Sample records for effect revisited thermodynamic

  1. Revisiting Hansen Solubility Parameters by Including Thermodynamics.

    PubMed

    Louwerse, Manuel J; Maldonado, Ana; Rousseau, Simon; Moreau-Masselon, Chloe; Roux, Bernard; Rothenberg, Gadi

    2017-11-03

    The Hansen solubility parameter approach is revisited by implementing the thermodynamics of dissolution and mixing. Hansen's pragmatic approach has earned its spurs in predicting solvents for polymer solutions, but for molecular solutes improvements are needed. By going into the details of entropy and enthalpy, several corrections are suggested that make the methodology thermodynamically sound without losing its ease of use. The most important corrections include accounting for the solvent molecules' size, the destruction of the solid's crystal structure, and the specificity of hydrogen-bonding interactions, as well as opportunities to predict the solubility at extrapolated temperatures. Testing the original and the improved methods on a large industrial dataset including solvent blends, fit qualities improved from 0.89 to 0.97 and the percentage of correct predictions rose from 54 % to 78 %. Full Matlab scripts are included in the Supporting Information, allowing readers to implement these improvements on their own datasets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single-shot work extraction in quantum thermodynamics revisited

    NASA Astrophysics Data System (ADS)

    Wang, Shang-Yung

    2018-01-01

    We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.

  3. Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.

    PubMed

    Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas

    2016-03-08

    Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.

  4. From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager's Relations Revisited

    NASA Astrophysics Data System (ADS)

    Feidt, Michel; Costea, Monica

    2018-04-01

    Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.

  5. Automated Guidance for Thermodynamics Essays: Critiquing versus Revisiting

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Vitale, Jonathan M.; Linn, Marcia C.

    2015-01-01

    Middle school students struggle to explain thermodynamics concepts. In this study, to help students succeed, we use a natural language processing program to analyze their essays explaining the aspects of thermodynamics and provide guidance based on the automated score. The 346 sixth-grade students were assigned to either the critique condition…

  6. First-order transitions and thermodynamic properties in the 2D Blume-Capel model: the transfer-matrix method revisited

    NASA Astrophysics Data System (ADS)

    Jung, Moonjung; Kim, Dong-Hee

    2017-12-01

    We investigate the first-order transition in the spin-1 two-dimensional Blume-Capel model in square lattices by revisiting the transfer-matrix method. With large strip widths increased up to the size of 18 sites, we construct the detailed phase coexistence curve which shows excellent quantitative agreement with the recent advanced Monte Carlo results. In the deep first-order area, we observe the exponential system-size scaling of the spectral gap of the transfer matrix from which linearly increasing interfacial tension is deduced with decreasing temperature. We find that the first-order signature at low temperatures is strongly pronounced with much suppressed finite-size influence in the examined thermodynamic properties of entropy, non-zero spin population, and specific heat. It turns out that the jump at the transition becomes increasingly sharp as it goes deep into the first-order area, which is in contrast to the Wang-Landau results where finite-size smoothing gets more severe at lower temperatures.

  7. Interfacial solvation thermodynamics

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2016-10-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.

  8. Thermodynamic Study on Plasma Expansion along a Divergent Magnetic Field.

    PubMed

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-01-15

    Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γ_{e}=1.17±0.02 along the divergent magnetic field, implying a nearly isothermal plasma (γ_{e}=1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γ_{e}=5/3. The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.

  9. Revisit on the thermodynamic stability of Hořava-Lifshitz black hole

    NASA Astrophysics Data System (ADS)

    Meng, Xudong; Wang, Ruihong

    We study the thermodynamic properties of the black hole derived in Hořava-Lifshitz (HL) gravity without the detailed-balance condition. The parameter Ξ = 𝜖2 in the HL black hole plays the same role as that of the electric charge in the Reissner-Nordström-anti-de Sitter (RN-AdS) black hole. By analogy, we treat the parameter Ξ as the thermodynamic variable and obtain the first law of thermodynamics for the HL black hole. Although the HL black hole and the RN-AdS black hole have the similar mass and temperature, due to their very different entropy, the two black holes have very different thermodynamic properties. By calculating the heat capacity and the free energy, we analyze the thermodynamic stability of the HL black hole.

  10. Thermodynamic framework for compact q-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Souza, Andre M. C.; Andrade, Roberto F. S.; Nobre, Fernando D.; Curado, Evaldo M. F.

    2018-02-01

    Recent works have associated systems of particles, characterized by short-range repulsive interactions and evolving under overdamped motion, to a nonlinear Fokker-Planck equation within the class of nonextensive statistical mechanics, with a nonlinear diffusion contribution whose exponent is given by ν = 2 - q. The particular case ν = 2 applies to interacting vortices in type-II superconductors, whereas ν > 2 covers systems of particles characterized by short-range power-law interactions, where correlations among particles are taken into account. In the former case, several studies presented a consistent thermodynamic framework based on the definition of an effective temperature θ (presenting experimental values much higher than typical room temperatures T, so that thermal noise could be neglected), conjugated to a generalized entropy sν (with ν = 2). Herein, the whole thermodynamic scheme is revisited and extended to systems of particles interacting repulsively, through short-ranged potentials, described by an entropy sν, with ν > 1, covering the ν = 2 (vortices in type-II superconductors) and ν > 2 (short-range power-law interactions) physical examples. One basic requirement concerns a cutoff in the equilibrium distribution Peq(x) , approached due to a confining external harmonic potential, ϕ(x) = αx2 / 2 (α > 0). The main results achieved are: (a) The definition of an effective temperature θ conjugated to the entropy sν; (b) The construction of a Carnot cycle, whose efficiency is shown to be η = 1 -(θ2 /θ1) , where θ1 and θ2 are the effective temperatures associated with two isothermal transformations, with θ1 >θ2; (c) Thermodynamic potentials, Maxwell relations, and response functions. The present thermodynamic framework, for a system of interacting particles under the above-mentioned conditions, and associated to an entropy sν, with ν > 1, certainly enlarges the possibility of experimental verifications.

  11. Revisiting the Trust Effect in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Adams, Curt M.; Forsyth, Patrick B.

    2013-01-01

    More than a decade after Goddard, Tschannen-Moran, and Hoy (2001) found that collective faculty trust in clients predicts student achievement in urban elementary schools, we sought to identify a plausible link for this relationship. Our purpose in revisiting the trust effect was twofold: (1) to test the main effect of collective faculty trust on…

  12. Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with Bayesian uncertainty analysis

    DOE PAGES

    Duong, Thien C.; Hackenberg, Robert E.; Landa, Alex; ...

    2016-09-20

    In this paper, thermodynamic and kinetic diffusivities of uranium–niobium (U–Nb) are re-assessed by means of the CALPHAD (CALculation of PHAse Diagram) methodology. In order to improve the consistency and reliability of the assessments, first-principles calculations are coupled with CALPHAD. In particular, heats of formation of γ -U–Nb are estimated and verified using various density-functional theory (DFT) approaches. These thermochemistry data are then used as constraints to guide the thermodynamic optimization process in such a way that the mutual-consistency between first-principles calculations and CALPHAD assessment is satisfactory. In addition, long-term aging experiments are conducted in order to generate new phase equilibriamore » data at the γ 2/α+γ 2 boundary. These data are meant to verify the thermodynamic model. Assessment results are generally in good agreement with experiments and previous calculations, without showing the artifacts that were observed in previous modeling. The mutual-consistent thermodynamic description is then used to evaluate atomic mobility and diffusivity of γ-U–Nb. Finally, Bayesian analysis is conducted to evaluate the uncertainty of the thermodynamic model and its impact on the system's phase stability.« less

  13. Universal ideal behavior and macroscopic work relation of linear irreversible stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Ma, Yi-An; Qian, Hong

    2015-06-01

    We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic ‘equation of state’ of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.

  14. Revisiting the Role of Organizational Effectiveness in Educational Evaluation.

    ERIC Educational Resources Information Center

    Lotto, Linda S.

    Organizational effectiveness ought to play a role in educational evaluation, and the development of alternative perspectives for viewing organizations could be a starting point for revisiting organizational evaluation in education. Five possible perspectives and criteria for evaluating organizations have been developed. If an organization is…

  15. Revisiting "The Widget Effect": Teacher Evaluation Reforms and the Distribution of Teacher Effectiveness

    ERIC Educational Resources Information Center

    Kraft, Matthew A.; Gilmour, Allison F.

    2017-01-01

    In 2009, the New Teacher Project's "The Widget Effect" documented the failure of U.S. public school districts to recognize and act on differences in teacher effectiveness. We revisit these findings by compiling teacher performance ratings across 24 states that adopted major reforms to their teacher evaluation systems. In the vast…

  16. The Importance of Being a Complement: CED Effects Revisited

    ERIC Educational Resources Information Center

    Jurka, Johannes

    2010-01-01

    This dissertation revisits subject island effects (Ross 1967, Chomsky 1973) cross-linguistically. Controlled acceptability judgment studies in German, English, Japanese and Serbian show that extraction out of specifiers is consistently degraded compared to extraction out of complements, indicating that the Condition on Extraction domains (CED,…

  17. The Peter Effect Revisited: Reading Habits and Attitudes of College Students

    ERIC Educational Resources Information Center

    Applegate, Anthony J.; Applegate, Mary DeKonty; Mercantini, Martha A.; McGeehan, Catherine M.; Cobb, Jeanne B.; DeBoy, Joanne R.; Modla, Virginia B.; Lewinski, Kimberly E.

    2014-01-01

    Certainly a primary goal of literacy education is the creation of avid, enthusiastic, and highly motivated readers. However, in this article revisiting the Peter Effect (Applegate & Applegate, 2004), researchers surveyed more than 1,000 college sophomores and found strikingly low levels of enthusiasm for reading. Only 46.6% of surveyed…

  18. Entropy of measurement and erasure: Szilard's membrane model revisited

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.; Rex, Andrew F.

    1994-11-01

    It is widely believed that measurement is accompanied by irreversible entropy increase. This conventional wisdom is based in part on Szilard's 1929 study of entropy decrease in a thermodynamic system by intelligent intervention (i.e., a Maxwell's demon) and Brillouin's association of entropy with information. Bennett subsequently argued that information acquisition is not necessarily irreversible, but information erasure must be dissipative (Landauer's principle). Inspired by the ensuing debate, we revisit the membrane model introduced by Szilard and find that it can illustrate and clarify (1) reversible measurement, (2) information storage, (3) decoupling of the memory from the system being measured, and (4) entropy increase associated with memory erasure and resetting.

  19. Thermodynamic theory of the plasmoelectric effect

    DOE PAGES

    van de Groep, Jorik; Sheldon, Matthew T.; Atwater, Harry A.; ...

    2016-03-18

    Resonant metal nanostructures exhibit an optically induced electrostatic potential when illuminated with monochromatic light under off-resonant conditions. This plasmoelectric effect is thermodynamically driven by the increase in entropy that occurs when the plasmonic structure aligns its resonant absorption spectrum with incident illumination by varying charge density. As a result, the elevated steady-state temperature of the nanostructure induced by plasmonic absorption is further increased by a small amount. Here, we study in detail the thermodynamic theory underlying the plasmoelectric effect by analyzing a simplified model system consisting of a single silver nanoparticle. We find that surface potentials as large as 473more » mV are induced under 100 W/m2 monochromatic illumination, as a result of a 11 mK increases in the steady-state temperature of the nanoparticle. Hence, we discuss the applicability of this analysis for realistic experimental geometries, and show that this effect is generic for optical structures in which the resonance is linked to the charge density.« less

  20. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., or substantiated complaint survey and that is designed to evaluate the extent to which previously... 42 Public Health 5 2012-10-01 2012-10-01 false Revisit user fee for revisit surveys. 488.30... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General...

  1. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., or substantiated complaint survey and that is designed to evaluate the extent to which previously... 42 Public Health 5 2013-10-01 2013-10-01 false Revisit user fee for revisit surveys. 488.30... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General...

  2. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., or substantiated complaint survey and that is designed to evaluate the extent to which previously... 42 Public Health 5 2014-10-01 2014-10-01 false Revisit user fee for revisit surveys. 488.30... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General...

  3. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., or substantiated complaint survey and that is designed to evaluate the extent to which previously... 42 Public Health 5 2011-10-01 2011-10-01 false Revisit user fee for revisit surveys. 488.30... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General...

  4. 42 CFR 488.30 - Revisit user fee for revisit surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., or substantiated complaint survey and that is designed to evaluate the extent to which previously... 42 Public Health 5 2010-10-01 2010-10-01 false Revisit user fee for revisit surveys. 488.30... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES General...

  5. The Ti-Mn system revisited: experimental investigation and thermodynamic modelling.

    PubMed

    Khan, A U; Brož, P; Premović, M; Pavlů, J; Vřeštál, J; Yan, X; Maccio, D; Saccone, A; Giester, G; Rogl, P

    2016-08-17

    As the Ti-Mn phase diagram is part of numerous ternary and higher order systems of technological importance, the present paper defines phase relations which have been experimentally established throughout this work from 800 °C to the melting range based on Differential Thermal Analyses (DTA), X-ray powder diffraction, metallography and Electron Probe Micro Analysis (EPMA) techniques on ∼50 alloys, which were prepared by arc melting or high frequency melting under high purity argon starting from freshly cleaned metal ingots. Novel compounds were identified and reaction isotherms were redefined accordingly. In the Ti-rich region a novel compound TiMn was detected, sandwiched between the known phases: TiMn1-x (∼45 at% Mn) and TiMn1+x (∼55 at% Mn). In the Mn-rich region the hitherto unknown crystal structure of TiMn∼3 was solved from X-ray single crystal diffraction data and found to be of a unique structure type Ti6(Ti1-xMnx)6Mn25 (x = 0.462; space group Pbam (#55); a = 0.79081(3) nm, b = 2.58557(9) nm, c = 0.47931(2) nm), which consists of two consecutive layers of the hexagonal MgZn2-type Laves phase (TiMn2) and a combined layer of alternate structure blocks of MgZn2 type and Zr4Al3 type. Whereas TiMn can be considered as a line compound (solubility range <∼1 at%), the homogeneity regions of the Ti-Mn compounds are significant (determined by EPMA): TiMn1-x (44.0 to 46.6 at% Mn), TiMn1+x (54.6 to 56.3 at% Mn), Ti1+xMn2-x (MgZn2-type, 59 to 69 at% Mn at 1000 °C: -0.08 < x < 0.23), TiMn∼3 (unique type; 74 to 76.5 at% Mn) and TiMn∼4 (R-phase: Ti8(TixMn1-x)6Mn39, 80 to 84 at% Ti). Supported by ab initio calculations of the ground state energy for the Laves phase, the new experimental results enabled thermodynamic modelling of the entire Ti-Mn phase diagram providing a complete and novel set of thermodynamic data thus providing a sound basis for future thermodynamic predictions of higher order Ti-Mn-X-Y systems.

  6. A Comparative Study of the Coupling of Flow with Non-Fickean Thermodiffusion. Part I: Extended Irreversible Thermodynamics

    NASA Astrophysics Data System (ADS)

    Lebon, G.; Grmela, M.; Lhuillier, D.

    2003-03-01

    Our main objective is to describe non-Fickean thermodiffusion in binary fluids within the framework of three recent theories of non-equilibrium thermodynamics, namely Extended Irreversible Thermodynamics (EIT), GENERIC (General Equation for the Non-Equilibrium Reversible Irreversible Coupling) and Thermodynamics with Internal Variables (IVT). In the first part presented in this paper, we develop the EIT description. For pedagogical reasons, we start from the simplest situation to end with the most intricate one. Therefore, we first examine the simple problem of mass diffusion at uniform temperature. Then we study heat transport in a one-component fluid before considering the more complex coupled heat and mass transfer. In Part II developed in the accompanying paper, we follow the same hierarchy of situations from the point of view of GENERIC. Finally, in Part III, we present the point of view of the thermodynamic theory of internal variables. Similarities and differences between EIT, GENERIC and IVT are stressed. In the present work, we have taken advantage of the problem of heat conduction to revisit the notion of caloric.

  7. Early history of extended irreversible thermodynamics (1953-1983): An exploration beyond local equilibrium and classical transport theory

    NASA Astrophysics Data System (ADS)

    Lebon, G.; Jou, D.

    2015-06-01

    This paper gives a historical account of the early years (1953-1983) of extended irreversible thermodynamics (EIT). The salient features of this formalism are to upgrade the thermodynamic fluxes of mass, momentum, energy, and others, to the status of independent variables, and to explore the consistency between generalized transport equations and a generalized version of the second law of thermodynamics. This requires going beyond classical irreversible thermodynamics by redefining entropy and entropy flux. EIT provides deeper foundations, closer relations with microscopic formalisms, a wider spectrum of applications, and a more exciting conceptual appeal to non-equilibrium thermodynamics. We first recall the historical contributions by Maxwell, Cattaneo, and Grad on generalized transport equations. A thermodynamic theory wide enough to cope with such transport equations was independently proposed between 1953 and 1983 by several authors, each emphasizing different kinds of problems. In 1983, the first international meeting on this theory took place in Bellaterra (Barcelona). It provided the opportunity for the various authors to meet together for the first time and to discuss the common points and the specific differences of their previous formulations. From then on, a large amount of applications and theoretical confirmations have emerged. From the historical point of view, the emergence of EIT has been an opportunity to revisit the foundations and to open new avenues in thermodynamics, one of the most classical and well consolidated physical theories.

  8. Thermodynamic dislocation theory: Bauschinger effect

    NASA Astrophysics Data System (ADS)

    Le, K. C.; Tran, T. M.

    2018-04-01

    The thermodynamic dislocation theory developed for nonuniform plastic deformations is used here to simulate the stress-strain curves for crystals subjected to antiplane shear-controlled load reversal. We show that the presence of the positive back stress during the load reversal reduces the magnitude of shear stress required to pull excess dislocations back to the center of the specimen. There, the excess dislocations of opposite signs meet and annihilate each other leading to the Bauschinger effect.

  9. Effective Thermodynamics for a Marginal Observer

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo; Esposito, Massimiliano

    2017-12-01

    Thermodynamics is usually formulated on the presumption that the observer has complete information about the system he or she deals with: no parasitic current, exact evaluation of the forces that drive the system. For example, the acclaimed fluctuation relation (FR), relating the probability of time-forward and time-reversed trajectories, assumes that the measurable transitions suffice to characterize the process as Markovian (in our case, a continuous-time jump process). However, most often the observer only measures a marginal current. We show that he or she will nonetheless produce an effective description that does not dispense with the fundamentals of thermodynamics, including the FR and the 2nd law. Our results stand on the mathematical construction of a hidden time reversal of the dynamics, and on the physical requirement that the observed current only accounts for a single transition in the configuration space of the system. We employ a simple abstract example to illustrate our results and to discuss the feasibility of generalizations.

  10. Thermodynamical properties of hairy black holes in n spacetime dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadalini, Mario; Vanzo, Luciano; Zerbini, Sergio

    The issue concerning the existence of exact black hole solutions in the presence of a nonvanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional nonasymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proved. The issue of the positivity of the entropy is discussed andmore » resolved for the case of black holes immersed in de Sitter space.« less

  11. Thermodynamical effects and high resolution methods for compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Li, Jiequan; Wang, Yue

    2017-08-01

    One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.

  12. Primordial gravitational waves, precisely: the role of thermodynamics in the Standard Model

    NASA Astrophysics Data System (ADS)

    Saikawa, Ken'ichi; Shirai, Satoshi

    2018-05-01

    In this paper, we revisit the estimation of the spectrum of primordial gravitational waves originated from inflation, particularly focusing on the effect of thermodynamics in the Standard Model of particle physics. By collecting recent results of perturbative and non-perturbative analysis of thermodynamic quantities in the Standard Model, we obtain the effective degrees of freedom including the corrections due to non-trivial interaction properties of particles in the Standard Model for a wide temperature interval. The impact of such corrections on the spectrum of primordial gravitational waves as well as the damping effect due to free-streaming particles is investigated by numerically solving the evolution equation of tensor perturbations in the expanding universe. It is shown that the reevaluation of the effects of free-streaming photons and neutrinos gives rise to some additional damping features overlooked in previous studies. We also observe that the continuous nature of the QCD crossover results in a smooth spectrum for modes that reenter the horizon at around the epoch of the QCD phase transition. Furthermore, we explicitly show that the values of the effective degrees of freedom remain smaller than the commonly used value 106.75 even at temperature much higher than the critical temperature of the electroweak crossover, and that the amplitude of primordial gravitational waves at a frequency range relevant to direct detection experiments becomes Script O(1) % larger than previous estimates that do not include such corrections. This effect can be relevant to future high-sensitivity gravitational wave experiments such as ultimate DECIGO. Our results on the temperature evolution of the effective degrees of freedom are made available as tabulated data and fitting functions, which can also be used in the analysis of other cosmological relics.

  13. Circular revisit orbits design for responsive mission over a single target

    NASA Astrophysics Data System (ADS)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  14. Revisiting the Scattering Greenhouse Effect of CO2 Ice Clouds

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  15. Setting the Revisit Interval in Primary Care

    PubMed Central

    Schwartz, Lisa M; Woloshin, Steven; Wasson, John H; Renfrew, Roger A; Welch, H Gilbert

    1999-01-01

    OBJECTIVE Although longitudinal care constitutes the bulk of primary care, physicians receive little guidance on the fundamental question of how to time follow-up visits. We sought to identify important predictors of the revisit interval and to describe the variability in how physicians set these intervals when caring for patients with common medical conditions. DESIGN Cross-sectional survey of physicians performed at the end of office visits for consecutive patients with hypertension, angina, diabetes, or musculoskeletal pain. PARTICIPANTS/SETTING One hundred sixty-four patients under the care of 11 primary care physicians in the Dartmouth Primary Care Cooperative Research Network. MEASUREMENTS The main outcome measures were the variability in mean revisit intervals across physicians and the proportion of explained variance by potential determinants of revisit intervals. We assessed the relation between the revisit interval (dependent variable) and three groups of independent variables, patient characteristics (e.g., age, physician perception of patient health), identification of individual physician, and physician characterization of the visit (e.g., routine visit, visit requiring a change in management, or visit occurring on a “hectic” day), using multiple regression that accounted for the natural grouping of patients within physician. MAIN RESULTS Revisit intervals ranged from 1 week to over 1 year. The most common intervals were 12 and 16 weeks. Physicians’ perception of fair-poor health status and visits involving a change in management were most strongly related to shorter revisit intervals. In multivariate analyses, patient characteristics explained about 18% of the variance in revisit intervals, and adding identification of the individual provider doubled the explained variance to about 40%. Physician characterization of the visit increased explained variance to 57%. The average revisit interval adjusted for patient characteristics for each of the 11

  16. Association of emergency department albuterol dispensing with pediatric asthma revisits and readmissions.

    PubMed

    Hall, A Brad; Novotny, April; Bhisitkul, Donna M; Melton, James; Regan, Tim; Leckie, Maureen

    2017-06-01

    Although pediatric asthma continues to be a highly studied disease, data to suggest clear strategies to decrease asthma related revisits or readmissions is lacking. The purpose of our study was to assess the effect of emergency department (ED) direct dispensing of beta-agonist metered dose inhalers on pediatric asthma ED revisit and readmission rates. We conducted a retrospective cohort study of pediatric patients discharged from the pediatric ED with a diagnosis of asthma. Our primary outcome measured the rate of asthma revisits to the ED or admissions to the hospital within 28 days. Logistic regression analysis was used to assess ED beta-agonist MDI dispensing and revisit and/or readmission as the outcome. A total of 853 patients met eligibility for inclusion in the study, with 657 enrolled in the Baseline group and 196 enrolled in the ED-MDI group. The Baseline group experienced a revisit and readmission rate of 7.0% (46/657) versus 2.6% (5/196) in the ED-MDI group, (p = 0.026). ED direct dispensing of MDIs was found to be independently associated with a decreased risk of revisit or readmission (odds ratio 0.37; 95% confidence interval 0.14-0.95). In our study, ED direct dispensing of beta-agonist MDIs resulted in a reduction in 28-day revisit and readmission to the hospital. Further studies should be performed to evaluate the economic impact of reducing these revisits and readmissions against the costs of maintaining a dispensing program. Our findings may support modification of asthma programs to include dispensing MDIs from the emergency department.

  17. Dissipation effects in mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  18. Allowance for effects of thermodynamic nonideality in sedimentation equilibrium distributions reflecting protein dimerization.

    PubMed

    Wills, Peter R; Scott, David J; Winzor, Donald J

    2012-03-01

    This reexamination of a high-speed sedimentation equilibrium distribution for α-chymotrypsin under slightly acidic conditions (pH 4.1, I(M) 0.05) has provided experimental support for the adequacy of nearest-neighbor considerations in the allowance for effects of thermodynamic nonideality in the characterization of protein self-association over a moderate concentration range (up to 8 mg/mL). A widely held but previously untested notion about allowance for thermodynamic nonideality effects is thereby verified experimentally. However, it has also been shown that a greater obstacle to better characterization of protein self-association is likely to be the lack of a reliable estimate of monomer net charge, a parameter that has a far more profound effect on the magnitude of the measured equilibrium constant than any deficiency in current procedures for incorporating the effects of thermodynamic nonideality into the analysis of sedimentation equilibrium distributions reflecting reversible protein self-association. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.

    PubMed

    Peckarsky, Barbara L; Abrams, Peter A; Bolnick, Daniel I; Dill, Lawrence M; Grabowski, Jonathan H; Luttbeg, Barney; Orrock, John L; Peacor, Scott D; Preisser, Evan L; Schmitz, Oswald J; Trussell, Geoffrey C

    2008-09-01

    Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator

  20. Thermodynamic equilibrium with acceleration and the Unruh effect

    NASA Astrophysics Data System (ADS)

    Becattini, F.

    2018-04-01

    We address the problem of thermodynamic equilibrium with constant acceleration along the velocity field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh temperature TU=A /2 π where A is the magnitude of the acceleration four-vector. We argue that the Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local thermodynamic equilibrium situation.

  1. Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects

    PubMed Central

    Chen, Xi; Liu, Peng; Chou, Hui-Hsien

    2013-01-01

    Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018

  2. Revisiting the positive DC corona discharge theory: Beyond Peek's and Townsend's law

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck

    2018-06-01

    The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is revisited in order to find analytically the influence of gas properties and thermodynamic conditions on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. Phys. 20, 1490-1495 (1987)] of a simplified but self-consistent problem is performed and explicit analytical solutions are derived. The mathematical derivation enables us to express a new positive DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formulation. In dimensional variables, the current voltage law and the corona inception voltage explicitly depend on the electrode size and physical gas properties such as ionization and photoionization parameters. The analytical predictions are successfully confronted with experiments and Peek's and Townsend's laws. An analytical expression of the corona inception voltage φ o n is proposed, which depends on the known values of physical parameters without adjustable parameters. As a proof of consistency, the classical Townsend current-voltage law I = C φ ( φ - φ o n ) is retrieved by linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest in this analytical current model, especially for exploring small corona wires or considering various thermodynamic conditions.

  3. Establishment of revisit user fee program for Medicare survey and certification activities. Final rule.

    PubMed

    2007-09-19

    This final rule will establish a system of revisit user fees applicable to health care facilities that have been cited for deficiencies during initial certification, recertification, or substantiated complaint surveys and require a revisit to confirm that corrections to previously-identified deficiencies have been remedied. Consistent with the President's long-term goal to promote quality of health care and to cut the deficit in half by fiscal year (FY) 2009, the FY 2007 Department of Health and Human Services' (HHS) budget request included both new mandatory savings proposals and a requirement that user fees be applied to health care providers that have failed to comply with Federal quality of care requirements. The "Revisit User Fees" will affect only those providers or suppliers for which a revisit is required to confirm that previously-identified failures to meet federal quality of care requirements have been remedied. The fees are estimated at $37.3 million annually and will recover the costs associated with the Medicare Survey and Certification program's revisit surveys. The fees will take effect on the date of publication of the final rule and will be in effect until the date that the continued authority provided by Congress expires. At the time of publication of this regulation the applicable date is September 30, 2007. If no legislation is enacted, the fees are not retroactive to the beginning of the fiscal year. Any provider or supplier that has a revisit survey conducted on or after the date of publication will be assessed a revisit user fee and will be notified of the assessment upon data system reconciliation which can occur following the closing of the fiscal year. The fees will be available to CMS until expended. The revisit user fee is included in the President's proposed FY 2008 budget. We note through the publication of this final rule that if authority for the revisit user fee is continued, we will use the current fee schedule in this rule for

  4. The Effects of Korean Medical Service Quality and Satisfaction on Revisit Intention of the United Arab Emirates Government Sponsored Patients.

    PubMed

    Lee, Seoyoung; Kim, Eun-Kyung

    2017-06-01

    The purpose of this study was to investigate medical service quality, satisfaction and to examine factors influencing hospital revisit intention of the United Arab Emirates government sponsored patients in Korea. A total of 152 UAE government sponsored patients who visited Korean hospitals participated in the questionnaire survey from August to November 2016. Stepwise multiple regression was used to identify the factors that affected the revisit intention of the participants. The mean scores of medical service quality, satisfaction, and revisit intention were 5.72 out of 7, 88.88 out of 100, 4.59 out of 5, respectively. Medical service quality and satisfaction, Medical service quality and revisit intention, satisfaction and revisit intention were positively correlated. Medical service of physician, visiting routes and responsiveness of medical service quality explained about 23.8% of revisit intention. There are needs for physicians to communicate with patients while ensuring sufficient consultation time based on excellent medical skills and nurses to respond immediately for the patients' needs through an empathic encounter in order to improve medical service quality and patient satisfaction so that to increase the revisit intention of the United Arab Emirates government sponsored patients. Further, it is necessary for the hospitals to have support plans for providing country specialized services in consideration of the UAE culture to ensure that physicians' and nurses' competencies are not undervalued by non-medical service elements such as interpreters and meals. Copyright © 2017. Published by Elsevier B.V.

