. The process is slightly slower in argon. The decay curves exhibit characteristic high-frequency oscillations that are generally seen in energy transfer studies. It is demonstrated that these oscillations are associated with the frequencies for intramolecular energy transfer so that the entire frequency spectrum for such transfer processes can be obtained from the Fourier transform of the decay curve. Orientational exchange is shown to occur with much greater frequency as the unit cell spacing decreases. The occurrence of orientational exchange generally results in a very rapid dissipation of molecular rotational energy to the lattice which causes a characteristic break to occur in the decay curve. It is shown that 16% of the total energy transfer to the lattice in argon is a result of such rotational energy transfer. The propensity for four-center DF elimination is found to be greater in argon than in either krypton or xenon. The relaxation data show that this effect is not the result of different energy transfer rates but is probably associated with steric effects resulting from the smaller lattice dimensions in argon. Isotope effects upon the energy partitioning in unimolecular reactions of 1,2-difluoroethane and upon the energy transfer dynamics under matrix-isolation conditions are also reported.

  15. Comparison of local exchange potentials of electron-N2 scattering

    NASA Astrophysics Data System (ADS)

    Rumble, J. R., Jr.; Truhlar, D. G.

    1980-05-01

    Vibrationally and electronically elastic electron scattering by N2 at 2-30 eV impact energy is considered. Static, static-exchange, and static-exchange-plus-polarization potentials, Cade-Sales-Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron-gas exchange potentials are examined. It is shown that the semiclassical exchange approximation is too attractive at low energy for N2. It is also shown quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until the differences are about 8% for the total integral cross section at 30 eV.

  16. Predictions of thermal buckling strengths of hypersonic aircraft sandwich panels using minimum potential energy and finite element methods

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1995-01-01

    Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.

  17. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    PubMed

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  18. Configurational entropy: an improvement of the quasiharmonic approximation using configurational temperature.

    PubMed

    Nguyen, Phuong H; Derreumaux, Philippe

    2012-01-14

    One challenge in computational biophysics and biology is to develop methodologies able to estimate accurately the configurational entropy of macromolecules. Among many methods, the quasiharmonic approximation (QH) is most widely used as it is simple in both theory and implementation. However, it has been shown that this method becomes inaccurate by overestimating entropy for systems with rugged free energy landscapes. Here, we propose a simple method to improve the QH approximation, i.e., to reduce QH entropy. We approximate the potential energy landscape of the system by an effective harmonic potential, and request that this potential must produce exactly the configurational temperature of the system. Due to this constraint, the force constants associated with the effective harmonic potential are increased, or equivalently, entropy of motion governed by this effective harmonic potential is reduced. We also introduce the effective configurational temperature concept which can be used as an indicator to check the anharmonicity of the free energy landscape. To validate the new method we compare it with the recently developed expansion approximate method by calculating entropy of one simple model system and two peptides with 3 and 16 amino acids either in gas phase or in explicit solvent. We show that the new method appears to be a good choice in practice as it is a compromise between accuracy and computational speed. A modification of the expansion approximate method is also introduced and advantages are discussed in some detail.

  19. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Ruardij, Piet; Greenwood, Naomi

    2016-05-01

    A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and a high-impact scenario with massive expansion of tidal energy extraction to 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The massive-expansion 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of the Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher-resolution model and (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.

  20. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  1. LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuenge, Jason R.

    Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it ismore » recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.« less

  2. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.

  3. Energy sources for gynecologic laparoscopic surgery: a review of the literature.

    PubMed

    Law, Kenneth S K; Abbott, Jason A; Lyons, Stephen D

    2014-12-01

    A range of energy sources are used in gynecologic laparoscopy. These energy sources include monopolar electrosurgery, bipolar electrosurgery (including "advanced bipolar" devices that incorporate tissue feedback monitoring), and various types of laser and ultrasonic technologies. Gynecologists using these tools should be aware of the potential benefits and potential dangers of these instruments. This review provides an overview of the biophysics of these energy sources, their tissue effects, and the complications that may arise. It aims to highlight any potential advantages or disadvantages of various energy sources, as reported by clinical and laboratory studies. Literature relating to energy sources used in gynecologic laparoscopy was reviewed. While laboratory-based studies have reported differences between various energy sources, these differences may not be clinically significant. The choice of instrumentation may depend on the nature of the surgical task being performed, but other factors, such as the surgeon's training/experience, cost, and industry marketing, may also influence the decision. TAn awareness of the pros and cons of each energy modality and their relative efficacy profiles is paramount. It is important that surgeons have an understanding of the biophysics of these technologies in order to understand their limitations and potential dangers and to utilize the most appropriate energy source(s) in the appropriate clinical setting, in order to both minimize the risk of inadvertent injuries during gynecologic laparoscopy and to maximize cost-efficient delivery of health care.

  4. Facility Energy Decision System (FEDS) Assessment Report for Fort Buchanan, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; Solana, Amy E.; Dixon, Douglas R.

    2005-02-01

    This report documents the findings of the Facility Energy Decision System (FEDS) assessment at Fort Buchanan, Puerto Rico, by a team of PNNL engineers under contract to the Installation Management Agency (IMA) Southeast Region Office (SERO). Funding support was also provided by the Department of Energy's Federal Energy Management Program. The purpose of the assessment was to determine how energy is consumed at Fort Buchanan, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  5. Oxytocin and potential benefits for obesity treatment.

    PubMed

    Olszewski, Pawel K; Klockars, Anica; Levine, Allen S

    2017-10-01

    Laboratory animal experiments have consistently shown that oxytocin causes early termination of food intake, thereby promoting a decrease in body weight in a long term. Recent studies have also assessed some of oxytocin's effects on appetite and energy balance in humans. The present study examines the findings of the key basic research and of the few clinical studies published thus far in the context of potential benefits and challenges stemming from the use of oxytocin in obese patients. Basic research indicates the involvement of oxytocin in satiety, processing, in reducing a drive to eat for pleasure and because of psychosocial factors. Although the results of clinical studies are very scarce, they suggest that oxytocin administered intranasally in humans decreases energy-induced and reward-induced eating, supports cognitive control of food choices, and improves glucose homeostasis, and its effectiveness may be BMI dependent. Despite the wealth of basic research showing broad anorexigenic effects of oxytocin, clinical studies on oxytocin's therapeutic potential in obesity, are still in their infancy. Future implementation of oxytocin-based pharmacological strategies in controlling energy balance will likely depend on our ability to integrate diverse behavioral and metabolic effects of oxytocin in obesity treatment regimens.

  6. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects.

    PubMed

    Gawron, James H; Keoleian, Gregory A; De Kleine, Robert D; Wallington, Timothy J; Kim, Hyung Chul

    2018-03-06

    Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.

  7. An Assessment Model for Energy Efficiency Program Planning in Electric Utilities: Case of the Pacific of Northwest U.S.A

    NASA Astrophysics Data System (ADS)

    Iskin, Ibrahim

    Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.

  8. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater.

    PubMed

    Gu, Di; Gao, Simeng; Jiang, TingTing; Wang, Baohui

    2017-03-15

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO 2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.

  9. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater

    PubMed Central

    Gu, Di; Gao, Simeng; Jiang, TingTing; Wang, Baohui

    2017-01-01

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process. PMID:28294180

  10. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater

    NASA Astrophysics Data System (ADS)

    Gu, Di; Gao, Simeng; Jiang, Tingting; Wang, Baohui

    2017-03-01

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.

  11. Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?

    NASA Astrophysics Data System (ADS)

    Castellanos, Sergio; Sunter, Deborah A.; Kammen, Daniel M.

    2017-12-01

    Distributed photovoltaics (PV) have played a critical role in the deployment of solar energy, currently making up roughly half of the global PV installed capacity. However, there remains significant unused economically beneficial potential. Estimates of the total technical potential for rooftop PV systems in the United States calculate a generation comparable to approximately 40% of the 2016 total national electric-sector sales. To best take advantage of the rooftop PV potential, effective analytic tools that support deployment strategies and aggressive local, state, and national policies to reduce the soft cost of solar energy are vital. A key step is the low-cost automation of data analysis and business case presentation for structure-integrated solar energy. In this paper, the scalability and resolution of various methods to assess the urban rooftop PV potential are compared, concluding with suggestions for future work in bridging methodologies to better assist policy makers.

  12. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices andmore » their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.« less

  13. How Green is 'Green' Energy?

    PubMed

    Gibson, Luke; Wilman, Elspeth N; Laurance, William F

    2017-12-01

    Renewable energy is an important piece of the puzzle in meeting growing energy demands and mitigating climate change, but the potentially adverse effects of such technologies are often overlooked. Given that climate and ecology are inextricably linked, assessing the effects of energy technologies requires one to consider their full suite of global environmental concerns. We review here the ecological impacts of three major types of renewable energy - hydro, solar, and wind energy - and highlight some strategies for mitigating their negative effects. All three types can have significant environmental consequences in certain contexts. Wind power has the fewest and most easily mitigated impacts; solar energy is comparably benign if designed and managed carefully. Hydropower clearly has the greatest risks, particularly in certain ecological and geographical settings. More research is needed to assess the environmental impacts of these 'green' energy technologies, given that all are rapidly expanding globally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Energy Expenditure during Physically Interactive Video Game Playing in Male College Students with Different Playing Experience

    ERIC Educational Resources Information Center

    Sell, Katie; Lillie, Tia; Taylor, Julie

    2008-01-01

    Objective: Researchers have yet to explore the effect of physically interactive video game playing on energy expenditure, despite its potential for meeting current minimal daily activity and energy expenditure recommendations. Participants and Methods: Nineteen male college students-12 experienced "Dance Dance Revolution" (DDR) players and 7…

  15. ResStock Analysis Tool | Buildings | NREL

    Science.gov Websites

    Energy and Cost Savings for U.S. Homes Contact Eric Wilson to learn how ResStock can benefit your approach to large-scale residential energy analysis by combining: Large public and private data sources uncovered $49 billion in potential annual utility bill savings through cost-effective energy efficiency

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.

    Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands canmore » have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  17. On the contribution of intramolecular zero point energy to the equation of state of solid H2

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, V.; Etters, R. D.

    1978-01-01

    Experimental evidence shows that the internal zero-point energy of the H2 molecule exhibits a relatively strong pressure dependence in the solid as well as changing considerably upon condensation. It is shown that these effects contribute about 6% to the total sublimation energy and to the pressure in the solid state. Methods to modify the ab initio isolated pair potential to account for these environmental effects are discussed.

  18. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  19. A benchmark for reaction coordinates in the transition path ensemble

    PubMed Central

    2016-01-01

    The molecular mechanism of a reaction is embedded in its transition path ensemble, the complete collection of reactive trajectories. Utilizing the information in the transition path ensemble alone, we developed a novel metric, which we termed the emergent potential energy, for distinguishing reaction coordinates from the bath modes. The emergent potential energy can be understood as the average energy cost for making a displacement of a coordinate in the transition path ensemble. Where displacing a bath mode invokes essentially no cost, it costs significantly to move the reaction coordinate. Based on some general assumptions of the behaviors of reaction and bath coordinates in the transition path ensemble, we proved theoretically with statistical mechanics that the emergent potential energy could serve as a benchmark of reaction coordinates and demonstrated its effectiveness by applying it to a prototypical system of biomolecular dynamics. Using the emergent potential energy as guidance, we developed a committor-free and intuition-independent method for identifying reaction coordinates in complex systems. We expect this method to be applicable to a wide range of reaction processes in complex biomolecular systems. PMID:27059559

  20. Isotopic dependence of fusion enhancement of various heavy ion systems using energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2015-01-01

    In the present work, the fusion of symmetric and asymmetric projectile-target combinations are deeply analyzed within the framework of energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus-nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm, which is much larger than a value (a = 0.65 fm) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus-nucleus potential possesses normal diffuseness parameter.

  1. Assessing the regional impacts of increased energy maize cultivation on farmland birds.

    PubMed

    Brandt, Karoline; Glemnitz, Michael

    2014-02-01

    The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15%) were not reproduced in all cases in scenario 2 (increased energy maize by 30%). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, Stefano; LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza; Vigano, Federico, E-mail: federico.vigano@polimi.it

    Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papersmore » reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).« less

  3. Al-Air Batteries: Fundamental Thermodynamic Limitations from First Principles Theory

    NASA Astrophysics Data System (ADS)

    Chen, Leanne D.; Noerskov, Jens K.; Luntz, Alan C.

    2015-03-01

    The Al-air battery possesses high theoretical specific energy (4140 Wh/kg) and is therefore an attractive candidate for vehicle propulsion applications. However, the experimentally observed open-circuit potential is much lower than what thermodynamics predicts, and this potential loss is widely believed to be an effect of corrosion. We present a detailed study of the Al-air battery using density functional theory. The results suggest that the difference between bulk thermodynamic and surface potentials is due to both the effects of asymmetry in multi-electron transfer reactions that define the anodic dissolution of Al and, more importantly, a large chemical step inherent to the formation of bulk Al(OH)3 from surface intermediates. The former results in an energy loss of 3%, while the latter accounts for 14 -29% of the total thermodynamic energy depending on the surface site where dissolution occurs. Therefore, the maximum open-circuit potential of the Al anode is only -1.87 V vs. SHE in the absence of thermal excitations, contrary to -2.34 V predicted by bulk thermodynamics at pH 14.6. This is a fundamental limitation of the system and governs the maximum output potential, which cannot be improved even if corrosion effects were completely suppressed. Supported by the Natural Sciences and Engineering Research Council of Canada and the ReLiable Project (#11-116792) funded by the Danish Council for Strategic Research.

  4. Majorana bound states in the finite-length chain

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2015-08-01

    Recent experiments investigating edge states in ferromagnetic atomic chains on superconducting substrate are analyzed. In particular, finite size effects are considered. It is shown how the energy of the Majorana bound state depends on the length of the chain, as well as on the parameters of the model. Oscillations of the energy of the bound edge state in the chain as a function of the length of the chain, and as a function of the applied voltage (or the chemical potential) are studied. In particular, it has been shown that oscillations can exist only for some values of the effective potential.

  5. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    PubMed

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  6. Final Technical Report: "Achieving Regional Energy Efficiency Potential in the Southeast”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Mandy

    The overall objective of this award was to facilitate sharing of DOE resources and best practices as well as provide technical assistance to key stakeholders to support greater compliance with energy efficiency standards and increased energy savings. The outcomes of this award include greater awareness among key stakeholders on energy efficiency topics, increased deployment and utilization of DOE resources, and effective policies and programs to support energy efficiency in the Southeast.

  7. Self-Protecting Security for Assured Information Sharing

    DTIC Science & Technology

    2015-08-29

    by Author Sophia Novitzky (Senior), Virginia Tech Mahalia Sapp (Senior), Virginia Tech Performance Sensitivity in Vertical Geothermal Energy...Harvesting Systems 9:15 AM, Annapolis Room, Student Center Residential geothermal energy systems have the potential to provide a cost-effective, low

  8. Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy

    PubMed Central

    Phoenix, Kathryn N.; Vumbaca, Frank; Fox, Melissa M.; Evans, Rebecca

    2010-01-01

    Dietary energy restriction has been shown to repress both mammary tumorigenesis and aggressive mammary tumor growth in animal studies. Metformin, a caloric restriction mimetic, has a long history of safe use as an insulin sensitizer in diabetics and has been shown to reduce cancer incidence and cancer-related mortality in humans. To determine the potential impact of dietary energy availability and metformin therapy on aggressive breast tumor growth and metastasis, an orthotopic syngeneic model using triple negative 66cl4 tumor cells in Balb/c mice was employed. The effect of dietary restriction, a standard maintenance diet or a diet with high levels of free sugar, were tested for their effects on tumor growth and secondary metastases to the lung. Metformin therapy with the various diets indicated that metformin can be highly effective at suppressing systemic metabolic biomarkers such as IGF-1, insulin and glucose, especially in the high energy diet treated animals. Long-term metformin treatment demonstrated moderate yet significant effects on primary tumor growth, most significantly in conjunction with the high energy diet. When compared to the control diet, the high energy diet promoted tumor growth, expression of the inflammatory adipokines leptin and resistin, induced lung priming by bone marrow-derived myeloid cells and promoted metastatic potential. Metformin had no effect on adipokine expression or the development of lung metastases with the standard or the high energy diet. These data indicate that metformin may have tumor suppressing activity where a metabolic phenotype of high fuel intake, metabolic syndrome, and diabetes exist, but may have little or no effect on events controlling the metastatic niche driven by proinflammatory events. PMID:20204498

  9. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    PubMed Central

    Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell

    2015-01-01

    SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  10. Ground state atoms confined in a real Rydberg and complex Rydberg-Scarf II potential

    NASA Astrophysics Data System (ADS)

    Mansoori Kermani, Maryam

    2017-12-01

    In this work, a system of two ground state atoms confined in a one-dimensional real Rydberg potential was modeled. The atom-atom interaction was considered as a nonlocal separable potential (NLSP) of rank one. This potential was assumed because it leads to an analytical solution of the Lippmann-Schwinger equation. The NLSPs are useful in the few body problems that the many-body potential at each point is replaced by a projective two-body nonlocal potential operator. Analytical expressions for the confined particle resolvent were calculated as a key function in this study. The contributions of the bound and virtual states in the complex energy plane were obtained via the derived transition matrix. Since the low energy quantum scattering problems scattering length is an important quantity, the behavior of this parameter was described versus the reduced energy considering various values of potential parameters. In a one-dimensional model, the total cross section in units of the area is not a meaningful property; however, the reflectance coefficient has a similar role. Therefore the reflectance probability and its behavior were investigated. Then a new confined potential via combining the complex absorbing Scarf II potential with the real Rydberg potential, called the Rydberg-Scarf II potential, was introduced to construct a non-Hermitian Hamiltonian. In order to investigate the effect of the complex potential, the scattering length and reflectance coefficient were calculated. It was concluded that in addition to the competition between the repulsive and attractive parts of both potentials, the imaginary part of the complex potential has an important effect on the properties of the system. The complex potential also reduces the reflectance probability via increasing the absorption probability. For all numerical computations, the parameters of a system including argon gas confined in graphite were considered.