  5. Revisit rates and associated costs after an emergency department encounter: a multistate analysis.

    PubMed

    Duseja, Reena; Bardach, Naomi S; Lin, Grace A; Yazdany, Jinoos; Dean, Mitzi L; Clay, Theodore H; Boscardin, W John; Dudley, R Adams

    2015-06-02

    Return visits to the emergency department (ED) or hospital after an index ED visit strain the health system, but information about rates and determinants of revisits is limited. To describe revisit rates, variation in revisit rates by diagnosis and state, and associated costs. Observational study using the Healthcare Cost and Utilization Project databases. 6 U.S. states. Adults with ED visits between 2006 and 2010. Revisit rates and costs. Within 3 days of an index ED visit, 8.2% of patients had a revisit; 32% of those revisits occurred at a different institution. Revisit rates varied by diagnosis, with skin infections having the highest rate (23.1% [95% CI, 22.3% to 23.9%]). Revisit rates also varied by state. For skin infections, Florida had higher risk-adjusted revisit rates (24.8% [CI, 23.5% to 26.2%]) than Nebraska (10.6% [CI, 9.2% to 12.1%]). In Florida, the only state with complete cost data, total revisit costs for the 19.8% of patients with a revisit within 30 days were 118% of total index ED visit costs for all patients (including those with and without a revisit). Whether a revisit reflects inadequate access to primary care, a planned revisit, the patient's nonadherence to ED recommendations, or poor-quality care at the initial ED visit remains unknown. Revisits after an index ED encounter are more frequent than previously reported, in part because many occur outside the index institution. Among ED patients in Florida, more resources are spent on revisits than on index ED visits. Agency for Healthcare Research and Quality.

  6. Statistical Thermodynamics and Microscale Thermophysics

    NASA Astrophysics Data System (ADS)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  7. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement

    NASA Astrophysics Data System (ADS)

    Makahinda, T.

    2018-02-01

    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  8. Thermodynamic Constraints Improve Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2017-08-08

    In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of reactions is thermodynamically constrained in modern metabolic networks. The reversibility constraints follow from heuristic thermodynamic poise approximations that take anticipated cellular metabolite concentration ranges into account. Because constraints reduce the feasible space, draft metabolic network reconstructions may need more extensive reconciliation, and a larger number of genes may become essential. Notwithstanding ubiquitous application, the effect of reversibility constraints on the predictive capabilities of metabolic networks has not been investigated in detail. Instead, work has focused on the implementation and validation of the thermodynamic poise calculation itself. With the advance of fast linear programming-based network reconciliation, the effects of reversibility constraints on network reconciliation and gene essentiality predictions have become feasible and are the subject of this study. Networks with thermodynamically informed reversibility constraints outperformed gene essentiality predictions compared to networks that were constrained with randomly shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as thermodynamically constrained networks, but predicted substantially fewer essential genes. Networks that were reconciled with sequence similarity data and strongly enforced reversibility constraints outperformed all other networks. We conclude that metabolic network analysis confirmed the validity of the thermodynamic constraints, and that thermodynamic poise information is actionable during network reconciliation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Thermodynamically consistent model calibration in chemical kinetics

    PubMed Central

    2011-01-01

    Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore, TCMC can

  10. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  11. Thermodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Chaston, Scot

    1999-02-01

    Thermodynamic data such as equilibrium constants, standard cell potentials, molar enthalpies of formation, and standard entropies of substances can be a very useful basis for an organized presentation of knowledge in diverse areas of applied chemistry. Thermodynamic data can become particularly useful when incorporated into thermodynamic diagrams that are designed to be easy to recall, to serve as a basis for reconstructing previous knowledge, and to determine whether reactions can occur exergonically or only with the help of an external energy source. Few students in our chemistry-based courses would want to acquire the depth of knowledge or rigor of professional thermodynamicists. But they should nevertheless learn how to make good use of thermodynamic data in their professional occupations that span the chemical, biological, environmental, and medical laboratory fields. This article discusses examples of three thermodynamic diagrams that have been developed for this purpose. They are the thermodynamic energy account (TEA), the total entropy scale, and the thermodynamic scale diagrams. These diagrams help in the teaching and learning of thermodynamics by bringing the imagination into the process of developing a better understanding of abstract thermodynamic functions, and by allowing the reader to keep track of specialist thermodynamic discourses in the literature.

  12. Thermodynamics of organic compounds

    NASA Astrophysics Data System (ADS)

    Gammon, B. E.; Smith, N. K.

    1982-11-01

    This research program consisted of an integrated and interrelated effort of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of physical and thermodynamic properties with molecular structure was used to select compounds for study that because of high ring strain or unusual steric effects may have good energy characteristics per unit volume or per unit mass and thus be useful in the synthesis of high energy fuels. These materials were synthesized, and their thermodynamic properties were evaluated. In cooperation with researcher at Wright-Patterson Air Force Base, ramjet fuels currently in use were subjected to careful thermodynamic evaluation by measurements of heat capacity, enthalpy of combustion and vapor pressure. During the last year of this effort, seven kerosene-type fuels produced by British Petroleum and seven jet fuels produced from shale oil were studied.

  13. Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect

    NASA Astrophysics Data System (ADS)

    Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui

    2018-01-01

    A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.

  14. Lakatos Revisited.

    ERIC Educational Resources Information Center

    Court, Deborah

    1999-01-01

    Revisits and reviews Imre Lakatos' ideas on "Falsification and the Methodology of Scientific Research Programmes." Suggests that Lakatos' framework offers an insightful way of looking at the relationship between theory and research that is relevant not only for evaluating research programs in theoretical physics, but in the social…

  15. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    ERIC Educational Resources Information Center

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  16. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  17. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  18. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  19. Microbial diversity arising from thermodynamic constraints

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  20. Experimental studies on thermodynamic effects of developed cavitation

    NASA Technical Reports Server (NTRS)

    Ruggeri, R. S.

    1974-01-01

    A method for predicting thermodynamic effects of cavitation (changes in cavity pressure relative to stream vapor pressure) is presented. The prediction method accounts for changes in liquid, liquid temperature, flow velocity, and body scale. Both theoretical and experimental studies used in formulating the method are discussed. The prediction method provided good agreement between predicted and experimental results for geometrically scaled venturis handling four different liquids of widely diverse physical properties. Use of the method requires geometric similarity of the body and cavitated region and a known reference cavity-pressure depression at one operating condition.

  1. Thermodynamic power of non-Markovianity

    PubMed Central

    Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina

    2016-01-01

    The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer’s principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947

  2. Thermodynamic model effects on the design and optimization of natural gas plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, S.; Zabaloy, M.; Brignole, E.A.

    1999-07-01

    The design and optimization of natural gas plants is carried out on the basis of process simulators. The physical property package is generally based on cubic equations of state. By rigorous thermodynamics phase equilibrium conditions, thermodynamic functions, equilibrium phase separations, work and heat are computed. The aim of this work is to analyze the NGL turboexpansion process and identify possible process computations that are more sensitive to model predictions accuracy. Three equations of state, PR, SRK and Peneloux modification, are used to study the effect of property predictions on process calculations and plant optimization. It is shown that turboexpander plantsmore » have moderate sensitivity with respect to phase equilibrium computations, but higher accuracy is required for the prediction of enthalpy and turboexpansion work. The effect of modeling CO{sub 2} solubility is also critical in mixtures with high CO{sub 2} content in the feed.« less

  3. Local thermodynamic mapping for effective liquid density-functional theory

    NASA Technical Reports Server (NTRS)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  4. Effect of Urea on the Thermodynamics of Hexadecyltrimethylammonium Bromide Micelle Formation in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Velikov, A. A.

    2018-02-01

    The effect of urea on the thermodynamics of hexadecyltrimethylammonium bromide (CTAB) micelle formation in aqueous urea solutions was studied by isothermal titration microcalorimetry. The thermodynamic functions of Δ H, Δ G, and Δ S of CTAB micelle formation were calculated. The critical micelle concentrations (CMC) were determined. The addition of urea to the solution decreased the micelle formation entropy. This was attributed to the "lowering" of the structural temperature of the solution, which led to an increased number of hydrogen bonds and structure formation of water.

  5. Thermodynamic description of Hofmeister effects on the LCST of thermosensitive polymers.

    PubMed

    Heyda, Jan; Dzubiella, Joachim

    2014-09-18

    Cosolvent effects on protein or polymer collapse transitions are typically discussed in terms of a two-state free energy change that is strictly linear in cosolute concentration. Here we investigate in detail the nonlinear thermodynamic changes of the collapse transition occurring at the lower critical solution temperature (LCST) of the role-model polymer poly(N-isopropylacrylamide) [PNIPAM] induced by Hofmeister salts. First, we establish an equation, based on the second-order expansion of the two-state free energy in concentration and temperature space, which excellently fits the experimental LCST curves and enables us to directly extract the corresponding thermodynamic parameters. Linear free energy changes, grounded on generic excluded-volume mechanisms, are indeed found for strongly hydrated kosmotropes. In contrast, for weakly hydrated chaotropes, we find significant nonlinear changes related to higher order thermodynamic derivatives of the preferential interaction parameter between salts and polymer. The observed non-monotonic behavior of the LCST can then be understood from a not yet recognized sign change of the preferential interaction parameter with salt concentration. Finally, we find that solute partitioning models can possibly predict the linear free energy changes for the kosmotropes, but fail for chaotropes. Our findings cast strong doubt on their general applicability to protein unfolding transitions induced by chaotropes.

  6. Statistical thermodynamic foundation for photovoltaic and photothermal conversion. IV. Solar cells with larger-than-unity quantum efficiency revisited

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Landsberg, Peter T.; De Vos, Alexis; Desoete, Bart

    2001-02-01

    A detailed balance solar energy conversion model offering a single treatment of both photovoltaic and photothermal conversion is expounded. It includes a heat rejection mechanism. The effect of multiple impact ionizations on the solar cell efficiency is reconsidered by including the constraints dictated by the first law of thermodynamics (which already exist in the model) and it improves of course the solar cell efficiency. However the upper bound efficiencies previously derived are too optimistic as they do not take into consideration the necessary increase in solar cell temperature. The cell efficiency operating under unconcentrated radiation is a few percent lower than in the ideal case (i.e., with perfect cooling). Wider band gap materials are recommended for those applications where the cell cooling is not effective. The best operation of naturally ventilated cells is under unconcentrated or slightly concentrated solar radiation. Increasing the (forced) ventilation rate allows an increase of the optimum concentration ratio. Additional effects such as the radiation reflectance and radiative pair recombination efficiency are also considered. A sort of threshold minimum band gap depending on the last effect is emphasized: materials with band gaps narrower than this threshold are characterized by very low cell efficiency.

  7. Thermodynamics sheds light on black hole dynamics

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Julié, Félix-Louis; Deruelle, Nathalie

    2018-06-01

    We propose to unify two a priori distinct aspects of black hole physics: their thermodynamics, and their description as point particles, which is an essential starting point in the post-Newtonian approach to their dynamics. We will find that, when reducing a black hole to a point particle endowed with its specific effective mass, one in fact describes a black hole satisfying the first law of thermodynamics, such that its global charges, and hence its entropy, remain constant. This gives a thermodynamical interpretation of its effective mass, thus opening a promising synergy between black hole thermodynamics and the analytical approaches to the two-body problems in gravity theories. To illustrate this relationship, the Einstein-Maxwell-dilaton theory, which contains simple examples of asympotically flat, hairy black hole solutions, will serve as a laboratory.

  8. Viscoplasticity: A thermodynamic formulation

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Chaboche, J. L.

    1989-01-01

    A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents.

  9. Thermodynamic laws apply to brain function.

    PubMed

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  10. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  11. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2015-11-10

    Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.

  12. Revisiting Bioaccumulation Criteria

    EPA Science Inventory

    The objective of workgroup 5 was to revisit the B(ioaccumulation) criteria that are currently being used to identify POPs under the Stockholm Convention and PBTs under CEPA, TSCA, REACh and other programs. Despite the lack of a recognized definition for a B substance, we defined ...

  13. Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling

    NASA Astrophysics Data System (ADS)

    Tušek, Jaka; Engelbrecht, Kurt; Mañosa, Lluis; Vives, Eduard; Pryds, Nini

    2016-12-01

    This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress-strain-temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius-Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy-temperature diagrams (all as a function of temperature and applied stress/strain) of two groups of materials (Ni-Ti and Cu-Zn-Al alloys) obtained using indirect methods through phenomenological modelling and Maxwell relation. In the last part of the paper, the basic definition of the efficiency of the elastocaloric thermodynamic cycle (coefficient of performance) is defined and discussed.

  14. Methodology of Thermodynamics

    ERIC Educational Resources Information Center

    Mohan, Gyan

    1969-01-01

    Presents a systematization of the mathematical formulae in thermodynamics. From the set of thermodynamic variables, four equations are derived which contain the total mathematical jargon of thermodynamics. (LC)

  15. Thermodynamic Studies for Drug Design and Screening

    PubMed Central

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  16. The Casimir effect for parallel plates revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, N. A.; Nemes, M. C.; Wreszinski, Walter F.

    2007-10-15

    The Casimir effect for a massless scalar field with Dirichlet and periodic boundary conditions (bc's) on infinite parallel plates is revisited in the local quantum field theory (lqft) framework introduced by Kay [Phys. Rev. D 20, 3052 (1979)]. The model displays a number of more realistic features than the ones he treated. In addition to local observables, as the energy density, we propose to consider intensive variables, such as the energy per unit area {epsilon}, as fundamental observables. Adopting this view, lqft rejects Dirichlet (the same result may be proved for Neumann or mixed) bc, and accepts periodic bc: inmore » the former case {epsilon} diverges, in the latter it is finite, as is shown by an expression for the local energy density obtained from lqft through the use of the Poisson summation formula. Another way to see this uses methods from the Euler summation formula: in the proof of regularization independence of the energy per unit area, a regularization-dependent surface term arises upon use of Dirichlet bc, but not periodic bc. For the conformally invariant scalar quantum field, this surface term is absent due to the condition of zero trace of the energy momentum tensor, as remarked by De Witt [Phys. Rep. 19, 295 (1975)]. The latter property does not hold in the application to the dark energy problem in cosmology, in which we argue that periodic bc might play a distinguished role.« less

  17. Should the recommended number of IUD revisits be reduced?

    PubMed

    Janowitz, B; Hubacher, D; Petrick, T; Dighe, N

    1994-01-01

    This study uses data from clinical trials of intrauterine devices to examine the effect of reducing the recommended number of IUD follow-up visits. Over 11,000 follow-up forms were analyzed to estimate the number of health problems that would have escaped detection if women with no or mild symptoms had not made recommended revisits. Less than one percent of woman-visits with no or only mild symptoms had an underlying health risk that could have gone undetected if the follow-up visits that were made in the clinic trial setting had not been made. The results from this analysis suggest that a reduction in the number of recommended follow-up visits is safe, when measured according to selected conditions. Additional research is necessary to determine whether any revisits should be recommended in the absence of signs or symptoms.

  18. The effectiveness of problem-based learning on teaching the first law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Tatar, Erdal; Oktay, Münir

    2011-11-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment. Purpose: This study examined the effectiveness of PBL on candidate science teachers' understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL. Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey. Design and methods: A one-group pretest-posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests. Results: The PBL approach has a positive effect on the students' learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning. Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.

  19. Revisiting Constructivist Teaching Methods in Ontario Colleges Preparing for Accreditation

    ERIC Educational Resources Information Center

    Schultz, Rachel A.

    2015-01-01

    At the time of writing, the first community colleges in Ontario were preparing for transition to an accreditation model from an audit system. This paper revisits constructivist literature, arguing that a more pragmatic definition of constructivism effectively blends positivist and interactionist philosophies to achieve both student centred…

  20. Predictors and Outcomes of Revisits in Older Adults Discharged from the Emergency Department.

    PubMed

    de Gelder, Jelle; Lucke, Jacinta A; de Groot, Bas; Fogteloo, Anne J; Anten, Sander; Heringhaus, Christian; Dekkers, Olaf M; Blauw, Gerard J; Mooijaart, Simon P

    2018-04-01

    To study predictors of emergency department (ED) revisits and the association between ED revisits and 90-day functional decline or mortality. Multicenter cohort study. One academic and two regional Dutch hospitals. Older adults discharged from the ED (N=1,093). At baseline, data on demographic characteristics, illness severity, and geriatric parameters (cognition, functional capacity) were collected. All participants were prospectively followed for an unplanned revisit within 30 days and for functional decline and mortality 90 days after the initial visit. The median age was 79 (interquartile range 74-84), and 114 participants (10.4%) had an ED revisit within 30 days of discharge. Age (hazard ratio (HR)=0.96, 95% confidence interval (CI)=0.92-0.99), male sex (HR=1.61, 95% CI=1.05-2.45), polypharmacy (HR=2.06, 95% CI=1.34-3.16), and cognitive impairment (HR=1.71, 95% CI=1.02-2.88) were independent predictors of a 30-day ED revisit. The area under the receiver operating characteristic curve to predict an ED revisit was 0.65 (95% CI=0.60-0.70). In a propensity score-matched analysis, individuals with an ED revisit were at higher risk (odds ratio=1.99 95% CI=1.06-3.71) of functional decline or mortality. Age, male sex, polypharmacy, and cognitive impairment were independent predictors of a 30-day ED revisit, but no useful clinical prediction model could be developed. However, an early ED revisit is a strong new predictor of adverse outcomes in older adults. © 2018 The Authors. The Journal of the American Geriatrics Society published by Wiley Periodicals, Inc. on behalf of The American Geriatrics Society.

  1. The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.

    2018-02-01

    By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.

  2. Revisiting NLTE Rovibrational Excitation of CO in UV Irradiated Environments

    NASA Astrophysics Data System (ADS)

    Zhang, Ziwei; Yang, Benhui H.; Stancil, Phillip C.; Walker, Kyle M.; Forrey, Robert C.; Naduvalath, Balakrishnan

    2018-06-01

    Being the second most abundant molecule in the ISM, CO has been well observed and studied as a tracer for many astrophysical processes. Highly rovibrationally excited CO emission is used to reveal features in intense UV-irradiated regions such as the inner rim of protoplanetary disks, carbon star envelopes, and star forming regions. Collisional rate coefficients are crucial for non-local thermodynamic equilibrium (NLTE) molecular analysis in such regions, while data for high rovibrational levels for CO were previously unavailable. Here we revisit CO excitation properties with comprehensive collisional data including high rovibrational states (up to v=5 and J=40) colliding with H2, H and He, in various NLTE astrophysical environments with the spectral modeling packages RADEX and Cloudy. We studied line ratio diagnostics between low- and high-vibrational transitions with RADEX. Using Cloudy, we investigated molecular properties in complex environments, such as photodissociation regions and the outflow of the carbon star IRC+10216, illustrating the potential for utilizing high rovibrational NLTE analysis in future astrophysical modeling.This work was supported by NASA Grants NNX15AI61G and NNX16AF09G.

  3. 14 CFR 1214.205 - Revisit and/or retrieval services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Revisit and/or retrieval services. 1214.205... Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who Have Made Substantial Investment in the STS Program § 1214.205 Revisit and/or retrieval services. These services will be...

  4. What matters to infrequent customers: a pragmatic approach to understanding perceived value and intention to revisit trendy coffee café.

    PubMed

    Ting, Hiram; Thurasamy, Ramayah

    2016-01-01

    Notwithstanding the rise of trendy coffee café, little is done to investigate revisit intention towards the café in the context of developing markets. In particular, there is a lack of study which provides theoretical and practical explanation to the perceptions and behaviours of infrequent customers. Hence, the study aims to look into the subject matter by using the theory of reasoned action and social exchange theory as the underpinning basis. The framework proposed by Pine and Gilmore (Strat Leadersh 28:18-23, 2000), which asserts the importance of product quality, service quality and experience quality in a progressive manner, is used to decompose perceived value in the model so as to determine their effects on intention to revisit the café. Given the importance to gain practical insights into revisit intention of infrequent customers, pragmatism stance is assumed. Explanatory sequential mixed-method design is thus adopted whereby qualitative approach is used to confirm and complement quantitative findings. Self-administered questionnaire-based survey is first administered before personal interview is carried out at various cafés. Partial least squares structural equation modelling and content analysis are appropriated successively. In the quantitative findings, although product quality, service quality and experience quality are found to have positive effect on perceived value and revisit intention towards trendy coffee café, experience quality is found to have the greater effect than the others among the infrequent customers. The qualitative findings not only confirm their importance, but most importantly explain the favourable impressions they have at trendy coffee café based on their last in-store experience. While product and service quality might not necessary stimulate them to revisit trendy coffee café, experience quality driven by purposes of visit would likely affect their intention to revisit. As retaining customers is of utmost importance to

  5. Development of Thermodynamic Conceptual Evaluation

    NASA Astrophysics Data System (ADS)

    Talaeb, P.; Wattanakasiwich, P.

    2010-07-01

    This research aims to develop a test for assessing student understanding of fundamental principles in thermodynamics. Misconceptions found from previous physics education research were used to develop the test. Its topics include heat and temperature, the zeroth and the first law of thermodynamics, and the thermodynamics processes. The content validity was analyzed by three physics experts. Then the test was administered to freshmen, sophomores and juniors majored in physics in order to determine item difficulties and item discrimination of the test. A few items were eliminated from the test. Finally, the test will be administered to students taking Physics I course in order to evaluate the effectiveness of Interactive Lecture Demonstrations that will be used for the first time at Chiang Mai University.

  6. Stories to Make Thermodynamics and Related Subjects More Palatable

    NASA Astrophysics Data System (ADS)

    Bartell, Lawrence S.

    2001-08-01

    A collection of vignettes either recounting the personalities of some of the architects of thermodynamics or noting steps and missteps in the development of thermodynamics and the kinetic theory is combined with a set of stories illustrating thermodynamic principles. These offerings turned out to be much more easily remembered by students and were more effective in conveying certain points than a direct, unadorned exposition of thermodynamic laws and applications. For one thing, the stories kept the students awake and receptive to ideas. Students had invariably entered the class having heard horror stories about how tedious and impossibly difficult thermodynamics courses are.

  7. Thermodynamics of multicaloric effects in multiferroic materials: application to metamagnetic shape-memory alloys and ferrotoroidics

    DOE PAGES

    Planes, Antoni; Castán, Teresa; Saxena, Avadh

    2016-07-11

    In this paper, we develop a general thermodynamic framework to investigate multicaloric effects in multiferroic materials. This is applied to the study of both magnetostructural and magnetoelectric multiferroics. Landau models with appropriate interplay between the corresponding ferroic properties (order parameters) are proposed for metamagnetic shape-memory and ferrotoroidic materials, which, respectively, belong to the two classes of multiferroics. For each ferroic property, caloric effects are quantified by the isothermal entropy change induced by the application of the corresponding thermodynamically conjugated field. The multicaloric effect is obtained as a function of the two relevant applied fields in each class of multiferroics. Itmore » is further shown that multicaloric effects comprise the corresponding contributions from caloric effects associated with each ferroic property and the cross-contribution arising from the interplay between these ferroic properties. Finally, this article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.« less

  8. Thermodynamics of Bioreactions.

    PubMed

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  9. Thermodynamics of Biological Processes

    PubMed Central

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  10. The Thermodynamics of General and Local Anesthesia

    PubMed Central

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-01-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates, and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. Using this analysis, we are able to describe experimentally observed calorimetric profiles and predict the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff effect of long-chain alcohols and the additivity of the effect of general and local anesthetics. PMID:24853743

  11. The Thermodynamics of General and Local Anesthesia

    NASA Astrophysics Data System (ADS)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  12. Association effects in the {methanol + inert solvent} system via Monte Carlo simulations. II. Thermodynamics

    NASA Astrophysics Data System (ADS)

    Gómez-Álvarez, Paula; Romaní, Luis; González-Salgado, Diego

    2013-05-01

    Mixtures containing associated substances show a singular thermodynamic behaviour that has attracted to scientific community during the last century. Particularly, binary systems composed of an associating fluid and an inert solvent, where association occurs only between molecules of the same kind, have been extensively studied. A number of theoretical approaches were used in order to gain insights into the effect of the association on the macroscopic behaviour, especially on the second-order thermodynamic derivatives (or response functions). Curiously, to our knowledge, molecular simulations have not been used to that end despite describing the molecules and their interactions in a more complete and realistic way than theoretical models. With this in mind, a simple methodology developed in the framework of Monte Carlo molecular simulation is used in this work to quantify the association contribution to a wide set of thermodynamic properties for the {methanol + Lennard Jones} specific system under room conditions and throughout the composition range. Special attention was paid to the response functions and their respective excess properties, for which a detailed comparison with selected previous works in the field has been established.

  13. Thermodynamics of Radiation Modes

    ERIC Educational Resources Information Center

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  14. Advanced classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided.

  15. Finite size effects in the thermodynamics of a free neutral scalar field

    NASA Astrophysics Data System (ADS)

    Parvan, A. S.

    2018-04-01

    The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.

  16. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  17. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  18. Black hole thermodynamics under the microscope

    NASA Astrophysics Data System (ADS)

    Falls, Kevin; Litim, Daniel F.

    2014-04-01

    A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameters of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area and bounds on black hole mass and temperature. A metric-based derivation for the equation of state and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.

  19. Thermodynamics of de Sitter Black Holes in Massive Gravity

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Bo; Zhang, Si-Xuan; Wu, Yan; Ma, Li; Cao, Shuo

    2018-05-01

    In this paper, by taking de Sitter space-time as a thermodynamic system, we study the effective thermodynamic quantities of de Sitter black holes in massive gravity, and furthermore obtain the effective thermodynamic quantities of the space-time. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordström-de Sitter space-time, which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future. Moreover, our analysis indicates that the effective thermodynamic quantities and relevant parameters play a very important role in the investigation of the stability and evolution of de Sitter space-time. Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant Nos. 11605107 and 11503001, the National Natural Science Foundation of China under Grant No. 11475108, Program for the Innovative Talents of Higher Learning Institutions of Shanxi, the Natural Science Foundation of Shanxi Province under Grant No. 201601D102004, the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No. 201601D021022, and the Natural Science Foundation of Datong City under Grant No. 20150110

  20. Thermodynamic holography.

    PubMed

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-10-19

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.

  1. Contact symmetries and Hamiltonian thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravetti, A., E-mail: bravetti@correo.nucleares.unam.mx; Lopez-Monsalvo, C.S., E-mail: cesar.slm@correo.nucleares.unam.mx; Nettel, F., E-mail: Francisco.Nettel@roma1.infn.it

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendremore » symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.« less

  2. HPLC retention thermodynamics of grape and wine tannins.

    PubMed

    Barak, Jennifer A; Kennedy, James A

    2013-05-08

    The effect of grape and wine tannin structure on retention thermodynamics under reversed-phase high-performance liquid chromatography conditions on a polystyrene divinylbenzene column was investigated. On the basis of retention response to temperature, an alternative retention factor was developed to approximate the combined temperature response of the complex, unresolvable tannin mixture. This alternative retention factor was based upon relative tannin peak areas separated by an abrupt change in solvent gradient. Using this alternative retention factor, retention thermodynamics were calculated. Van't Hoff relationships of the natural log of the alternative retention factor against temperature followed Kirchoff's relationship. An inverse quadratic equation was fit to the data, and from this the thermodynamic parameters for tannin retention were calculated. All tannin fractions exhibited exothermic, spontaneous interaction, with enthalpy-entropy compensation observed. Normalizing for tannin size, distinct tannin compositional effects on thermodynamic parameters were observed. The results of this study indicate that HPLC can be valuable for measuring the thermodynamics of tannin interaction with a hydrophobic surface and provides a potentially valuable alternative to calorimetry. Furthermore, the information gathered may provide insight into understanding red wine astringency quality.

  3. Elastic, thermodynamic and optical behavior of V2AC (A = Al, Ga) MAX phases

    NASA Astrophysics Data System (ADS)

    Khatun, M. R.; Ali, M. A.; Parvin, F.; Islam, A. K. M. A.

    This article reports the first-principles calculations of yet unexplored Mulliken bond population, Vickers hardness, thermodynamic and optical properties of MAX phases V2AC (A = Al, Ga). We have also revisited the structural and elastic properties of these phases in order to assess the reliability of our calculations. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient have been successfully estimated through the quasi-harmonic Debye model in the temperature range from 0 to 1000 K and the pressure range from 0 to 50 GPa. The optical properties such as the dielectric function, refractive index, photoconductivity, absorption coefficients, reflectivity and loss function are also evaluated for the first time. The reflectivity is found to be high which indicates that V2AC (A = Al, Ga) having the same characteristics could be good candidate materials to reduce solar heating up to ∼15 eV.

  4. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  5. Thermodynamic geometry for a non-extensive ideal gas

    NASA Astrophysics Data System (ADS)

    López, J. L.; Obregón, O.; Torres-Arenas, J.

    2018-05-01

    A generalized entropy arising in the context of superstatistics is applied to an ideal gas. The curvature scalar associated to the thermodynamic space generated by this modified entropy is calculated using two formalisms of the geometric approach to thermodynamics. By means of the curvature/interaction hypothesis of the geometric approach to thermodynamic geometry it is found that as a consequence of considering a generalized statistics, an effective interaction arises but the interaction is not enough to generate a phase transition. This generalized entropy seems to be relevant in confinement or in systems with not so many degrees of freedom, so it could be interesting to use such entropies to characterize the thermodynamics of small systems.

  6. Clinical ethics revisited

    PubMed Central

    Singer, Peter A; Pellegrino, Edmund D; Siegler, Mark

    2001-01-01

    A decade ago, we reviewed the field of clinical ethics; assessed its progress in research, education, and ethics committees and consultation; and made predictions about the future of the field. In this article, we revisit clinical ethics to examine our earlier observations, highlight key developments, and discuss remaining challenges for clinical ethics, including the need to develop a global perspective on clinical ethics problems. PMID:11346456

  7. Colloquial Hebrew Imperatives Revisited

    ERIC Educational Resources Information Center

    Bolozky, Shmuel

    2009-01-01

    In revisiting Bolozky's [Bolozky, Shmuel, 1979. "On the new imperative in colloquial Hebrew." "Hebrew Annual Review" 3, 17-24] and Bat-El's [Bat-El, Outi, 2002. "True truncation in colloquial Hebrew imperatives." "Language" 78(4), 651-683] analyses of colloquial Hebrew imperatives, the article argues for restricting Imperative Truncation to the…

  8. Ambiguity Advantage Revisited: Two Meanings Are Better than One when Accessing Chinese Nouns

    ERIC Educational Resources Information Center

    Lin, Chien-Jer Charles; Ahrens, Kathleen

    2010-01-01

    This paper revisits the effect of lexical ambiguity in word recognition, which has been controversial as previous research reported advantage, disadvantage, and null effects. We discuss factors that were not consistently treated in previous research (e.g., the level of lexical ambiguity investigated, parts of speech of the experimental stimuli,…

  9. Re-visiting RHIC snakes: OPERA fields, n 0 dance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Gupta, R.; Huang, H.

    In this Tech. Note RHIC snakes and stable spin directionmore » $$\\vector{n}$$ 0(s) are re-visited, based on OPERA-computed field maps of the former. The numerical simulations so undertaken provide various outcomes regarding RHIC optics and spin dynamics, in relation with orbital and focusing effects resulting from the use of this realistic 3-D representation of the snakes.« less

  10. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields

    PubMed Central

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.

    2016-01-01

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097

  11. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.

    PubMed

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H

    2016-12-08

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.

  12. Mentoring, Advocacy, and Leadership: Revisiting First-Year Student Advocate Award Recipients

    ERIC Educational Resources Information Center

    White, Michelle M.; Anttonen, Ralph G.

    2007-01-01

    This study revisited research on award-winning campus leaders who were effective change agents working on the behalf of first-year students (Anttonen & Chaskes, 2002). Participants were recipients of the "Outstanding First-Year Student Advocate Award" given annually by the National Resource Center for the First-Year Experience and Students in…

  13. Framing the Future: Revisiting the Place of Educational Expectations in Status Attainment

    ERIC Educational Resources Information Center

    Bozick, Robert; Alexander, Karl; Entwisle, Doris; Dauber, Susan; Kerr, Kerri

    2010-01-01

    This study revisits the Wisconsin model of status attainment from a life course developmental perspective. Fixed-effects regression analyses lend strong support to the Wisconsin framework's core proposition that academic performance and significant others' influence shape educational expectations. However, investigating the process of expectation…

  14. Fluctuations of thermodynamic quantities calculated from the fundamental equation of thermodynamics

    NASA Astrophysics Data System (ADS)

    Yan, Zijun; Chen, Jincan

    1992-02-01

    On the basis of the probability distribution of the various values of the fluctuation and the fundamental equation of thermodynamics of any given system, a simple and useful method of calculating the fluctuations is presented. By using the method, the fluctuations of thermodynamic quantities can be directly determined from the fundamental equation of thermodynamics. Finally, some examples are given to illustrate the use of the method.

  15. Revisiting the decoupling effects in the running of the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Antipin, Oleg; Melić, Blaženka

    2017-09-01

    We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given.

  16. The Linguistic Repertoire Revisited

    ERIC Educational Resources Information Center

    Busch, Brigitta

    2012-01-01

    This article argues for the relevance of poststructuralist approaches to the notion of a linguistic repertoire and introduces the notion of language portraits as a basis for empirical study of the way in which speakers conceive and represent their heteroglossic repertoires. The first part of the article revisits Gumperz's notion of a linguistic…

  17. Revisiting Professional Teacher Standards

    ERIC Educational Resources Information Center

    Watson, Amanda

    2016-01-01

    The Australian Society for Music Education's (ASME) involvement in the development of professional standards for music educators was a significant and active research time in the history of the Society. As ASME celebrates its golden jubilee, it is appropriate to revisit that history and consider the future prospects of subject-specific standards.…

  18. Revisiting the Rhetorical Curriculum

    ERIC Educational Resources Information Center

    Rutten, Kris; Soetaert, Ronald

    2012-01-01

    The aim of the special strand on "Revisiting the rhetorical curriculum" is to explore the educational potential of a new rhetorical perspective, specifically in relation to different traditions within educational and rhetorical studies. This implies that we do not only look at education "in" rhetoric, but that we position education also "as" a…

  19. Effects of food processing on the thermodynamic and nutritive value of foods: literature and database survey.

    PubMed

    Prochaska, L J; Nguyen, X T; Donat, N; Piekutowski, W V

    2000-02-01

    One of the goals of our society is to provide adequate nourishment for the general population of humans. In the strictness sense, the foodstuffs which we ingest are bundles of thermodynamic energy. In our post-industrial society, food producers provide society with the bioenergetic content of foods, while stabilizing the food in a non-perishable form that enables the consumer to access foods that are convenient and nutritious. As our modern society developed, the processing of foodstuffs increased to allow consumers flexibility in their choice in which foods to eat (based on nutritional content and amount of post-harvest processing). The thermodynamic energy content of foodstuffs is well documented in the literature by the use of bomb calorimetry measurements. Here, we determine the effects of processing (in most cases by the application of heat) on the thermodynamic energy content of foods in order to investigate the role of processing in daily nutritional needs. We also examine which processing procedures affect the nutritive quality (vitamin and mineral content) and critically assess the rational, advantages and disadvantages of additives to food. Finally, we discuss the role of endogenous enzymes in foods not only on the nutritive quality of the food but also on the freshness and flavor of the food. Our results show that a significant decrease in thermodynamic energy content occurs in fruits, vegetables, and meat products upon processing that is independent of water content. No significant change in energy content was observed in cereals, sugars, grains, fats and oils, and nuts. The vitamin content of most foods was most dramatically decreased by canning while smaller effects were observed upon blanching and freezing. We found that most food additives had very little effect on thermodynamic energy content due to their presence in minute quantities and that most were added to preserve the foodstuff or supplement its vitamin content. The endogenous food enzymes

  20. Factors Associated With Length of Stay and 30-Day Revisits in Pediatric Acute Pancreatitis.

    PubMed

    Gay, Anna C; Barreto, Nicolas; Schrager, Sheree M; Russell, Christopher J

    2018-05-30

    Identify factors associated with length of stay (LOS) and 30-day hospital revisit for patients hospitalized with acute pancreatitis (AP). Multicenter, retrospective cohort study using the Pediatric Health Information System database. Multilevel linear and logistic regression was used to identify factors independently associated with the primary outcome variables of LOS and 30-day hospital revisit in children aged 1-18 years discharged with a primary discharge diagnosis of AP from participating hospitals between 2008 and 2013. For the 7693 discharges, median LOS was 4 days (interquartile range 3-7 days) and 30-day revisit rate 17.6% (n = 1356). Discharges were primarily female (55%), Caucasian (46%), and six years old or older (85%). On multilevel regression, factors independently associated with both longer LOS and higher revisit odds included malignant and gastrointestinal complex chronic conditions and total parenteral nutrition (TPN) use while hospitalized. Male gender was associated with both lower LOS (aLOS = -0.6 days, 95% CI = -0.8, -0.4) and decreased revisit odds (aOR 0.85; 95% CI = 0.74, 0.97). Hispanic ethnicity was associated with increased LOS (aLOS = +0.8 days, 95% CI = +0.5, +1.1) but no change in revisit odds. Certain demographic and clinical factors, including gender, ethnicity, and type of complex chronic condition, were independently associated with LOS and risk of 30-day hospital revisit for pediatric AP. Children with malignant and gastrointestinal complex chronic conditions who require TPN are at highest risk for both longer LOS and hospital revisit when admitted with AP. These patient populations may benefit from intensive care coordination when hospitalized for AP.

  1. Thermodynamic properties of pressurized PH3 superconductor

    NASA Astrophysics Data System (ADS)

    Koka, S.; Rao, G. Venugopal

    2018-05-01

    The paper presents the superconducting thermodynamic functions determined for pressurized phosphorus trihydride (PH3). In particular, free energy difference ΔF, thermodynamic critical field Hc, specific heat etc. have been calculated using analytical expressions. The calculations were performed in the frame work of the strong-coupling formalism. The obtained dimensionless parameters: RΔ ≡ 2Δ(0)/kBTc, RC ≡ ΔC(Tc)/CN(Tc) and RH≡TcCN(Tc)/Hc2(0) are 4.05, 1.96 and 0.156 respectively, which significantly differ from the values arising from the BCS theory of superconductivity. The thermodynamic properties strongly depend on the depairing electron correlations and retardation effects.

  2. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  3. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    PubMed

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  4. Thermodynamic theory of dislocation-enabled plasticity

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-11-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  5. Predator-prey interactions, resource depression and patch revisitation

    USGS Publications Warehouse

    Erwin, R.M.

    1989-01-01

    Generalist predators may be confronted by different types of prey in different patches: sedentary and conspicuous, cryptic (with or without refugia), conspicuous and nonsocial, or conspicuous and social. I argue that, where encounter rates with prey are of most importance, patch revisitation should be a profitable tactic where prey have short 'recovery' times (conspicuous, nonsocial prey), or where anti-predator response (e.g. shoaling) may increase conspicuousness. Predictions are made for how temporal changes in prey encounter rates should affect revisit schedules and feeding rates for the 4 different prey types.

  6. The "Mushroom Cloud" Demonstration Revisited

    ERIC Educational Resources Information Center

    Panzarasa, Guido; Sparnacci, Katia

    2013-01-01

    A revisitation of the classical "mushroom cloud" demonstration is described. Instead of aniline and benzoyl peroxide, the proposed reaction involves household chemicals such as alpha-pinene (turpentine oil) and trichloroisocyanuric acid ("Trichlor") giving an impressive demonstration of oxidation and combustion reactions that…

  7. Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited.

    PubMed

    Vellela, Melissa; Qian, Hong

    2009-10-06

    Schlögl's model is the canonical example of a chemical reaction system that exhibits bistability. Because the biological examples of bistability and switching behaviour are increasingly numerous, this paper presents an integrated deterministic, stochastic and thermodynamic analysis of the model. After a brief review of the deterministic and stochastic modelling frameworks, the concepts of chemical and mathematical detailed balances are discussed and non-equilibrium conditions are shown to be necessary for bistability. Thermodynamic quantities such as the flux, chemical potential and entropy production rate are defined and compared across the two models. In the bistable region, the stochastic model exhibits an exchange of the global stability between the two stable states under changes in the pump parameters and volume size. The stochastic entropy production rate shows a sharp transition that mirrors this exchange. A new hybrid model that includes continuous diffusion and discrete jumps is suggested to deal with the multiscale dynamics of the bistable system. Accurate approximations of the exponentially small eigenvalue associated with the time scale of this switching and the full time-dependent solution are calculated using Matlab. A breakdown of previously known asymptotic approximations on small volume scales is observed through comparison with these and Monte Carlo results. Finally, in the appendix section is an illustration of how the diffusion approximation of the chemical master equation can fail to represent correctly the mesoscopically interesting steady-state behaviour of the system.

  8. Substituent effect on the thermodynamic solubility of structural analogs: relative contribution of crystal packing and hydration.

    PubMed

    Ozaki, Shunsuke; Nakagawa, Yoshiaki; Shirai, Osamu; Kano, Kenji

    2014-11-01

    Thermodynamic analysis of the solubility of benzoylphenylurea (BPU) derivatives was conducted to investigate the relative importance of crystal packing and hydration for improving solubility with minor structural modification. The contribution of crystal packing to solubility was evaluated from the change in Gibbs energy on the transition from the crystalline to liquid state. Hydration Gibbs energy was estimated using a linear free-energy relationship between octanol-water partition coefficients and gas-water partition coefficients. The established solubility model satisfactorily explained the relative thermodynamic solubility of the model compounds and revealed that crystal packing and hydration equally controlled solubility of the structural analogs. All hydrophobic substituents were undesirable for solubility in terms of hydration, as expected. On the other hand, some of these hydrophobic substituents destabilized crystal packing and improved the solubility of the BPU derivatives when their impact on crystal packing exceeded their negative influence on hydration. The replacement of a single substituent could cause more than a 10-fold enhancement in thermodynamic solubility; this degree of improvement was comparable to that generally achieved by amorphous formulations. Detailed analysis of thermodynamic solubility will allow us to better understand the true substituent effect and design drug-like candidates efficiently. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. A Hamiltonian approach to Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldiotti, M.C., E-mail: baldiotti@uel.br; Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br; Molina, C., E-mail: cmolina@usp.br

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensivelymore » used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.« less

  10. Discrete Thermodynamics

    DOE PAGES

    Margolin, L. G.; Hunter, A.

    2017-10-18

    Here, we consider the dependence of velocity probability distribution functions on the finite size of a thermodynamic system. We are motivated by applications to computational fluid dynamics, hence discrete thermodynamics. We then begin by describing a coarsening process that represents geometric renormalization. Then, based only on the requirements of conservation, we demonstrate that the pervasive assumption of local thermodynamic equilibrium is not form invariant. We develop a perturbative correction that restores form invariance to second-order in a small parameter associated with macroscopic gradients. Finally, we interpret the corrections in terms of unresolved kinetic energy and discuss the implications of ourmore » results both in theory and as applied to numerical simulation.« less

  11. Discrete Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L. G.; Hunter, A.

    Here, we consider the dependence of velocity probability distribution functions on the finite size of a thermodynamic system. We are motivated by applications to computational fluid dynamics, hence discrete thermodynamics. We then begin by describing a coarsening process that represents geometric renormalization. Then, based only on the requirements of conservation, we demonstrate that the pervasive assumption of local thermodynamic equilibrium is not form invariant. We develop a perturbative correction that restores form invariance to second-order in a small parameter associated with macroscopic gradients. Finally, we interpret the corrections in terms of unresolved kinetic energy and discuss the implications of ourmore » results both in theory and as applied to numerical simulation.« less

  12. A constitutive model for magnetostriction based on thermodynamic framework

    NASA Astrophysics Data System (ADS)

    Ho, Kwangsoo

    2016-08-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto-mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature.

  13. Evolution in thermodynamics

    NASA Astrophysics Data System (ADS)

    Bejan, Adrian

    2017-03-01

    This review covers two aspects of "evolution" in thermodynamics. First, with the constructal law, thermodynamics is becoming the domain of physics that accounts for the phenomenon of evolution in nature, in general. Second, thermodynamics (and science generally) is the evolving add-on that empowers humans to predict the future and move more easily on earth, farther and longer in time. The part of nature that thermodynamics represents is this: nothing moves by itself unless it is driven by power, which is then destroyed (dissipated) during movement. Nothing evolves unless it flows and has the freedom to change its architecture such that it provides greater and easier access to the available space. Thermodynamics is the modern science of heat and work and their usefulness, which comes from converting the work (power) into movement (life) in flow architectures that evolve over time to facilitate movement. I also review the rich history of the science, and I clarify misconceptions regarding the second law, entropy, disorder, and the arrow of time, and the supposed analogy between heat and work.

  14. Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited

    NASA Astrophysics Data System (ADS)

    Terry, D. A.; Knapp, C. C.; Knapp, J. H.

    2011-12-01

    Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate

  15. Black hole thermodynamics based on unitary evolutions

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-10-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  16. Effects of a Structured Discharge Planning Program on Perceived Functional Status, Cardiac Self-efficacy, Patient Satisfaction, and Unexpected Hospital Revisits Among Filipino Cardiac Patients: A Randomized Controlled Study.

    PubMed

    Cajanding, Ruff Joseph

    Cardiovascular diseases remain the leading cause of morbidity and mortality among Filipinos and are responsible for a very large number of hospital readmissions. Comprehensive discharge planning programs have demonstrated positive benefits among various populations of patients with cardiovascular disease, but the clinical and psychosocial effects of such intervention among Filipino patients with acute myocardial infarction (AMI) have not been studied. In this study we aimed to determine the effectiveness of a nurse-led structured discharge planning program on perceived functional status, cardiac self-efficacy, patient satisfaction, and unexpected hospital revisits among Filipino patients with AMI. A true experimental (randomized control) 2-group design with repeated measures and data collected before and after intervention and at 1-month follow-up was used in this study. Participants were assigned to either the control (n = 68) or the intervention group (n = 75). Intervention participants underwent a 3-day structured discharge planning program implemented by a cardiovascular nurse practitioner, which is comprised of a series of individualized lecture-discussion, provision of feedback, integrative problem solving, goal setting, and action planning. Control participants received standard routine care. Measures of functional status, cardiac self-efficacy, and patient satisfaction were measured at baseline; cardiac self-efficacy and patient satisfaction scores were measured prior to discharge, and perceived functional status and number of revisits were measured 1 month after discharge. Participants in the intervention group had significant improvement in functional status, cardiac self-efficacy, and patient satisfaction scores at baseline and at follow-up compared with the control participants. Furthermore, participants in the intervention group had significantly fewer hospital revisits compared with those who received only standard care. The results demonstrate that a

  17. A Hydrostatic Paradox Revisited

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  18. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  19. Standard Model thermodynamics across the electroweak crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, M.; Meyer, M., E-mail: laine@itp.unibe.ch, E-mail: meyer@itp.unibe.ch

    Even though the Standard Model with a Higgs mass m{sub H} = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a 'soft point' at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The resultsmore » are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial 'structure' visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.« less

  20. Standard Model thermodynamics across the electroweak crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, M.; Meyer, M.

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulatedmore » in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.« less

  1. Universalities of thermodynamic signatures in topological phases

    PubMed Central

    Kempkes, S. N.; Quelle, A.; Smith, C. Morais

    2016-01-01

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter. PMID:27929041

  2. Universalities of thermodynamic signatures in topological phases.

    PubMed

    Kempkes, S N; Quelle, A; Smith, C Morais

    2016-12-08

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.

  3. Effects of chemical structure on the thermodynamic efficiency of radical chain carriers for organic synthesis.

    PubMed

    Lin, Ching Yeh; Peh, Jessie; Coote, Michelle L

    2011-03-18

    The chain carrier index (CCI), defined as the ratio of the bond dissociation free energies (BDFE) of corresponding chain carrier halides and hydrides, is proposed as a measure of the thermodynamic efficiency of chain carriers for radical dehalogenation. The larger this value is relative to the corresponding value of the organic substrate, the more thermodynamically efficient the process. The chloride and bromide CCIs were evaluated at the G3(MP2)-RAD(+) level of theory for 120 different R-groups, covering a broad range of carbon-centered and noncarbon-centered species; the effects of solvent and temperature have also been studied. The broad finding from this work is that successful chain carriers generally maximize the strength of their halide (versus hydride bonds) through charge-shift bonding. As a result, the thermodynamic efficiency of a chain carrier tends to increase down the periodic table, and also with the inclusion of stronger electron donating substituents. The CCIs of carbon-centered species fall into a relatively narrow range so that, even when the CCI is maximized through inclusion of lone pair donor OMe or NMe(2) groups, the thermodynamic driving force for dehalogenation of other organic substrates is modest at best, and the process is likely to be kinetically hampered. Among the noncarbon-centered species studied, bismuth- and borane-centered compounds have some of the highest CCI values and, although their kinetics requires further optimization, these classes of compounds would be worth further investigation as tin-free radical reducing agents.

  4. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    PubMed

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  5. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  6. Nonequilibrium thermodynamics and energy efficiency in weight loss diets.

    PubMed

    Feinman, Richard D; Fine, Eugene J

    2007-07-30

    Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels

  7. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    PubMed Central

    Feinman, Richard D; Fine, Eugene J

    2007-01-01

    Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels

  8. Acknowledgment Tokens and Speakership Incipiency Revisited.

    ERIC Educational Resources Information Center

    Zimmerman, Don H.

    1993-01-01

    Drummond and Hopper's article in this issue, "Back Channels Revisited," is argued to have decontextualized Jefferson's acknowledgement token phenomenon. The need for careful coding protocols for research on conversational practices is discussed. (eight references) (LB)

  9. Thermodynamic theory of dislocation-enabled plasticity

    DOE PAGES

    Langer, J. S.

    2017-11-30

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects,more » yielding transitions, and adiabatic shear banding.« less

  10. Effect of temperature on microbial growth rate - thermodynamic analysis, the arrhenius and eyring-polanyi connection

    USDA-ARS?s Scientific Manuscript database

    The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...

  11. Revisiting Dialogues and Monologues

    ERIC Educational Resources Information Center

    Kvernbekk, Tone

    2012-01-01

    In educational discourse dialogue tends to be viewed as being (morally) superior to monologue. When we look at them as basic forms of communication, we find that dialogue is a two-way, one-to-one form and monologue is a one-way, one-to-many form. In this paper I revisit the alleged (moral) superiority of dialogue. First, I problematize certain…

  12. Revisiting kaon physics in general Z scenario

    NASA Astrophysics Data System (ADS)

    Endo, Motoi; Kitahara, Teppei; Mishima, Satoshi; Yamamoto, Kei

    2017-08-01

    New physics contributions to the Z penguin are revisited in the light of the recently-reported discrepancy of the direct CP violation in K → ππ. Interference effects between the standard model and new physics contributions to ΔS = 2 observables are taken into account. Although the effects are overlooked in the literature, they make experimental bounds significantly severer. It is shown that the new physics contributions must be tuned to enhance B (KL →π0 ν ν bar), if the discrepancy of the direct CP violation is explained with satisfying the experimental constraints. The branching ratio can be as large as 6 ×10-10 when the contributions are tuned at the 10% level.

  13. A practical method of predicting client revisit intention in a hospital setting.

    PubMed

    Lee, Kyun Jick

    2005-01-01

    Data mining (DM) models are an alternative to traditional statistical methods for examining whether higher customer satisfaction leads to higher revisit intention. This study used a total of 906 outpatients' satisfaction data collected from a nationwide survey interviews conducted by professional interviewers on a face-to-face basis in South Korea, 1998. Analyses showed that the relationship between overall satisfaction with hospital services and outpatients' revisit intention, along with word-of-mouth recommendation as intermediate variables, developed into a nonlinear relationship. The five strongest predictors of revisit intention were overall satisfaction, intention to recommend to others, awareness of hospital promotion, satisfaction with physician's kindness, and satisfaction with treatment level.

  14. Characteristics of revisits of children at risk for serious infections in pediatric emergency care.

    PubMed

    de Vos-Kerkhof, Evelien; Geurts, Dorien H F; Steyerberg, Ewout W; Lakhanpaul, Monica; Moll, Henriette A; Oostenbrink, Rianne

    2018-04-01

    In this study, we aimed to identify characteristics of (unscheduled) revisits and its optimal time frame after Emergency Department (ED) discharge. Children with fever, dyspnea, or vomiting/diarrhea (1 month-16 years) who attended the ED of Erasmus MC-Sophia, Rotterdam (2010-2013), the Netherlands, were prospectively included. Three days after ED discharge, we applied standardized telephonic questionnaires on disease course and revisits. Multivariable logistic regression analysis was used to identify independent characteristics of revisits. Young age, parental concern, and alarming signs and symptoms (chest wall retractions, ill appearance, clinical signs of dehydration, and tachypnea) were associated with revisits (n = 527) in children at risk for serious infections discharged from the ED (n = 1765). Children revisited the ED within a median of 2 days (IQR 1.0-3.0), but this was proven to be shorter in children with vomiting/diarrhea (1.0 day (IQR 1.0-2.0)) compared to children with fever or dyspnea (2.0 (IQR 1.0-3.0)). Young age, parental concern, and alarming signs and symptoms (chest wall retractions, ill appearance, clinical signs of dehydration, and tachypnea) were associated with emergency health care revisits in children with fever, dyspnea, and vomiting/diarrhea. These characteristics could help to define targeted review of children during post-discharge period. We observed a disease specific and differential timing of control revisits after ED discharge. What is Known • Fever, dyspnea, and vomiting/diarrhea are major causes of emergency care attendance in children. • As uncertainty remains on uneventful recovery, patients at risk need to be identified on order to improve safety netting after discharge from the ED. What is New • In children with fever, dyspnea, and vomiting/diarrhea, young age, parental concern and chest wall retractions, ill appearance, clinical signs of dehydration, and tachypnea help to define targeted review of

  15. Thermodynamics of adaptive molecular resolution.

    PubMed

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  16. Thermodynamics of adaptive molecular resolution

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.

    2016-11-01

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  17. Thermodynamic behavior and enhanced magnetocaloric effect in a frustrated spin-1/2 Ising-Heisenberg triangular tube

    NASA Astrophysics Data System (ADS)

    Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.

    2018-04-01

    The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.

  18. Thermodynamic cycle in a cavity optomechanical system

    NASA Astrophysics Data System (ADS)

    Ian, Hou

    2014-07-01

    A cavity optomechanical system is initiated by the radiation pressure of a cavity field onto a mirror element acting as a quantum resonator. This radiation pressure can control the thermodynamic character of the mirror to some extent, such as by cooling its effective temperature. Here, we show that by properly engineering the spectral density of a thermal heat bath that interacts with a quantum system, the evolution of the quantum system can be effectively turned on and off. Inside a cavity optomechanical system, when the heat bath is realized by a multi-mode oscillator modelling of the mirror, this on-off effect translates to infusion or extraction of heat energy in and out of the cavity field, facilitating a four-stroke thermodynamic cycle.

  19. Revisiting Interpretation of Canonical Correlation Analysis: A Tutorial and Demonstration of Canonical Commonality Analysis

    ERIC Educational Resources Information Center

    Nimon, Kim; Henson, Robin K.; Gates, Michael S.

    2010-01-01

    In the face of multicollinearity, researchers face challenges interpreting canonical correlation analysis (CCA) results. Although standardized function and structure coefficients provide insight into the canonical variates produced, they fall short when researchers want to fully report canonical effects. This article revisits the interpretation of…

  20. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chen; Liu, Hong, E-mail: hongliu@sjtu.edu.cn

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate ofmore » the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.« less

  1. Thermodynamic forces in coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Noid, William

    Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.

  2. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    PubMed

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  3. Thermodynamics of Sultana-Dyer black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@mail.huji.ac.il

    The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies themore » first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.« less

  4. Using Spreadsheets and Internally Consistent Databases to Explore Thermodynamics

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Chakraborty, S.

    2003-12-01

    Much common wisdom has been handed down to generations of petrology students in words - a non-exhaustive list may include (a) do not mix data from two different thermodynamic databases, (b) use of different heat capacity functions or extrapolation beyond the P-T range of fit can have disastrous results, (c) consideration of errors in thermodynamic calculations is crucial, (d) consideration of non-ideality, interaction parameters etc. are important in some cases, but not in others. Actual calculations to demonstrate these effects were either too laborious, tedious, time consuming or involved elaborate computer programming beyond the reaches of the average undergraduate. We have produced "Live" thermodynamic tables in the form of ExcelTM spreadsheets based on standard internally consistent thermodynamic databases (e.g. Berman, Holland and Powell) that allow quick, easy and most importantly, transparent manipulation of thermodynamic data to calculate mineral stabilities and to explore the role of different parameters. We have intentionally avoided the use of advanced tools such as macros, and have set up columns of data that are easy to relate to thermodynamic relationships to enhance transparency. The approach consists of the following basic steps: (i) use a simple supporting spreadsheet to enter mineral compositions (in formula units) to obtain a balanced reaction by matrix inversion. (ii) enter the stoichiometry of this reaction in a designated space and a P and T to get the delta G of the reaction (iii) vary P and or T to locate equilibrium through a change of sign of delta G. These results can be collected to explore practically any problem of chemical equilibrium and mineral stability. Some of our favorites include (a) hierarchical addition of complexity to equilibrium calculations - start with a simple end member reaction ignoring heat capacity and volume derivatives, add the effects of these, followed by addition of compositional effects in the form of ideal

  5. The Evil of Banality: Arendt Revisited

    ERIC Educational Resources Information Center

    Minnich, Elizabeth

    2014-01-01

    "The banality of evil" (Arendt) remains controversial and useful. Ironically, the concept is now itself a banality. To revisit and extend it, we consider the "evil of banality", the profound dangers of cliched thoughtlessness. A distinction is proposed: "intensive" versus "extensive evils". The former takes…

  6. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    PubMed Central

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  7. Critical evaluation and thermodynamic optimization of the Iron-Rare-Earth systems

    NASA Astrophysics Data System (ADS)

    Konar, Bikram

    Rare-Earth elements by virtue of its typical magnetic, electronic and chemical properties are gaining importance in power, electronics, telecommunications and sustainable green technology related industries. The Magnets from RE-alloys are more powerful than conventional magnets which have more longevity and high temperature workability. The dis-equilibrium in the Rare-Earth element supply and demand has increased the importance of recycling and extraction of REE's from used permanent Magnets. However, lack of the thermodynamic data on RE alloys has made it difficult to design an effective extraction and recycling process. In this regard, Computational Thermodynamic calculations can serve as a cost effective and less time consuming tool to design a waste magnet recycling process. The most common RE permanent magnet is Nd magnet (Nd 2Fe14B). Various elements such as Dy, Tb, Pr, Cu, Co, Ni, etc. are also added to increase its magnetic and mechanical properties. In order to perform reliable thermodynamic calculations for the RE recycling process, accurate thermodynamic database for RE and related alloys are required. The thermodynamic database can be developed using the so-called CALPHAD method. The database development based on the CALPHAD method is essentially the critical evaluation and optimization of all available thermodynamic and phase diagram data. As a results, one set of self-consistent thermodynamic functions for all phases in the given system can be obtained, which can reproduce all reliable thermodynamic and phase diagram data. The database containing the optimized Gibbs energy functions can be used to calculate complex chemical reactions for any high temperature processes. Typically a Gibbs energy minimization routine, such as in FactSage software, can be used to obtain the accurate thermodynamic equilibrium in multicomponent systems. As part of a large thermodynamic database development for permanent magnet recycling and Mg alloy design, all

  8. Thermodynamically efficient solar concentrators

    NASA Astrophysics Data System (ADS)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  9. The OpenCalphad thermodynamic software interface.