  11. Energy conversion in magneto-rheological elastomers

    NASA Astrophysics Data System (ADS)

    Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves

    2017-12-01

    Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed.

  12. Energy conversion in magneto-rheological elastomers

    PubMed Central

    Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves

    2017-01-01

    Abstract Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed. PMID:29152013

  13. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2018-04-01

    Spectroscopically accurate Potential Energy Surfaces (PESs) are fundamental for explaining and making predictions of the infrared and microwave spectra of van der Waals (vdW) complexes, and the model used for the potential energy function is critically important for providing accurate, robust and portable analytical PESs. The Morse/Long-Range (MLR) model has proved to be one of the most general, flexible and accurate one-dimensional (1D) model potentials, as it has physically meaningful parameters, is flexible, smooth and differentiable everywhere, to all orders and extrapolates sensibly at both long and short ranges. The Multi-Dimensional Morse/Long-Range (mdMLR) potential energy model described herein is based on that 1D MLR model, and has proved to be effective and accurate in the potentiology of various types of vdW complexes. In this paper, we review the current status of development of the mdMLR model and its application to vdW complexes. The future of the mdMLR model is also discussed. This review can serve as a tutorial for the construction of an mdMLR PES.

  14. Conditions for order and chaos in the dynamics of a trapped Bose-Einstein condensate in coordinate and energy space

    NASA Astrophysics Data System (ADS)

    Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.; Balaz, Antun

    2016-03-01

    We investigate numerically conditions for order and chaos in the dynamics of an interacting Bose-Einstein condensate (BEC) confined by an external trap cut off by a hard-wall box potential. The BEC is stirred by a laser to induce excitations manifesting as irregular spatial and energy oscillations of the trapped cloud. Adding laser stirring to the external trap results in an effective time-varying trapping frequency in connection with the dynamically changing combined external+laser potential trap. The resulting dynamics are analyzed by plotting their trajectories in coordinate phase space and in energy space. The Lyapunov exponents are computed to confirm the existence of chaos in the latter space. Quantum effects and trap anharmonicity are demonstrated to generate chaos in energy space, thus confirming its presence and implicating either quantum effects or trap anharmonicity as its generator. The presence of chaos in energy space does not necessarily translate into chaos in coordinate space. In general, a dynamic trapping frequency is found to promote chaos in a trapped BEC. An apparent means to suppress chaos in a trapped BEC is achieved by increasing the characteristic scale of the external trap with respect to the condensate size.

  15. Wind Power Potential at Abandoned Mines in Korea

    NASA Astrophysics Data System (ADS)

    jang, M.; Choi, Y.; Park, H.; Go, W.

    2013-12-01

    This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.

  16. Relativistic Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Mendel Steiner, Joseph

    2017-05-01

    A new Relativistic Newtonian Dynamics (RND) for motion under a conservative force capable to describe non-classical behavior in astronomy is proposed. The rotor experiments using Mössbauer spectroscopy with synchrotron radiation, described in the paper, indicate the influence of non-gravitational acceleration or potential energy on time. Similarly, the observed precession of Mercury and the periastron advance of binaries can be explained by the influence of gravitational potential energy on spacetime. The proposed RND incorporates the influence of potential energy on spacetime in Newton’s dynamics. The effect of this influence on time intervals, space increments and velocities is described explicitly by the use of the concept of escape trajectory. For an attracting conservative static potential we derived the RND energy conservation and the dynamics equation for motion of objects with non-zero mass and for massless particles. These equations are subsequently simplified for motion under a central force. Without the need to curve spacetime, this model predicts accurately the four non-classical observations in astronomy used to test the General Relativity.

  17. The effective hyper-Kähler potential in the N = 2 supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Ketov, Sergei V.

    1997-02-01

    The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.

  18. Energy Drink Consumption in Europe: A Review of the Risks, Adverse Health Effects, and Policy Options to Respond

    PubMed Central

    Breda, João Joaquim; Whiting, Stephen Hugh; Encarnação, Ricardo; Norberg, Stina; Jones, Rebecca; Reinap, Marge; Jewell, Jo

    2014-01-01

    With the worldwide consumption of energy drinks increasing in recent years, concerns have been raised both in the scientific community and among the general public about the health effects of these products. Recent studies provide data on consumption patterns in Europe; however, more research is needed to determine the potential for adverse health effects related to the increasing consumption of energy drinks, particularly among young people. A review of the literature was conducted to identify published articles that examined the health risks, consequences, and policies related to energy drink consumption. The health risks associated with energy drink consumption are primarily related to their caffeine content, but more research is needed that evaluates the long-term effects of consuming common energy drink ingredients. The evidence indicating adverse health effects due to the consumption of energy drinks with alcohol is growing. The risks of heavy consumption of energy drinks among young people have largely gone unaddressed and are poised to become a significant public health problem in the future. PMID:25360435

  19. Energy drink consumption in europe: a review of the risks, adverse health effects, and policy options to respond.

    PubMed

    Breda, João Joaquim; Whiting, Stephen Hugh; Encarnação, Ricardo; Norberg, Stina; Jones, Rebecca; Reinap, Marge; Jewell, Jo

    2014-01-01

    With the worldwide consumption of energy drinks increasing in recent years, concerns have been raised both in the scientific community and among the general public about the health effects of these products. Recent studies provide data on consumption patterns in Europe; however, more research is needed to determine the potential for adverse health effects related to the increasing consumption of energy drinks, particularly among young people. A review of the literature was conducted to identify published articles that examined the health risks, consequences, and policies related to energy drink consumption. The health risks associated with energy drink consumption are primarily related to their caffeine content, but more research is needed that evaluates the long-term effects of consuming common energy drink ingredients. The evidence indicating adverse health effects due to the consumption of energy drinks with alcohol is growing. The risks of heavy consumption of energy drinks among young people have largely gone unaddressed and are poised to become a significant public health problem in the future.

  20. Nanophysics in graphene: neutrino physics in quantum rings and superlattices.

    PubMed

    Fertig, H A; Brey, Luis

    2010-12-13

    Electrons in graphene at low energy obey a two-dimensional Dirac equation, closely analogous to that of neutrinos. As a result, quantum mechanical effects when the system is confined or subjected to potentials at the nanoscale may be quite different from what happens in conventional electronic systems. In this article, we review recent progress on two systems where this is indeed the case: quantum rings and graphene electrons in a superlattice potential. In the former case, we demonstrate that the spectrum reveals signatures of 'effective time-reversal symmetry breaking', in which the spectra are most naturally interpreted in terms of effective magnetic flux contained in the ring, even when no real flux is present. A one-dimensional superlattice potential is shown to induce strong band-structure changes, allowing the number of Dirac points at zero energy to be manipulated by the strength and/or period of the potential. The emergence of new Dirac points is shown to be accompanied by strong signatures in the conduction properties of the system.

  1. Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates

    NASA Astrophysics Data System (ADS)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2016-10-01

    We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.

  2. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  3. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    PubMed

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    PubMed

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Nucleon effective masses in neutron-rich matter

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Cai, Bao-Jun; Chen, Lie-Wen; Xu, Jun

    2018-03-01

    Various kinds of isovector nucleon effective masses are used in the literature to characterize the momentum/energy dependence of the nucleon symmetry potential or self-energy due to the space/time non-locality of the underlying isovector strong interaction in neutron-rich nucleonic matter. The multifaceted studies on nucleon isovector effective masses are multi-disciplinary in nature. Besides structures, masses and low-lying excited states of nuclei as well as nuclear reactions, studies of the isospin dependence of short-range correlations in nuclei from scatterings of high-energy electrons and protons on heavy nuclei also help understand nucleon effective masses especially the so-called E-mass in neutron-rich matter. A thorough understanding of all kinds of nucleon effective masses has multiple impacts on many interesting issues in both nuclear physics and astrophysics. Indeed, essentially all microscopic many-body theories and phenomenological models with various nuclear forces available in the literature have been used to calculate single-nucleon potentials and the associated nucleon effective masses in neutron-rich matter. There are also fundamental principles connecting different aspects and impacts of isovector strong interactions. In particular, the Hugenholtz-Van Hove theorem connects analytically nuclear symmetry energy with both isoscalar and isovector nucleon effective masses as well as their own momentum dependences. It also reveals how the isospin-quartic term in the equation of state of neutron-rich matter depends on the high-order momentum-derivatives of both isoscalar and isovector nucleon potentials. The Migdal-Luttinger theorem facilitates the extraction of nucleon E-mass and its isospin dependence from experimentally constrained single-nucleon momentum distributions. The momentum/energy dependence of the symmetry potential and the corresponding neutron-proton effective mass splitting also affect transport properties and the liquid-gas phase transition in neutron-rich matter. Moreover, they influence the dynamics and isospin-sensitive observables of heavy-ion collisions through both the Vlasov term and the collision integrals of the Boltzmann-Uehling-Uhlenbeck transport equation. We review here some of the significant progresses made in recent years by the nuclear physics community in resolving some of the hotly debated and longstanding issues regarding nucleon effective masses especially in dense neutron-rich matter. We also point out some of the remaining key issues requiring further investigations in the era of high precision experiments using advanced rare isotope beams.

  6. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  7. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  8. The crystal acceleration effect for cold neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru; Berdnikov, Ya. A.; Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru

    A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to itsmore » homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.« less

  9. Energy Considerations of Hypothetical Space Drives

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    2007-01-01

    The energy requirements of hypothetical, propellant-less space drives are compared to rockets. This serves to provide introductory estimates for potential benefits and to suggest analytical approaches for further study. A "space drive" is defined as an idealized form of propulsion that converts stored potential energy directly into kinetic energy using only the interactions between the spacecraft and its surrounding space. For Earth-to-orbit, the space drive uses 3.7 times less energy. For deep space travel, energy is proportional to the square of delta-v, whereas rocket energy scales exponentially. This has the effect of rendering a space drive 150-orders-of-magnitude better than a 17,000-s Specific Impulse rocket for sending a modest 5000 kg probe to traverse 5 ly in 50 years. Indefinite levitation, which is impossible for a rocket, could conceivably require 62 MJ/kg for a space drive. Assumption sensitivities and further analysis options are offered to guide further inquires.

  10. Exchange and correlation energies in silicene illuminated by circularly polarized light

    NASA Astrophysics Data System (ADS)

    Iurov, Andrii; Gumbs, Godfrey; Huang, Danhong

    2017-05-01

    Both the exchange and correlation energies due to Coulomb and spin-orbit interactions in a monolayer silicene with a buckled honeycomb lattice are calculated. We use Lindhard formalism for the polarizability. Many-body effects in such Dirac-like materials are studied with an emphasis on the influence of on-site potential difference ? between two sublattices. Our calculations have shown that the presence of an energy bandgap ? leads to a reduced exchange energy, which has some potential applications, such as, tunability of entanglement of electrons for quantum information devices. Since silicene acquires two energy gaps associated with up- and down-pseudospin, we can adjust its electronic properties in a wider range by varying these two bandgaps as compared to graphene. Another way to tune silicene electronic properties is through impurity doping. Our numerical results demonstrate the dependence of exchange and correlation energies on the energy bandgaps, doping and temperature under circularly polarized light.

  11. Direct Delta-MBPT(2) method for ionization potentials, electron affinities, and excitation energies using fractional occupation numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent

    2013-01-01

    A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We showmore » the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.« less

  12. Current density characteristics in the studies of electromagnetically induced transparency in a GaAs/GaAlAs quantum well

    NASA Astrophysics Data System (ADS)

    Jayarubi, J.; Peter, A. John

    2017-05-01

    Confinement potential profiles due to conduction and valence bands are obtained in a Ga0.7Al0.3As/ GaAs/ Ga0.7Al0.3As using variation formulism. The free electron distribution is carried out. The confined energy eigenvalue and its corresponding wavefunctions of charge carriers are found using self-consistent method. The confined energies with the geometrical confinement are computed. The potentials due to charges are done by Poisson equation. The effects of dielectric mismatch between the GaAs and GaAlAs semiconductors are introduced in the effective potential expressions. Transfer matrix method is employed to obtain the respective energies. The transmission probability is obtained for a constant well size. The high current density characteristics as a function of applied voltage is investigated. This investigation on the electromagnetically induced transparency in the photonic material will exploit in fabricating novel nonlinear optical devices in future.

  13. USAF solar thermal applications case studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.

  14. Preliminary Assessment of Potential Avian Interactions at Four Proposed Wind Energy Facilities on Vandenberg Air Force Base, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The United States Air Force (USAF) is investigating whether to install wind turbines to provide a supplemental source of electricity at Vandenberg Air Force Base (VAFB) near Lompoc, California. As part of that investigation, VAFB sought assistance from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to provide a preliminary characterization of the potential risk to wildlife resources (mainly birds and bats) from wind turbine installations. With wind power development expanding throughout North America and Europe, concerns have surfaced over the number of bird fatalities associated with wind turbines. Guidelines developed for the wind industry by the Nationalmore » Wind Coordinating Committee (NWCC) recommend assessing potential impacts to birds, bats, and other potentially sensitive resources before construction. The primary purpose of an assessment is to identify potential conflicts with sensitive resources, to assist developers with identifying their permitting needs, and to develop strategies to avoid impacts or to mitigate their effects. This report provides a preliminary (Phase I) biological assessment of potential impacts to birds and bats that might result from construction and operation of the proposed wind energy facilities on VAFB.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr

    In warm inflation scenarios, radiation always exists, so that the radiation energy density is also assumed to be finite when inflation starts. To find out the origin of the non-vanishing initial radiation energy density, we revisit thermodynamic analysis for a warm inflation model and then derive an effective Stefan-Boltzmann law which is commensurate with the temperature-dependent effective potential by taking into account the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law shows that the zero energy density for radiation at the Grand Unification epoch increases until the inflation starts and it becomes eventually finite at the initialmore » stage of warm inflation. By using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation.« less

  16. Thermal Coefficient of Redox Potential of Alkali Metals

    NASA Astrophysics Data System (ADS)

    Fukuzumi, Yuya; Hinuma, Yoyo; Moritomo, Yutaka

    2018-05-01

    The thermal coefficient (α) of redox potential (V) is a significant physical quantity that converts the thermal energy into electric energy. In this short note, we carefully determined α of alkali metals (A = Li and Na) against electrolyte solution. The obtained α is much larger than that expected from the specific heat (CpA) of solid A and depends on electrolyte solution. These observations indicate that the solvent has significant effect on α.

  17. Report to the Chairman, Subcommittee on Investigations and Oversight, Committee on Science, Space, and Technology, House of Representatives. Geothermal Energy: Outlook limited for some uses but promising for geothermal heat pumps

    NASA Astrophysics Data System (ADS)

    1994-06-01

    Heat from the Earth, or geothermal energy, has the potential to help meet the nation's electricity needs, yet it supplies less than 1% of the nation's electricity. This GAO review describes the potential for three uses of geothermal energy - electrical generation, direct-use applications, and geothermal heat pumps - and, for each of these uses, the obstacles to their development are identified, along with the efforts made by industry and the government to overcome these obstacles, and the environmental effects entailed.

  18. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  19. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  20. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  1. Analyzing power Ay(θ) of n-3He elastic scattering between 1.60 and 5.54 MeV.

    PubMed

    Esterline, J; Tornow, W; Deltuva, A; Fonseca, A C

    2013-04-12

    Comprehensive and high-accuracy n-3He elastic scattering analyzing power Ay(θ) angular distributions were obtained at five incident neutron energies between 1.60 and 5.54 MeV. The data are compared to rigorous four-nucleon calculations using high-precision nucleon-nucleon potential models; three-nucleon force effects are found to be very small. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. Comparison to p-3He scattering over the same energy range exhibits unexpectedly large isospin effects.

  2. Effects of energy drinks on the cardiovascular system

    PubMed Central

    Wassef, Bishoy; Kohansieh, Michelle; Makaryus, Amgad N

    2017-01-01

    Throughout the last decade, the use of energy drinks has been increasingly looked upon with caution as potentially dangerous due to their perceived strong concentration of caffeine aside from other substances such as taurine, guarana, and L-carnitine that are largely unknown to the general public. In addition, a large number of energy drink intoxications have been reported all over the world including cases of seizures and arrhythmias. In this paper, we focus on the effect of energy drinks on the cardiovascular system and whether the current ongoing call for the products’ sales and regulation of their contents should continue. PMID:29225735

  3. Effects of energy drinks on the cardiovascular system.

    PubMed

    Wassef, Bishoy; Kohansieh, Michelle; Makaryus, Amgad N

    2017-11-26

    Throughout the last decade, the use of energy drinks has been increasingly looked upon with caution as potentially dangerous due to their perceived strong concentration of caffeine aside from other substances such as taurine, guarana, and L-carnitine that are largely unknown to the general public. In addition, a large number of energy drink intoxications have been reported all over the world including cases of seizures and arrhythmias. In this paper, we focus on the effect of energy drinks on the cardiovascular system and whether the current ongoing call for the products' sales and regulation of their contents should continue.