    PubMed

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2016-12-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into "lookup tables" to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility.

  10. Student Oriented Approaches in the Teaching of Thermodynamics at Universities--Developing an Effective Course Structure

    ERIC Educational Resources Information Center

    Partanen, Lauri

    2016-01-01

    The aim of this study was to apply current pedagogical research in order to develop an effective course and exercise structure for a physical chemistry thermodynamics course intended for second or third year university students of chemistry. A mixed-method approach was used to measure the impact the changes had on student learning. In its final…

  11. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  12. Thermodynamics and evolution.

    PubMed

    Demetrius, L

    2000-09-07

    The science of thermodynamics is concerned with understanding the properties of inanimate matter in so far as they are determined by changes in temperature. The Second Law asserts that in irreversible processes there is a uni-directional increase in thermodynamic entropy, a measure of the degree of uncertainty in the thermal energy state of a randomly chosen particle in the aggregate. The science of evolution is concerned with understanding the properties of populations of living matter in so far as they are regulated by changes in generation time. Directionality theory, a mathematical model of the evolutionary process, establishes that in populations subject to bounded growth constraints, there is a uni-directional increase in evolutionary entropy, a measure of the degree of uncertainty in the age of the immediate ancestor of a randomly chosen newborn. This article reviews the mathematical basis of directionality theory and analyses the relation between directionality theory and statistical thermodynamics. We exploit an analytic relation between temperature, and generation time, to show that the directionality principle for evolutionary entropy is a non-equilibrium extension of the principle of a uni-directional increase of thermodynamic entropy. The analytic relation between these directionality principles is consistent with the hypothesis of the equivalence of fundamental laws as one moves up the hierarchy, from a molecular ensemble where the thermodynamic laws apply, to a population of replicating entities (molecules, cells, higher organisms), where evolutionary principles prevail. Copyright 2000 Academic Press.

  13. On the effective Stefan-Boltzmann law and the thermodynamic origin of the initial radiation density in warm inflation

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    In this presentation, we are going to explain the thermodynamic origin of warm inflation scenarios by using the effetive Stefan-Boltzmann law. In the warm inflation scenarios, radiation always exists to avoid the graceful exit problem, for which the radiation energy density should be assumed to be finite at the starting point of the warm inflation. To find out the origin of the non-vanishing initial radiation energy density, we derive an effective Stefan-Boltzmann law by considering the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law successfully shows where the initial radiation energy density is thermodynamically originated from. And by using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation. This proceeding is based on Ref. [1

  14. Thermodynamics of RNA duplexes modified with unlocked nucleic acid nucleotides

    PubMed Central

    Pasternak, Anna; Wengel, Jesper

    2010-01-01

    Thermodynamics provides insights into the influence of modified nucleotide residues on stability of nucleic acids and is crucial for designing duplexes with given properties. In this article, we introduce detailed thermodynamic analysis of RNA duplexes modified with unlocked nucleic acid (UNA) nucleotide residues. We investigate UNA single substitutions as well as model mismatch and dangling end effects. UNA residues placed in a central position makes RNA duplex structure less favourable by 4.0–6.6 kcal/mol. Slight destabilization, by ∼0.5–1.5 kcal/mol, is observed for 5′- or 3′-terminal UNA residues. Furthermore, thermodynamic effects caused by UNA residues are extremely additive with ΔG°37 conformity up to 98%. Direct mismatches involving UNA residues decrease the thermodynamic stability less than unmodified mismatches in RNA duplexes. Additionally, the presence of UNA residues adjacent to unpaired RNA residues reduces mismatch discrimination. Thermodynamic analysis of UNA 5′- and 3′-dangling ends revealed that stacking interactions of UNA residues are always less favourable than that of RNA residues. Finally, circular dichroism spectra imply no changes in overall A-form structure of UNA–RNA/RNA duplexes relative to the unmodified RNA duplexes. PMID:20562222

  15. The OpenCalphad thermodynamic software interface

    PubMed Central

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2017-01-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838

  16. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  17. Revisiting a pre-inflationary radiation era and its effect on the CMB power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Suratna; Goswami, Gaurav; Rangarajan, Raghavan

    2015-06-01

    We revisit the scenario where inflation is preceded by a radiation era by considering that the inflaton too could have been in thermal equilibrium early in the radiation era. Hence we take into account not only the effect of a pre-inflationary era on the inflaton mode functions but also that of a frozen thermal distribution of inflaton quanta. We initially discuss in detail the issues relevant to our scenario of a pre-inflationary radiation dominated era and then obtain the scalar power spectrum for this scenario. We find that the power spectrum is free from infrared divergences. We then use themore » WMAP and Planck data to determine the constraints on the inflaton comoving 'temperature' and on the duration of inflation. We find that the best fit value of the duration of inflation is less than 1 e-folding more than what is required to solve cosmological problems, while only an upper bound on the inflaton temperature can be obtained.« less

  18. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  19. Thermodynamics of strong coupling superconductors including the effect of anisotropy

    NASA Astrophysics Data System (ADS)

    Daams, J. M.; Carbotte, J. P.

    1981-05-01

    The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

  20. Benjamin Franklin and Mesmerism, revisited.

    PubMed

    McConkey, Kevin M; Perry, Campbell

    2002-10-01

    The authors revisit and update their previous historiographical note (McConkey & Perry, 1985) on Benjamin Franklin's involvement with and investigation of animal magnetism or mesmerism. They incorporate more recent literature and offer additional comment about Franklin's role in and views about mesmerism. Franklin had a higher degree of personal involvement with and a more detailed opinion of mesmerism than has been previously appreciated.

  1. Thermodynamically consistent Langevin dynamics with spatially correlated noise predicting frictionless regime and transient attraction effect

    NASA Astrophysics Data System (ADS)

    Majka, M.; Góra, P. F.

    2016-10-01

    While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.

  2. "A calorie is a calorie" violates the second law of thermodynamics

    PubMed Central

    Feinman, Richard D; Fine, Eugene J

    2004-01-01

    The principle of "a calorie is a calorie," that weight change in hypocaloric diets is independent of macronutrient composition, is widely held in the popular and technical literature, and is frequently justified by appeal to the laws of thermodynamics. We review here some aspects of thermodynamics that bear on weight loss and the effect of macronutrient composition. The focus is the so-called metabolic advantage in low-carbohydrate diets – greater weight loss compared to isocaloric diets of different composition. Two laws of thermodynamics are relevant to the systems considered in nutrition and, whereas the first law is a conservation (of energy) law, the second is a dissipation law: something (negative entropy) is lost and therefore balance is not to be expected in diet interventions. Here, we propose that a misunderstanding of the second law accounts for the controversy about the role of macronutrient effect on weight loss and we review some aspects of elementary thermodynamics. We use data in the literature to show that thermogenesis is sufficient to predict metabolic advantage. Whereas homeostasis ensures balance under many conditions, as a general principle, "a calorie is a calorie" violates the second law of thermodynamics. PMID:15282028

  3. "A calorie is a calorie" violates the second law of thermodynamics.

    PubMed

    Feinman, Richard D; Fine, Eugene J

    2004-07-28

    The principle of "a calorie is a calorie," that weight change in hypocaloric diets is independent of macronutrient composition, is widely held in the popular and technical literature, and is frequently justified by appeal to the laws of thermodynamics. We review here some aspects of thermodynamics that bear on weight loss and the effect of macronutrient composition. The focus is the so-called metabolic advantage in low-carbohydrate diets--greater weight loss compared to isocaloric diets of different composition. Two laws of thermodynamics are relevant to the systems considered in nutrition and, whereas the first law is a conservation (of energy) law, the second is a dissipation law: something (negative entropy) is lost and therefore balance is not to be expected in diet interventions. Here, we propose that a misunderstanding of the second law accounts for the controversy about the role of macronutrient effect on weight loss and we review some aspects of elementary thermodynamics. We use data in the literature to show that thermogenesis is sufficient to predict metabolic advantage. Whereas homeostasis ensures balance under many conditions, as a general principle, "a calorie is a calorie" violates the second law of thermodynamics.

  4. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse

    PubMed Central

    Raz, Oren

    2017-01-01

    Under certain conditions, it takes a shorter time to cool a hot system than to cool the same system initiated at a lower temperature. This phenomenon—the “Mpemba effect”—was first observed in water and has recently been reported in other systems. Whereas several detail-dependent explanations were suggested for some of these observations, no common underlying mechanism is known. Using the theoretical framework of nonequilibrium thermodynamics, we present a widely applicable mechanism for a similar effect, the Markovian Mpemba effect, derive a sufficient condition for its appearance, and demonstrate it explicitly in three paradigmatic systems: the Ising model, diffusion dynamics, and a three-state system. In addition, we predict an inverse Markovian Mpemba effect in heating: Under proper conditions, a cold system can heat up faster than the same system initiated at a higher temperature. We numerically demonstrate that this inverse effect is expected in a 1D antiferromagnet nearest-neighbors interacting Ising chain in the presence of an external magnetic field. Our results shed light on the mechanism behind anomalous heating and cooling and suggest that it should be possible to observe these in a variety of systems. PMID:28461467

  5. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bo; Edwards, Brian J., E-mail: bje@utk.edu

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated withmore » the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.« less

  6. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  7. The thermodynamical foundation of electronic conduction in solids

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2018-03-01

    In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one

  8. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    PubMed Central

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating

  9. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  10. The Rotating Morse-Pekeris Oscillator Revisited

    ERIC Educational Resources Information Center

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2008-01-01

    The Morse-Pekeris oscillator model for the calculation of the vibration-rotation energy levels of diatomic molecules is revisited. This model is based on the realization of a second-order exponential expansion of the centrifugal term about the minimum of the vibrational Morse oscillator and the subsequent analytical resolution of the resulting…

  11. Thermodynamics of statistical inference by cells.

    PubMed

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  12. Understanding first law of thermodynamics through activities

    NASA Astrophysics Data System (ADS)

    Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.

    2018-03-01

    The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of India. We, then, decided to develop an activity-based module to address students’ conceptual difficulties in this area. In particular, we took up the cases of both adiabatic and isothermal compression of an ideal gas. We tested, through a two-group pre and post test design, the effectiveness of the module.

  13. Revisiting Hardy's paradox: counterfactual statements, real measurements, entanglement and weak values

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Botero, Alonso; Popescu, Sandu; Reznik, Benni; Tollaksen, Jeff

    2002-08-01

    Hardy's paradox is revisited. Usually the paradox is dismissed on grounds of counterfactuality, i.e., because the paradoxical effects appear only when one considers results of experiments which do not actually take place. We suggest a new set of measurements in connection with Hardy's scheme, and show that when they are actually performed, they yield strange and surprising outcomes. More generally, we claim that counterfactual paradoxes point to a deeper structure inherent to quantum mechanics.

  14. Revisiting the Capture of Mercury into Its 3:2 Spin-orbit Resonance

    DTIC Science & Technology

    2014-01-01

    well before differentiation. Keywords. celestial mechanics, planets and satellites: individual ( Mercury ) 1. Previous studies In the literature hitherto...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Revisiting the capture of Mercury into its 3:2 spin-orbit...Astronomical Union 2014 doi:10.1017/S1743921314007765 Revisiting the capture of Mercury into its 3:2 spin-orbit resonance Benôıt Noyelles1, Julien

  15. Hospital revisit rate after a diagnosis of conversion disorder.

    PubMed

    Merkler, Alexander E; Parikh, Neal S; Chaudhry, Simriti; Chait, Alanna; Allen, Nicole C; Navi, Babak B; Kamel, Hooman

    2016-04-01

    To estimate the hospital revisit rate of patients diagnosed with conversion disorder (CD). Using administrative data, we identified all patients discharged from California, Florida and New York emergency departments (EDs) and acute care hospitals between 2005 and 2011 with a primary discharge diagnosis of CD. Patients discharged with a primary diagnosis of seizure or transient global amnesia (TGA) served as control groups. Our primary outcome was the rate of repeat ED visits and hospital admissions after initial presentation. Poisson regression was used to compare rates between diagnosis groups while adjusting for demographic characteristics. We identified 7946 patients discharged with a primary diagnosis of CD. During a mean follow-up of 3.0 (±1.6) years, patients with CD had a median of three (IQR, 1-9) ED or inpatient revisits, compared with 0 (IQR, 0-2) in patients with TGA and 3 (IQR, 1-7) in those with seizures. Revisit rates were 18.25 (95% CI, 18.10 to 18.40) visits per 100 patients per month in those with CD, 3.90 (95% CI, 3.84 to 3.95) in those with TGA and 17.78 (95% CI, 17.75 to 17.81) in those with seizures. As compared to CD, the incidence rate ratio for repeat ED visits or hospitalisations was 0.89 (95% CI, 0.86 to 0.93) for seizure disorder and 0.32 (95% CI 0.31 to 0.34) for TGA. CD is associated with a substantial hospital revisit rate. Our findings suggest that CD is not an acute, time-limited response to stress, but rather that CD is a manifestation of a broader pattern of chronic neuropsychiatric disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization

    PubMed Central

    Larsen, Aaron T.; Fahrenbach, Albert C.; Sheng, Jia; Pian, Julia; Szostak, Jack W.

    2015-01-01

    Nucleobase modifications dramatically alter nucleic acid structure and thermodynamics. 2-thiouridine (s2U) is a modified nucleobase found in tRNAs and known to stabilize U:A base pairs and destabilize U:G wobble pairs. The recently reported crystal structures of s2U-containing RNA duplexes do not entirely explain the mechanisms responsible for the stabilizing effect of s2U or whether this effect is entropic or enthalpic in origin. We present here thermodynamic evaluations of duplex formation using ITC and UV thermal denaturation with RNA duplexes containing internal s2U:A and s2U:U pairs and their native counterparts. These results indicate that s2U stabilizes both duplexes. The stabilizing effect is entropic in origin and likely results from the s2U-induced preorganization of the single-stranded RNA prior to hybridization. The same preorganizing effect is likely responsible for structurally resolving the s2U:U pair-containing duplex into a single conformation with a well-defined H-bond geometry. We also evaluate the effect of s2U on single strand conformation using UV- and CD-monitored thermal denaturation and on nucleoside conformation using 1H NMR spectroscopy, MD and umbrella sampling. These results provide insights into the effects that nucleobase modification has on RNA structure and thermodynamics and inform efforts toward improving both ribozyme-catalyzed and nonenzymatic RNA copying. PMID:26240387

  17. Asymptotically free theory with scale invariant thermodynamics

    NASA Astrophysics Data System (ADS)

    Ferrari, Gabriel N.; Kneur, Jean-Loïc; Pinto, Marcus Benghi; Ramos, Rudnei O.

    2017-12-01

    A recently developed variational resummation technique, incorporating renormalization group properties consistently, has been shown to solve the scale dependence problem that plagues the evaluation of thermodynamical quantities, e.g., within the framework of approximations such as in the hard-thermal-loop resummed perturbation theory. This method is used in the present work to evaluate thermodynamical quantities within the two-dimensional nonlinear sigma model, which, apart from providing a technically simpler testing ground, shares some common features with Yang-Mills theories, like asymptotic freedom, trace anomaly and the nonperturbative generation of a mass gap. The present application confirms that nonperturbative results can be readily generated solely by considering the lowest-order (quasiparticle) contribution to the thermodynamic effective potential, when this quantity is required to be renormalization group invariant. We also show that when the next-to-leading correction from the method is accounted for, the results indicate convergence, apart from optimally preserving, within the approximations here considered, the sought-after scale invariance.

  18. Service-Learning in Crisis Communication Education: Revisiting Coombs' Objectives for the Crisis Communication Course

    ERIC Educational Resources Information Center

    Maresh-Fuehrer, Michelle M.

    2015-01-01

    The purpose of this study was to revisit Coombs' suggestions for teaching the crisis communication course using service-learning as a framework. The author sought to assess the effectiveness of using this method in terms of the benefits to both students and the partnering organization and students' perceptions of whether they met the learning…

  19. Thermodynamics of Liquid Alkali Metals and Their Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.

    2009-07-01

    The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.

  20. Thermodynamics--A Practical Subject.

    ERIC Educational Resources Information Center

    Jones, Hugh G.

    1984-01-01

    Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)

  1. The Future of Engineering Education--Revisited

    ERIC Educational Resources Information Center

    Wankat, Phillip C.; Bullard, Lisa G.

    2016-01-01

    This paper revisits the landmark CEE series, "The Future of Engineering Education," published in 2000 (available free in the CEE archives on the internet) to examine the predictions made in the original paper as well as the tools and approaches documented. Most of the advice offered in the original series remains current. Despite new…

  2. Thermodynamics of weight loss diets.

    PubMed

    Fine, Eugene J; Feinman, Richard D

    2004-12-08

    BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.

  3. Thermodynamics of weight loss diets

    PubMed Central

    Fine, Eugene J; Feinman, Richard D

    2004-01-01

    Background It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? Results Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. Conclusions Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms. PMID:15588283

  4. Thermodynamic properties of diamond and wurtzite model fluids from computer simulation and thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Solana, J. R.

    2018-03-01

    Monte Carlo NVT simulations have been performed to obtain the thermodynamic and structural properties and perturbation coefficients up to third order in the inverse temperature expansion of the Helmholtz free energy of fluids with potential models proposed in the literature for diamond and wurtzite lattices. These data are used to analyze performance of a coupling parameter series expansion (CPSE). The main findings are summarized as follows, (1) The CPSE provides accurate predictions of the first three coefficient in the inverse temperature expansion of Helmholtz free energy for the potential models considered and the thermodynamic properties of these fluids are predicted more accurately when the CPSE is truncated at second or third order. (2) The Barker-Henderson (BH) recipe is appropriate for determining the effective hard sphere diameter for strongly repulsive potential cores, but its performance worsens with increasing the softness of the potential core. (3) For some thermodynamic properties the first-order CPSE works better for the diamond potential, whose tail is dominated by repulsive interactions, than for the potential, whose tail is dominated by attractive interactions. However, the first-order CPSE provides unsatisfactory results for the excess internal energy and constant-volume excess heat capacity for the two potential models.

  5. Estimation of the Thermodynamic Efficiency of a Solid-State Cooler Based on the Multicaloric Effect

    NASA Astrophysics Data System (ADS)

    Starkov, A. S.; Pakhomov, O. V.; Rodionov, V. V.; Amirov, A. A.; Starkov, I. A.

    2018-03-01

    The thermodynamic efficiency of using the multicaloric effect (μCE) in solid-state cooler systems has been studied in comparison to single-component caloric effects. This approach is illustrated by example of the Brayton cycle for μCE and magnetocaloric effect (MCE). Based on the results of experiments with Fe48Rh52-PbZr0.53Ti0.47O3 two-layer ferroic composite, the temperature dependence of the relative efficiency is determined and the temperature range is estimated in which the μCE is advantageous to MCE. The proposed theory of μCE is compared to experimental data.

  6. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen; Rajagopalan, Raj

    2007-09-01

    A molecular thermodynamic model is developed to investigate the effects of macromolecular crowding on biochemical reactions. Three types of reactions, representing protein folding/conformational isomerization, coagulation/coalescence, and polymerization/association, are considered. The reactants, products, and crowders are modeled as coarse-grained spherical particles or as polymer chains, interacting through hard-sphere interactions with or without nonbonded square-well interactions, and the effects of crowder size and chain length as well as product size are examined. The results predicted by this model are consistent with experimentally observed crowding effects based on preferential binding or preferential exclusion of the crowders. Although simple hard-core excluded-volume arguments do in general predict the qualitative aspects of the crowding effects, the results show that other intermolecular interactions can substantially alter the extent of enhancement or reduction of the equilibrium and can even change the direction of the shift. An advantage of the approach presented here is that competing reactions can be incorporated within the model.

  7. Polyploidy and its effect on evolutionary success: old questions revisited with new tools

    PubMed Central

    Madlung, A

    2013-01-01

    Polyploidy, the condition of possessing more than two complete genomes in a cell, has intrigued biologists for almost a century. Polyploidy is found in many plants and some animal species and today we know that polyploidy has had a role in the evolution of all angiosperms. Despite its widespread occurrence, the direct effect of polyploidy on evolutionary success of a species is still largely unknown. Over the years many attractive hypotheses have been proposed in an attempt to assign functionality to the increased content of a duplicated genome. Among these hypotheses are the proposal that genome doubling confers distinct advantages to a polyploid and that these advantages allow polyploids to thrive in environments that pose challenges to the polyploid's diploid progenitors. This article revisits these long-standing questions and explores how the integration of recent genomic developments with ecological, physiological and evolutionary perspectives has contributed to addressing unresolved problems about the role of polyploidy. Although unsatisfactory, the current conclusion has to be that despite significant progress, there still isn't enough information to unequivocally answer many unresolved questions about cause and effect of polyploidy on evolutionary success of a species. There is, however, reason to believe that the increasingly integrative approaches discussed here should allow us in the future to make more direct connections between the effects of polyploidy on the genome and the responses this condition elicits from the organism living in its natural environment. PMID:23149459

  8. Revisiting the Regenerative Possibilities of Ortiz

    ERIC Educational Resources Information Center

    Duques, Matthew

    2004-01-01

    The author of this article revisits Simon Ortiz's poem, "From Sand Creek," in which the latter can in so few words convey both the horrific tragedy of conquest and colonization, while at the same time find a space for possibility, a means for recovery that is never about forgetting but always occurs as a kind of recuperative remembering. Ortiz…

  9. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-05-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.

  10. Heat Transfer and Thermodynamics: a Compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Studies include theories and mechanical considerations in the transfer of heat and the thermodynamic properties of matter and the causes and effects of certain interactions.

  11. Thermodynamics of nickel-cadmium and nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Macdonald, Digby D.; Challingsworth, Mark L.

    1993-01-01

    Thermodynamic parameters for Nickel-Cadmium (NiCad) and Nickel-Hydrogen (NiH2) batteries are calculated for temperatures ranging from 273.15K (0 C) to 373.15K (100 C). For both systems, we list equilibrium and thermoneutral voltages for the cells, and in the case of the NiH2 battery, these data are provide for hydrogen fugacities ranging from 0.01 to 100 (atm) to simulate the full discharged and charged states. The quality of the input thermodynamic data are assessed and the effect of assuming different cell reactions is analyzed.

  12. Phenomenology of n - n ¯ oscillations revisited

    DOE PAGES

    Gardner, S.; Jafari, E.

    2015-05-22

    We revisit the phenomenology of n-n¯ oscillations in the presence of external magnetic fields, highlighting the role of spin. We show, contrary to long-held belief, that the n-n¯ transition rate need not be suppressed, opening new opportunities for its empirical study.

  13. Phenomenology of n - n ¯ oscillations revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S.; Jafari, E.

    We revisit the phenomenology of n-n¯ oscillations in the presence of external magnetic fields, highlighting the role of spin. We show, contrary to long-held belief, that the n-n¯ transition rate need not be suppressed, opening new opportunities for its empirical study.

  14. Revisiting separation properties of convex fuzzy sets

    USDA-ARS?s Scientific Manuscript database

    Separation of convex sets by hyperplanes has been extensively studied on crisp sets. In a seminal paper separability and convexity are investigated, however there is a flaw on the definition of degree of separation. We revisited separation on convex fuzzy sets that have level-wise (crisp) disjointne...

  15. Emergency department revisits for patients with kidney stones in California.

    PubMed

    Scales, Charles D; Lin, Li; Saigal, Christopher S; Bennett, Carol J; Ponce, Ninez A; Mangione, Carol M; Litwin, Mark S

    2015-04-01

    Kidney stones affect nearly one in 11 persons in the United States, and among those experiencing symptoms, emergency care is common. In this population, little is known about the incidence of and factors associated with repeat emergency department (ED) visits. The objective was to identify associations between potentially mutable factors and the risk of an ED revisit for patients with kidney stones in a large, all-payer cohort. This was a retrospective cohort study of all patients in California initially treated and released from EDs for kidney stones between February 2008 and November 2009. A multivariable regression model was created to identify associations between patient-level characteristics, area health care resources, processes of care, and the risk of repeat ED visits. The primary outcome was a second ED visit within 30 days of the initial discharge from emergent care. Among 128,564 patients discharged from emergent care, 13,684 (11%) had at least one additional emergent visit for treatment of their kidney stone. In these patients, nearly one in three required hospitalization or an urgent temporizing procedure at the second visit. On multivariable analysis, the risk of an ED revisit was associated with insurance status (e.g., Medicaid vs. private insurance; odds ratio [OR] = 1.52, 95% confidence interval [CI] = 1.43 to 1.61; p < 0.001). Greater access to urologic care was associated with lower odds of an ED revisit (highest quartile OR = 0.88, 95% CI = 0.80 to 0.97; p < 0.01 vs. lowest quartile). In exploratory models, performance of a complete blood count was associated with a decreased odds of revisit (OR = 0.86, 95% CI = 0.75 to 0.97; p = 0.02). Repeat high-acuity care affects one in nine patients discharged from initial emergent evaluations for kidney stones. Access to urologic care and processes of care are associated with lower risk of repeat emergent encounters. Efforts are indicated to identify preventable causes of ED revisits for kidney stone

  16. Meta-analysis in clinical trials revisited.

    PubMed

    DerSimonian, Rebecca; Laird, Nan

    2015-11-01

    In this paper, we revisit a 1986 article we published in this Journal, Meta-Analysis in Clinical Trials, where we introduced a random-effects model to summarize the evidence about treatment efficacy from a number of related clinical trials. Because of its simplicity and ease of implementation, our approach has been widely used (with more than 12,000 citations to date) and the "DerSimonian and Laird method" is now often referred to as the 'standard approach' or a 'popular' method for meta-analysis in medical and clinical research. The method is especially useful for providing an overall effect estimate and for characterizing the heterogeneity of effects across a series of studies. Here, we review the background that led to the original 1986 article, briefly describe the random-effects approach for meta-analysis, explore its use in various settings and trends over time and recommend a refinement to the method using a robust variance estimator for testing overall effect. We conclude with a discussion of repurposing the method for Big Data meta-analysis and Genome Wide Association Studies for studying the importance of genetic variants in complex diseases. Published by Elsevier Inc.

  17. Meta-Analysis in Clinical Trials Revisited

    PubMed Central

    Laird, Nan

    2015-01-01

    In this paper, we revisit a 1986 article we published in this Journal, Meta-Analysis in Clinical Trials, where we introduced a random-effect model to summarize the evidence about treatment efficacy from a number of related clinical trials. Because of its simplicity and ease of implementation, our approach has been widely used (with more than 12,000 citations to date) and the “DerSimonian and Laird method” is now often referred to as the ‘standard approach’ or a ‘popular’ method for meta-analysis in medical and clinical research. The method is especially useful for providing an overall effect estimate and for characterizing the heterogeneity of effects across a series of studies. Here, we review the background that led to the original 1986 article, briefly describe the random-effects approach for meta-analysis, explore its use in various settings and trends over time and recommend a refinement to the method using a robust variance estimator for testing overall effect. We conclude with a discussion of repurposing the method for Big Data meta-analysis and Genome Wide Association Studies for studying the importance of genetic variants in complex diseases. PMID:26343745

  18. Al-Air Batteries: Fundamental Thermodynamic Limitations from First Principles Theory

    NASA Astrophysics Data System (ADS)

    Chen, Leanne D.; Noerskov, Jens K.; Luntz, Alan C.

    2015-03-01

    The Al-air battery possesses high theoretical specific energy (4140 Wh/kg) and is therefore an attractive candidate for vehicle propulsion applications. However, the experimentally observed open-circuit potential is much lower than what thermodynamics predicts, and this potential loss is widely believed to be an effect of corrosion. We present a detailed study of the Al-air battery using density functional theory. The results suggest that the difference between bulk thermodynamic and surface potentials is due to both the effects of asymmetry in multi-electron transfer reactions that define the anodic dissolution of Al and, more importantly, a large chemical step inherent to the formation of bulk Al(OH)3 from surface intermediates. The former results in an energy loss of 3%, while the latter accounts for 14 -29% of the total thermodynamic energy depending on the surface site where dissolution occurs. Therefore, the maximum open-circuit potential of the Al anode is only -1.87 V vs. SHE in the absence of thermal excitations, contrary to -2.34 V predicted by bulk thermodynamics at pH 14.6. This is a fundamental limitation of the system and governs the maximum output potential, which cannot be improved even if corrosion effects were completely suppressed. Supported by the Natural Sciences and Engineering Research Council of Canada and the ReLiable Project (#11-116792) funded by the Danish Council for Strategic Research.

  19. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  20. Thermodynamic origin of nonimaging optics

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Winston, Roland

    2016-10-01

    Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.

  1. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  2. Thermodynamics of higher dimensional black holes with higher order thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.; Kokabi, K.; Rangyan, S.

    2017-12-01

    In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.

  3. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    PubMed

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  4. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  5. Thermodynamics, kinetics, and catalytic effect of dehydrogenation from MgH2 stepped surfaces and nanocluster: a DFT study

    NASA Astrophysics Data System (ADS)

    Reich, Jason; Wang, Linlin; Johnson, Duane

    2013-03-01

    We detail the results of a Density Functional Theory (DFT) based study of hydrogen desorption, including thermodynamics and kinetics with(out) catalytic dopants, on stepped (110) rutile and nanocluster MgH2. We investigate competing configurations (optimal surface and nanoparticle configurations) using simulated annealing with additional converged results at 0 K, necessary for finding the low-energy, doped MgH2 nanostructures. Thermodynamics of hydrogen desorption from unique dopant sites will be shown, as well as activation energies using the Nudged Elastic Band algorithm. To compare to experiment, both stepped structures and nanoclusters are required to understanding and predict the effects of ball milling. We demonstrate how these model systems relate to the intermediary sized structures typically seen in ball milling experiments.

  6. On the Effectiveness of Nature-Inspired Metaheuristic Algorithms for Performing Phase Equilibrium Thermodynamic Calculations

    PubMed Central

    Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430

  7. On the effectiveness of nature-inspired metaheuristic algorithms for performing phase equilibrium thermodynamic calculations.

    PubMed

    Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.

  8. The Thermodynamic Properties of Cubanite

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Lauretta, D. S.; Keller, L. P.

    2012-01-01

    CuFe2S3 exists in two polymorphs, a low-temperature orthorhombic form (cubanite) and a high-temperature cubic form (isocubanite). Cubanite has been identified in the CI-chondrite and Stardust collections. However, the thermodynamic properties of cubanite have neither been measured nor estimated. Our derivation of a thermodynamic model for cubanite allows constraints to be placed on the formation conditions. This data, along with the temperature constraint afforded by the crystal structure, can be used to assess the environments in which cubanite formation is (or is not) thermodynamically favored.

  9. Thermodynamic metrics and optimal paths.

    PubMed

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  10. Hall-petch law revisited in terms of collective dislocation dynamics.

    PubMed

    Louchet, François; Weiss, Jérôme; Richeton, Thiebaud

    2006-08-18

    The Hall-Petch (HP) law, that accounts for the effect of grain size on the plastic yield stress of polycrystals, is revisited in terms of the collective motion of interacting dislocations. Sudden relaxation of incompatibility stresses in a grain triggers aftershocks in the neighboring ones. The HP law results from a scaling argument based on the conservation of the elastic energy during such transfers. The Hall-Petch law breakdown for nanometric sized grains is shown to stem from the loss of such a collective behavior as grains start deforming by successive motion of individual dislocations.

  11. Non-hermitian quantum thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  12. Non-hermitian quantum thermodynamics

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  13. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  14. eQuilibrator—the biochemical thermodynamics calculator

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  15. Geometry and symmetry in non-equilibrium thermodynamic systems

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio

    2017-06-01

    The ultimate aim of this series of works is to establish the closure equations, valid for thermodynamic systems out from the Onsager region, and to describe the geometry and symmetry in thermodynamic systems far from equilibrium. Geometry of a non-equilibrium thermodynamic system is constructed by taking into account the second law of thermodynamics and by imposing the validity of the Glansdorff-Prigogine Universal Criterion of Evolution. These two constraints allow introducing the metrics and the affine connection of the Space of the Thermodynamic Forces, respectively. The Lie group associated to the nonlinear Thermodynamic Coordinate Transformations (TCT) leaving invariant both the entropy production σ and the Glansdorff-Prigogine dissipative quantity P, is also described. The invariance under TCT leads to the formulation of the Thermodynamic Covariance Principle (TCP): The nonlinear closure equations, i.e. the flux-force relations, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces (i.e. under TCT). The symmetry properties of a physical system are intimately related to the conservation laws characterizing the thermodynamic system. Noether's theorem gives a precise description of this relation. The macroscopic theory for closure relations, based on this geometrical description and subject to the TCP, is referred to as the Thermodynamic Field Theory (TFT). This theory ensures the validity of the fundamental theorems for systems far from equilibrium.

  16. Thermodynamic instability of topological black holes in Gauss-Bonnet gravity with a generalized electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.

    2014-12-01

    Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.

  17. Thermodynamical property of entanglement entropy for excited states.

    PubMed

    Bhattacharya, Jyotirmoy; Nozaki, Masahiro; Takayanagi, Tadashi; Ugajin, Tomonori

    2013-03-01

    We argue that the entanglement entropy for a very small subsystem obeys a property which is analogous to the first law of thermodynamics when we excite the system. In relativistic setups, its effective temperature is proportional to the inverse of the subsystem size. This provides a universal relationship between the energy and the amount of quantum information. We derive the results using holography and confirm them in two-dimensional field theories. We will also comment on an example with negative specific heat and suggest a connection between the second law of thermodynamics and the strong subadditivity of entanglement entropy.

  18. Thermodynamic wetness loss calculation in nozzle and turbine cascade: nucleating steam flow

    NASA Astrophysics Data System (ADS)

    Joseph, Joby; Subramanian, Sathyanarayanan; Vigney, K.; Prasad, B. V. S. S. S.; Biswas, D.

    2017-11-01

    Rapid expansion of steam in turbines and nozzles cause condensation. The formation of liquid droplets due to condensation results in wetness losses, which include aerodynamic losses (due to friction between liquid droplets and the vapour), thermodynamic losses (due to irreversible latent heat addition), and braking losses (due to the impact of liquid droplets on the turbine blade). In this study, a numerical investigation of the thermodynamic loss in a nucleating steam flow is performed. The thermodynamic loss is calculated using the change in entropy due to condensation. The effect of different operating conditions on the thermodynamic loss is estimated for a nozzle and turbine cascade in a nucleating flow. The non-equilibrium condensation in high-speed steam flows is modelled using Eulerian-Eulerian approach.

  19. Black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    2014-10-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this paper, will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  20. Nonperturbative quark-gluon thermodynamics at finite density

    NASA Astrophysics Data System (ADS)

    Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.

    2018-03-01

    Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 < μ < 400 MeV and 150 < T < 1000 MeV. For the first time, the explicit integral form is found in this region, demonstrating analytic structure in the complex μ plane. The resulting multiple complex branch points are found at the Roberge-Weiss values of Imμ, with Reμ defined by the values of Polyakov lines and color magnetic confinement.

  1. Application of thermodynamics to silicate crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  2. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    PubMed

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  3. Single molecule thermodynamics in biological motors.

    PubMed

    Taniguchi, Yuichi; Karagiannis, Peter; Nishiyama, Masayoshi; Ishii, Yoshiharu; Yanagida, Toshio

    2007-04-01

    Biological molecular machines use thermal activation energy to carry out various functions. The process of thermal activation has the stochastic nature of output events that can be described according to the laws of thermodynamics. Recently developed single molecule detection techniques have allowed each distinct enzymatic event of single biological machines to be characterized providing clues to the underlying thermodynamics. In this study, the thermodynamic properties in the stepping movement of a biological molecular motor have been examined. A single molecule detection technique was used to measure the stepping movements at various loads and temperatures and a range of thermodynamic parameters associated with the production of each forward and backward step including free energy, enthalpy, entropy and characteristic distance were obtained. The results show that an asymmetry in entropy is a primary factor that controls the direction in which the motor will step. The investigation on single molecule thermodynamics has the potential to reveal dynamic properties underlying the mechanisms of how biological molecular machines work.

  4. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can bemore » derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.« less

  5. Development of a representational conceptual evaluation in the first law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Sriyansyah, S. P.; Suhandi, A.

    2016-08-01

    As part of an ongoing research to investigate student consistency in understanding the first law of thermodynamics, a representational conceptual evaluation (RCET) has been developed to assess student conceptual understanding, representational consistency, and scientific consistency in the introductory physics course. Previous physics education research findings were used to develop the test. RCET items were 30 items which designed as an isomorphic multiple-choice test with three different representations concerning the concept of work, heat, first law of thermodynamics, and its application in the thermodynamic processes. Here, we present preliminary measures of the validity and reliability of the instrument, including the classical test statistics. This instrument can be used to measure the intended concept in the first law of thermodynamics and it will give the consistent results with the ability to differentiate well between high-achieving students and low-achieving students and also students at different level. As well as measuring the effectiveness of the learning process in the concept of the first law of thermodynamics.

  6. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions.

    PubMed

    Fujimoto, Takeshi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke

    2013-01-31

    We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.

  7. Difference rule-a new thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates.

    PubMed

    Jenkins, H Donald Brooke; Glasser, Leslie

    2004-12-08

    We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent

  8. Magnetic Braking Revisited: Activities for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ireson, Gren; Twidle, John

    2008-01-01

    This paper revisits the demonstration of Lenz by dropping magnets down a non-magnetic tube. Recent publications are reviewed and ideas for undergraduate laboratory investigations are suggested. Finally, an example of matching theory to observation is presented. (Contains 4 tables, 5 figures and 3 footnotes.)

  9. Conceptests for a Chemical Engineering Thermodynamics Course

    ERIC Educational Resources Information Center

    Falconer, John L.

    2007-01-01

    Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…

  10. Thermodynamics and phase transition of charged AdS black holes with a global monopole

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Fan, Jinbo; Li, Xinfei; Huang, Yong-Chang

    2018-01-01

    Thermodynamical properties of charged AdS black holes with a global monopole still remain obscure. In this paper, we investigate the thermodynamics and phase transition of the black holes in the extended phase space. It is shown that thermodynamical quantities of the black holes exhibit an interesting dependence on the internal global monopole, and they perfectly satisfy both the first law of thermodynamics and Smarr relation. Furthermore, analysis of the local and the global thermodynamical stability manifests that the charged AdS black hole undergoes an elegant phase transition at critical point. Of special interest, critical behaviors of the black holes resemble a Van der Waals liquid-gas system. Our results not only reveal the effect of a global monopole on thermodynamics of AdS black holes, but also further support that Van der Waals-like behavior of the black holes is a universal phenomenon.

  11. [Thermodynamics of the origin of life, evolution and aging].

    PubMed

    Gladyshev, G P

    2014-01-01

    Briefly discusses the history of the search of thermodynamic approach to explain the origin of life, evolution and aging of living beings. The origin of life is the result of requirement by the quasi-equilibrium hierarchical thermodynamics, in particular, the supramolecular thermodynamics. The evolution and aging of living beings is accompanied with changes of chemical and supramolecular compositions of living bodies, as well as with changes in the composition and structure of all hierarchies of the living world. The thermodynamic principle of substance stability predicts the existence of a single genetic code in our universe. The thermodynamic theory optimizes physiology and medicine and recommends antiaging diets and medicines. Hierarchical thermodynamics forms the design diversity of culture and art. The thermodynamic theory of origin of life, evolution and aging is the development of Clausius-Gibbs thermodynamics. Hierarchical thermodynamics is the mirror of Darwin-Wallace's-theory.

  12. Thermodynamic efficiency of nonimaging concentrators

    NASA Astrophysics Data System (ADS)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  13. Thermodynamics of metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Navrotsky, Alexandra, E-mail: anavrotsky@ucdavis.edu

    Although there have been extensive studies over the past decade in the synthesis and application of metal-organic frameworks (MOFs), investigation of their thermodynamic stability and of the energetics of guest–host interactions has been much more limited. This review summarizes recent progress in experimental (calorimetric) determination of the thermodynamics of MOF materials. The enthalpies of MOFs relative to dense phase assemblages suggest only modest metastability, with a general increase of enthalpy with increasing molar volume, which becomes less pronounced at higher porosity. The energy landscape of nanoporous materials (inorganic and hybrid) consists of a pair of parallel patterns within a fairlymore » narrow range of metastability of 5–30 kJ per mole of tetrahedra in zeolites and mesoporous silicas or per mole of metal in MOFs. Thus strong thermodynamic instability does not seem to limit framework formation. There are strong interactions within the chemisorption range for small molecule–MOF interactions with defined chemical binding at the metal centers or other specific locations. Coexistence of surface binding and confinement can lead to much stronger guest–host interactions. - Graphical abstract: Energy landscape of inorganic and hybrid porous materials. - Highlights: • Thermochemical data on various MOF structures were experimentally determined. • MOFs are moderately unstable relative to their dense phase assemblage. • Overall energetic landscape of porous materials was revealed. • Guest–host interactions in MOFs were evaluated directly using calorimetry. • Confinement effect and defined chemical binding lead to strong interactions.« less

  14. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.

    PubMed

    Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya

    2014-05-21

    Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

  15. Thermodynamic equilibrium-air correlations for flowfield applications

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  16. On Thermodynamic Constraints upon Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ning; Durst, Franz

    2000-11-01

    Turbulence is a continuum phenomenon which can be described within the framework of continuum mechanics. Such foundation has the potential for improving turbulence modeling, making it less heuristic and more rational. In the present research, we consider the compatibility of turbulence modeling with the second law of thermodynamics. We show that the Clausius-Planck inequality, as an expression of the principle of entropy growth, places a thermodynamic restriction upon the turbulence modeling of an incompressible Navier-Stokes fluid in an isothermal temperature field. This thermodynamic restriction is given in the form of an inequality, which ensures non-negativeness of the mean internal dissipation. As an illustration, we show the thermodynamic constraints on the modeling of a few typical homogeneous turbulent flows.

  17. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    PubMed

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  18. The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2014-07-14

    Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.

  19. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.

    PubMed

    Mohoric, Tomaz; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-14

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

  20. The application of the thermodynamic perturbation theory to study the hydrophobic hydration

    PubMed Central

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-01-01

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures. PMID:23862923

  1. The application of the thermodynamic perturbation theory to study the hydrophobic hydration

    NASA Astrophysics Data System (ADS)

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-01

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

  2. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  3. Thermodynamically consistent relations involving plasticity, internal energy and thermal effects.

    PubMed

    Schreyer, H L; Maudlin, P J

    2005-11-15

    Experimental data associated with plastic deformations indicate that the temperature is less than that predicted from dissipation based on plastic work. To obtain reasonable correlation between theoretical and experimental results, the plastic work is often multiplied by a constant beta. This paper provides an alternative thermodynamic framework in which it is proposed that there is an additional internal energy associated with dislocation pile-up or increase in dislocation density. The form of this internal energy follows from experimental data that relates flow stress to dislocation density and to equivalent plastic strain. The result is that beta is not a constant but a derived function. Representative results for beta and temperature as functions of effective plastic strain are provided for both an uncoupled and a coupled thermoplastic theory. In addition to providing features that are believed to be representative of many metals, the formulation can be used as a basis for more advanced theories such as those needed for large deformations and general forms of internal energy.

  4. Limits of predictions in thermodynamic systems: a review

    NASA Astrophysics Data System (ADS)

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  5. Non-equilibrium thermodynamics in cells.

    PubMed

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  6. Thermodynamics of Inozemtsev's elliptic spin chain

    NASA Astrophysics Data System (ADS)

    Klabbers, Rob

    2016-06-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  7. Thermodynamic effects of proline introduction on protein stability.

    PubMed

    Prajapati, Ravindra Singh; Das, Mili; Sreeramulu, Sridhar; Sirajuddin, Minhajuddin; Srinivasan, Sankaranarayanan; Krishnamurthy, Vaishnavi; Ranjani, Ranganathan; Ramakrishnan, C; Varadarajan, Raghavan

    2007-02-01

    The amino acid Pro is more rigid than other naturally occurring amino acids and, in proteins, lacks an amide hydrogen. To understand the structural and thermodynamic effects of Pro substitutions, it was introduced at 13 different positions in four different proteins, leucine-isoleucine-valine binding protein, maltose binding protein, ribose binding protein, and thioredoxin. Three of the maltose binding protein mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, fluorescence and CD spectroscopy were used to show the absence of structural change. Stabilities of wild type and mutant proteins were characterized by chemical denaturation at neutral pH and by differential scanning calorimetry as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, 6 of the 13 single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, 2 mutants showed no change, and 5 were destabilized. In five of the six cases, the stabilization was because of reduced entropy of unfolding. However, the magnitude of the reduction in entropy of unfolding was typically several fold larger than the theoretical estimate of -4 cal K(-1) mol(-1) derived from the relative areas in the Ramachandran map accessible to Pro and Ala residues, respectively. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were nonadditive. Copyright 2006 Wiley-Liss, Inc.

  8. Thermodynamic properties of water solvating biomolecular surfaces

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  9. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    NASA Astrophysics Data System (ADS)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  10. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.

    PubMed

    Pekař, Miloslav

    2018-01-01

    Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.

  11. Quantum thermodynamics of general quantum processes.

    PubMed

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  12. Revisiting the Decision of Death in Hurst v. Florida.

    PubMed

    Cooke, Brian K; Ginory, Almari; Zedalis, Jennifer

    2016-12-01

    The United States Supreme Court has considered the question of whether a judge or a jury must make the findings necessary to support imposition of the death penalty in several notable cases, including Spaziano v. Florida (1984), Hildwin v. Florida (1989), and Ring v. Arizona (2002). In 2016, the U.S. Supreme Court revisited the subject in Hurst v. Florida Florida Statute § 921.141 allows the judge, after weighing aggravating and mitigating circumstances, to enter a sentence of life imprisonment or death. Before Hurst, Florida's bifurcated sentencing proceedings included an advisory sentence from jurors and a separate judicial hearing without juror involvement. In Hurst, the Court revisited the question of whether Florida's capital sentencing scheme violates the Sixth Amendment, which requires a jury, not a judge, to find each fact necessary to impose a sentence of death in light of Ring In an eight-to-one decision, the Court reversed the judgment of the Florida Supreme Court, holding that the Sixth Amendment requires a jury to find the aggravating factors necessary for imposing the death penalty. The role of Florida juries in capital sentencing proceedings was thereby elevated from advisory to determinative. We examine the Court's decision and offer commentary regarding this shift from judge to jury in the final imposition of the death penalty and the overall effect of this landmark case. © 2016 American Academy of Psychiatry and the Law.

  13. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Zhen; Wang, Yanli; Liu, Taigang; Zhang, Wenbing

    2018-01-01

    The thermodynamic and kinetic parameters of an RNA base pair with different nearest and next nearest neighbors were obtained through long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The results indicate that thermodynamic parameters of GC base pair are dependent on the nearest neighbor base pair, and the next nearest neighbor base pair has little effect, which validated the nearest-neighbor model. The closing and opening rates of the GC base pair also showed nearest neighbor dependences. At certain temperature, the closing and opening rates of the GC pair with nearest neighbor AU is larger than that with the nearest neighbor GC, and the next nearest neighbor plays little role. The free energy landscape of the GC base pair with the nearest neighbor GC is rougher than that with nearest neighbor AU.

  14. Biomolecule-nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry.

    PubMed

    Huang, Rixiang; Lau, Boris L T

    2016-05-01

    Nanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction. This review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed. ITC reveals the driving forces behind biomolecule-NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule-NP interactions. The thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule-NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Association Between Limited English Proficiency and Unplanned Emergency Department Revisit Within 72 Hours.

    PubMed

    Ngai, Ka Ming; Grudzen, Corita R; Lee, Roy; Tong, Vicky Y; Richardson, Lynne D; Fernandez, Alicia

    2016-08-01

    Language barriers are known to negatively affect many health outcomes among limited English proficiency patient populations, but little is known about the quality of care such patients receive in the emergency department (ED). This study seeks to determine whether limited English proficiency patients experience different quality of care than English-speaking patients in the ED, using unplanned revisit within 72 hours as a surrogate quality indicator. We conducted a retrospective cohort study in an urban adult ED in 2012, with a total of 41,772 patients and 56,821 ED visits. We compared 2,943 limited English proficiency patients with 38,829 English-speaking patients presenting to the ED after excluding patients with psychiatric complaints, altered mental status, and nonverbal states, and those with more than 4 ED visits in 12 months. Two main outcomes-the risk of inpatient admission from the ED and risk of unplanned ED revisit within 72 hours-were measured with odds ratios from generalized estimating equation multivariate models. Limited English proficiency patients were more likely than English speakers to be admitted (32.0% versus 27.2%; odds ratio [OR]=1.20; 95% confidence interval [CI] 1.11 to 1.30). This association became nonsignificant after adjustments (OR=1.04; 95% CI 0.95 to 1.15). Included in the analysis of ED revisit within 72 hours were 32,857 patients with 45,546 ED visits; 4.2% of all patients (n=1,380) had at least 1 unplanned revisit. Limited English proficiency patients were more likely than English speakers to have an unplanned revisit (5.0% versus 4.1%; OR=1.19; 95% CI 1.02 to 1.45). This association persisted (OR=1.24; 95% CI 1.02 to 1.53) after adjustment for potential confounders, including insurance status. We found no difference in hospital admission rates between limited English proficiency patients and English-speaking patients. Yet limited English proficiency patients were 24% more likely to have an unplanned ED revisit within 72 hours

  16. Thermodynamics from Car to Kitchen

    ERIC Educational Resources Information Center

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  17. Effects of cosmic acceleration on black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit

    2016-07-01

    Direct local impacts of cosmic acceleration upon a black hole are matters of interest. Babichev et. al. had published before that the Friedmann equations which are prevailing the part of fluid filled up in the universe to lead (or to be very specific, `dominate') the other constituents of universe and are forcing the universe to undergo present-day accelerating phase (or to lead to violate the strong energy condition and latter the week energy condition), will themselves tell that the rate of change of mass of the central black hole due to such exotic fluid's accretion will essentially shrink the mass of the black hole. But this is a global impact indeed. The local changes in the space time geometry next to the black hole can be analysed from a modified metric governing the surrounding space time of a black hole. A charged deSitter black hole solution encircled by quintessence field is chosen for this purpose. Different thermodynamic parameters are analysed for different values of quintessence equation of state parameter, ω_q. Specific jumps in the nature of the thermodynamic space near to the quintessence or phantom barrier are noted and physically interpreted as far as possible. Nature of phase transitions and the situations at which these transitions are taking place are also explored. It is determined that before quintessence starts to work (ω_q=-0.33>-1/3) it was preferable to have a small unstable black hole followed by a large stable one. But in quintessence (-1/3>ω_q>-1), black holes are destined to be unstable large ones pre-quelled by stable/ unstable small/ intermediate mass black holes.

  18. Satellite failures revisited

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  19. The thermodynamic properties of benzothiazole and benzoxazole

    NASA Astrophysics Data System (ADS)

    Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.

    1991-08-01

    This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.

  20. Thermodynamic Volume in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Kiu; Ahn, Byoungjoon

    2018-01-01

    In this note, we study on extended thermodynamics of AdS black holes by varying cosmological constant. We found and discussed pressure and volume of both bulk and boundary physics through AdS/CFT correspondence. In particular, we derive the relation between thermodynamic volume and a chemical potential for M2 brane dual to four dimensional AdS space. In addition, we show that thermodynamic volume of hyperbolic black hole is related to `entanglement pressure' coming from a generalized first law of entanglement entropy.

  1. Molecular crowding has no effect on the dilution thermodynamics of the biologically relevant cation mixtures.

    PubMed

    Głogocka, Daria; Przybyło, Magdalena; Langner, Marek

    2017-04-01

    The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.

  2. Inflight thermodynamic properties

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.

    1973-01-01

    The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.

  3. The Theory of Thermodynamic Systems with Internal Variables of State: Necessary and Sufficient Conditions for Compliance with the Second Law of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Shnip, A. I.

    2018-01-01

    Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.

  4. Size-dependent pressure-induced amorphization: a thermodynamic panorama.

    PubMed

    Machon, Denis; Mélinon, Patrice

    2015-01-14

    Below a critical particle size, some pressurized compounds (e.g. TiO2, Y2O3, PbTe) undergo a crystal-to-amorphous transformation instead of a polymorphic transition. This effect reflects the greater propensity of nanomaterials for amorphization. In this work, a panorama of thermodynamic interpretations is given: first, a descriptive analysis based on the energy landscape concept gives a general comprehension of the balance between thermodynamics and kinetics to obtain an amorphous state. Then, a formal approach based on Gibbs energy to describe the thermodynamics and phase transitions in nanoparticles gives a basic explanation of size-dependent pressure-induced amorphization. The features of this transformation (amorphization occurs at pressures lower than the polymorphic transition pressure!) and the nanostructuration can be explained in an elaborated model based on the Ginzburg-Landau theory of phase transition and on percolation theory. It is shown that the crossover between polymorphic transition and amorphization is highly dependent on the defect density and interfacial energy, i.e., on the synthesis process. Their behavior at high pressure is a quality control test for the nanoparticles.

  5. Thermodynamics of urban population flows.

    PubMed

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  6. The Thermodynamics of Black Holes.

    PubMed

    Wald, Robert M

    2001-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  7. Thermodynamics-Based Metabolic Flux Analysis

    PubMed Central

    Henry, Christopher S.; Broadbelt, Linda J.; Hatzimanikatis, Vassily

    2007-01-01

    A new form of metabolic flux analysis (MFA) called thermodynamics-based metabolic flux analysis (TMFA) is introduced with the capability of generating thermodynamically feasible flux and metabolite activity profiles on a genome scale. TMFA involves the use of a set of linear thermodynamic constraints in addition to the mass balance constraints typically used in MFA. TMFA produces flux distributions that do not contain any thermodynamically infeasible reactions or pathways, and it provides information about the free energy change of reactions and the range of metabolite activities in addition to reaction fluxes. TMFA is applied to study the thermodynamically feasible ranges for the fluxes and the Gibbs free energy change, ΔrG′, of the reactions and the activities of the metabolites in the genome-scale metabolic model of Escherichia coli developed by Palsson and co-workers. In the TMFA of the genome scale model, the metabolite activities and reaction ΔrG′ are able to achieve a wide range of values at optimal growth. The reaction dihydroorotase is identified as a possible thermodynamic bottleneck in E. coli metabolism with a ΔrG′ constrained close to zero while numerous reactions are identified throughout metabolism for which ΔrG′ is always highly negative regardless of metabolite concentrations. As it has been proposed previously, these reactions with exclusively negative ΔrG′ might be candidates for cell regulation, and we find that a significant number of these reactions appear to be the first steps in the linear portion of numerous biosynthesis pathways. The thermodynamically feasible ranges for the concentration ratios ATP/ADP, NAD(P)/NAD(P)H, and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin

  8. Children's Social Play Sequence: Parten's Classic Theory Revisited

    ERIC Educational Resources Information Center

    Xu, Yaoying

    2010-01-01

    The purpose of this article is to revisit Parten's study on social play from cultural, environmental, social and economic aspects. Young children's social play is viewed as a critical means to foster and enhance language, cognitive, social and emotional development. Social play theory has been predominately viewed from developmental perspectives.…

  9. Thermodynamic DFT analysis of natural gas.

    PubMed

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  10. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  11. Information thermodynamics of near-equilibrium computation

    NASA Astrophysics Data System (ADS)

    Prokopenko, Mikhail; Einav, Itai

    2015-06-01

    In studying fundamental physical limits and properties of computational processes, one is faced with the challenges of interpreting primitive information-processing functions through well-defined information-theoretic as well as thermodynamic quantities. In particular, transfer entropy, characterizing the function of computational transmission and its predictability, is known to peak near critical regimes. We focus on a thermodynamic interpretation of transfer entropy aiming to explain the underlying critical behavior by associating information flows intrinsic to computational transmission with particular physical fluxes. Specifically, in isothermal systems near thermodynamic equilibrium, the gradient of the average transfer entropy is shown to be dynamically related to Fisher information and the curvature of system's entropy. This relationship explicitly connects the predictability, sensitivity, and uncertainty of computational processes intrinsic to complex systems and allows us to consider thermodynamic interpretations of several important extreme cases and trade-offs.

  12. Exploring quantum thermodynamics in continuous measurement of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.

  13. Revisiting the Incremental Effects of Context on Word Processing: Evidence from Single-Word Event-Related Brain Potentials

    PubMed Central

    Payne, Brennan R.; Lee, Chia-Lin; Federmeier, Kara D.

    2015-01-01

    The amplitude of the N400— an event-related potential (ERP) component linked to meaning processing and initial access to semantic memory— is inversely related to the incremental build-up of semantic context over the course of a sentence. We revisited the nature and scope of this incremental context effect, adopting a word-level linear mixed-effects modeling approach, with the goal of probing the continuous and incremental effects of semantic and syntactic context on multiple aspects of lexical processing during sentence comprehension (i.e., effects of word frequency and orthographic neighborhood). First, we replicated the classic word position effect at the single-word level: open-class words showed reductions in N400 amplitude with increasing word position in semantically congruent sentences only. Importantly, we found that accruing sentence context had separable influences on the effects of frequency and neighborhood on the N400. Word frequency effects were reduced with accumulating semantic context. However, orthographic neighborhood was unaffected by accumulating context, showing robust effects on the N400 across all words, even within congruent sentences. Additionally, we found that N400 amplitudes to closed-class words were reduced with incrementally constraining syntactic context in sentences that provided only syntactic constraints. Taken together, our findings indicate that modeling word-level variability in ERPs reveals mechanisms by which different sources of information simultaneously contribute to the unfolding neural dynamics of comprehension. PMID:26311477

  14. Revisiting the incremental effects of context on word processing: Evidence from single-word event-related brain potentials.

    PubMed

    Payne, Brennan R; Lee, Chia-Lin; Federmeier, Kara D

    2015-11-01

    The amplitude of the N400-an event-related potential (ERP) component linked to meaning processing and initial access to semantic memory-is inversely related to the incremental buildup of semantic context over the course of a sentence. We revisited the nature and scope of this incremental context effect, adopting a word-level linear mixed-effects modeling approach, with the goal of probing the continuous and incremental effects of semantic and syntactic context on multiple aspects of lexical processing during sentence comprehension (i.e., effects of word frequency and orthographic neighborhood). First, we replicated the classic word-position effect at the single-word level: Open-class words showed reductions in N400 amplitude with increasing word position in semantically congruent sentences only. Importantly, we found that accruing sentence context had separable influences on the effects of frequency and neighborhood on the N400. Word frequency effects were reduced with accumulating semantic context. However, orthographic neighborhood was unaffected by accumulating context, showing robust effects on the N400 across all words, even within congruent sentences. Additionally, we found that N400 amplitudes to closed-class words were reduced with incrementally constraining syntactic context in sentences that provided only syntactic constraints. Taken together, our findings indicate that modeling word-level variability in ERPs reveals mechanisms by which different sources of information simultaneously contribute to the unfolding neural dynamics of comprehension. © 2015 Society for Psychophysiological Research.