  4. High concentration effects of neutral-potential-well interface traps on recombination dc current-voltage lineshape in metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang

    2008-11-01

    Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.

  5. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability.

    PubMed

    Li, Jie; Liu, Yuan; Zhu, Zhijian; Zhang, Guozhu; Zou, Tao; Zou, Zhijun; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2013-01-01

    A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300-1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice.

  6. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadud, Zia; MacKenzie, Don; Leiby, Paul

    In 5-10 years, experts predict that new automobiles will be capable of driving themselves under limited conditions and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. Here, we review the literature for estimates of the energy impactsmore » of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We also explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. Finally, we present some implications for policymakers and identifying priority areas for further research.« less

  7. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles

    DOE PAGES

    Wadud, Zia; MacKenzie, Don; Leiby, Paul

    2016-02-26

    In 5-10 years, experts predict that new automobiles will be capable of driving themselves under limited conditions and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. Here, we review the literature for estimates of the energy impactsmore » of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We also explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. Finally, we present some implications for policymakers and identifying priority areas for further research.« less

  8. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  9. Net change in carbon emissions with increased wood energy use in the United States

    Treesearch

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  10. The role of charge transfer in the energy level alignment at the pentacene/C60 interface.

    PubMed

    Beltrán, J; Flores, F; Ortega, J

    2014-03-07

    Understanding the mechanism of energy level alignment at organic-organic interfaces is a crucial line of research to optimize applications in organic electronics. We address this problem for the C60-pentacene interface by performing local-orbital Density Functional Theory (DFT) calculations, including the effect of the charging energies on the energy gap of both organic materials. The results are analyzed within the induced density of interface states (IDIS) model. We find that the induced interface potential is in the range of 0.06-0.10 eV, in good agreement with the experimental evidence, and that such potential is mainly induced by the small, but non-negligible, charge transfer between the two compounds and the multipolar contribution associated with pentacene. We also suggest that an appropriate external intercompound potential could create an insulator-metal transition at the interface.

  11. Experimental Potential Energy Curve for the 43 Π Electronic State of NaCs

    NASA Astrophysics Data System (ADS)

    Steely, Andrew; Cooper, Hannah; Zain, Hareem; Whipp, Ciara; Faust, Carl; Kortyna, Andrew; Huennekens, John

    2017-04-01

    We present results from experimental studies of the 43 Π electronic state of the NaCs molecule. This electronic state is interesting in that its potential energy curve likely exhibits a double minimum. As a result, interference effects are observed in the resolved bound-free fluorescence spectra. The optical-optical double resonance method was used to obtain Doppler-free excitation spectra for the 43 Π state. This dataset of measured level energies was expanded largely by observing fluorescence from levels populated by collisions. To aid in level assignments, simulations of resolved bound-free fluorescence spectra were calculated using the BCONT program (R. J. Le Roy, University of Waterloo). Spectroscopic constants were determined to summarize data belonging to inner well, outer well, and above barrier regions of the electronic state. Current work focuses on using the IPA method to construct an experimental potential energy curve. Work supported by NSF and Susquehanna University.

  12. New statistical potential for quality assessment of protein models and a survey of energy functions

    PubMed Central

    2010-01-01

    Background Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally important tools in protein structure modeling and quality assessment. Results The performances of a number of publicly available scoring functions are compared with a statistical rigor, with an emphasis on knowledge-based potentials. We explored the effect on accuracy of alternative choices for representing interaction center types and other features of scoring functions, such as using information on solvent accessibility, on torsion angles, accounting for secondary structure preferences and side chain orientation. Partially based on the observations made, we present a novel residue based statistical potential, which employs a shuffled reference state definition and takes into account the mutual orientation of residue side chains. Atom- and residue-level statistical potentials and Linux executables to calculate the energy of a given protein proposed in this work can be downloaded from http://www.fiserlab.org/potentials. Conclusions Among the most influential terms we observed a critical role of a proper reference state definition and the benefits of including information about the microenvironment of interaction centers. Molecular mechanical potentials were also tested and found to be over-sensitive to small local imperfections in a structure, requiring unfeasible long energy relaxation before energy scores started to correlate with model quality. PMID:20226048

  13. Essays on equity-efficiency trade offs in energy and climate policies

    NASA Astrophysics Data System (ADS)

    Sesmero, Juan P.

    Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences and technology increasing efficiency requires greater transfers to low income households the higher the effect of these transfers on the price of permits and the lower their effect on the price of consumption goods. This denotes market conditions under which efficiency and equity are complementary goals.

  14. The Effect of Waves on the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.

    2016-02-01

    The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.

  15. Aircraft Emissions: Potential Effects on Ozone and Climate - A Review and Progress Report

    DTIC Science & Technology

    1977-03-01

    which itself absorbs and reemits energy over a wide spectral range. In addition to such direct effects, various possible feedback effects can be...4.3.3 COMESA Climatic Effect Studies 4-17 4.4 Computed Mean Temperature Effects--Fleet Effects 4-24 4.4.1 Introduction 4-24 4.4.2 Mean Temperature Impact ...M B-13 B-2 The Chemical Kinetic Mechanism Used In . Model A B-19 B-3 Rate Coefficients for Model B (with Activation Energy in cal/mole) B-20 B-4

  16. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  17. Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.

    2002-02-28

    In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City,more » UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show that in Chicago, potential annual energy savings of $30M could be realized by ratepayers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 400 MW and the reduction in annual carbon emissions at 58 ktC. In Houston, the potential annual energy savings are estimated at $82M, with an avoidance of 730 MW in peak power and a reduction in annual carbon emissions of 170 ktC.« less

  18. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model

    NASA Astrophysics Data System (ADS)

    van der Molen, J.; Ruardij, P.; Greenwood, N.

    2015-12-01

    A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and an exaggerated academic 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The academic 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of The Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of: (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher resolution model, (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.

  19. Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade

    2007-03-01

    As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ'(0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling.

  20. Analyzing the carbon mitigation potential of tradable green certificates based on a TGC-FFSRO model: A case study in the Beijing-Tianjin-Hebei region, China.

    PubMed

    Chen, Cong; Zhu, Ying; Zeng, Xueting; Huang, Guohe; Li, Yongping

    2018-07-15

    Contradictions of increasing carbon mitigation pressure and electricity demand have been aggravated significantly. A heavy emphasis is placed on analyzing the carbon mitigation potential of electric energy systems via tradable green certificates (TGC). This study proposes a tradable green certificate (TGC)-fractional fuzzy stochastic robust optimization (FFSRO) model through integrating fuzzy possibilistic, two-stage stochastic and stochastic robust programming techniques into a linear fractional programming framework. The framework can address uncertainties expressed as stochastic and fuzzy sets, and effectively deal with issues of multi-objective tradeoffs between the economy and environment. The proposed model is applied to the major economic center of China, the Beijing-Tianjin-Hebei region. The generated results of proposed model indicate that a TGC mechanism is a cost-effective pathway to cope with carbon reduction and support the sustainable development pathway of electric energy systems. In detail, it can: (i) effectively promote renewable power development and reduce fossil fuel use; (ii) lead to higher CO 2 mitigation potential than non-TGC mechanism; and (iii) greatly alleviate financial pressure on the government to provide renewable energy subsidies. The TGC-FFSRO model can provide a scientific basis for making related management decisions of electric energy systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modeling and simulation of temperature effect in polycrystalline silicon PV cells

    NASA Astrophysics Data System (ADS)

    Marcu, M.; Niculescu, T.; Slusariuc, R. I.; Popescu, F. G.

    2016-06-01

    Due to the human needs of energy, there is a need to apply new technologies in energy conversion to supply the demand of clean and cheap energy in the context of environmental issues. Renewable energy sources like solar energy has one of the highest potentials. In this paper, solar panel is the key part of a photovoltaic system which converts solar energy to electrical energy. The purpose of this paper is to give a MATLAB/ Simulink simulation for photovoltaic module based on the one-diode model of a photovoltaic cell made of polycrystalline silicon. This model reveals the effect of the ambient temperature and the heating of the panel due to the solar infrared radiation. Also the measurements on the solar cell exposed to solar radiation can confirm the simulation.

  2. The Stark Effect in Linear Potentials

    ERIC Educational Resources Information Center

    Robinett, R. W.

    2010-01-01

    We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z greater than 0 and V(z) = [infinity] for z less than 0) and the symmetric linear potential…

  3. Effects of transverse photon exchange in helium Rydberg states - Corrections beyond the Coulomb-Breit interaction

    NASA Technical Reports Server (NTRS)

    Au, C. K.

    1989-01-01

    The Breit correction only accounts for part of the transverse photon exchange correction in the calculation of the energy levels in helium Rydberg states. The remaining leading corrections are identified and each is expressed in an effective potential form. The relevance to the Casimir correction potential in various limits is also discussed.

  4. Implications of sleep and energy drink use for health disparities.

    PubMed

    Grandner, Michael A; Knutson, Kristen L; Troxel, Wendy; Hale, Lauren; Jean-Louis, Girardin; Miller, Kathleen E

    2014-10-01

    The popularity of energy drinks has increased rapidly in the past decade. One of the main reasons people use energy drinks is to counteract effects of insufficient sleep or sleepiness. Risks associated with energy drink use, including those related to sleep loss, may be disproportionately borne by racial minorities and those of lower socioeconomic status. In this review, a brief introduction to the issue of health disparities is provided, population-level disparities and inequalities in sleep are described, and the social-ecological model of sleep and health is presented. Social and demographic patterns of energy drink use are then presented, followed by discussion of the potential ways in which energy drink use may contribute to health disparities, including the following: 1) effects of excessive caffeine in energy drinks, 2) effects of energy drinks as sugar-sweetened beverages, 3) association between energy drinks and risk-taking behaviors when mixed with alcohol, 4) association between energy drink use and short sleep duration, and 5) role of energy drinks in cardiometabolic disease. The review concludes with a research agenda of critical unanswered questions. © 2014 International Life Sciences Institute.

  5. Implications of sleep and energy drink use for health disparities

    PubMed Central

    Grandner, Michael A; Knutson, Kristen L; Troxel, Wendy; Hale, Lauren; Jean-Louis, Girardin; Miller, Kathleen E

    2014-01-01

    The popularity of energy drinks has increased rapidly in the past decade. One of the main reasons people use energy drinks is to counteract effects of insufficient sleep or sleepiness. Risks associated with energy drink use, including those related to sleep loss, may be disproportionately borne by racial minorities and those of lower socioeconomic status. In this review, a brief introduction to the issue of health disparities is provided, population-level disparities and inequalities in sleep are described, and the social-ecological model of sleep and health is presented. Social and demographic patterns of energy drink use are then presented, followed by discussion of the potential ways in which energy drink use may contribute to health disparities, including the following: 1) effects of excessive caffeine in energy drinks, 2) effects of energy drinks as sugar-sweetened beverages, 3) association between energy drinks and risk-taking behaviors when mixed with alcohol, 4) association between energy drink use and short sleep duration, and 5) role of energy drinks in cardiometabolic disease. The review concludes with a research agenda of critical unanswered questions. PMID:25293540

  6. Effects of heavy metals (Fe3+/Cr6+) on low-level energy generation in a microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Caparanga, A. R.; Balatbat, A. S.; Tayo, L.

    2017-06-01

    A dual-chamber microbial fuel cell (MFC) was constructed with Pseudomonas aeruginosa as biocatalyst to facilitate substrate conversion and, consequently, low-level energy generation. To simulate a wastewater situation with BOD and heavy metals contamination, glucose and Fe3+ and Cr6+ were used as substrate and heavy-metal spikes, respectively. The effects of varying substrate concentrations (150 ppm, 300 ppm, 600 ppm) and heavy metal loads (10 ppm, 50 ppm, 100 ppm) on overall power generation were evaluated. The presence of Cr6+ in the anode compartment decreased the potential from 565 to 201 mV (i.e., lowest value achieved at highest Cr6+ concentration of 300 ppm). On the other hand, replacing Cr6+ with Fe3+ as electron acceptor resulted in substantial increase in measured potential (i.e., from 565 to 703 mV). Increasing glucose concentrations resulted in longer time to reach constant open circuit voltage. A maximum potential of 606 mV was achieved at 1200 ppm glucose. Incorporating Pseudomonas aeruginosa increased the potential from 256 to 592 mV. On the basis of these results, a microbial fuel cell feeding on wastewater can be an important potential technology for generating low-level energy

  7. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    NASA Astrophysics Data System (ADS)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  8. The effects of temporal perspective on college students' energy drink consumption.

    PubMed

    Kim, Jarim; Anagondahalli, Deepa

    2017-09-01

    Consideration of future consequences (CFC) describes the extent to which individuals consider potential future outcomes of their present behaviors. This personality trait has been found to predict repetitive health behaviors. Research is yet to explore the role of health beliefs, which may mediate the relationship between CFC and self-directed health behaviors. Thus, this study examined how CFC affects energy drink-related health beliefs and consumption behavior. A cross-sectional correlational online survey with 1,050 college students was conducted. Key measures include the CFC Scale, health belief measures, and current energy drink consumption pattern. CFC was associated with energy drink consumption as well as several health beliefs. CFC had indirect effects on energy drink consumption through health beliefs, including perceived severity of consuming energy drinks (indirect effect estimate = -.191, 95% confidence interval [CI] [-.271, -.122]), perceived benefits of avoiding energy drinks (indirect effect estimate = -.108, 95% CI [-.174, -.050]), and perceived barriers in abstaining from energy drinks (energy level-related barriers, indirect effect estimate = -.274, 95% CI [-.387, -.181]; and socialization-related barriers, indirect effect estimate = .152, 95% CI [.078, .249]). As the first study to examine CFC's indirect effects on a self-directed health behavior through health beliefs, this study extended CFC's applicability by examining its role in the context of college students' energy drink consumption. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Exciton States in a Gaussian Confining Potential Well

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Fang; Gu, Juan

    2003-11-01

    We consider the problem of an electron-hole pair in a Gaussian confining potential well. This problem is treated within the effective-mass approximation framework using the method of numerical matrix diagonalization. The energy levels of the low-lying states are calculated as a function of the electron-hole effective mass ratio and the size of the confining potential. The project supported by National Natural Science Foundation of China under Grant No. 10275014

  10. Stochastic treatment of electron multiplication without scattering in dielectrics

    NASA Technical Reports Server (NTRS)

    Lin, D. L.; Beers, B. L.

    1981-01-01

    By treating the emission of optical phonons as a Markov process, a simple analytic method is developed for calculating the electronic ionization rate per unit length for dielectrics. The effects of scattering from acoustic and optical phonons are neglected. The treatment obtains universal functions in recursive form, the theory depending on only two dimensionless energy ratios. A comparison of the present work with other numerical approaches indicates that the effect of scattering becomes important only when the electric potential energy drop in a mean free path for optical-phonon emission is less than about 25% of the ionization potential. A comparison with Monte Carlo results is also given for Teflon.

  11. Systematic continuum-discretized coupled-channels calculations of total fusion for 6Li with targets 28Si, 59Co, 96Zr, 198Pt, and 209Bi: Effect of resonance states

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Wang, Bing; Zhang, H. Q.

    2018-05-01

    Continuum discretized coupled-channel (CDCC) calculations of total fusion cross sections for reactions induced by the weakly bound nucleus 6Li with targets 28Si, 59Co, 96Zr, 198Pt, and 209Bi at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α +d , short-range absorption potentials are considered for the interactions between the α and d fragments with the targets. The effect of resonance (l =2 , Jπ=3+,2+,1+ ) and nonresonance states of 6Li on fusion is studied by using two approaches: (1) by omitting the resonance states from the full discretized CDCC breakup space and (2) by considering only the resonance subspace. A systematic analysis of the effect on fusion from resonance breakup couplings is carried out from light to heavy mass targets. Among other things, it is found that resonance breakup states produce strong repulsive polarization potentials that lead to fusion suppression. Couplings from nonresonance states give place to weak repulsive potentials at high energies; however, these become attractive for the heavier targets at low energies.

  12. Relativistic optical model on the basis of the Moscow potential and lower phase shifts for nucleon-nucleon scattering at laboratory energies of up to 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.

    Data of a partial-wave analysis of nucleon-nucleon scattering at energies of up to E{sub lab} = 3 GeV (lower partial waves) and the properties of the deuteron are described within the relativistic optical model based on deep attractive quasipotentials involving forbidden states (as exemplified by the Moscow potential). Partial-wave potentials are derived by the inverse-scattering-problem method based on the Marchenko equation by using present-day data from the partial-wave analysis of nucleon-nucleon scattering at energies of up to 3 GeV. Channel coupling is taken into account. The imaginary parts of the potentials are deduced from the phase equation of the variable-phasemore » approach. The general situation around the manifestation of quark effects in nucleon-nucleon interaction is discussed.« less

  13. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Ito, Tomonori; Suski, Tadeusz; Kumagai, Yoshinao; Kakimoto, Koichi; Koukitu, Akinori

    2017-07-01

    The composition pulling effect in metalorganic vapor-phase InGaN epitaxy was theoretically investigated by thermodynamic analysis. The excess energies of biaxial-strained In x Ga1- x N were numerically calculated using empirical interatomic potentials considering different situations: (i) coherent growth on GaN(0001), (ii) coherent growth on In0.2Ga0.8N(0001), and (iii) bulk growth. Using the excess energies, the excess chemical potentials of InN and GaN alloys were computed. Our results show that compressive strain suppresses In incorporation, whereas tensile strain promotes it. Moreover, assuming chemical equilibrium, the relationship between the solid composition and the growth conditions was predicted. The results successfully reproduced the typical composition pulling effect.