  15. Temporal Dynamic Controllability Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul H.; Muscettola, Nicola

    2005-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. We revisit the question of how to determine whether a given set of temporal requirements are feasible in the light of uncertain durations of some processes. In particular, we consider how best to determine whether a network is Dynamically Controllable, i.e., whether a dynamic strategy exists for executing the network that is guaranteed to satisfy the requirements. Previous work has shown the existence of a pseudo-polynomial algorithm for testing Dynamic Controllability. Here, we greatly simplify the previous framework, and present a true polynomial algorithm with a cutoff based only on the number of nodes.

  16. The discovery of thermodynamics

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  17. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations

    PubMed Central

    2017-01-01

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431

  18. The role of thermodynamics in biochemical engineering

    NASA Astrophysics Data System (ADS)

    von Stockar, Urs

    2013-09-01

    This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.

  19. Investigating predictors of visiting, using, and revisiting an online health-communication program: a longitudinal study.

    PubMed

    Van 't Riet, Jonathan; Crutzen, Rik; De Vries, Hein

    2010-09-02

    Online health communication has the potential to reach large audiences, with the additional advantages that it can be operational at all times and that the costs per visitor are low. Furthermore, research shows that Internet-delivered interventions can be effective in changing health behaviors. However, exposure to Internet-delivered health-communication programs is generally low. Research investigating predictors of exposure is needed to be able to effectively disseminate online interventions. In the present study, the authors used a longitudinal design with the aim of identifying demographic, psychological, and behavioral predictors of visiting, using, and revisiting an online program promoting physical activity in the general population. A webpage was created providing the public with information about health and healthy behavior. The website included a "physical activity check," which consisted of a physical activity computer-tailoring expert system where visitors could check whether their physical activity levels were in line with recommendations. Visitors who consented to participate in the present study (n = 489) filled in a questionnaire that assessed demographics, mode of recruitment, current physical activity levels, and health motivation. Immediately after, participants received tailored feedback concerning their current physical activity levels and completed a questionnaire assessing affective and cognitive user experience, attitude toward being sufficiently physically active, and intention to be sufficiently physically active. Three months later, participants received an email inviting them once more to check whether their physical activity level had changed. Analyses of visiting showed that more women (67.5%) than men (32.5%) visited the program. With regard to continued use, native Dutch participants (odds ratio [OR] = 2.81, 95% confidence interval [CI] = 1.16-6.81, P = .02) and participants with a strong motivation to be healthy (OR = 1.46, CI = 1

  20. Statistical thermodynamics of clustered populations.

    PubMed

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  1. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings.

    PubMed

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders' concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings.

  2. Cantera and Cantera Electrolyte Thermodynamics Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Hewson, Harry Moffat

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia's contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction,more » and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a "Get the

  3. Mechanics, Waves and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  4. Thermodynamics of micellization from heat-capacity measurements.

    PubMed

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Experimental Determination of Thermodynamic Values

    ERIC Educational Resources Information Center

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  6. Irreversible thermodynamics of Poisson processes with reaction.

    PubMed

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  7. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  8. Moral Judgment Development across Cultures: Revisiting Kohlberg's Universality Claims

    ERIC Educational Resources Information Center

    Gibbs, John C.; Basinger, Karen S.; Grime, Rebecca L.; Snarey, John R.

    2007-01-01

    This article revisits Kohlberg's cognitive developmental claims that stages of moral judgment, facilitative processes of social perspective-taking, and moral values are commonly identifiable across cultures. Snarey [Snarey, J. (1985). "The cross-cultural universality of social-moral development: A critical review of Kohlbergian research."…

  9. Global Instability on Laminar Separation Bubbles-Revisited

    NASA Technical Reports Server (NTRS)

    Theofilis, Vassilis; Rodriquez, Daniel; Smith, Douglas

    2010-01-01

    In the last 3 years, global linear instability of LSB has been revisited, using state-of-the-art hardware and algorithms. Eigenspectra of LSB flows have been understood and classified in branches of known and newly-discovered eigenmodes. Major achievements: World-largest numerical solutions of global eigenvalue problems are routinely performed. Key aerodynamic phenomena have been explained via critical point theory, applied to our global mode results. Theoretical foundation for control of LSB flows has been laid. Global mode of LSB at the origin of observable phenomena. U-separation on semi-infinite plate. Stall cells on (stalled) airfoil. Receptivity/Sensitivity/AFC feasible (practical?) via: Adjoint EVP solution. Direct/adjoint coupling (the Crete connection). Minor effect of compressibility on global instability in the subsonic compressible regime. Global instability analysis of LSB in realistic supersonic flows apparently quite some way down the horizon.

  10. Simulating Metabolism with Statistical Thermodynamics

    PubMed Central

    Cannon, William R.

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. PMID:25089525

  11. Simulating metabolism with statistical thermodynamics.

    PubMed

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  12. Radiative corrections to double-Dalitz decays revisited

    NASA Astrophysics Data System (ADS)

    Kampf, Karol; Novotný, Jiři; Sanchez-Puertas, Pablo

    2018-03-01

    In this study, we revisit and complete the full next-to-leading order corrections to pseudoscalar double-Dalitz decays within the soft-photon approximation. Comparing to the previous study, we find small differences, which are nevertheless relevant for extracting information about the pseudoscalar transition form factors. Concerning the latter, these processes could offer the opportunity to test them—for the first time—in their double-virtual regime.

  13. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    NASA Astrophysics Data System (ADS)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  14. Understanding Drug Release Data through Thermodynamic Analysis.

    PubMed

    Freire, Marjorie Caroline Liberato Cavalcanti; Alexandrino, Francisco; Marcelino, Henrique Rodrigues; Picciani, Paulo Henrique de Souza; Silva, Kattya Gyselle de Holanda E; Genre, Julieta; Oliveira, Anselmo Gomes de; Egito, Eryvaldo Sócrates Tabosa do

    2017-06-13

    Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS) is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB) kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas-Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability.

  15. Understanding Drug Release Data through Thermodynamic Analysis

    PubMed Central

    Freire, Marjorie Caroline Liberato Cavalcanti; Alexandrino, Francisco; Marcelino, Henrique Rodrigues; Picciani, Paulo Henrique de Souza; Silva, Kattya Gyselle de Holanda e; Genre, Julieta; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Sócrates Tabosa

    2017-01-01

    Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS) is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB) kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas–Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability. PMID:28773009

  16. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    PubMed

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The "Sadly Cannot" Thermodynamic Cycle Revisited.

    ERIC Educational Resources Information Center

    Mills, David S.; Huston, Craig S.

    1991-01-01

    An exercise that gives students a chance to use the equations of state for both an ideal gas and for an adiabatic process in determining the points at which heat flow reverses direction and at which the working substance reaches its maximum temperature is demonstrated. (KR)

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Temporal and thermodynamic characteristics of plasma formation

    NASA Astrophysics Data System (ADS)

    Ignatavichyus, M. V.; Kazakyavichyus, É.; Orshevski, G.; Danyunas, V.

    1991-11-01

    An investigation was made of plasma formation accompanying the interaction with aluminum, iron, and VK-6 alloy targets of nanosecond radiation from a YAG:Nd3+ laser (Emax = 50 mJ, τ = 3-8 ns). The duration of the plasma formation process depended weakly on the laser radiation parameters [the power density was varied in the range 1-3 GW/cm2, the pulse rise time in the range 2-8 ns, or the rate of rise of the power density in the range (1-8) × 108 W · cm - 2 · ns -1]. A study was made of the establishment of a local thermodynamic equilibrium in a plasma jet excited by radiation from nanosecond and picosecond (E = 30 mJ, τ = 40 ps) lasers. The maximum of the luminescence from an aluminum plasma excited by picosecond laser radiation was found to correspond to a local thermodynamic equilibrium. A local thermodynamic equilibrium could be absent in the case of excitation by nanosecond laser radiation.

  19. Revisiting Feminist Identity Development Theory, Research, and Practice

    ERIC Educational Resources Information Center

    Moradi, Bonnie; Subich, Linda Mezydlo; Phillips, Julia C.

    2002-01-01

    The model of feminist identity development proposed by Downing and Roush in 1985 is revisited as a potentially useful framework in counseling psychology theory, research, and practice. An examination of the historical context from which the model arose illustrates how it advanced theory in the psychology of women. A critical review of the extant…

  20. A Feminist Revisit to the First-Year Curriculum.

    ERIC Educational Resources Information Center

    Bernstein, Anita

    1996-01-01

    A seminar at Chicago-Kent College of Law (Illinois) that reviews six first-year law school courses by focusing on feminist issues in course content and structure is described. The seminar functions as both a review and a shift in perspective. Courses revisited include civil procedure, contracts, criminal law, justice and the legal system,…

  1. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  2. Peptide self-assembly: thermodynamics and kinetics.

    PubMed

    Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai

    2016-10-21

    Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

  3. An Easy and Effective Demonstration of Enzyme Stereospecificity and Equilibrium Thermodynamics

    ERIC Educational Resources Information Center

    Herdman, Chelsea; Dickman, Michael

    2011-01-01

    Enzyme stereospecificity and equilibrium thermodynamics can be demonstrated using the coupling of two amino acid derivatives by Thermoase C160. This protease will catalyze peptide bond formation between Z-L-AspOH and L-PheOMe to form the Aspartame precursor Z-L-Asp-L-PheOMe. Reaction completion manifests itself by precipitation of the product. As…

  4. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    PubMed

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Relativistic distribution function for particles with spin at local thermodynamical equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becattini, F., E-mail: becattini@fi.infn.it; INFN Sezione di Firenze, Florence; Universität Frankfurt, Frankfurt am Main

    2013-11-15

    We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict theirmore » polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.« less

  6. Thermodynamic framework for identifying free energy inventories of enzyme catalytic cycles

    PubMed Central

    Fried, Stephen D.; Boxer, Steven G.

    2013-01-01

    Pauling’s suggestion that enzymes are complementary in structure to the activated complexes of the reactions they catalyze has provided the conceptual basis to explain how enzymes obtain their fantastic catalytic prowess, and has served as a guiding principle in drug design for over 50 y. However, this model by itself fails to predict the magnitude of enzymes’ rate accelerations. We construct a thermodynamic framework that begins with the classic concept of differential binding but invokes additional terms that are needed to account for subtle effects in the catalytic cycle’s proton inventory. Although the model presented can be applied generally, this analysis focuses on ketosteroid isomerase (KSI) as an example, where recent experiments along with a large body of kinetic and thermodynamic data have provided strong support for the noncanonical thermodynamic contribution described. The resulting analysis precisely predicts the free energy barrier of KSI’s reaction as determined from transition-state theory using only empirical thermodynamic data. This agreement is suggestive that a complete free energy inventory of the KSI catalytic cycle has been identified. PMID:23840058

  7. Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.

    PubMed

    Rodríguez-López, Tonalli; del Río, Fernando

    2012-01-28

    In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.

  8. Corona discharges and their effect on lightning attachment revisited: Upward leader initiation and downward leader interception

    NASA Astrophysics Data System (ADS)

    Becerra, Marley

    2014-11-01

    Previous studies have suggested the possibility of using glow corona discharges to control the frequency of lightning flashes to grounded objects. In order to revisit the theoretical basis of this proposal, the self-consistent leader inception and propagation model - SLIM - is used together with a two-dimensional glow corona drift model. The analysis is performed to quantify the effect of glow corona generated at the tip of ground-based objects on the initiation and propagation of upward positive connecting leaders under the influence of downward lightning leaders. It is found that the presence of glow corona does not influence the performance of Franklin lightning rods shorter than 15 m, while it slightly reduces the lateral distance of rods up to 60 m tall by a maximum of 10%. Furthermore, the results indicate that it is not possible to suppress the initiation of upward connecting leaders by means of glow corona. It is found instead that unconventional lightning protection systems based on the generation of glow corona attract downward lightning flashes in a similar way as a standard lightning rod with the same height.

  9. Ab initio interatomic potentials and the thermodynamic properties of fluids

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  10. Ab initio interatomic potentials and the thermodynamic properties of fluids.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-07-14

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  11. Simulated pressure denaturation thermodynamics of ubiquitin.

    PubMed

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  13. Geometry and Thermodynamics: Exploring the Internal Energy Landscape

    ERIC Educational Resources Information Center

    Hantsaridou, A. P.; Polatoglou, H. M.

    2006-01-01

    If we look into the past we will discover that the teachers of thermodynamics were always trying to interpret an important part of their science by using geometry. The relation between geometry and thermodynamics is of great interest and importance in teaching thermodynamics. This article examines the way undergraduate students of thermodynamics…

  14. Examining a Thermodynamic Order Parameter of Protein Folding.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2018-05-08

    Dimensionality reduction with a suitable choice of order parameters or reaction coordinates is commonly used for analyzing high-dimensional time-series data generated by atomistic biomolecular simulations. So far, geometric order parameters, such as the root mean square deviation, fraction of native amino acid contacts, and collective coordinates that best characterize rare or large conformational transitions, have been prevailing in protein folding studies. Here, we show that the solvent-averaged effective energy, which is a thermodynamic quantity but unambiguously defined for individual protein conformations, serves as a good order parameter of protein folding. This is illustrated through the application to the folding-unfolding simulation trajectory of villin headpiece subdomain. We rationalize the suitability of the effective energy as an order parameter by the funneledness of the underlying protein free energy landscape. We also demonstrate that an improved conformational space discretization is achieved by incorporating the effective energy. The most distinctive feature of this thermodynamic order parameter is that it works in pointing to near-native folded structures even when the knowledge of the native structure is lacking, and the use of the effective energy will also find applications in combination with methods of protein structure prediction.

  15. A Multi-Level Model of Moral Functioning Revisited

    ERIC Educational Resources Information Center

    Reed, Don Collins

    2009-01-01

    The model of moral functioning scaffolded in the 2008 "JME" Special Issue is here revisited in response to three papers criticising that volume. As guest editor of that Special Issue I have formulated the main body of this response, concerning the dynamic systems approach to moral development, the problem of moral relativism and the role of…

  16. Literary Origins of the Term "School Psychologist" Revisited

    ERIC Educational Resources Information Center

    Fagan, Thomas K.

    2005-01-01

    Previous research on the literary origins of the term "school psychologist" is revisited, and conclusions are revised in light of new evidence. It appears that the origin of the term in the American literature occurred as early as 1898 in an article by Hugo Munsterberg, predating the usage by Wilhelm Stern in 1911. The early references to the…

  17. Order and chaos in the one-dimensional ϕ4 model: N-dependence and the Second Law of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Hoover, William Graham; Aoki, Kenichiro

    2017-08-01

    We revisit the equilibrium one-dimensional ϕ4 model from the dynamical systems point of view. We find an infinite number of periodic orbits which are computationally stable. At the same time some of the orbits are found to exhibit positive Lyapunov exponents! The periodic orbits confine every particle in a periodic chain to trace out either the same or a mirror-image trajectory in its two-dimensional phase space. These ;computationally stable; sets of pairs of single-particle orbits are either symmetric or antisymmetric to the very last computational bit. In such a periodic chain the odd-numbered and even-numbered particles' coordinates and momenta are either identical or differ only in sign. ;Positive Lyapunov exponents; can and do result if an infinitesimal perturbation breaking a perfect two-dimensional antisymmetry is introduced so that the motion expands into a four-dimensional phase space. In that extended space a positive exponent results. We formulate a standard initial condition for the investigation of the microcanonical chaotic number dependence of the model. We speculate on the uniqueness of the model's chaotic sea and on the connection of such collections of deterministic and time-reversible states to the Second Law of Thermodynamics.

  18. Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants.

    PubMed

    Blanco, Elias H; Ramos-Molina, Bruno; Lindberg, Iris

    2015-10-01

    Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.

  19. Thermodynamics of Random Reaction Networks

    PubMed Central

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  20. New global communication process in thermodynamics: impact on quality of published experimental data.

    PubMed

    Frenkel, M; Chirico, R D; Diky, V; Muzny, C; Dong, Q; Marsh, K N; Dymond, J H; Wakeham, W A; Stein, S E; Königsberger, E; Goodwin, A R H; Magee, J W; Thijssen, M; Haynes, W M; Watanasiri, S; Satyro, M; Schmidt, M; Johns, A I; Hardin, G R

    2006-01-01

    Thermodynamic data are a key resource in the search for new relationships between properties of chemical systems that constitutes the basis of the scientific discovery process. In addition, thermodynamic information is critical for development and improvement of all chemical process technologies. Historically, peer-reviewed journals are the major source of this information obtained by experimental measurement or prediction. Technological advances in measurement science have propelled enormous growth in the scale of published thermodynamic data (almost doubling every 10 years). This expansion has created new challenges in data validation at all stages of the data delivery process. Despite the peer-review process, problems in data validation have led, in many instances, to publication of data that are grossly erroneous and, at times, inconsistent with the fundamental laws of nature. This article describes a new global data communication process in thermodynamics and its impact in addressing these challenges as well as in streamlining the delivery of the thermodynamic data from "data producers" to "data users". We believe that the prolific growth of scientific data in numerous and diverse fields outside thermodynamics, together with the demonstrated effectiveness and versatility of the process described in this article, will foster development of such processes in other scientific fields.

  1. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    PubMed Central

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. PMID:28243071

  2. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  3. Thermodynamic-ensemble independence of solvation free energy.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-02-10

    Solvation free energy is the fundamental thermodynamic quantity in solution chemistry. Recently, it has been suggested that the partial molar volume correction is necessary to convert the solvation free energy determined in different thermodynamic ensembles. Here, we demonstrate ensemble-independence of the solvation free energy on general thermodynamic grounds. Theoretical estimates of the solvation free energy based on the canonical or grand-canonical ensemble are pertinent to experiments carried out under constant pressure without any conversion.

  4. Threshold corrections to the bottom quark mass revisited

    DOE PAGES

    Anandakrishnan, Archana; Bryant, B. Charles; Raby, Stuart

    2015-05-19

    Threshold corrections to the bottom quark mass are often estimated under the approximation that tan β enhanced contributions are the most dominant. In this work we revisit this common approximation made to the estimation of the supersymmetric thresh-old corrections to the bottom quark mass. We calculate the full one-loop supersymmetric corrections to the bottom quark mass and survey a large part of the phenomenological MSSM parameter space to study the validity of considering only the tan β enhanced corrections. Our analysis demonstrates that this approximation underestimates the size of the threshold corrections by ~12.5% for most of the considered parametermore » space. We discuss the consequences for fitting the bottom quark mass and for the effective couplings to Higgses. Here, we find that it is important to consider the additional contributions when fitting the bottom quark mass but the modifications to the effective Higgs couplings are typically O(few)% for the majority of the parameter space considered.« less

  5. Quantum thermodynamics of nanoscale steady states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  6. On thermodynamical inconsistency of isotherm equations: Gibbs's thermodynamics.

    PubMed

    Tóth, József

    2003-06-01

    It has been proven that all isotherm equations which include the expression 1-Theta contradict the exact Gibbs thermodynamics. These contradictions have been discussed in detail in the case of the Langmuir (L) equation applied to gas/solid (G/S), solid/liquid (S/L), and gas/liquid (G/L) interfaces. In G/S adsorption the L equation can theoretically be applied only at low equilibrium pressures on condition that vg > vs . vg is the molar volume of the adsorbed amount in the gas phase and vs is the same in the Gibbs phase. In S/L and G/L adsorption the L equation is practically applicable only in the domain of very low concentrations. The cause of these contradictions (inconsistencies) is that Gibbs thermodynamics takes excess adsorbed amounts into account; however, the L and other isotherm equations calculate with the absolute adsorbed amount. The two amounts may be practically equal to each other when the limiting conditions mentioned above are fulfilled. It is also discussed how these inconsistent isotherm equations can be transformed into consistent ones.

  7. Introduction to the special issue: Thermodynamic aspects of cryobiology.

    PubMed

    Elliott, Janet A W

    2010-02-01

    This brief paper introduces the subject of thermodynamics and the papers of the special issue on thermodynamic aspects of cryobiology. Thermodynamic terminology is defined for the non-specialist. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Thermodynamic and Kinetic Effects in the Crystallization of Metal-Organic Frameworks.

    PubMed

    Cheetham, Anthony K; Kieslich, G; Yeung, H H-M

    2018-03-20

    The evolution of metal-organic frameworks (MOFs) has been one of the most exciting aspects of materials chemistry over the last 20 years. In this Account, we discuss the development during this period in our understanding of the factors that control the crystallization of MOFs from solution. Both classical porous MOFs and dense MOF phases are considered. This is an opportune time at which to examine this complex area because the experimental tools now available to interrogate crystallization processes have matured significantly in the last 5 years, particularly with the use of in situ synchrotron X-ray diffraction. There have also been impressive developments in the use of density functional theory (DFT) to treat not only the energies of very complex structures but also their entropies. This is particularly important in MOF frameworks because of their much greater flexibility compared with inorganic structures such as zeolites. The first section of the Account describes how early empirical observations on the crystallization of dense MOFs pointed to a strong degree of thermodynamic control, with both enthalpic and entropic factors playing important roles. For example, reactions at higher temperatures tend to lead to denser structures with higher degrees of framework connectivity and lower levels of solvation, and polymorphs tend to form according to their thermodynamic stabilities. In the case of metal tartrates, these trends have been validated by calorimetric studies. It has been clear for more than a decade, however, that certain phases crystallize under kinetic control, especially when a change in conformation of the ligand or coordination around a metal center might be necessary to form the thermodynamically preferred product. We describe how this can lead to time-dependent crystallization processes that evolve according to the Ostwald rule of stages and can be observed by in situ methods. We then consider the crystallization of porous MOFs, which presents

  9. Thermodynamic universality of quantum Carnot engines

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  10. A Vector Representation for Thermodynamic Relationships

    ERIC Educational Resources Information Center

    Pogliani, Lionello

    2006-01-01

    The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…

  11. Quantum thermodynamics with local control

    NASA Astrophysics Data System (ADS)

    Lekscha, J.; Wilming, H.; Eisert, J.; Gallego, R.

    2018-02-01

    We investigate the limitations that emerge in thermodynamic tasks as a result of having local control only over the components of a thermal machine. These limitations are particularly relevant for devices composed of interacting many-body systems. Specifically, we study protocols of work extraction that employ a many-body system as a working medium whose evolution can be driven by tuning the on-site Hamiltonian terms. This provides a restricted set of thermodynamic operations, giving rise to alternative bounds for the performance of engines. Our findings show that those limitations in control render it, in general, impossible to reach Carnot efficiency; in its extreme ramification it can even forbid to reach a finite efficiency or finite work per particle. We focus on the one-dimensional Ising model in the thermodynamic limit as a case study. We show that in the limit of strong interactions the ferromagnetic case becomes useless for work extraction, while the antiferromagnetic case improves its performance with the strength of the couplings, reaching Carnot in the limit of arbitrary strong interactions. Our results provide a promising connection between the study of quantum control and thermodynamics and introduce a more realistic set of physical operations well suited to capture current experimental scenarios.

  12. Thermodynamics of quantum information scrambling

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Goold, John

    2017-06-01

    Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators (OTOCs), i.e., correlators of the type <[Wτ,V ] †[Wτ,V ] > , whose measurements present a formidable experimental challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of broader applicability than methods employed in current experiments and provides a clear-cut interpretation of quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also discuss how the method can be used to extend the reach of current experiments.

  13. Thermodynamics of charged Lovelock: AdS black holes

    NASA Astrophysics Data System (ADS)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  14. Thermodynamics of hairy black holes in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  15. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  16. Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chengcan; Rui, Yannian

    2017-03-01

    The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.

  17. The random field Blume-Capel model revisited

    NASA Astrophysics Data System (ADS)

    Santos, P. V.; da Costa, F. A.; de Araújo, J. M.

    2018-04-01

    We have revisited the mean-field treatment for the Blume-Capel model under the presence of a discrete random magnetic field as introduced by Kaufman and Kanner (1990). The magnetic field (H) versus temperature (T) phase diagrams for given values of the crystal field D were recovered in accordance to Kaufman and Kanner original work. However, our main goal in the present work was to investigate the distinct structures of the crystal field versus temperature phase diagrams as the random magnetic field is varied because similar models have presented reentrant phenomenon due to randomness. Following previous works we have classified the distinct phase diagrams according to five different topologies. The topological structure of the phase diagrams is maintained for both H - T and D - T cases. Although the phase diagrams exhibit a richness of multicritical phenomena we did not found any reentrant effect as have been seen in similar models.

  18. Facilitating Grade Acceleration: Revisiting the Wisdom of John Feldhusen

    ERIC Educational Resources Information Center

    Culross, Rita R.; Jolly, Jennifer L.; Winkler, Daniel

    2013-01-01

    This article revisits the 1986 Feldhusen, Proctor, and Black recommendations on grade skipping. These recommendations originally appeared as 12 guidelines. In this article, the guidelines are grouped into three general categories: how to screen accelerant candidates, how to engage with the adults in the acceleration process (e.g., teachers,…

  19. Threshold Concepts and Student Engagement: Revisiting Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Zepke, Nick

    2013-01-01

    This article revisits the notion that to facilitate quality learning requires teachers in higher education to have pedagogical content knowledge. It constructs pedagogical content knowledge as a teaching and learning space that brings content and pedagogy together. On the content knowledge side, it suggests that threshold concepts, akin to a…

  20. Revisiting Jack Goody to Rethink Determinisms in Literacy Studies

    ERIC Educational Resources Information Center

    Collin, Ross

    2013-01-01

    This article revisits Goody's arguments about literacy's influence on social arrangements, culture, cognition, economics, and other domains of existence. Whereas some of his arguments tend toward technological determinism (i.e., literacy causes change in the world), other of his arguments construe literacy as a force that shapes and is shaped by…

  1. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  2. The importance of hydration thermodynamics in fragment-to-lead optimization.

    PubMed

    Ichihara, Osamu; Shimada, Yuzo; Yoshidome, Daisuke

    2014-12-01

    Using a computational approach to assess changes in solvation thermodynamics upon ligand binding, we investigated the effects of water molecules on the binding energetics of over 20 fragment hits and their corresponding optimized lead compounds. Binding activity and X-ray crystallographic data of published fragment-to-lead optimization studies from various therapeutically relevant targets were studied. The analysis reveals a distinct difference between the thermodynamic profile of water molecules displaced by fragment hits and those displaced by the corresponding optimized lead compounds. Specifically, fragment hits tend to displace water molecules with notably unfavorable excess entropies-configurationally constrained water molecules-relative to those displaced by the newly added moieties of the lead compound during the course of fragment-to-lead optimization. Herein we describe the details of this analysis with the goal of providing practical guidelines for exploiting thermodynamic signatures of binding site water molecules in the context of fragment-to-lead optimization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermodynamic curvature for a two-parameter spin model with frustration.

    PubMed

    Ruppeiner, George; Bellucci, Stefano

    2015-01-01

    Microscopic models of realistic thermodynamic systems usually involve a number of parameters, not all of equal macroscopic relevance. We examine a decorated (1+3) Ising spin chain containing two microscopic parameters: a stiff parameter K mediating the long-range interactions, and a sloppy J operating within local spin groups. We show that K dominates the macroscopic behavior, with varying J having only a weak effect, except in regions where J brings about transitions between phases through its conditioning of the local spin groups with which K interacts. We calculate the heat capacity C(H), the magnetic susceptibility χ(T), and the thermodynamic curvature R. For large |J/K|, we identify four magnetic phases: ferromagnetic, antiferromagnetic, and two ferrimagnetic, according to the signs of K and J. We argue that for characterizing these phases, the strongest picture is offered by the thermodynamic geometric invariant R, proportional to the correlation length ξ. This picture has correspondences to other cases, such as fluids.

  4. Understanding the Thermodynamics of Biological Order

    ERIC Educational Resources Information Center

    Peterson, Jacob

    2012-01-01

    By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…

  5. Thermodynamics of a periodically driven qubit

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  6. Thermodynamic Effect of Platinum Addition to beta-NiAl: An Initial Investigation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    An initial investigation was conducted to determine the effect of platinum addition on the activities of aluminum and nickel in beta-NiAl(Pt) over the temperature range 1354 to 1692 K. These measurements were made with a multiple effusion-cell configured mass spectrometer (multi-cell KEMS). The results of this study show that Pt additions act to decreased alpha(Al) and increased the alpha(Ni) in beta-NiAl(Pt) for constant X(sub Ni)/X(sub Al) approx. = 1.13, while at constant X(sub Al) the affect of Pt on Al is greatly reduced. The measured partial enthalpies of mixing indicate Al-atoms have a strong self interaction while Ni- and Pt-atoms in have similar interactions with Al-atoms. Conversely the binding of Ni-atoms in beta-NiAl decreases with Pt addition independent of Al concentration. These initial results prove the technique can be applied to the Ni-Al-Pt system but more activity measurements are required to fully understand the thermodynamics of this system and how Pt additions improved the scaling behavior of nickel-based superalloys. In addition, with the choice of a suitable oxide material for the effusion-cell, the "closed" isothermal nature of the effusion-cell allows the direct investigation of an alloy-oxide equilibrium which resembles the "local-equilibrium" description of the metal-scale interface observed during high temperature oxidation. It is proposed that with an Al(l) + Al2O3(s) experimental reference state together with the route measurement of the relative partial-pressures of Al(g) and Al2O(g) allows the activities of O and Al2O3 to be determined along with the activities of Ni and Al. These measurements provide a direct method of investigating the thermodynamics of the metal-scale interface of a TGO-scale.