  14. Accounting for Human Health and Ecosystems Quality in Developing Sustainable Energy Products: The Implications of Wood Biomass-based Electricity Strategies to Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Weldu, Yemane W.

    The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal fuel. Bioenergy alternatives have higher economic cost than the prevailing scenario of coal-fired generation system. Although coal fuel is the most cost effective way of electricity generation, its combustion results in the loss of 123.5 billion USD per year for Alberta due to societal life cycle cost. This research demonstrated that bioenergy can support the transformation of a fossil-based energy system to a more sustainable power production system; however, respiratory effects is a concern.

  15. Tidal energy extraction: renewable, sustainable and predictable.

    PubMed

    Nicholls-Lee, R F; Turnock, S R

    2008-01-01

    The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.

  16. Nonadiabatic effects in C-Br bond scission in the photodissociation of bromoacetyl chloride

    NASA Astrophysics Data System (ADS)

    Valero, Rosendo; Truhlar, Donald G.

    2006-11-01

    Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH2C(O )Cl was prepared in its ground electronic state (S0) and excited with a laser at 248nm to its first excited singlet state (S1). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S1 and S2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S0 and S1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is also supported by the low values of the diabatic couplings on the C-Br scission reaction path. The methodology established in the present study will be used for the construction of global potential energy surfaces suitable for multidimensional dynamics simulations to test these preliminary interpretations.

  17. Highly excited bound-state resonances of short-range inverse power-law potentials

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-11-01

    We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.

  18. Analytic functions for potential energy curves, dipole moments, and transition dipole moments of LiRb molecule.

    PubMed

    You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi

    2016-01-15

    The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.

    PubMed

    Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo

    2018-01-10

    The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.

  20. Energy Options for the Future

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Obenschain, Stephen; Conover, David; Bajura, Rita; Greene, David; Brown, Marilyn; Boes, Eldon; McCarthy, Kathyrn; Christian, David; Dean, Stephen; Kulcinski, Gerald; Denholm, P. L.

    2004-06-01

    This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geothermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion.

  1. Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

    2010-03-09

    This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  2. Final Report for Clean, Reliable, Affordable Energy that Reflects the Values of the Pinoleville Pomo Nation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Lenora; Sampsel, Zachary N

    This report aims to present and analyze information on the potential of renewable energy power systems and electric vehicle charging near the Pinoleville Pomo Nation in Ukiah, California to provide an environmentally-friendly, cost-effective energy and transportation options for development. For each renewable energy option we examine, solar, wind, microhydro, and biogas in this case, we compiled technology and cost information for construction, estimates of energy capacity, and data on electricity exports rates.

  3. Effect of Chlorine Substitution on Sulfide Reactivity with OH Radicals

    DTIC Science & Technology

    2008-09-01

    Single point energy: MP2/6-311+G(3df,2p) (LRG) • Zero Point Energy from a vibrational frequency analysis: MP2/6-31++G** ( ZPE ) • Extrapolated energy...E(QCI) + E(LARG) – E(SML) + ZPE • Characterize the TS • Use a three-point fit methodology – fit a harmonic potential to three CCSD single point

  4. Wave-particle interactions in rotating mirrorsa)

    NASA Astrophysics Data System (ADS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  5. Report to Congress on Sustainable Ranges

    DTIC Science & Technology

    2014-02-01

    with the potential to impact Army training and testing. These energy initiatives include wind turbines , new energy corridors for gas/oil pipelines and...the capability to effectively test and train inside the range boundaries. This is particularly evident when the Doppler Effect from wind turbines ...adverse impacts from wind turbine installation. These “High Risk of Adverse Impact Zones” will provide developers with advance information on

  6. Daylighting as a design and energy strategy: Overview of opportunities and conflicts

    NASA Astrophysics Data System (ADS)

    Selkowitz, S.

    1981-06-01

    The potentials and problems associated with using daylight both to improve visual performance and interior aesthetics and to reduce electrical lighting energy consumption and peak electric loads are reviewed. Use of daylighting as a design strategy is not always synonymous with effective use of daylighting as an energy-saving strategy unless both approaches are jointly pursued by the design team. Criteria for visual performance, disability and discomfort glare, historical perspectives on daylight utilization, building form as a limit to daylight penetration, beam sunlighting strategies, luminous efficacy of daylight versus efficient electric light sources, comparative thermal impacts, peak load and load management potential, and nonenergy benefits are reviewed. Although the energy benefits of daylighting can be oversold, it is concluded that in most cases a solid understanding of the energy and design issues should produce energy efficiency and pleasing working environments.

  7. Plasmonically enhanced electromotive force of narrow bandgap PbS QD-based photovoltaics.

    PubMed

    Li, Xiaowei; McNaughter, Paul D; O'Brien, Paul; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-30

    Electromotive force of photovoltaics is a key to define the output power density of photovoltaics. Multiple exciton generation (MEG) exhibited by semiconductor quantum dots (QDs) has great potential to enhance photovoltaic performance owing to the ability to generate more than one electron-hole pairs when absorbing a single photon. However, even in MEG-based photovoltaics, limitation of modifying the electromotive force exists due to the intrinsic electrochemical potential of the conduction band-edges of QDs. Here we report a pronouncedly improved photovoltaic performance by constructing a PbS QD-sensitized electrode that comprises plasmon-active Au nanoparticles embedded in a titanium dioxide thin film. Significant enhancement on electromotive force is characterized by the onset potential of photocurrent generation using MEG-effective PbS QDs with a narrow bandgap energy (Eg = 0.9 eV). By coupling with localized surface plasmon resonance (LSPR), such QDs exhibit improved photoresponses and the highest output power density over the other QDs with larger bandgap energies (Eg = 1.1 and 1.7 eV) under visible light irradiation. The wavelength-dependent onset potential and the output power density suggest effective electron injection owing to the enhanced density of electrons excited by energy overlapping between MEG and LSPR.

  8. Biomass Scenario Model | Energy Analysis | NREL

    Science.gov Websites

    focuses on policy issues, their feasibility, and potential side effects. It integrates resource to those technologies. It emphasizes the effects of those influences in the context of land

  9. Modeling energy expenditure in children and adolescents using quantile regression

    USDA-ARS?s Scientific Manuscript database

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in energy expenditure (EE). Study objective is to apply quantile regression (QR) to predict EE and determine quantile-dependent variation in covariate effects in nonobese and obes...

  10. Air Force Studies Board Block 00 Studies

    DTIC Science & Technology

    2016-07-14

    effectively in efforts aimed at reducing energy consumption . Without more data on energy use, “You don’t know what you don’t know.” The question was raised...with Oxygen Trim Maintain Excess Oxygen Below 5%, Below 8% for Stokers Reduce Stack Temperature to 330°F for Sulfur Bearing Fuels Minimize...current approaches to industrial process energy with a goal of highlighting potential ways to reduce Air Force industrial process energy consumption .1

  11. Screening effects on 12C+12C fusion reaction

    NASA Astrophysics Data System (ADS)

    Koyuncu, F.; Soylu, A.

    2018-05-01

    One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the 12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting 12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α–α double folding cluster (DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb (MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the 12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin (WKB) approach and coupled channel (CC) formalism have been used. Moreover, in order to investigate how the potentials between 12C nuclei produce molecular cluster states of 24Mg, the normalized resonant energy states of 24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of 12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the 12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the 24Mg nucleus. Supported by the Turkish Science and Research Council (TÜBİTAK) with (117R015)

  12. Characterization of the potential energy landscape of an antiplasticized polymer.

    PubMed

    Riggleman, Robert A; Douglas, Jack F; de Pablo, Juan J

    2007-07-01

    The nature of the individual transitions on the potential energy landscape (PEL) associated with particle motion are directly examined for model fragile glass-forming polymer melts, and the results are compared to those of an antiplasticized polymer system. In previous work, we established that the addition of antiplasticizer reduces the fragility of glass formation so that the antiplasticized material is a stronger glass former. In the present work, we find that the antiplasticizing molecules reduce the energy barriers for relaxation compared to the pure polymer, implying that the antiplasticized system has smaller barriers to overcome in order to explore its configuration space. We examine the cooperativity of segmental motion in these bulk fluids and find that more extensive stringlike collective motion enables the system to overcome larger potential energy barriers, in qualitative agreement with both the Stillinger-Weber and Adam-Gibbs views of glass formation. Notably, the stringlike collective motion identified by our PEL analysis corresponds to incremental displacements that occur within larger-scale stringlike particle displacement processes associated with PEL metabasin transitions that mediate structural relaxation. These "substrings" nonetheless seem to exhibit changes in relative size with antiplasticization similar to those observed in "superstrings" that arise at elevated temperatures. We also study the effects of confinement on the energy barriers in each system. Film confinement makes the energy barriers substantially smaller in the pure polymer, while it has little effect on the energy barriers in the antiplasticized system. This observation is qualitatively consistent with our previous studies of stringlike motion in these fluids at higher temperatures and with recent experimental measurements by Torkelson and co-workers.

  13. Evaluation of the potential for operating carbon neutral WWTPs in China.

    PubMed

    Hao, Xiaodi; Liu, Ranbin; Huang, Xin

    2015-12-15

    Carbon neutrality is starting to become a hot topic for wastewater treatment plants (WWTPs) all over the world, and carbon neutral operations have emerged in some WWTPs. Although China is still struggling to control its water pollution, carbon neutrality will definitely become a top priority for WWTPs in the near future. In this review, the potential for operating carbon neutral WWTPs in China is technically evaluated. Based on the A(2)/O process of a typical municipal WWTP, an evaluation model is first configured, which couples the COD/nutrient removals (mass balance) with the energy consumption/recovery (energy balance). This model is then applied to evaluate the potential of the organic (COD) energy with regards to carbon neutrality. The model's calculations reveal that anaerobic digestion of excess sludge can only provide some 50% of the total amount of energy consumption. Water source heat pumps (WSHP) can effectively convert the thermal energy contained in wastewater to heat WWTPs and neighbourhood buildings, which can supply a net electrical equivalency of 0.26 kWh when 1 m(3) of the effluent is cooled down by 1 °C. Photovoltaic (PV) technology can generate a limited amount of electricity, barely 10% of the total energy consumption. Moreover, the complexity of installing solar panels on top of tanks makes PV technology almost not worth the effort. Overall, therefore, organic and thermal energy sources can effectively supply enough electrical equivalency for China to approach to its target with regards to carbon neutral operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ablation of intervertebral discs in dogs using a MicroJet-assisted dye-enhanced injection device coupled with the diode laser

    NASA Astrophysics Data System (ADS)

    Bartels, Kenneth E.; Henry, George A.; Dickey, D. Thomas; Stair, Ernest L.; Powell, Ronald; Schafer, Steven A.; Nordquist, Robert E.; Frederickson, Christopher J.; Hayes, Donald J.; Wallace, David B.

    1998-07-01

    Use of holmium laser energy for vaporization/coagulation of the nucleus pulposus in canine intervertebral discs has been previously reported and is currently being applied clinically in veterinary medicine. The procedure was originally developed in the canine model and intended for potential human use. Since the pulsed (15 Hz) holmium laser energy exerts photomechanical and photothermal effects, the potential for extrusion of additional disc material to the detriment of the patient is possible using the procedure developed for the dog. To reduce this potential complication, use of diode laser (805 nm - CW mode) energy, coupled with indocyanine green (ICG) as a selective laser energy absorber, was formulated as a possible alternative. Delivery of the ICG and diode laser energy was through a MicroJet device that could dispense dye interactively between individual laser 'shots.' Results have shown that it is possible to selectively ablate nucleus pulposus in the canine model using the device described. Acute observations (gross and histopathologic) illustrate that accurate placement of the spinal needle before introduction of the MicroJet device is critically dependent on the expertise of the interventional radiologist. In addition, the success of the overall technique depends on consistent delivery of both ICG and diode laser energy. Minimizing tissue carbonization on the tip of the MicroJet device is also of crucial importance for effective application of the technique in clinical veterinary medicine.

  15. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.

    PubMed

    Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele

    2016-06-16

    One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.

  16. Effects of temperature and pressure on thermodynamic properties of Cd0.50 Zn0.50 Se alloy

    NASA Astrophysics Data System (ADS)

    Aarifeen, Najm ul; Afaq, A.

    2017-09-01

    Thermodynamic properties of \\text{C}{{\\text{d}}0.50} \\text{Z}{{\\text{n}}0.50} Se alloy are studied using quasi harmonic model for pressure range 0-10 GPa and temperature range 0-1000 K. The structural optimization is obtained by self consistent field calculations and full-potential linear muffin-tin orbital method with GGA+U as an exchange correlation functional where U=2.3427 eV is the hubbard potential. The effects of temperature and pressure on the bulk modulus, Helmholtz free energy, internal energy, entropy, Debye temperature, Grüneisen parameter, thermal expansion coefficient and heat capacities of the material are observed and discussed. The bulk modulus, Helmholtz free energy and Debye temperature are found to decrease with increasing temperature while there is an increasing behavior when the pressure rises. Whereas internal energy has increasing trend with rises in temperature and it almost remains insensitive to pressure. The entropy of the system increases (decreases) with a rise of pressure (temperature).

  17. Effect of surfactant assisted sonic pretreatment on liquefaction of fruits and vegetable residue: Characterization, acidogenesis, biomethane yield and energy ratio.

    PubMed

    Shanthi, M; Rajesh Banu, J; Sivashanmugam, P

    2018-05-15

    The present study explored the disintegration potential of fruits and vegetable residue through sodium dodecyl sulphate (SDS) assisted sonic pretreatment (SSP). In SSP method, initially the biomass barrier (lignin) was removed using SDS at different dosage, subsequently it was sonically disintegrated. The effect of SSP were assessed based on dissolved organic release (DOR) of fruits and vegetable waste and specific energy input. SSP method achieved higher DOR rate and suspended solids reduction (26% and 16%) at optimum SDS dosage of 0.035 g/g SS with least specific energy input of 5400 kJ/kg TS compared to ultrasonic pretreatment (UP) (16% and 10%). The impact of fermentation and biomethane potential assay revealed highest production of volatile fatty acid and methane yield in SSP (1950 mg/L, 0.6 g/g COD) than UP. The energy ratio obtained was 0.9 for SSP, indicating proposed method is energetically efficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Kresin, Vitaly V.

    Here, we consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas– Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet’s shape and dimensions, its density, total and capacitive energy, and chemical potential. Our analytical results are in very good agreement with experimental data and numerical calculations, and make itmore » possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). One interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well.« less

  19. Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots

    DOE PAGES

    Halder, Avik; Kresin, Vitaly V.

    2016-08-09

    Here, we consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas– Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet’s shape and dimensions, its density, total and capacitive energy, and chemical potential. Our analytical results are in very good agreement with experimental data and numerical calculations, and make itmore » possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). One interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well.« less

  20. Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates.

    PubMed

    Neff, Michael; Rauhut, Guntram

    2014-02-05

    Multidimensional potential energy surfaces obtained from explicitly correlated coupled-cluster calculations and further corrections for high-order correlation contributions, scalar relativistic effects and core-correlation energy contributions were generated in a fully automated fashion for the double-minimum benchmark systems OH3(+) and NH3. The black-box generation of the potentials is based on normal coordinates, which were used in the underlying multimode expansions of the potentials and the μ-tensor within the Watson operator. Normal coordinates are not the optimal choice for describing double-minimum potentials and the question remains if they can be used for accurate calculations at all. However, their unique definition is an appealing feature, which removes remaining errors in truncated potential expansions arising from different choices of curvilinear coordinate systems. Fully automated calculations are presented, which demonstrate, that the proposed scheme allows for the determination of energy levels and tunneling splittings as a routine application. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen

    2018-05-01

    We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.

  2. Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground-level microclimate

    PubMed Central

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-01-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939

  3. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  4. Onshore-offshore wind energy resource evaluation based on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Wei, Xianglin; Duan, Yuewei; Liu, Yongxue; Jin, Song; Sun, Chao

    2018-05-01

    The demand for efficient and cost-effective renewable energy is increasing as traditional sources of energy such as oil, coal, and natural gas, can no longer satisfy growing global energy demands. Among renewable energies, wind energy is the most prominent due to its low, manageable impacts on the local environment. Based on meteorological data from 2006 to 2014 and multi-source satellite data (i.e., Advanced Scatterometer, Quick Scatterometer, and Windsat) from 1999 to 2015, an assessment of the onshore and offshore wind energy potential in Jiangsu Province was performed by calculating the average wind speed, average wind direction, wind power density, and annual energy production (AEP). Results show that Jiangsu has abundant wind energy resources, which increase from inland to coastal areas. In onshore areas, wind power density is predominantly less than 200 W/m2, while in offshore areas, wind power density is concentrates in the range of 328-500 W/m2. Onshore areas comprise more than 13,573.24 km2, mainly located in eastern coastal regions with good wind farm potential. The total wind power capacity in onshore areas could be as much as 2.06 x 105 GWh. Meanwhile, offshore wind power generation in Jiangsu Province is calculated to reach 2 x 106 GWh, which is approximately four times the electricity demand of the entire Jiangsu Province. This study validates the effective application of Advanced Scatterometer, Quick Scatterometer, and Windsat data to coastal wind energy monitoring in Jiangsu. Moreover, the methodology used in this study can be effectively applied to other similar coastal zones.

  5. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.

    PubMed

    Song, Jinhui; Zhou, Jun; Wang, Zhong Lin

    2006-08-01

    This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.

  6. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  7. Effects of a behaviour change intervention for Girl Scouts on child and parent energy-saving behaviours

    NASA Astrophysics Data System (ADS)

    Boudet, Hilary; Ardoin, Nicole M.; Flora, June; Armel, K. Carrie; Desai, Manisha; Robinson, Thomas N.

    2016-08-01

    Energy education programmes for children are hypothesized to have great potential to save energy. Such interventions are often assumed to impact child and family behaviours. Here, using a cluster-randomized controlled trial with 30 Girl Scout troops in Northern California, we assess the efficacy of two social cognitive theory-based interventions focused on residential and food-and-transportation energy-related behaviours of Girl Scouts and their families. We show that Girl Scouts and parents in troops randomly assigned to the residential energy intervention significantly increased their self-reported residential energy-saving behaviours immediately following the intervention and after more than seven months of follow-up, compared with controls. Girl Scouts in troops randomly assigned to the food-and-transportation energy intervention significantly increased their self-reported food-and-transportation energy-saving behaviours immediately following the intervention, compared with controls, but not at follow-up. The results demonstrate that theory-based, child-focused energy interventions have the potential to increase energy-saving behaviours among both children and their parents.

  8. Anaerobic Digestion and Combined Heat and Power Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank J. Hartz

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted thismore » study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.« less

  9. Comparative Effect of an Addition of a Surface Term to Woods-Saxon Potential on Thermodynamics of a Nucleon

    NASA Astrophysics Data System (ADS)

    Lütfüoğlu, B. C.

    2018-01-01

    In this study, we reveal the difference between Woods-Saxon (WS) and Generalized Symmetric Woods-Saxon (GSWS) potentials in order to describe the physical properties of a nucleon, by means of solving Schrödinger equation for the two potentials. The additional term squeezes the WS potential well, which leads an upward shift in the spectrum, resulting in a more realistic picture. The resulting GSWS potential does not merely accommodate extra quasi bound states, but also has modified bound state spectrum. As an application, we apply the formalism to a real problem, an α particle confined in Bohrium-270 nucleus. The thermodynamic functions Helmholtz energy, entropy, internal energy, specific heat of the system are calculated and compared for both wells. The internal energy and the specific heat capacity increase as a result of upward shift in the spectrum. The shift of the Helmholtz free energy is a direct consequence of the shift of the spectrum. The entropy decreases because of a decrement in the number of available states. Supported by the Turkish Science and Research Council (TÜBİTAK) and Akdeniz University

  10. Symmetry energy in cold dense matter

    NASA Astrophysics Data System (ADS)

    Jeong, Kie Sang; Lee, Su Houng

    2016-01-01

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

  11. Diabatic Definition of Geometric Phase Effects.

    PubMed

    Izmaylov, Artur F; Li, Jiaru; Joubert-Doriol, Loïc

    2016-11-08

    Electronic wave functions in the adiabatic representation acquire nontrivial geometric phases (GPs) when corresponding potential energy surfaces undergo conical intersection (CI). These GPs have profound effects on the nuclear quantum dynamics and cannot be eliminated in the adiabatic representation without changing the physics of the system. To define dynamical effects arising from the GP presence, the nuclear quantum dynamics of the CI containing system is compared with that of the system with artificially removed GP. We explore a new construction of the system with removed GP via a modification of the diabatic representation for the original CI containing system. Using an absolute value function of diabatic couplings, we remove the GP while preserving adiabatic potential energy surfaces and CI. We assess GP effects in dynamics of a two-dimensional linear vibronic coupling model both for ground and excited state dynamics. Results are compared with those obtained with a conventional removal of the GP by ignoring double-valued boundary conditions of the real electronic wave functions. Interestingly, GP effects appear similar in two approaches only for the low energy dynamics. In contrast with the conventional approach, the new approach does not have substantial GP effects in the ultrafast excited state dynamics.

  12. Energy release for the actuation and deployment of muscle-inspired asymmetrically multistable chains

    NASA Astrophysics Data System (ADS)

    Kidambi, Narayanan; Zheng, Yisheng; Harne, Ryan L.; Wang, K. W.

    2018-03-01

    Animal locomotion and movement requires energy, and the elastic potential energy stored in skeletal muscle can facilitate movements that are otherwise energetically infeasible. A significant proportion of this energy is captured and stored in the micro- and nano-scale constituents of muscle near the point of instability between asymmetric equilibrium states. This energy may be quickly released to enable explosive macroscopic motions or to reduce the metabolic cost of cyclic movements. Inspired by these behaviors, this research explores modular metastructures of bistable element chains and develops methods to release the energy stored in higher-potential system configurations. Quasi-static investigations reveal the role of state-transition pathways on the overall efficiency of the deployment event. It is shown that sequential, local release of energy from the bistable elements is more efficient than concurrent energy release achieved by applying a force at the free end of the structure. From dynamic analyses and experiments, it is shown that that the energy released from one bistable element can be used to activate the release of energy from subsequent links, reducing the actuation energy required to extend or deploy the chain below that required for quasi-static deployment. This phenomenon is influenced by the level of asymmetry in the bistable constituents and the location of the impulse that initiates the deployment of the structure. The results provide insight into the design and behavior of asymmetrically multistable chains that can leverage stored potential energy to enable efficient and effective system deployment and length change.

  13. Sampling the energy landscape of Pt13 with metadynamics

    NASA Astrophysics Data System (ADS)

    Pavan, Luca; Di Paola, Cono; Baletto, Francesca

    2013-02-01

    The potential energy surface of a metallic nanoparticle formed by 13 atoms of platinum is efficiently explored using metadynamics in combination with empirical potential molecular dynamics. The scenario obtained is wider and more complex of what was previously reported: more than thirty independent energy basins are found, corresponding to different local minima of Pt. It is demonstrated that in almost all the cases these motifs are local minima even at ab-initio level, hence proving the effectiveness of the method to sample the energy landscape. A classification of the minima in structural families is proposed, and a discussion regarding the shape and the connections between energy basins is reported. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.

  14. Experimental and theoretical kinetics for the H2O+ + H2/D2 → H3O+/H2DO+ + H/D reactions: observation of the rotational effect in the temperature dependence.

    PubMed

    Ard, Shaun G; Li, Anyang; Martinez, Oscar; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua

    2014-12-11

    Thermal rate coefficients for the title reactions computed using a quasi-classical trajectory method on an accurate global potential energy surface fitted to ∼81,000 high-level ab initio points are compared with experimental values measured between 100 and 600 K using a variable temperature selected ion flow tube instrument. Excellent agreement is found across the entire temperature range, showing a subtle, but unusual temperature dependence of the rate coefficients. For both reactions the temperature dependence has a maximum around 350 K, which is a result of H2O(+) rotations increasing the reactivity, while kinetic energy is decreasing the reactivity. A strong isotope effect is found, although the calculations slightly overestimate the kinetic isotope effect. The good experiment-theory agreement not only validates the accuracy of the potential energy surface but also provides more accurate kinetic data over a large temperature range.

  15. Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Restrepo, R. L.; Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Morales, A. L.; Duque, C. A.

    2017-09-01

    The effects of electric and magnetic fields on the second and third harmonic generation coefficients in a Morse potential quantum well are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the Schrödinger equation for the electron in the parabolic band scheme and effective mass approximations and the envelope function approach. The results show that both the electric and the magnetic fields have significant influence on the magnitudes and resonant peak energy positions of the second and third harmonic generation responses. In general, the Morse potential profile becomes wider and shallower as γ -parameter increases and so the energies of the bound states will be functions of this parameter. Therefore, we can conclude that the effects of the electric and magnetic fields can be used to tune and control the optical properties of interest in the range of the infrared electromagnetic spectrum.

  16. Estimating the Effects of Module Area on Thin-Film Photovoltaic System Costs: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A; Fu, Ran; Silverman, Timothy J

    We investigate the potential effects of module area on the cost and performance of photovoltaic systems. Applying a bottom-up methodology, we analyzed the costs associated with thin-film modules and systems as a function of module area. We calculate a potential for savings of up to 0.10 dollars/W and 0.13 dollars/W in module manufacturing costs for CdTe and CIGS respectively, with large area modules. We also find that an additional 0.04 dollars/W savings in balance-of-systems costs may be achieved. Sensitivity of the dollar/W cost savings to module efficiency, manufacturing yield, and other parameters is presented. Lifetime energy yield must also bemore » maintained to realize reductions in the levelized cost of energy; the effects of module size on energy yield for monolithic thin-film modules are not yet well understood. Finally, we discuss possible non-cost barriers to adoption of large area modules.« less

  17. Perceptions about energy drinks are associated with energy drink intake among U.S. youth.

    PubMed

    Kumar, Gayathri; Park, Sohyun; Onufrak, Stephen

    2015-01-01

    Energy drinks are growing in popularity among youth because of their stimulant properties. However, they can increase blood pressure and are associated with serious consequences such as cardiac arrest. This study examined the associations between energy drink perceptions and energy drink consumption among youth. The design was a cross-sectional study using the YouthStyles Survey 2011. The online survey was administered at home. Subjects were youths aged 12 to 17 years in the summer of 2011 (n = 779). Energy drink consumption, perceptions about energy drinks, and sociodemographic and behavioral variables were measured. Chi-square and multivariable logistic regression analyses were used. Overall, 9% of youth drank energy drinks, 19.5% agreed that energy drinks are safe drinks for teens, and 12.5% agreed that energy drinks are a type of sports drink. The proportion of youth consuming energy drinks once per week or more was highest among youth aged 16 to 17 years and among those who are physically active three to six times a week. The odds for drinking energy drinks once per week or more was higher among youth who agreed that energy drinks are safe drinks for teens (odds ratios [OR] = 7.7, 95% confidence intervals [CI] =3.6, 16.4) and among those who agreed that energy drinks are a type of sports drink (OR = 5.0, 95% CI = 2.4, 10.7). These findings suggest that many youth may be unaware or misinformed about the potential health effects and nutritional content of energy drinks. Efforts to improve education among youth about the potential adverse effects of consuming energy drinks are needed.

  18. Neutrinoless double-β decay in effective field theory: The light-Majorana neutrino-exchange mechanism

    NASA Astrophysics Data System (ADS)

    Cirigliano, Vincenzo; Dekens, Wouter; Mereghetti, Emanuele; Walker-Loud, André

    2018-06-01

    We present the first chiral effective theory derivation of the neutrinoless double-β decay n n →p p potential induced by light Majorana neutrino exchange. The effective-field-theory framework has allowed us to identify and parametrize short- and long-range contributions previously missed in the literature. These contributions cannot be absorbed into parametrizations of the single-nucleon form factors. Starting from the quark and gluon level, we perform the matching onto chiral effective field theory and subsequently onto the nuclear potential. To derive the nuclear potential mediating neutrinoless double-β decay, the hard, soft, and potential neutrino modes must be integrated out. This is performed through next-to-next-to-leading order in the chiral power counting, in both the Weinberg and pionless schemes. At next-to-next-to-leading order, the amplitude receives additional contributions from the exchange of ultrasoft neutrinos, which can be expressed in terms of nuclear matrix elements of the weak current and excitation energies of the intermediate nucleus. These quantities also control the two-neutrino double-β decay amplitude. Finally, we outline strategies to determine the low-energy constants that appear in the potentials, by relating them to electromagnetic couplings and/or by matching to lattice QCD calculations.

  19. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Hammer, H.-W.; Klos, P.; Lynn, J. E.; Schwenk, A.

    2017-06-01

    We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.

  20. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    DOE PAGES

    Gandolfi, Stefano; Hammer, Hans -Werner; Klos, P.; ...

    2017-06-08

    Here, we present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy.more » This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.« less

  1. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  2. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source. In particular, the Energy Independence and Security Act of 2007 (EISA) aims to increase annual U.S. biofuel (secondary bioenergy) production by more than 3-fold, from 40 to 136 billion liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2.9 to 7.4 EJ yr–1. However, our understanding of many of the factors used to establish such energy targets is far from complete, introducing significgant uncertainty into the feasibility of current estimates of bioenergy potential. Here, we utilized satellite-derived net primary productivity (NPP) data—measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S.—to estimate primary bioenergy potential (PBP). Our results indicate that PBP of the conterminous U.S. ranges from roughly 5.9 to 22.2 EJ yr–1, depending on land use. The low end of this range represents the potential when harvesting residues only, while the high end would require an annual biomass harvest over an area more than three times current U.S. agricultural extent. While EISA energy targets are theoretically achievable, we show that meeting these targets utilizing current technology would require either an 80% displacement of current crop harvest or the conversion of 60% of rangeland productivity. Accordingly, realistically constrained estimates of bioenergy potential are critical for effective incorporation of bioenergy into the national energy portfolio.

  3. A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-08-01

    Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture descriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria derived from the effective interaction potentials between mass points are shown to exhibit a scaling commensurable with the energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states associated with minimum potential energy states analogous to Griffith's approach. It is found that this global approach has much in common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means of evaluating the energy release rate. Finally, by application of the method to a textbook example of fracture propagation in a heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening mechanisms related to fracture energy contrast, elasticity contrast and crack deflection in the considered two-phase layered composite material.

  4. Establishment of a building audit procedure and analysis for the Kansas Department of Transportation phase 2A : buildings.

    DOT National Transportation Integrated Search

    2013-11-01

    Over the past few years, state governments and entities have become concerned with the energy : consumption and efficiency of their facilities. An effective manner to identify potential to reduce energy and : water consumption and increase building e...

  5. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H + C2H6 reaction.

    PubMed

    Chakraborty, Arindam; Zhao, Yan; Lin, Hai; Truhlar, Donald G

    2006-01-28

    This article presents a multifaceted study of the reaction H+C(2)H(6)-->H(2)+C(2)H(5) and three of its deuterium-substituted isotopologs. First we present high-level electronic structure calculations by the W1, G3SX, MCG3-MPWB, CBS-APNO, and MC-QCISD/3 methods that lead to a best estimate of the barrier height of 11.8+/-0.5 kcal/mol. Then we obtain a specific reaction parameter for the MPW density functional in order that it reproduces the best estimate of the barrier height; this yields the MPW54 functional. The MPW54 functional, as well as the MPW60 functional that was previously parametrized for the H+CH(4) reaction, is used with canonical variational theory with small-curvature tunneling to calculate the rate constants for all four ethane reactions from 200 to 2000 K. The final MPW54 calculations are based on curvilinear-coordinate generalized-normal-mode analysis along the reaction path, and they include scaled frequencies and an anharmonic C-C bond torsion. They agree with experiment within 31% for 467-826 K except for a 38% deviation at 748 K; the results for the isotopologs are predictions since these rate constants have never been measured. The kinetic isotope effects (KIEs) are analyzed to reveal the contributions from subsets of vibrational partition functions and from tunneling, which conspire to yield a nonmonotonic temperature dependence for one of the KIEs. The stationary points and reaction-path potential of the MPW54 potential-energy surface are then used to parametrize a new kind of analytical potential-energy surface that combines a semiempirical valence bond formalism for the reactive part of the molecule with a standard molecular mechanics force field for the rest; this may be considered to be either an extension of molecular mechanics to treat a reactive potential-energy surface or a new kind of combined quantum-mechanical/molecular mechanical (QM/MM) method in which the QM part is semiempirical valence bond theory; that is, the new potential-energy surface is a combined valence bond molecular mechanics (CVBMM) surface. Rate constants calculated with the CVBMM surface agree with the MPW54 rate constants within 12% for 534-2000 K and within 23% for 200-491 K. The full CVBMM potential-energy surface is now available for use in variety of dynamics calculations, and it provides a prototype for developing CVBMM potential-energy surfaces for other reactions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr

    We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for themore » He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.« less

  7. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  8. Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpana, P.; Jayakumar, K.; Nithiananthi, P.

    2015-09-01

    The effect of geometry on an on-center hydrogenic donor impurity in a GaAs/(Ga,Al)As quantum wire (QWW) and quantum dot (QD) under the influence of Γ-X band mixing due to an applied hydrostatic pressure is theoretically studied. Numerical calculations are performed in an effective mass approximation. The ground state impurity energy is obtained by variational procedure. Both the effects of pressure and geometry are to exert an additional confinement on the impurity inside the wire as well as dot. We found that the donor binding energy is modified by the geometrical effects as well as by the confining potential when it is subjected to external pressure. The results are presented and discussed.

  9. Effects of hydrostatic pressure on the donor impurity in a cylindrical quantum dot with Morse confining potential

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.

    2016-12-01

    The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.

  10. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    PubMed

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  11. Unraveling the Nature of Chemical Reactivity of Complex Systems

    DTIC Science & Technology

    2009-01-13

    28 J. Zhou, J. J. Lin, W. Shiu, and K. Liu, J. Chem. Phys. 119, 4997 2003. 29 S. C. Althorpe, F. Fernandez - Alonso , B. D. Bean, J. D. Ayers, A. E...Truhlar DG, Espinosa- Garcia J (2000) Potential energy surface, thermal, and state-selected rate coefficients, and kinetic isotope effects for Cl CH43...HCl CH3. J Chem Phys 112:9375–9389. 22. Rangel C, Navarrete M, Corchado JC, Espinosa- Garcia J (2006) Potential energy surface, kinetics, and

  12. Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2018-05-01

    Near a critical value of the wino mass where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold, low-energy winos can be described by a zero-range effective field theory (ZREFT) in which the winos interact nonperturbatively through a contact interaction and through Coulomb interactions. The effects of wino-pair annihilation into electroweak gauge bosons are taken into account through the analytic continuation of the real parameters for the contact interaction to complex values. The parameters of ZREFT can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a real potential due to the exchange of electroweak gauge bosons and an imaginary potential due to wino-pair annihilation into electroweak gauge bosons. ZREFT at leading order gives an accurate analytic description of low-energy wino-wino scattering, inclusive wino-pair annihilation, and a wino-pair bound state. ZREFT can also be applied to partial annihilation rates, such as the Sommerfeld enhancement of the annihilation rate of wino pairs into monochromatic photons.