  7. Universality of P - V criticality in horizon thermodynamics

    NASA Astrophysics Data System (ADS)

    Hansen, Devin; Kubizňák, David; Mann, Robert B.

    2017-01-01

    We study P - V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δ E = T δ S - P δ V , where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the `standard' first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  8. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    NASA Astrophysics Data System (ADS)

    Collell, Julien; Galliero, Guillaume

    2014-05-01

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.

  9. Thermodynamic characterization of networks using graph polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  10. A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles.

    PubMed

    Liu, Zhong; Gao, Xiaoguang; Fu, Xiaowei

    2018-05-08

    In this paper, we mainly study a cooperative search and coverage algorithm for a given bounded rectangle region, which contains several unknown stationary targets, by a team of unmanned aerial vehicles (UAVs) with non-ideal sensors and limited communication ranges. Our goal is to minimize the search time, while gathering more information about the environment and finding more targets. For this purpose, a novel cooperative search and coverage algorithm with controllable revisit mechanism is presented. Firstly, as the representation of the environment, the cognitive maps that included the target probability map (TPM), the uncertain map (UM), and the digital pheromone map (DPM) are constituted. We also design a distributed update and fusion scheme for the cognitive map. This update and fusion scheme can guarantee that each one of the cognitive maps converges to the same one, which reflects the targets’ true existence or absence in each cell of the search region. Secondly, we develop a controllable revisit mechanism based on the DPM. This mechanism can concentrate the UAVs to revisit sub-areas that have a large target probability or high uncertainty. Thirdly, in the frame of distributed receding horizon optimizing, a path planning algorithm for the multi-UAVs cooperative search and coverage is designed. In the path planning algorithm, the movement of the UAVs is restricted by the potential fields to meet the requirements of avoiding collision and maintaining connectivity constraints. Moreover, using the minimum spanning tree (MST) topology optimization strategy, we can obtain a tradeoff between the search coverage enhancement and the connectivity maintenance. The feasibility of the proposed algorithm is demonstrated by comparison simulations by way of analyzing the effects of the controllable revisit mechanism and the connectivity maintenance scheme. The Monte Carlo method is employed to validate the influence of the number of UAVs, the sensing radius, the

  11. Dirac structures in nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-01-01

    Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169-193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.

  12. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    PubMed

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary

  13. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  14. Cell growth, division, and death in cohesive tissues: A thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Marcq, Philippe

    2017-08-01

    Cell growth, division, and death are defining features of biological tissues that contribute to morphogenesis. In hydrodynamic descriptions of cohesive tissues, their occurrence implies a nonzero rate of variation of cell density. We show how linear nonequilibrium thermodynamics allows us to express this rate as a combination of relevant thermodynamic forces: chemical potential, velocity divergence, and activity. We illustrate the resulting effects of the nonconservation of cell density on simple examples inspired by recent experiments on cell monolayers, considering first the velocity of a spreading front, and second an instability leading to mechanical waves.

  15. Understanding AlN Obtaining Through Computational Thermodynamics Combined with Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2017-06-01

    Basic material concept, technology and some results of studies on aluminum matrix composite with dispersive aluminum nitride reinforcement was shown. Studied composites were manufactured by „in situ” technique. Aluminum nitride (AlN) has attracted large interest recently, because of its high thermal conductivity, good dielectric properties, high flexural strength, thermal expansion coefficient matches that of Si and its non-toxic nature, as a suitable material for hybrid integrated circuit substrates. AlMg alloys are the best matrix for AlN obtaining. Al2O3-AlMg, AlN-Al2O3, and AlN-AlMg binary diagrams were thermodynamically modelled. The obtained Gibbs free energies of components, solution parameters and stoichiometric phases were used to build a thermodynamic database of AlN- Al2O3-AlMg system. Obtaining of AlN with Liquid-phase of AlMg as matrix has been studied and compared with the thermodynamic results. The secondary phase microstructure has a significant effect on the final thermal conductivity of the obtained AlN. Thermodynamic modelling of AlN-Al2O3-AlMg system provided an important basis for understanding the obtaining behavior and interpreting the experimental results.

  16. Considerations on non equilibrium thermodynamics of interactions

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the ;first; engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  17. Examples for Non-Ideal Solution Thermodynamics Study

    ERIC Educational Resources Information Center

    David, Carl W.

    2004-01-01

    A mathematical model of a non-ideal solution is presented, where it is shown how and where the non-ideality manifests itself in the standard thermodynamics tableau. Examples related to the non-ideal solution thermodynamics study are also included.

  18. Investigating Predictors of Visiting, Using, and Revisiting an Online Health-Communication Program: A Longitudinal Study

    PubMed Central

    Crutzen, Rik; De Vries, Hein

    2010-01-01

    Background Online health communication has the potential to reach large audiences, with the additional advantages that it can be operational at all times and that the costs per visitor are low. Furthermore, research shows that Internet-delivered interventions can be effective in changing health behaviors. However, exposure to Internet-delivered health-communication programs is generally low. Research investigating predictors of exposure is needed to be able to effectively disseminate online interventions. Objective In the present study, the authors used a longitudinal design with the aim of identifying demographic, psychological, and behavioral predictors of visiting, using, and revisiting an online program promoting physical activity in the general population. Methods A webpage was created providing the public with information about health and healthy behavior. The website included a “physical activity check,” which consisted of a physical activity computer-tailoring expert system where visitors could check whether their physical activity levels were in line with recommendations. Visitors who consented to participate in the present study (n = 489) filled in a questionnaire that assessed demographics, mode of recruitment, current physical activity levels, and health motivation. Immediately after, participants received tailored feedback concerning their current physical activity levels and completed a questionnaire assessing affective and cognitive user experience, attitude toward being sufficiently physically active, and intention to be sufficiently physically active. Three months later, participants received an email inviting them once more to check whether their physical activity level had changed. Results Analyses of visiting showed that more women (67.5%) than men (32.5%) visited the program. With regard to continued use, native Dutch participants (odds ratio [OR] = 2.81, 95% confidence interval [CI] = 1.16-6.81, P = .02) and participants with a strong

  19. Global Passivity in Microscopic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Uzdin, Raam; Rahav, Saar

    2018-04-01

    The main thread that links classical thermodynamics and the thermodynamics of small quantum systems is the celebrated Clausius inequality form of the second law. However, its application to small quantum systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios). We address these deficiencies by developing the notion of global passivity and employing it as a tool for deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the global passivity framework recovers the Clausius inequality. More generally, global passivity provides an extension of the Clausius inequality that holds even in the presences of strong initial system-environment correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and weak feedback operations ("Maxwell demons") that the Clausius inequality cannot detect. In addition, it is shown that global passivity can put practical upper and lower bounds on the buildup of system-environment correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems such as ion traps, superconducting circuits, atoms in optical cavities, and more.

  20. Tabulation and summary of thermodynamic effects data for developed cavitation on ogive-nosed bodies

    NASA Technical Reports Server (NTRS)

    Holl, J. W.; Billet, M. L.; Weir, D. S.

    1978-01-01

    Thermodynamic effects data for developed cavitation on zero and quarter caliber ogives in Freon 113 and water are tabulated and summarized. These data include temperature depression (delta T), flow coefficient (C sub Q), and various geometrical characteristics of the cavity. For the delta T tests, the free-stream temperature varied from 35 C to 95 C in Freon 113 and from 60 C to 125 C in water for a velocity range of 19.5 m/sec to 36.6 m/sec. Two correlations of the delta T data by the entrainment method are presented. These correlations involve different combinations of the Nusselt, Reynolds, Froude, Weber, and Peclet numbers and dimensionless cavity length.

  1. Influence of non-local thermodynamic equilibrium and Zeeman effects on magnetic equilibrium reconstruction using spectral motional Stark effect diagnostic

    NASA Astrophysics Data System (ADS)

    Reimer, R.; Marchuk, O.; Geiger, B.; Mc Carthy, P. J.; Dunne, M.; Hobirk, J.; Wolf, R.; ASDEX Upgrade Team

    2017-08-01

    The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3 ° … 4 ° and by 0 . 5 ° … 1 ° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.

  2. A Thermodynamic Model for Genome Packaging in Hepatitis B Virus.

    PubMed

    Kim, Jehoon; Wu, Jianzhong

    2015-10-20

    Understanding the fundamentals of genome packaging in viral capsids is important for finding effective antiviral strategies and for utilizing benign viral particles for gene therapy. While the structure of encapsidated genomic materials has been routinely characterized with experimental techniques such as cryo-electron microscopy and x-ray diffraction, much less is known about the molecular driving forces underlying genome assembly in an intracellular environment and its in vivo interactions with the capsid proteins. Here we study the thermodynamic basis of the pregenomic RNA encapsidation in human Hepatitis B virus in vivo using a coarse-grained molecular model that captures the essential components of nonspecific intermolecular interactions. The thermodynamic model is used to examine how the electrostatic interaction between the packaged RNA and the highly charged C-terminal domains (CTD) of capsid proteins regulate the nucleocapsid formation. The theoretical model predicts optimal RNA content in Hepatitis B virus nucleocapsids with different CTD lengths in good agreement with mutagenesis measurements, confirming the predominant role of electrostatic interactions and molecular excluded-volume effects in genome packaging. We find that the amount of encapsidated RNA is not linearly correlated with the net charge of CTD tails as suggested by earlier theoretical studies. Our thermodynamic analysis of the nucleocapsid structure and stability indicates that ∼10% of the CTD residues are free from complexation with RNA, resulting in partially exposed CTD tails. The thermodynamic model also predicts the free energy of complex formation between macromolecules, which corroborates experimental results for the impact of CTD truncation on the nucleocapsid stability. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    PubMed

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  4. A Hamiltonian approach for the Thermodynamics of AdS black holes

    NASA Astrophysics Data System (ADS)

    Baldiotti, M. C.; Fresneda, R.; Molina, C.

    2017-07-01

    In this work we study the Thermodynamics of D-dimensional Schwarzschild-anti de Sitter (SAdS) black holes. The minimal Thermodynamics of the SAdS spacetime is briefly discussed, highlighting some of its strong points and shortcomings. The minimal SAdS Thermodynamics is extended within a Hamiltonian approach, by means of the introduction of an additional degree of freedom. We demonstrate that the cosmological constant can be introduced in the thermodynamic description of the SAdS black hole with a canonical transformation of the Schwarzschild problem, closely related to the introduction of an anti-de Sitter thermodynamic volume. The treatment presented is consistent, in the sense that it is compatible with the introduction of new thermodynamic potentials, and respects the laws of black hole Thermodynamics. By demanding homogeneity of the thermodynamic variables, we are able to construct a new equation of state that completely characterizes the Thermodynamics of SAdS black holes. The treatment naturally generates phenomenological constants that can be associated with different boundary conditions in underlying microscopic theories. A whole new set of phenomena can be expected from the proposed generalization of SAdS Thermodynamics.

  5. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  6. Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method

    ERIC Educational Resources Information Center

    Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev

    2018-01-01

    The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…

  7. Quantum and Information Thermodynamics: A Unifying Framework Based on Repeated Interactions

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano

    2017-04-01

    We expand the standard thermodynamic framework of a system coupled to a thermal reservoir by considering a stream of independently prepared units repeatedly put into contact with the system. These units can be in any nonequilibrium state and interact with the system with an arbitrary strength and duration. We show that this stream constitutes an effective resource of nonequilibrium free energy, and we identify the conditions under which it behaves as a heat, work, or information reservoir. We also show that this setup provides a natural framework to analyze information erasure ("Landauer's principle") and feedback-controlled systems ("Maxwell's demon"). In the limit of a short system-unit interaction time, we further demonstrate that this setup can be used to provide a thermodynamically sound interpretation to many effective master equations. We discuss how nonautonomously driven systems, micromasers, lasing without inversion and the electronic Maxwell demon can be thermodynamically analyzed within our framework. While the present framework accounts for quantum features (e.g., squeezing, entanglement, coherence), we also show that quantum resources do not offer any advantage compared to classical ones in terms of the maximum extractable work.

  8. Thermodynamics of Computational Copying in Biochemical Systems

    NASA Astrophysics Data System (ADS)

    Ouldridge, Thomas E.; Govern, Christopher C.; ten Wolde, Pieter Rein

    2017-04-01

    Living cells use readout molecules to record the state of receptor proteins, similar to measurements or copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and if not, why? We show that, as in computation, a canonical biochemical readout network generates correlations; extracting no work from these correlations sets a lower bound on dissipation. For general input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and worse than implied by the bound, and more complex steady-state copy processes cannot perform better. Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high. Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices under exogenous manipulation of chemical fuels, suggesting an experimental system for testing computational thermodynamics.

  9. Reconciling Hierarchical and Edge Organizations: 9-11 Revisited

    DTIC Science & Technology

    2014-06-01

    the hierarchical structure, despite claiming to be networked. Hence, our research asks whether these two archetypal forms can be reconciled with one...asks whether these two archetypal forms can be reconciled with one another. By revisiting a case study of the events of September 11th, 2001...organizational form best suited to network-centric operations. Drawing on Mintzberg’s (1979) work on organizational archetypes , five classic organizational

  10. Discussion of "Computational Electrocardiography: Revisiting Holter ECG Monitoring".

    PubMed

    Baumgartner, Christian; Caiani, Enrico G; Dickhaus, Hartmut; Kulikowski, Casimir A; Schiecke, Karin; van Bemmel, Jan H; Witte, Herbert

    2016-08-05

    This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Computational Electrocardiography: Revisiting Holter ECG Monitoring" written by Thomas M. Deserno and Nikolaus Marx. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the paper of Deserno and Marx. In subsequent issues the discussion can continue through letters to the editor.

  11. Predicting RNA pseudoknot folding thermodynamics

    PubMed Central

    Cao, Song; Chen, Shi-Jie

    2006-01-01

    Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease. PMID:16709732

  12. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  13. Thermodynamic properties of water in confined environments: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gladovic, Martin; Bren, Urban; Urbic, Tomaž

    2018-05-01

    Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.

  14. Estimation of thermodynamic acidity constants of some penicillinase-resistant penicillins.

    PubMed

    Demiralay, Ebru Çubuk; Üstün, Zehra; Daldal, Y Doğan

    2014-03-01

    In this work, thermodynamic acidity constants (pssKa) of methicillin, oxacillin, nafcillin, cloxacilin, dicloxacillin were determined with reverse phase liquid chromatographic method (RPLC) by taking into account the effect of the activity coefficients in hydro-organic water-acetonitrile binary mixtures. From these values, thermodynamic aqueous acidity constants of these drugs were calculated by different approaches. The linear relationships established between retention factors of the species and the polarity parameter of the mobile phase (ET(N)) was proved to predict accurately retention in LC as a function of the acetonitrile content (38%, 40% and 42%, v/v). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Transformations between Extensive and Intensive Versions of Thermodynamic Relationships

    ERIC Educational Resources Information Center

    Eberhart, James G.

    2010-01-01

    Most thermodynamic properties are either extensive (e.g., volume, energy, entropy, amount, etc.) or intensive (e.g., temperature, pressure, chemical potential, mole fraction, etc.). By the same token most of the mathematical relationships in thermodynamics can be written in extensive or intensive form. The basic laws of thermodynamics are usually…

  16. Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety

    NASA Astrophysics Data System (ADS)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2017-06-01

    Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet's memory must reflect the input generator's memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite "negentropy". We conclude with an outline of the collective thermodynamics of information-ratchet swarms.

  17. Dynamic and thermodynamic processes driving the January 2014 precipitation record in southern UK

    NASA Astrophysics Data System (ADS)

    Oueslati, B.; Yiou, P.; Jezequel, A.

    2017-12-01

    Regional extreme precipitation are projected to intensify as a response to planetary climate change, with important impacts on societies. Understanding and anticipating those events remain a major challenge. In this study, we revisit the mechanisms of winter precipitation record that occurred in southern United Kingdom in January 2014. The physical drivers of this event are analyzed using the water vapor budget. Precipitation changes are decomposed into dynamic contributions, related to changes in atmospheric circulation, and thermodynamic contributions, related to changes in water vapor. We attempt to quantify the relative importance of the two contributions during this event and examine the applicability of Clausius-Clapeyron scaling. This work provides a physical interpretation of the mechanisms associated with Southern UK's wettest event, which is complementary to other studies based on statistical approaches (Schaller et al., 2016, Yiou et al., 2017). The analysis is carried out using the ERA-Interim reanalysis. This is motivated by the horizontal resolution of this dataset. It is then applied to present-day simulations and future projections of CMIP5 models on selected extreme precipitation events in southern UK that are comparable to January 2014 in terms of atmospheric circulation.References:Schaller, N. et al. Human influence on climate in the 2014 southern England winter floods and their impacts, Nature Clim. Change, 2016, 6, 627-634 Yiou, P., et al. A statistical framework for conditional extreme event attribution Advances in Statistical Climatology, Meteorology and Oceanography, 2017, 3, 17-31

  18. Thermodynamics, Life, the Universe and Everything

    NASA Astrophysics Data System (ADS)

    Neswald, Elizabeth

    2015-01-01

    The laws of thermodynamics were developed in the first half of the nineteenth century to describe processes governing the working of steam engines. The mechanical equivalent of heat, which quantified the relationship between heat and motion, enabled the quantification and comparison of all energy transformation processes. The energy laws and the mechanical equivalent of heat quickly moved out of the narrower field of physics to form the basis of a cosmic narrative that began with stellar evolution and continued to universal heat death. Newer physiological theories turned to the energy laws to explain life processes, energy and entropy were integrated into theories of biological evolution and degeneration, and economists and cultural theorists turned to thermodynamics to explore both the limits of natural resources and economic expansion and the contradictions of industrial modernity. This paper discusses the career of thermodynamics as an explanatory model and cultural commonplace in the late nineteenth and early twentieth centuries, and the different scientific, religious, and social perspectives that could be expressed through this model. Connected through the entropy law intimately to irreversible processes and time, thermodynamics provided an arena to debate which way the world was going.

  19. Thermodynamically Feasible Kinetic Models of Reaction Networks

    PubMed Central

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations. PMID:17208985

  20. Revisiting CMB constraints on warm inflation

    NASA Astrophysics Data System (ADS)

    Arya, Richa; Dasgupta, Arnab; Goswami, Gaurav; Prasad, Jayanti; Rangarajan, Raghavan

    2018-02-01

    We revisit the constraints that Planck 2015 temperature, polarization and lensing data impose on the parameters of warm inflation. To this end, we study warm inflation driven by a single scalar field with a quartic self interaction potential in the weak dissipative regime. We analyse the effect of the parameters of warm inflation, namely, the inflaton self coupling λ and the inflaton dissipation parameter QP on the CMB angular power spectrum. We constrain λ and QP for 50 and 60 number of e-foldings with the full Planck 2015 data (TT, TE, EE + lowP and lensing) by performing a Markov-Chain Monte Carlo analysis using the publicly available code CosmoMC and obtain the joint as well as marginalized distributions of those parameters. We present our results in the form of mean and 68 % confidence limits on the parameters and also highlight the degeneracy between λ and QP in our analysis. From this analysis we show how warm inflation parameters can be well constrained using the Planck 2015 data.

  1. Electromyogenic Artifacts and Electroencephalographic Inferences Revisited

    PubMed Central

    McMenamin, Brenton W.; Shackman, Alexander J.; Greischar, Lawrence L.; Davidson, Richard J.

    2010-01-01

    Recent years have witnessed a renewed interest in using oscillatory brain electrical activity to understand the neural bases of cognition and emotion. Electrical signals originating from pericranial muscles represent a profound threat to the validity of such research. Recently, McMenamin et al (2010) examined whether independent component analysis (ICA) provides a sensitive and specific means of correcting electromyogenic (EMG) artifacts. This report sparked the accompanying commentary (Olbrich, Jödicke, Sander, Himmerich & Hegerl, in press), and here we revisit the question of how EMG can alter inferences drawn from the EEG and what can be done to minimize its pernicious effects. Accordingly, we briefly summarize salient features of the EMG problem and review recent research investigating the utility of ICA for correcting EMG and other artifacts. We then directly address the key concerns articulated by Olbrich and provide a critique of their efforts at validating ICA. We conclude by identifying key areas for future methodological work and offer some practical recommendations for intelligently addressing EMG artifact. PMID:20981275

  2. Uniqueness of thermodynamic projector and kinetic basis of molecular individualism

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.

    2004-05-01

    Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.

  3. Educational Administration and the Management of Knowledge: 1980 Revisited

    ERIC Educational Resources Information Center

    Bates, Richard

    2013-01-01

    This paper revisits the thesis of a 1980 paper that suggested a new approach to educational administration based upon the New Sociology of Education. In particular it updates answers to the six key questions asked by that paper: what counts as knowledge; how is what counts as knowledge organised; how is what counts as knowledge transmitted; how is…

  4. An improved thermodynamic perturbation theory for Mercedes-Benz water

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.

    2007-11-01

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  5. An improved thermodynamic perturbation theory for Mercedes-Benz water.

    PubMed

    Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A

    2007-11-07

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  6. The second laws of quantum thermodynamics.

    PubMed

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-03-17

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.

  7. The second laws of quantum thermodynamics

    PubMed Central

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-01-01

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies. PMID:25675476

  8. Resilience: the viewpoint of modern thermodynamics and information theory

    NASA Astrophysics Data System (ADS)

    Mazzorana, Bruno

    2015-04-01

    Understanding, qualifying and quantifying resilience as the system's effective performance and reserve capacity is an essential need for implementing effective and efficient risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. Relevant progress has recently been made in explaining the phenomenon of adaptation from the standpoint of physics, thereby delineating the difference is in terms of physical properties between something that is well-adapted to its surrounding environment, and something that is not (England, 2013). In this context the specific role of the second law of thermodynamics could be clarified (Schneider and Kay, 1994) and the added value of information theory could be illustrated (Ulanowicz, 2009). According to these findings Ecosystems resilience in response to a disturbance is a balancing act between system's effective performance and its reserve capacity. By extending this string of argumentation, the universe of discourse encompassing the concept of resilience of socio-ecologic systems impacted by natural hazard processes, is enriched by relevant implications derived from fundamental notions of modern thermodynamics and information theory. Metrics, meant to gauge ecosystems robustness in terms of the tradeoff allotment between systems effective performance and its beneficial reserve capacities developed by Ulanowicz (2009), are reviewed and their transferability to the natural hazard risk research domain is thoroughly discussed. The derived knowledge can be explored to identify priorities for action towards an increased institutional resilience. References: England, J. L. 2013. Statistical Physics of self-replication." J. Chem. Phys., 139, 121923. Schneider, E.D., Kay, J.J. 1994. Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling, Vol 19, No.6-8. Ulanowicz, R.E. 2009. Increasing entropy

  9. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    PubMed

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  10. Thermodynamic efficiency of learning a rule in neural networks

    NASA Astrophysics Data System (ADS)

    Goldt, Sebastian; Seifert, Udo

    2017-11-01

    Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.

  11. The thermodynamic scale of inorganic crystalline metastability

    PubMed Central

    Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D.; Gamst, Anthony C.; Persson, Kristin A.; Ceder, Gerbrand

    2016-01-01

    The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. PMID:28138514

  12. Study of pressure variation effect on structural, opto-electronic, elastic, mechanical, and thermodynamic properties of SrLiF3

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Iqbal, Muhammad Azhar

    2017-11-01

    The structural, electronic, elastic, optical and thermodynamic properties of cubic fluoroperovskite SrLiF3 at ambient and high-pressure are investigated by using first-principles total energy calculations within the framework of Generalized Gradient Approximation (GGA), combined with Quasi-harmonic Debye model in which the phonon effects are considered. The pressure effects are determined in the range of 0-50 GPa, in which cubic stability of SrLiF3 fluoroperovskite remains valid. The computed lattice parameters agree well with experimental and previous theoretical results. Decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 50 GPa. The effect of increase in pressure on electronic band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. All the calculated optical properties such as the complex dielectric function Ԑ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n (ω), reflectivity R (ω), and effective number of electrons neff, via sum rules shift towards the higher energies under the application of pressure. Moreover, important thermodynamic properties heat capacities (Cp and Cv), volume expansion coefficient (α), and Debye temperature (θD) are predicted successfully in the wide temperature and pressure ranges.

  13. Quantifying losses and thermodynamic limits in nanophotonic solar cells

    NASA Astrophysics Data System (ADS)

    Mann, Sander A.; Oener, Sebastian Z.; Cavalli, Alessandro; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.; Garnett, Erik C.

    2016-12-01

    Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).

  14. Thermodynamics properties of lanthanide series near melting point-A pseudopotential approach

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.; Gajjar, P. N.

    2018-04-01

    The present paper deals with computational study of thermodynamics properties for fifteen elements of lanthanide series. The Helmholtz free energy (F), Internal energy (E) and Entropy (S)have been computed using variational method based on the Gibbs-Bogoliubov (GB) along with Percus-Yevick hard sphere reference system and Gajjar's model potential. The local field correction function proposed by Taylor is applied to introduce the exchange and correlation effects in the study of thermodynamics of these metals. The present results in comparison with available theoretical and experimental are found to be in good agreement and confirm the ability of the model potential.

  15. Theoretical Studies of Small-System Thermodynamics in Energetic Materials

    DTIC Science & Technology

    2016-01-06

    SECURITY CLASSIFICATION OF: This is a comprehensive theoretical research program to investigate the fundamental principles of small-system thermodynamics ...a.k.a. nanothermodynamics). The proposed work is motivated by our desire to better understand the fundamental dynamics and thermodynamics of...for Public Release; Distribution Unlimited Final Report: Theoretical Studies of Small-System Thermodynamics in Energetic Materials The views, opinions

  16. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    PubMed

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  17. Teaching Differentials in Thermodynamics Using Spatial Visualization

    ERIC Educational Resources Information Center

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  18. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  19. Understanding Product Optimization: Kinetic versus Thermodynamic Control.

    ERIC Educational Resources Information Center

    Lin, King-Chuen

    1988-01-01

    Discusses the concept of kinetic versus thermodynamic control of reactions. Explains on the undergraduate level (1) the role of kinetic and thermodynamic control in kinetic equations, (2) the influence of concentration and temperature upon the reaction, and (3) the application of factors one and two to synthetic chemistry. (MVL)

  20. Dilational symmetry-breaking in thermodynamics

    NASA Astrophysics Data System (ADS)

    Lin, Chris L.; Ordóñez, Carlos R.

    2017-04-01

    Using thermodynamic relations and dimensional analysis we derive a general formula for the thermodynamical trace 2{ E}-DP for nonrelativistic systems and { E}-DP for relativistic systems, where D is the number of spatial dimensions, in terms of the microscopic scales of the system within the grand canonical ensemble. We demonstrate the formula for several cases, including anomalous systems which develop scales through dimensional transmutation. Using this relation, we make explicit the connection between dimensional analysis and the virial theorem. This paper is focused mainly on the non-relativistic aspects of this relation.

  1. Pair Production Constraints on Superluminal Neutrinos Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC; Gardner, Susan

    2012-02-16

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainlymore » makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.« less

  2. Fast dynamics in glass-forming polymers revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colmenero, J.; Arbe, A.; Mijangos, C.

    1997-12-31

    The so called fast-dynamics of glass-forming systems as observed by time of flight (TOF) neutron scattering techniques is revisited. TOF-results corresponding to several glass-forming polymers with different chemical microstructure and glass-transition temperature are presented together with the theoretical framework proposed by the authors to interpret these results. The main conclusion is that the TOF-data can be explained in terms of quasiharmonic vibrations and the particular short time behavior of the segmental dynamics. The segmental dynamics display in the very short time range (t {approx} 2 ps) a crossover from a simple exponential behavior towards a non-exponential regime. The first exponentialmore » decay, which is controlled by C-C rotational barriers, can be understood as a trace of the behavior of the system in absence of the effects (correlations, cooperativity, memory effects {hor_ellipsis}) which characterize the dense supercooled liquid like state against the normal liquid state. The non-exponential regime at t > 2 ps corresponds to what is usually understood as {alpha} and {beta} relaxations. Some implications of these results are also discussed.« less

  3. Thermodynamic properties of asymptotically Reissner–Nordström black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendi, S.H., E-mail: hendi@shirazu.ac.ir

    2014-07-15

    Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariantmore » metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.« less

  4. Engineering proteins with tunable thermodynamic and kinetic stabilities.

    PubMed

    Pey, Angel L; Rodriguez-Larrea, David; Bomke, Susanne; Dammers, Susanne; Godoy-Ruiz, Raquel; Garcia-Mira, Maria M; Sanchez-Ruiz, Jose M

    2008-04-01

    It is widely recognized that enhancement of protein stability is an important biotechnological goal. However, some applications at least, could actually benefit from stability being strongly dependent on a suitable environment variable, in such a way that enhanced stability or decreased stability could be realized as required. In therapeutic applications, for instance, a long shelf-life under storage conditions may be convenient, but a sufficiently fast degradation of the protein after it has performed the planned molecular task in vivo may avoid side effects and toxicity. Undesirable effects associated to high stability are also likely to occur in food-industry applications. Clearly, one fundamental factor involved here is the kinetic stability of the protein, which relates to the time-scale of the irreversible denaturation processes and which is determined to some significant extent by the free-energy barrier for unfolding (the barrier that "separates" the native state from the highly-susceptible-to-irreversible-alterations nonnative states). With an appropriate experimental model, we show that strong environment-dependencies of the thermodynamic and kinetic stabilities can be achieved using robust protein engineering. We use sequence-alignment analysis and simple computational electrostatics to design stabilizing and destabilizing mutations, the latter introducing interactions between like charges which are screened out at high salt. Our design procedures lead naturally to mutating regions which are mostly unstructured in the transition state for unfolding. As a result, the large salt effect on the thermodynamic stability of our consensus plus charge-reversal variant translates into dramatic changes in the time-scale associated to the unfolding barrier: from the order of years at high salt to the order of days at low salt. Certainly, large changes in salt concentration are not expected to occur in biological systems in vivo. Hence, proteins with strong salt

  5. Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements

    NASA Astrophysics Data System (ADS)

    Battaglia, Nicholas; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N.