  13. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Rafael B., E-mail: rafaelbna@gmail.com; Almeida, J. S. de, E-mail: jailton-almeida@hotmail.com; Ferreira da Silva, A.

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However,more » the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.« less

  14. Energy Levels in Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Zang, Jan Xin

    Normalized analytical equations for eigenstates of an arbitrary one-dimensional configuration of square potentials in a well have been derived. The general formulation is used to evaluate the energy levels of a particle in a very deep potential well containing seven internal barriers. The configuration can be considered as a finite superlattice sample or as a simplified model for a sample with only several atom layers. The results are shown in graphical forms as functions of the height and width of the potential barriers and as functions of the ratio of the effective mass in barrier to the mass in well. The formation of energy bands and surface eigenstates from eigenstates of a deep single well, the coming close of two energy bands and a surface state which are separate ordinarily, and mixing of the wave function of a surface state with the bulk energy bands are seen. Then the normalized derivation is extended to study the effect of a uniform electric field applied across a one-dimensional well containing an internal configuration of square potentials The general formulation is used to calculate the electric field dependence of the energy levels of a deep well with five internal barriers. Typical results are shown in graphical forms as functions of the barrier height, barrier width, barrier effective mass and the field strength. The formation of Stark ladders and surface states from the eigenstates of a single deep well in an electric field, the localization process of wave functions with changing barrier height, width, and field strength and their anticrossing behaviors are seen. The energy levels of a hydrogenic impurity in a uniform medium and in a uniform magnetic field are calculated with variational methods. The energy eigenvalues for the eigenstates with major quantum number less than or equal to 3 are obtained. The results are consistent with previous results. Furthermore, the energy levels of a hydrogenic impurity at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well are calculated with the finite-basis-set variational method. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. It is found that the energy levels increase with increasing parabolic parameter alpha and increase with increasing normalized magnetic field strength gamma except those levels with magnetic quantum number m < 0 at small gamma.

  15. High-lying intermediate excitations in the nuclear effective interaction with a super-soft-core potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, P.R.; Barrett, B.R.; Portilho, O.

    1979-02-01

    The earlier calculations of Goode and Barrett are repeated using the super-soft-core potential of Gogny, Pires, and de Tourreil. The particular third-order folded diagram which they calculated now converges in its intermediate-state energy summation, because of the suppression of the strong short-range repulsive effects present in earlier calculations.

  16. Folding model analyses of 12C-12C and 16O-16O elastic scattering using the density-dependent LOCV-averaged effective interaction

    NASA Astrophysics Data System (ADS)

    Rahmat, M.; Modarres, M.

    2018-03-01

    The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.

  17. Active control of spacecraft potentials at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Deforest, S. E.

    1976-01-01

    Tests have been conducted concerning the active control of the potentials of the geosynchronous satellites ATS-5 and ATS-6. The ATS-5 tests show that a simple electron emitter can be used to reduce the magnitude of the potential of a spacecraft which has been charged negatively by the environment. The ATS-6 ion thruster had also a pronounced effect on the potential barrier. In this case, the flux of high-energy primary ions and of low-charge exchange ions produces a space-charge neutralization effect which the electron gun alone cannot achieve.

  18. Electron energy distributions measured during electron beam/plasma interactions. [in E region

    NASA Technical Reports Server (NTRS)

    Jost, R. J.; Anderson, H. R.; Mcgarity, J. O.

    1980-01-01

    In the large vacuum facility at the NASA-Johnson Space Center an electron beam was projected 20 m parallel to B from a gun with variable accelerating potential (1.0 to 2.5 kV) to an aluminum target. The ionospheric neutral pressure and field were approximated. Beam electron energy distributions were measured directly using an electrostatic deflection analyzer and indirectly with a detector that responded to the X-rays produced by electron impact on the target. At low currents the distribution is sharply peaked at the acceleration potential. At high currents a beam plasma discharge occurs and electrons are redistributed in energy so that the former energy peak broadens to 10-15 percent FWHM with a strongly enhanced low energy tail. At the 10% of maximum point the energy spectrum ranges from less than 1/2 to 1.2 times the gun energy. The effect is qualitatively the same at all pitch angles and locations sampled.

  19. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  20. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron density is greater than or equal to 1037 m-3, the influence of the GUP becomes the dominant factor affecting the thermodynamic properties of the system.

  1. Temperature dependent effective potential method for accurate free energy calculations of solids

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Steneteg, Peter; Abrikosov, I. A.; Simak, S. I.

    2013-03-01

    We have developed a thorough and accurate method of determining anharmonic free energies, the temperature dependent effective potential technique (TDEP). It is based on ab initio molecular dynamics followed by a mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects of the technique are described in detail. A number of practical examples are given, and results are presented, which confirm the usefulness of TDEP within ab initio and classical molecular dynamics frameworks. In particular, we examine from first principles the behavior of force constants upon the dynamical stabilization of the body centered phase of Zr, and show that they become more localized. We also calculate the phase diagram for 4He modeled with the Aziz potential and obtain results which are in favorable agreement both with respect to experiment and established techniques.

  2. Early Student Support for a Process Study of Oceanic Responses to Typhoons

    DTIC Science & Technology

    2015-06-21

    responses to tropical cyclone forcing are surface waves, wind-driven currents, shear and turbulence, and inertial currents. Quantifying the effect ...Cd is estimated assuming a balance between the time rate change of the depth-integrated horizontal momentum, Coriolis force, and the wind stress. This...negligible pressure gradient effect . Most of the observed horizontal kinetic energy is within the upper 100 m. The available potential energy and

  3. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Wave in Late Summer, 2003-2007

    NASA Technical Reports Server (NTRS)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert

    2012-01-01

    Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.

  4. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Waves in Late Summer, 2003-07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong

    2012-12-19

    Episodic events of both Saharan dust outbreaks and African easterly waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan air layer on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximumtropical cyclone activity, in years 2003–07. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, mostAEWsintensify inmore » the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. The authors conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.« less

  5. Nucleophilic Influences and Origin of the SN2 Allylic Effect.

    PubMed

    Galabov, Boris; Koleva, Gergana; Schaefer, Henry F; Allen, Wesley D

    2018-05-27

    The potential energy surfaces for the SN2 reactions of allyl and propyl chlorides with 21 anionic and neutral nucleophiles have been studied using ωB97X-D/6-311++G(3df,2pd) computations. The "allylic effect" on SN2 barriers is well manifested for all reactions and ranges between -0.2 and -4.5 kcal mol-1 in the gas phase. Strong correlations of the SN2 net activation barriers with cation affinities, proton affinities, and electrostatic potentials at nuclei (EPN) demonstrate the powerful influence of electrostatics on these reactions. For the reactions of anionic (but not neutral) nucleophiles with allyl chloride, some of the incoming negative charge (0.2% - 18%) migrates into the carbon chains, which may provide some secondary stabilization of the SN2 transition states. Activation strain analysis provides additional insight into the allylic effect by showing that the energy of geometric distortion for the reactants to reach the SN2 transition state (ΔEstrain) is smaller for each allylic reaction in comparison to its propyl analogue. In many cases the interaction energies (ΔEint) between the substrate and nucleophile in this analysis are more favorable for propyl chloride reactions, but this compensation does not overcome the predominant strain energy effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  7. Integrated energy system for the Asphalt Green Youth Sports and Arts Center and the Fireboat House. Report 79-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Energy conservation and solar energy measures for two old buildings, different in scale and character, that are being recycled by the Neighborhood Committee for the Asphalt Green into a community Sports and Arts Center and an Environmental Studies Center are described. The approch taken by the Authority in developing the integrated energy system design for the larger, commercial-scale Sports and Arts Center was to incorporate energy conservation and renewable energy measures that minimize life-cycle costs. Energy costs will be reduced from about $50,000 per year (in 1979 dollars) to $15,000 per year. The Environmental Studies Center, formerly a fireboat stationmore » on the East River, is a smaller residential-scale structure. The approach in developing the renovation plan was to assess retrofit potential for cost-effective energy consrvation, solar domestic hot water, and active and passive solar space heating. Energy measures were selected which would maximize educational potential for school children and which could be replicated by the general public.« less

  8. Renewable energy rebound effect?: Estimating the impact of state renewable energy financial incentives on residential electricity consumption

    NASA Astrophysics Data System (ADS)

    Stephenson, Beth A.

    Climate change is a well-documented phenomenon. If left unchecked greenhouse gas emissions will continue global surface warming, likely leading to severe and irreversible impacts. Generating renewable energy has become an increasingly salient topic in energy policy as it may mitigate the impact of climate change. State renewable energy financial incentives have been in place since the mid-1970s in some states and over 40 states have adopted one or more incentives at some point since then. Using multivariate linear and fixed effects regression for the years 2002 through 2012, I estimate the relationship between state renewable energy financial incentives and residential electricity consumption, along with the associated policy implications. My hypothesis is that a renewable energy rebound effect is present; therefore, states with renewable energy financial incentives have a higher rate of residential electricity consumption. I find a renewable energy rebound effect is present in varying degrees for each model, but the results do not definitively indicate how particular incentives influence consumer behavior. States should use caution when adopting and keeping renewable energy financial incentives as this may increase consumption in the short-term. The long-term impact is unclear, making it worthwhile for policymakers to continue studying the potential for renewable energy financial incentives to alter consumer behavior.

  9. Resonances in the cumulative reaction probability for a model electronically nonadiabatic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, J.; Bowman, J.M.

    1996-05-01

    The cumulative reaction probability, flux{endash}flux correlation function, and rate constant are calculated for a model, two-state, electronically nonadiabatic reaction, given by Shin and Light [S. Shin and J. C. Light, J. Chem. Phys. {bold 101}, 2836 (1994)]. We apply straightforward generalizations of the flux matrix/absorbing boundary condition approach of Miller and co-workers to obtain these quantities. The upper adiabatic electronic potential supports bound states, and these manifest themselves as {open_quote}{open_quote}recrossing{close_quote}{close_quote} resonances in the cumulative reaction probability, at total energies above the barrier to reaction on the lower adiabatic potential. At energies below the barrier, the cumulative reaction probability for themore » coupled system is shifted to higher energies relative to the one obtained for the ground state potential. This is due to the effect of an additional effective barrier caused by the nuclear kinetic operator acting on the ground state, adiabatic electronic wave function, as discussed earlier by Shin and Light. Calculations are reported for five sets of electronically nonadiabatic coupling parameters. {copyright} {ital 1996 American Institute of Physics.}« less

  10. Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application.

    PubMed

    Borisyuk, Petr V; Derevyashkin, Sergey P; Khabarova, Ksenia Y; Kolachevsky, Nikolay N; Lebedinsky, Yury Y; Poteshin, Sergey S; Sysoev, Alexey A; Tkalya, Evgeny V; Tregubov, Dmitry O; Troyan, Viktor I; Vasiliev, Oleg S; Yakovlev, Valery P; Yudin, Valery I

    2017-08-01

    We describe an original multisectional quadrupole ion trap aimed to realize nuclear frequency standard based on the unique isomer transition in thorium nucleus. It is shown that the system effectively operates on Th + , Th 2+ and Th 3+ ions produced by laser ablation of metallic thorium-232 target. Laser intensity used for ablation is about 6 GW/cm 2 . Via applying a bias potential to every control voltage including the RF one, we are able not only to manipulate ions within the energy range as wide as 1-500 eV but to specially adjust trap potentials in order to work mainly with ions that belong to energy distribution maximum and therefore to effectively enhance the number of trapped ions. Measurement of energy distributions of 232 Th + , 232 Th 2+ , 232 Th 3+ ions obtained by laser ablation allows us to define optimal potential values for trapping process. Observed number of ions inside trap in dependence on trapping time is found to obey an unusually slow - logarithmic decay law that needs more careful study.

  11. Wind energy development in the United States: Can state-level policies promote efficient development of wind energy capacity?

    NASA Astrophysics Data System (ADS)

    Goldstein, Blair S.

    In the absence of strong U.S. federal renewable energy policies, state governments have taken the lead in passing legislation to promote wind energy. Studies have shown that many of these policies, including Renewable Portfolio Standards (RPS), have aided in the development of wind energy capacity nationwide. This paper seeks to analyze whether these state-level policies have led to an efficient development of U.S. wind energy. For the purposes of this paper, wind energy development is considered efficient if competitive markets enable wind capacity to be built in the most cost effective manner, allowing states to trade wind energy between high wind potential states and low wind potential states. This concept is operationalized by analyzing how state policies that incentivize the in-state development of wind energy impact where wind capacity is developed. A multivariate regression model examining wind capacity in the 48 contiguous United States that had some wind capacity between 1999 and 2008 found these in-state policies are associated with increased wind capacity, controlling for states' wind potential. The results suggest that state-level policies are distorting where wind is developed. These findings support the enactment of a more comprehensive federal energy policy, such as a national RPS, a cap-and-trade program, or a targeted federal transmission policy. These federal policies could spur national markets that would result in the more efficient development of U.S. wind energy.

  12. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability

    PubMed Central

    Li, Jie; Liu, Yuan; Zhu, Zhijian; Zhang, Guozhu; Zou, Tao; Zou, Zhijun; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2013-01-01

    A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300–1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice. PMID:23934407

  13. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus.

    PubMed

    McIsaac, W; Ferguson, A V

    2017-04-01

    The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central pathways involved in the regulation of energy homeostasis. © 2017 British Society for Neuroendocrinology.

  14. Progress in calculating the potential energy surface of H3+.

    PubMed

    Adamowicz, Ludwik; Pavanello, Michele

    2012-11-13

    The most accurate electronic structure calculations are performed using wave function expansions in terms of basis functions explicitly dependent on the inter-electron distances. In our recent work, we use such basis functions to calculate a highly accurate potential energy surface (PES) for the H(3)(+) ion. The functions are explicitly correlated Gaussians, which include inter-electron distances in the exponent. Key to obtaining the high accuracy in the calculations has been the use of the analytical energy gradient determined with respect to the Gaussian exponential parameters in the minimization of the Rayleigh-Ritz variational energy functional. The effective elimination of linear dependences between the basis functions and the automatic adjustment of the positions of the Gaussian centres to the changing molecular geometry of the system are the keys to the success of the computational procedure. After adiabatic and relativistic corrections are added to the PES and with an effective accounting of the non-adiabatic effects in the calculation of the rotational/vibrational states, the experimental H(3)(+) rovibrational spectrum is reproduced at the 0.1 cm(-1) accuracy level up to 16,600 cm(-1) above the ground state.

  15. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  16. The Effects of Capsaicin and Capsiate on Energy Balance: Critical Review and Meta-analyses of Studies in Humans

    PubMed Central

    Ludy, Mary-Jon; Moore, George E.

    2012-01-01

    Consumption of spicy foods containing capsaicin, the major pungent principle in hot peppers, reportedly promotes negative energy balance. However, many individuals abstain from spicy foods due to the sensory burn and pain elicited by the capsaicin molecule. A potential alternative for nonusers of spicy foods who wish to exploit this energy balance property is consumption of nonpungent peppers rich in capsiate, a recently identified nonpungent capsaicin analog contained in CH-19 Sweet peppers. Capsiate activates transient receptor potential vanilloid subtype 1 (TRPV1) receptors in the gut but not in the oral cavity. This paper critically evaluates current knowledge on the thermogenic and appetitive effects of capsaicin and capsiate from foods and in supplemental form. Meta-analyses were performed on thermogenic outcomes, with a systematic review conducted for both thermogenic and appetitive outcomes. Evidence indicates that capsaicin and capsiate both augment energy expenditure and enhance fat oxidation, especially at high doses. Furthermore, the balance of the literature suggests that capsaicin and capsiate suppress orexigenic sensations. The magnitude of these effects is small. Purposeful inclusion of these compounds in the diet may aid weight management, albeit modestly. PMID:22038945

  17. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  18. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.

    PubMed

    Ding, Yu; Yu, Guihua

    2016-04-04

    Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of dense plasma on the energy levels and transition properties in highly charged ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Hu, Hong-Wei; Ma, Kun; Liu, Xiao-Bin; Guo, Xue-Ling; Li, Shuang; Zhu, Bo-Hong; Huang, Lian; Wang, Kai

    2018-03-01

    The studies of the influence of plasma environments on the level structures and transition properties for highly charged ions are presented. For the relativistic treatment, we implemented the multiconfiguration Dirac-Fock method incorporating the ion sphere (IS) model potential, in which the plasma screening is taken into account as a modified interaction potential between the electron and the nucleus. For the nonrelativistic treatment, analytical solutions of the Schrödinger equation with two types of the IS screened potential are proposed. The Ritz variation method is used with hydrogenic wave function as a trial wave function that contains two unknown variational parameters. Bound energies are derived from an energy equation, and the variational parameters are obtained from the minimisation condition of the expectation value of the energy. Numerical results for hydrogen-like ions in dense plasmas are presented as examples. A detailed analysis of the influence of relativistic effects on the energy levels and transition properties is also reported. Our results are compared with available results in the literature showing a good quantitative agreement.

  20. Instrumental effects on the temperature and density derived from the light ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Reasoner, D. L.

    1983-01-01

    An expression for the flux into a retarding potential analyzer (RPA) is derived which takes into account the instrumental effect of a dependence on energy of the solid angle of the acceptance cone. A second instrumental effect of a limited bandpass is briefly discussed. Using the (LIMS) instrument on SCATHA, it is shown that temperatures and densities derived without considering the effect of the solid angle dependence on energy will be too low, dramatically so for E(t) E(1), where E(1) is the e folding distance of the solid angle dependence and E(t) is the thermal energy of the plasma. For E(t) E(1), there is effectively no impact on the derived temperatures and densities if the solid angle effect is ignored.

  1. Master Limited Partnerships and Real Estate Investment Trusts: Opportunities and Potential Complications for Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Settle, E.

    2013-11-01

    Master Limited Partnerships (MLPs) and Real Estate Investment Trusts (REITs) are two proposed investment vehicles which have the potential to lower renewable energy assets' high cost of capital; a critical factor in the Department of Energy's goal for renewable energy to achieve grid-parity with traditional sources of electric generation. Due to current U.S. federal income tax laws, regulations, and administrative interpretations, REITs and MLPs cannot finance a significant portion of the cost of renewable energy assets. Efforts are underway to alter these rules by changing the definition of 'real property' (REIT) and 'qualified income' (MLP). However, even with rule changes,more » both investment vehicles have structural challenges to efficiently finance renewable energy assets. Among them are 1) effectively utilizing the U.S. federal income tax incentives; 2) administratively structuring the investments to not be overly onerous or complicated, given the potential for pooling a relatively large amount of small assets; and 3) attracting and retaining a large enough investment community to participate in the funding opportunities. This report summarizes these challenges so that if proposed federal changes are made, stakeholders have an understanding of the possible outcomes.« less

  2. An energy and potential enstrophy conserving scheme for the shallow water equations. [orography effects on atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Lamb, V. R.

    1979-01-01

    A three-dimensional finite difference scheme for the solution of the shallow water momentum equations which accounts for the conservation of potential enstrophy in the flow of a homogeneous incompressible shallow atmosphere over steep topography as well as for total energy conservation is presented. The scheme is derived to be consistent with a reasonable scheme for potential vorticity advection in a long-term integration for a general flow with divergent mass flux. Numerical comparisons of the characteristics of the present potential enstrophy-conserving scheme with those of a scheme that conserves potential enstrophy only for purely horizontal nondivergent flow are presented which demonstrate the reduction of computational noise in the wind field with the enstrophy-conserving scheme and its convergence even in relatively coarse grids.

  3. Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer.

    PubMed

    Lim, Jongil; Whitcomb, John; Boyd, James; Varghese, Julian

    2007-01-01

    A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.

  4. Establishment of a building audit procedure and analysis for the Kansas Department of Transportation phase 2A : buildings, [technical summary].

    DOT National Transportation Integrated Search

    2013-11-01

    Over the past few years, state governments and entities have become concerned with the energy consumption : and efficiency of their facilities. An effective manner to identify potential to reduce energy and water : consumption and increase building e...

  5. Accelerated long-term assessment of thermal and chemical stability of bio-based phase change materials

    USDA-ARS?s Scientific Manuscript database

    Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...

  6. Energy Storage of Polyarylene Ether Nitriles at High Temperature

    NASA Astrophysics Data System (ADS)

    Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo

    2018-03-01

    Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energymore » electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.« less

  8. Energy conservation in ad hoc multimedia networks using traffic-shaping mechanisms

    NASA Astrophysics Data System (ADS)

    Chandra, Surendar

    2003-12-01

    In this work, we explore network traffic shaping mechanisms that deliver packets at pre-determined intervals; allowing the network interface to transition to a lower power consuming sleep state. We focus our efforts on commodity devices, IEEE 802.11b ad hoc mode and popular streaming formats. We argue that factors such as the lack of scheduling clock phase synchronization among the participants and scheduling delays introduced by back ground tasks affect the potential energy savings. Increasing the periodic transmission delays to transmit data infrequently can offset some of these effects at the expense of flooding the wireless channel for longer periods of time; potentially increasing the time to acquire the channel for non-multimedia traffic. Buffering mechanisms built into media browsers can mitigate the effects of these added delays from being mis-interpreted as network congestion. We show that practical implementations of such traffic shaping mechanisms can offer significant energy savings.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Garbesi, Karina

    It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standardsmore » program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.« less

  10. Effect of the Potential Shape on the Stochastic Resonance Processes

    NASA Astrophysics Data System (ADS)

    Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

    2015-10-01

    The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

  11. Dirac δ -function potential in quasiposition representation of a minimal-length scenario

    NASA Astrophysics Data System (ADS)

    Gusson, M. F.; Gonçalves, A. Oakes O.; Francisco, R. O.; Furtado, R. G.; Fabris, J. C.; Nogueira, J. A.

    2018-03-01

    A minimal-length scenario can be considered as an effective description of quantum gravity effects. In quantum mechanics the introduction of a minimal length can be accomplished through a generalization of Heisenberg's uncertainty principle. In this scenario, state eigenvectors of the position operator are no longer physical states and the representation in momentum space or a representation in a quasiposition space must be used. In this work, we solve the Schroedinger equation with a Dirac δ -function potential in quasiposition space. We calculate the bound state energy and the coefficients of reflection and transmission for the scattering states. We show that leading corrections are of order of the minimal length ({ O}(√{β })) and the coefficients of reflection and transmission are no longer the same for the Dirac delta well and barrier as in ordinary quantum mechanics. Furthermore, assuming that the equivalence of the 1s state energy of the hydrogen atom and the bound state energy of the Dirac {{δ }}-function potential in the one-dimensional case is kept in a minimal-length scenario, we also find that the leading correction term for the ground state energy of the hydrogen atom is of the order of the minimal length and Δx_{\\min } ≤ 10^{-25} m.

  12. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  13. Multiscale Simulations of Protein Landscapes: Using Coarse Grained Models as Reference Potentials to Full Explicit Models

    PubMed Central

    Messer, Benjamin M.; Roca, Maite; Chu, Zhen T.; Vicatos, Spyridon; Kilshtain, Alexandra Vardi; Warshel, Arieh

    2009-01-01

    Evaluating the free energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al, Theor Chem Acc (1999) 103:77-80) uses the CG model as a reference potential for free energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. This application includes: evaluation of changes of folding energy upon mutations, calculations of transition states binding free energies (which are crucial for rational enzyme design), evaluation of catalytic landscape and simulation of the time dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed. PMID:20052756

  14. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Effect of a magnetic field on the track structure of low-energy electrons: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Bug, M. U.; Gargioni, E.; Guatelli, S.; Incerti, S.; Rabus, H.; Schulte, R.; Rosenfeld, A. B.

    2010-10-01

    The increasing use of MRI-guided radiation therapy evokes the necessity to investigate the potential impact of a magnetic field on the biological effectiveness of therapeutic radiation beams. While it is known that a magnetic field, applied during irradiation, can improve the macroscopic absorbed dose distribution of electrons in the tumor region, effects on the microscopic distribution of energy depositions and ionizations have not yet been investigated. An effect on the number of ionizations in a DNA segment, which is related to initial DNA damage in form of complex strand breaks, could be beneficial in radiation therapy. In this work we studied the effects of a magnetic field on the pattern of ionizations at nanometric level by means of Monte Carlo simulations using the Geant4-DNA toolkit. The track structure of low-energy electrons in the presence of a uniform static magnetic field of strength up to 14 T was calculated for a simplified DNA segment model in form of a water cylinder. In the case that no magnetic field is applied, nanodosimetric results obtained with Geant4-DNA were compared with those from the PTB track structure code. The obtained results suggest that any potential enhancement of complexity of DNA strand breaks induced by irradiation in a magnetic field is not related to modifications of the low-energy secondary electrons track structure.

  16. Effective homogeneity of the exchange-correlation and non-interacting kinetic energy functionals under density scaling.

    PubMed

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2012-01-21

    Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics

  17. Electronic scattering, focusing, and resonance by a spherical barrier in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Lu, Ming; Zhang, Xiao-Xiao

    2018-05-01

    We solve the Weyl electron scattered by a spherical step potential barrier. Tuning the incident energy and the potential radius, one can enter both quasiclassical and quantum regimes. Transport features related to far-field currents and integrated cross sections are studied to reveal the preferred forward scattering. In the quasiclassical regime, a strong focusing effect along the incident spherical axis is found in addition to optical caustic patterns. In the quantum regime, at energies of successive angular momentum resonances, a polar aggregation of electron density is found inside the potential. The findings will be useful in transport studies and electronic lens applications in Weyl systems.

  18. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  20. Raptor interactions with wind energy: Case studies from around the world

    USGS Publications Warehouse

    Watson, Richard T.; Kolar, Patrick S.; Ferrer, Miguel; Nygård, Torgeir; Johnston, Naira; Hunt, W. Grainger; Smit-Robinson, Hanneline A.; Farmer, Christopher J; Huso, Manuela; Katzner, Todd

    2018-01-01

    The global potential for wind power generation is vast, and the number of installations is increasing rapidly. We review case studies from around the world of the effects on raptors of wind-energy development. Collision mortality, displacement, and habitat loss have the potential to cause population-level effects, especially for species that are rare or endangered. The impact on raptors has much to do with their behavior, so careful siting of wind-energy developments to avoid areas suited to raptor breeding, foraging, or migration would reduce these effects. At established wind farms that already conflict with raptors, reduction of fatalities may be feasible by curtailment of turbines as raptors approach, and offset through mitigation of other human causes of mortality such as electrocution and poisoning, provided the relative effects can be quantified. Measurement of raptor mortality at wind farms is the subject of intense effort and study, especially where mitigation is required by law, with novel statistical approaches recently made available to improve the notoriously difficult-to-estimate mortality rates of rare and hard-to-detect species. Global standards for wind farm placement, monitoring, and effects mitigation would be a valuable contribution to raptor conservation worldwide.

  1. Transfer of a wave packet in double-well potential

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang

    2018-04-01

    Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.

  2. Quantum Mechanical Determination of Potential Energy Surfaces for TiO and H2O

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.

    1996-01-01

    We discuss current ab initio methods for determining potential energy surfaces, in relation to the TiO and H2O molecules, both of which make important contributions to the opacity of oxygen-rich stars. For the TiO molecule we discuss the determination of the radiative lifetimes of the excited states and band oscillator strengths for both the triplet and singlet band systems. While the theoretical radiative lifetimes for TiO agree well with recent measurements, the band oscillator strengths differ significantly from those currently employed in opacity calculations. For the H2O molecule we discuss the current results for the potential energy and dipole moment ground state surfaces generated at NASA Ames. We show that it is necessary to account for such effects as core-valence Correlation energy to generate a PES of near spectroscopic accuracy. We also describe how we solve the ro-vibrational problem to obtain the line positions and intensities that are needed for opacity sampling.

  3. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.

    PubMed

    Stadnik, Yevgeny V

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  4. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny V.

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  5. Stability of Bose-Einstein condensates in a Kronig-Penney potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danshita, Ippei; Department of Physics, Waseda University, Okubo, Shinjuku, Tokyo 169-8555; Tsuchiya, Shunji

    2007-03-15

    We study the stability of Bose-Einstein condensates with superfluid currents in a one-dimensional periodic potential. By using the Kronig-Penney model, the condensate and Bogoliubov bands are analytically calculated and the stability of condensates in a periodic potential is discussed. The Landau and dynamical instabilities occur in a Kronig-Penney potential when the quasimomentum of the condensate exceeds certain critical values as in a sinusoidal potential. It is found that the onsets of the Landau and dynamical instabilities coincide with the point where the perfect transmission of low energy excitations through each potential barrier is forbidden. The Landau instability is caused bymore » the excitations with small q and the dynamical instability is caused by the excitations with q={pi}/a at their onsets, where q is the quasimomentum of excitation and a is the lattice constant. A swallow-tail energy loop appears at the edge of the first condensate band when the mean-field energy is sufficiently larger than the strength of the periodic potential. We find that the upper portion of the swallow-tail is always dynamically unstable, but the second Bogoliubov band has a phonon spectrum reflecting the positive effective mass.« less

  6. Shift in Chemical Potential of Superconducting Bi2212 Measured by Ultrafast Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Tristan; Smallwood, Chris; Zhang, Wentao; Eisaki, Hiroshi; Lee, Dung-Hai; Lanzara, Alessandra

    2015-03-01

    Time- and Angle-resolved photoemission spectroscopy (tr-ARPES) has been used to directly measure the dynamics of many different properties of high-temperature superconductors, including the quasiparticle relaxation, cooper pair recombination, and many-body interactions. There have also been several intriguing results on several materials showing how laser pulses can manipulate their chemical potential on ultrafast timescales, and it's been suggested that these effects could find applications in optoelectronic devices. Studies on GaAs have also found that laser pulses may induce a surface voltage effect. Here, we extend these studies for the first time to a Bi2212 sample in the superconducting state, and disentangle the shift in chemical potential from surface voltage effects. This work was supported by Berkeley Lab's program on Quantum Materials, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.

  7. Global typology of urban energy use and potentials for an urbanization mitigation wedge

    PubMed Central

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.

    2015-01-01

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508

  8. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  9. Curvature-induced domain wall pinning

    NASA Astrophysics Data System (ADS)

    Yershov, Kostiantyn V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri

    2015-09-01

    It is shown that a local bend of a nanowire is a source of pinning potential for a transversal head-to-head (tail-to-tail) domain wall. Eigenfrequency of the domain wall free oscillations at the pinning potential and the effective friction are determined as functions of the curvature and domain wall width. The pinning potential originates from the effective curvature-induced Dzyaloshinsky-like term in the exchange energy. The theoretical results are verified by means of micromagnetic simulations for the case of parabolic shape of the wire bend.

  10. High-temperature annealing of graphite: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Petersen, Andrew; Gillette, Victor

    2018-05-01

    A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.

  11. Quantum dynamics of relativistic bosons through nonminimal vector square potentials

    NASA Astrophysics Data System (ADS)

    de Oliveira, Luiz P.

    2016-09-01

    The dynamics of relativistic bosons (scalar and vectorial) through nonminimal vector square (well and barrier) potentials is studied in the Duffin-Kemmer-Petiau (DKP) formalism. We show that the problem can be mapped in effective Schrödinger equations for a component of the DKP spinor. An oscillatory transmission coefficient is found and there is total reflection. Additionally, the energy spectrum of bound states is obtained and reveals the Schiff-Snyder-Weinberg effect, for specific conditions the potential lodges bound states of particles and antiparticles.

  12. Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Sharon; Previsic, Mirko; Nelson, Peter

    2010-06-17

    Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry inmore » the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: 4 wave energy generation technologies 3 tidal energy generation technologies 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapu’u Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington. This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: What is the temporal and spatial exposure of a species at a site? What are the specific potential project effects on that species? What measures could minimize, mitigate, or eliminate negative effects? Are there potential effects of the project, or species’ response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristics of numerous siting or technology alternatives, and it allows us to graphically compare alternatives. We used Raptools to answer these questions: How do the scenarios compare, in terms of exposure, risks, and effects to the ecological and human environments? Are there sites that seem to present the fewest effects regardless of technology and scale? Which attributes account for many or much of the effects associated with wave or tidal energy development?« less

  13. Load Disaggregation Technologies: Real World and Laboratory Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Sullivan, Greg P.; Petersen, Joseph M.

    Low cost interval metering and communication technology improvements over the past ten years have enabled the maturity of load disaggregation (or non-intrusive load monitoring) technologies to better estimate and report energy consumption of individual end-use loads. With the appropriate performance characteristics, these technologies have the potential to enable many utility and customer facing applications such as billing transparency, itemized demand and energy consumption, appliance diagnostics, commissioning, energy efficiency savings verification, load shape research, and demand response measurement. However, there has been much skepticism concerning the ability of load disaggregation products to accurately identify and estimate energy consumption of end-uses; whichmore » has hindered wide-spread market adoption. A contributing factor is that common test methods and metrics are not available to evaluate performance without having to perform large scale field demonstrations and pilots, which can be costly when developing such products. Without common and cost-effective methods of evaluation, more developed disaggregation technologies will continue to be slow to market and potential users will remain uncertain about their capabilities. This paper reviews recent field studies and laboratory tests of disaggregation technologies. Several factors are identified that are important to consider in test protocols, so that the results reflect real world performance. Potential metrics are examined to highlight their effectiveness in quantifying disaggregation performance. This analysis is then used to suggest performance metrics that are meaningful and of value to potential users and that will enable researchers/developers to identify beneficial ways to improve their technologies.« less

  14. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.

  15. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  16. Supporting Current Energy Conversion Projects through Numerical Modeling

    NASA Astrophysics Data System (ADS)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  17. Electron Emission Properties of Insulator Materials Pertinent to the International Space Station

    NASA Technical Reports Server (NTRS)

    Thomson, C. D.; Zavyalov, V.; Dennison, J. R.; Corbridge, Jodie

    2004-01-01

    We present the results of our measurements of the electron emission properties of selected insulating and conducting materials used on the International Space Station (ISS). Utah State University (USU) has performed measurements of the electron-, ion-, and photon-induced electron emission properties of conductors for a few years, and has recently extended our capabilities to measure electron yields of insulators, allowing us to significantly expand current spacecraft material charging databases. These ISS materials data are used here to illustrate our various insulator measurement techniques that include: i) Studies of electron-induced secondary and backscattered electron yield curves using pulsed, low current electron beams to minimize deleterious affects of insulator charging. ii) Comparison of several methods used to determine the insulator 1st and 2nd crossover energies. These incident electron energies induce unity total yield at the transition between yields greater than and less than one with either negative or positive charging, respectively. The crossover energies are very important in determining both the polarity and magnitude of spacecraft surface potentials. iii) Evolution of electron emission energy spectra as a function of insulator charging used to determine the surface potential of insulators. iv) Surface potential evolution as a function of pulsed-electron fluence to determine how quickly insulators charge, and how this can affect subsequent electron yields. v) Critical incident electron energies resulting in electrical breakdown of insulator materials and the effect of breakdown on subsequent emission, charging and conduction. vi) Charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials during yield measurements. Specific ISS materials being tested at USU include chromic and sulfuric anodized aluminum, RTV-silicone solar array adhesives, solar cell cover glasses, Kapton, and gold. Further details of the USU testing facilities, the instrumentation used for insulator measurements, and the NASA/SEE Charge Collector materials database are provided in other Spacecraft Charging Conference presentations (Dennison, 2003b). The work presented was supported in part by the NASA Space Environments and Effects (SEE) Program, the Boeing Corporation, and a NASA Graduate Fellowship. Samples were supplied by Boeing, the Environmental Effects Group at Marshall Space Flight Center, and Sheldahl, Inc.