    2017-11-01

    The improving sensitivity of measurements of the kinetic Sunyaev-Zel'dovich (SZ) effect opens a new window into the thermodynamic properties of the baryons in halos. We propose a methodology to constrain these thermodynamic properties by combining the kinetic SZ, which is an unbiased probe of the free electron density, and the thermal SZ, which probes their thermal pressure. We forecast that our method constrains the average thermodynamic processes that govern the energetics of galaxy evolution like energetic feedback across all redshift ranges where viable halos sample are available. Current Stage-3 cosmic microwave background (CMB) experiments like AdvACT and SPT-3G can measure the kSZ and tSZ to greater than 100σ if combined with a DESI-like spectroscopic survey. Such measurements translate into percent-level constraints on the baryonic density and pressure profiles and on the feedback and non-thermal pressure support parameters for a given ICM model. This in turn will provide critical thermodynamic tests for sub-grid models of feedback in cosmological simulations of galaxy formation. The high fidelity measurements promised by the next generation CMB experiment, CMB-S4, allow one to further sub-divide these constraints beyond redshift into other classifications, like stellar mass or galaxy type.

  6. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  7. Thermodynamics with pressure and volume under charged particle absorption

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-11-01

    We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.

  8. Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise.

    PubMed

    Ribeiro, Mauricio S; Nobre, Fernando D

    2016-08-01

    A recent proposal of an effective temperature θ, conjugated to a generalized entropy s_{q}, typical of nonextensive statistical mechanics, has led to a consistent thermodynamic framework in the case q=2. The proposal was explored for repulsively interacting vortices, currently used for modeling type-II superconductors. In these systems, the variable θ presents values much higher than those of typical room temperatures T, so that the thermal noise can be neglected (T/θ≃0). The whole procedure was developed for an equilibrium state obtained after a sufficiently long-time evolution, associated with a nonlinear Fokker-Planck equation and approached due to a confining external harmonic potential, ϕ(x)=αx^{2}/2 (α>0). Herein, the thermodynamic framework is extended to a quite general confining potential, namely ϕ(x)=α|x|^{z}/z (z>1). It is shown that the main results of the previous analyses hold for any z>1: (i) The definition of the effective temperature θ conjugated to the entropy s_{2}. (ii) The construction of a Carnot cycle, whose efficiency is shown to be η=1-(θ_{2}/θ_{1}), where θ_{1} and θ_{2} are the effective temperatures associated with two isothermal transformations, with θ_{1}>θ_{2}. The special character of the Carnot cycle is indicated by analyzing another cycle that presents an efficiency depending on z. (iii) Applying Legendre transformations for a distinct pair of variables, different thermodynamic potentials are obtained, and furthermore, Maxwell relations and response functions are derived. The present approach shows a consistent thermodynamic framework, suggesting that these results should hold for a general confining potential ϕ(x), increasing the possibility of experimental verifications.

  9. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    PubMed

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  10. Biochemical thermodynamics: applications of Mathematica.

    PubMed

    Alberty, Robert A

    2006-01-01

    The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94

  11. The Banning of Chemical Weapons: Tantalus Revisited.

    DTIC Science & Technology

    1983-04-14

    of Chemical and Biological Warfare, by Robert Harris and Jeremy Paxman. Chemical and Engineering News, Vol. 60, No. 47, 22 November 1982, p. 34. 3...1 AD-A127 792 THE BANNING OF CHEMICAL WEAPONS: TANTALUS REVISITED(U) 1/1 IARMY WAR COLL CARLISLE BARRACKS PA F N DUREL 14 APR 8 UNCLASSIFIED F/G 15/2...number) Since the mid-ninetenth century, nations have sought to limit the u.s Of chemical weapons with varying degrees of success. On-going

  12. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  13. The stability analysis of magnetohydrodynamic equilibria - Comparing the thermodynamic approach with the energy principle

    NASA Technical Reports Server (NTRS)

    Brinkmann, R. P.

    1989-01-01

    This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.

  14. Thermodynamics: A Stirling effort

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Parrondo, Juan M. R.

    2012-02-01

    The realization of a single-particle Stirling engine pushes thermodynamics into stochastic territory where fluctuations dominate, and points towards a better understanding of energy transduction at the microscale.

  15. Understanding First Law of Thermodynamics through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.

    2018-01-01

    The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of…

  16. Measuring the Thermodynamics of the Alloy/Scale Interface

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.

  17. Kinetic theory of turbulence for parallel propagation revisited: Formal results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H., E-mail: yoonp@umd.edu

    2015-08-15

    In a recent paper, Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. The original work was according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)], but Gaelzer et al. noted that the terms pertaining to discrete-particle effects in Yoon and Fang's theory did not enjoy proper dimensionality. The purpose of Gaelzer et al. was to restore the dimensional consistency associated with such terms. However, Gaelzer et al. was concerned only with linear wave-particle interaction terms. The present paper completes the analysis bymore » considering the dimensional correction to nonlinear wave-particle interaction terms in the wave kinetic equation.« less

  18. Thermodynamics of k-essence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilic, Neven

    We discuss thermodynamic properties of dark energy using the formalism of field theory at finite temperature. In particular, we apply our formalism to a purely kinetic type of k-essence. We show quite generally that the entropy associated with dark energy is always equal or greater than zero. Hence, contrary to often stated claims, a violation of the null energy condition (phantom dark energy) does not necessarily yield a negative entropy. In addition, we find that the thermal fluctuations of a k-essence field may be represented by a free boson gas with an effective number of degrees of freedom equal tomore » c{sub s}{sup -3}.« less

  19. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such thatmore » there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.« less

  20. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  1. Response variance in functional maps: neural darwinism revisited.

    PubMed

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  2. Response Variance in Functional Maps: Neural Darwinism Revisited

    PubMed Central

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population. PMID:23874733

  3. Analysis and simulation of the I C engine Otto cycle using the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Abdel-Rahim, Y. M.

    The present investigation is an application of the second law of thermodynamics to the spark ignition engine cycle. A comprehensive thermodynamic analysis of the air standard cycle is conducted using the first and second laws of thermodynamics, the ideal gas equation of state and the perfect gas properties for air. The study investigates the effect of the cycle parameters on the cycle performance reflected by the first and second law efficiencies, the heat added, the work done, the available energy added as well as the history of the internal, available and unavailable energies along the cycle. The study shows that the second law efficiency is a function of the compression ratio, the initial temperature, the maximum temperature as well as the dead state temperature. A non-dimensional comprehensive thermodynamic simulation model for the actual Otto cycle is developed to study the effects of the design and operating parameters of the cycle on the cycle performance. The analysis takes into account engine geometry, mixture strength, heat transfer, piston motion, engine speed, mechanical friction, spark advance and combustion duration.

  4. Thermodynamics of pairing in mesoscopic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumaryada, Tony; Volya, Alexander

    Using numerical and analytical methods implemented for different models, we conduct a systematic study of the thermodynamic properties of pairing correlations in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensembles is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the invariant correlational entropy ismore » also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of a magnetic field is discussed along with studies of superconducting thermodynamics.« less

  5. Towards a thermodynamics of active matter.

    PubMed

    Takatori, S C; Brady, J F

    2015-03-01

    Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  6. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts.more » Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.« less

  7. The third law of thermodynamics and the fractional entropies

    NASA Astrophysics Data System (ADS)

    Baris Bagci, G.

    2016-08-01

    We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.

  8. Is applicable thermodynamics of negative temperature for living organisms?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  9. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.

    PubMed

    Pethica, Brian A

    2015-03-01

    Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Thermodynamics-based models of transcriptional regulation with gene sequence.

    PubMed

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  11. Language Transmission Revisited: Family Type, Linguistic Environment and Language Attitudes

    ERIC Educational Resources Information Center

    Schupbach, Doris

    2009-01-01

    This article revisits factors in intergenerational language maintenance and shift within the family. It does so through an in-depth analysis of what 14 migrants to Australia from German-speaking Switzerland reported in written life stories and subsequent life story interviews. The participants represent four family types and a wide age range, and…

  12. Revisiting the Age-Old Question: Does Money Matter in Education?

    ERIC Educational Resources Information Center

    Baker, Bruce D.

    2012-01-01

    This policy brief revisits the long and storied literature on whether money matters in providing a quality education. Increasingly, political rhetoric adheres to the unfounded certainty that money doesn't make a difference in education, and that reduced funding is unlikely to harm educational quality. Such proclamations have even been used to…

  13. Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways

    PubMed Central

    Vinnakota, Kalyan C.; Wu, Fan; Kushmerick, Martin J.; Beard, Daniel A.

    2009-01-01

    The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework. PMID:19216922

  14. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Wright, D. G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R.

    2010-02-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  15. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Kretzschmar, H.-J.; Span, R.; Hagen, E.; Wright, D. G.; Herrmann, S.

    2009-10-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  16. Thermodynamic Modeling and Analysis of Human Stress Response

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.

    1999-01-01

    A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.

  17. Thermodynamics of finite systems: a key issues review

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.

    2018-07-01

    A little over ten years ago, Campisi, and Dunkel and Hilbert, published papers claiming that the Gibbs (volume) entropy of a classical system was correct, and that the Boltzmann (surface) entropy was not. They claimed further that the quantum version of the Gibbs entropy was also correct, and that the phenomenon of negative temperatures was thermodynamically inconsistent. Their work began a vigorous debate of exactly how the entropy, both classical and quantum, should be defined. The debate has called into question the basis of thermodynamics, along with fundamental ideas such as whether heat always flows from hot to cold. The purpose of this paper is to sum up the present status—admittedly from my point of view. I will show that standard thermodynamics, with some minor generalizations, is correct, and the alternative thermodynamics suggested by Hilbert, Hänggi, and Dunkel is not. Heat does not flow from cold to hot. Negative temperatures are thermodynamically consistent. The small ‘errors’ in the Boltzmann entropy that started the whole debate are shown to be a consequence of the micro-canonical assumption of an energy distribution of zero width. Improved expressions for the entropy are found when this assumption is abandoned.

  18. Characteristics of Subcooled Liquid Methane During Passage Through a Spray-Bar Joule-Thompson Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Schnell, A.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance.

  19. Surface Tension: Mechanics, Thermodynamics, and Relaxation Times

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-06-01

    A microscopic analysis is presented of the existing definitions of equilibrium surface tension, which can be divided into two types: mechanical and thermodynamic. Each type of definition can be studied from the presentation below according to thermodynamic hypotheses or molecular calculations. An analysis of the planar interface is given and its generalization for curved (spherical) interfaces is considered. The distinction between approaches describing the surface tension of metastable and equilibrium droplets is discussed. Based on nonequilibrium thermodynamics, it is shown that the introduction of metastable droplets is due to a violation of the relationship between the times of impulse and chemical potential relaxation in condensed phases. Problems of calculating the surface tension in nonequilibrium situations are created.

  20. Calculation of kinetic rate constants from thermodynamic data

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1995-01-01

    A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.

  1. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr

    2014-05-21

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less

  2. Thermodynamical stability of FRW models with quintessence

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ashraf, Sara

    2018-03-01

    In this paper, we study the thermodynamic stability of quintessence in the background of homogeneous and isotropic universe model. For the evolutionary picture, we consider two different forms of potentials and investigate the behavior of different physical parameters. We conclude that the quintessence model expands adiabatically and this expansion is thermodynamically stable for both potentials with suitable model parameters.

  3. Some aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1990-01-01

    An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. This and other forms of the dissipation function are used to identify simple flows, such as incompressible channel flow, the potential vortex with rotational core, and incompressible, irrotational flow as minimally dissipative distributions. A comparison of the hydrodynamic and thermodynamic stability characteristics of a parallel shear flow suggests that an association exists between flow stability and the variation of net dissipation with disturbance amplitude, and that nonlinear effects, such as bounded disturbance amplitude, may be examined from a thermodynamic basis.

  4. On Teaching Thermodynamics

    ERIC Educational Resources Information Center

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  5. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    PubMed

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  6. Kinetic theory of turbulence for parallel propagation revisited: Low-to-intermediate frequency regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H., E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701

    2015-09-15

    A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. Inmore » the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.« less

  7. Revisiting Individual Creativity Assessment: Triangulation in Subjective and Objective Assessment Methods

    ERIC Educational Resources Information Center

    Park, Namgyoo K.; Chun, Monica Youngshin; Lee, Jinju

    2016-01-01

    Compared to the significant development of creativity studies, individual creativity research has not reached a meaningful consensus regarding the most valid and reliable method for assessing individual creativity. This study revisited 2 of the most popular methods for assessing individual creativity: subjective and objective methods. This study…

  8. The Effectiveness of Problem-Based Learning on Teaching the First Law of Thermodynamics

    ERIC Educational Resources Information Center

    Tatar, Erdal; Oktay, Munir

    2011-01-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study…

  9. Thermodynamics of the variable modified Chaplygin gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panigrahi, D.; Chatterjee, S., E-mail: dibyendupanigrahi@yahoo.co.in, E-mail: chat_sujit1@yahoo.com

    A cosmological model with a new variant of Chaplygin gas obeying an equation of state (EoS), P = A ρ − B /ρ{sup α} where B = B {sub 0} a {sup n} is investigated in the context of its thermodynamical behaviour. Here B {sub 0} and n are constants and a is the scale factor. We show that the equation of state of this 'Variable Modified Chaplygin gas' (VMCG) can describe the current accelerated expansion of the universe. Following standard thermodynamical criteria we mainly discuss the classical thermodynamical stability of the model and find that the new parameter, nmore » introduced in VMCG plays a crucial role in determining the stability considerations and should always be negative. We further observe that although the earlier model of Lu explains many of the current observational findings of different probes it fails the desirable tests of thermodynamical stability. We also note that for 0 n < our model points to a phantom type of expansion which, however, is found to be compatible with current SNe Ia observations and CMB anisotropy measurements. Further the third law of thermodynamics is obeyed in our case. Our model is very general in the sense that many of earlier works in this field may be obtained as a special case of our solution. An interesting point to note is that the model also apparently suggests a smooth transition from the big bang to the big rip in its whole evaluation process.« less

  10. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  11. Student Opinions and Perceptions of Undergraduate Thermodynamics Courses in Engineering

    ERIC Educational Resources Information Center

    Ugursal, V. Ismet; Cruickshank, Cynthia A.

    2015-01-01

    Thermodynamics is a fundamental foundation of all engineering disciplines. A vast majority of engineering undergraduate programmes contain one or more courses on thermodynamics, and many engineers use thermodynamics every day to analyse or design energy systems. However, there is extensive anecdotal evidence as well as a wide range of published…

  12. Neutrino assisted GUT baryogenesis revisited

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  13. Dynamic stall reattachment revisited

    NASA Astrophysics Data System (ADS)

    Mulleners, Karen

    2017-11-01

    Dynamic stall on pitching airfoils is an important practical problem that affects for example rotary wing aircraft and wind turbines. It also comprises a number of interesting fundamental fluid dynamical phenomena such as unsteady flow separation, vortex formation and shedding, unsteady flow reattachment, and dynamic hysteresis. Following up on past efforts focussing on the separation development, we now revisited the flow reattachment or stall recovery process. Experimental time-resolved velocity field and surface pressure data for a two-dimensional sinusoidally pitching airfoil with various reduced frequencies was analysed using different Eulerian, Lagrangian, and modal decomposition methods. This complementary analysis resulted in the identification of the chain of events that play a role in the flow reattachment process, a detailed description of that role, and characterisation of the individual events by the governing time-scales and flow features.

  14. Fluid Dynamics and Thermodynamics of Vapor Phase Crystal Growth

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1985-01-01

    The ground-based research effort under this program is concerned with systematic studies of the effects of variations: (1) of the relative importance of buoyancy-driven convection, and (2) of diffusion and viscosity conditions on crystal properties. These experimental studies are supported by thermodynamic characterizations of the systems, based on which fluid dynamic parameters can be determined. The specific materials under investigation include: the GeSe-GeI4, Ge-GeI4, HgTe-HgI2, and Hg sub (1-x)Cd sub (x) Te-HgI2 systems. Mass transport rate studies of the GeSe-GeI system as a function of orientation of the density gradient relative to the gravity vector demonstrated the validity of flux anomalies observed in earlier space experiments. The investigation of the effects of inert gases on mass flux yielded the first experimental evidence for the existence of a boundary layer in closed ampoules. Combined with a thorough thermodynamic analysis, a transport model for diffusive flow including chemical vapor transport, sublimation, and Stefan flow was developed.

  15. Thermodynamic properties for arsenic minerals and aqueous species

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Majzlan, Juraj; Königsberger, Erich; Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj

    2014-01-01

    Quantitative geochemical calculations are not possible without thermodynamic databases and considerable advances in the quantity and quality of these databases have been made since the early days of Lewis and Randall (1923), Latimer (1952), and Rossini et al. (1952). Oelkers et al. (2009) wrote, “The creation of thermodynamic databases may be one of the greatest advances in the field of geochemistry of the last century.” Thermodynamic data have been used for basic research needs and for a countless variety of applications in hazardous waste management and policy making (Zhu and Anderson 2002; Nordstrom and Archer 2003; Bethke 2008; Oelkers and Schott 2009). The challenge today is to evaluate thermodynamic data for internal consistency, to reach a better consensus of the most reliable properties, to determine the degree of certainty needed for geochemical modeling, and to agree on priorities for further measurements and evaluations.

  16. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium

  17. Revisiting the block method for evaluating thermal conductivities of clay and granite

    USDA-ARS?s Scientific Manuscript database

    Determination of thermal conductivities of porous media using the contact method is revisited and revalidated with consideration of thermal contact resistance. Problems that limit the accuracy of determination of thermal conductivities of porous media are discussed. Thermal conductivities of granite...

  18. Quantitative Assessment of Thermodynamic Constraints on the Solution Space of Genome-Scale Metabolic Models

    PubMed Central

    Hamilton, Joshua J.; Dwivedi, Vivek; Reed, Jennifer L.

    2013-01-01

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations. PMID:23870272

  19. A Tractable Disequilbrium Framework for Integrating Computational Thermodynamics and Geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; Tweed, L. E. L.; Evans, O.; Kelemen, P. B.; Wilson, C. R.

    2017-12-01

    The consistent integration of computational thermodynamics and geodynamics is essential for exploring and understanding a wide range of processes from high-PT magma dynamics in the convecting mantle to low-PT reactive alteration of the brittle crust. Nevertheless, considerable challenges remain for coupling thermodynamics and fluid-solid mechanics within computationally tractable and insightful models. Here we report on a new effort, part of the ENKI project, that provides a roadmap for developing flexible geodynamic models of varying complexity that are thermodynamically consistent with established thermodynamic models. The basic theory is derived from the disequilibrium thermodynamics of De Groot and Mazur (1984), similar to Rudge et. al (2011, GJI), but extends that theory to include more general rheologies, multiple solid (and liquid) phases and explicit chemical reactions to describe interphase exchange. Specifying stoichiometric reactions clearly defines the compositions of reactants and products and allows the affinity of each reaction (A = -Δ/Gr) to be used as a scalar measure of disequilibrium. This approach only requires thermodynamic models to return chemical potentials of all components and phases (as well as thermodynamic quantities for each phase e.g. densities, heat capacity, entropies), but is not constrained to be in thermodynamic equilibrium. Allowing meta-stable phases mitigates some of the computational issues involved with the introduction and exhaustion of phases. Nevertheless, for closed systems, these problems are guaranteed to evolve to the same equilibria predicted by equilibrium thermodynamics. Here we illustrate the behavior of this theory for a range of simple problems (constructed with our open-source model builder TerraFERMA) that model poro-viscous behavior in the well understood Fo-Fa binary phase loop. Other contributions in this session will explore a range of models with more petrologically interesting phase diagrams as well as

  20. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage-Santacreu, Stephanie; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr; Hoang, Hai

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach formore » each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.« less

  1. Re-Visit to the School Nurse and Adolescents' Medicine Use

    ERIC Educational Resources Information Center

    Borup, Ina K.; Andersen, Anette; Holstein, Bjorn E.

    2011-01-01

    Objective: To examine if students who re-visit the school nurse use medicines differently than other students when exposed to aches and psychological problems. Methods: The study includes all 11-, 13- and 15-year-old students from a random sample of schools in Denmark, response rate 87 per cent, n = 5,205. The data collection followed the…

  2. Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years.

    PubMed

    Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela

    2016-01-27

    High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients

  3. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  4. Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory.

    PubMed

    Chen, Leanne D; Nørskov, Jens K; Luntz, Alan C

    2015-01-02

    The Al-air battery possesses high theoretical specific energy (4140 W h/kg) and is therefore an attractive candidate for vehicle propulsion. However, the experimentally observed open-circuit potential is much lower than what bulk thermodynamics predicts, and this potential loss is typically attributed to corrosion. Similarly, large Tafel slopes associated with the battery are assumed to be due to film formation. We present a detailed thermodynamic study of the Al-air battery using density functional theory. The results suggest that the maximum open-circuit potential of the Al anode is only -1.87 V versus the standard hydrogen electrode at pH 14.6 instead of the traditionally assumed -2.34 V and that large Tafel slopes are inherent in the electrochemistry. These deviations from the bulk thermodynamics are intrinsic to the electrochemical surface processes that define Al anodic dissolution. This has contributions from both asymmetry in multielectron transfers and, more importantly, a large chemical stabilization inherent to the formation of bulk Al(OH)3 from surface intermediates. These are fundamental limitations that cannot be improved even if corrosion and film effects are completely suppressed.

  5. Revisiting High School Conversions: What is Sustained After the Funding Goes?

    ERIC Educational Resources Information Center

    Wallach, Catherine A.

    2009-01-01

    School reformers hope that converting comprehensive high schools into collections of small schools will produce results similar to those realized in freestanding small schools. This comparative case study revisits two "conversions" as they complete the grant funding that supported the reform, in order to explore the extent to which…

  6. Atmospheric Entry Heating of Micrometeorites Revisited: Higher Temperatures and Potential Biases

    NASA Technical Reports Server (NTRS)

    Love, S.; Alexander, C. M. OD.

    2001-01-01

    The atmospheric entry heating model of Love and Brownlee appears to have overestimated evaporation rates by as much as two orders of magnitude. Here we revisit the issue of atmospheric entry heating, using a revised prescription for evaporation rates. Additional information is contained in the original extended abstract.

  7. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  8. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  9. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.

    PubMed

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-12-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Thermodynamic analysis and purifying an amorphous phase of frozen crystallization centers

    NASA Astrophysics Data System (ADS)

    Lysov, V. I.; Tsaregradskaya, T. L.; Turkov, O. V.; Saenko, G. V.

    2017-12-01

    The possibility of dissolving frozen crystallization centers in amorphous alloys of the Fe-B system is considered by means of thermodynamic calculations. This can in turn improve the thermal stability of an amorphous alloy. The effect isothermal annealing has on the thermal stability of multicomponent amorphous alloys based on iron is investigated via the highly sensitive dilatometric technique, measurements of microsolidity, and electron microscopic investigations. The annealing temperature is determined empirically on the basis of the theses of the thermodynamic theory of the high temperature stability of multicomponent amorphous alloys, according to which there exists a range of temperatures that is characterized by a negative difference between the chemical potentials of phases in a heterogeneous amorphous matrix-frozen crystallization centers system. The thermodynamic condition of the possible dissolution of frozen crystallization centers is thus met. It is shown that introducing regimes of thermal processing allows us to expand the ranges of the thermal stability of iron-based amorphous alloys by 20-40 K through purifying an amorphous matrix of frozen crystallization centers. This conclusion is proved via electron microscopic investigations.

  11. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces.

    PubMed

    Scarratt, Liam R J; Steiner, Ullrich; Neto, Chiara

    2017-08-01

    Advancements in the fabrication and study of superhydrophobic surfaces have been significant over the past 10years, and some 20years after the discovery of the lotus effect, the study of special wettability surfaces can be considered mainstream. While the fabrication of superhydrophobic surfaces is well advanced and the physical properties of superhydrophobic surfaces well-understood, the robustness of these surfaces, both in terms of mechanical and thermodynamic properties, are only recently getting attention in the literature. In this review we cover publications that appeared over the past ten years on the thermodynamic and mechanical robustness of superhydrophobic surfaces, by which we mean the long term stability under conditions of wear, shear and pressure. The review is divided into two parts, the first dedicated to thermodynamic robustness and the second dedicated to mechanical robustness of these complex surfaces. Our work is intended as an introductory review for researchers interested in addressing longevity and stability of superhydrophobic surfaces, and provides an outlook on outstanding aspects of investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures

    NASA Astrophysics Data System (ADS)

    Motevaselian, M. H.; Aluru, N. R.

    2017-04-01

    We present an empirical potential-based quasi-continuum theory (EQT) to predict the structure and thermodynamic properties of confined fluid mixtures. The central idea in the EQT is to construct potential energies that integrate important atomistic details into a continuum-based model such as the Nernst-Planck equation. The EQT potentials can be also used to construct the excess free energy functional, which is required for the grand potential in the classical density functional theory (cDFT). In this work, we use the EQT-based grand potential to predict various thermodynamic properties of a confined binary mixture of hydrogen and methane molecules inside graphene slit channels of different widths. We show that the EQT-cDFT predictions for the structure, surface tension, solvation force, and local pressure tensor profiles are in good agreement with the molecular dynamics simulations. Moreover, we study the effect of different bulk compositions and channel widths on the thermodynamic properties. Our results reveal that the composition of methane in the mixture can significantly affect the ordering of molecules and thermodynamic properties under confinement. In addition, we find that graphene is selective to methane molecules.

  13. Thermodynamic behavior of glassy state of structurally related compounds.

    PubMed

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  14. The connection between logical and thermodynamic irreversibility

    NASA Astrophysics Data System (ADS)

    Ladyman, James; Presnell, Stuart; Short, Anthony J.; Groisman, Berry

    There has recently been a good deal of controversy about Landauer's Principle, which is often stated as follows: the erasure of one bit of information in a computational device is necessarily accompanied by a generation of kT ln 2 heat. This is often generalised to the claim that any logically irreversible operation cannot be implemented in a thermodynamically reversible way. Norton [2005. Eaters of the lotus: Landauer's principle and the return of Maxwell's demon. Studies in History and Philosophy of Modern Physics, 36, 375-411] and Maroney [2005. The (absence of a) relationship between thermodynamic and logical reversibility. Studies in History and Philosophy of Modern Physics, 36, 355-374] both argue that Landauer's Principle has not been shown to hold in general, and Maroney offers a method that he claims instantiates the operation Reset in a thermodynamically reversible way. In this paper we defend the qualitative form of Landauer's Principle, and clarify its quantitative consequences (assuming the second law of thermodynamics). We analyse in detail what it means for a physical system to implement a logical transformation L, and we make this precise by defining the notion of an L-machine. Then we show that logical irreversibility of L implies thermodynamic irreversibility of every corresponding L-machine. We do this in two ways. First, by assuming the phenomenological validity of the Kelvin statement of the second law, and second, by using information-theoretic reasoning. We illustrate our results with the example of the logical transformation 'Reset', and thereby recover the quantitative form of Landauer's Principle.

  15. Clock-Work Trade-Off Relation for Coherence in Quantum Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kwon, Hyukjoon; Jeong, Hyunseok; Jennings, David; Yadin, Benjamin; Kim, M. S.

    2018-04-01

    In thermodynamics, quantum coherences—superpositions between energy eigenstates—behave in distinctly nonclassical ways. Here we describe how thermodynamic coherence splits into two kinds—"internal" coherence that admits an energetic value in terms of thermodynamic work, and "external" coherence that does not have energetic value, but instead corresponds to the functioning of the system as a quantum clock. For the latter form of coherence, we provide dynamical constraints that relate to quantum metrology and macroscopicity, while for the former, we show that quantum states exist that have finite internal coherence yet with zero deterministic work value. Finally, under minimal thermodynamic assumptions, we establish a clock-work trade-off relation between these two types of coherences. This can be viewed as a form of time-energy conjugate relation within quantum thermodynamics that bounds the total maximum of clock and work resources for a given system.

  16. An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogers, David M.; Beck, Thomas L.; Rempe, Susan B.

    2011-10-01

    Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium `process' free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss.

  17. Thermodynamic Properties of HCFC142b

    NASA Astrophysics Data System (ADS)

    Fukushima, Masato; Watanabe, Naohiro

    Thermodynamic properties of HCFC142b,namely saturated densities,vapor pressures and PVT properties,were measured and the critical parameters were determined through those experimental results. The correlations for vpor pressure, saturated liquid density and PVT properties deduced from those experimental results were compared with the measured data and also with the estimates of the other correlations published in literatures. The thermodynamic functions,such as enthalpy,entropy,heat capacity and etc.,could be considered to be reasonab1y estimatedby the expression reported in this paper.

  18. Qualitative and quantitative reasoning about thermodynamics

    NASA Technical Reports Server (NTRS)

    Skorstad, Gordon; Forbus, Ken

    1989-01-01

    One goal of qualitative physics is to capture the tacit knowledge of engineers and scientists. It is shown how Qualitative Process theory can be used to express concepts of engineering thermodynamics. In particular, it is shown how to integrate qualitative and quantitative knowledge to solve textbook problems involving thermodynamic cycles, such as gas turbine plants and steam power plants. These ideas were implemented in a program called SCHISM. Its analysis of a sample textbook problem is described and plans for future work are discussed.

  19. Black Hole Thermodynamics and Lorentz Symmetry

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Wall, Aron C.

    2010-08-01

    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

  20. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.