  18. The Major Magnetic Storm of March 13-14, 1989 and Associated Ionosphere Effects

    DTIC Science & Technology

    1993-06-30

    latitude. top-side ionospheric disturbance occurred on March 13 and 14. The mag- nitudes of the particle energy flux (ergs cm-’) (I erg -10’ J) and...Joule heating were not unusually large for a storm, but the area of the energy depesition, and thus the total energy deposition, was extremely large...all as more energy is transferred from the solar wind to the magnetosphere, but the cross polar-cap potential during this storm shows no evidence of

  19. Scientific challenges in sustainable energy technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  20. Kinetic isotope effects and how to describe them

    PubMed Central

    Karandashev, Konstantin; Xu, Zhen-Hao; Meuwly, Markus; Vaníček, Jiří; Richardson, Jeremy O.

    2017-01-01

    We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved. PMID:29282447

  1. Nonlinear Interactions for Broadband Energy Harvesting

    DTIC Science & Technology

    2015-04-22

    harvesting ,” Journal of Sound and Vibration , V. 331, No. 4, pp. 922– 937. 12. Sah, S.M., Mann, B.P., 2012, “Potential well metamorphosis of a pivoting...Nonlinear non- conservative behavior and modeling of piezoelectric energy harvesters including proof mass effects,” Journal of Intelligent Material...Experimental investigation of a post-buckled piezoelectric beam with an attached central mass used to harvest energy,” Journal of Sys- tems and Control

  2. Collinear collision chemistry. II. Energy disposition in reactive collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, B.H.

    1974-06-01

    A model describing the mechanics of collinear atom-diatom collisions and previously reported by the author is extended to describe reactive collisions. The model indicates the effects of such factors as the mass distribution and potential energy barriers and wells on the reaction probability and on the distribution of energy among the modes of motion of the products. Simple geometry and trigonometry are sufficient to solve the model.

  3. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    NASA Astrophysics Data System (ADS)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ˜37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm-1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm-1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  4. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    PubMed

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  5. Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential.

    PubMed

    Martino, Nicola A; Dell'Aquila, Maria E; Filioli Uranio, Manuel; Rutigliano, Lucia; Nicassio, Michele; Lacalandra, Giovanni M; Hinrichs, Katrin

    2014-10-11

    Evaluation of mitochondrial function offers an alternative to evaluate embryo development for assessment of oocyte viability, but little information is available on the relationship between mitochondrial and chromatin status in equine oocytes. We evaluated these parameters in immature equine oocytes either fixed immediately (IMM) or held overnight in an Earle's/Hank's' M199-based medium in the absence of meiotic inhibitors (EH treatment), and in mature oocytes. We hypothesized that EH holding may affect mitochondrial function and that holding temperature may affect the efficiency of meiotic suppression. Experiment 1 - Equine oocytes processed immediately or held in EH at uncontrolled temperature (22 to 27°C) were evaluated for initial chromatin configuration, in vitro maturation (IVM) rates and mitochondrial energy/redox potential. Experiment 2 - We then investigated the effect of holding temperature (25°C, 30°C, 38°C) on initial chromatin status of held oocytes, and subsequently repeated mitochondrial energy/redox assessment of oocytes held at 25°C vs. immediately-evaluated controls. EH holding at uncontrolled temperature was associated with advancement of germinal vesicle (GV) chromatin condensation and with meiotic resumption, as well as a lower maturation rate after IVM. Holding did not have a significant effect on mitochondrial distribution within chromatin configurations. Independent of treatment, oocytes having condensed chromatin had a significantly higher proportion of perinuclear/pericortical mitochondrial distribution than did other GV configurations. Holding did not detrimentally affect oocyte energy/redox parameters in viable GV-stage oocytes. There were no significant differences in chromatin configuration between oocytes held at 25°C and controls, whereas holding at higher temperature was associated with meiosis resumption and loss of oocytes having the condensed chromatin GV configuration. Holding at 25°C was not associated with progression of mitochondrial distribution pattern and there were no significant differences in oocyte energy/redox parameters between these oocytes and controls. Mitochondrial distribution in equine GV-stage oocytes is correlated with chromatin configuration within the GV. Progression of chromatin configuration and mitochondrial status during holding are dependent on temperature. EH holding at 25°C maintains meiotic arrest, viability and mitochondrial potential of equine oocytes. This is the first report on the effects of EH treatment on oocyte mitochondrial energy/redox potential.

  6. Theoretical Study of the Jahn-Teller effect in CH3CN+ (X2E) and CD3CN+ (X2E): multimode spin-vibronic energy level calculations.

    PubMed

    Zhang, Shiyang; Mo, Yuxiang

    2009-10-15

    The spin-vibronic energy levels for CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) have been calculated using a diabatic model including multimode vibronic couplings and spin-orbit interaction without adjusting any parameter. The diabatic potential energy surfaces are represented by the Taylor expansions including linear, quadratic and bilinear vibronic coupling terms. The normal coordinates used in the Taylor expansion were expressed by the mass-weighted Cartesian coordinates. The adiabatic potential energy surfaces for CH(3)CN(+) and CD(3)CN(+) were calculated at the level of CASPT2/cc-pvtz, and the spin-orbit coupling constant was calculated at the level of MRCI/CAS/cc-pvtz. The spin-orbit energy splittings for the ground vibrational states of CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are 20 and 16 cm(-1), respectively, which are resulted from the quenching of the spin-orbit coupling strength of 51 cm(-1). The calculated spin-vibronic levels are in good agreement with the experimental data. The calculation results show that the Jahn-Teller effects in CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are essential to understand their spin-vibronic energy structure.

  7. Energy drinks and adolescents: what's the harm?

    PubMed

    Harris, Jennifer L; Munsell, Christina R

    2015-04-01

    Concerns about potential dangers from energy drink consumption by youth have been raised by health experts, whereas energy drink manufacturers claim these products are safe and suitable for marketing to teens. This review summarizes the evidence used to support both sides of the debate. Unlike most beverage categories, sales of energy drinks and other highly caffeinated products continue to grow, and marketing is often targeted to youth under the age of 18 years. These products pose a risk of caffeine toxicity when consumed by some young people, and there is evidence of other troubling physiological and behavioral effects associated with their consumption by youth. The US Food and Drug Administration has indicated it will reexamine the safety of caffeine in the food supply; however, more research is needed to better understand youth consumption of energy drinks and caffeine in general, as well as the long-term effects on health. Meanwhile, policymakers and physician groups have called on energy drink manufacturers to take voluntary action to reduce the potential harm of their products, including placing restrictions on marketing to youth under the age of 18 years. Additional regulatory and legislative options are also being discussed. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Energy capture and storage in asymmetrically multistable modular structures inspired by skeletal muscle

    NASA Astrophysics Data System (ADS)

    Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.

    2017-08-01

    The remarkable versatility and adaptability of skeletal muscle that arises from the assembly of its nanoscale cross-bridges into micro-scale assemblies known as sarcomeres provides great inspiration for the development of advanced adaptive structures and material systems. Motivated by the capability of cross-bridges to capture elastic strain energy to improve the energetic efficiency of sudden movements and repeated motions, and by models of cross-bridge power stroke motions and sarcomere contractile behaviors that incorporate asymmetric, bistable potential energy landscapes, this research develops and studies modular mechanical structures that trap and store energy in higher-energy configurations. Modules exhibiting tailorable asymmetric bistability are first designed and fabricated, revealing how geometric parameters influence the asymmetry of the resulting double-well energy landscapes. These experimentally-observed characteristics are then investigated with numerical and analytical methods to characterize the dynamics of asymmetrically bistable modules. The assembly of such modules into greater structures generates complex, multi-well energy landscapes with stable system configurations exhibiting different quantities of stored elastic potential energy. Dynamic analyses illustrate the ability of these structures to capture a portion of the initial kinetic energy due to impulsive excitations as recoverable strain potential energy, and reveal how stiffness parameters, damping, and the presence of thermal noise in micro- and nano-scale applications influence energy capture behaviors. The insights gained could foster the development of advanced structural/material systems inspired by skeletal muscle, including actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable armors and protective devices.

  9. Kinetic energy offsets for multicharged ions from an electron beam ion source.

    PubMed

    Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P

    2017-08-01

    Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.

  10. Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States

    DOE PAGES

    Zhu, Peng; Zhuang, Qianlai; Eva, Joo; ...

    2016-06-21

    Current quantification of climate warming mitigation potential (CWMP) of biomass-derived energy has focused primarily on its biogeochemical effects. This study used site-level observations of carbon, water, and energy fluxes of biofuel crops to parameterize and evaluate the community land model (CLM) and estimate CO 2 fluxes, surface energy balance, soil carbon dynamics of corn (Zea mays), switchgrass (Panicum virgatum), and miscanthus (Miscanthus × giganteus) ecosystems across the conterminous United States considering different agricultural management practices and land-use scenarios. Here, we find that neglecting biophysical effects underestimates the CWMP of transitioning from croplands and marginal lands to energy crops. Biogeochemical effectsmore » alone result in changes in carbon storage of -1.9, 49.1, and 69.3 g C m -2 y -1 compared to 20.5, 78.5, and 96.2 g C m -2 y -1 when considering both biophysical and biogeochemical effects for corn, switchgrass, and miscanthus, respectively. The biophysical contribution to CWMP is dominated by changes in latent heat fluxes. Using the model to optimize growth conditions through fertilization and irrigation increases the CWMP further to 79.6, 98.3, and 118.8 g C m -2 y -1, respectively, representing the upper threshold for CWMP. Results also show that the CWMP over marginal lands is lower than that over croplands. Our study highlights that neglecting the biophysical effects of altered surface energy and water balance underestimates the CWMP of transitioning to bioenergy crops at regional scales.« less

  11. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  12. Lack of Additive Effects of Resveratrol and Energy Restriction in the Treatment of Hepatic Steatosis in Rats

    PubMed Central

    Aguirre, Leixuri; Rolo, Anabela P.; Palmeira, Carlos M.; Portillo, María P.

    2017-01-01

    The aims of the present study were to analyze the effect of resveratrol on liver steatosis in obese rats, to compare the effects induced by resveratrol and energy restriction and to research potential additive effects. Rats were initially fed a high-fat high-sucrose diet for six weeks and then allocated in four experimental groups fed a standard diet: a control group, a resveratrol-treated group, an energy restricted group and a group submitted to energy restriction and treated with resveratrol. We measured liver triacylglycerols, transaminases, FAS, MTP, CPT1a, CS, COX, SDH and ATP synthase activities, FATP2/FATP5, DGAT2, PPARα, SIRT1, UCP2 protein expressions, ACC and AMPK phosphorylation and PGC1α deacetylation. Resveratrol reduced triacylglycerols compared with the controls, although this reduction was lower than that induced by energy restriction. The mechanisms of action were different. Both decreased protein expression of fatty acid transporters, thus suggesting reduced fatty acid uptake from blood stream and liver triacylglycerol delivery, but only energy restriction reduced the assembly. These results show that resveratrol is useful for liver steatosis treatment within a balanced diet, although its effectiveness is lower than that of energy restriction. However, resveratrol is unable to increase the reduction in triacylglycerol content induced by energy restriction. PMID:28696376

  13. Lack of Additive Effects of Resveratrol and Energy Restriction in the Treatment of Hepatic Steatosis in Rats.

    PubMed

    Milton-Laskibar, Iñaki; Aguirre, Leixuri; Fernández-Quintela, Alfredo; Rolo, Anabela P; Soeiro Teodoro, João; Palmeira, Carlos M; Portillo, María P

    2017-07-11

    The aims of the present study were to analyze the effect of resveratrol on liver steatosis in obese rats, to compare the effects induced by resveratrol and energy restriction and to research potential additive effects. Rats were initially fed a high-fat high-sucrose diet for six weeks and then allocated in four experimental groups fed a standard diet: a control group, a resveratrol-treated group, an energy restricted group and a group submitted to energy restriction and treated with resveratrol. We measured liver triacylglycerols, transaminases, FAS, MTP, CPT1a, CS, COX, SDH and ATP synthase activities, FATP2/FATP5, DGAT2, PPARα, SIRT1, UCP2 protein expressions, ACC and AMPK phosphorylation and PGC1α deacetylation. Resveratrol reduced triacylglycerols compared with the controls, although this reduction was lower than that induced by energy restriction. The mechanisms of action were different. Both decreased protein expression of fatty acid transporters, thus suggesting reduced fatty acid uptake from blood stream and liver triacylglycerol delivery, but only energy restriction reduced the assembly. These results show that resveratrol is useful for liver steatosis treatment within a balanced diet, although its effectiveness is lower than that of energy restriction. However, resveratrol is unable to increase the reduction in triacylglycerol content induced by energy restriction.

  14. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    NASA Astrophysics Data System (ADS)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to have broad applications. The primary application is for the enrichment of stable isotopes for medical and industrial tracers. Other applications include mass analysis of unknown gases (atomic and molecular) and metals, extracting single charge states from a multiply charged beam, accelerating the high energy tail in a beam or plasma with a velocity distribution, and beam bunching.

  15. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative: 2012 annual report

    USGS Publications Warehouse

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura; Boughton, Gregory K.; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Fedy, Bradford C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2014-01-01

    Southwest Wyoming contains abundant energy resources, wildlife, habitat, open spaces, and outdoor recreational opportunities. Although energy exploration and development have been taking place in the region since the late 1800s, the pace of development for fossil fuels and renewable energy increased significantly in the early 2000s. This and the associated urban and exurban development are leading to landscape-level environmental and socioeconomic changes that have the potential to diminish wildlife habitat and other natural resources, and the quality of human lives, in Southwest Wyoming. The potential for negative effects of these changes prompted Federal, State, and local agencies to undertake the Wyoming Landscape Conservation Initiative for Southwest Wyoming.

  16. Electrostatic and magnetic fields in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Jellal, Ahmed; Redouani, Ilham; Bahlouli, Hocine

    2015-08-01

    We compute the transmission probability through rectangular potential barriers and p-n junctions in the presence of a magnetic and electric fields in bilayer graphene taking into account contributions from the full four bands of the energy spectrum. For energy E higher than the interlayer coupling γ1 (E >γ1) two propagation modes are available for transport giving rise to four possible ways for transmission and reflection coefficients. However, when the energy is less than the height of the barrier the Dirac fermions exhibit transmission resonances and only one mode of propagation is available for transport. We study the effect of the interlayer electrostatic potential denoted by δ and variations of different barrier geometry parameters on the transmission probability.

  17. Electrokinetic energy conversion in a finite length superhydrophobic microchannel

    NASA Astrophysics Data System (ADS)

    Malekidelarestaqi, M.; Mansouri, A.; Chini, S. F.

    2018-07-01

    We investigated the effect of superhydrophobic walls on electrokinetics phenomena in a finite-length microchannel with superhydrophobic walls (in both transient and steady-state). We implemented the effect of superhydrophobicity using Navier's slip-length. To include the importance of the electric double-layer, we scaled the slip-length with respect to Debye-length (κ-1). By increasing the slip-length from 0 to 144 nm (1.5κ-1), streaming-current, streaming-potential, flow-rate and electrokinetic energy conversion increased by 2.55, 2.44, 1.8, and 3.4 folds, accordingly. The electrokinetic energy conversion of each microchannel was in the order of picowatt. To produce more energy, an array of microchannels should be used.

  18. Potential environmental effects of energy conservation measures in northwest industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to differentmore » energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.« less

  19. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    PubMed

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of the KP theory is further examined in comparison with results from the traditional Rayleigh-Ritz variational approach and Rayleigh-Schrödinger perturbation theory in wave mechanics. The present method can be used for thermodynamic and quantum dynamic calculations, including to systematically determine the exact value of zero-point energy and to study kinetic isotope effects for chemical reactions in solution and in enzymes.

  20. Quantum shielding effects on the Gamow penetration factor for nuclear fusion reaction in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-01-01

    The quantum shielding effects on the nuclear fusion reaction process are investigated in quantum plasmas. The closed expression of the classical turning point for the Gamow penetration factor in quantum plasmas is obtained by the Lambert W-function. The closed expressions of the Gamow penetration factor and the cross section for the nuclear fusion reaction in quantum plasmas are obtained as functions of the plasmon energy and the relative kinetic energy by using the effective interaction potential with the WKB analysis. It is shown that the influence of quantum screening suppresses the Sommerfeld reaction factor. It is also shown that the Gamow penetration factor increases with an increase of the plasmon energy. It is also shown that the quantum shielding effect enhances the deuterium formation by the proton-proton reaction in quantum plasmas. In addition, it is found that the energy dependences on the reaction cross section and the Gamow penetration factor are more significant in high plasmon-energy domains.

Top